## ETSI TS 136 133 V9.20.0 (2014-07)



## LTE;

Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 9.20.0 Release 9)



# Reference RTS/TSGR-0436133v9k0 Keywords LTE

#### **ETSI**

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### Important notice

The present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

<a href="http://portal.etsi.org/tb/status/status.asp">http://portal.etsi.org/tb/status/status.asp</a></a>

If you find errors in the present document, please send your comment to one of the following services: <u>http://portal.etsi.org/chaircor/ETSI\_support.asp</u>

#### **Copyright Notification**

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.
All rights reserved.

**DECT**<sup>TM</sup>, **PLUGTESTS**<sup>TM</sup>, **UMTS**<sup>TM</sup> and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**<sup>TM</sup> and **LTE**<sup>TM</sup> are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

## Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

#### **Foreword**

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

## Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <a href="ETSI Drafting Rules">ETSI Drafting Rules</a> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

## Contents

| Intelle            | ectual Property Rights                 | 2  |
|--------------------|----------------------------------------|----|
| Forew              | vord                                   | 2  |
| Moda               | ıl verbs terminology                   | 2  |
| Forew              | vord                                   | 18 |
| 1                  | Scope                                  | 19 |
| 2                  | References                             | 19 |
| 3                  | Definitions, symbols and abbreviations |    |
| 3.1                | Definitions                            |    |
| 3.2                | Symbols                                |    |
| 3.3                | Abbreviations                          |    |
| 3.4                | Test tolerances                        | 22 |
|                    | E-UTRAN RRC_IDLE state mobility        |    |
| 4.1                | Cell Selection                         |    |
| 4.2                | Cell Re-selection                      |    |
| 4.2.1              | Introduction                           |    |
| 4.2.2              | Requirements                           |    |
| 4.2.2.1            | 6                                      |    |
| 4.2.2.2            |                                        |    |
| 4.2.2.3            | 1 7                                    |    |
| 4.2.2.4            |                                        |    |
| 4.2.2.5            |                                        |    |
| 4.2.2.5            |                                        |    |
| 4.2.2.5<br>4.2.2.5 |                                        |    |
| 4.2.2.5            |                                        |    |
| 4.2.2.5            |                                        |    |
| 4.2.2.6            |                                        |    |
| 4.2.2.7            |                                        |    |
| 4.2.2.8            |                                        |    |
| 4.2.2.9            |                                        |    |
| 4.2.2.1            | ± • •                                  |    |
| 4.2.2.1            |                                        |    |
| 4.2.2.1            | 1 •                                    |    |
| 5                  | E-UTRAN RRC_CONNECTED state mobility   | 32 |
| 5.1                | E-UTRAN Handover                       |    |
| 5.1.1              | Introduction                           | 33 |
| 5.1.2              | Requirements                           | 33 |
| 5.1.2.1            | 1 E-UTRAN FDD – FDD                    | 33 |
| 5.1.2.1            | •                                      |    |
| 5.1.2.1            |                                        |    |
| 5.2.2.2            |                                        |    |
| 5.2.2.2            |                                        |    |
| 5.2.2.2            |                                        |    |
| 5.2.2.3            |                                        |    |
| 5.2.2.3            |                                        |    |
| 5.2.2.3            |                                        |    |
| 5.2.2.4            |                                        |    |
| 5.2.2.4            | ·                                      |    |
| 5.2.2.4            |                                        |    |
| 5.3                | Handover to other RATs                 |    |
| 5.3.1              | E-UTRAN - UTRAN FDD Handover           |    |
| 5.3.1.1            | I Introduction                         | 35 |

| 5.3.1.1.          |                                                                     |    |
|-------------------|---------------------------------------------------------------------|----|
| 5.3.1.1.          | =                                                                   |    |
| 5.3.2             | E-UTRAN - UTRAN TDD Handover                                        |    |
| 5.3.2.1           | Introduction                                                        |    |
| 5.3.2.2           | Requirements                                                        | 36 |
| 5.3.2.2.          |                                                                     |    |
| 5.3.2.2.          | .2 Interruption time                                                | 36 |
| 5.3.3             | E-UTRAN - GSM Handover                                              | 37 |
| 5.3.3.1           | Introduction                                                        | 37 |
| 5.3.3.2           |                                                                     |    |
| 5.3.3.2.          |                                                                     |    |
| 5.3.3.2.          |                                                                     |    |
| 5.4               | Handover to Non-3GPP RATs                                           |    |
| 5.4.1             | E-UTRAN – HRPD Handover                                             |    |
| 5.4.1.1           |                                                                     |    |
| 5.4.1.1           |                                                                     |    |
| 5.4.1.1.          |                                                                     |    |
| 5.4.1.1.<br>5.4.2 | E-UTRAN – cdma2000 1X Handover                                      |    |
| 5.4.2.1           |                                                                     |    |
|                   |                                                                     |    |
| 5.4.2.1.          |                                                                     |    |
| 5.4.2.1.          | .2 Interruption time                                                | 39 |
| 6                 | RRC Connection Mobility Control                                     | 30 |
| 6.1               | RRC Re-establishment                                                |    |
| 6.1.1             | Introduction                                                        |    |
| 6.1.2             |                                                                     |    |
| 6.1.2.1           | Requirements                                                        |    |
|                   | UE Re-establishment delay requirement                               |    |
| 6.2               | Random Access                                                       |    |
| 6.2.1             | Introduction                                                        |    |
| 6.2.2             | Requirements                                                        |    |
| 6.2.2.1           | Contention based random access                                      |    |
| 6.2.2.1.          | 8                                                                   |    |
| 6.2.2.1.          | 8                                                                   |    |
| 6.2.2.1.          |                                                                     |    |
| 6.2.2.1.          |                                                                     |    |
| 6.2.2.1.          | .5 Correct behaviour when receiving a message over Temporary C-RNTI | 41 |
| 6.2.2.1.          |                                                                     |    |
| 6.2.2.2           | Non-Contention based random access                                  | 41 |
| 6.2.2.2.          | .1 Correct behaviour when receiving Random Access Response          | 41 |
| 6.2.2.2.          |                                                                     |    |
| 6.3               | RRC Connection Release with Redirection.                            |    |
| 6.3.1             | Introduction                                                        |    |
| 6.3.2             | Requirements                                                        |    |
| 6.3.2.1           | RRC connection release with redirection to UTRAN FDD                |    |
| 6.3.2.2           |                                                                     |    |
| 6.3.2.3           |                                                                     |    |
|                   | RRC connection release with redirection to UTRAN TDD                |    |
|                   | G Proximity Indication for E-UTRAN and UTRAN                        |    |
|                   | ntroduction                                                         |    |
| 6.4.2 R           | equirements                                                         | 43 |
| 7                 | Timing and signalling characteristics                               | 43 |
| 7.1               | UE transmit timing                                                  |    |
| 7.1<br>7.1.1      |                                                                     |    |
|                   | Introduction                                                        |    |
| 7.1.2             | Requirements                                                        |    |
| 7.2               | UE timer accuracy                                                   |    |
| 7.2.1             | Introduction                                                        |    |
| 7.2.2             | Requirements                                                        |    |
| 7.3               | Timing Advance                                                      |    |
| 7.3.1             | Introduction                                                        |    |
| 7.3.2             | Requirements                                                        |    |
| 7.3.2.1           | Timing Advance adjustment delay                                     | 45 |
| 7.3.2.2           | Timing Advance adjustment accuracy                                  | 45 |

| 7.4         | Cell phase synchronization accuracy (TDD)                            |    |
|-------------|----------------------------------------------------------------------|----|
| 7.4.1       | Definition                                                           |    |
| 7.4.2       | Minimum requirements                                                 |    |
| 7.5         | Synchronization Requirements for E-UTRAN to 1xRTT and HRPD Handovers |    |
| 7.5.1       | Introduction                                                         |    |
| 7.5.2       | eNodeB Synchronization Requirements                                  |    |
| 7.5.2.1     | Synchronized E-UTRAN                                                 |    |
| 7.5.2.2     | Non-Synchronized E-UTRAN                                             |    |
| 7.6         | Radio Link Monitoring                                                |    |
| 7.6.1       | Introduction                                                         | 46 |
| 7.6.2       | Requirements                                                         |    |
| 7.6.2.1     | Minimum requirement when no DRX is used                              |    |
| 7.6.2.2     | Minimum requirement when DRX is used                                 | 48 |
| 7.6.2.3     | Minimum requirement at transitions                                   | 49 |
| 8 UI        | E Measurements Procedures in RRC_CONNECTED State                     | 49 |
| 8.1         | General Measurement Requirements                                     | 49 |
| 8.1.1       | Introduction                                                         | 49 |
| 8.1.2       | Requirements                                                         | 49 |
| 8.1.2.1     | UE measurement capability                                            | 49 |
| 8.1.2.1.1   | Monitoring of multiple layers using gaps                             | 50 |
| 8.1.2.2     | E-UTRAN intra frequency measurements                                 |    |
| 8.1.2.2.1   | E-UTRAN FDD intra frequency measurements                             |    |
| 8.1.2.2.2   | E-UTRAN TDD intra frequency measurements                             |    |
| 8.1.2.2.3   | E-UTRAN FDD intra frequency measurements with autonomous gaps        |    |
| 8.1.2.2.3.  |                                                                      |    |
| 8.1.2.2.4   | E-UTRAN TDD intra frequency measurements with autonomous gaps        |    |
| 8.1.2.2.4.2 |                                                                      |    |
| 8.1.2.3     | E-UTRAN inter frequency measurements                                 |    |
| 8.1.2.3.1   | E-UTRAN FDD – FDD inter frequency measurements                       |    |
| 8.1.2.3.2   | E-UTRAN TDD – TDD inter frequency measurements                       |    |
| 8.1.2.3.3   | E-UTRAN TDD – FDD inter frequency measurements                       |    |
| 8.1.2.3.4   | E-UTRAN FDD – TDD inter frequency measurements                       |    |
| 8.1.2.3.5   | E-UTRAN FDD-FDD inter frequency measurements with autonomous gaps    |    |
| 8.1.2.3.6   | E-UTRAN TDD-FDD inter frequency measurements using autonomous gaps   |    |
| 8.1.2.3.7   | E-UTRAN TDD-TDD inter frequency measurements with autonomous gaps    |    |
| 8.1.2.3.7.  |                                                                      |    |
| 8.1.2.3.8   | E-UTRAN FDD-TDD inter frequency measurements using autonomous gaps   |    |
| 8.1.2.4     | Inter RAT measurements                                               |    |
| 8.1.2.4.1   | E-UTRAN FDD – UTRAN FDD measurements                                 |    |
| 8.1.2.4.2   | E-UTRAN TDD – UTRAN FDD measurements                                 |    |
| 8.1.2.4.3   | E-UTRAN TDD – UTRAN TDD measurements                                 |    |
| 8.1.2.4.4   | E-UTRAN FDD – UTRAN TDD measurements                                 |    |
| 8.1.2.4.5   | E-UTRAN FDD – GSM measurements                                       |    |
| 8.1.2.4.6   | E-UTRAN TDD – GSM measurements                                       |    |
| 8.1.2.4.7   | E-UTRAN FDD – UTRAN FDD measurements for SON                         |    |
| 8.1.2.4.8   | E-UTRAN TDD – UTRAN FDD measurements for SON                         |    |
| 8.1.2.4.9   | E-UTRAN FDD – cdma2000 1xRTT measurements                            |    |
| 8.1.2.4.9.  |                                                                      |    |
| 8.1.2.4.10  |                                                                      |    |
| 8.1.2.4.11  |                                                                      |    |
| 8.1.2.4.12  |                                                                      |    |
| 8.1.2.4.13  |                                                                      |    |
| 8.1.2.4.14  |                                                                      |    |
| 8.1.2.5     | E-UTRAN OTDOA Intra-Frequency RSTD Measurements                      |    |
| 8.1.2.5.1   | E-UTRAN GTDGA Intra-Frequency GTDGA Measurements                     |    |
| 8.1.2.5.1   |                                                                      |    |
| 8.1.2.5.2   | E-UTRAN TDD Intra-Frequency OTDOA Measurements                       |    |
| 8.1.2.5.2.  |                                                                      |    |
| 8.1.2.3.2.  | E-UTRAN Inter-Frequency OTDOA Measurements                           |    |
| 8.1.2.6.1   | E-UTRAN FDD-FDD Inter-Frequency OTDOA Measurements                   |    |
| 81261       | * *                                                                  | 80 |
|             |                                                                      |    |

| Annex A   | (normative): Test Cases                                             | 111 |
|-----------|---------------------------------------------------------------------|-----|
| 10.3.1    | report mapping                                                      | 109 |
| 10.3      | Report mapping                                                      |     |
| 10.2.1    | Timing Advance (T <sub>ADV</sub> )                                  |     |
| 10.2.1    | Range/mapping                                                       |     |
| 10.1.3    | Angle of Arrival (AOA)                                              |     |
| 10.1.2    | Received Interference Power measurement report mapping              |     |
| 10.1.1    | Relative accuracy requirement                                       |     |
| 10.1      | Absolute accuracy requirement                                       |     |
| 10 M      | Received Interference Power                                         |     |
| 10 M      | easurements Performance Requirements for E-UTRAN                    | 100 |
| 9.5.1     | CDMA2000 1x RTT Pilot Strength                                      | 108 |
| 9.5       | CDMA2000 1x RTT Measurements                                        | 108 |
| 9.4.1     | GSM carrier RSSI                                                    |     |
| 9.4       | GSM Measurements                                                    | 107 |
| 9.3.3     | Void                                                                |     |
| 9.3.2     | Void                                                                |     |
| 9.3.1     | UTRAN TDD P-CCPCH RSCP                                              | 107 |
| 9.3       | UTRAN TDD Measurements                                              |     |
| 9.2.3     | UTRAN FDD CPICH Ec/No                                               | 106 |
| 9.2.2     | Void                                                                |     |
| 9.2.1     | UTRAN FDD CPICH RSCP                                                | 106 |
| 9.2       | UTRAN FDD Measurements                                              |     |
| 9.1.10.3  | RSTD Measurement Report Mapping                                     | 105 |
| 9.1.10.2  | Inter-Frequency Accuracy Requirement                                |     |
| 9.1.10.1  | Intra-Frequency Accuracy Requirement                                | 103 |
| 9.1.10    | Reference Signal Time Difference (RSTD)                             | 103 |
| 9.1.9.2   | Measurement Report mapping                                          | 103 |
| 9.1.9.1   | Measurement Requirement                                             | 102 |
| 9.1.9     | UE Rx – Tx time difference                                          |     |
| 9.1.8.4   | Report Mapping                                                      |     |
| 9.1.8.3   | Void                                                                |     |
| 9.1.8.2   | Reporting Delay                                                     |     |
| 9.1.8.1   | Period                                                              | 101 |
| 9.1.8     | Power Headroom                                                      |     |
| 9.1.7     | RSRQ Measurement Report Mapping                                     |     |
| 9.1.6.2   | Relative Accuracy of RSRQ                                           |     |
| 9.1.6.1   | Absolute RSRQ Accuracy                                              |     |
| 9.1.6     | Inter-frequency RSRQ Accuracy Requirements                          |     |
| 9.1.5.1   | Absolute RSRQ Accuracy                                              |     |
| 9.1.5     | Intra-frequency RSRQ Accuracy Requirements                          |     |
| 9.1.4     | RSRP Measurement Report Mapping                                     |     |
| 9.1.3.2   | Relative Accuracy of RSRP                                           |     |
| 9.1.3.1   | Absolute RSRP Accuracy                                              |     |
| 9.1.3     | Inter-frequency RSRP Accuracy Requirements                          |     |
| 9.1.2.2   | Relative Accuracy of RSRP                                           |     |
| 9.1.2.1   | Absolute RSRP Accuracy                                              |     |
| 9.1.2     | Intra-frequency RSRP Accuracy Requirements                          |     |
|           | oduction                                                            |     |
| 9.1       | E-UTRAN measurements                                                |     |
| 9 M       | easurements performance requirements for UE                         | 95  |
| 8.2.2     | Requirements                                                        | 94  |
| 8.2.1     | Introduction                                                        |     |
| 8.2       | Capabilities for Support of Event Triggering and Reporting Criteria |     |
| 8.1.2.7.2 | E-UTRAN TDD UE Rx-Tx Time Difference Measurements                   |     |
| 8.1.2.7.1 | E-UTRAN FDD UE Rx-Tx Time Difference Measurements                   |     |
| 8.1.2.7   | E-UTRAN E-CID Measurements                                          |     |
| 8.1.2.6.4 | E-UTRAN FDD-TDD Inter-Frequency OTDOA Measurements                  |     |
| 8.1.2.6.3 | E-UTRAN TDD-TDD Inter-Frequency OTDOA Measurements                  |     |
| 8.1.2.6.2 | E-UTRAN TDD-FDD Inter-Frequency OTDOA Measurements                  | 89  |

| A.1 ]    | Purpose of annex                                                                | 111 |
|----------|---------------------------------------------------------------------------------|-----|
| A.2      | Requirement classification for statistical testing                              | 111 |
| A.2.1    | Types of requirements in TS 36.133                                              |     |
| A.2.1.1  | Time and delay requirements on UE higher layer actions                          |     |
| A.2.1.2  | Measurements of power levels, relative powers and time                          |     |
| A.2.1.3  | Implementation requirements                                                     |     |
| A.2.1.4  | Physical layer timing requirements                                              |     |
| A.3      | RRM test configurations                                                         | 113 |
| A.3.1    | Reference Measurement Channels                                                  |     |
| A.3.1.1  | PDSCH                                                                           |     |
| A.3.1.1  |                                                                                 |     |
| A.3.1.1  |                                                                                 |     |
| A.3.1.2  | PCFICH/PDCCH/PHICH                                                              |     |
| A.3.1.2  |                                                                                 |     |
| A.3.1.2  |                                                                                 |     |
| A.3.2    | OFDMA Channel Noise Generator (OCNG)                                            |     |
| A.3.2.1  | OCNG Patterns for FDD.                                                          |     |
| A.3.2.1  |                                                                                 |     |
| A.3.2.1  | 1.                                                                              |     |
| A.3.2.1  | •                                                                               |     |
| A.3.2.1  | <u>*</u>                                                                        |     |
| A.3.2.1  | <u> </u>                                                                        |     |
| A.3.2.1  | i , , , , , , , , , , , , , , , , , , ,                                         |     |
| A.3.2.1  | <u>.</u>                                                                        |     |
| A.3.2.1  | i ' '                                                                           |     |
| A.3.2.1  |                                                                                 |     |
| A.3.2.1  |                                                                                 |     |
| 11.3.2.1 | subframe (without MBSFN)                                                        | 121 |
| A.3.2.2  |                                                                                 |     |
| A.3.2.2  | •                                                                               |     |
| A.3.3    | Reference DRX Configurations                                                    |     |
| Δ4 1     | E-UTRAN RRC_IDLE state                                                          | 126 |
| A.4.2    | Cell Re-Selection                                                               |     |
| A.4.2.1  |                                                                                 |     |
| A.4.2.1  |                                                                                 |     |
| A.4.2.1  | 1                                                                               |     |
| A.4.2.2  | E-UTRAN TDD – TDD Intra frequency case                                          |     |
| A.4.2.2  |                                                                                 |     |
| A.4.2.2  | <u>.</u>                                                                        |     |
| A.4.2.3  | E-UTRAN FDD – FDD Inter frequency case                                          |     |
| A.4.2.3  |                                                                                 |     |
| A.4.2.3  | <u>.</u>                                                                        |     |
| A.4.2.4  | 1                                                                               |     |
| A.4.2.4  |                                                                                 |     |
| A.4.2.4  | 1                                                                               |     |
| A.4.2.5  | E-UTRAN TDD – FDD Inter frequency case                                          |     |
| A.4.2.5  |                                                                                 |     |
| A.4.2.5  | 1                                                                               |     |
| A.4.2.6  | E-UTRAN TDD – TDD: Inter frequency case                                         |     |
| A.4.2.6  | - · · · · · · · · · · · · · · · · · · ·                                         |     |
| A.4.2.6  |                                                                                 |     |
| A.4.2.7  | E-UTRAN FDD – FDD Inter frequency case in the existence of non-allowed CSG cell |     |
| A.4.2.7  |                                                                                 |     |
| A.4.2.7  |                                                                                 |     |
| A.4.2.8  | E-UTRAN TDD – TDD Inter frequency case in the existence of non-allowed CSG cell | 141 |
| A.4.2.8  | .1 Test Purpose and Environment                                                 | 141 |
| A.4.2.8  | .2 Test Requirements                                                            | 142 |

| A.4.3.1                    | E-UTRAN FDD – UTRAN FDD:                                                                                 | 143        |
|----------------------------|----------------------------------------------------------------------------------------------------------|------------|
| A.4.3.1.1                  | EUTRA FDD-UTRA FDD cell reselection: UTRA FDD is of higher priority                                      | 143        |
| A.4.3.1.1.1                | Test Purpose and Environment                                                                             |            |
| A.4.3.1.1.2                | Test Requirements                                                                                        |            |
| A.4.3.1.2                  | EUTRA FDD-UTRA FDD cell reselection: UTRA FDD is of lower priority                                       | 145        |
| A.4.3.1.2.1                | Test Purpose and Environment                                                                             |            |
| A.4.3.1.2.2                | Test Requirements                                                                                        | 147        |
| A.4.3.1.3                  | EUTRA FDD-UTRA FDD cell reselection in fading propagation conditions: UTRA FDD is of                     |            |
|                            | lower priority                                                                                           |            |
| A.4.3.1.3.1                | Test Purpose and Environment                                                                             |            |
| A.4.3.1.3.2                | Test Requirements                                                                                        |            |
| A.4.3.2                    | E-UTRAN FDD – UTRAN TDD:                                                                                 |            |
| A.4.3.2.1                  | Test Purpose and Environment                                                                             |            |
| A.4.3.2.1.1                | Void                                                                                                     |            |
| A.4.3.2.1.2                | 1.28Mcps TDD option                                                                                      |            |
| A.4.3.2.1.3                | Void                                                                                                     |            |
| A.4.3.3                    | E-UTRAN TDD – UTRAN FDD:                                                                                 |            |
| A.4.3.3.1                  | Test Purpose and Environment                                                                             |            |
| A.4.3.3.2                  | Test Requirements                                                                                        |            |
| A.4.3.4                    | E-UTRAN TDD – UTRAN TDD:                                                                                 |            |
| A.4.3.4.1                  | E-UTRA to UTRA TDD cell re-selection: UTRA is of higher priority                                         |            |
| A.4.3.4.1.1                | Test Purpose and Environment                                                                             |            |
| A.4.3.4.1.1.1              | Void                                                                                                     |            |
| A.4.3.4.1.1.2              | 1.28 Mcps TDD option                                                                                     |            |
| A.4.3.4.1.1.3              | Void                                                                                                     |            |
| A.4.3.4.1.2                | Test Requirements                                                                                        |            |
| A.4.3.4.1.2.1              | Void                                                                                                     |            |
| A.4.3.4.1.2.2              | 1.28 Mpcs TDD option                                                                                     |            |
| A.4.3.4.2                  | E-UTRA to UTRA TDD cell re-selection: UTRA is of lower priority                                          |            |
| A.4.3.4.2.1                | Test Purpose and Environment                                                                             |            |
| A.4.3.4.2.1.1              | Void                                                                                                     |            |
| A.4.3.4.2.1.2              | 1.28 Mcps TDD option                                                                                     |            |
| A.4.3.4.2.1.3              | Void                                                                                                     |            |
| A.4.3.4.2.2                | Test Requirements                                                                                        |            |
| A.4.3.4.2.2.1              | Void                                                                                                     |            |
| A.4.3.4.2.2.2              | 1.28 Mpcs TDD option                                                                                     |            |
| A.4.3.4.2.2.3              | Void                                                                                                     | 162        |
| A.4.3.4.3                  | EUTRA TDD-UTRA TDD cell reselection in fading propagation conditions: UTRA TDD is of                     | 1.00       |
|                            | lower priority                                                                                           |            |
| A.4.3.4.3.1                | Test Purpose and Environment                                                                             |            |
| A.4.3.4.3.2                | Test Requirements                                                                                        |            |
|                            | UTRAN to GSM Cell Re-Selection                                                                           |            |
| A.4.4.1                    | E-UTRAN FDD – GSM:                                                                                       |            |
| A.4.4.1.1 Te<br>A.4.4.1.2  | est Purpose and Environment                                                                              |            |
|                            | Test Requirements                                                                                        |            |
| A.4.4.2                    | E-UTRAN TDD – GSM:                                                                                       |            |
| A.4.4.2.1                  | Test Purpose and Environment                                                                             |            |
| A.4.4.2.2<br>A.4.5 E-U     | Test RequirementsUTRAN to HRPD Cell Re-Selection                                                         |            |
|                            | E-UTRAN FDD – HRPD                                                                                       |            |
| A.4.5.1                    |                                                                                                          |            |
| A.4.5.1.1                  | E-UTRAN FDD – HRPD Cell Reselection: HRPD is of Lower Priority                                           |            |
| A.4.5.1.1.1<br>A.4.5.1.1.2 | Test Purpose and Environment                                                                             |            |
| A.4.5.1.1.2<br>A.4.5.2     | E-UTRAN TDD – HRPD                                                                                       |            |
| A.4.5.2<br>A.4.5.2.1       | E-UTRAN TDD – HRPD Cell Reselection: HRPD is of Lower Priority                                           |            |
| A.4.5.2.1<br>A.4.5.2.1.1   | Test Purpose and Environment                                                                             |            |
| A.4.5.2.1.1<br>A.4.5.2.1.2 | Test Requirements                                                                                        |            |
| A.4.5.2.1.2<br>A.4.6       | E-UTRAN to cdma2000 1X Cell Re-Selection                                                                 |            |
| A.4.6.1                    | E-UTRAN FDD – cdma2000 1X.                                                                               |            |
| A.4.6.1<br>A.4.6.1.1       | E-UTRAN FDD – cdma2000 1X.  E-UTRAN FDD – cdma2000 1X Cell Reselection: cdma2000 1X is of Lower Priority |            |
| A.4.6.1.1                  | Test Purpose and Environment                                                                             |            |
| Δ 1 6 1 1 2                | Test Requirements                                                                                        | 177<br>177 |

| A.4.6.2                | E-UTRAN TDD – cdma2000 1X                                                   | 177 |
|------------------------|-----------------------------------------------------------------------------|-----|
| A.4.6.2.1              | E-UTRAN TDD -cdma2000 1X Cell Reselection: cdma2000 1X is of Lower Priority | 177 |
| A.4.6.2.1.1            | Test Purpose and Environment                                                | 177 |
| A.4.6.2.1.2            | Test Requirements                                                           | 180 |
| 4.5 D.I.T.             | DANIDDO CONNECTED Mode Mobility                                             | 100 |
|                        | TRAN RRC CONNECTED Mode Mobility                                            |     |
|                        | UTRAN Handover                                                              |     |
| A.5.1.1                | E-UTRAN FDD - FDD Intra frequency handover                                  |     |
| A.5.1.1.1              | Test Purpose and Environment                                                |     |
| A.5.1.1.2              | Test Requirements                                                           |     |
|                        | UTRAN TDD - TDD Intra frequency handover                                    |     |
| A.5.1.2.1              | Test Purpose and Environment                                                |     |
| A.5.1.2.2              | Test Requirements                                                           |     |
| A.5.1.3 E-             | UTRAN FDD – FDD Inter frequency handover                                    | 184 |
| A.5.1.3.1              | Test Purpose and Environment                                                |     |
| A.5.1.3.2              | Test Requirements                                                           |     |
| A.5.1.4 E-             | UTRAN TDD – TDD Inter frequency handover                                    | 186 |
| A.5.1.4.1              | Test Purpose and Environment                                                | 186 |
| A.5.1.4.2              | Test Requirements                                                           | 188 |
| A.5.1.5                | E-UTRAN FDD – FDD Inter frequency handover: unknown target cell             | 188 |
| A.5.1.5.1              | Test Purpose and Environment                                                | 188 |
| A.5.1.5.2              | Test Requirements                                                           |     |
| A.5.1.6                | E-UTRAN TDD – TDD Inter frequency handover; unknown Target Cell             |     |
| A.5.1.6.1              | Test Purpose and Environment                                                |     |
| A.5.1.6.2              | Test Requirements                                                           |     |
| A.5.1.7                | E-UTRAN FDD – TDD Inter frequency handover                                  |     |
| A.5.1.7.1              | Test Purpose and Environment                                                |     |
| A.5.1.7.2              | Test Requirements                                                           |     |
|                        | UTRAN TDD – FDD Inter frequency handover                                    |     |
| A.5.1.8.1              | Test Purpose and Environment                                                |     |
| A.5.1.8.2              | Test Requirements                                                           |     |
|                        | UTRAN Handover to other RATs                                                |     |
| A.5.2.1                | E-UTRAN FDD – UTRAN FDD Handover                                            |     |
| A.5.2.1<br>A.5.2.1.1   | Test Purpose and Environment                                                |     |
| A.5.2.1.1<br>A.5.2.1.2 | Test Requirements                                                           |     |
| A.5.2.1.2<br>A.5.2.2   | E-UTRAN TDD - UTRAN FDD Handover                                            |     |
|                        |                                                                             |     |
| A.5.2.2.1              | Test Purpose and Environment                                                |     |
| A.5.2.2.2              | Test Requirements                                                           |     |
|                        | FRAN FDD- GSM Handover                                                      |     |
| A.5.2.3.1              | 1                                                                           | 205 |
| A.5.2.3.2              | Test Requirements                                                           |     |
| A.5.2.4                | E-UTRAN TDD - UTRAN TDD Handover                                            |     |
| A.5.2.4.1              | Test Purpose and Environment                                                |     |
| A.5.2.4.1.1            | Void                                                                        |     |
| A.5.2.4.1.2            | 1.28 Mcps TDD option                                                        |     |
| A.5.2.4.1.3            | Void                                                                        |     |
| A.5.2.4.2              | Test Requirements                                                           |     |
| A.5.2.4.2.1            | Void                                                                        |     |
| A.5.2.4.2.2            | 1.28 Mcps TDD option                                                        | 209 |
| A.5.2.4.2.3            | Void                                                                        | 209 |
| A.5.2.5                | E-UTRAN FDD – UTRAN TDD Handover                                            | 210 |
| A.5.2.5.1              | Test Purpose and Environment                                                | 210 |
| A.5.2.5.1.1            | Void                                                                        | 210 |
| A.5.2.5.1.2            | 1.28 Mcps TDD option                                                        | 210 |
| A.5.2.5.1.3            | Void                                                                        |     |
| A.5.2.5.2              | Test Requirements                                                           |     |
| A.5.2.5.2.1            | Void                                                                        |     |
| A.5.2.5.2.2            | 1.28 Mcps TDD option                                                        |     |
| A.5.2.5.2.3            | Void                                                                        |     |
| A.5.2.6                | E-UTRAN TDD - GSM Handover                                                  |     |
| A.5.2.6.1              | Test Purpose and Environment                                                |     |
| A 5 2 6 2              | Test Requirements                                                           | 214 |

| A.5.2.7                                                                                                                                                                                                                                                            | E-UTRAN FDD – UTRAN FDD Handover; Unknown Target Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| A.5.2.7.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 215                                                                                      |
| A.5.2.7.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.5.2.8 E-U                                                                                                                                                                                                                                                        | FRAN FDD - GSM Handover; Unknown Target Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.2.8.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 217                                                                                      |
| A.5.2.8.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.5.2.9 E-U                                                                                                                                                                                                                                                        | FRAN TDD - GSM Handover; Unknown Target Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                      |
| A.5.2.9.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                                                      |
| A.5.2.9.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 221                                                                                      |
| A.5.2.10                                                                                                                                                                                                                                                           | E-UTRAN TDD to UTRAN TDD handover: unknown target cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 222                                                                                      |
| A.5.2.10.1                                                                                                                                                                                                                                                         | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222                                                                                      |
| A.5.2.10.2                                                                                                                                                                                                                                                         | Test Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |
| A.5.3                                                                                                                                                                                                                                                              | E-UTRAN Handover to Non-3GPP RATs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 224                                                                                      |
| A.5.3.1                                                                                                                                                                                                                                                            | E-UTRAN FDD – HRPD Handover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |
| A.5.3.1.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.3.1.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 227                                                                                      |
| A.5.3.2                                                                                                                                                                                                                                                            | E-UTRAN FDD – cdma2000 1X Handover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |
| A.5.3.2.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.3.2.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.5.3.3                                                                                                                                                                                                                                                            | E-UTRAN FDD – HRPD Handover; Unknown Target Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |
| A.5.3.3.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.3.3.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.5.3.4                                                                                                                                                                                                                                                            | E-UTRAN FDD – cdma2000 1X Handover; Unknown Target cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |
| A.5.3.4.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.3.4.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.5.3.5                                                                                                                                                                                                                                                            | E-UTRAN TDD – HRPD Handover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |
| A.5.3.5.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.3.5.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.5.3.6                                                                                                                                                                                                                                                            | E-UTRAN TDD – cdma2000 1X Handover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |
| A.5.3.6.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.5.3.6.2                                                                                                                                                                                                                                                          | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 241                                                                                      |
| A.6 RRC                                                                                                                                                                                                                                                            | Connection Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 241                                                                                      |
|                                                                                                                                                                                                                                                                    | RC Re-establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| A.6.1.1                                                                                                                                                                                                                                                            | E-UTRAN FDD Intra-frequency RRC Re-establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |
| A.6.1.1.1                                                                                                                                                                                                                                                          | Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |
| A.6.1.1.2                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
|                                                                                                                                                                                                                                                                    | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 243                                                                                      |
| A.b.1.2                                                                                                                                                                                                                                                            | Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
|                                                                                                                                                                                                                                                                    | E-UTRAN FDD Inter-frequency RRC Re-establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 243                                                                                      |
| A.6.1.2.1                                                                                                                                                                                                                                                          | E-UTRAN FDD Inter-frequency RRC Re-establishment  Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 243<br>243                                                                               |
| A.6.1.2.1                                                                                                                                                                                                                                                          | E-UTRAN FDD Inter-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2                                                                                                                                                                                                                                             | E-UTRAN FDD Inter-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3                                                                                                                                                                                                                                  | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1                                                                                                                                                                                                                     | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2                                                                                                                                                                                                        | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |
| A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4                                                                                                                                                                                                                                  | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1                                                                                                                                                                                | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment  Test Purpose and Environment  Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4.1<br>A.6.1.4.1                                                                                                                                                                              | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment  Test Purpose and Environment  Test Purpose and Environment  Test Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2                                                                                                                                                          | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment  Test Purpose and Environment  Test Purpose and Environment  Test Requirements.  Random Access  E-UTRAN FDD – Contention Based Random Access Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1                                                                                                                                               | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements. Random Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1                                                                                                                                  | E-UTRAN FDD Inter-frequency RRC Re-establishment.  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment  Test Purpose and Environment  Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment  Test Purpose and Environment  Test Purpose and Environment  Test Requirements.  Random Access  E-UTRAN FDD – Contention Based Random Access Test  Test Purpose and Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 243 2445 245 246 246 247 248 248 249 250 250 250                                         |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1                                                                                                                   | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception Receiving a NACK on msg3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1                                                                                                                   | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.1                                                                                                    | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception Receiving a NACK on msg3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.4                                                       | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception. No Random Access Response Reception. Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI.                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3.1<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.4<br>A.6.2.1.2.5                                                     | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements. Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception. No Random Access Response Reception. Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI Reception of a Correct Message over Temporary C-RNTI                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4.1<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.4<br>A.6.2.1.2.5<br>A.6.2.1.2.6                                  | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements. Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception. No Random Access Response Reception. Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI Reception of a Correct Message over Temporary C-RNTI Contention Resolution Timer expiry                                                                                                                                                                                                                                                                                                                   | 243 243 2445 2446 2446 2446 2447 248 248 249 250 250 250 252 252 252 253 253 253         |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.3<br>A.6.2.1.2.4<br>A.6.2.1.2.5<br>A.6.2.1.2.6<br>A.6.2.1              | E-UTRAN FDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements.  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements. Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception. No Random Access Response Reception Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI. Reception of a Correct Message over Temporary C-RNTI. Contention Resolution Timer expiry E-UTRAN FDD – Non-Contention Based Random Access Test                                                                                                                                                                                                                                                            | 243 243 2445 2446 2446 2447 248 248 249 250 250 250 252 252 252 253 253 253 253          |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.4<br>A.6.2.1.2.5<br>A.6.2.1.2.6<br>A.6.2.1.2.6<br>A.6.2.2<br>A.6.2.2.1 | E-UTRAN FDD Inter-frequency RRC Re-establishment  Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements  Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI Reception of a Correct Message over Temporary C-RNTI Contention Resolution Timer expiry E-UTRAN FDD – Non-Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception              | 243 2445 245 246 246 247 248 248 249 250 250 252 252 252 253 253 253 253 253 255         |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.4<br>A.6.2.1.2.5<br>A.6.2.1.2.6<br>A.6.2.2<br>A.6.2.2.1<br>A.6.2.2.1   | E-UTRAN FDD Inter-frequency RRC Re-establishment  Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI Reception of a Correct Message over Temporary C-RNTI Contention Resolution Timer expiry E-UTRAN FDD – Non-Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception E-UTRAN TDD – Contention Based Random Access Test | 243 2445 245 246 246 247 248 248 249 250 250 250 252 252 252 253 253 253 253 253 255 255 |
| A.6.1.2.1<br>A.6.1.2.2<br>A.6.1.3.1<br>A.6.1.3.2<br>A.6.1.4.1<br>A.6.1.4.1<br>A.6.1.4.2<br>A.6.2.1<br>A.6.2.1.1<br>A.6.2.1.2.1<br>A.6.2.1.2.2<br>A.6.2.1.2.3<br>A.6.2.1.2.4<br>A.6.2.1.2.5<br>A.6.2.1.2.6<br>A.6.2.2.1<br>A.6.2.2.1<br>A.6.2.2.2.1<br>A.6.2.2.2.1  | E-UTRAN FDD Inter-frequency RRC Re-establishment  Test Purpose and Environment Test Requirements  E-UTRAN TDD Intra-frequency RRC Re-establishment Test Purpose and Environment Test Requirements  E-UTRAN TDD Inter-frequency RRC Re-establishment Test Purpose and Environment Test Purpose and Environment Test Requirements  Random Access E-UTRAN FDD – Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception Receiving a NACK on msg3 Reception of an Incorrect Message over Temporary C-RNTI Reception of a Correct Message over Temporary C-RNTI Contention Resolution Timer expiry E-UTRAN FDD – Non-Contention Based Random Access Test Test Purpose and Environment Random Access Response Reception No Random Access Response Reception              | 243 2445 245 246 246 247 248 248 249 250 250 250 252 252 252 253 253 253 253 253 255 255 |

| A.6.2.3.2.2          | No Random Access Response reception                                             | 257 |
|----------------------|---------------------------------------------------------------------------------|-----|
| A.6.2.3.2.3          | Receiving a NACK on msg3                                                        | 257 |
| A.6.2.3.2.4          | Reception of an Incorrect Message over Temporary C-RNTI                         | 258 |
| A.6.2.3.2.5          | Reception of a Correct Message over Temporary C-RNTI                            |     |
| A.6.2.3.2.6          | Contention Resolution Timer expiry                                              |     |
| A.6.2.4              | E-UTRAN TDD – Non-Contention Based Random Access Test                           | 258 |
| A.6.2.4.1            | Test Purpose and Environment                                                    | 258 |
| A.6.2.4.2.1          | Random Access Response Reception                                                | 260 |
| A.6.2.4.2.2          | No Random Access Response Reception                                             | 260 |
| A.6.3 R              | RC Connection Release with Redirection                                          | 260 |
| A.6.3.1              | Redirection from E-UTRAN FDD to UTRAN FDD                                       |     |
| A.6.3.1.1            | Test Purpose and Environment                                                    | 260 |
| A.6.3.1.2            | Test Requirements                                                               | 263 |
| A.6.3.2              | Redirection from E-UTRAN TDD to UTRAN FDD                                       | 263 |
| A.6.3.2.1            | Test Purpose and Environment                                                    | 263 |
| A.6.3.2.2            | Test Requirements                                                               | 266 |
| A.6.3.3              | Redirection from E-UTRAN FDD to GERAN when System Information is provided       | 266 |
| A.6.3.3.1            | Test Purpose and Environment                                                    | 266 |
| A.6.3.3.2            | Test Requirements                                                               | 267 |
| A.6.3.4              | Redirection from E-UTRAN TDD to GERAN when System Information is provided       | 268 |
| A.6.3.4.1            | Test Purpose and Environment                                                    | 268 |
| A.6.3.4.2            | Test Requirements                                                               | 269 |
| A.6.3.5              | E-UTRA TDD RRC connection release redirection to UTRA TDD                       | 270 |
| A.6.3.5.1            | Test Purpose and Environment                                                    | 270 |
| A.6.3.5.2            | Test Requirements                                                               | 272 |
| A.6.3.6              | E-UTRA FDD RRC connection release redirection to UTRA TDD                       | 272 |
| A.6.3.6.1            | Test Purpose and Environment                                                    | 272 |
| A.6.3.6.2            | Test Requirements                                                               | 274 |
| A.6.3.7              | E-UTRA TDD RRC connection release redirection to UTRA TDD without SI provided   | 274 |
| A.6.3.7.1            | Test Purpose and Environment                                                    | 274 |
| A.6.3.7.2            | Test Requirements                                                               |     |
| A.6.3.8              | E-UTRA FDD RRC connection release redirection to UTRA TDD without SI provided   |     |
| A.6.3.8.1            | Test Purpose and Environment                                                    |     |
| A.6.3.8.2            | Test Requirements                                                               |     |
| A.6.3.9              | Redirection from E-UTRAN FDD to UTRAN FDD without System Information            |     |
| A.6.3.9.1            | Test Purpose and Environment                                                    |     |
| A.6.3.9.2            | Test Requirements                                                               |     |
| A.6.3.10             | Redirection from E-UTRAN FDD to GERAN when System Information is not provided   |     |
| A.6.3.10.1           | Test Purpose and Environment                                                    |     |
| A.6.3.10.2           | Test Requirements                                                               |     |
| A.6.3.11             | Redirection from E-UTRAN TDD to GERAN when System Information is not provided   |     |
| A.6.3.11.1           | Test Purpose and Environment                                                    |     |
| A.6.3.11.2           | Test Requirements                                                               |     |
| A.6.3.12             | E-UTRAN TDD RRC connection release redirection to UTRAN FDD without SI provided |     |
| A.6.3.12.1           | Test Purpose and Environment                                                    |     |
| A.6.3.12.2           | Test Requirements                                                               | 290 |
| A.7 Timi             | ng and Signalling Characteristics                                               | 290 |
|                      | E Transmit Timing                                                               |     |
| A.7.1.1              | E-UTRAN FDD – UE Transmit Timing Accuracy Tests                                 |     |
| A.7.1.1<br>A.7.1.1.1 | Test Purpose and Environment                                                    |     |
| A.7.1.1.2            | Test Requirements.                                                              |     |
| A.7.1.2              | E-UTRAN TDD - UE Transmit Timing Accuracy Tests                                 |     |
| A.7.1.2.1            | Test Purpose and Environment                                                    |     |
| A.7.1.2.2            | Test Requirements.                                                              |     |
| A.7.1.2.2<br>A.7.2   | UE Timing Advance                                                               |     |
| A.7.2.1              | E-UTRAN FDD – UE Timing Advance Adjustment Accuracy Test                        |     |
| A.7.2.1.1            | Test Purpose and Environment                                                    |     |
| A.7.2.1.2            | Test Requirements                                                               |     |
| A.7.2.2              | E-UTRAN TDD – UE Timing Advance Adjustment Accuracy Test                        |     |
| A.7.2.2.1            | Test Purpose and Environment                                                    |     |
| A 7 2 2 2            | Test Requirements                                                               | 301 |

| A.7.3                  | Radio Link Monitoring                                                                     | 301  |
|------------------------|-------------------------------------------------------------------------------------------|------|
| A.7.3.1                | E-UTRAN FDD Radio Link Monitoring Test for Out-of-sync                                    | 301  |
| A.7.3.1.1              | Test Purpose and Environment                                                              | 301  |
| A.7.3.1.2              | Test Requirements                                                                         |      |
| A.7.3.2                | E-UTRAN FDD Radio Link Monitoring Test for In-sync                                        |      |
| A.7.3.2.1              | Test Purpose and Environment                                                              |      |
| A.7.3.2.2              | Test Requirements                                                                         |      |
| A.7.3.3                | E-UTRAN TDD Radio Link Monitoring Test for Out-of-sync                                    |      |
| A.7.3.3.1              | Test Purpose and Environment                                                              |      |
| A.7.3.3.2              | Test Requirements                                                                         |      |
| A.7.3.4                | E-UTRAN TDD Radio Link Monitoring Test for In-sync                                        |      |
| A.7.3.4.1              | Test Purpose and Environment                                                              |      |
| A.7.3.4.2              | Test Requirements                                                                         |      |
| A.7.3.5                | E-UTRAN FDD Radio Link Monitoring Test for Out-of-sync in DRX                             |      |
| A.7.3.5.1              | Test Purpose and Environment                                                              |      |
| A.7.3.5.1<br>A.7.3.5.2 | Test Requirements                                                                         |      |
| A.7.3.5.2<br>A.7.3.6   | E-UTRAN FDD Radio Link Monitoring Test for In-sync in DRX                                 |      |
|                        |                                                                                           |      |
| A.7.3.6.1              | Test Purpose and Environment                                                              |      |
| A.7.3.6.2              | Test Requirements                                                                         |      |
| A.7.3.7                | E-UTRAN TDD Radio Link Monitoring Test for Out-of-sync in DRX                             |      |
| A.7.3.7.1              | Test Purpose and Environment                                                              |      |
| A.7.3.7.2              | Test Requirements                                                                         |      |
| A.7.3.8                | E-UTRAN TDD Radio Link Monitoring Test for In-sync in DRX                                 |      |
| A.7.3.8.1              | Test Purpose and Environment                                                              |      |
| A.7.3.8.2              | Test Requirements                                                                         | 329  |
| A.8 U                  | E Measurements Procedures                                                                 | 220  |
|                        |                                                                                           |      |
| A.8.1                  | E-UTRAN FDD Intra-frequency Measurements                                                  |      |
| A.8.1.1                | E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation condit |      |
|                        | in asynchronous cells                                                                     |      |
| A.8.1.1.1              | Test Purpose and Environment                                                              |      |
| A.8.1.1.2              | Test Requirements                                                                         |      |
| A.8.1.2                | E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation condit |      |
|                        | in synchronous cells                                                                      |      |
| A.8.1.2.1              | Test Purpose and Environment                                                              |      |
| A.8.1.2.2              | Test Requirements                                                                         |      |
| A.8.1.3                | E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation condit | ions |
|                        | in synchronous cells with DRX                                                             | 333  |
| A.8.1.3.1              | Test Purpose and Environment                                                              | 333  |
| A.8.1.3.2              | Test Requirements                                                                         | 336  |
| A.8.1.4                | Void                                                                                      | 336  |
| A.8.1.5                | E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using        |      |
|                        | autonomous gaps                                                                           | 336  |
| A.8.1.5.1              | Test Purpose and Environment                                                              |      |
| A.8.1.5.2              | Test Requirements                                                                         |      |
| A.8.1.6                | E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using        |      |
| 11.0.1.0               | autonomous gaps with DRX                                                                  | 330  |
| A.8.1.6.1              | Test Purpose and Environment                                                              |      |
| A.8.1.6.2              | Test Requirements                                                                         |      |
| A.8.1.0.2<br>A.8.2     | •                                                                                         |      |
|                        | E-UTRAN TDD Intra-frequency Measurements                                                  | 341  |
| A.8.2.1                | E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation        | 2.41 |
| 40211                  | conditions in synchronous cells                                                           |      |
| A.8.2.1.1              | Test Purpose and Environment                                                              |      |
| A.8.2.1.2              | Test Requirements                                                                         | 342  |
| A.8.2.2                | E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation        |      |
|                        | conditions in synchronous cells with DRX                                                  |      |
| A.8.2.2.1              | Test Purpose and Environment                                                              |      |
| A.8.2.2.2              | Test Requirements                                                                         | 345  |
| A.8.2.3                | E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using        |      |
|                        | autonomous gaps                                                                           |      |
| A.8.2.3.1              | Test Purpose and Environment                                                              |      |
| A 8 2 3 2              | Test Requirements                                                                         | 347  |

| A.8.2.4              | E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using      |             |
|----------------------|-----------------------------------------------------------------------------------------|-------------|
|                      | autonomous gaps with DRX                                                                |             |
| A.8.2.4.1            | Test Purpose and Environment                                                            |             |
| A.8.2.4.2            | Test Requirements                                                                       |             |
| A.8.3                | E-UTRAN FDD - FDD Inter-frequency Measurements                                          | 350         |
| A.8.3.1              | E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation      |             |
|                      | conditions in asynchronous cells                                                        | 350         |
| A.8.3.1.1            | Test Purpose and Environment                                                            | 350         |
| A.8.3.1.2            | Test Requirements                                                                       | 351         |
| A.8.3.2              | E-UTRAN FDD-FDD Inter-frequency event triggered reporting when DRX is used under fading |             |
|                      | propagation conditions in asynchronous cells                                            | 351         |
| A.8.3.2.1            | Test Purpose and Environment                                                            | 351         |
| A.8.3.2.2            | Test Requirements                                                                       | 354         |
| A.8.3.3              | E-UTRAN FDD-FDD inter-frequency event triggered reporting under AWGN propagation        |             |
|                      | conditions in asynchronous cells with DRX when L3 filtering is used                     | 354         |
| A.8.3.3.1            | Test Purpose and Environment                                                            |             |
| A.8.3.3.2            | Test Requirements                                                                       |             |
| A.8.3.4              | E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using      |             |
|                      | autonomous gaps                                                                         | 357         |
| A.8.3.4.1            | Test Purpose and Environment                                                            |             |
| A.8.3.4.2            | Test Requirements                                                                       |             |
| A.8.3.5              | E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using      |             |
| 11.0.3.3             | autonomous gaps with DRX                                                                | 360         |
| A.8.3.5.2            | Test Requirements.                                                                      |             |
| A.8.4                | E-UTRAN TDD - TDD Inter-frequency Measurements                                          |             |
| A.8.4.1              | E-UTRAN TDD-TDD Inter-frequency event triggered reporting under fading propagation      | 302         |
| A.0.4.1              | conditions in synchronous cells                                                         | 360         |
| A.8.4.1.1            | Test Purpose and Environment                                                            |             |
| A.8.4.1.2            | Test Requirements                                                                       |             |
| A.8.4.1.2<br>A.8.4.2 | E-UTRAN TDD-TDD Inter-frequency event triggered reporting when DRX is used under fading | 300         |
| A.6.4.2              | propagation conditions in synchronous cells                                             | 262         |
| A.8.4.2.1            |                                                                                         |             |
|                      | Test Purpose and Environment                                                            |             |
| A.8.4.2.2            | Test Requirements.                                                                      | 360         |
| A.8.4.3              | E-UTRAN TDD-TDD inter-frequency event triggered reporting under AWGN propagation        | 266         |
| . 0 . 2 . 1          | conditions in synchronous cells with DRX when L3 filtering is used                      |             |
| A.8.4.3.1            | Test Purpose and Environment                                                            |             |
| A.8.4.3.2            | Test Requirements                                                                       | 368         |
| A.8.4.4              | E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using      | 2.50        |
|                      | autonomous gaps                                                                         | 369         |
| A.8.4.4.1            | Test Purpose and Environment                                                            |             |
| A.8.4.4.2            | Test Requirements                                                                       | 371         |
| A.8.4.5              | E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using      |             |
|                      | autonomous gaps with DRX                                                                |             |
| A.8.4.5.1            | Test Purpose and Environment                                                            |             |
| A.8.4.5.2            | Test Requirements                                                                       |             |
| A.8.5                | E-UTRAN FDD - UTRAN FDD Measurements                                                    |             |
| A.8.5.1              | E-UTRAN FDD - UTRAN FDD event triggered reporting under fading propagation conditions   |             |
| A.8.5.1.1            | Test Purpose and Environment                                                            |             |
| A.8.5.1.2            | Test Requirements                                                                       | 37 <i>6</i> |
| A.8.5.2              | E-UTRAN FDD - UTRAN FDD SON ANR cell search reporting under AWGN propagation            |             |
|                      | conditions                                                                              | 376         |
| A.8.5.2.1            | Test Purpose and Environment                                                            | 37 <i>6</i> |
| A.8.5.2.2            | Test Requirements                                                                       | 378         |
| A.8.5.3              | E-UTRAN FDD-UTRAN FDD event triggered reporting when DRX is used under fading           |             |
|                      | propagation conditions                                                                  | 378         |
| A.8.5.3.1            | Test Purpose and Environment                                                            |             |
| A.8.5.3.2            | Test Requirements                                                                       |             |
| A.8.5.4              | E-UTRAN FDD - UTRAN FDD enhanced cell identification under AWGN propagation conditions  |             |
| A.8.5.4.1            | Test Purpose and Environment                                                            |             |
| A.8.5.4.2            | Test Requirements                                                                       |             |
| A.8.6                | E-UTRAN TDD - UTRAN FDD Measurements                                                    |             |
| A.8.6.1              | E-UTRAN TDD - UTRAN FDD event triggered reporting under fading propagation conditions   |             |

| A.8.6.1.1                | Test Purpose and Environment                                                                |      |
|--------------------------|---------------------------------------------------------------------------------------------|------|
| A.8.6.1.2                | Test Requirements                                                                           | 386  |
| A.8.7                    | E-UTRAN TDD – UTRAN TDD Measurements                                                        | 386  |
| A.8.7.1                  | E-UTRAN TDD to UTRAN TDD cell search under fading propagation conditions                    | 386  |
| A.8.7.1.1                | Test Purpose and Environment                                                                | 386  |
| A.8.7.1.1.               | 1 Void                                                                                      | 386  |
| A.8.7.1.1.2              | 2 1.28 Mcps TDD option                                                                      | 386  |
| A.8.7.1.1.3              | 3 Void                                                                                      | 388  |
| A.8.7.1.2                | Test Requirements                                                                           | 388  |
| A.8.7.1.2.               | 1 Void                                                                                      | 388  |
| A.8.7.1.2.2              | 2 1.28 Mcps TDD option                                                                      | 388  |
| A.8.7.1.2.3              |                                                                                             |      |
| A.8.7.2                  | E-UTRAN TDD-UTRAN TDD cell search when DRX is used under fading propagation conditions      |      |
| A.8.7.2.1                | Test Purpose and Environment                                                                | 388  |
| A.8.7.2.2                | Test Requirements                                                                           |      |
| A.8.7.3                  | E-UTRAN TDD - UTRAN TDD SON ANR cell search reporting in AWGN propagation conditions.       |      |
| A.8.7.3.1                | Test Purpose and Environment                                                                |      |
| A.8.7.3.2                | Test Parameters                                                                             |      |
| A.8.7.3.3                | Test Requirements                                                                           |      |
| A.8.7.4                  | E-UTRAN TDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions      |      |
| A.8.7.4.1                | Test Purpose and Environment                                                                |      |
| A.8.7.4.2                | Test Requirements.                                                                          |      |
| A.8.8                    | E-UTRAN FDD – GSM Measurements                                                              |      |
| A.8.8.1                  | E-UTRAN FDD – GSM event triggered reporting in AWGN                                         |      |
| A.8.8.1.1                | Test Purpose and Environment                                                                |      |
| A.8.8.1.2                | Test Requirements.                                                                          |      |
| A.8.8.2                  | E-UTRAN FDD-GSM event triggered reporting when DRX is used in AWGN                          |      |
| A.8.8.2.1                | Test Purpose and Environment                                                                |      |
| A.8.8.2.2                | Test Requirements                                                                           |      |
| A.8.8.3                  | E-UTRAN FDD – GSM event triggered reporting in AWGN with enhanced BSIC identification       |      |
| A.8.8.3.1                | Test Purpose and Environment                                                                |      |
| A.8.8.3.2                | Test Requirements                                                                           |      |
| A.8.9                    | E-UTRAN FDD - UTRAN TDD measurements                                                        |      |
| A.8.9.1                  | E-UTRAN FDD - UTRAN TDD event triggered reporting in fading propagation conditions          |      |
| A.8.9.1.1                | Test Purpose and Environment                                                                |      |
| A.8.9.1.2                | Test Requirements                                                                           |      |
| A.8.9.2                  | E-UTRAN FDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions      |      |
| A.8.9.2.1                | Test Purpose and Environment                                                                |      |
| A.8.9.2.2                | Test Requirements                                                                           |      |
| A.8.10                   | E-UTRAN TDD – GSM Measurements                                                              |      |
| A.8.10.1                 | E-UTRAN TDD – GSM event triggered reporting in AWGN                                         |      |
| A.8.10.1.1               | 1                                                                                           |      |
| A.8.10.1.2               | Test Requirements E-UTRAN TDD-GSM event triggered reporting when DRX is used in AWGN        |      |
| A.8.10.2                 |                                                                                             |      |
| A.8.10.2.1               | 1                                                                                           |      |
| A.8.10.2.2               |                                                                                             | 414  |
| A. 8.11.1                | Multiple E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation | 417  |
| A. 8.11.1.               | conditions                                                                                  |      |
| A. 8.11.1.               |                                                                                             |      |
| A. 8.11.1.2<br>A.8.11.2  | E-UTRAN TDD – E-UTRAN TDD and E-UTRAN TDD Inter-frequency event triggered                   | +10  |
| Λ.0.11.2                 | reporting under fading propagation conditions                                               | 417  |
| A.8.11.2.1               |                                                                                             |      |
| A.8.11.2.1               |                                                                                             |      |
| A.8.11.2.2<br>A.8.11.3   | E-UTRAN FDD-FDD Inter-frequency and UTRAN FDD event triggered reporting under fading        | +10  |
| 11.0.11.3                | propagation conditions                                                                      | /11C |
| A.8.11.3.1               |                                                                                             |      |
| A.8.11.3.1<br>A.8.11.3.2 | <u>*</u>                                                                                    |      |
| A.8.11.3.2<br>A.8.11.4   | InterRAT E-UTRA TDD to E-UTRA TDD and UTRA TDD cell search test case                        |      |
| A.8.11.4<br>A.8.11.4.1   |                                                                                             |      |
| Δ & 11.4.1               | ±                                                                                           | 421  |

| A.8.11.5                 | Combined E-UTRAN FDD – E-UTRA FDD and GSM cell search. E-UTRA cells in fading; GSM      |      |
|--------------------------|-----------------------------------------------------------------------------------------|------|
|                          | cell in static propagation conditions.                                                  |      |
| A.8.11.5.1               | Test Purpose and Environment                                                            |      |
| A.8.11.5.2               | Test Requirements                                                                       | 426  |
| A.8.11.6                 | Combined E-UTRAN TDD – E-UTRA TDD and GSM cell search. E-UTRA cells in fading; GSM      |      |
|                          | cell in static propagation conditions                                                   |      |
| A.8.11.6.1               | Test Purpose and Environment                                                            |      |
| A.8.11.6.2               | Test Requirements                                                                       |      |
|                          | STD Intra-frequency Measurements                                                        |      |
| A.8.12.1                 | E-UTRAN FDD intra-frequency RSTD measurement reporting delay test case                  |      |
| A.8.12.1.1               | Test Purpose and Environment                                                            |      |
| A.8.12.1.2               | Test Requirements                                                                       |      |
| A.8.12.2                 | E-UTRAN TDD intra-frequency RSTD measurement reporting delay test case                  |      |
| A.8.12.2.1               | Test Purpose and Environment                                                            |      |
| A.8.12.2.2               | Test Requirements                                                                       |      |
|                          | oid                                                                                     |      |
|                          | -UTRAN TDD - FDD Inter-frequency Measurements                                           | 439  |
| A.8.14.1                 | E-UTRAN TDD-FDD Inter-frequency event triggered reporting under fading propagation      |      |
|                          | conditions in asynchronous cells                                                        |      |
| A.8.14.1.1               | Test Purpose and Environment                                                            |      |
| A.8.14.1.2               | Test Requirements                                                                       | 44 J |
| A.8.14.2                 | E-UTRAN TDD-FDD Inter-frequency event triggered reporting when DRX is used under fading |      |
|                          | propagation conditions in asynchronous cells                                            |      |
| A.8.14.2.1               | Test Purpose and Environment                                                            |      |
| A.8.14.2.2               | Test Requirements                                                                       | 445  |
| A.8.14.3                 | E-UTRAN TDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using      |      |
| A 0 1 4 2 1              | autonomous gaps                                                                         |      |
| A.8.14.3.1               | Test Purpose and Environment                                                            |      |
| A.8.14.3.2               | Test Requirements.                                                                      |      |
| A.8.15 E-<br>A.8.15.1    | UTRAN FDD TDD Inter-frequency Measurements                                              | 448  |
| A.8.13.1                 | E-UTRAN FDD-TDD Inter-frequency event triggered reporting under fading propagation      | 110  |
| A O 15 1 1               | conditions in asynchronous cells                                                        |      |
| A.8.15.1.1<br>A.8.15.1.2 | Test Purpose and Environment                                                            |      |
| A.8.15.1.2<br>A.8.15.2   | Test Requirements.                                                                      | 445  |
| A.6.13.2                 | E-UTRAN FDD-TDD Inter-frequency event triggered reporting when DRX is used under fading | 150  |
| A.8.15.2.1               | propagation conditions in asynchronous cells                                            |      |
| A.8.15.2.1<br>A.8.15.2.2 | Test Requirements.                                                                      |      |
| A.8.15.2.2<br>A.8.15.3   | E-UTRAN FDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using      | ,432 |
| A.6.13.3                 | autonomous gaps                                                                         | 459  |
| A.8.15.3.1               | Test Purpose and Environment                                                            |      |
| A.8.15.3.2               | Test Requirements.                                                                      |      |
|                          | oid                                                                                     |      |
|                          | -UTRAN TDD – HRPD Measurements                                                          |      |
|                          | UTRAN TDD-HRPD event triggered reporting under fading propagation conditions            |      |
| A.8.17.1.1               | Test Purpose and Environment                                                            |      |
| A.8.17.1.2               | Test Requirements                                                                       |      |
|                          | -UTRAN TDD – CDMA2000 1X Measurements                                                   |      |
| A.8.18.1                 | E-UTRAN TDD – CDMA2000 1X event triggered reporting under fading propagation conditions |      |
| A.8.18.1.1               | Test Purpose and Environment                                                            |      |
| A.8.18.1.2               | Test Requirements.                                                                      |      |
|                          | SG Proximity Indication Testing Case for E-UTRAN FDD – FDD Inter frequency              |      |
| A.8.19.1                 | Test Purpose and Environment                                                            |      |
|                          | et Requirements                                                                         |      |
|                          | •                                                                                       |      |
|                          | surement Performance Requirements                                                       |      |
|                          | SRP                                                                                     |      |
| A.9.1.1                  | FDD Intra frequency case                                                                |      |
| A.9.1.1.1                | Test Purpose and Environment                                                            |      |
| A.9.1.1.2                | Test Pagningments                                                                       |      |
| A.9.1.1.3<br>A 9 1 2     | Test Requirements.                                                                      |      |
| A Y I Z                  | TDD Intra frequency case                                                                | 467  |

| A.9.1.2.1                | Test Purpose and Environment                               |      |
|--------------------------|------------------------------------------------------------|------|
| A.9.1.2.2                | Test parameters                                            |      |
| A.9.1.2.3                | Test Requirements                                          |      |
| A.9.1.3                  | FDD—FDD Inter frequency case                               |      |
| A.9.1.3.1                | Test Purpose and Environment                               |      |
| A.9.1.3.2                | Test parameters                                            |      |
| A.9.1.3.3                | Test Requirements                                          |      |
| A.9.1.4                  | TDD—TDD Inter frequency case                               |      |
| A.9.1.4.1                | Test Purpose and Environment                               |      |
| A.9.1.4.2                | Test parameters                                            |      |
| A.9.1.4.3                | Test Requirements.                                         |      |
| A.9.1.5                  | FDD—TDD Inter frequency case                               |      |
| A.9.1.5.1<br>A.9.1.5.2   | Test Purpose and Environment                               |      |
| A.9.1.5.2<br>A.9.1.5.3   | Test Paguirements                                          |      |
|                          | Test RequirementsSRQ                                       |      |
| A.9.2.1                  | FDD Intra frequency case                                   |      |
| A.9.2.1<br>A.9.2.1.1     | Test Purpose and Environment                               |      |
| A.9.2.1.1<br>A.9.2.1.2   | Test parameters                                            |      |
| A.9.2.1.2<br>A.9.2.1.3   | Test Requirements                                          |      |
| A.9.2.1.3<br>A.9.2.2     | TDD Intra frequency case                                   |      |
| A.9.2.2<br>A.9.2.2.1     | Test Purpose and Environment                               |      |
| A.9.2.2.1<br>A.9.2.2.2   | Test parameters                                            |      |
| A.9.2.2.2<br>A.9.2.2.3   | Test Requirements                                          |      |
| A.9.2.3                  | FDD—FDD Inter frequency case                               |      |
| A.9.2.3<br>A.9.2.3.1     | Test Purpose and Environment                               |      |
| A.9.2.3.1<br>A.9.2.3.2   | Test parameters                                            |      |
| A.9.2.3.2<br>A.9.2.3.3   | Test Requirements                                          |      |
| A.9.2.3.3<br>A.9.2.4     | <u>*</u>                                                   |      |
| A.9.2.4<br>A.9.2.4.1     | TDD—TDD Inter frequency case  Test Purpose and Environment |      |
| A.9.2.4.1<br>A.9.2.4.2   | Test parameters                                            |      |
| A.9.2.4.2<br>A.9.2.4.3   | Test Requirements                                          |      |
| A.9.2.4.3<br>A.9.2.4A    | FDD—TDD Inter frequency case                               |      |
| A.9.2.4A<br>A.9.2.4A.1   | Test Purpose and Environment                               |      |
| A.9.2.4A.1<br>A.9.2.4A.2 | Test parameters                                            |      |
| A.9.2.4A.3               | Test Requirements                                          |      |
| A.9.2.5                  | Void                                                       |      |
| A.9.2.5.1                | VoidVoid                                                   |      |
| A.9.2.5.1<br>A.9.2.5.2   | VoidVoid                                                   |      |
| A.9.2.5.3                | VoidVoid                                                   |      |
|                          | TRAN FDD                                                   |      |
| A.9.3.1.1                | Test Purpose and Environment                               |      |
| A.9.3.1.2                | Parameters                                                 |      |
| A.9.3.1.3                | Test Requirements                                          |      |
|                          | TRAN TDD                                                   |      |
| A.9.3.2.1                | Test Purpose and Environment                               |      |
| A.9.3.2.1<br>A.9.3.2.2   | Parameters                                                 |      |
| A.9.3.2.3                | Test Requirements                                          |      |
|                          | TRAN FDD                                                   |      |
| A.9.4.1.1                | Test Purpose and Environment                               |      |
| A.9.4.1.2                | Parameters                                                 |      |
| A.9.4.1.3                | Test Requirements                                          |      |
|                          | TRAN TDD                                                   |      |
| A.9.4.2.1                | Test Purpose and Environment                               |      |
| A.9.4.2.1<br>A.9.4.2.2   | Parameters                                                 |      |
| A.9.4.2.3                | Test Requirements                                          |      |
|                          | TRAN TDD measurement                                       |      |
| A.9.5.1                  | P-CCPCH RSCP absolute accuracy for E-UTRAN FDD             |      |
| A.9.5.1.1                | Test Purpose and Environment                               |      |
| A.9.5.1.2                | Test parameters                                            |      |
| A.9.5.1.3                | Test Requirements                                          |      |
| Δ 9 5 2                  | P-CCPCH RSCP absolute accuracy for F-UTRAN TDD             | /108 |

| History   |                                             | 529 |
|-----------|---------------------------------------------|-----|
| Annex B   | (informative): Change history:              | 514 |
| A.9.8.2.2 | Test Requirements                           | 513 |
| A.9.8.2.1 | Test Purpose and Environment                |     |
| A.9.8.2   | E-UTRAN TDD RSTD intra frequency case       |     |
| A.9.8.1.2 | Test Requirements                           | 511 |
| A.9.8.1.1 | Test Purpose and Environment                |     |
| A.9.8.1   | E-UTRAN FDD RSTD intra frequency case       | 509 |
| A.9.8     | RSTD                                        | 509 |
| A.9.7.2.3 | Test Requirements                           | 509 |
| A.9.7.2.2 | Test parameters                             | 507 |
| A.9.7.2.1 | Test Purpose and Environment                | 507 |
| A.9.7.2   | E-UTRA TDD                                  |     |
| A.9.7.1.3 | Test Requirements                           |     |
| A.9.7.1.2 | Test parameters                             | 505 |
| A.9.7.1.1 | Test Purpose and Environment                | 505 |
| A.9.7.1   | E-UTRAN FDD UE Rx – Tx time difference case | 505 |
| A.9.7     | UE Rx – Tx Time Difference                  |     |
| A.9.6.2.2 | Test Requirements                           |     |
| A.9.6.2.1 | Test Purpose and Environment                |     |
| A.9.6.2   | E-UTRAN TDD                                 |     |
| A.9.6.1.2 | Test Requirements                           |     |
| A.9.6.1.1 | Test Purpose and Environment                |     |
| A.9.6.1   | E-UTRAN FDD                                 |     |
| A.9.6     | GSM Carrier RSSI.                           |     |
| A.9.5.2.3 | Test Requirements                           |     |
| A.9.5.2.2 | Test parameters                             |     |
| A.9.5.2.1 | Test Purpose and Environment                | 498 |

### **Foreword**

This Technical Specification has been produced by the 3<sup>rd</sup> Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

#### where:

- x the first digit:
  - 1 presented to TSG for information;
  - 2 presented to TSG for approval;
  - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

## 1 Scope

The present document specifies requirements for support of Radio Resource Management for the FDD and TDD modes of Evolved UTRA. These requirements include requirements on measurements in UTRAN and the UE as well as requirements on node dynamical behaviour and interaction, in terms of delay and response characteristics.

## 2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.

Modulation"

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

| Trefeeline et in | e present deciment                                                                                                          |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| [1]              | 3GPP TS 36.304: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode"          |
| [2]              | 3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC) protocol specification". |
| [3]              | 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures"                            |
| [4]              | 3GPP TS 36.214: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements"                         |
| [5]              | 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception" |
| [6]              | 3GPP TS 25.302: "Services provided by the Physical Layer".                                                                  |
| [7]              | 3GPP TS 25.331: "RRC Protocol Specification".                                                                               |
| [8]              | 3GPP TS 45.008: "Radio subsystem link control".                                                                             |
| [9]              | 3GPP TS 45.005: "Radio transmission and reception".                                                                         |
| [10]             | 3GPP TS 45.010: "Radio subsystem synchronization".                                                                          |
| [11]             | 3GPP2 C.S0024-B: "cdma2000 High Rate Packet Data Air Interface Specification".                                              |
| [12]             | 3GPP2 C.S0002-D: "Physical Layer Standard for cdma2000 Spread Spectrum Systems – Release A".                                |
| [13]             | 3GPP2 C.S0033-B: "Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Terminal".            |
| [14]             | 3GPP2 C.S0011-C: "Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Mobile Stations".                  |
| [15]             | 3GPP2 C.S0005-D: Upper Layer (Layer 3) Signaling Specification for cdma2000 Spread Spectrum Systems                         |
| [16]             | 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and                                 |

| [17] | 3GPP TS 36.321: "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification".                                                                                       |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [18] | 3GPP TS 25.133: "Requirements for Support of Radio Resource Management (FDD)".                                                                                                                                   |
| [19] | 3GPP TS 25.123: "Requirements for Support of Radio Resource Management (TDD)".                                                                                                                                   |
| [20] | 3GPP TS 25.214: "Physical layer procedures (FDD)".                                                                                                                                                               |
| [21] | 3GPP TS 36. 212 "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding".                                                                                                          |
| [22] | 3GPP TS 36.302: "Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer"                                                                                                   |
| [23] | 3GPP TS 36.521-3: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Radio Resource Management conformance testing". |
| [24] | 3GPP TS 36.355: "Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Positioning Protocol (LPP)".                                                                                                           |
| [25] | 3GPP TS 36.300: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2"                                             |
| [26] | 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".                                                                                                                                                            |
|      |                                                                                                                                                                                                                  |

## 3 Definitions, symbols and abbreviations

## 3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [26] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [26].

## 3.2 Symbols

For the purposes of the present document, the following symbols apply:

measured at the UE antenna connector

| F F            |                                                                                                                                                                                                                                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| []             | Values included in square bracket must be considered for further studies, because it means that a decision about that value was not taken.                                                                                                                                  |
| DIII           |                                                                                                                                                                                                                                                                             |
| $BW_{Channel}$ | Channel bandwidth, defined in TS 36.101 subclause 3.2                                                                                                                                                                                                                       |
| CPICH_Ec       | Average energy per PN chip for the CPICH                                                                                                                                                                                                                                    |
| CPICH_Ec/Io    | The ratio of the received energy per PN chip for the CPICH to the total received power spectral                                                                                                                                                                             |
|                | density at the UE antenna connector.                                                                                                                                                                                                                                        |
| Ec             | Average energy per PN chip.                                                                                                                                                                                                                                                 |
| Ês             | Received energy per RE (power normalized to the subcarrier spacing) during the useful part of the                                                                                                                                                                           |
|                | symbol, i.e. excluding the cyclic prefix, at the UE antenna connector                                                                                                                                                                                                       |
| Io             | The total received power density, including signal and interference, as measured at the UE antenna connector.                                                                                                                                                               |
| Τ              |                                                                                                                                                                                                                                                                             |
| Ioc            | The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized to the chip rate) of a band limited noise source (simulating interference from cells, which are not defined in a test procedure) as measured at the UE antenna connector. |
| Iot            | The received power spectral density of the total noise and interference for a certain RE (power integrated over the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector                                                                    |
| $N_{oc}$       | The power spectral density of a white noise source (average power per RE normalised to the                                                                                                                                                                                  |
|                | subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as                                                                                                                                                                        |

 $N_{PRS}$  Number of consecutive downlink positioning subframes as defined in subclause 6.10.4.3 in 3GPP

TS 36.211

 $n_{PRB}$  Physical Resource Block number as defined in subclause 3.1 in 3GPP TS 36.211.  $P_{CMAX}$  Configured UE transmitted power as defined in subclause 6.2.5 in 3GPP TS 36.101.

PRP Received (linear) average power of the resource elements that carry E-UTRA PRS, measured at

the UE antenna connector.

S Cell Selection Criterion defined in TS 36.304, subclause 5.2.3.2 for E-UTRAN

SCH\_Ec/Ior The ratio of the transmit energy per PN chip of the SCH to the total transmit power spectral

density at the UTRA Node B antenna connector

SCH\_RP Received (linear) average power of the resource elements that carry E-UTRA synchronisation

signal, measured at the UE antenna connector

Srxlev Cell selection RX level, defined in TS 36.304, subclause 5.2.3.2 Squal Cell selection quality, defined in TS 36.304, subclause 5.2.3.2

Sintersearch Defined in TS 25.304, subclause 5.2.6.1.5

Sintrasearch Defined in TS 25.304, subclause 5.2.6.1.5 for UTRAN and in TS 36.304, subclause 5.2.4.7 for E-

**UTRAN** 

 $T_{\rm PRS}$  Cell-specific positioning subframe configuration period as defined in subclause 6.10.4.3 in 3GPP

TS 36.211

 $T_{\text{RE-ESTABLISH-REQ}}$  The RRC Re-establishment delay requirement, the time between the moment when erroneous

CRCs are applied, to when the UE starts to send preambles on the PRACH.

 $\begin{array}{ll} Treselection & Defined in TS 25.304, subclause 5.2.6.1.5 \\ Treselection_{RAT} & Defined in TS 36.304, subclause 5.2.4.7 \\ Treselection_{EUTRA} & Defined in TS 36.304, subclause 5.2.4.7 \\ Treselection_{UTRA} & Defined in TS 36.304, subclause 5.2.4.7 \\ Treselection_{GERA} & Defined in TS 36.304, subclause 5.2.4.7 \\ T_S & Basic time unit, defined in TS 36.211, clause 4 \\ \end{array}$ 

#### 3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [x] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [x].

1x RTT CDMA2000 1x Radio Transmission Technology

ARQ Automatic Repeat Request
AWGN Additive White Gaussian Noise
BCCH Broadcast Control Channel

BCH Broadcast Channel

CCCH SDU Common Control Channel SDU

CGI Cell Global Identifier CPICH Common Pilot Channel

CPICH Ec/No CPICH Received energy per chip divided by the power density in the band

C-RNTI Cell RNTI

DCCH Dedicated Control Channel

DL Downlink

DRX Discontinuous Reception
DTCH Dedicated Traffic Channel

DUT Device Under Test

E-CID Enhanced Cell-ID (positioning method)

ECGI Evolved CGI eNB E-UTRAN NodeB E-UTRA Evolved UTRA E-UTRAN Evolved UTRAN FDD Frequency Division Duplex

GERAN GSM EDGE Radio Access Network
GSM Global System for Mobile communication

HARQ Hybrid Automatic Repeat Request

HO Handover

HRPD High Rate Packet Data
LPP LTE Positioning Protocol
MAC Medium Access Control

OCNG OFDMA Channel Noise Generator

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access

OTDOA Observed Time Difference of Arrival

PBCH Physical Broadcast Channel

P-CCPCH Primary Common Control Physical Channel
PCFICH Physical Control Format Indicator CHannel
PDCCH Physical Downlink Control CHannel
PDSCH Physical Downlink Shared CHannel
PHICH Physical Hybrid-ARO Indicator CHannel

**PLMN** Public Land Mobile Network **PRACH** Physical Random Access CHannel **PRS** Positioning Reference Signal **PUCCH** Physical Uplink Control CHannel **PUSCH** Physical Uplink Shared Channel **RSCP** Received Signal Code Power **RSRP** Reference Signal Received Power RSRQ Reference Signal Received Quality **RSSI** Received Signal Strength Indicator **RSTD** Reference Signal Time Difference QAM Quadrature Amplitude Modulation

RACH Random Access Channel
RAT Radio Access Technology
RNC Radio Network Controller

RNTI Radio Network Temporary Identifier

**RRC** Radio Resource Control **RRM** Radio Resource Management SCH Synchronization Channel SDU Service Data Unit SFN System Frame Number SI **System Information** Self Optimized Network SON **TDD** Time Division Duplex TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunication System

UTRA Universal Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

#### 3.4 Test tolerances

The requirements given in the present document make no allowance for measurement uncertainty. The test specification 36.521-3 [23] defines the test tolerances. These test tolerances are individually calculated for each test. The test tolerances are then added to the limits in this specification to create test limits. The measurement results are compared against the test limits as defined by the shared risk principle.

Shared Risk is defined in [ETR 273 Part 1 sub-part 2 section 6.5].

## 4 E-UTRAN RRC\_IDLE state mobility

#### 4.1 Cell Selection

After a UE has switched on and a PLMN has been selected, the Cell selection process takes place, as described in TS36.304. This process allows the UE to select a suitable cell where to camp on in order to access available services. In this process the UE can use stored information (*Stored information cell selection*) or not (*Initial cell selection*).

#### 4.2 Cell Re-selection

#### 4.2.1 Introduction

The cell reselection procedure allows the UE to select a more suitable cell and camp on it.

When the UE is in either *Camped Normally* state or *Camped on Any Cell* state on a cell, the UE shall attempt to detect, synchronise, and monitor intra-frequency, inter-frequency and inter-RAT cells indicated by the serving cell. For intra-frequency and inter-frequency cells the serving cell may not provide explicit neighbour list but carrier frequency information and bandwidth information only. UE measurement activity is also controlled by measurement rules defined in TS36.304, allowing the UE to limit its measurement activity.

#### 4.2.2 Requirements

The UE shall search every layer of higher priority at least every  $T_{higher\_priority\_search} = (60 * N_{layers})$  seconds, where  $N_{layers}$  is the total number of configured higher priority E-UTRA, UTRA FDD, UTRA TDD, CDMA2000 1x and HRPD carrier frequencies and is additionally increased by one if one or more groups of GSM frequencies is configured as a higher priority.

#### 4.2.2.1 Measurement and evaluation of serving cell

The UE shall measure the RSRP and RSRQ level of the serving cell and evaluate the cell selection criterion S defined in [1] for the serving cell at least every DRX cycle.

The UE shall filter the RSRP and RSRQ measurements of the serving cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by, at least DRX cycle/2.

If the UE has evaluated in  $N_{\text{serv}}$  consecutive DRX cycles that the serving cell does not fulfil the cell selection criterion S, the UE shall initiate the measurements of all neighbour cells indicated by the serving cell, regardless of the measurement rules currently limiting UE measurement activities.

If the UE in RRC\_IDLE has not found any new suitable cell based on searches and measurements using the intra-frequency, inter-frequency and inter-RAT information indicated in the system information for 10 s, the UE shall initiate cell selection procedures for the selected PLMN as defined in [1].

Table 4.2.2.1-1: N<sub>serv</sub>

| DRX cycle<br>length [s] | N <sub>serv</sub><br>[number of<br>DRX cycles] |
|-------------------------|------------------------------------------------|
| 0.32                    | 4                                              |
| 0.64                    | 4                                              |
| 1.28                    | 2                                              |
| 2.56                    | 2                                              |

#### 4.2.2.2 Void

#### 4.2.2.3 Measurements of intra-frequency E-UTRAN cells

The UE shall be able to identify new intra-frequency cells and perform RSRP and RSRQ measurements of identified intra-frequency cells without an explicit intra-frequency neighbour list containing physical layer cell identities.

The UE shall be able to evaluate whether a newly detectable intra-frequency cell meets the reselection criteria defined in TS36.304 within  $T_{\text{detect}, \text{EUTRAN\_Intra}}$  when that Treselection= 0. An intra frequency cell is considered to be detectable if:

- RSRP|<sub>dBm</sub> ≥ -124 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40 and RSRP Ês/Iot ≥ -4 dB.
- RSRP $|_{dBm} \ge -123$  dBm for Band 9 and RSRP  $\hat{E}$ s/Iot  $\ge -4$  dB,
- RSRP $|_{dBm} \ge -122$  dBm for Bands 2, 5, 7 and RSRP  $\hat{E}s/Iot \ge -4$  dB,
- RSRP<sub>|dBm</sub> $\ge$  -121 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and RSRP £s/Iot  $\ge$  -4 dB,
- SCH\_RP|<sub>dBm</sub> ≥ -124 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40 and SCH Ês/Iot ≥ -4 dB,
- SCH\_RP|<sub>dBm</sub>≥-123 dBm for Band 9 and SCH Ês/Iot ≥ -4 dB,
- SCH\_RP  $|_{dBm} \ge -122$  dBm for Bands 2, 5, 7 and SCH  $\hat{E}s/Iot \ge -4$  dB,
- SCH\_RP  $|_{dBm}$ ≥ -121 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH Ês/Iot ≥ -4 dB.

The UE shall measure RSRP and RSRQ at least every  $T_{measure,EUTRAN\_Intra}$  (see table 4.2.2.3-1) for intra-frequency cells that are identified and measured according to the measurement rules.

The UE shall filter RSRP and RSRQ measurements of each measured intra-frequency cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least  $T_{\text{measure},EUTRAN\ Intra}/2$ 

The UE shall not consider a E-UTRA neighbour cell in cell reselection, if it is indicated as not allowed in the measurement control system information of the serving cell.

For an intra-frequency cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that the intra-frequency cell has met reselection criterion defined [1] within  $T_{\text{evaluate,E-UTRAN\_intra}}$  when  $T_{\text{reselection}} = 0$  as specified in table 4.2.2.3-1 provided that the cell is at least 3dB better ranked. When evaluating cells for reselection, the side conditions for RSRP and SCH apply to both serving and non-serving intra-frequency cells.

If  $T_{reselection}$  timer has a non zero value and the intra-frequency cell is better ranked than the serving cell, the UE shall evaluate this intra-frequency cell for the  $T_{reselection}$  time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

Table 4.2.2.3-1: T<sub>detect,EUTRAN\_Intra</sub>, T<sub>measure,EUTRAN\_Intra</sub> and T<sub>evaluate, E-UTRAN\_intra</sub>

| DRX<br>cycle<br>length<br>[s] | T <sub>detect,EUTRAN_Intra</sub> [s] (number of DRX cycles) | T <sub>measure,EUTRAN_Intra</sub> [s] (number of DRX cycles) | T <sub>evaluate,E-UTRAN_intra</sub> [s] (number of DRX cycles) |
|-------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
| 0.32                          | 11.52 (36)                                                  | 1.28 (4)                                                     | 5.12 (16)                                                      |
| 0.64                          | 17.92 (28)                                                  | 1.28 (2)                                                     | 5.12 (8)                                                       |
| 1.28                          | 32(25)                                                      | 1.28 (1)                                                     | 6.4 (5)                                                        |
| 2.56                          | 58.88 (23)                                                  | 2.56 (1)                                                     | 7.68 (3)                                                       |

#### 4.2.2.4 Measurements of inter-frequency E-UTRAN cells

The UE shall be able to identify new inter-frequency cells and perform RSRP or RSRQ measurements of identified inter-frequency cells if carrier frequency information is provided by the serving cell, even if no explicit neighbour list with physical layer cell identities is provided.

If  $Srxlev > S_{nonIntraSearchP}$  and  $Squal > S_{nonIntraSearchQ}$  then the UE shall search for inter-frequency layers of higher priority at least every  $T_{higher\_priority\_search}$  where  $T_{higher\_priority\_search}$  is described in section 4.2.2.

If  $Srxlev \leq S_{nonIntraSearchP}$  or  $Squal \leq S_{nonIntraSearchQ}$  then the UE shall search for and measure inter-frequency layers of higher, equal or lower priority in preparation for possible reselection. In this scenario, the minimum rate at which the UE is required to search for and measure higher priority layers shall be the same as that defined below.

The UE shall be able to evaluate whether a newly detectable inter-frequency cell meets the reselection criteria defined in TS36.304 within  $K_{carrier} * T_{detect,EUTRAN\_Inter}$  if at least carrier frequency information is provided for inter-frequency neighbour cells by the serving cells when  $T_{reselection} = 0$  provided that the reselection criteria is met by a margin of at least 5dB for reselections based on ranking or 6dB for RSRP reselections based on absolute priorities or 4dB for RSRQ reselections based on absolute priorities.

The parameter  $K_{carrier}$  is the number of E-UTRA inter-frequency carriers indicated by the serving cell. An inter-frequency cell is considered to be detectable if:

- RSRP|<sub>dBm</sub> ≥ -124 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40 and RSRP Ês/Iot ≥ -4 dB.
- RSRP $_{dBm} \ge -123$  dBm for Bands 9 and RSRP  $\hat{E}s/Iot \ge -4$  dB,
- RSRP $|_{dBm} \ge -122 \text{ dBm for Bands } 2, 5, 7 \text{ and RSRP } \hat{E}_s/\text{Iot} \ge -4 \text{ dB},$
- RSRP $|_{dBm} \ge -121 \text{ dBm for Bands } 3, 8, 12, 13, 14, 17, 20 \text{ and RSRP } \hat{E}s/Iot \ge -4 \text{ dB},$
- SCH\_RP|<sub>dBm</sub>  $\geq$  -124 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40 and SCH Ês/Iot  $\geq$  -4 dB,
- SCH\_RP|<sub>dBm</sub>≥-123 dBm for Band 9 and SCH Ês/Iot ≥ -4 dB,
- SCH RP  $|_{dBm} \ge -122$  dBm for Bands 2, 5, 7 and SCH Ês/Iot  $\ge -4$  dB,
- SCH\_RP  $|_{dBm}$ ≥ -121 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH Ês/Iot ≥ -4 dB.

When higher priority cells are found by the higher priority search, they shall be measured at least every  $T_{measure,E-UTRAN\_Inter}$ . If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell. If the UE detects on a E-UTRA carrier a cell whose physical identity is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform measurements on that cell.

The UE shall measure RSRP or RSRQ at least every  $K_{carrier} * T_{measure,EUTRAN\_Inter}$  (see table 4.2.2.4-1) for identified lower or equal priority inter-frequency cells. If the UE detects on a E-UTRA carrier a cell whose physical identity is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform measurements on that cell.

The UE shall filter RSRP or RSRQ measurements of each measured higher, lower and equal priority inter-frequency cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least  $T_{measure,EUTRAN\_Inter}/2$ .

The UE shall not consider a E-UTRA neighbour cell in cell reselection, if it is indicated as not allowed in the measurement control system information of the serving cell.

For an inter-frequency cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that the inter-frequency cell has met reselection criterion defined TS 36.304 within  $K_{carrier} * T_{evaluate,E-UTRAN\_Inter}$  when  $T_{reselection} = 0$  as specified in table 4.2.2.4-1 provided that the reselection criteria is met by a margin of at least 5dB for reselections based on ranking or 6dB for RSRP reselections based on absolute

priorities or 4dB for RSRQ reselections based on absolute priorities. When evaluating cells for reselection, the side conditions for RSRP and SCH apply to both serving and inter-frequency cells.

If  $T_{reselection}$  timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the  $T_{reselection}$  time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

| DRX<br>cycle<br>length<br>[s] | T <sub>detect,EUTRAN_Inter</sub> [s] (number of DRX cycles) | T <sub>measure,EUTRAN_Inter</sub> [s] (number of DRX cycles) | T <sub>evaluate,E</sub> .  UTRAN_Inter [s] (number of DRX cycles) |
|-------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|
| 0.32                          | 11.52 (36)                                                  | 1.28 (4)                                                     | 5.12 (16)                                                         |
| 0.64                          | 17.92 (28)                                                  | 1.28 (2)                                                     | 5.12 (8)                                                          |
| 1.28                          | 32(25)                                                      | 1.28 (1)                                                     | 6.4 (5)                                                           |
| 2.56                          | 58.88 (23)                                                  | 2.56 (1)                                                     | 7.68 (3)                                                          |

Table 4.2.2.4-1: T<sub>detect,EUTRAN\_Inter</sub>, T<sub>measure,EUTRAN\_Inter</sub> and T<sub>evaluate,E-UTRAN\_Inter</sub>

#### 4.2.2.5 Measurements of inter-RAT cells

If  $Srxlev > S_{nonIntraSearchP}$  and  $Squal > S_{nonIntraSearchQ}$  then the UE shall search for inter-RAT layers of higher priority at least every  $T_{higher\_priority\_search}$  where  $T_{higher\_priority\_search}$  is described in section 4.2.2

If  $Srxlev \leq S_{nonIntraSearchP}$  or  $Squal \leq S_{nonIntraSearchQ}$  then the UE shall search for and measure inter-RAT layers of higher, lower priority in preparation for possible reselection. In this scenario, the minimum rate at which the UE is required to search for and measure higher priority inter-RAT layers shall be the same as that defined below for lower priority RATs.

#### 4.2.2.5.1 Measurements of UTRAN FDD cells

When the measurement rules indicate that UTRA FDD cells are to be measured, the UE shall measure CPICH Ec/Io and CPICH RSCP of detected UTRA FDD cells in the neighbour frequency list at the minimum measurement rate specified in this section. The parameter  $N_{UTRA\_carrier}$  is the number of carriers in the neighbour frequency list. The UE shall filter CPICH Ec/Io and CPICH RSCP measurements of each measured UTRA FDD cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least half the minimum specified measurement period.

The UE shall evaluate whether newly detectable UTRA FDD cells have met the reselection criteria in TS 36.304 within time ( $N_{UTRA\_carrier}$ ) \*  $T_{detectUTRA\_FDD}$  when  $Srxlev \leq S_{nonIntraSearchP}$  or  $Squal \leq S_{nonIntraSearchQ}$  when  $Treselection_{RAT} = 0$  provided that the reselection criteria is met by a margin of at least 6dB for reselections based on RSCP, or a margin of at least 3dB for reselections based on Ec/Io.

Cells which have been detected shall be measured at least every ( $N_{UTRA\_carrier}$ ) \*  $T_{measureUTRA\_FDD}$  when  $Srxlev \leq S_{nonIntraSearchP}$  or  $Squal \leq S_{nonIntraSearchP}$ .

When higher priority UTRA FDD cells are found by the higher priority search, they shall be measured at least every  $T_{measure,UTRA\_FDD}$ . If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell.

For a cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that an already identified UTRA FDD cell has met reselection criterion defined in 3GPP TS 36.304 [1] within  $(N_{UTRA\_carrier}) * T_{evaluateUTRA\_FDD}$  when  $T_{reselection} = 0$  as specified in table 4.2.2.5.1-1 provided that the reselection criteria is met by a margin of at least 6dB for reselections based on RSCP, or a margin of at least 3dB for reselections based on Ec/Io.

If  $T_{reselection}$  timer has a non zero value and the UTRA FDD cell is satisfied with the reselection criteria which are defined in [1], the UE shall evaluate this UTRA FDD cell for the  $T_{reselection}$  time. If this cell remains satisfied with the reselection criteria within this duration, then the UE shall reselect that cell.

DRX T<sub>detectUTRA\_FDD</sub> T<sub>measureUTRA\_FDD</sub> TevaluateUTRA\_FDD [s] (number of (number cycle of [s] DRX cycles) DRX cycles) length [s] 0.32 5.12 (16) 15.36 (48) 0.64 30 5.12 (8) 15.36 (24) 1.28 6.4(5) 19.2 (15) 60 7.68 (3) 23.04 (9) 2.56

Table 4.2.2.5.1-1: T<sub>detectUTRA FDD</sub>, T<sub>measureUTRA FDD</sub>, and T<sub>evaluateUTRA FDD</sub>

#### 4.2.2.5.2 Measurements of UTRAN TDD cells

When the measurement rules indicate that UTRA TDD cells are to be measured, the UE shall measure P-CCPCH RSCP of detected UTRA TDD cells in the neighbour frequency list at the minimum measurement rate specified in this section. The parameter  $N_{UTRA\_carrier\_TDD}$  is the number of carriers used in the neighbour frequency list. The UE shall filter P-CCPCH RSCP measurements of each measured UTRA TDD cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least half the minimum specified measurement period. P-CCPCH RSCP of UTRAN TDD cells shall not be filtered over a longer period than that specified in table 4.2.2.5.2-1.

The UE shall evaluate whether newly detectable UTRA TDD cells have met the reselection criteria in TS 36.304 within time  $(N_{UTRA\_carrier\_TDD}) * T_{detectUTRA\_TDD}$  when  $Srxlev \leq S_{nonIntraSearchP}$  or  $Squal \leq S_{nonIntraSearchP}$  when  $T_{reselection} = 0$  provided that the reselection criteria is met by a margin of at least 6dB.

Cells which have been detected shall be measured at least every  $(N_{UTRA\_carrier\_TDD}) * T_{measureUTRA\_TDD}$  Srxlev  $\leq S_{nonIntraSearchP}$  or Squal  $\leq S_{nonIntraSearchP}$ .

When higher priority UTRA TDD cells are found by the higher priority search, they shall be measured at least every  $T_{measure,UTRA\_TDD}$ . If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell.

For a cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that an already identified UTRA TDD cell has met reselection criterion defined in [1] within  $N_{UTRA\_carrier\_TDD}$  \* $T_{evaluateUTRA\_TDD}$  when  $T_{reselection} = 0$  as specified in table 4.2.2.5.2-1 provided that the reselection criteria is met by a margin of at least 6dB.

If  $T_{reselection}$  timer has a non zero value and the UTRA TDD cell is satisfied with the reselection criteria which are defined in [1], the UE shall evaluate this UTRA TDD cell for the  $T_{reselection}$  time. If this cell remains satisfied with the reselection criteria within this duration, then the UE shall reselect that cell.

Table 4.2.2.5.2-1: T<sub>detectUTRA\_TDD</sub>, T<sub>measureUTRA\_TDD</sub> and T<sub>evaluateUTRA\_TDD</sub>

| DRX<br>cycle<br>length<br>[s] | T <sub>detectUTRA_TDD</sub> | T <sub>measureUTRA_TDD</sub> [s] (number of DRX cycles) | T <sub>evaluateUTRA_TDD</sub> [s] (number DRX cycles) | of |
|-------------------------------|-----------------------------|---------------------------------------------------------|-------------------------------------------------------|----|
| 0.32                          |                             | 5.12 (16)                                               | 15.36 (48)                                            |    |
| 0.64                          | 30                          | 5.12 (8)                                                | 15.36 (24)                                            |    |
| 1.28                          |                             | 6.4(5)                                                  | 19.2 (15)                                             |    |
| 2.56                          | 60                          | 7.68 (3)                                                | 23.04 (9)                                             | •  |

#### 4.2.2.5.3 Measurements of GSM cells

When the measurement rules defined in [1] indicate that E-UTRAN inter-frequencies or inter-RAT frequency cells are to be measured, the UE shall measure the signal level of the GSM BCCH carriers if the GSM BCCH carriers are indicated in the measurement control system information of the serving cell. GSM BCCH carriers of lower priority than the serving cell shall be measured at least every  $T_{measure,GSM}$  (see table 4.2.2.5.3-1).

When higher priority GSM BCCH carriers are found by the higher priority search, they shall be measured at least every  $T_{measure,GSM}$ , and the UE shall decode the BSIC of the GSM BCCH carrier. If, after detecting a cell in a higher priority

search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection, or to continuously verify the BSIC of the GSM BCCH carrier every 30s. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell.

The UE shall maintain a running average of 4 measurements for each GSM BCCH carrier. The measurement samples for each cell shall be as far as possible uniformly distributed over the averaging period.

If continuous GSM measurements are required by the measurement rules in [1], the UE shall attempt to verify the BSIC at least every 30 seconds for each of the 4 strongest GSM BCCH carriers. If a change of BSIC is detected for one GSM cell then that GSM BCCH carrier shall be treated as a new GSM neighbour cell. If the UE detects on a BCCH carrier a BSIC which is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform BSIC re-confirmation for that cell.

The UE shall not consider the GSM BCCH carrier in cell reselection, if the UE cannot demodulate the BSIC of that GSM BCCH carrier. Additionally, the UE shall not consider a GSM neighbour cell in cell reselection, if it is indicated as not allowed in the measurement control system information of the serving cell.

If  $T_{reselection}$  timer has a non zero value and the GSM cell is satisfied with the reselection criteria which are defined in [1], the UE shall evaluate this GSM cell for the  $T_{reselection}$  time. If this cell remains satisfied with the reselection criteria within this duration, then the UE shall reselect that cell.

DRX T<sub>measure,GSM</sub> cycle [s] (number length of DRX cycles) [s] 5.12 (16) 0.32 0.64 5.12 (8) 1.28 6.4(5)2.56 7.68(3)

Table 4.2.2.5.3-1: T<sub>measure,GSM</sub>,

#### 4.2.2.5.4 Measurements of HRPD cells

In order to perform measurement and cell reselection to HRPD cell, the UE shall acquire the timing of HRPD cells.

When the measurement rules indicate that HRPD cells are to be measured, the UE shall measure CDMA2000 HRPD Pilot Strength of HRPD cells in the neighbour cell list at the minimum measurement rate specified in this section.

The parameter 'Number of HRPD Neighbor Frequency', which is transmitted on E-UTRAN BCCH, is the number of carriers used for all HRPD cells in the neighbour cell list.

When the E-UTRA serving cell fulfils  $Srxlev > S_{nonIntraSearchP}$  and  $Squal > S_{nonIntraSearchQ}$ , the UE shall search for CDMA2000 HRPD layers of higher priority at least every  $T_{higher\_priority\_search}$  where  $T_{higher\_priority\_search}$  is defined in section 4.2.2.

For CDMA2000 HRPD cells which have been detected, the UE shall measure CDMA2000 HRPD Pilot Strength at least every (Number of HRPD Neighbor Frequency)\* $T_{measureHRPD}$ , when the E-UTRA serving cell Srxlev  $\leq S_{nonIntraSearchP}$  or Squal  $\leq S_{nonIntraSearchQ}$ .

The UE shall be capable of evaluating that the CDMA2000 HRPD cell has met cell reselection criterion defined in [1] within  $T_{\text{evaluateHRPD}}$ .

Table 4.2.2.5.4-1 gives values of T<sub>measureHRPD</sub> and T<sub>evaluateHRPD</sub>.

Table 4.2.2.5.4-1: T<sub>measureHRPD</sub> and T<sub>evaluateHRPD</sub>

| DRX<br>cycle<br>length<br>[s] | T <sub>measureHRPD</sub> [s] (number of DRX cycles) | T <sub>evaluateHRPD</sub> [s]<br>(number of<br>DRX cycles) |
|-------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| 0.32                          | 5.12 (16)                                           | 15.36 (48)                                                 |
| 0.64                          | 5.12 (8)                                            | 15.36 (24)                                                 |
| 1.28                          | 6.4 (5)                                             | 19.2 (15)                                                  |
| 2.56                          | 7.68 (3)                                            | 23.04 (9)                                                  |

If  $T_{reselection}$  timer has a non zero value and the CDMA2000 HRPD cell is satisfied with the reselection criteria which are defined in [1], the UE shall evaluate this CDMA2000 HRPD cell for the  $T_{reselection}$  time. If this cell remains satisfied with the reselection criteria within this duration, then the UE shall reselect that cell.

#### 4.2.2.5.5 Measurements of cdma2000 1X

In order to perform measurement and cell reselection to cdma2000 1X cell, the UE shall acquire the timing of cdma2000 1X cells.

When the measurement rules indicate that cdma2000 1X cells are to be measured, the UE shall measure cdma2000 1x RTT Pilot Strength of cdma2000 1X cells in the neighbour cell list at the minimum measurement rate specified in this section

The parameter 'Number of CDMA2000 1X Neighbor Frequency', which is transmitted on E-UTRAN BCCH, is the number of carriers used for all cdma2000 1X cells in the neighbour cell list.

When the E-UTRA serving cell fulfils  $Srxlev > S_{nonIntraSearchP}$  and  $Squal > S_{nonIntraSearchQ}$ , the UE shall search for cdma2000 1X layers of higher priority at least every  $T_{higher\_priority\_search}$  where  $T_{higher\_priority\_search}$  is defined in section 4.2.2.

For CDMA2000 1X cells which have been detected, the UE shall measure CDMA2000 1xRTT Pilot Strength at least every (Number of CDMA2000 1X Neighbor Frequency)\* $T_{measureCDMA2000\_1X}$ , when the E-UTRA serving cell Srxlev  $\leq S_{nonIntraSearchP}$  or Squal  $\leq S_{nonIntraSearchP}$ . The UE shall be capable of evaluating that the cdma2000 1X cell has met cell reselection criterion defined in [1] within  $T_{evaluateCDMA2000\_1X}$ .

Table 4.2.2.5.5-1 gives values of T<sub>measureCDMA2000 1X</sub> and T<sub>evaluateCDMA2000 1X</sub>.

Table 4.2.2.5.5-1: T<sub>measureCDMA2000 1X and</sub> T<sub>evaluateCDMA2000 1X</sub>

| DRX<br>cycle<br>length<br>[s] | T <sub>measureCDMA2000_1X</sub> [s] (number of DRX cycles) | T <sub>evaluateCDMA2000_1X</sub> [s] (number of DRX cycles) |
|-------------------------------|------------------------------------------------------------|-------------------------------------------------------------|
| 0.32                          | 5.12 (16)                                                  | 15.36 (48)                                                  |
| 0.64                          | 5.12 (8)                                                   | 15.36 (24)                                                  |
| 1.28                          | 6.4 (5)                                                    | 19.2 (15)                                                   |
| 2.56                          | 7.68 (3)                                                   | 23.04 (9)                                                   |

If  $T_{reselection}$  timer has a non zero value and the CDMA2000 1X cell is satisfied with the reselection criteria which are defined in [1], the UE shall evaluate this CDMA2000 1X cell for the  $T_{reselection}$  time. If this cell remains satisfied with the reselection criteria within this duration, then the UE shall reselect that cell.

#### 4.2.2.6 Evaluation of cell re-selection criteria

The UE shall evaluate the intra-frequency, inter-frequency and inter-RAT cell reselection criteria defined in [1] at least every DRX cycle. When a non zero value of  $T_{reselection}$  is used, the UE shall only perform reselection on an evaluation which occurs simultaneously to, or later than the expiry of the  $T_{reselection}$  timer.

#### 4.2.2.7 Maximum interruption in paging reception

UE shall perform the cell re-selection with minimum interruption in monitoring downlink channels for paging reception.

At intra-frequency and inter-frequency cell re-selection, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable to start monitoring downlink channels of the target intra-frequency and inter-frequency cell for paging reception. The interruption time shall not exceed  $T_{SLEUTRA} + 50$  ms.

At inter-RAT cell re-selection, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable to start monitoring downlink channels for paging reception of the target inter-RAT cell. For E-UTRAN to UTRA cell re-selection the interruption time must not exceed  $T_{SI\text{-}UTRA} + 50$  ms. For E-UTRAN to GSM cell reselection the interruption time must not exceed  $T_{BCCH} + 50$  ms.

T<sub>SI-EUTRA</sub> is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [2] for a E-UTRAN cell.

T<sub>SI-UTRA</sub> is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [7] for a UTRAN cell.

T<sub>BCCH</sub> is the maximum time allowed to read BCCH data from a GSM cell defined in [8].

These requirements assume sufficient radio conditions, so that decoding of system information can be made without errors and does not take into account cell re-selection failure.

At cell re-selection to HRPD, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable of starting to monitor downlink channels for paging reception of the target HRPD cell. For HRPD cell reselection the interruption time must not exceed  $T_{SI-HRPD} + 50$  ms.

 $T_{SI\text{-HRPD}}$  is the time required for receiving all the relevant system information data according to the reception procedure and the upper layer (Layer 3) procedure delay of system information blocks defined in [11] in for HRPD cell.

At cell re-selection to cdma2000 1X, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable of starting to monitor downlink channels for paging reception of the target cdma2000 1X cell. For cdma2000 1X cell re-selection the interruption time must not exceed  $T_{SI\text{-}cdma2000\ IX} + 50$  ms.

 $T_{SI\text{-}cdma2000\_1X}$  is the time required for receiving all the relevant system information data according to the reception procedure and the upper layer (Layer 3) procedure delay of system information blocks defined in [15] for cdma2000 1X cell.

#### 4.2.2.8 void

#### 4.2.2.9 UE measurement capability

For idle mode cell re-selection purposes, the UE shall be capable of monitoring at least:

- Intra-frequency carrier, and
- Depending on UE capability, 3 FDD E-UTRA inter-frequency carriers, and
- Depending on UE capability, 3 TDD E-UTRA inter-frequency carriers, and
- Depending on UE capability, 3 FDD UTRA carriers, and
- Depending on UE capability, 3 TDD UTRA carriers, and
- Depending on UE capability, 32 GSM carriers, and
- Depending on UE capability, 3 cdma2000 1x carriers, and
- Depending on UE capability, 3 HRPD carriers.

In addition to the requirements defined above, a UE supporting E-UTRA measurements in RRC\_IDLE state shall be capable of monitoring a total of at least 8 carrier frequency layers, which includes serving layer, comprising of any above defined combination of E-UTRA FDD, E-UTRA TDD, UTRA FDD, UTRA TDD, GSM (one GSM layer corresponds to 32 cells), cdma2000 1x and HRPD layers.

#### 4.2.2.10 Reselection to CSG cells

Note:

Requirements in this section are minimum requirements defined to ensure the testability of autonomous CSG search. Further information on autonomous search times in practical deployments is available in [25].

Reselection from non CSG to CSG cells may be performed using UE autonomous search as defined in [1] when at least one CSG ID is included in the UE's CSG whitelist. The requirements in this section are valid for reselection to CSG cells previously visited by the UE when the radio configuration parameters, including the carrier frequency and physical cell identity of the CSG cell, non CSG cell and other neighbour cells are unchanged from the most recent previous visit.

NOTE: According to [1], the UE autonomous search function, per UE implementation, determines when and/or where to search for allowed CSG cells.

#### 4.2.2.10.1 Reselection from a non CSG to an inter-frequency CSG cell

The UE shall perform search and reselection to an allowed inter-frequency CSG cell that has met CSG reselection criterion defined in [1] and that is in its whitelist, within 6 minutes in the conditions shown in table 4.2.2.10.1-1. There is no need for statistical testing of this requirement.

Table 4.2.2.10.1-1: Parameters for CSG inter-frequency reselection

| Parameter                                                                   | Unit       | Cell 1                | Cell 2          |  |
|-----------------------------------------------------------------------------|------------|-----------------------|-----------------|--|
| EARFCN Note1                                                                |            | Channel 1             | Channel 2       |  |
| CSG indicator                                                               |            | False                 | True            |  |
| Physical cell identity <sup>Note1</sup>                                     |            | 1                     | 2               |  |
| CSG identity                                                                |            | Not sent              | Sent            |  |
|                                                                             |            |                       | (Already stored |  |
|                                                                             |            |                       | in UE whitelist |  |
|                                                                             |            |                       | from previous   |  |
|                                                                             |            |                       | visit)          |  |
| Propagation conditions                                                      |            | Static, non multipath |                 |  |
| CSG cell previously                                                         |            | Ye                    | S               |  |
| visited by UE                                                               |            |                       | T               |  |
| PBCH_RA                                                                     | dB         |                       |                 |  |
| PBCH_RB                                                                     | dB         |                       |                 |  |
| PSS_RA                                                                      | dB         |                       |                 |  |
| SSS_RA                                                                      | dB         |                       |                 |  |
| PCFICH_RB                                                                   | dB         |                       |                 |  |
| PHICH_RA                                                                    | dB         | 0                     | 0               |  |
| PHICH_RB                                                                    | dB         | U                     | U               |  |
| PDCCH_RA                                                                    | dB         |                       |                 |  |
| PDCCH_RB                                                                    | dB         |                       |                 |  |
| PDSCH_RA                                                                    | dB         |                       |                 |  |
| PDSCH_RB                                                                    | dB         |                       |                 |  |
| OCNG_RA <sup>Note 1</sup>                                                   | dB         |                       |                 |  |
| OCNG_RB <sup>Note 1</sup>                                                   | dB         |                       |                 |  |
| Qrxlevmin                                                                   | dBm        | -140                  | -140            |  |
| $N_{oc}$                                                                    | dBm/15 kHz | Off                   |                 |  |
| RSRP Note2                                                                  | dBm/15 KHz | -110                  | -110            |  |
| Note 1: For this requirement to be applicable, the EARFCN and physical cell |            |                       |                 |  |
| identity for cell 1 and cell 2 shall be unchanged from when the CSG cell    |            |                       |                 |  |
| was visited previously                                                      |            |                       |                 |  |

was visited previously

Chosen to ensure that CSG autonomous search has a high probability Note 2: of success on every attempt made by UE

#### 4.2.2.10.2 Reselection from a non CSG to an inter-RAT UTRAN FDD CSG cell

The UE shall perform search and reselection to an allowed inter-RAT UTRAN FDD CSG cell that has met CSG reselection criterion defined in [1] and that is in its whitelist, within 6 minutes in the conditions shown in table 4.2.2.10.2-1. There is no need for statistical testing of this requirement.

Table 4.2.2.10.2-1: Parameters for CSG inter-RAT UTRAN FDD reselection

| Parameter                               | Unit         | Cell 1                | Cell 2          |
|-----------------------------------------|--------------|-----------------------|-----------------|
| EARFCN Note1                            |              | Channel 1             | N/A             |
| UARFCN Note1                            |              | N/A                   | Channel 2       |
| CSG indicator                           |              | False                 | True            |
| Physical cell identity <sup>Note1</sup> |              | 1                     | N/A             |
| Primary scrambling code                 |              | N/A                   | Scrambling      |
| Note1                                   |              |                       | code 2          |
| CSG identity                            |              | Not sent              | Sent            |
|                                         |              |                       | (Already stored |
|                                         |              |                       | in UE whitelist |
|                                         |              |                       | from previous   |
|                                         |              |                       | visit)          |
| Propagation conditions                  |              | Static, non multipath |                 |
| CSG cell previously                     |              | Yes                   |                 |
| visited by UE                           |              |                       |                 |
| PBCH_RA                                 | dB           |                       |                 |
| PBCH_RB                                 | dB           | 0                     | N/A             |
| PSS_RA                                  | dB           |                       |                 |
| SSS_RA                                  | dB           |                       |                 |
| PCFICH_RB                               | dB           |                       |                 |
| PHICH_RA                                | dB           |                       |                 |
| PHICH_RB                                | dB           |                       |                 |
| PDCCH_RA                                | dB           |                       |                 |
| PDCCH_RB                                | dB           |                       |                 |
| PDSCH_RA                                | dB           |                       |                 |
| PDSCH_RB                                | dB           |                       |                 |
| OCNG_RANote 1                           | dB           |                       |                 |
| OCNG_RB <sup>Note 1</sup>               | dB           |                       |                 |
| Qrxlevmin                               | dBm          | -140                  |                 |
| $N_{oc}$                                | dBm/15 kHz   | Off                   |                 |
| RSRP Note2                              | dBm/15 KHz   | -110                  |                 |
| CPICH_ RSCP Note2                       | dBm          |                       | -100            |
| CPICH_Ec/lor                            | dB           |                       | -10             |
| PCCPCH_Ec/lor                           | dB           | N/A                   | -12             |
| SCCPCH_Ec/lor                           | dB           |                       | -12             |
| AICH_Ec/lor                             | dB           |                       | -15             |
| SCH_Ec/lor                              | dB           |                       | -15             |
| PICH_Ec/lor                             | dB           |                       | -15             |
| $I_{oc}$                                | dBm/3.84 MHz |                       | Off             |

Note 1: For this requirement to be applicable, the EARFCN and physical cell identity for cell 1 and the UARFCN and scrambling code for cell 2 shall be unchanged from when the CSG cell was visited previously

Note 2: Chosen to ensure that CSG autonomous search has a high probability of success on every attempt made by UE

## 5 E-UTRAN RRC\_CONNECTED state mobility

Note: For the performance requirements specified hereafter, the state when no DRX is used is defined as follows:

- DRX parameters are not configured; or
- DRX parameters are configured and
  - o drx-InactivityTimer is running; or
  - o drx-RetransmissionTimer is running; or
  - o *mac-ContentionResolutionTimer* is running; or
  - o a Scheduling Request sent on PUCCH is pending; or

- o an uplink grant for a pending HARQ retransmission can occur and there is data in the corresponding HARQ buffer; or
- a PDCCH indicating a new transmission addressed to the C-RNTI of the UE has not been received after successful reception of a Random Access Response for the explicitly signaled preamble (only applicable to UEs in RRC\_CONNECTED).

#### Otherwise

- It is the state when DRX is used.

#### 5.1 E-UTRAN Handover

#### 5.1.1 Introduction

#### 5.1.2 Requirements

#### 5.1.2.1 E-UTRAN FDD – FDD

The requirements in this section are applicable to both intra-frequency and inter-frequency handovers.

#### 5.1.2.1.1 Handover delay

Procedure delays for all procedures that can command a handover are specified in [2].

When the UE receives a RRC message implying handover the UE shall be ready to start the transmission of the new uplink PRACH channel within D<sub>handover</sub> seconds from the end of the last TTI containing the RRC command.

#### Where:

 $D_{handover}$  equals the maximum RRC procedure delay to be defined in section 11.2 in 3GPP TS 36.331 [2] plus the interruption time stated in section 5.1.2.1.2.

#### 5.1.2.1.2 Interruption time

The interruption time is the time between end of the last TTI containing the RRC command on the old PDSCH and the time the UE starts transmission of the new PRACH, excluding the RRC procedure delay. This requirement applies when UE is not required to perform any synchronisation procedure before transmitting on the new PRACH.

When intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than Tinterrupt

$$T_{interrupt} \equiv T_{search} + T_{IU} + 20 \text{ ms}$$

Where:

 $T_{search}$  is the time required to search the target cell when the target cell is not already known when the handover command is received by the UE. If the target cell is known, then  $T_{search} = 0$  ms. If the target cell is unknown and signal quality is sufficient for successful cell detection on the first attempt, then  $T_{search} = 80$  ms. Regardless of whether DRX is in use by the UE,  $T_{search}$  shall still be based on non-DRX target cell search times.

 $T_{IU}$  is the interruption uncertainty in acquiring the first available PRACH occasion in the new cell.  $T_{IU}$  can be up to 30 ms.

NOTE: The actual value of T<sub>IU</sub> shall depend upon the PRACH configuration used in the target cell.

In the interruption requirement a cell is known if it has been meeting the relevant cell identification requirement during the last 5 seconds otherwise it is unknown. Relevant cell identification requirements are described in Section 8.1.2.2.1 for intra-frequency handover and Section 8.1.2.3.1 for inter-frequency handover.

#### 5.2.2.2 E-UTRAN FDD – TDD

The requirements in this section are applicable to handover from FDD to TDD. The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 5.2.2.4 apply for this section.

5.2.2.2.1 (Void)

5.2.2.2 (Void)

#### 5.2.2.3 E-UTRAN TDD – FDD

The requirements in this section are applicable to handover from TDD to FDD. The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 5.1.2.1 apply for this section.

5.2.2.3.1 (Void)

5.2.2.3.2 (Void)

#### 5.2.2.4 E-UTRAN TDD – TDD

The requirements in this section are applicable to both intra-frequency and inter-frequency handovers.

#### 5.2.2.4.1 Handover delay

Procedure delays for all procedures that can command a handover are specified in 3GPP TS 36.331 [2].

When the UE receives a RRC message implying handover, the UE shall be ready to start the transmission of the new uplink PRACH channel within  $D_{handover}$  seconds from the end of the last TTI containing the RRC command.

#### Where:

 $D_{handover}$  equals the maximum RRC procedure delay to be defined in section 11.2 in 3GPP TS36.331 [2] plus the interruption time stated in section 5. 2.2.4.2.

#### 5.2.2.4.2 Interruption time

The interruption time is the time between end of the last TTI containing the RRC command on the old PDSCH and the time the UE starts transmission of the new PRACH, excluding the RRC procedure delay. This requirement applies when UE is not required to perform any synchronisation procedure before transmitting on the new PRACH.

When intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than Tinterrupt

$$T_{interrupt} = T_{search} + T_{IU} + 20 \text{ ms}$$

#### Where

 $T_{search}$  is the time required to search the target cell when the target cell is not already known when the handover command is received by the UE. If the target cell is known, then  $T_{search}=0$  ms. If the target cell is unknown and signal quality is sufficient for successful cell detection on the first attempt, then  $T_{search}=80$  ms. Regardless of whether DRX is in use by the UE,  $T_{search}$  shall still be based on non-DRX target cell search times.

 $T_{IU}$  is the interruption uncertainty in acquiring the first available PRACH occasion in the new cell.  $T_{IU}$  can be up to 30 ms.

NOTE: The actual value of T<sub>IU</sub> shall depend upon the PRACH configuration used in the target cell.

In the interruption requirement a cell is known if it has been meeting the relevant cell identification requirement during the last 5 seconds otherwise it is unknown. Relevant cell identification requirements are described in Section 8.1.2.2.2 for intra-frequency handover and Section 8.1.2.3.4 for inter-frequency handover.

#### 5.3 Handover to other RATs

#### 5.3.1 E-UTRAN - UTRAN FDD Handover

#### 5.3.1.1 Introduction

The purpose of inter-RAT handover from E-UTRAN to UTRAN FDD is to change the radio access mode from E-UTRAN to UTRAN FDD. The handover procedure is initiated from E-UTRAN with a RRC message that implies a hard handover as described in [2].

#### 5.3.1.1.1 Handover delay

When the UE receives a RRC message implying handover to UTRAN the UE shall be ready to start the transmission of the new UTRA uplink DPCCH within  $D_{handover}$  seconds from the end of the last E-UTRAN TTI containing the RRC MOBILITY FROM E-UTRA command.

where:

- D<sub>handover</sub> equals the RRC procedure delay, which is 50 ms plus the interruption time stated in section 5.3.1.1.2.

#### 5.3.1.1.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission on the uplink DPCCH in UTRAN FDD, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

The target cell is known if it has been measured by the UE during the last 5 seconds otherwise it is unknown. The UE shall always perform a UTRA synchronisation procedure as part of the handover procedure.

If the target cell is known the interruption time shall be less than T<sub>interrupt1</sub>

$$T_{interrupt1} = T_{IU} + T_{sync} + 50 + 10*F_{max} \text{ ms}$$

If the target cell is unknown the interruption time shall be less than T<sub>interrupt2</sub>

$$T_{interrupt2} = T_{IU} + T_{sync} + 150 + 10*F_{max} ms$$

This requirement shall be met, provided that there is one target cell in the MOBILITY FROM E-UTRA command. Performance requirements for E-UTRA to UTRA soft handover are not specified. When UE is connected to an E-UTRA cell, UTRA SFN timing measurements are not reported. This implies that the timing of the DPCH of the UTRA target cells in the active set cannot be configured by UTRAN to guarantee that all target cells fall within the UE reception window of  $T_0 + 148$  chips.

Where:

 $T_{IU}$  is the interruption uncertainty when changing the timing from the E-UTRAN to the new UTRAN cell.  $T_{IU}$  can be up to one UTRA frame (10 ms).

 $F_{max}$  denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH on the UTRA target cell.

 $T_{sync}$  is the time required for measuring the downlink DPCCH channel as stated in 3GPP TS 25.214 section 4.3.1.2 [20]. In case higher layers indicate the usage of a post-verification period  $T_{sync}$ =0 ms. Otherwise  $T_{sync}$ =40 ms.

The phase reference is the primary CPICH.

The requirements in this section assume that N312 has the smallest possible value i.e. only one insync is required.

# 5.3.2 E-UTRAN - UTRAN TDD Handover

#### 5.3.2.1 Introduction

The purpose of inter-RAT handover from E-UTRAN to UTRAN TDD is to change the radio access mode from E-UTRAN to UTRAN TDD. The handover procedure is initiated from E-UTRAN with a RRC message that implies a hard handover as described in [2].

#### 5.3.2.2 Requirements

The requirements in this section shall apply to UE supporting E-UTRAN and UTRAN TDD.

#### 5.3.2.2.1 Handover delay

When the UE receives a RRC message implying E-UTRAN/UTRAN TDD handover the UE shall be ready to start the transmission of the new uplink DPCH or the SYNC-UL within  $D_{handover}$  seconds from the end of the last TTI containing the RRC MOBILITY FROM E-UTRA command.

Where:

- D<sub>handover</sub> equals the RRC procedure delay, which is 50 ms plus the interruption time stated in section 5.3.2.2.

# 5.3.2.2.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission on the uplink DPCH or the SYNC-UL in UTRAN TDD, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

The UE shall always perform a UTRA synchronisation procedure as part of the handover procedure.

If the target cell has been measured by the UE during the last 5 seconds, the interruption time shall be less than  $T_{interrupt1}$ 

$$T_{interrupt1} = T_{offset} + T_{UL} + 30*F_{SFN} + 20 + 10*F_{max} ms$$

If the target cell has not been measured by the UE during the last 5 seconds, the interruption time shall be less than  $T_{interrupt2}$ 

$$T_{interrupt2} = T_{offset} + T_{UL} + 30*F_{SFN} + 180 + 10*F_{max} ms$$

Where:

 $T_{offset}$  Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the time that can elapse until the appearance of a Beacon channel  $T_{UL}$  Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the target cell Equal to 1 if SFN decoding is required and equal to 0 otherwise  $F_{max}$  denotes the maximum number of radio frames within the transmission time intervals of all

transport channels that are multiplexed into the same CCTrCH.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

#### 5.3.3 E-UTRAN - GSM Handover

#### 5.3.3.1 Introduction

The purpose of inter-RAT handover from E-UTRAN to GSM is to transfer a connection between the UE and E-UTRAN to GSM. The handover procedure is initiated from E-UTRAN with a RRC message (MOBILITY FROM E-UTRA). The procedure is described in in 3GPP TS 36.331 [2].

#### 5.3.3.2 Requirements

The requirements in this section shall apply to UE supporting E-UTRAN and GSM.

The requirements given below in Tables 5.3.3.2.1-1 and 5.3.3.2.2-1 for the case where the UE has not synchronised to the GSM cell before receiving the RRC MOBILITY FROM E-UTRA command are valid when the signal quality of the GSM cell is sufficient for successful synchronisation with one attempt. If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms duration. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the handover failure procedure specified in [2].

#### 5.3.3.2.1 Handover delay

When the UE receives a RRC MOBILITY FROM E-UTRA command the UE shall be ready to transmit (as specified in [10]) on the channel of the new RAT within the value in table 5.3.3.2.1-1 from the end of the last TTI containing the RRC command. The UE shall process the RRC procedures for the MOBILITY FROM E-UTRA command within 50 ms, which is noted as RRC procedure delay.

Table 5.3.3.2.1-1: E-UTRAN/GSM handover - handover delay

| UE synchronisation status                          | handover delay [ms] |
|----------------------------------------------------|---------------------|
| The UE has synchronised to the GSM cell before the | 90                  |
| RRC MOBILITY FROM E-UTRA COMMAND is received       |                     |
| The UE has not synchronised to the GSM cell before | 190                 |
| the RRC MOBILITY FROM E-UTRA COMMAND is            |                     |
| received                                           |                     |

#### 5.3.3.2.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission on the uplink channel in GSM, excluding the RRC procedure delay. The interruption time depends on whether the UE has synchronized to the target GSM cell or not and shall be less than the value specified in table 5.3.3.2.2-1.

Table 5.3.3.2.2-1: E-UTRAN/GSM handover - interruption time

| Synchronisation status                             | Interruption time [ms] |
|----------------------------------------------------|------------------------|
| The UE has synchronised to the GSM cell before the | 40                     |
| RRC MOBILITY FROM E-UTRA COMMAND is received       |                        |
| The UE has not synchronised to the GSM cell before | 140                    |
| the RRC MOBILITY FROM E-UTRA COMMAND is            |                        |
| received                                           |                        |

# 5.4 Handover to Non-3GPP RATs

# 5.4.1 E-UTRAN – HRPD Handover

#### 5.4.1.1 Introduction

The handover procedure from E-UTRAN to HRPD is initiated when E-UTRAN sends handover command to the UE through dedicated RRC signalling.

#### 5.4.1.1.1 Handover delay

The handover delay ( $D_{\text{handover}}$ ) is defined as the sum of the RRC procedure delay, which is 50 ms and the interruption time specified in section 5.4.1.1.2.

When the UE receives a RRC message implying handover to HRPD, the UE shall be ready to start the transmission of the new reverse control channel in HRPD within  $D_{handover}$  from the end of the last E-UTRAN TTI containing the RRC command.

#### 5.4.1.1.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission of the reverse control channel in HRPD, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

An HRPD cell is known if it has been measured by the UE during the last 5 seconds otherwise it is unknown. Under the reference conditions specified in sub-clause 6.6 of [13], the interruption time shall be less than  $T_{interrupt}$ 

$$T_{interrupt} = T_{IU} + 40 + 10*KC*SW_K + 10*OC*SW_O ms$$

Where:

 $T_{IU}$  It is the interruption uncertainty when changing the timing from the E-UTRAN to the new HRPD cell.  $T_{IU}$  can be up to one HRPD frame (26.66 ms).

 $SW_K$  is  $SW_K = \left\lceil \frac{srch\_win\_k}{60} \right\rceil$  where  $srch\_win\_k$  is the number of HRPD chips indicated by the

search window for known target HRPD cells in the message

 $SW_O$  is  $SW_O = \left[ \frac{srch\_win\_o}{60} \right]$  where  $srch\_win\_o$  is the number of HRPD chips indicated by the

search window for unknown target HRPD cells in the message

KC It is the number of known target HRPD cells in the message, and

OC It is the number of unknown target HRPD cells in the message.

Note: An additional delay in the interruption time may occur due to the reverse link silence interval [11], which is specific to HRPD.

#### 5.4.2 E-UTRAN – cdma2000 1X Handover

#### 5.4.2.1 Introduction

The handover procedure from E-UTRAN to cdma2000 1X is initiated when E-UTRAN sends handover command to the UE through dedicated RRC signalling.

#### 5.4.2.1.1 Handover delay

The handover delay (D<sub>handover</sub>) is defined as the sum of the RRC procedure delay, which is 130 ms and the interruption time specified in section 5.4.2.1.2.

When the UE receives a RRC message implying handover to cdma2000 1X, the UE shall be ready to start the transmission of the new reverse control channel in cdma2000 1X within  $D_{handover}$  from the end of the last E-UTRAN TTI containing the RRC command.

#### 5.4.2.1.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission of the reverse control channel in cdma2000 1X, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

A cdma2000 1X cell is known if it has been measured by the UE during the last 5 seconds otherwise it is unknown. Under the reference conditions specified in sub-clause 4.2.1 of [14], the interruption time shall be less than T<sub>interrupt</sub>:

$$T_{interrupt} = T_{IU} + 140 + 10*KC*SW_K + 10*OC*SW_O ms$$

Where:

 $T_{IU}$  It is the interruption uncertainty when changing the timing from the E-UTRAN to the new cdma2000 1X cell.  $T_{IU}$  can be up to one cdma2000 1X frame (20 ms).

SW<sub>K</sub> is  $SW_K = \left\lceil \frac{srch\_win\_k}{300} \right\rceil$  where  $srch\_win\_k$  is the number of cdma2000 1x chips indicated by

the search window for known target cdma2000 1x cells in the message

SW<sub>O</sub> is SW<sub>O</sub> =  $\left[\frac{\text{srch\_win\_o}}{300}\right]$  where srch\_win\_o is the number of cdma2000 1x chips indicated by

the search window for unknown target cdma2000 1x cells in the message

KC It is the number of known target cdma2000 1X cells in the message, and

OC It is the number of unknown target cdma2000 1X cells in the message.

# 6 RRC Connection Mobility Control

# 6.1 RRC Re-establishment

The requirements in this section are applicable to both E-UTRAN FDD and TDD.

# 6.1.1 Introduction

RRC connection re-establishment is initiated when a UE in RRC connected mode looses RRC connection due to any of these reasons: radio link failure, handover failure or radio link problem. The RRC es-tablishment procedure is specified in section 5.3.7 in TS 36.331 [2].

# 6.1.2 Requirements

In RRC connected mode the UE shall be capable of sending RRCConnectionReestablishmentRequest message within  $T_{re\text{-establish\_delay}}$  seconds from the moment it detects a loss in RRC connection. The total RRC connection delay ( $T_{re\text{-establish\_delay}}$ ) shall be less than:

$$T_{re\text{-establish\_delay}} = \ T_{UL\_grant} + T_{UE\_re\text{-establish\_delay}}$$

 $T_{UL\_grant}$ : It is the time required to acquire and process uplink grant from the target cell. The uplink grant is required to transmit *RRCConnectionReestablishmentRequest* message.

The UE re-establishment delay (T<sub>UE re-establish delay</sub>) is specified in section 6.1.2.1.

# 6.1.2.1 UE Re-establishment delay requirement

The UE re-establishment delay ( $T_{UE\_re-establish\_delay}$ ) is the time between the moments when any of the conditions requiring RRC re-establishment as defined in section 5.3.7 in TS 36.331 [2] is detected by the UE to the time when the UE sends PRACH to the target cell. The UE re-establishment delay ( $T_{UE\_re-establish\_delay}$ ) requirement shall be less than:

$$T_{UE\text{-}re\text{-}establish\_delay} = 50 \ ms + N_{freq} * Tsearch + T_{SI} + T_{PRACH}$$

T<sub>search</sub>: It is the time required by the UE to search the target cell.

 $T_{\text{search}} = \text{It is } 100 \text{ ms if the target cell is known by the UE; the target cell is known if it has been measured by the UE in the last 5 seconds.}$ 

 $T_{\text{search}} = \text{It is } 800 \text{ ms if the target cell is unknown by the UE}$ ; the target cell is unknown if it has not been measured by the UE in the last 5 seconds.

 $T_{SI}$  = It is the time required for receiving all the relevant system information according to the reception procedure and the RRC procedure delay of system information blocks defined in TS 36.331 [2] for E-UTRAN cell.

T<sub>PRACH</sub> = The additional delay caused by the random access procedure; it will be at least 10 ms due to random access occasion and there might be additional delay due to ramping procedure.

 $N_{\text{freq}}$ : It is the total number of E-UTRA frequencies to be monitored for RRC re-establishment;  $N_{\text{freq}} = 1$  if the target cell is known.

There is no requirement if the target cell does not contain the UE context.

# 6.2 Random Access

# 6.2.1 Introduction

The random access procedure is used when establishing the layer 1 communication between the UE and E-UTRAN. The random access is specified in section 6 of TS 36.213[3] and the control of the RACH transmission is specified in section 5.1 of TS 36.321[17].

# 6.2.2 Requirements

The UE shall have capability to calculate PRACH transmission power according to the PRACH power formula defined in TS 36.213[3] and apply this power level at the first preamble or additional preambles. The absolute power applied to the first preamble shall have an accuracy as specified in table 6.3.5.1.1-1 of TS 36.101[5]. The relative power applied to additional preambles shall have an accuracy as specified in table 6.3.5.2.1-1 of 36.101[5].

The UE shall indicate a Random Access problem to upper layers if the maximum number of preamble transmission counter has been reached.

#### 6.2.2.1 Contention based random access

## 6.2.2.1.1 Correct behaviour when receiving Random Access Response reception

The UE may stop monitoring for Random Access Response(s) and shall transmit the msg3 if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

#### 6.2.2.1.2 Correct behaviour when not receiving Random Access Response reception

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if no Random Access Response is received within the RA Response window defined in clause 5.1.4 TS 36.321.

# 6.2.2.1.3 Correct behaviour when receiving a NACK on msg3

The UE shall re-transmit the msg3 upon the reception of a NACK on msg3.

#### 6.2.2.1.4 Void

#### 6.2.2.1.5 Correct behaviour when receiving a message over Temporary C-RNTI

The UE shall send ACK if the Contention Resolution is successful.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires unless the received message includes a UE Contention Resolution Identity MAC control element and the UE Contention Resolution Identity included in the MAC control element matches the CCCH SDU transmitted in the uplink message.

#### 6.2.2.1.6 Correct behaviour when contention Resolution timer expires

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if the Contention Resolution Timer expires.

#### 6.2.2.2 Non-Contention based random access

#### 6.2.2.2.1 Correct behaviour when receiving Random Access Response

The UE may stop monitoring for Random Access Response(s) if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-transmit the preamble with the calculated PRACH transmission power if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

## 6.2.2.2.2 Correct behaviour when not receiving Random Access Response

The UE shall re-transmit the preamble with the calculated PRACH transmission power.

# 6.3 RRC Connection Release with Redirection

## 6.3.1 Introduction

RRC connection release with redirection is initiated by the UE upon receiving the "*RRCConnectionRelease*" message from the E-UTRAN [2]. The RRC connection release with redirection procedure is specified in section 5.3.8 in TS 36.331 [2].

The requirements in this section are applicable to both E-UTRAN FDD and TDD.

# 6.3.2 Requirements

#### 6.3.2.1 RRC connection release with redirection to UTRAN FDD

The UE shall be capable of performing the RRC connection release with redirection to the target UTRAN FDD cell within  $T_{connection\_release\_redirect\_UTRA\ FDD}$ .

The time delay (T<sub>connection\_release\_redirect\_UTRA FDD</sub>) is the time between the end of the last TTI containing the RRC command, "RRCConnectionRelease" [2] on the E-UTRAN PDSCH and the time the UE starts to send random access to the target UTRA FDD cell. The time delay (T<sub>connection\_release\_redirect\_UTRA FDD</sub>) shall be less than:

$$T_{connection\_release\_redirect\_UTRA\;FDD} = T_{RRC\_procedure\_delay} + T_{identify\text{-}UTRA\;FDD} + T_{SI\text{-}UTRA\;FDD} + T_{RA}$$

The target UTRA FDD cell shall be considered detectable when:

- CPICH Ec/Io  $\geq$  -15 dB,
- SCH\_Ec/Io ≥ -15 dB for at least one channel tap and SCH\_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code.

 $T_{RRC\_procedure\_delay}$ : It is the RRC procedure for processing the received message "RRCConnectionRelease". It shall be less than 110 ms.

Tidentify-UTRA FDD: It is the time to identify the target UTRA FDD cell. It shall be less than 500 ms.

T<sub>SI-UTRA FDD</sub>: It is the time required for acquiring all the relevant system information of the target UTRA FDD cell. This time depends upon whether the UE is provided with the relevant system information of the target UTRA FDD cell or not by the E-UTRAN before the RRC connection is released.

 $T_{RA}$ : It is the delay caused due to the random access procedure when sending random access to the target UTRA FDD cell.

#### 6.3.2.2 RRC connection release with redirection to GERAN

The UE shall be capable of performing the RRC connection release with redirection to the target GERAN cell within  $T_{connection\_release\_redirect\_GERAN}$ .

The time delay ( $T_{connection\_release\_redirect\_GERAN}$ ) is the time between the end of the last TTI containing the RRC command, "RRCConnectionRelease" [2] on the E-UTRAN PDSCH and the time the UE starts to send random access to the target GERAN cell. The time delay ( $T_{connection\_release\_redirect\_GERAN}$ ) shall be less than:

$$T_{connection\_release\_redirect\_GERAN} = T_{RRC\_procedure\_delay} + T_{identify\text{-}GERAN} + T_{SI\text{-}GERAN} + T_{RA}$$

The target GERAN cell shall be considered detectable when the UE receives the GERAN cell at levels down to 10 dB + the reference sensitivity level or reference interference levels as specified in [9].

 $T_{RRC\_procedure\_delay}$ : It is the RRC procedure for processing the received message "RRCConnectionRelease". It shall be less than 110 ms.

 $T_{identify\text{-}UTRA\,GERAN}$ : It is the time to identify the BSIC of the target GERAN cell. It shall be less than 1 second.

 $T_{SI-UTRA\ GERAN}$ : It is the time required for acquiring all the relevant system information of the target GERAN cell. This time depends upon whether the UE is provided with the relevant system information of the target GERAN cell or not by the E-UTRAN before the RRC connection is released.

 $T_{RA}$ : It is the delay caused due to the random access procedure when sending random access burst to the target GERAN cell.

#### 6.3.2.3 RRC connection release with redirection to UTRAN TDD

The UE shall be capable of performing the RRC connection release with redirection to the target UTRAN TDD cell within  $T_{connection\_release\_redirect\_UTRA\ TDD}$ .

The time delay ( $T_{connection\_release\_redirect\_UTRA\ TDD}$ ) is the time between the end of the last TTI containing the RRC command, "RRCConnectionRelease" [2] on the E-UTRAN PDSCH and the time the UE starts to send random access to the target UTRA TDD cell. The time delay ( $T_{connection\_release\_redirect\_UTRA\ TDD}$ ) shall be less than:

$$T_{connection\_release\_redirect\_UTRA\ TDD} = T_{RRC\_procedure\_delay} + T_{identify\_UTRA\ TDD} + T_{SI\_UTRA\ TDD} + T_{RA}$$

The target UTRA TDD cell shall be considered detectable when:

- P-CCPCH Ec/Io  $\geq$  -6 dB,
- DwPCH Ec/Io > -1 dB.

 $T_{RRC\_procedure\_delay}$ : It is the RRC procedure for processing the received message "RRCConnectionRelease". It shall be less than 110 ms.

Tidentify-UTRA TDD: It is the time to identify the target UTRA TDD cell. It shall be less than 500 ms.

 $T_{SI\text{-}UTRA\ TDD}$ : It is the time required for acquiring all the relevant system information of the target UTRA TDD cell. This time depends upon whether the UE is provided with the relevant system information of the target UTRA TDD cell or not by the E-UTRAN before the RRC connection is released.

 $T_{RA}$ : It is the delay caused due to the random access procedure when sending random access to the target UTRA TDD cell.

# 6.4 CSG Proximity Indication for E-UTRAN and UTRAN

#### 6.4.1 Introduction

The requirements defined in this section are applicable to a UE supporting and configured with CSG proximity indication and are valid when a UE is entering the proximity of one or more CSG member cell(s) or leaving the proximity of all CSG member cell(s) on a UTRA or E-UTRA frequency as specified in [2].

The detection of CSG proximity is based on a UE autonomous search function..

# 6.4.2 Requirements

The UE shall initiate transmission of the ProximityIndication message with "entering" according to [2] within [6] minutes after entering the proximity of one or more CSG member cell(s) on a UTRA or E-UTRA frequency.

The UE shall initiate transmission of the ProximityIndication message with "leaving" according to [2] within [6] minutes after leaving the proximity of all CSG member cell(s) on a UTRA or E-UTRA frequency.

There is no need for statistical testing of this requirement.

NOTE: Entering the proximity of one or more CSG member cell(s) means that the UE is near a cell whose CSG ID is in the UE's CSG whitelist (as determined based on autonomous search procedures). Leaving the proximity of one or more CSG member cell(s) means that the UE is no longer near any cell whose CSG ID is in the UE's CSG whitelist.

# 7 Timing and signalling characteristics

# 7.1 UE transmit timing

#### 7.1.1 Introduction

The UE shall have capability to follow the frame timing change of the connected eNode B. The uplink frame transmission takes place  $(N_{\text{TA}} + N_{\text{TA offset}}) \times T_{\text{s}}$  before the reception of the first detected path (in time) of the corresponding downlink frame from the reference cell UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are defined in the following requirements.

# 7.1.2 Requirements

The UE initial transmission timing error shall be less than or equal to  $\pm T_e$  where the timing error limit value  $T_e$  is specified in Table 7.1.2-1. This requirement applies when it is the first transmission in a DRX cycle for PUCCH, PUSCH and SRS or it is the PRACH transmission. The reference point for the UE initial transmit timing control requirement shall be the downlink timing minus  $(N_{TA\_Ref} + N_{TA \text{ offset}}) \times T_s$ . The downlink timing is defined as the time when [the first detected path (in time)] of the corresponding downlink frame is received from the reference cell.  $N_{TA\_Ref}$  for PRACH is defined as 0.  $(N_{TA\_Ref} + N_{TA \text{ offset}})$  (in  $T_s$  units) for other channels is the difference between UE transmission timing and the Downlink timing immediately after when the last timing advance in section 7.3 was applied.  $N_{TA\_Ref}$  for other channels is not changed until next timing advance is received.

Table 7.1.2-1: Te Timing Error Limit

| Downlink Bandwidth (MHz)                                           | T <sub>e_</sub>   |
|--------------------------------------------------------------------|-------------------|
| 1.4                                                                | 24*T <sub>S</sub> |
| ≥3 12*T <sub>S</sub>                                               |                   |
| Note: T <sub>S</sub> is the basic timing unit defined in TS 36.211 |                   |

When it is not the first transmission in a DRX cycle or there is no DRX cycle, and when it is the transmission for PUCCH, PUSCH and SRS transmission, the UE shall be capable of changing the transmission timing according to the received downlink frame except when the timing advance in section 7.3 is applied. When the transmission timing error between the UE and the reference timing exceeds  $\pm T_e$  the UE is required to adjust its timing to within  $\pm T_e$ . The reference timing shall be  $(N_{TA\_Ref} + N_{TA\_offset}) \times T_s$  before the downlink timing. All adjustments made to the UE uplink timing shall follow these rules:

- 1) The maximum amount of the magnitude of the timing change in one adjustment shall be  $T_q$  seconds.
- 2) The minimum aggregate adjustment rate shall be  $7*T_S$  per second.
- 3) The maximum aggregate adjustment rate shall be  $T_q$  per 200ms.

where the maximum autonomous time adjustment step  $T_q$  is specified in Table 7.1.2-2.

Table 7.1.2-2: T<sub>q</sub> Maximum Autonomous Time Adjustment Step

| Downlink Bandwidth (MHz)                                           | T <sub>q_</sub>     |
|--------------------------------------------------------------------|---------------------|
| 1.4                                                                | 17.5*T <sub>S</sub> |
| 3                                                                  | 9.5*T <sub>S</sub>  |
| 5                                                                  | 5.5*T <sub>S</sub>  |
| ≥10                                                                | 3.5*T <sub>S</sub>  |
| Note: T <sub>S</sub> is the basic timing unit defined in TS 36.211 |                     |

# 7.2 UE timer accuracy

# 7.2.1 Introduction

UE timers are used in different protocol entities to control the UE behaviour.

# 7.2.2 Requirements

For UE timers specified in [2], UE shall comply with the timer accuracies according to Table 7.2.2-1.

The requirements are only related to the actual timing measurements internally in the UE. They do not include the following:

- Inaccuracy in the start and stop conditions of a timer (e.g. UE reaction time to detect that start and stop conditions of a timer is fulfilled), or
- Inaccuracies due to restrictions in observability of start and stop conditions of a UE timer (e.g. TTI alignment when UE sends messages at timer expiry).

**Table 7.2.2-1** 

| Timer value [s] | Accuracy |
|-----------------|----------|
| timer value < 4 | ± 0.1s   |
| timer value ≥ 4 | ± 2.5%   |

# 7.3 Timing Advance

#### 7.3.1 Introduction

The timing advance is initiated from E-UTRAN with MAC message that implies and adjustment of the timing advance, see 3GPP TS 36.321 [17] section 5.2.

# 7.3.2 Requirements

# 7.3.2.1 Timing Advance adjustment delay

UE shall adjust the timing of its uplink transmission timing at sub-frame n+6 for a timing advancement command received in sub-frame n.

# 7.3.2.2 Timing Advance adjustment accuracy

The UE shall adjust the timing of its transmissions with a relative accuracy better than or equal to  $\pm 4*$  T<sub>S</sub> seconds to the signalled timing advance value compared to the timing of preceding uplink transmission. The timing advance command is expressed in multiples of 16\* T<sub>S</sub> and is relative to the current uplink timing.

# 7.4 Cell phase synchronization accuracy (TDD)

#### 7.4.1 Definition

Cell phase synchronization accuracy is defined as the maximum absolute deviation in frame start timing between any pair of cells on the same frequency that have overlapping coverage areas.

# 7.4.2 Minimum requirements

For Wide Area BS, the cell phase synchronization accuracy measured at BS antenna connectors shall be better than the requirement specified in table 7.4.2-1. If a cell's coverage area overlaps with another cell with different cell radius then the cell phase synchronization accuracy corresponding to the larger of the two cell sizes applies to the overlapping cells with different radii.

Table 7.4.2-1 Cell phase synchronization requirement for wide area BS (TDD)

| Cell Type  | Cell Radius | Requirement |
|------------|-------------|-------------|
| Small cell | ≤ 3 km      | ≤ 3 μs      |
| Large cell | > 3 km      | ≤ 10 μs     |

For Home BS, the cell phase synchronization accuracy measured at BS antenna connectors shall be better than the requirement specified in table 7.4.2-2.

Table 7.4.2-2 Cell phase synchronization requirement for Home BS (TDD)

| Source Cell Type | Propagation Distance | Requirement                         |
|------------------|----------------------|-------------------------------------|
| Small cell       | ≤ 500 m              | ≤ 3 μs                              |
| Large cell       | > 500 m              | ≤1.33 + T <sub>propagation</sub> μs |

Note 1:  $T_{propagation}$  is the propagation delay between the Home BS and the cell selected as the network listening synchronization source. In terms of the network listening synchronization source selection, the best accurate synchronization source to GNSS should be selected.

Note 2: If the Home BS obtains synchronization without using network listening, the small cell requirement applies.

# 7.5 Synchronization Requirements for E-UTRAN to 1xRTT and HRPD Handovers

#### 7.5.1 Introduction

This section contains the synchronization requirements for eNodeB capable of supporting E-UTRAN to CDMA 1xRTT and HRPD handovers. To facilitate E-UTRAN to CDMA 1xRTT and HRPD handovers, the CDMA System Time reference needs to be provided to the UE in order for the UE to report the pilot PN phases of the target 1xRTT or HRPD cells. This is achieved through the SIB8 message broadcasted by the serving eNodeB:

If the eNodeB is synchronized to the GPS time then the size of CDMA System Time information is 39 bits and the unit is 10 ms based on a 1.2288 Mcps chip rate.

If the eNodeB is not synchronized to the GPS time then the size of CDMA System Time information is 49 bits and the unit is 8 CDMA chips based on 1.2288 Mcps chip rate.

The CDMA system time reference provided by the serving eNodeB has to be within a certain level of accuracy in order to facilitate accurate reporting of the pilot PN phases of the target 1xRTT or HRPD cells and enable reliable handover to the 1xRTT or HRPD networks.

# 7.5.2 eNodeB Synchronization Requirements

## 7.5.2.1 Synchronized E-UTRAN

The eNodeB shall be synchronized to the GPS time. With external source of CDMA System Time disconnected, the eNodeB shall maintain the timing accuracy within  $\pm 10$  µs of CDMA System Time for a period of not less than 8 hours.

The timing deviation between the SFN boundary at or immediately after the ending boundary of the SI-window in which *SystemInformationBlockType8* (containing the broadcasted CDMA System Time with 10-ms granularity) is transmitted and the broadcasted CDMA System Time shall be within 10 µs.

#### 7.5.2.2 Non-Synchronized E-UTRAN

The timing deviation between the SFN boundary at or immediately after the end of the boundary of the SI-window in which SystemInformationBlockType8 (containing the broadcasted CDMA System Time with 8-chip granularity) is transmitted and the broadcasted CDMA System Time shall be within 10  $\mu$ s. With external source of CDMA System Time disconnected the SFN boundary at or immediately after the broadcasted CDMA System Time in the SIB8 message shall maintain the timing accuracy within  $\pm 10~\mu$ s of CDMA System Time for a period of not less than 8 hours.

# 7.6 Radio Link Monitoring

#### 7 6 1 Introduction

The UE shall monitor the downlink link quality based on the cell-specific reference signal in order to detect the downlink radio link quality of the serving cell as specified in [3].

The UE shall estimate the downlink radio link quality and compare it to the thresholds  $Q_{\text{out}}$  and  $Q_{\text{in}}$  for the purpose of monitoring downlink radio link quality of the serving cell.

The threshold  $Q_{out}$  is defined as the level at which the downlink radio link cannot be reliably received and shall correspond to 10% block error rate of a hypothetical PDCCH transmission taking into account the PCFICH errors with transmission parameters specified in Table 7.6.1-1.

The threshold  $Q_{in}$  is defined as the level at which the downlink radio link quality can be significantly more reliably received than at  $Q_{out}$  and shall correspond to 2% block error rate of a hypothetical PDCCH transmission taking into account the PCFICH errors with transmission parameters specified in Table 7.6.1-2.

Table 7.6.1-1 PDCCH/PCFICH transmission parameters for out-of-sync

| Attribute                                         | Value                                                                                                             |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| DCI format                                        | 1A                                                                                                                |
| Number of control OFDM symbols                    | 2; Bandwidth ≥ 10 MHz                                                                                             |
|                                                   | 3; 3 MHz $\leq$ Bandwidth $\leq$ 5 MHz                                                                            |
|                                                   | 4; Bandwidth = 1.4 MHz                                                                                            |
| Aggregation level (CCE)                           | 4; Bandwidth = 1.4 MHz                                                                                            |
|                                                   | 8; Bandwidth ≥ 3 MHz                                                                                              |
| Ratio of PDCCH RE energy to average RS RE energy  | 4 dB; when single antenna port is used for cell-<br>specific reference signal transmission by the<br>serving cell |
|                                                   | 1 dB: when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell |
| Ratio of PCFICH RE energy to average RS RE energy | 4 dB; when single antenna port is used for cell-<br>specific reference signal transmission by the<br>serving cell |
|                                                   | 1 dB: when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell |
|                                                   |                                                                                                                   |

Note 1: DCI format 1A is defined in section 5.3.3.1.3 in 3GPP TS 36.212 [21].

Note 2: A hypothetical PCFICH transmission corresponding to the number of control symbols shall be assumed.

Table 7.6.1-2 PDCCH/PCFICH transmission parameters for in-sync

| Attribute                                         | Value                                                                                                                                          |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| DCI format                                        | 1C                                                                                                                                             |
| Number of control OFDM symbols                    | 2; Bandwidth ≥ 10 MHz                                                                                                                          |
|                                                   | 3; 3 MHz $\leq$ Bandwidth $\leq$ 5 MHz                                                                                                         |
|                                                   | 4; Bandwidth = 1.4 MHz                                                                                                                         |
| Aggregation level (CCE)                           | 4                                                                                                                                              |
| Ratio of PDCCH RE energy to average RS RE energy  | 0 dB; when single antenna port is used for cell-<br>specific reference signal transmission by the<br>serving cell                              |
|                                                   | <ul> <li>-3 dB; when two or four antenna ports are used<br/>for cell-specific reference signal transmission by<br/>the serving cell</li> </ul> |
| Ratio of PCFICH RE energy to average RS RE energy | 4 dB; when single antenna port is used for cell-<br>specific reference signal transmission by the<br>serving cell                              |
|                                                   | 1 dB: when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell                              |

Note 1: DCI format 1C is defined in section 5.3.3.1.4 in 3GPP TS 36.212 [21].

Note 2: A hypothetical PCFICH transmission corresponding to the number of control symbols shall be assumed.

# 7.6.2 Requirements

# 7.6.2.1 Minimum requirement when no DRX is used

When the downlink radio link quality estimated over the last 200 ms period becomes worse than the threshold  $Q_{out}$ , Layer 1 of the UE shall send an out-of-sync indication to the higher layers within 200 ms  $Q_{out}$  evaluation period. A Layer 3 filter shall be applied to the out-of-sync indications as specified in [2].

When the downlink radio link quality estimated over the last 100 ms period becomes better than the threshold  $Q_{in}$ , Layer 1 of the UE shall send an in-sync indication to the higher layers within 100 ms  $Q_{in}$  evaluation period. A L3 filter shall be applied to the in-sync indications as specified in [2].

The out-of-sync and in-sync evaluations shall be performed as specified in section 4.2.1 in [3]. Two successive indications from Layer 1 shall be separated by at least 10 ms.

The transmitter power shall be turned off within 40 ms after expiry of T310 timer as specified in section 5.3.11 in [2].

#### 7.6.2.2 Minimum requirement when DRX is used

When DRX is used the  $Q_{out}$  evaluation period ( $T_{Evaluate}Q_{out\_DRX}$ ) and the  $Q_{in}$  evaluation period ( $T_{Evaluate}Q_{in\_DRX}$ ) is specified in Table 7.6.2.2-1 will be used.

When the downlink radio link quality estimated over the last  $T_{Evaluate}Q_{out\_DRX}$  [s] period becomes worse than the threshold  $Q_{out}$ , Layer 1 of the UE shall send out-of-sync indication to the higher layers within  $T_{Evaluate}Q_{out\_DRX}$  [s] evaluation period. A Layer 3 filter shall be applied to the out-of-sync indications as specified in [2].

When the downlink radio link quality estimated over the last  $T_{\text{Evaluate}}Q_{\text{in\_DRX}}$  [s] period becomes better than the threshold  $Q_{\text{in}}$ , Layer 1 of the UE shall send in-sync indications to the higher layers within  $T_{\text{Evaluate}}Q_{\text{in\_DRX}}$  [s] evaluation period. A L3 filter shall be applied to the in-sync indications as specified in [2].

The out-of-sync and in-sync evaluations shall be performed as specified in section 4.2.1 in [3]. Two successive indications from Layer 1 shall be separated by at least max(10 ms, DRX\_cycle\_length).

Upon start of T310 timer as specified in section 5.3.11 in [2], the UE shall monitor the link for recovery using the evaluation period and Layer 1 indication interval corresponding to the non-DRX mode until the expiry or stop of T310 timer.

The transmitter power shall be turned off within 40 ms after expiry of T310 timer as specified in section 5.3.11 in [2].

#### 7.6.2.3 Minimum requirement at transitions

The out-of-sync and in-sync evaluations shall be performed as specified in section 4.2.1 in [3]. Two successive indications from Layer 1 shall be separated by at least max(10 ms, DRX\_cycle\_length).

When the UE transitions between DRX and non-DRX or when DRX cycle periodicity changes, for a duration of time equal to the evaluation period corresponding to the second mode after the transition occurs, the UE shall use an evaluation period that is no less than the minimum of evaluation periods corresponding to the first mode and the second mode. Subsequent to this duration, the UE shall use an evaluation period corresponding to the second mode. This requirement shall be applied to both out-of-sync evaluation and in-sync evaluation.

Table 7.6.2.2-1:  $\mathbf{Q}_{\text{out}}$  and  $\mathbf{Q}_{\text{in}}$  Evaluation Period in DRX

| DRX cycle length (s)                                                                 | T <sub>Evaluate</sub> _Q <sub>out_DRX</sub> and T <sub>Evaluate</sub> _Q <sub>in_DRX</sub> (s) (DRX cycles) |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| ≤ 0.01                                                                               | Non-DRX requirements in section                                                                             |  |
|                                                                                      | 7.6.2.1 are applicable.                                                                                     |  |
| 0.01 < DRX cycle ≤0.04                                                               | Note (20)                                                                                                   |  |
| 0.04 < DRX cycle ≤ 0. 64                                                             | Note (10)                                                                                                   |  |
| 0.64 < DRX cycle ≤ 2.56                                                              | Note (5)                                                                                                    |  |
| Note: Evaluation period length in time depends on the length of the DRX cycle in use |                                                                                                             |  |

# 8 UE Measurements Procedures in RRC\_CONNECTED State

# 8.1 General Measurement Requirements

#### 8.1.1 Introduction

This section contains requirements on the UE regarding measurement reporting in RRC\_CONNECTED state. The requirements are split in E-UTRA intra frequency, E-UTRA inter frequency, Inter-RAT UTRA FDD, UTRA TDD and GSM measurements. These measurements may be used by the E-UTRAN, e.g. for handover decisions. The measurement quantities are defined in [4], the measurement model is defined in [22] and measurement accuracies are specified in section 9. Control of measurement reporting is specified in [2].

# 8.1.2 Requirements

# 8.1.2.1 UE measurement capability

If the UE requires measurement gaps to identify and measure inter-frequency and/or inter-RAT cells, in order for the requirements in the following subsections to apply the E-UTRAN must provide a single measurement gap pattern with constant gap duration for concurrent monitoring of all frequency layers and RATs.

During the measurement gaps the UE:

- shall not transmit any data
- is not expected to tune its receiver on the E-UTRAN serving carrier frequency.

Inter-frequency and inter-RAT measurement requirements within this section rely on the UE being configured with one measurement gap pattern. UEs shall only support those measurement gap patterns listed in Table 8.1.2.1-1 that are relevant to its measurement capabilities.

| Gap Pattern<br>Id | MeasurementGap<br>Length (MGL, ms) | Measurement Gap<br>Repetition Period<br>(MGRP, ms) | Minimum available time<br>for inter-frequency and<br>inter-RAT measurements<br>during 480ms period<br>(Tinter1, ms) | Measurement Purpose                                                                        |
|-------------------|------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 0                 | 6                                  | 40                                                 | 60                                                                                                                  | Inter-Frequency E-UTRAN<br>FDD and TDD, UTRAN<br>FDD, GERAN, LCR TDD,<br>HRPD, CDMA2000 1x |
| 1                 | 6                                  | 80                                                 | 30                                                                                                                  | Inter-Frequency E-UTRAN<br>FDD and TDD, UTRAN<br>FDD, GERAN, LCR TDD,<br>HRPD, CDMA2000 1x |

Table 8.1.2.1-1: Gap Pattern Configurations supported by the UE

- NOTE 1: For E-UTRAN FDD, the UE shall not transmit in the subframe occurring immediately after the measurement gap.
- NOTE 2: For E-UTRAN TDD, the UE shall not transmit in the uplink subframe occurring immediately after the measurement gap if the subframe occurring immediately before the measurement gap is a downlink subframe.
- NOTE 3: When inter-frequency RSTD measurements are configured and the UE requires measurement gaps for performing such measurements, only Gap Pattern 0 can be used. For defining the inter-frequency and inter-RAT requirements  $T_{inter1}$ =30ms shall be assumed.

The requirements in section 9 are applicable for a UE performing measurements according to this section.

#### 8.1.2.1.1 Monitoring of multiple layers using gaps

When monitoring of multiple inter-frequency E-UTRAN and inter-RAT (UTRAN, GSM) using gaps is configured, the UE shall be capable of performing one measurement of the configured measurement type (RSRP, RSRQ, UTRAN TDD P-CCPCH RSCP, UTRAN FDD CPICH measurements, GSM carrier RSSI, etc.) of detected cells on all the layers

The effective total number of frequencies excluding the serving frequency being monitored using gaps is  $N_{\text{freq}}$ , which is defined as:

$$N_{freq} = N_{freq, E-UTRA} + N_{freq, UTRA} + M_{gsm} + N_{freq, cdma2000} + N_{freq, HRPD}$$

where

 $N_{\text{freq. E-UTRA}}$  is the number of E-UTRA carriers being monitored (FDD and TDD)

 $N_{\text{freq, UTRA}}$  is the number of UTRA carriers being monitored (FDD and TDD)

 $M_{GSM}$  is an integer which is a function of the number of GSM carriers on which measurements are being performed.  $M_{GSM}$  is equal to 0 if no GSM carrier is being monitored. For a MGRP of 40 ms,  $M_{GSM}$  is equal to 1 if cells on up to 32 GSM carriers are being measured. For a MGRP of 80 ms,  $M_{GSM}$  is equal to ceil( $N_{carriers,GSM}$ /20) where  $N_{carriers,GSM}$  is the number of GSM carriers on which cells are being measured.

 $N_{freq, cdma2000}$  is the number of cdma2000 1x carriers being monitored

N<sub>freq, HRPD</sub> is the number of HRPD carriers being monitored

#### 8.1.2.1.1.1 Maximum allowed layers for multiple monitoring

The UE shall be capable of monitoring using gaps at least per RAT group:

- Depending on UE capability, 3 FDD E-UTRA inter-frequency carriers, and

- Depending on UE capability, 3 TDD E-UTRA inter-frequency carriers, and
- Depending on UE capability, 3 FDD UTRA carriers, and
- Depending on UE capability, 3 TDD UTRA carriers, and
- Depending on UE capability, 32 GSM carriers (one GSM layer corresponds to 32 cells), and
- Depending on UE capability, 5 cdma2000 1x carriers, and
- Depending on UE capability, 5 HRPD carriers

In addition to the requirements defined above, the UE shall be capable of monitoring using gaps a total of at least 7 carrier frequency layers comprising of any above defined combination of E-UTRA FDD, E-UTRA TDD, UTRA FDD, UTRA TDD, GSM (one GSM layer corresponds to 32 carriers), cdma2000 1x and HRPD layers.

#### 8.1.2.2 E-UTRAN intra frequency measurements

The UE shall be able to identify new intra-frequency cells and perform RSRP measurements of identified intra-frequency cells without an explicit intra-frequency neighbour cell list containing physical layer cell identities. During the RRC\_CONNECTED state the UE shall continuously measure identified intra frequency cells and additionally search for and identify new intra frequency cells.

#### 8.1.2.2.1 E-UTRAN FDD intra frequency measurements

#### 8.1.2.2.1.1 E-UTRAN intra frequency measurements when no DRX is used

When no DRX is in use the UE shall be able to identify a new detectable FDD intra frequency cell within

$$T_{identify\ intra} = T_{basic\_identify\_E-UTRA\_FDD,\,intra} \cdot \frac{T_{Measurement\_Period,\,Intra}}{T_{Intra}} \quad \textit{ms}$$

where

T<sub>basic identify E-UTRA FDD, intra</sub> is 800 ms

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP|<sub>dBm</sub>  $\geq$  -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH  $\hat{E}$ s/Iot  $\geq$  6 dB.
- SCH RP<sub>|dBm</sub>≥ -126 dBm for Band 9 and SCH Ês/Iot > 6 dB,
- SCH\_RP  $|_{dBm} \ge -125 \text{ dBm}$  for Bands 2, 5, 7 and SCH Ês/Iot  $\ge -6 \text{ dB}$ ,
- SCH\_RP  $|_{dBm} \ge -124 \text{ dBm for Bands } 3, 8, 12, 13, 14, 17, 20 \text{ and SCH } \hat{E}s/Iot > -6 \text{ dB}.$

 $T_{Intra}$ : This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing. Time is assumed to be available for performing intra frequency measurements whenever the receiver is guaranteed to be active on the intra frequency carrier.

Identification of a cell shall include detection of the cell and additionally performing a single measurement with measurement period of  $T_{Measurement\_Period\ Intra}$ . If higher layer filtering is used, an additional cell identification delay can be expected.

In the RRC\_CONNECTED state the measurement period for intra frequency measurements is 200 ms. When no measurement gaps are activated, the UE shall be capable of performing RSRPand RSRQ measurements for 8 identified-intra-frequency cells, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 200 ms. When measurement gaps are activated the UE shall be capable of performing measurements for at least  $Y_{\text{measurement intra}}$  cells , where  $Y_{\text{measurement intra}}$  is defined in the following equation. If the UE has identified more than  $Y_{\text{measurement intra}}$  cells, the UE shall perform measurements of at least 8 identified intra-frequency

cells but the reporting rate of RSRP and RSRQ measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = Floor \left\{ X_{\text{basic measurement FDD}} \cdot \frac{\mathbf{T}_{\text{Intra}}}{\mathbf{T}_{\text{Measurement\_Period, Intra}}} \right\} \text{cells}$$

where

 $X_{\text{basic measurement FDD}} = 8 \text{ (cells)}$ 

 $T_{\text{Measurement Period, Intra}} = 200 \text{ ms.}$  The measurement period for Intra frequency RSRP and RSRQ measurements.

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.2.1.1.1 Measurement Reporting Requirements

#### 8.1.2.2.1.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.2.1.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.1.1.1.3 Event Triggered Reporting.

#### 8.1.2.2.1.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T <sub>identify intra</sub> defined in Section 8.1.2.2.1.1. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify\_intra}$  defined in section 8.1.2.2.1.1 becomes undetectable for a period  $\leq 5$  seconds and then the cell becomes defined again and triggers an event, the event triggered measurement reporting delay shall be less than  $T_{Measurement\_Period, Intra}$  provided the timing to that cell has not changed more than  $\pm$  50 Ts and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

## 8.1.2.2.1.2 E-UTRAN intra frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable FDD intra frequency cell within  $T_{identify\_intra}$  as shown in table 8.1.2.2.1.2-1

Table 8.1.2.2.1.2-1: Requirement to identify a newly detectable FDD intrafrequency cell

| DRX cycle                                     | T <sub>identify_intra</sub> (s) |  |
|-----------------------------------------------|---------------------------------|--|
| length (s)                                    | (DRX cycles)                    |  |
| ≤0.04                                         | 0.8 (Note1)                     |  |
| 0.04 <drx-< td=""><td>Note2 (40)</td></drx-<> | Note2 (40)                      |  |
| cycle≤0.08                                    |                                 |  |
| 0.128                                         | 3.2 (25)                        |  |
| 0.128 <drx- note2(20)<="" td=""></drx->       |                                 |  |
| cycle≤2.56                                    |                                 |  |
| Note1: Number of DRX cycle                    |                                 |  |
| depends upon the DRX cycle in use             |                                 |  |
| Note2: Time depends upon the DRX              |                                 |  |

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,

cycle in use

- SCH\_RP|<sub>dBm</sub>  $\geq$  -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH  $\hat{E}$ s/Iot  $\geq$  -6 dB.
- SCH\_RP $|_{dBm} \ge -126 dBm$  for Band 9 and SCH Ês/Iot  $\ge -6 dB$ ,
- SCH\_RP  $|_{dBm} \ge -125$  dBm for Bands 2, 5, 7 and SCH Ês/Iot  $\ge -6$  dB,
- SCH\_RP  $|_{dBm} \ge$  -124 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH  $\hat{E}s/Iot \ge$  6 dB.

In the RRC\_CONNECTED state the measurement period for intra frequency measurements is  $T_{measure\_intra}$  as shown in table 8.1.2.2.1.2-2. The UE shall be capable of performing RSRP and RSRQ measurements for 8 identified-intra-frequency cells, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of  $T_{measure\_intra}$ .

Table 8.1.2.2.1.2-2: Requirement to measure FDD intrafrequency cells

| DRX cycle<br>length (s)                      | T <sub>measure_intra</sub> (s)<br>(DRX cycles) |  |
|----------------------------------------------|------------------------------------------------|--|
| ≤0.04                                        | 0.2 (Note1)                                    |  |
| 0.04 <drx-< td=""><td>Note2 (5)</td></drx-<> | Note2 (5)                                      |  |
| cycle≤2.56                                   |                                                |  |
| Note1: Number of DRX cycle                   |                                                |  |

Note1: Number of DRX cycle depends upon the DRX cycle in use Note2: Time depends upon the DRX cycle in use

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.2.1.2.1 Measurement Reporting Requirements

#### 8.1.2.2.1.2.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.2.1.2.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.1.3 Event Triggered Reporting.

#### 8.1.2.2.1.2.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T <sub>identify\_intra</sub> defined in Section 8.1.2.2.1.2. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify\_intra}$  defined in section 8.1.2.2.1.2 becomes undetectable for a period  $\leq 5$  seconds and then the cell becomes detectable again and triggers an event, the event triggered measurement reporting delay shall be less than  $T_{measure\_intra}$  provided the timing to that cell has not changed more than  $\pm$  50 Ts and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.2.2 E-UTRAN TDD intra frequency measurements

### 8.1.2.2.2.1 E-UTRAN intra frequency measurements when no DRX is used

When no DRX is in use the UE shall be able to identify a new detectable TDD intra frequency cell within

$$T_{\text{identify intra}} = T_{\text{basic identify } E-UTRA\_TDD, \text{ intra}} \cdot \frac{T_{\text{Measurement Period, Intra}}}{T_{\text{Intra}}} \quad \textit{ms}$$

where

 $T_{basic\_identify\_E-UTRA\_TDD, intra}$  is 800 ms

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP  $\geq$  -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH  $\hat{E}$ s/Iot  $\geq$  -6 dB.

 $T_{Intra}$ : This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing. Time is assumed to be available for performing intra frequency measurements whenever the receiver is guaranteed to be active on the intra frequency carrier.

Identification of a cell shall include detection of the cell and additionally performing a single measurement with measurement period of  $T_{Measurement\_Period\ Intra}$ . If higher layer filtering is used, an additional cell identification delay can be expected.

In the RRC\_CONNECTED state the measurement period for intra frequency measurements is 200 ms. When no measurement gaps are activated, the UE shall be capable of performing RSRP and RSRQ measurements for 8 identified-intra-frequency cells, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 200 ms. When measurement gaps are activated the UE shall be capable of performing measurements for at least  $Y_{\text{measurement intra}}$  cells , where  $Y_{\text{measurement intra}}$  is defined in the following equation. If the UE has identified more than  $Y_{\text{measurement intra}}$  cells, the UE shall perform measurements of at least 8 identified intra-frequency cells but the reporting rate of RSRP and RSRQ measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = Floor \left\{ X_{\text{basic measurement TDD}} \cdot \frac{\mathbf{T}_{\text{Intra}}}{\mathbf{T}_{\text{Measurement\_Period, Intra}}} \right\} \text{cells}$$

where

 $X_{\text{basic measurement TDD}} = 8 \text{ (cells)}$ 

 $T_{\text{Measurement\_Period Intra}} = 200 \text{ ms.}$  The measurement period for Intra frequency RSRP and RSRQ measurements.

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.2.2.1.1 Measurement Reporting Requirements

#### 8.1.2.2.2.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section q

#### 8.1.2.2.2.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.2.1.1.3 Event Triggered Reporting.

#### 8.1.2.2.2.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T  $_{identify\ intra}$  defined in Section 8.1.2.2.2.1. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify\_intra}$  defined in section 8.1.2.2.2.1 becomes undetectable for a period  $\leq 5$  seconds and then the cell becomes defined again and triggers an event, the event triggered measurement reporting delay shall be less than  $T_{Measurement\_Period\ Intra}$  provided the timing to that cell has not changed more than  $\pm$  50 Ts and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.2.2.2 E-UTRAN intra frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable TDD intra frequency cell within  $T_{identify\_intra}$  as shown in table 8.1.2.2.2.2-1

Table 8.1.2.2.2.2-1: Requirement to identify a newly detectable TDD intrafrequency cell

| DRX cycle<br>length (s)                       | T <sub>identify_intra</sub> (s)<br>(DRX cycles) |  |  |
|-----------------------------------------------|-------------------------------------------------|--|--|
| ≤0.04                                         | 0.8 (Note1)                                     |  |  |
| 0.04 <drx-< td=""><td>Note2 (40)</td></drx-<> | Note2 (40)                                      |  |  |
| cycle≤0.08                                    |                                                 |  |  |
| 0.128                                         | 3.2 (25)                                        |  |  |
| 0.128 <drx-< td=""><td>Note2(20)</td></drx-<> | Note2(20)                                       |  |  |
| cycle≤2.56                                    |                                                 |  |  |
| Note1: Number of DRX cycle                    |                                                 |  |  |
| depends upon the DRX cycle in use             |                                                 |  |  |
| Note2: Time depends upon the DRX              |                                                 |  |  |
| cycle in use                                  |                                                 |  |  |

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP  $\geq$  -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH  $\hat{E}$ s/Iot  $\geq$  -6 dB.

In the RRC\_CONNECTED state the measurement period for intra frequency measurements is  $T_{measure\_intra}$  as shown in table 8.1.2.2.2.2-2. The UE shall be capable of performing RSRP and RSRQ measurements for 8 identified-intra-frequency cells and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of  $T_{measure\_intra}$ .

Table 8.1.2.2.2.2: Requirement to measure TDD intra frequency cells

| DRX cycle<br>length (s)                                       | T <sub>measure_intra</sub> (s)<br>(DRX cycles) |
|---------------------------------------------------------------|------------------------------------------------|
| ≤0.04                                                         | 0.2 (Note1)                                    |
| 0.04 <drx-<br>cycle≤2.56</drx-<br>                            | Note2 (5)                                      |
| Note1: Number of DRX cycle depends upon the DRX cycle in use. |                                                |
| Note2: Time depends upon the DRX cycle in use.                |                                                |

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.2.2.1 Measurement Reporting Requirements

#### 8.1.2.2.2.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.2.2.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.2.2.1.3 Event Triggered Reporting.

#### 8.1.2.2.2.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T  $_{identify\_intra}$  defined in Section 8.1.2.2.2.2. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify\_intra}$  defined in section 8.1.2.2.2.2 becomes undetectable for a period  $\leq 5$  seconds and then the cell becomes detectable again and triggers an event, the event triggered measurement reporting delay shall be less than  $T_{measure\_intra}$  provided the timing to that cell has not changed more than  $\pm$  50 Ts and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

### 8.1.2.2.3 E-UTRAN FDD intra frequency measurements with autonomous gaps

#### 8.1.2.2.3.1 Identification of a new CGI of E-UTRA cell with autonomous gaps

No explicit neighbour list is provided to the UE for identifying a new CGI of E-UTRA cell. The UE shall identify and report the CGI when requested by the network for the purpose 'reportCGI'. The UE may make autonomous gaps in downlink reception and uplink transmission for receiving MIB and SIB1 message according to section 5.5.3.1 of 36.331 [2]. Note that a UE is not required to use autonomous gap if si-RequestForHO is set to false. If autonomous gaps are used for measurement with the purpose of 'reportCGI', the UE shall be able to identify a new CGI of E-UTRA cell within:

$$T_{\text{identify CGI, intra}} = T_{\text{basic identify CGI, intra}}$$
 ms

#### Where

 $T_{basic\_identify\_CGI, intra} = 150$  ms. This is the time period used in the above equation where the maximum allowed time for the UE to identify a new CGI of an E-UTRA cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- RSRP related side conditions given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP|dBm  $\geq$  -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH Ês/Iot  $\geq$  -6 dB,
- SCH\_RP|dBm  $\geq$  -126 dBm for Band 9 and SCH  $\hat{E}$ s/Iot  $\geq$  -6 dB,
- SCH\_RP|dBm > -125 dBm for Bands 2, 5, 7 and SCH Ês/Iot > -6 dB,
- SCH\_RP|dBm  $\geq$  -124 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH £s/Iot  $\geq$  -6 dB.

The MIB of an E-UTRA cell whose CGI is identified shall be considered decodable by the UE provided the PBCH demodulation requirements are met according to [5].

The requirement for identifying a new CGI of an E-UTRA cell within  $T_{basic\_identify\_CGI,intra}$  is applicable when no DRX is used as well as when all the DRX cycles specified in 3GPP TS 36.331 [2] are used.

Within the time,  $T_{\text{identify\_CGI, intra}}$  ms , over which the UE identifies the new CGI of E-UTRA cell, the UE shall have more than 60 ACK/NACKs transmitted, provided that:

- there is continuous DL data allocation,
- no DRX cycle is used,
- no measurement gaps are configured,
- only one code word is transmitted in each subframe,
- no MBSFN subframes are configured in the PCell.

#### 8.1.2.2.3.2 ECGI Reporting Delay

The ECGI reporting delay occurs due to the delay uncertainty when inserting the ECGI measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. In case DRX is used, the ECGI reporting may be delayed until the next DRX cycle.

# 8.1.2.2.4 E-UTRAN TDD intra frequency measurements with autonomous gaps

#### 8.1.2.2.4.1 Identification of a new CGI of E-UTRA cell with autonomous gaps

No explicit neighbour list is provided to the UE for identifying a new CGI of E-UTRA cell. The UE shall identify and report the CGI when requested by the network for the purpose 'reportCGI'. The UE may make autonomous gaps in downlink reception and uplink transmission for receiving MIB and SIB1 messages according to section 5.5.3.1 of 36.331 [2]. Note that a UE is not required to use autonomous gap if si-RequestForHO is set to false. If autonomous gaps are used for measurement with the purpose of 'reportCGI', the UE shall be able to identify a new CGI of E-UTRA cell within:

$$T_{\text{identify CGL intra}} = T_{\text{basic identify CGL intra}} ms$$

#### Where

 $T_{basic\_identify\_CGI,\ intra} = 150$  ms. This is the time period used in the above equation where the maximum allowed time for the UE to identify a new CGI of an E-UTRA cell is defined.

A cell shall be considered identifiable when the following conditions are fulfilled:

- RSRP related side conditions given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP  $\geq$  -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH £s/Iot  $\geq$  6 dB.

The MIB of an E-UTRA cell whose CGI is identified shall be considered decodable by the UE provided the PBCH demodulation requirements are met according to [5].

The requirement for identifying a new CGI of an E-UTRA cell within  $T_{basic\_identify\_CGI, intra}$  is applicable when no DRX is used as well as when all the DRX cycles specified in 3GPP TS 36.331 [2] are used.

Within the time,  $T_{\text{identify\_CGI, intra}}$  ms, over which the UE identifies the new CGI of E-UTRA cell, the UE shall be able to transmit at least the number of ACK/NACKs stated in Table 8.1.2.2.4.1-1 provided that:

- there is continuous DL data allocation,
- no DRX cycle is used,
- no measurement gaps are configured,
- only one code word is transmitted in each subframe,
- no MBSFN subframes are configured in the PCell.

Table 8.1.2.2.4.1-1: Requirement on minimum number of ACK/NACKs to transmit during T<sub>basic\_identify\_CGI, intra</sub>.

| UL/DL configuration | Minimum number of<br>transmitted ACK/NACKs |
|---------------------|--------------------------------------------|
| 0                   | 18                                         |
| 1                   | 35                                         |
| 2                   | 43                                         |
| 3                   | 36                                         |
| 4                   | 39                                         |
| 5                   | 42                                         |
| 6                   | 30                                         |

#### 8.1.2.2.4.2 ECGI Reporting Delay

The ECGI reporting delay occurs due to the delay uncertainty when inserting the ECGI measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. In case DRX is used, the ECGI reporting may be delayed until the next DRX cycle.

## 8.1.2.3 E-UTRAN inter frequency measurements

The UE shall be able to identify new inter-frequency cells and perform RSRP measurements of identified inter-frequency cells if carrier frequency information is provided by the serving cell, even if no explicit neighbour list with physical layer cell identities is provided.

#### 8.1.2.3.1 E-UTRAN FDD – FDD inter frequency measurements

#### 8.1.2.3.1.1 E-UTRAN FDD – FDD inter frequency measurements when no DRX is used

When measurement gaps are scheduled the UE shall be able to identify a new FDD inter-frequency within  $T_{Identify\_Inter}$  according to the following expression:

$$T_{\text{Identify\_Inter}} = T_{\text{Basic\_Identify\_Inter}} \cdot \frac{480}{T_{\text{Interl}}} \cdot N_{freq} \quad ms$$

Where:

 $T_{Basic\_Identify\_Inter} = 480$  ms. It is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new FDD inter-frequency cell is defined.

 $N_{\text{freq}}$  is defined in section 8.1.2.1.1 and  $T_{\text{inter1}}$  is defined in section 8.1.2.1

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP<sub>|dRm</sub> $\geq$  -125 dBm and for Bands 1, 4, 6, 10, 11, 18, 19, 21 and RSRP £s/Iot  $\geq$  -4 dB,
- RSRP $|_{dBm} \ge -124 \text{ dBm for Bands } 9 \text{ and RSRP } \hat{E}s/Iot \ge -4 \text{ dB}$ ,
- RSRP $|_{dBm} \ge -123$  dBm for Bands 2, 5, 7 and RSRP  $\hat{E}s/Iot \ge -4$  dB,
- RSRP<sub>dBm</sub>≥ -122 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and RSRP  $\hat{E}$ s/Iot ≥ -4 dB,
- other RSRP related side conditions given in Section 9.1 are fulfilled,
- SCH\_RP|<sub>dBm</sub> $\geq$  -125 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH Ês/Iot  $\geq$  -4 dB,
- SCH\_RP $_{dBm} \ge -124 dBm$  for Band 9 and SCH  $\hat{E}$ s/Iot  $\ge -4 dB$ ,
- SCH\_RP  $|_{dBm} \ge -123$  dBm for Bands 2, 5, 7 and SCH  $\hat{E}$ s/Iot  $\ge -4$  dB,
- SCH\_RP  $|_{dBm}$ ≥ -122 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH Ês/Iot ≥ -4 dB.

When measurement gaps are scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.3 with measurement period given by table 8.1.2.3.1.1-1.

Table 8.1.2.3.1.1-1: RSRP measurement period and measurement bandwidth

| Configuration                        | Physical Layer Measurement period:             | Measurement bandwidth [RB] |
|--------------------------------------|------------------------------------------------|----------------------------|
|                                      | T <sub>Measurement_Period_Inter_FDD</sub> [ms] |                            |
| 0                                    | 480 x N <sub>freq</sub>                        | 6                          |
| 1 (Note)                             | 240 x N <sub>freq</sub>                        | 50                         |
| Note: This configuration is optional |                                                |                            |

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per FDD inter-frequency for up to 3 FDD inter-frequencies and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period defined in Table 8.1.2.3.1.1-1.

#### 8.1.2.3.1.1.1 Measurement Reporting Requirements

#### 8.1.2.3.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section of

#### 8.1.2.3.1.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2. 3.1.1.1.3 Event Triggered Reporting.

#### 8.1.2.3.1.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH . The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T  $_{identify-inter}$  defined in Section 8.1.2.3.1.1. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify\_inter}$  defined in section 8.1.2.3.1.1 and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{Measurement\_Period\_Inter\_FDD}$  defined in section 8.1.2.3.1.1 provided the timing to that cell has not changed more than  $\pm$  50 Ts while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.3.1.2 E-UTRAN FDD – FDD inter frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable E-UTRAN FDD inter frequency cell within  $T_{identify\_inter}$  as shown in table 8.1.2.3.1.2-1

Table 8.1.2.3.1.2-1: Requirement to identify a newly detectable FDD interfrequency cell

| DRX                             | T <sub>identify_inter</sub> (s) | (DRX cycles)            |
|---------------------------------|---------------------------------|-------------------------|
| cycle                           | Gap period                      | Gap period              |
| length (s)                      | = 40  ms                        | = 80  ms                |
| ≤0.16                           | Non DRX                         | Non DRX                 |
|                                 | Requirements                    | Requirements            |
|                                 | in section                      | in section              |
|                                 | 8.1.2.3.1.1                     | 8.1.2.3.1.1             |
|                                 | are applicable                  | are applicable          |
| 0.256                           | 5.12*N <sub>freq</sub>          | $7.68*N_{freq}$         |
|                                 | $(20*N_{freq})$                 | (30*N <sub>freq</sub> ) |
| 0.32                            | $6.4*N_{freq}$                  | $7.68*N_{freq}$         |
|                                 | (20*Nfreq)                      | (24*N <sub>freq</sub> ) |
| 0.32<                           | Note                            | Note                    |
| DRX-                            | (20*N <sub>freq</sub> )         | (20*N <sub>freq</sub> ) |
| cycle≤2.56                      | ,                               | ,,                      |
| Note: Time depends upon the DRX |                                 |                         |
| cycle in use                    |                                 |                         |

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP|<sub>dBm</sub>≥ -125 dBm and for Bands 1, 4, 6, 10, 11, 18, 19, 21 and RSRP  $\hat{E}$ s/Iot ≥ -4 dB,
- RSRP $|_{dBm} \ge -124 \text{ dBm for Bands 9 and RSRP } \hat{E}_{s}/Iot \ge -4 \text{ dB},$
- RSRP $|_{dBm} \ge -123$  dBm for Bands 2, 5, 7 and RSRP  $\hat{E}s/Iot \ge -4$  dB,
- RSRP<sub>dBm</sub>≥ -122 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and RSRP  $\hat{E}$ s/Iot ≥ -4 dB,
- other RSRP related side conditions given in Section 9.1 are fulfilled,
- SCH\_RP|<sub>dBm</sub>≥ -125 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH  $\hat{E}$ s/Iot ≥ -4 dB,
- SCH\_RP|<sub>dBm</sub> $\geq$  -124 dBm for Band 9 and SCH  $\hat{E}$ s/Iot  $\geq$  -4 dB,
- SCH\_RP  $|_{dBm} \ge -123$  dBm for Bands 2, 5, 7 and SCH  $\hat{E}$ s/Iot  $\ge -4$  dB,
- SCH\_RP  $|_{dBm}$ ≥ -122 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH Ês/Iot ≥ -4 dB.

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per FDD inter-frequency and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period defined in table 8.1.2.3.1.2-2.

Table 8.1.2.3.1.2-2: Requirement to measure FDD interfrequency cells

| DRX cycle                                                    | T <sub>measure_inter</sub> (s) |  |
|--------------------------------------------------------------|--------------------------------|--|
| length (s)                                                   | (DRX cycles)                   |  |
| ≤0.08                                                        | Non DRX                        |  |
|                                                              | Requirements in                |  |
|                                                              | section 8.1.2.3.1.1            |  |
|                                                              | are applicable                 |  |
| 0.08 <drx-< td=""><td>Note (5*N<sub>freq</sub>)</td></drx-<> | Note (5*N <sub>freq</sub> )    |  |
| cycle≤2.56                                                   | ·                              |  |
| Note: Time depends upon the DRX                              |                                |  |
| cycle in use                                                 |                                |  |

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.3.1.2.1 Measurement Reporting Requirements

# 8.1.2.3.1.2.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.3.1.2.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2. 3.1.2.1.3 Event Triggered Reporting.

#### 8.1.2.3.1.2.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{identify\_inter}$  defined in Section 8.1.2.3.1.2. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify\_inter}$  defined in section 8.1.2.3.1.2 and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{measure\_inter}$  defined in section 8.1.2.3.1.2 provided the timing to that cell has not changed more than  $\pm$  50 Ts while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.3.2 E-UTRAN TDD – TDD inter frequency measurements

#### 8.1.2.3.2.1 E-UTRAN TDD – TDD inter frequency measurements when no DRX is used

When measurement gaps are scheduled the UE shall be able to identify a new TDD inter-frequency within  $T_{Identify\_Inter}$  according to the following expression:

$$\mathbf{T}_{\text{Identify\_Inter}} = \mathbf{T}_{\text{Basic\_Identify\_Inter}} \cdot \frac{480}{\mathbf{T}_{\text{Inter1}}} \cdot \mathbf{N}_{\textit{freq}} \quad \textit{ms}$$

Where:

 $T_{Basic\_Identify\_Inter} = 480$  ms. It is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new TDD inter-frequency cell is defined.

 $N_{freq}$  is defined in section 8.1.2.1.1 and  $T_{inter1}$  is defined in section 8.1.2.1

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP $|_{dBm} \ge -125 \text{ dBm}$  and for Bands 33, 34, 35, 36, 37, 38, 39, 40 and RSRP  $\hat{E}s/Iot \ge -4 \text{ dB}$ ,
- other RSRP related side conditions given in Section 9.1 are fulfilled.
- SCH\_RP|<sub>dBm</sub>≥ -125 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH  $\hat{E}$ s/Iot ≥ -4 dB.

When measurement gaps are scheduled for TDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.3 with measurement period ( $T_{\text{Measurement Period TDD Inter}$ ) given by table 8.1.2.3.2.1-1:

Table 8.1.2.3.2.1-1:  $T_{Measurement\_Period\_TDD\_Inter}$  for different configurations

| Configuration | Measurement bandwidth [RB] |    | UL/DL sub-<br>If frame (5 ms) | Dw                      | PTS                     | T <sub>Measurement_Period_TDD</sub> _Inter [ms] |
|---------------|----------------------------|----|-------------------------------|-------------------------|-------------------------|-------------------------------------------------|
|               |                            | DL | UL                            | Normal<br>CP            | Extended<br>CP          |                                                 |
| 0             | 6                          | 2  | 2                             | $19760 \cdot T_{\rm s}$ | $20480 \cdot T_{\rm s}$ | 480 x N <sub>freq</sub>                         |
| 1 (Note 1)    | 50                         | 2  | 2                             | $19760 \cdot T_{\rm s}$ | $20480 \cdot T_{\rm s}$ | 240 x N <sub>freq</sub>                         |

Note 1: This configuration is optional

Note 2: T<sub>s</sub> is defined in 3GPP TS 36.211 [16]

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per TDD inter-frequency and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period  $T_{Measurement\_Period\_TDD\_Inter}$ .

# 8.1.2.3.2.1.1 Measurement Reporting Requirements

#### 8.1.2.3.2.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.3.2.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.3.2.1.1.3 Event Triggered Reporting.

#### 8.1.2.3.2.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times \text{TTI}_{DCCH}$ . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{Identify\_Inter}$  defined in Section 8.1.2.3.2.1. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{Identify\_Inter}$  defined in section 8.1.2.3.2.1 and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{Measurement\_Period\_TDD\_Inter}$  defined in section 8.1.2.3.2.1 provided the timing to that cell has not changed more than  $\pm$  50 Ts while measurementgap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.3.2.2 E-UTRAN TDD – TDD inter frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable E-UTRAN TDD inter frequency cell within  $T_{identify\ inter}$  as shown in table 8.1.2.3.2.2-1

Table 8.1.2.3.2.2-1: Requirement to identify a newly detectable TDD interfrequency cell

| DRX cycle                                            | T <sub>identify_inter</sub> (s) (DRX cycles) |                |
|------------------------------------------------------|----------------------------------------------|----------------|
| length (s)                                           | Gap period                                   | Gap period     |
|                                                      | =40  ms                                      | = 80  ms       |
| ≤0.16                                                | Non DRX                                      | Non DRX        |
|                                                      | Requirements                                 | Requirements   |
|                                                      | in section                                   | in section     |
|                                                      | 8.1.2.3.2.1                                  | 8.1.2.3.2.1    |
|                                                      | are applicable                               | are applicable |
| 0.256                                                | 5.12*Nfreq                                   | 7.68*Nfreq     |
|                                                      | (20*Nfreq)                                   | (30*Nfreq)     |
| 0.32                                                 | 6.4*Nfreq                                    | 7.68*Nfreq     |
|                                                      | (20*Nfreq)                                   | (24*Nfreq)     |
| 0.32 <drx-< td=""><td>Note</td><td>Note</td></drx-<> | Note                                         | Note           |
| cycle≤2.56                                           | (20*Nfreq)                                   | (20*Nfreq)     |
| Note: Time depends upon the DRX                      |                                              |                |
| cycle in use                                         |                                              |                |

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP $|_{dBm} \ge -125 dBm$  and for Bands 33, 34, 35, 36, 37, 38, 39, 40 and RSRP  $\hat{E}s/Iot \ge -4 dB$ ,
- RSRP related side conditions given in Section 9.1 are fulfilled,
- SCH\_RP|<sub>dBm</sub>≥ -125 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH Ês/Iot ≥ -4 dB.

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per TDD inter-frequency for up to 3 TDD inter-frequencies and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period defined in Table 8.1.2.3.2.2-2.

Table 8.1.2.3.2.2-2: Requirement to measure TDD interfrequency cells

| DRX cycle length (s)                                         | T <sub>measure_inter</sub> (s) (DRX cycles) |  |
|--------------------------------------------------------------|---------------------------------------------|--|
| ≤0.08                                                        | Non DRX                                     |  |
|                                                              | Requirements in                             |  |
|                                                              | section 8.1.2.3.2.1                         |  |
|                                                              | are applicable                              |  |
| 0.08 <drx-< td=""><td>Note (5*N<sub>freq</sub>)</td></drx-<> | Note (5*N <sub>freq</sub> )                 |  |
| cycle≤2.56                                                   | , ,                                         |  |
|                                                              | ne depends upon the                         |  |
| DRX cycle in use                                             |                                             |  |

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.3.2.2.1 Measurement Reporting Requirements

#### 8.1.2.3.2.2.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.3.2.2.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.3.2.2.1.3 Event Triggered Reporting.

#### 8.1.2.3.2.2.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: 2 x TTI<sub>DCCH</sub>. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{\text{Identify\_Inter}}$  defined in Section 8.1.2.3.2.2. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{Identify\_Inter}$  in section 8.1.2.3.2.2 and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{measure\_inter}$  in section 8.1.2.3.2.2 provided the timing to that cell has not changed more than  $\pm$  50 Ts while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.3.3 E-UTRAN TDD – FDD inter frequency measurements

#### 8.1.2.3.3.1 E-UTRAN TDD – FDD inter frequency measurements when no DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.1.1 also apply for this section.

#### 8.1.2.3.3.2 E-UTRAN TDD – FDD inter frequency measurements when DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.1.2 also apply for this section.

#### 8.1.2.3.4 E-UTRAN FDD – TDD inter frequency measurements

#### 8.1.2.3.4.1 E-UTRAN FDD – TDD inter frequency measurements when no DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.2.1 also apply for this section.

# 8.1.2.3.4.2 E-UTRAN FDD – TDD inter frequency measurements when DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.2.2 also apply for this section.

#### 8.1.2.3.5 E-UTRAN FDD-FDD inter frequency measurements with autonomous gaps

## 8.1.2.3.5.1 Identification of a new CGI of E-UTRA FDD cell with autonomous gaps

No explicit neighbour list is provided to the UE for identifying a new CGI of E-UTRA cell. The UE shall identify and report the CGI when requested by the network for the purpose of 'reportCGI'. The UE may make autonomous gaps in both downlink reception and uplink transmission for receiving MIB and SIB1 message according to section 5.5.3.1 of 36.331 [2]. Note that a UE is not required to use autonomous gap if si-RequestForHO is set to false. If autonomous gaps are used for measurement with the purpose of 'reportCGI', regardless of whether DRX is used or not, the UE shall be able to identify a new CGI of E-UTRA cell within:

$$T_{\text{identify CGI, inter}} = T_{\text{basic identify CGI, inter}}$$
 ms

Where

 $T_{basic\_identify\_CGI,\;inter} = 150\;ms.$  This is the time period used in the above equation where the maximum allowed time for the UE to identify a new CGI of E-UTRA cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- RSRP related side conditions given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP|dBm  $\geq$  -125 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH Ês/Iot  $\geq$  -4 dB,
- SCH\_RP|dBm  $\geq$  -124 dBm for Band 9 and SCH Ês/Iot  $\geq$  -4 dB,
- SCH\_RP|dBm  $\geq$  -123 dBm for Bands 2, 5, 7 and SCH Ês/Iot  $\geq$  -4 dB,
- SCH\_RP|dBm  $\geq$  -122 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH Ês/Iot  $\geq$  -4 dB.

The MIB of an E-UTRA cell whose CGI is identified shall be considered decodable by the UE provided the PBCH demodulation requirements are met according to [5].

The requirement for identifying a new CGI of an E-UTRA cell within  $T_{basic\_identify\_CGI,inter}$  is applicable when no DRX is used as well as when all the DRX cycles specified in 3GPP TS 36.331 [2] are used.

Within the time,  $T_{identify\_CGI,inter}$  ms, over which the UE identifies the new CGI of E-UTRA cell, the UE shall have more than 60 ACK/NACK, provided that:

- there is continuous DL data allocation,
- no DRX cycle is used,
- no measurement gaps are configured,
- only one code word is transmitted in each subframe,
- no MBSFN subframes are configured in the PCell.

#### 8.1.2.3.5.2 ECGI Reporting Delay

The ECGI reporting delay occurs due to the delay uncertainty when inserting the ECGI measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. In case DRX is used, the ECGI reporting may be delayed until the next DRX cycle.

#### 8.1.2.3.6 E-UTRAN TDD-FDD inter frequency measurements using autonomous gaps

The requirements in this section shall apply to UE supporting FDD and TDD.

#### 8.1.2.3.6.1 Identification of a new CGI of E-UTRA FDD cell with autonomous gaps

No explicit neighbour list is provided to the UE for identifying a new CGI of E-UTRA cell. The UE shall identify and report the CGI when requested by the network for the purpose of 'reportCGI'. The UE may make autonomous gaps in both downlink reception and uplink transmission for receiving MIB and SIB1 message according to section 5.5.3.1 of 36.331 [2]. Note that a UE is not required to use autonomous gap if si-RequestForHO is set to false. If autonomous gaps are used for measurement with the purpose of 'reportCGI', regardless of whether DRX is used or not, the UE shall be able to identify a new CGI of E-UTRA cell within:

$$T_{\text{identify CGI, inter}} = T_{\text{basic identify CGI, inter}}$$
 ms

Where

 $T_{basic\_identify\_CGI, inter} = 150$  ms. This is the time period used in the above equation where the maximum allowed time for the UE to identify a new CGI of E-UTRA cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- RSRP related side conditions given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP|dBm  $\geq$  -125 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21 and SCH Ês/Iot  $\geq$  -4 dB,
- SCH RP|dBm > -124 dBm for Band 9 and SCH Ês/Iot > -4 dB,
- SCH RP|dBm>-123 dBm for Bands 2, 5, 7 and SCH  $\hat{E}s/Iot>-4 dB$ ,
- SCH\_RP|dBm  $\geq$  -122 dBm for Bands 3, 8, 12, 13, 14, 17, 20 and SCH Ês/Iot  $\geq$  -4 dB.

The MIB of an E-UTRA cell whose CGI is identified shall be considered decodable by the UE provided the PBCH demodulation requirements are met according to [5].

The requirement for identifying a new CGI of an E-UTRA cell within T<sub>basic\_identify\_CGI,inter</sub> is applicable when no DRX is used as well as when all the DRX cycles specified in 3GPP TS 36.331 [2] are used.

Given that TDD configuration as in Table 8.1.2.3.2.1-1 is used, the UE shall have more than 30 ACK/NACK transmitted during the identification of a new CGI of E-UTRA cell, provided that:

- there is continuous DL data allocation,
- no DRX cycle is used,
- no measurement gaps are configured,
- only one code word is transmitted in each subframe,
- no MBSFN subframes are configured in the PCell.

#### 8.1.2.3.6.2 ECGI Reporting Delay

The ECGI reporting delay occurs due to the delay uncertainty when inserting the ECGI measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. In case DRX is used, the ECGI reporting may be delayed until the next DRX cycle.

#### 8.1.2.3.7 E-UTRAN TDD-TDD inter frequency measurements with autonomous gaps

# 8.1.2.3.7.1 Identification of a new CGI of E-UTRA TDD cell with autonomous gaps

No explicit neighbour list is provided to the UE for identifying a new CGI of E-UTRA cell. The UE shall identify and report the CGI when requested by the network for the purpose of 'reportCGI'. The UE may make autonomous gaps in both downlink reception and uplink transmission according to section 5.5.3.1 of 36.331 [2]. Note that a UE is not required to use autonomous gap if si-RequestForHO is set to false. If autonomous gaps are used for measurement with the purpose of 'reportCGI', regardless of whether DRX is used or not, the UE shall be able to identify a new CGI of E-UTRA cell within:

$$T_{\text{identify CGI, inter}} = T_{\text{basic identify CGI, inter}}$$
 ms

Where

 $T_{basic\_identify\_CGI, inter} = 150$  ms. This is the time period used in the above equation where the maximum allowed time for the UE to identify a new CGI of E-UTRA cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- RSRP related side conditions given in Section 9.1 are fulfilled for a corresponding Band,
- SCH\_RP  $\geq$  -125 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH £s/Iot  $\geq$  4 dB.

The MIB of an E-UTRA cell whose CGI is identified shall be considered decodable by the UE provided the PBCH demodulation requirements are met according to [5].

The requirement for identifying a new CGI of an E-UTRA cell within  $T_{basic\_identify\_CGI,inter}$  is applicable when no DRX is used as well as when all the DRX cycles specified in 3GPP TS 36.331 [2] are used.

Given that TDD configuration as in Table 8.1.2.3.2.1-1 is used, the UE shall have more than 30 ACK/NACKs transmitted during the identification of a new CGI of E-UTRA cell, provided that:

- there is continuous DL data allocation,
- no DRX cycle is used,
- no measurement gaps are configured,
- only one code word is transmitted in each subframe,
- no MBSFN subframes are configured in the PCell.

#### 8.1.2.3.7.2 ECGI Reporting Delay

The ECGI reporting delay occurs due to the delay uncertainty when inserting the ECGI measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. In case DRX is used, the ECGI reporting may be delayed until the next DRX cycle.

#### 8.1.2.3.8 E-UTRAN FDD-TDD inter frequency measurements using autonomous gaps

The requirements in this section shall apply to UE supporting FDD and TDD.

#### 8.1.2.3.8.1 Identification of a new CGI of E-UTRA TDD cell with autonomous gaps

No explicit neighbour list is provided to the UE for identifying a new CGI of E-UTRA cell. The UE shall identify and report the CGI when requested by the network for the purpose of 'reportCGI'. The UE may make autonomous gaps in both downlink reception and uplink transmission according to section 5.5.3.1 of 36.331 [2]. Note that a UE is not required to use autonomous gap if si-RequestForHO is set to false. If autonomous gaps are used for measurement with the purpose of 'reportCGI', regardless of whether DRX is used or not, the UE shall be able to identify a new CGI of E-UTRA cell within:

$$T_{\text{identify CGI, inter}} = T_{\text{basic identify CGI, inter}}$$
 ms

Where

 $T_{basic\_identify\_CGI, inter} = 150 \text{ ms.}$  This is the time period used in the above equation where the maximum allowed time for the UE to identify a new CGI of E-UTRA cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- RSRP related side conditions given in Section 9.1 are fulfilled for a corresponding Band,
- SCH RP > -125 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH Ês/Iot > 4 dB.

The MIB of an E-UTRA cell whose CGI is identified shall be considered decodable by the UE provided the PBCH demodulation requirements are met according to [5].

The requirement for identifying a new CGI of an E-UTRA cell within  $T_{basic\_identify\_CGI,inter}$  is applicable when no DRX is used as well as when all the DRX cycles specified in 3GPP TS 36.331 [2] are used.

Within the time,  $T_{identify\_CGI,\,intra}$  ms, over which the UE identifies the new CGI of E-UTRA cell, the UE shall transmit at least 60 ACK/NACKs provided that:

- there is continuous DL data allocation,
- no DRX cycle is used,
- no measurement gaps are configured,
- only one code word is transmitted in each subframe,

- no MBSFN subframes are configured in the PCell.

#### 8.1.2.3.8.2 ECGI Reporting Delay

The ECGI reporting delay occurs due to the delay uncertainty when inserting the ECGI measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. In case DRX is used, the ECGI reporting may be delayed until the next DRX cycle.

#### 8.1.2.4 Inter RAT measurements

#### 8.1.2.4.1 E-UTRAN FDD – UTRAN FDD measurements

#### 8.1.2.4.1.1 E-UTRAN FDD – UTRAN FDD measurements when no DRX is used

#### 8.1.2.4.1.1.1 Identification of a new UTRA FDD cell

When explicit neighbour list is provided and no DRX is used the UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, UTRA\_FDD}} = T_{\text{basic\_identify\_UTRA\_FDD}} \cdot \frac{480}{T_{\text{interl}}} \cdot N_{\textit{Freq}} \quad \textit{ms}$$

A cell shall be considered detectable when

- CPICH Ec/Io  $\geq$  -20 dB,
- SCH\_Ec/Io ≥ -17 dB for at least one channel tap and SCH\_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.4.1.1.1a Enhanced UTRA FDD cell identification requirements

When explicit neighbour list is provided and no DRX is used or when DRX cycle length  $\leq$  40 ms the UE shall be able to identify a new detectable cell belonging to the monitored set within  $T_{identify, enhanced\ UTRA\ FDD}$ :

$$\mathbf{T}_{\text{identify, enhanced\_UTRA\_FDD}} = (\mathbf{T}_{\text{basic\_identify\_enhanced\_UTRA\_FDD}} \cdot \frac{480}{\mathbf{T}_{\text{interl}}} + 480) \; N_{\textit{Freq}} \quad \textit{ms}$$

A cell shall be considered detectable when:

- CPICH Ec/Io  $\geq$  -15 dB,
- SCH\_Ec/Io ≥ -15 dB for at least one channel tap and SCH\_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.1.1.2 UE UTRA FDD CPICH measurement capability

When measurement gaps are scheduled for UTRA FDD inter RAT measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in Section 9.2 with measurement period given by

$$T_{\text{measurement\_UTRA\_FDD}} = \textit{Max} \left\{ T_{\text{Measurement\_Period UTRA\_FDD}}, T_{\text{basic\_measurement\_UTRA\_FDD}} \cdot \frac{480}{T_{\text{interl}}} \cdot N_{\textit{Freq}} \right\} \textit{ms}$$

If the UE does not need measurement gaps to perform UTRA FDD measurements, the measurement period for UTRA FDD measurements is 480 ms.

The UE shall be capable of performing UTRA FDD CPICH measurements for  $X_{basic\ measurementUTRA\_FDD}$  inter-frequency cells per FDD frequency and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of  $T_{Measurement\ UTRA\ FDD}$ .

 $X_{\text{basic measurement UTRA FDD}} = 6$ 

 $T_{\text{Measurement\_Period UTRA\_FDD}} = 480 \text{ ms.}$  The period used for calculating the measurement period  $T_{\text{measurement\_UTRA\_FDD}}$  for UTRA FDD CPICH measurements.

 $T_{basic\_identify\_UTRA\_FDD} = 300$  ms. This is the time period used in the inter RAT equation in section 8.1.2.4.1.1.1 where the maximum allowed time for the UE to identify a new UTRA FDD cell is defined.

 $T_{basic\_identify\_enhanced\_UTRA\_FDD} = 60$  ms. This is the time period used in the inter RAT equation in section 8.1.2.4.1.1.1a where the maximum allowed time for the UE to identify a new UTRA FDD cell is defined.

 $T_{basic\_measurement\_UTRA\_FDD} = 50$  ms. This is the time period used in the equation for defining the measurement period for inter RAT CPICH measurements.

 $N_{freq}$  is defined in section 8.1.2.1.1 and  $T_{inter1}$  is defined in section 8.1.2.1

#### 8.1.2.4.1.1.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.4.1.1.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{identify,\ UTRA\_FDD}$  defined in Section 8.1.2.4.1.1.1 for the minimum requirements or  $T_{identify,\ enhanced\_UTRA\_FDD}$  defined in Section 8.1.2.4.1.1.1a for the enhanced requirements When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify,\,UTRA\_FDD}$  defined in section 8.1.2.4.1.1.1 for the minimum requirements or  $T_{identify,\,enhanced\_UTRA\_FDD}$  defined in Section 8.1.2.4.1.1.1a for the enhanced requirements and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{measurement\_UTRA\_FDD}$  defined in section 8.1.2.4.1.1.2 provided the timing to that cell has not changed more than  $\pm$  32 chips while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.1.1.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.1.1.4 Event Triggered Reporting.

#### 8.1.2.4.1.2 E-UTRAN FDD – UTRAN FDD measurements when DRX is used

When explicit neighbour list is provided and DRX is used the UE shall be able to identify a new detectable cell belonging to the neighbour cell list within T<sub>identify,UTRA FDD</sub> as shown in table 8.1.2.4.1.2-1

Table 8.1.2.4.1.2-1: Requirement to identify a newly detectable UTRA FDD cell

| DRX cycle<br>length (s)                                   | T <sub>identify_UTRA_FDD</sub> (s) (DRX cycles) |                |
|-----------------------------------------------------------|-------------------------------------------------|----------------|
|                                                           | Gap period =                                    | Gap period     |
|                                                           | 40 ms                                           | = 80 ms        |
| ≤0.04                                                     | Non DRX                                         | Non DRX        |
|                                                           | Requirements                                    | Requirements   |
|                                                           | in section                                      | in section     |
|                                                           | 8.1.2.4.1.1 are                                 | 8.1.2.4.1.1    |
|                                                           | applicable                                      | are applicable |
| 0.064                                                     | 2.56* Nfreq                                     | 4.8* Nfreq     |
|                                                           | (40* Nfreq)                                     | (75* Nfreq)    |
| 0.08                                                      | 3.2* Nfreq                                      | 4.8* Nfreq     |
|                                                           | (40* Nfreq)                                     | (60* Nfreq)    |
| 0.128                                                     | 3.2* Nfreq (25*                                 | 4.8* Nfreq     |
|                                                           | Nfreq)                                          | (37.5* Nfreq)  |
| 0.16                                                      | 3.2* Nfreq (20*                                 | 4.8* Nfreq     |
|                                                           | Nfreq)                                          | (30* Nfreq)    |
| 0.16 <drx-< td=""><td>Note (20*</td><td>Note</td></drx-<> | Note (20*                                       | Note           |
| cycle≤2.56                                                | Nfreq)                                          | (20* Nfreq)    |
| Note: Time depends upon the DRX cycle in                  |                                                 |                |
| use                                                       |                                                 |                |

A cell shall be considered detectable provided following conditions are fulfilled: A cell shall be considered detectable when

- CPICH Ec/Io  $\geq$  -20 dB,
- SCH\_Ec/Io ≥ -17 dB for at least one channel tap and SCH\_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

The UE shall be capable of performing RSCP and Ec/Io measurements of at least 6 UTRA cells per UTRA FDD carrier for up to 3 UTRA FDD carriers and the UE physical layer shall be capable of reporting RSCP and Ec/Io measurements to higher layers with the measurement period defined in table 8.1.2.3.1.2-2.

Table 8.1.2.4.1.2-2: Requirement to measure UTRA FDD cells

| DRX cycle<br>length (s)                      | T <sub>measure_UTRA_FDD</sub> (s) (DRX cycles)                         |                                                            |
|----------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|
|                                              | Gap period<br>= 40 ms                                                  | Gap period = 80 ms                                         |
| ≤0.04                                        | Non DRX<br>Requirements<br>in section<br>8.1.2.4.1.1<br>are applicable | Non DRX Requirements in section 8.1.2.4.1.1 are applicable |
| 0.064                                        | 0.48* N <sub>freq</sub><br>(7.5* N <sub>freq</sub> )                   | 0.8* N <sub>freq</sub><br>(12.5* N <sub>freq</sub> )       |
| 0.08                                         | 0.48* N <sub>freq</sub><br>(6* N <sub>freq</sub> )                     | 0. 8* N <sub>freq</sub> (10*<br>N <sub>freq</sub> )        |
| 0.128                                        | 0.64* N <sub>freq</sub><br>(5* N <sub>freq</sub> )                     | 0. 8* N <sub>freq</sub><br>(6.25* N <sub>freq</sub> )      |
| 0.128 <drx-<br>cycle≤2.56</drx-<br>          | Note (5* N <sub>freq</sub> )                                           | Note (5* N <sub>freq</sub> )                               |
| Note: Time depends upon the DRX cycle in use |                                                                        |                                                            |

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

#### 8.1.2.4.1.2.1 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.4.1.2.2 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{identify,UTRA\_FDD}$  defined in Section 8.1.2.4.1.2. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify,\,UTRA\_FDD}$  defined in section 8.1.2.4.1.2 and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{measurement\_UTRA\_FDD}$  defined in section 8.1.2.4.1.2 provided the timing to that cell has not changed more than  $\pm$  32 chips while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.4.1.2.3 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.1.2.2 Event Triggered Reporting.

# 8.1.2.4.2 E-UTRAN TDD – UTRAN FDD measurements

The requirements in section 8.1.2.4.1 also apply for this section.

| 8.1.2.4.2.1   | E-UTRAN TDD – UTRAN FDD measurements when no DRX is used |
|---------------|----------------------------------------------------------|
| 8.1.2.4.2.2   | E-UTRAN TDD – UTRAN FDD measurements when DRX is used    |
| 8.1.2.4.3     | E-UTRAN TDD – UTRAN TDD measurements                     |
| 8.1.2.4.3.1   | E-UTRAN TDD – UTRAN TDD measurements when no DRX is used |
| 8.1.2.4.3.1.1 | Identification of a new UTRA TDD cell                    |

When explicit neighbour list is provided and no DRX is used the UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, UTRA\_TDD}} = Max \bigg\{ 5000, T_{\text{basic identify UTRA\_TDD}} \cdot \frac{480}{T_{\text{interl}}} \cdot N_{\textit{Freq}} \bigg\} \textit{ms}$$

If the UE does not require transmit gap to perform inter-RAT UTRA TDD measurements, the UE shall be able to identify a new detectable inter-RAT UTRA TDD cell belonging to the monitored set within 5000 ms.

A cell shall be considered detectable when

- P-CCPCH Ec/Io  $\geq$  -8 dB,
- DwPCH\_Ec/Io  $\geq$  -5 dB.

When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.3.1.1a Enhanced UTRA TDD cell identification requirements

When explicit neighbour list is provided and no DRX is used or when DRX cycle length  $\leq$  40 ms the UE shall be able to identify a new detectable cell belonging to the monitored set within  $T_{identify,\,enhanced\_UTRA\_TDD}$ :

$$T_{\text{identify, enhanced\_UTRA\_TDD}} = (T_{\text{basic\_identify\_enhanced\_UTRA\_TDD}} \cdot \frac{480}{T_{\text{interl}}} + 480) \cdot N_{\textit{Freq}} \quad \textit{ms}$$

If the UE does not require transmit gap to perform inter-RAT UTRA TDD measurements, the UE shall be able to identify a new detectable inter-RAT UTRA TDD cell belonging to the monitored set within 500 ms.

A cell shall be considered detectable when:

- P-CCPCH\_Ec/Io  $\geq$  -6 dB,
- DwPCH\_Ec/Io  $\geq$  -1 dB

When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.3.1.2 UE UTRA TDD P-CCPCH RSCP measurement capability

When measurement gaps are scheduled for UTRA TDD inter RAT measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in Section 9.3 with measurement period given by

$$T_{\text{measurement UTRA\_TDD}} = Max \left\{ T_{\text{Measurement\_Period UTRA\_TDD}}, T_{\text{basic measurement UTRA\_TDD}} \cdot \frac{480}{T_{\text{inter1}}} \cdot N_{\text{Freq}} \right\} ms$$

If the UE does not need measurement gaps to perform UTRA TDD measurements, the measurement period for UTRA TDD measurements is 480 ms.

The UE shall be capable of performing UTRA TDD P-CCPCH RSCP measurements for  $X_{basic\ measurementUTRA\_TDD}$  interfrequency cells per TDD frequency of the monitored set, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of  $T_{Measurement\_UTRA\_TDD}$ .

 $X_{basic\ measurementUTRA\ TDD} = 6$ 

 $T_{Measurement\_Period\ UTRA\_TDD}$  = 480 ms is the period used for calculating the measurement period  $T_{measurement\_UTRA\_TDD}$  for UTRA TDD P-CCPCH RSCP measurements.

 $T_{basic\_identify\_UTRA\_TDD} = 800 \text{ ms}$  is the time period used in the inter RAT equation in section 8.1.2.4.3.1.1 where the maximum allowed time for the UE to identify a new UTRA TDD cell is defined.

 $T_{basic\_identify\_enhanced\_UTRA\_TDD} = 80$  ms is the time period used in the inter RAT equation in section 8.1.2.4.3.1.1a where the maximum allowed time for the UE to identify a new UTRA TDD cell is defined.

 $T_{basic\_measurement\_UTRA\_TDD} = 50$  ms is the time period used in the equation for defining the measurement period for inter RAT P-CCPCH RSCP measurements.

 $N_{\text{freq}}$  is defined in section 8.1.2.1.1 and  $T_{\text{inter1}}$  is defined in section 8.1.2.1

# 8.1.2.4.3.1.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.4.3.1.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{identify,\,UTRA\_TDD}$  defined in Section 8.1.2.4.3.1.1 for the minimum requirements or  $T_{identify,\,enhanced\_UTRA\_TDD}$  defined in Section 8.1.2.4.3.1.1a for the enhanced requirements. When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify,\,UTRA\_TDD}$  defined in section 8.1.2.4.3.1.1 for the minimum requirements and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{measurement\_UTRA\_TDD}$  defined in section 8.1.2.4.3.1.2 provided the timing to that cell has not changed more than  $\pm$  10 chips while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.4.3.1.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.3.1.4 Event Triggered Reporting.

#### 8.1.2.4.3.2 E-UTRAN TDD – UTRAN TDD measurements when DRX is used

When explicit neighbour list is provided and DRX is used the UE shall be able to identify a new detectable cell belonging to the neighbour cell list within  $T_{identify,UTRA\_TDD}$  as shown in table 8.1.2.4.3.2-1

Tidentify\_UTRA\_TDD (s) (DRX DRX cycle cycles) length (s) Gap period = Gap period = 40 ms 80 ms ≤0.32 Non DRX Non DRX Requirements Requirements in section in section 8.1.2.4.3.1 8.1.2.4.3.1 are applicable are applicable 0.32<DRX-Note (20\* Note (25\* cycle≤0.512 Nfreq) Nfreq) 0.512<DRX-Note (20\* Note Nfreq) (20\* Nfreq) cycle≤2.56 Note: Time depends upon the DRX cycle in use

Table 8.1.2.4.3.2-1: Requirement to identify a newly detectable UTRA TDD cell

A cell shall be considered detectable provided following conditions are fulfilled: A cell shall be considered detectable when

- P-CCPCH Ec/Io  $\geq$  -8 dB,
- DwPCH\_Ec/Io  $\geq$  -5 dB.

When L3 filtering is used an additional delay can be expected.

The UE shall be capable of performing UTRA TDD P-CCPCH RSCP measurements of at least 6 UTRA cells per UTRA TDD carrier for up to 3 UTRA TDD carriers and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period defined in table 8.1.2.4.3.2-2.

DRX cycle T<sub>measure UTRA TDD</sub> (s) (DRX cycles) length (s) Gap period = 40 Gap period = 80 ms ms Non DRX ≤0.04 Non DRX Requirements in Requirements in section section 8.1.2.4.3.1 are 8.1.2.4.3.1 are applicable applicable 0.48\*N<sub>freq</sub> 0.8\*N<sub>freq</sub> 0.064 (12.5\*N<sub>freq</sub>)  $(7.5*N_{freq})$ 0.48\*N<sub>freq</sub> 0.08 0. 8\*N<sub>freq</sub> (10\*N<sub>freq</sub>)  $(6*N_{freq})$ 0. 8\*N<sub>freq</sub> 0.128  $0.64*N_{freq}$  $(5*N_{freq})$ (6.25\*N<sub>freq</sub>) 0. 128<DRX-Note (5\*N<sub>freq</sub>) Note (5\*N<sub>freq</sub>) cycle≤2.56 Note: Time depends upon the DRX cycle in use

Table 8.1.2.4.3.2-2: Requirement to measure UTRA TDD cells

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

# 8.1.2.4.3.2.1 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

#### 8.1.2.4.3.2.2 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than  $T_{identify,\,UTRA\_TDD}$  defined in Section 8.1.2.4.3.2 When L3 filtering is used an additional delay can be expected.

If a cell which has been detectable at least for the time period  $T_{identify,\,UTRA\_TDD}$  defined in section 8.1.2.4.3.2 and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than  $T_{measurement\_UTRA\_TDD}$  defined in section 8.1.2.4.3.2 provided the timing to that cell has not changed more than  $\pm$  10 chips while measurement gap has not been available and the L3 filter has not been used. When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.3.2.3 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.3.2.2 Event Triggered Reporting.

#### 8.1.2.4.4 E-UTRAN FDD – UTRAN TDD measurements

The requirements in section 8.1.2.4.3 also apply for this section.

#### 8.1.2.4.5 E-UTRAN FDD – GSM measurements

# 8.1.2.4.5.1 E-UTRAN FDD – GSM measurements when no DRX is used

The requirements in this section apply only to UE supporting E-UTRAN FDD and GSM.

Measurements on GSM cells can be requested with BSIC verified.

In RRC\_CONNECTED state when a supported measurement gap pattern sequence according to Table 8.1.2.1-1 is configured by E-UTRAN the UE shall continuously measure GSM cells, search for new GSM cells given in the monitored set and re-confirm the BSIC for already detected cells.

# 8.1.2.4.5.1.1 GSM carrier RSSI

This measurement shall be based on measurement gaps allocated for GSM carrier RSSI measurement as described in section 8.1.2.1. A UE supporting GSM measurements shall measure minimum number of 10 GSM carrier RSSI measurement samples ( $N_{GSM\ carrier\ RSSI}$ ) per measurement gap. In RRC\_CONNECTED state the measurement period,  $T_{Measurement\ Period,\ GSM}$ , for the GSM carrier RSSI measurement is  $N_{freq}*480$  ms. The parameter  $N_{freq}$  is defined in section 8.1.2.1.1.

The UE shall meet the measurement accuracy requirements stated for RXLEV in [8], when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

#### 8.1.2.4.5.1.2 BSIC verification

Measurements on a GSM cell can be requested with BSIC verified. The UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- **Initial BSIC identification:** Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the E-UTRAN FDD and GSM cells. The UE shall trigger the initial BSIC identification within the available measurement gap pattern sequence. The requirements for BSIC re-confirmation can be found in section 8.1.2.4.5.1.2.1.
- **BSIC re-confirmation:** Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available measurement gap pattern. The requirements for BSIC re-confirmation can be found in section 8.1.2.4.5.1.2.2.

If the network requests measurements on a GSM cell the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to section 8.1.2.4.5.1 when a measurement gap pattern sequence is activated.
- The UE shall perform measurement reporting as defined in [2].
- The UE shall perform BSIC identification. The UE shall use the most recently available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation on all the GSM cells that have been successfully identified.
- The UE shall perform all configured event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the most recently available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting.
- Event-triggered and periodic reports shall be triggered according to [2].

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification). Once a GSM cell has been identified the BSIC shall

be re-confirmed at least once every  $8*T_{re\text{-confirm},GSM}$  seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified". If a measurement gap pattern sequence is deactivated by the network after BSIC has been identified or verified, the UE shall consider the BSIC as non-verified.

 $T_{identify,GSM}$  indicates the maximum time allowed for the UE to decode the unknown BSIC of the GSM cell in one GSM BCCH carrier in the initial BSIC identification procedure.

 $T_{\text{re-confirm,GSM}}$  indicates the maximum time allowed for the re-confirmation of the BSIC of one GSM cell in the BSIC re-confirmation procedure.

The UE shall be able to decode a BSIC within a measurement gap when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the effective measurement gap is within the limits specified in table 8.1.2.4.5.1.2-1.

Table 8.1.2.4.5.1.2-1: The gap length and maximum time difference for BSIC verification

| Gap length<br>[ms] | Maximum time difference [μs] |
|--------------------|------------------------------|
| 6                  | ± 2350 μs                    |

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [9].

#### 8.1.2.4.5.1.2.1 Initial BSIC identification

This measurement shall be based on the measurement gaps used for Initial BSIC identification as described in section 8.1.2.4.5.1.2.

The UE shall continuously attempt to decode the BSIC of SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the Inter-RAT cell info list. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BCCH carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within  $T_{identify,GSM}$  ms, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $T_{identify,GSM}$  values are given for a set of reference gap patterns in table 8.1.2.4.5.1.2.1-1. The requirements in the table represent the time required to guarantee at least two attempts to decode the BSIC for one GSM BCCH carrier. If interfrequency RSTD measurements are configured and the UE requires measurement gaps for performing such measurements,  $T_{identify,GSM}$  shall be based on the 80ms gap configuration.

Table 8.1.2.4.5.1.2.1-1

| Number   | T <sub>identify,c</sub> | <sub>ısm</sub> (ms) | T <sub>reconfirm,0</sub> | <sub>asm</sub> (ms) |
|----------|-------------------------|---------------------|--------------------------|---------------------|
| of       |                         |                     |                          |                     |
| carriers |                         |                     |                          |                     |
| other    | 40ms gap                | 80ms gap            | 40ms gap                 | 80ms gap            |
| than     | configuration           | configuration       | configuration            | configuration       |
| GSM      | (ID 0)                  | (ID 1)              | (ID 0)                   | (ID 1)              |
| 0        | 2160                    | 5280                | 1920                     | 5040                |
| 1        | 5280                    | 21760               | 5040                     | 17280               |
| 2        | 5280                    | 31680               | 5040                     | 29280               |
|          |                         | No                  |                          | No                  |
| 3        | 19440                   | requirement         | 13320                    | requirement         |
| 4        | 31680                   | No                  | 29280                    | No                  |

|   |       | requirement |       | requirement |
|---|-------|-------------|-------|-------------|
|   |       | No          |       | No          |
| 5 | 31680 | requirement | 29280 | requirement |

#### 8.1.2.4.5.1.2.2 BSIC re-confirmation

The UE shall maintain the timing information of up to 8 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each measurement gap used for GSM BSIC reconfirmation as described in section 8.1.2.4.5.1.2, the UE shall attempt to decode the BSIC falling within the measurement gap according to table 8.1.2.4.5.1.2.1-1. If more than one BSIC can be decoded within the same measurement gap, priority shall be given to the least recently decoded BSIC. If inter-frequency RSTD measurements are configured and the UE requires measurement gaps for performing such measurements,  $T_{\text{re-confirm},GSM}$  shall be based on the 80ms gap configuration.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM cell within  $T_{re\text{-confirm},GSM}$  seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.1.2.4.5.1.2.1.

#### 8.1.2.4.5.1.2a Enhanced BSIC verification

In addition to the BSIC verification requirements in section 8.1.2.4.5.1.2, when the UE receives the GSM cell at levels down to 10 dB + the reference sensitivity level or reference interference levels as specified in [9] the BSIC identification requirement in table 8.1.2.4.5.1.2a-1 applies. The BSIC verification requirements in table 8.1.2.4.5.1.2a-1 shall apply when no DRX is used or when DRX cycle length  $\leq 40 \text{ ms}$ .

T<sub>enhanced\_identify,gsm</sub>(ms) T<sub>enhanced\_reconfirm,gsm</sub>(ms) 40ms gap configuration 40ms gap when configuration interfrequency when RSTD interfrequency measurement is also RSTD measurement is configured and also configured the UE Number and the UE requires of carriers requires measurement measurement other gaps for 40ms gap gaps for 40ms gap performing than configuration (ID performing such configuration **GSM** such (ID 0) 0) measurements measurements 0 1320 2160 1080 1920

Table 8.1.2.4.5.1.2a-1

# 8.1.2.4.5.1.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

# 8.1.2.4.5.1.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH.

The event triggered reporting delay requirement is valid when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period  $T_{Measurement\ Period,\ GSM}$  (see section 8.1.2.4.5.1).

The event triggered measurement reporting delay for a GSM cell with verified BSIC , measured without L3 filtering shall be less than  $2*T_{Measurement\ Period,\ GSM}$ , where  $T_{Measurement\ Period,\ GSM}$  is defined in section 8.1.2.4.5.1. When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.5.1.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.5.1.4 Event Triggered Reporting.

#### 8.1.2.4.5.2 E-UTRAN FDD – GSM measurements when DRX is used

The requirements in this section apply only to UE supporting E-UTRAN FDD and GSM.

0.064<DRX-cycle≤

0.08 0.08<DRX-cyc<u>le≤ 2.56</u>

Measurements on GSM cells can be requested with BSIC verified.

In RRC\_CONNECTED state when a supported measurement gap pattern sequence according to Table 8.1.2.1-1 is configured by E-UTRAN the UE shall continuously measure GSM cells, search for new GSM cells given in the monitored set and re-confirm the BSIC for already detected cells. During DRX periods the UE may use other periods of time outside the specified measurement gap patterns. The UE is not required to make measurements of GSM cells during DRX periods if a measurement gap pattern has not been configured.

#### 8.1.2.4.5.2.1 GSM carrier RSSI

This measurement shall be based on measurement gaps allocated for GSM carrier RSSI measurement as described in section 8.1.2.1. A UE supporting GSM measurements shall measure minimum number of 10 GSM carrier RSSI measurement samples ( $N_{GSM\ carrier\ RSSI}$ ) per DRX cycle. In RRC\_CONNECTED state the measurement period,  $T_{Measurement\ Period,\ GSM}$ , for the GSM carrier RSSI measurement is shown in table 8.1.2.4.5.2.1-1. The parameter  $N_{freq}$  is defined in section 8.1.2.1.1.

DRX cycle length (s) T<sub>measure,GSM</sub> (s) (DRX cycles)

≤0.064 Non DRX Requirements are applicable

Note: Time depends upon the DRX cycle in use

Table 8.1.2.4.5.2.1-1: GSM measurement period for large DRX

Note (6\*N<sub>freq</sub>)

Note (5\*N<sub>freq</sub>)

The UE shall meet the measurement accuracy requirements stated for RXLEV in [8], when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

# 8.1.2.4.5.2.2 BSIC verification

Measurements on a GSM cell can be requested with BSIC verified. The UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- **Initial BSIC identification:** Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the E-UTRAN FDD and GSM cells.

- **BSIC re-confirmation:** Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available measurement gap pattern

If the network requests measurements on a GSM cell, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to section 8.1.2.4.5.2.1 when a measurement gap pattern sequence is activated.
- The UE shall perform measurement reporting as defined in [2].
- The UE shall perform BSIC identification. The UE shall use the most recently available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation on all the GSM cells that have been successfully identified.
- The UE shall perform all configured event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the most recently available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting.
- Event-triggered and periodic reports shall be triggered according to [2].

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification). Once a GSM cell has been identified the BSIC shall be re-confirmed at least once every 30 seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [9].

#### 8.1.2.4.5.2.2.1 Initial BSIC identification

This measurement shall be made on GSM cells that are requested with BSIC verified.

For DRX cycle length  $\leq$  40 ms, the initial GSM BSIC identification requirements corresponding to the non DRX requirements as specified in section 8.1.2.4.5.1.2.1 shall apply.

For DRX cycle length > 40 ms, the UE shall make at least one attempt every  $N_{\rm freq}*30{\rm s}$  to decode the BSIC of SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the Inter-RAT cell info list. If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within  $N_{\rm freq}*60{\rm s}$ , the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BCCH carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value. The parameter  $N_{\rm freq}$  is defined in section 8.1.2.1.1.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

# 8.1.2.4.5.2.2.2 BSIC re-confirmation

The UE shall maintain the timing information of up to 8 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For DRX cycle length  $\leq$  40 ms, the GSM BSIC re-conformation requirements corresponding to the non DRX requirements as specified in section 8.1.2.4.5.1.2.2 shall apply.

For DRX cycle length > 40 ms, at least every  $N_{\rm freq}*30$  seconds, the UE shall attempt to decode the BSIC of each identified GSM cell. If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM cell within  $N_{\rm freq}*60$  seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.1.2.4.5.2.2.1. The parameter  $N_{\rm freq}$  is defined in section 8.1.2.1.1.

#### 8.1.2.4.5.2.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

# 8.1.2.4.5.2.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH.

The event triggered reporting delay requirement is valid when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period  $T_{\text{Measurement Period, GSM}}$  (see section 8.1.2.4.5.2.1).

The event triggered measurement reporting delay for a GSM cell with verified BSIC , measured without L3 filtering shall be less than  $2*T_{Measurement\ Period,\ GSM}$ , where  $T_{Measurement\ Period,\ GSM}$  is defined in section 8.1.2.4.5.2.1. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.4.5.2.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.5.2.4 Event Triggered Reporting.

#### 8.1.2.4.6 E-UTRAN TDD – GSM measurements

The requirements in section 8.1.2.4.5 also apply for this section.

#### 8.1.2.4.7 E-UTRAN FDD – UTRAN FDD measurements for SON

#### 8.1.2.4.7.1 Identification of a new UTRA FDD cell for SON

No explicit neighbour list is provided to the UE for identifying a UTRA cell for SON. The UE shall identify and report only the strongest cell when requested by the network for the purpose of SON.

#### 8.1.2.4.7.1.1 Requirements when no DRX is used

When no DRX is used the UE shall be able to identify a new cell within:

$$T_{\text{identify, UTRA\_FDD}} = T_{\text{basic\_identify\_UTRA\_FDD}} \cdot \frac{480}{\text{Tinter1}} \cdot N_{\text{Freq}} \quad \textit{ms}$$

 $T_{basic\_identify\_UTRA\_FDD} = 300$  ms. This is the time period used in the above equation where the maximum allowed time for the UE to identify a new UTRA FDD cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- CPICH Ec/Io  $\geq$  -20 dB,
- SCH\_Ec/Io ≥ -17 dB for at least one channel tap and SCH\_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

If the UE is unable to identify the UTRA cell for SON within  $8*T_{identify, UTRA\_FDD}$  ms, the UE may stop searching UTRA cells for SON.

#### 8.1.2.4.7.1.2 Requirements when DRX is used

When DRX is used the UE shall be able to identify a new cell within  $T_{identify,\,UTRA\_FDD}$  as defined in table 8.1.2.4.7.1.2-1.

| DRX cycle length (s)                                                                                          | Tidentify, UTRA_FDD (s) (DRX cycles)             |                                                   |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
|                                                                                                               | Gap period = 40 ms                               | Gap period = 80 ms                                |
| ≤0.04                                                                                                         | Non DRX Requirements in section                  | Non DRX Requirements in section 8.1.2.4.7.1.1     |
|                                                                                                               | 8.1.2.4.7.1.1are<br>applicable                   | are applicable                                    |
| 0.04 <drx cycle≤0.08<="" td=""><td>Note (45* N<sub>freq</sub>)</td><td>Note (95* N<sub>freq</sub>)</td></drx> | Note (45* N <sub>freq</sub> )                    | Note (95* N <sub>freq</sub> )                     |
| 0.128                                                                                                         | 3.84* N <sub>freq</sub> (30* N <sub>freq</sub> ) | 8.0* N <sub>freq</sub> (62.5* N <sub>freq</sub> ) |
| 0.16                                                                                                          | 4.0* N <sub>freq</sub> (25* N <sub>freq</sub> )  | 8.0* N <sub>freq</sub> (50* N <sub>freq</sub> )   |
| 0.256                                                                                                         | 6.4* N <sub>freq</sub> (25* N <sub>freq</sub> )  | 8.96* N <sub>freq</sub> (35* N <sub>freq</sub> )  |
| 0.32                                                                                                          | 8* N <sub>freq</sub> (25* N <sub>freq</sub> )    | 8.96* N <sub>freq</sub> (28* N <sub>freq</sub> )  |
| 0.32 <drx cycle≤2.56<="" td=""><td>Note (25* N<sub>freq</sub>)</td><td>Note (25* N<sub>freq</sub>)</td></drx> | Note (25* N <sub>freq</sub> )                    | Note (25* N <sub>freq</sub> )                     |
| Note: Time depends upon the DRX cycle in use                                                                  |                                                  |                                                   |

Table 8.1.2.4.7.1.2-1: Requirement to identify a new UTRA FDD cell for SON

A cell shall be considered identifiable provided following conditions are fulfilled:

- CPICH Ec/Io  $\geq$  -20 dB,
- SCH\_Ec/Io ≥ -17 dB for at least one channel tap and SCH\_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

If the UE is unable to identify the UTRA cell for SON within  $8*T_{identify, UTRA\_FDD}$  seconds, the UE may stop searching UTRA cells for SON;  $T_{identify, UTRA\_FDD}$  is defined in table 8.1.2.4.7.1.2-1.

# 8.1.2.4.7.1.3 Reporting Delay

The UE shall not report the physical cell identity of an identifiable cell for SON as long as the reporting criteria are not fulfilled.

The reporting delay is defined as the time between the identification of the strongest cell for SON until the UE starts to transmit its physical cell identity over the Uu interface. This requirement assumes that the reporting of the physical cell identity is not delayed by other RRC signalling on the DCCH. This reporting delay excludes a delay uncertainty resulted when inserting the physical cell identity of the strongest cell for SON to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This reporting delay excludes any delay caused by unavailability of UL resources for UE sending the physical cell identity of the strongest cell for SON.

The reporting delay of the physical cell identity of the strongest cell for SON without L3 filtering shall be less than  $T_{identify,\,UTRA\_FDD}$  defined in section 8.1.2.4.7.1.1 and in section 8.1.2.4.7.1.2 for non DRX and DRX cases respectively. When L3 filtering is used an additional delay can be expected.

# 8.1.2.4.8 E-UTRAN TDD – UTRAN FDD measurements for SON

The requirements in section 8.1.2.4.7 also apply for this section.

# 8.1.2.4.9 E-UTRAN FDD – cdma2000 1xRTT measurements

UE shall perform cdma2000 1xRTT measurements according to the procedure defined in [15] on the cdma2000 1xRTT neighbor cells indicated by the serving eNode B. If measurement gaps are required, the UE shall perform cdma2000 1xRTT measurements only during the measurement gaps configured by the serving eNode B.

# 8.1.2.4.9.1A E-UTRAN FDD – cdma2000 1xRTT measurements when no DRX is used

When measurement gaps are scheduled for CDMA2000 1xRTT inter RAT measurements, the UE physical layer shall be capable of reporting CDMA2000 1xRTT Pilot Strength measurements to higher layers with measurement accuracy as specified in Section 9.5, corresponding to a 90% measurement success rate, with measurement period given by

$$\mathbf{T}_{\text{measurement\_CDMA2000\_1x}} = \mathbf{T}_{\text{basic\_measurement\_CDMA2000\_1x}} \cdot N_{\textit{Freq}} \cdot S_{\textit{gap}}$$

where  $T_{basic\_measurement\_CDMA2000\_1x} = 100$  ms and the measurement gap specific scale factor  $S_{gap}$  is based on the measurement gap pattern in use as defined in Table 8.1.2.4.9.1-1. If inter-frequency RSTD measurements are configured and the UE requires measurement gaps for performing such measurements,  $S_{gap}$  shall be based to the Gap Pattern Id 1.

Table 8.1.2.4.9.1-1: Gap Pattern Specific Scale Factor

| Gap Pattern Id | S <sub>gap</sub> |
|----------------|------------------|
| 0              | 32/3             |
| 1              | 64/3             |

If the UE does not need measurement gaps to perform CDMA2000 1xRTT Pilot Strength measurements, the measurement period is given by

$$\mathbf{T}_{\text{measurement\_CDMA2000\_1x}} = \mathbf{T}_{\text{basic\_measurement\_CDMA2000\_1x}} \cdot \boldsymbol{N}_{Freq} \,.$$

# 8.1.2.4.9.1 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

The measurement reporting delay of each periodic report is defined as the time between the end of the last measurement period and the moment when the UE starts to transmit the measurement report over the Uu interface. This delay shall be less than  $T_{71m}$  defined in [15] for each periodic report. This measurement reporting delay excludes a delay which is caused by the unavailability of the uplink resources for the UE to send the measurement report.

#### 8.1.2.4.10 E-UTRAN TDD – cdma2000 1xRTT measurements

The requirements in section 8.1.2.4.9 also apply for this section.

#### 8.1.2.4.11 E-UTRAN FDD – HRPD measurements

UE shall perform HRPD measurements according to the procedure defined in [11] on the HRPD neighbor cells indicated by the serving eNode B. If measurement gaps are required, the UE shall perform HRPD measurements only during the measurement gaps configured by the serving eNode B.

#### 8.1.2.4.12 E-UTRAN TDD – HRPD measurements

The requirements in section 8.1.2.4.11 also apply for this section.

# 8.1.2.4.13 E-UTRAN TDD – UTRAN TDD measurements for SON

# 8.1.2.4.13.1 Identification of a new UTRA TDD cell for SON

No explicit neighbour list is provided to the UE for identifying a UTRA TDD cell for SON. The UE shall identify and report only the strongest cell when requested by the network for the purpose of SON.

# 8.1.2.4.13.1.1 Requirements when no DRX is used

When no DRX is used the UE shall be able to identify a new cell within:

$$T_{\text{identify, UTRA\_TDD}} = T_{\text{basic\_identify\_UTRA\_TDD}} \cdot \frac{480}{T_{\text{inter1}}} \cdot N_{\text{Freq}} \quad ms$$

 $T_{basic\_identify\_UTRA\_TDD} = 800$  ms. This is the time period used in the above equation where the maximum allowed time for the UE to identify a new UTRA TDD cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- P-CCPCH Ec/Io  $\geq$  -8 dB,
- DwPCH Ec/Io > -5 dB.

When L3 filtering is used an additional delay can be expected.

If the UE is unable to identify the UTRA TDD cell for SON within  $8*T_{identify, UTRA\_TDD}$  ms, the UE may stop searching UTRA TDD cells for SON.

#### 8.1.2.4.13.1.2 Requirements when DRX is used

When DRX is used the UE shall be able to identify a new cell within  $T_{identify,\,UTRA\_TDD}$  as defined in table 8.1.2.4.13.1.2-1.

Table 8.1.2.4.13.1.2-1: Requirement to identify a new UTRA TDD cell for SON

| DRX cycle length (s)                                                                                           | T <sub>identify, UTRA_TDD</sub> (s) (DRX cycles)           |                                                            |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--|
|                                                                                                                | Gap period = 40 ms                                         | Gap period = 80 ms                                         |  |
| ≤0.16                                                                                                          | Non DRX Requirements in section 8.1.2.4.3.1 are applicable | Non DRX Requirements in section 8.1.2.4.3.1 are applicable |  |
| 0.16 <drx cycle≤0.256<="" td=""><td>Note (25* N<sub>freq</sub>)</td><td>Note (50* N<sub>freq</sub>)</td></drx> | Note (25* N <sub>freq</sub> )                              | Note (50* N <sub>freq</sub> )                              |  |
| 0.256 <drx cycle≤0.32<="" td=""><td>Note (25* N<sub>freq</sub>)</td><td>Note (45* N<sub>freq</sub>)</td></drx> | Note (25* N <sub>freq</sub> )                              | Note (45* N <sub>freq</sub> )                              |  |
| 0.32 <drx cycle≤2.56<="" td=""><td>Note (25* N<sub>freq</sub>)</td><td>Note (25* N<sub>freq</sub>)</td></drx>  | Note (25* N <sub>freq</sub> )                              | Note (25* N <sub>freq</sub> )                              |  |
| Note: Time depends upon the DRX cycle in use                                                                   |                                                            |                                                            |  |

A cell shall be considered identifiable provided following conditions are fulfilled:

- P-CCPCH Ec/Io > -8 dB,
- DwPCH\_Ec/Io  $\geq$  -5 dB.

When L3 filtering is used an additional delay can be expected.

If the UE is unable to identify the UTRA TDD cell for SON within  $8*T_{identify,\ UTRA\_TDD}$  seconds, the UE may stop searching UTRA TDD cells for SON;  $T_{identify,\ UTRA\_TDD}$  is defined in table 8.1.2.4.13.1.2-1.

# 8.1.2.4.13.1.3 Reporting Delay

The UE shall not report the physical cell identity of an identifiable cell for SON as long as the reporting criteria are not fulfilled.

The reporting delay is defined as the time between the identification of the strongest cell for SON until the UE starts to transmit its physical cell identity over the Uu interface. This requirement assumes that the reporting of the physical cell identity is not delayed by other RRC signalling on the DCCH. This reporting delay excludes a delay uncertainty resulted when inserting the physical cell identity of the strongest cell for SON to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This reporting delay excludes any delay caused by unavailability of UL resources for UE sending the physical cell identity of the strongest cell for SON.

The reporting delay of the physical cell identity of the strongest cell for SON without L3 filtering shall be less than  $T_{identify,\,UTRA\_TDD}$  defined in section 8.1.2.4.13.1.1 and in section 8.1.2.4.13.1.2 for non DRX and DRX cases respectively. When L3 filtering is used an additional delay can be expected.

#### 8.1.2.4.14 E-UTRAN FDD – UTRAN TDD measurements for SON

The requirements in section 8.1.2.4.13 also apply for this section.

# 8.1.2.5 E-UTRAN OTDOA Intra-Frequency RSTD Measurements

All intra-frequency RSTD measurement requirements specified in Sections 8.1.2.5.1 and 8.1.2.5.2 shall apply without DRX as well as for all the DRX cycles specified in 3GPP TS 36.331 [2].

# 8.1.2.5.1 E-UTRAN FDD Intra-Frequency OTDOA Measurements

When the physical layer cell identities of neighbour cells together with the OTDOA assistance data are provided, the UE shall be able to detect and measure intra-frequency RSTD, specified in 3GPP TS 36.214 [4], for at least n=16 cells, including the reference cell, on the same carrier frequency f1 as that of the reference cell within

 $T_{RSTD\;IntraFreqFDD,\;E-UTRAN}\;\;$  ms as given below (see also Figure 8.1.2.5.1-1):

$$T_{RSTD IntraFreqFDD, E-UTRAN} = T_{PRS} \cdot (M-1) + \Delta$$
 ms

where

 $T_{RSTD\ IntraFreqFDD,E-UTRAN}$  is the total time for detecting and measuring at least n cells,

 $T_{\rm PRS}$  is the cell-specific positioning subframe configuration period as defined in 3GPP TS 36.211 [16],

M is the number of PRS positioning occasions as defined in Table 8.1.2.5.1-1, where each PRS positioning occasion comprises of  $N_{PRS}$  (1 $\leq N_{PRS} \leq$ 6) consecutive downlink positioning subframes defined in 3GPP TS 36.211 [16], and

 $\Delta = 160 \cdot \left\lceil \frac{n}{M} \right\rceil$  ms is the measurement time for a single PRS positioning occasion which includes the sampling time and the processing time.

Table 8.1.2.5.1-1: Number of PRS positioning occasions within  $T_{RSTD\;IntraFreqFDD,\;E-UTRAN}$ 

| Positioning subframe              | Number of PRS po | ositioning occasions $M$ |
|-----------------------------------|------------------|--------------------------|
| configuration period $T_{ m PRS}$ | f1 Note1         | f1 and f2 Note2          |
| 160 ms                            | 16               | 32                       |
| >160 ms                           | 8                | 16                       |

Note 1: When only intra-frequency RSTD measurements are performed over cells belonging to the serving FDD carrier frequency f1.

Note 2: When intra-frequency RSTD and inter-frequency RSTD measurements are performed over cells belonging to the serving FDD carrier frequency f1 and one inter-frequency carrier frequency f2, respectively.

The UE physical layer shall be capable of reporting RSTD for the reference cell and all the neighbor cells i out of at least (n-1) neighbor cells within  $T_{RSTD IntraFreqFDD, E-UTRAN}$  provided:

 $(PRS \hat{E}_s / Iot)_{ref} \ge -6 \text{ dB for all Frequency Bands for the reference cell,}$ 

 $(PRS \hat{E}_s / Iot) \ge -13 dB$  for all Frequency Bands for neighbour cell i,

 $\left( \text{PRS } \hat{\mathbf{E}}_{s} / \text{Iot} \right)_{ref}$  and  $\left( \text{PRS } \hat{\mathbf{E}}_{s} / \text{Iot} \right)_{i}$  conditions apply for all subframes of at least  $L = \frac{M}{2}$  PRS positioning occasions,

PRP 1,2|<sub>dBm</sub>≥ -127 dBm for Frequency Bands 1, 4, 6, 10, 11, 18, 19, 21,

PRP 1,2|<sub>dBm</sub>≥ -126 dBm for Frequency Bands 9,

PRP  $1,2|_{dBm} \ge -125$  dBm for Frequency Bands 2, 5, 7,

PRP  $1,2|_{dBm} \ge -124$  dBm for Frequency Bands 3, 8, 12, 13, 14, 17, 20.

 $PRS\,\hat{E}_s$  / Iot is defined as the ratio of the average received energy per PRS RE during the useful part of the symbol to the average received power spectral density of the total noise and interference for this RE, where the ratio is measured over all REs which carry PRS.

The time  $T_{RSTD\,IntraFreqFDD,\,E-UTRAN}$  starts from the first subframe of the PRS positioning occasion closest in time after both the OTDOA-RequestLocationInformation message and the OTDOA assistance data in the OTDOA-ProvideAssistanceData message as specified in 3GPP TS 36.355 [24], are delivered to the physical layer of the UE as illustrated in Figure 8.1.2.5.1-1.

The RSTD measurement accuracy for all measured neighbor cells i shall be fulfilled according to the accuracy as specified in the sub-clause 9.1.10.1.

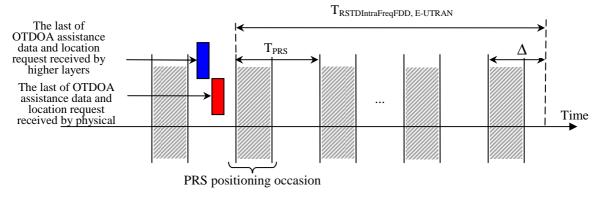



Figure 8.1.2.5.1-1. Illustration of the RSTD reporting time requirement in an FDD system.

#### 8.1.2.5.1.1 RSTD Measurement Reporting Delay

This requirement assumes that the measurement report is not delayed by other LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

# 8.1.2.5.2 E-UTRAN TDD Intra-Frequency OTDOA Measurements

When the physical layer cell identities of neighbour cells together with the OTDOA assistance data are provided, the UE shall be able to detect and measure intra-frequency RSTD, specified in 3GPP TS 36.214 [4], for at least n=16 cells, including the reference cell, on the same carrier frequency f1 as that of the reference cell within

T<sub>RSTD IntraFreqTDD, E-UTRAN</sub> ms as given below:

$$T_{RSTD IntraFreqTDD, E-UTRAN} = T_{PRS} \cdot (M-1) + \Delta$$
 ms

where

 $T_{RSTD\ IntraFreqTDD,\ E-UTRAN}$  is the total time for detecting and measuring at least n cells,

 $T_{\rm PRS}$  is the cell-specific positioning subframe configuration period as defined in 3GPP TS 36.211 [16],

M is the number of PRS positioning occasions as defined in Table 8.1.2.5.2-1, where a PRS positioning occasion is as defined in Section 8.1.2.5.1, and

 $\Delta = 160 \cdot \left\lceil \frac{n}{M} \right\rceil$  ms is the measurement time for a single PRS positioning occasion which includes the sampling time and the processing time.

Table 8.1.2.5.2-1: Number of PRS positioning occasions within  $T_{RSTD\;IntraFreqTDD,\;E-UTRAN}$ 

| Positioning subframe              | Number of PRS | positioning occasions $M$ |
|-----------------------------------|---------------|---------------------------|
| configuration period $T_{ m PRS}$ | f1 Note1      | f1 and f2 Note2           |
| 160 ms                            | 16            | 32                        |
| >160 ms                           | 8             | 16                        |

Note 1: When only intra-frequency RSTD measurements are performed over cells belonging to the serving TDD carrier frequency f1.

Note 2: When intra-frequency RSTD and inter-frequency RSTD measurements are performed over cells belonging to the serving TDD carrier frequency f1 and one inter-frequency carrier frequency f2 respectively.

The UE physical layer shall be capable of reporting RSTD for the reference cell and all the neighbor cells i out of at least (n-1) neighbor cells within  $T_{\text{RSTD IntraFreqTDD, E-UTRAN}}$  provided:

 $(PRS \hat{E}_s / Iot)_{ref} \ge -6 dB$  for all Frequency Bands for the reference cell,

 $(PRS \hat{E}_s / Iot)_i \ge -13 dB$  for all Frequency Bands for neighbour cell i,

 $\left( \text{PRS } \hat{\mathbf{E}}_{\text{s}} / \text{Iot} \right)_{\text{ref}}$  and  $\left( \text{PRS } \hat{\mathbf{E}}_{\text{s}} / \text{Iot} \right)_{i}$  conditions apply for all subframes of at least  $L = \frac{M}{2}$  PRS positioning

PRP  $1.2|_{dBm} \ge -127$  dBm for Frequency Bands 33, 34, 35, 36, 37, 38, 39, 40.

PRS  $\hat{E}_s$  / Iot is as defined in Section 8.1.2.5.1.

The time  $T_{RSTD\,IntraFreqTDD,\,E-UTRAN}$  starts from the first subframe of the PRS positioning occasion closest in time after both the OTDOA-RequestLocationInformation message and the OTDOA assistance data in the OTDOA-ProvideAssistanceData message as specified in 3GPP TS 36.355 [24], are delivered to the physical layer of the UE.

The RSTD measurement accuracy for all measured neighbor cells *i* shall be fulfilled according to the accuracy as specified in the sub-clause 9.1.10.1.

The intra-frequency requirements in this section (8.1.2.5.2) shall apply for all TDD special subframe configurations specified in 3GPP TS 36.211 [16] and for the TDD uplink-downlink configurations as specified in Table 8.1.2.5.2-2.

Table 8.1.2.5.2-2: TDD uplink-downlink subframe configurations applicable for TDD intra-frequency requirements

| PRS Transmission Bandwidth [RB]                                                           | Applicable TDD uplink-downlink configurations |
|-------------------------------------------------------------------------------------------|-----------------------------------------------|
| 6, 15                                                                                     | 1, 2, 3, 4 and 5                              |
| 25, 50, 75, 100                                                                           | 0, 1, 2, 3, 4, 5 and 6                        |
| Note: Uplink-downlink configurations are specified in Table 4.2-2 in 3GPP TS 36.211 [16]. |                                               |

#### 8.1.2.5.2.1 RSTD Measurement Reporting Delay

This requirement assumes that the measurement report is not delayed by other LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

# 8.1.2.6 E-UTRAN Inter-Frequency OTDOA Measurements

All inter-frequency RSTD measurement requirements specified in Sections 8.1.2.6.1-8.1.2.6.4 shall apply when the measurement gap pattern ID # 0 specified in Section 8.1.2.1 is used.

All inter-frequency RSTD measurement requirements specified in Sections 8.1.2.6.1-8.1.2.6.4 shall apply without DRX as well as for all the DRX cycles specified in 3GPP TS 36.331 [2].

# 8.1.2.6.1 E-UTRAN FDD-FDD Inter-Frequency OTDOA Measurements

When the physical layer cell identities of neighbour cells together with the OTDOA assistance data are provided, the UE shall be able to detect and measure inter-frequency RSTD, specified in 3GPP TS 36.214 [4], for at least n=16 cells, including the reference cell, within  $T_{RSTD \, InterFreqFDD, E-UTRAN}$  ms as given below:

$$T_{RSTD InterFreqFDD, E-UTRAN} = T_{PRS} \cdot (M-1) + \Delta$$
 ms

where

 $T_{RSTD\ InterFreeFDD\ E-UTRAN}$  is the total time for detecting and measuring at least n cells,

 $T_{\rm PRS}$  is the largest value of the cell-specific positioning subframe configuration period, defined in 3GPP TS 36.211 [16], among the measured n cells including the reference cell,

M is the number of PRS positioning occasions as defined in Table 8.1.2.6.1-1, where a PRS positioning occasion is as defined in Section 8.1.2.5.1, and

 $\Delta = 160 \cdot \left| \frac{n}{M} \right|$  ms is the measurement time for a single PRS positioning occasion which includes the sampling time and the processing time.

Table 8.1.2.6.1-1: Number of PRS positioning occasions within  $T_{RSTD\;InterFreqFDD,\;E-UTRAN}$ 

|   |                                   |                  | •                        |
|---|-----------------------------------|------------------|--------------------------|
|   | Positioning subframe              | Number of PRS po | ositioning occasions $M$ |
|   | configuration period $T_{ m PRS}$ | f2 Note1         | f1 and f2 Note2          |
| Ī | 160 ms                            | 16               | 32                       |
|   | >160 ms                           | 8                | 16                       |

Note 1: When inter-frequency RSTD measurements are performed over the reference cell and neighbour cells, which belong to the FDD inter-frequency carrier frequency f2.

Note 2: When inter-frequency RSTD measurements are performed over the reference cell and the neighbour cells, which belong to the serving FDD carrier frequency f1 and the FDD inter-frequency carrier frequency f2 respectively.

The UE physical layer shall be capable of reporting RSTD for the reference cell and all the neighbor cells i out of at least (n-1) neighbor cells within  $T_{RSTD \, InterFreqFDD, E-UTRAN}$  provided:

 $(PRS \hat{E}_s / Iot)_{ref} \ge -6 \text{ dB for all Frequency Bands for the reference cell,}$ 

 $(PRS \, \hat{E}_s / Iot)_i \ge -13 \, dB$  for all Frequency Bands for neighbour cell i,

 $(PRS \hat{E}_s / Iot)_{ref}$  and  $(PRS \hat{E}_s / Iot)_i$  conditions apply for all subframes of at least  $L = \frac{M}{2}$  PRS positioning occasions,

PRP  $1.2|_{dBm} \ge -127$  dBm for Frequency Bands 1, 4, 6, 10, 11, 18, 19, 21,

PRP 1,2|<sub>dBm</sub>≥ -126 dBm for Frequency Bands 9,

PRP  $1.2|_{dBm} \ge -125$  dBm for Frequency Bands 2, 5, 7,

PRP  $1,2|_{dBm} \ge -124$  dBm for Frequency Bands 3, 8, 12, 13, 14, 17, 20.

PRS  $\hat{E}_s$  / Iot is as defined in Section 8.1.2.5.1.

The time  $T_{RSTD\,InterFreqFDD,\,E-UTRAN}$  starts from the first subframe of the PRS positioning occasion closest in time after both the OTDOA-RequestLocationInformation message and the OTDOA assistance data in the OTDOA-ProvideAssistanceData message as specified in 3GPP TS 36.355 [24], are delivered to the physical layer of the UE.

The RSTD measurement accuracy for all measured neighbor cells *i* shall be fulfilled according to the accuracy as specified in the sub-clause 9.1.10.2.

#### 8.1.2.6.1.1 RSTD Measurement Reporting Delay

This requirement assumes that the measurement report is not delayed by other LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

# 8.1.2.6.2 E-UTRAN TDD-FDD Inter-Frequency OTDOA Measurements

When the physical layer cell identities of neighbour cells together with the OTDOA assistance data are provided, the UE shall be able to detect and measure inter-frequency RSTD, specified in 3GPP TS 36.214 [4], for at least n=16 cells, including the reference cell, within  $T_{RSTD\ InterFeqTDDFDD.E-UTRAN}$  ms as given below:

$$T_{RSTD\ InterFeqTDDFDD,E-UTRAN} = T_{PRS} \cdot (M-1) + \Delta$$
 ms,

where

 $T_{RSTD\ InterFeqTDDFDD,E-UTRAN}$  is the total time for detecting and measuring at least n cells,

 $T_{\rm PRS}$  is the largest value of the cell-specific positioning subframe configuration period, defined in 3GPP TS 36.211 [16], among the measured n cells including the reference cell,

M is the number of PRS positioning occasions as defined in Table 8.1.2.6.2-1, where a PRS positioning occasion is as defined in Section 8.1.2.5.1, and

 $\Delta = 160 \cdot \left\lceil \frac{n}{M} \right\rceil$  ms is the measurement time for a single PRS positioning occasion which includes the sampling time and the processing time.

Table 8.1.2.6.2-1: Number of PRS positioning occasions within  $T_{RSTD\;InterFeqTDDFDD,E-UTRAN}$ 

| Positioning subframe              | Number of PRS posit | _               |
|-----------------------------------|---------------------|-----------------|
| configuration period $T_{ m PRS}$ | f2 Note1            | f1 and f2 Note2 |
| 160 ms                            | 16                  | 32              |
| >160 ms                           | 8                   | 16              |

NOTE 1: When inter-frequency RSTD measurements are performed over the reference cell and neighbour cells, which belong to the FDD inter-frequency carrier frequency f2.

NOTE 2: When inter-frequency RSTD measurements are performed over the reference cell and the neighbour cells, which belong to the serving TDD carrier frequency f1 and the FDD inter-frequency carrier frequency f2 respectively.

The UE physical layer shall be capable of reporting RSTD for the reference cell and all the neighbor cells i out of at least (n-1) neighbor cells within  $T_{\text{RSTD InterFeqTDDFDD,E-UTRAN}}$  provided:

 $(PRS \hat{E}_s / Iot)_{ref} \ge -6 \text{ dB for all Frequency Bands for the reference cell,}$ 

 $(PRS \hat{E}_s / Iot) \ge -13 dB$  for all Frequency Bands for neighbour cell i,

 $(PRS \hat{E}_s / Iot)_{ref}$  and  $(PRS \hat{E}_s / Iot)_i$  conditions apply for all subframes of at least  $L = \frac{M}{2}$  PRS positioning occasions,

PRP  $1,2|_{dBm} \ge -127$  dBm for Frequency Bands 1, 4, 6, 10, 11, 18, 19, 21,

PRP 1,2|<sub>dBm</sub>≥ -126 dBm for Frequency Bands 9,

PRP  $1.2|_{dBm} \ge -125$  dBm for Frequency Bands 2, 5, 7,

PRP  $1.2|_{dBm} \ge -124$  dBm for Frequency Bands 3, 8, 12, 13, 14, 17, 20,

PRP  $1.2|_{dBm} \ge -127$  dBm for Frequency Bands 33, 34, 35, 36, 37, 38, 39, 40.

PRS  $\hat{E}_s$  / Iot is as defined in Section 8.1.2.5.1.

The time  $T_{RSTD\,InterFeqTDDFDD,E-UTRAN}$  starts from the first subframe of the PRS positioning occasion closest in time after both the OTDOA-RequestLocationInformation message and the OTDOA assistance data in the OTDOA-ProvideAssistanceData message as specified in 3GPP TS 36.355 [24], are delivered to the physical layer of the UE.

The RSTD measurement accuracy for all measured neighbor cells i shall be fulfilled according to the accuracy as specified in the sub-clause 9.1.10.2.

The inter-frequency requirements in this clause (8.1.2.6.2) shall apply for all TDD special subframe configurations specified in TS 36.211 [16] and for the TDD uplink-downlink configurations as specified in Table 8.1.2.6.2-2.

Table 8.1.2.6.2-2: TDD uplink-downlink subframe configurations applicable for TDD-FDD inter-frequency requirements

| PRS Transmission Bandwidth [RB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applicable TDD uplink-downlink configurations   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 6, 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1, 2, 3, 4 and 5                                |
| 25, 50, 75, 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0, 1, 2, 3, 4, 5 and 6                          |
| NOTE: Uplink-downlink configurations are specified and specified are specified as a specified are speci | pecified in Table 4.2-2 in 3GPP TS 36.211 [16]. |

# 8.1.2.6.2.1 RSTD Measurement Reporting Delay

This requirement assumes that the measurement report is not delayed by other LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

# 8.1.2.6.3 E-UTRAN TDD-TDD Inter-Frequency OTDOA Measurements

When the physical layer cell identities of neighbour cells together with the OTDOA assistance data are provided, the UE shall be able to detect and measure inter-frequency RSTD, specified in 3GPP TS 36.214 [4], for at least n=16 cells, including the reference cell, within  $T_{\text{RSTD InterFreqTDD, E-UTRAN}}$  ms as given below:

$$T_{RSTD InterFreqTDD, E-UTRAN} = T_{PRS} \cdot (M-1) + \Delta$$
 ms

where

 $T_{RSTD\ InterFreqTDD,\ E-UTRAN}$  is the total time for detecting and measuring at least n cells,

 $T_{\rm PRS}$  is the largest value of the cell-specific positioning subframe configuration period, defined in 3GPP TS 36.211 [16], among the measured n cells including the reference cell,

M is the number of PRS positioning occasions as defined in Table 8.1.2.6.3-1, where a PRS positioning occasion is as defined in Section 8.1.2.5.1, and

 $\Delta = 160 \cdot \left| \frac{n}{M} \right|$  ms is the measurement time for a single PRS positioning occasion which includes the sampling time and the processing time.

Table 8.1.2.6.3-1: Number of PRS positioning occasions within  $T_{RSTD\;InterFreqTDD,\;E-UTRAN}$ 

| Positioning subframe              | Number of PRS positioning occasions $M$ |                 |  |  |  |
|-----------------------------------|-----------------------------------------|-----------------|--|--|--|
| configuration period $T_{ m PRS}$ | f2 Note1                                | f1 and f2 Note2 |  |  |  |
| 160 ms                            | 16                                      | 32              |  |  |  |
| >160 ms                           | 8                                       | 16              |  |  |  |

Note 1: When inter-frequency RSTD measurements are performed over the reference cell and neighbour cells, which belong to the TDD inter-frequency carrier frequency f2.

Note 2: When inter-frequency RSTD measurements are performed over the reference cell and the neighbour cells, which belong to the serving TDD carrier frequency f1 and the TDD inter-frequency carrier frequency f2 respectively.

The inter-frequency requirements in this section (8.1.2.6.3) shall apply for all TDD special subframe configurations specified in 3GPP TS 36.211 [16] and for the TDD uplink-downlink configurations as specified in Table 8.1.2.6.3-2.

Table 8.1.2.6.3-2: TDD uplink-downlink subframe configurations applicable for inter-frequency requirements

| PRS Transmission Bandwidth [RB]             | Applicable TDD uplink-downlink configurations   |  |  |  |
|---------------------------------------------|-------------------------------------------------|--|--|--|
| 6, 15                                       | 3, 4 and 5                                      |  |  |  |
| 25                                          | 1, 2, 3, 4, 5 and 6                             |  |  |  |
| 50, 75, 100                                 | 0, 1, 2, 3, 4, 5 and 6                          |  |  |  |
| Note: Uplink-downlink configurations are sp | pecified in Table 4.2-2 in 3GPP TS 36.211 [16]. |  |  |  |

The UE physical layer shall be capable of reporting RSTD for the reference cell and all the neighbor cells i out of at least (n-1) neighbor cells within  $T_{RSTD \, InterFreqTDD, \, E-UTRAN}$  provided:

 $(PRS \hat{E}_s / Iot)_{ref} \ge -6 dB$  for all Frequency Bands for the reference cell,

 $(PRS \hat{E}_s / Iot)_i \ge -13 dB$  for all Frequency Bands for neighbour cell i,

 $\left( \text{PRS } \hat{\mathbf{E}}_{s} / \text{Iot} \right)_{ref}$  and  $\left( \text{PRS } \hat{\mathbf{E}}_{s} / \text{Iot} \right)_{i}$  conditions apply for all subframes of at least  $L = \frac{M}{2}$  PRS positioning occasions.

PRP  $1.2|_{dBm} \ge -127$  dBm for Frequency Bands 33, 34, 35, 36, 37, 38, 39, 40.

PRS  $\hat{E}_s$  / Iot is as defined in Section 8.1.2.5.1.

The time  $T_{RSTD\,InterFreqTDD,\,E-UTRAN}$  starts from the first subframe of the PRS positioning occasion closest in time after both the OTDOA-RequestLocationInformation message and the OTDOA assistance data in the OTDOA-ProvideAssistanceData message as specified in 3GPP TS 36.355 [24], are delivered to the physical layer of the UE.

The RSTD measurement accuracy for all measured neighbor cells i shall be fulfilled according to the accuracy as specified in the sub-clause 9.1.10.2.

#### 8.1.2.6.3.1 RSTD Measurement Reporting Delay

This requirement assumes that that the measurement report is not delayed by other LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: 2 x TTI<sub>DCCH</sub>. This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

# 8.1.2.6.4 E-UTRAN FDD-TDD Inter-Frequency OTDOA Measurements

When the physical layer cell identities of neighbour cells together with the OTDOA assistance data are provided, the UE shall be able to detect and measure inter-frequency RSTD, specified in 3GPP TS 36.214 [4], for at least n=16 cells, including the reference cell, within  $T_{RSTD\ InterFeqFDDTDD,E-UTRAN}$  ms as given below:

$$T_{RSTD InterFeqFDDTDD,E-UTRAN} = T_{PRS} \cdot (M-1) + \Delta$$
 ms

where

 $T_{RSTD\ InterFeqFDDTDD,E-UTRAN}$  is the total time for detecting and measuring at least n cells,

 $T_{\rm PRS}$  is the largest value of the cell-specific positioning subframe configuration period, defined in 3GPP TS 36.211 [16], among the measured n cells including the reference cell,

M is the number of PRS positioning occasions as defined in Table 8.1.2.6.4-1, where a PRS positioning occasion is as defined in Section 8.1.2.5.1, and

 $\Delta = 160 \cdot \left\lceil \frac{n}{M} \right\rceil$  ms is the measurement time for a single PRS positioning occasion which includes the sampling time and the processing time.

Table 8.1.2.6.4-1: Number of PRS positioning occasions within  $T_{RSTD\ InterFeqFDDTDD,E-UTRAN}$ 

| Positioning subframe              | Number of PRS positioning occasions $M$ |                 |  |  |
|-----------------------------------|-----------------------------------------|-----------------|--|--|
| configuration period $T_{ m PRS}$ | f2 Note1                                | f1 and f2 Note2 |  |  |
| 160 ms                            | 16                                      | 32              |  |  |
| >160 ms                           | 8                                       | 16              |  |  |

NOTE 1: When inter-frequency RSTD measurements are performed over the reference cell and neighbour cells, which belong to the TDD inter-frequency carrier frequency f2.

NOTE 2: When inter-frequency RSTD measurements are performed over the reference cell and the neighbour cells, which belong to the serving FDD carrier frequency f1 and the TDD inter-frequency carrier frequency f2 respectively.

The UE physical layer shall be capable of reporting RSTD for the reference cell and all the neighbor cells i out of at least (n-1) neighbor cells within  $T_{\text{RSTD InterFeqFDDTDD,E-UTRAN}}$  provided:

 $(PRS \hat{E}_s / Iot)_{ref} \ge -6 dB$  for all Frequency Bands for the reference cell,

 $(PRS \hat{E}_s / Iot)_i \ge -13 \text{ dB for all Frequency Bands for neighbour cell } i$ ,

 $(PRS \hat{E}_s / Iot)_{ref}$  and  $(PRS \hat{E}_s / Iot)_i$  conditions apply for all subframes of at least  $L = \frac{M}{2}$  PRS positioning occasions,

PRP  $1,2|_{dBm} \ge -127$  dBm for Frequency Bands 1, 4, 6, 10, 11, 18, 19, 21,

PRP 1,2|<sub>dBm</sub>≥ -126 dBm for Frequency Bands 9,

PRP  $1.2|_{dBm} \ge -125$  dBm for Frequency Bands 2, 5, 7,

PRP  $1.2|_{dBm} \ge -124$  dBm for Frequency Bands 3, 8, 12, 13, 14, 17, 20,

PRP  $1.2|_{dBm} \ge -127$  dBm for Frequency Bands 33, 34, 35, 36, 37, 38, 39, 40.

PRS  $\hat{E}_s$  / Iot is as defined in Section 8.1.2.5.1.

The time  $T_{RSTD\,InterFeqFDDTDD,E-UTRAN}$  starts from the first subframe of the PRS positioning occasion closest in time after both the OTDOA-RequestLocationInformation message and the OTDOA assistance data in the OTDOA-ProvideAssistanceData message as specified in 3GPP TS 36.355 [24], are delivered to the physical layer of the UE.

The RSTD measurement accuracy for all measured neighbor cells *i* shall be fulfilled according to the accuracy as specified in the sub-clause 9.1.10.2.

The inter-frequency requirements in this clause (8.1.2.6.4) shall apply for all TDD special subframe configurations specified in TS 36.211 [16] and for the TDD uplink-downlink configurations as specified in Table 8.1.2.6.4-2.

Table 8.1.2.6.4-2: TDD uplink-downlink subframe configurations applicable for FDD-TDD interfrequency requirements

| PRS Transmission Bandwidth [RB]            | Applicable TDD uplink-downlink configurations    |
|--------------------------------------------|--------------------------------------------------|
| 6, 15                                      | 3, 4 and 5                                       |
| 25                                         | 1, 2, 3, 4, 5 and 6                              |
| 50, 75, 100                                | 0, 1, 2, 3, 4, 5 and 6                           |
| NOTE: Uplink-downlink configurations are s | specified in Table 4.2-2 in 3GPP TS 36.211 [16]. |

#### 8.1.2.6.4.1 RSTD Measurement Reporting Delay

This requirement assumes that that the measurement report is not delayed by other LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

#### 8.1.2.7 E-UTRAN E-CID Measurements

# 8.1.2.7.1 E-UTRAN FDD UE Rx-Tx Time Difference Measurements

When no DRX is used the physical layer measurement period of the UE Rx-Tx time difference measurement shall be 200 ms.

When DRX is used in RRC\_CONNECTED state the physical layer measurement period ( $T_{measure\_FDD\_UE\_Rx\_Tx}$ ) of the UE Rx-Tx time difference measurement shall be as specified in table 8.1.2.7.1-1.

Table 8.1.2.7.1-1: FDD UE Rx-Tx time difference measurement requirement when DRX is used

| DRX cycle length (s)                                                                                       | T <sub>measure_FDD_UE_Rx_Tx</sub> (s) (DRX cycles) |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| ≤0.04                                                                                                      | 0.2 (Note1)                                        |  |  |  |  |
| 0.04 <drx-cycle≤2.56< td=""><td colspan="4">Note2 (5)</td></drx-cycle≤2.56<>                               | Note2 (5)                                          |  |  |  |  |
| Note1: Number of DRX cycle depends upon the DRX cycle in use Note2: Time depends upon the DRX cycle in use |                                                    |  |  |  |  |

The measurement accuracy for the UE Rx-Tx time difference measurement when DRX is used as well as when no DRX is used shall be as specified in the sub-clause 9.1.9.

# 8.1.2.7.1.1 UE Rx-Tx Measurement Reporting Delay

This requirement assumes that that the measurement report is not delayed by other RRC or LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in subclause 9.1.9.

#### 8.1.2.7.2 E-UTRAN TDD UE Rx-Tx Time Difference Measurements

When no DRX is used the physical layer measurement period of the UE Rx-Tx time difference measurement shall be 200 ms.

When DRX is used in RRC\_CONNECTED state the physical layer measurement period ( $T_{measure\_TDD\_UE\_Rx\_Tx}$ ) of the UE Rx-Tx time difference measurement shall be as specified in table 8.1.2.7.2-1.

Table 8.1.2.7.2-1: TDD UE Rx-Tx time difference measurement requirement when DRX is used

| DRX cycle length (s)                                                         | T <sub>measure_TDD_UE_Rx_Tx</sub> (s) (DRX cycles) |  |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| ≤0.04                                                                        | 0.2 (Note1)                                        |  |  |  |  |
| 0.04 <drx-cycle≤2.56< td=""><td colspan="4">Note2 (5)</td></drx-cycle≤2.56<> | Note2 (5)                                          |  |  |  |  |
| Note1: Number of DRX cycle depends upon the DRX cycle in use                 |                                                    |  |  |  |  |
| Note2: Time depends upon the DRX cy                                          | cle in use                                         |  |  |  |  |

The measurement accuracy for the UE Rx-Tx time difference measurement when DRX is used as well as when no DRX is used shall be as specified in the sub-clause 9.1.9.

# 8.1.2.7.2.1 UE Rx-Tx Measurement Reporting Delay

This requirement assumes that that the measurement report is not delayed by other RRC or LPP signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is:  $2 \times TTI_{DCCH}$ . This measurement reporting delay excludes any delay caused by no UL resources for UE to send the measurement report.

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in subclause 9.1.9.

# 8.2 Capabilities for Support of Event Triggering and Reporting Criteria

# 8.2.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria. As long as the measurement configuration does not exceed the requirements stated in section 8.2.2, the UE shall meet the performance requirements defined in section 9.

The UE can be requested to make measurements under different measurement identities defined in 3GPP TS 36.331 [2]. Each measurement identity corresponds to either event based reporting, periodic reporting or no reporting. In case of event based reporting, each measurement identity is associated with an event. In case of periodic reporting, a measurement identity is associated with one periodic reporting criterion. In case of no reporting, a measurement identity is associated with one no reporting criterion.

The purpose of this section is to set some limits on the number of different event, periodic and no reporting criteria the UE may be requested to track in parallel.

# 8.2.2 Requirements

In this section a reporting criterion corresponds to either one event (in the case of event based reporting), or one periodic reporting criterion (in case of periodic reporting), or one no reporting criterion (in case of no reporting). For event based reporting, each instance of event, with the same or different event identities, is counted as separate reporting criterion in table 8.2.2-1.

The UE shall be able to support in parallel per category up to  $E_{cat}$  reporting criteria according to table 8.2.2-1. For the measurement categories belonging to measurements on: E-UTRA intra-frequency cells, E-UTRA inter-frequency cells, and inter-RAT per supported RAT, the UE need not support more than 25 reporting criteria in total.

Table 8.2.2-1: Requirements for reporting criteria per measurement category

| Measurement category                                                                 | E <sub>cat</sub> | Note                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intra-frequency                                                                      | 9                | E-UTRA intra-frequency cells                                                                                                                                                                      |
| Intra-frequency UE Rx-Tx time difference                                             | 2                | Intra-frequency UE Rx-Tx time difference measurements reported to E-UTRAN via RRC and to positioning server via LPP. Applies for UE supporting both LPP and UE Rx-Tx time difference measurement. |
| Intra-frequency RSTD                                                                 | 1                | Intra-frequency RSTD measurement reporting for UE supporting OTDOA; 1 report capable of minimum 16 cell measurements for the intra-frequency                                                      |
| Inter-frequency                                                                      | 7                | E-UTRA inter-frequency cells                                                                                                                                                                      |
| Inter-frequency RSTD                                                                 | 1                | Inter-frequency RSTD measurement reporting for UE supporting OTDOA; 1 report capable of minimum 16 cell measurements for at least one inter-frequency                                             |
| Inter-RAT (E-UTRAN FDD or TDD, UTRAN FDD, UTRAN TDD, GSM, cdma2000 1 x RTT and HRPD) | 5                | Only applicable for UE with this (inter-RAT) capability. This requirement ( <b>E</b> <sub>cat</sub> = 5) is per supported RAT.                                                                    |

# 9 Measurements performance requirements for UE

One of the key services provided by the physical layer is the measurements used to trigger or perform a multitude of functions. Both the UE and the E-UTRAN are required to perform measurements. The physical layer measurement model and a complete list of measurements are specified in [25] and [22] respectively. The physical layer measurements are described and defined in [4]. In this clause for each measurement the relevant requirements on the measurement period, reporting range, granularity and performance in terms of accuracy are specified.

Since the UE reference sensitivity requirements are different depending on supported band, this is noted in each case with definition of the range Io for each frequency band. Definitions of each frequency bands can be found in [5].

The accuracy requirements in this clause are applicable for AWGN radio propagation conditions and assume independent interference (noise) at each receiver antenna port.

# 9.1 E-UTRAN measurements

# 9.1.1 Introduction

The requirements in this clause are applicable for a UE:

- in state RRC\_CONNECTED
- performing measurements with appropriate measurement gaps as defined in Section 8.1.2.1.
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in [25].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the higher layer filtering disabled.

# 9.1.2 Intra-frequency RSRP Accuracy Requirements

# 9.1.2.1 Absolute RSRP Accuracy

The requirements for absolute accuracy of RSRP in this section apply to a cell on the same frequency as that of the serving cell.

The accuracy requirements in Table 9.1.2.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm≥ -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$  for Bands 2, 5, 7,

 $RSRP|_{dBm} \ge -124 \ dBm$  for Bands 3, 8, 12, 13, 14, 17, 20.

Table 9.1.2.1-1: RSRP Intra frequency absolute accuracy

| Parameter         | Unit Accuracy [dB] |                     | cy [dB]              |                                                                               | Conditions <sup>1</sup>      |                                   |                              |  |
|-------------------|--------------------|---------------------|----------------------|-------------------------------------------------------------------------------|------------------------------|-----------------------------------|------------------------------|--|
|                   |                    | Normal<br>condition | Extreme<br>condition | Bands 1, 4, 6,<br>10, 11, 18, 19,<br>21, 33, 34, 35,<br>36, 37, 38, 39,<br>40 | Bands 2, 5, 7                | Bands 3, 8, 12,<br>13, 14, 17, 20 | Band 9                       |  |
|                   |                    |                     |                      | lo                                                                            | lo                           | lo                                | lo                           |  |
| RSRP for Ês/lot ≥ | dBm                | ±6                  | ±9                   | -                                                                             | -                            | -                                 | -                            |  |
| -6 dB             |                    |                     |                      | 121dBm/15kHz                                                                  | 119dBm/15kHz                 | 118dBm/15kHz                      | 120dBm/15kHz                 |  |
|                   |                    |                     |                      | 70dBm/                                                                        | 70dBm/                       | 70dBm/                            | 70dBm/                       |  |
|                   |                    |                     |                      | <b>BW</b> Channel                                                             | <b>BW</b> <sub>Channel</sub> | BW <sub>Channel</sub>             | <b>BW</b> Channel            |  |
| RSRP for Ês/lot ≥ | dBm                | ±8                  | ±11                  | -70dBm/                                                                       | -70dBm/                      | -70dBm/                           | -70dBm/                      |  |
| -6 dB             |                    |                     |                      | BW <sub>Channel</sub>                                                         | BW <sub>Channel</sub>        | BW <sub>Channel</sub>             | BW <sub>Channel</sub>        |  |
|                   |                    |                     |                      | 50dBm/                                                                        | 50dBm/                       | 50dBm/                            | 50dBm/                       |  |
|                   |                    |                     |                      | <b>BW</b> <sub>Channel</sub>                                                  | <b>BW</b> <sub>Channel</sub> | BW <sub>Channel</sub>             | <b>BW</b> <sub>Channel</sub> |  |

# 9.1.2.2 Relative Accuracy of RSRP

The relative accuracy of RSRP is defined as the RSRP measured from one cell compared to the RSRP measured from another cell on the same frequency.

The accuracy requirements in Table 9.1.2.2-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

 $RSRP1,2|_{dBm} \ge -127 \text{ dBm for Bands } 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,$ 

RSRP1,2 $|_{dBm} \ge -126 \text{ dBm for Bands 9}$ ,

RSRP1,2 $|_{dBm} \ge -125$  dBm for Bands 2, 5, 7,

RSRP1,2 $|_{dBm} \ge -124 \text{ dBm for Bands } 3, 8, 12, 13, 14, 17, 20.$ 

Table 9.1.2.2-1: RSRP Intra frequency relative accuracy

| Parameter         | Unit | Accuracy [dB]       |                      |                                                                               | Condi                 | tions¹                            |                       |
|-------------------|------|---------------------|----------------------|-------------------------------------------------------------------------------|-----------------------|-----------------------------------|-----------------------|
|                   |      | Normal<br>condition | Extreme<br>condition | Bands 1, 4, 6,<br>10, 11, 18, 19,<br>21, 33, 34, 35,<br>36, 37, 38, 39,<br>40 | Bands 2, 5, 7         | Bands 3, 8, 12,<br>13, 14, 17, 20 | Band 9                |
|                   |      |                     |                      | lo                                                                            | lo                    | lo                                | lo                    |
| RSRP for Ês/lot   | dBm  | ±2                  | ±3                   | -                                                                             | -                     | -                                 | -                     |
| > -3 dB           |      |                     |                      | 121dBm/15kHz                                                                  | 119dBm/15kHz          | 118dBm/15kHz                      | 120dBm/15kHz          |
|                   |      |                     |                      | 50dBm/                                                                        | 50dBm/                | 50dBm/                            | 50dBm/                |
|                   |      |                     |                      | <b>BW</b> Channel                                                             | <b>BW</b> Channel     | BW <sub>Channel</sub>             | <b>BW</b> Channel     |
| RSRP for Ês/lot ≥ | dBm  | ±3                  | ±3                   | -                                                                             | -                     | -                                 | -                     |
| -6 dB             |      |                     |                      | 121dBm/15kHz                                                                  | 119dBm/15kHz          | 118dBm/15kHz                      | 120dBm/15kHz          |
|                   |      |                     |                      | 50dBm/                                                                        | 50dBm/                | 50dBm/                            | 50dBm/                |
|                   |      |                     |                      | BW <sub>Channel</sub>                                                         | BW <sub>Channel</sub> | BW <sub>Channel</sub>             | BW <sub>Channel</sub> |

Note 1. Io is assumed to have constant EPRE across the bandwidth.

# 9.1.3 Inter-frequency RSRP Accuracy Requirements

# 9.1.3.1 Absolute RSRP Accuracy

The requirements for absolute accuracy of RSRP in this section apply to a cell that has different carrier frequency from the serving cell.

The accuracy requirements in Table 9.1.3.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm≥ -126 dBm for Bands 9,

RSRP| $dBm \ge -125 dBm$  for Bands 2, 5, 7,

RSRP|dBm≥ -124 dBm for Bands 3, 8, 12, 13, 14, 17, 20.

Table 9.1.3.1-1: RSRP Inter frequency absolute accuracy

| Parameter           | Unit     | Unit Accuracy [dB]  |                      |                                                                               | Conditions <sup>1</sup> |                                   |                       |  |
|---------------------|----------|---------------------|----------------------|-------------------------------------------------------------------------------|-------------------------|-----------------------------------|-----------------------|--|
|                     |          | Normal<br>condition | Extreme<br>condition | Bands 1, 4, 6,<br>10, 11, 18, 19,<br>21, 33, 34, 35,<br>36, 37, 38, 39,<br>40 | Bands 2, 5, 7           | Bands 3, 8, 12,<br>13, 14, 17, 20 | Band 9                |  |
|                     |          |                     |                      | lo                                                                            | lo                      | lo                                | lo                    |  |
| RSRP for Ês/lot ≥   | dBm      | ±6                  | ±9                   | -                                                                             | -                       | -                                 | -                     |  |
| -6 dB               |          |                     |                      | 121dBm/15kHz                                                                  | 119dBm/15kHz            | 118dBm/15kHz                      | 120dBm/15kHz          |  |
|                     |          |                     |                      | 70dBm/                                                                        | 70dBm/                  | 70dBm/                            | 70dBm/                |  |
|                     |          |                     |                      | BW <sub>Channel</sub>                                                         | <b>BW</b> Channel       | BW <sub>Channel</sub>             | <b>BW</b> Channel     |  |
| RSRP for Ês/lot ≥   | dBm      | ±8                  | ±11                  | -70dBm/                                                                       | -70dBm/                 | -70dBm/                           | -70dBm/               |  |
| -6 dB               |          |                     |                      | BW <sub>Channel</sub>                                                         | BW <sub>Channel</sub>   | BW <sub>Channel</sub>             | BW <sub>Channel</sub> |  |
|                     |          |                     |                      | 50dBm/                                                                        | 50dBm/                  | 50dBm/                            | 50dBm/                |  |
|                     |          |                     |                      | BW <sub>Channel</sub>                                                         | <b>BW</b> Channel       | <b>BW</b> <sub>Channel</sub>      | <b>BW</b> Channel     |  |
| Note 1. lo is assur | ned to h | ave constant E      | EPRE across          | the bandwidth.                                                                |                         |                                   |                       |  |

Note 2. The parameter Ês/lot is the minimum Ês/lot of the pair of cells.to which the requirement applies.

# 9.1.3.2 Relative Accuracy of RSRP

The relative accuracy of RSRP in inter frequency case is defined as the RSRP measured from one cell compared to the RSRP measured from another cell on a different frequency.

The accuracy requirements in Table 9.1.3.2-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP1<sub>dBm</sub>  $\geq$  -127 dBm if RSRP1 is on Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

 $RSRP1|_{dBm} \ge -126 dBm if RSRP1 is on Band 9,$ 

 $RSRP1|_{dBm} \ge -125 dBm if RSRP1 is on Bands 2, 5, 7,$ 

 $RSRP1_{dBm} \ge -124 \text{ dBm if RSRP1 is on Bands } 3, 8, 12, 13, 14, 17, 20,$ 

 $RSRP2|_{dBm} \ge -127 \text{ dBm if RSRP2}$  is on Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40

 $RSRP2|_{dBm} \ge -126 dBm if RSRP2 is on Band 9,$ 

 $RSRP2|_{dBm} \ge -125 dBm if RSRP2 is on Bands 2, 5, 7,$ 

 $RSRP2|_{dBm} \ge -124 \text{ dBm if RSRP2 is on Bands } 3, 8, 12, 13, 14, 17, 20.$ 

$$\left| RSRP1 \right|_{dBm} - RSRP2 \Big|_{dBm} \le 27 dB$$

| Channel 1\_Io -Channel 2\_Io | ≤ 20 dB

Table 9.1.3.2-1: RSRP Inter frequency relative accuracy

| Parameter       | Unit | Accura              | cy [dB]           |                                                                                                | Conditions <sup>1</sup>     |                                                 |                      |  |
|-----------------|------|---------------------|-------------------|------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------|----------------------|--|
|                 |      | Normal<br>condition | Extreme condition | RSRP is on<br>Bands 1, 4, 6,<br>10, 11, 18, 19,<br>21, 33, 34, 35,<br>36, 37, 38, 39<br>and 40 | RSRP is on<br>Bands 2, 5, 7 | RSRP is on<br>Bands 3, 8, 12,<br>13, 14, 17, 20 | RSRP is on<br>Band 9 |  |
|                 |      |                     |                   | lo                                                                                             | lo                          | lo                                              | lo                   |  |
| RSRP for Ês/lot | dBm  |                     |                   | -121dBm/15kHz                                                                                  | -119dBm/15kHz               | -118dBm/15kHz                                   | -120dBm/15kHz        |  |
| > -6dB          |      | ±6                  | ±6                | 50dBm/                                                                                         | 50dBm/                      | 50dBm/                                          | 50dBm/               |  |
|                 |      |                     |                   | BW <sub>Channel</sub>                                                                          | <b>BW</b> Channel           | BW <sub>Channel</sub>                           | <b>BW</b> Channel    |  |

Note 1. lo is assumed to have constant EPRE across the bandwidth.

Note 2. The parameter Ês/lot is the minimum Ês/lot of the pair of cells.to which the requirement applies.

# 9.1.4 RSRP Measurement Report Mapping

The reporting range of RSRP is defined from -140 dBm to -44 dBm with 1 dB resolution.

The mapping of measured quantity is defined in Table 9.1.4-1. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.1.4-1: RSRP measurement report mapping

| Reported value | Measured quantity value | Unit |
|----------------|-------------------------|------|
| RSRP_00        | RSRP < -140             | dBm  |
| RSRP_01        | -140 ≤ RSRP < -139      | dBm  |
| RSRP_02        | -139 ≤ RSRP < -138      | dBm  |
|                |                         |      |
| RSRP_95        | -46 ≤ RSRP < -45        | dBm  |
| RSRP_96        | -45 ≤ RSRP < -44        | dBm  |
| RSRP_97        | -44 ≤ RSRP              | dBm  |

# 9.1.5 Intra-frequency RSRQ Accuracy Requirements

# 9.1.5.1 Absolute RSRQ Accuracy

The requirements for absolute accuracy of RSRQ in this section apply to a cell on the same frequency as that of the serving cell.

The accuracy requirements in Table 9.1.5.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm≥ -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$  for Bands 2, 5, 7,

 $RSRP|_{dBm} \ge -124 dBm$  for Bands 3, 8, 12, 13, 14, 17, 20.

Table 9.1.5.1-1: RSRQ Intra frequency absolute accuracy

| Parameter             | Unit      | Accura           | cy [dB]           | Conditions <sup>1</sup>                                                       |                              |                                   |                              |  |  |
|-----------------------|-----------|------------------|-------------------|-------------------------------------------------------------------------------|------------------------------|-----------------------------------|------------------------------|--|--|
|                       |           | Normal condition | Extreme condition | Bands 1, 4, 6,<br>10, 11, 18, 19,<br>21, 33, 34, 35,<br>36, 37, 38, 39,<br>40 | Bands 2, 5, 7                | Bands 3, 8, 12,<br>13, 14, 17, 20 | Band 9                       |  |  |
|                       |           |                  |                   | lo                                                                            | lo                           | lo                                | lo                           |  |  |
| RSRQ when RSRP        | dBm       | ± 2.5            | ± 4               | -                                                                             | -                            | -                                 | -                            |  |  |
| Ês/lot > -3 dB        |           |                  |                   | 121dBm/15kHz                                                                  | 119dBm/15kHz                 | 118dBm/15kHz                      | 120dBm/15kHz                 |  |  |
|                       |           |                  |                   | 50dBm/                                                                        | 50dBm/                       | 50dBm/                            | 50dBm/                       |  |  |
|                       |           |                  |                   | BW <sub>Channel</sub>                                                         | <b>BW</b> <sub>Channel</sub> | BW <sub>Channel</sub>             | <b>BW</b> <sub>Channel</sub> |  |  |
| RSRQ when RSRP        | dBm       | ± 3.5            | ± 4               | -                                                                             | -                            | -                                 | -                            |  |  |
| Ês/lot ≥ -6 dB        |           |                  |                   | 121dBm/15kHz                                                                  | 119dBm/15kHz                 | 118dBm/15kHz                      | 120dBm/15kHz                 |  |  |
|                       |           |                  |                   | 50dBm/                                                                        | 50dBm/                       | 50dBm/                            | 50dBm/                       |  |  |
|                       |           |                  |                   | BW <sub>Channel</sub>                                                         | <b>BW</b> <sub>Channel</sub> | <b>BW</b> <sub>Channel</sub>      | <b>BW</b> <sub>Channel</sub> |  |  |
| Note 1. lo is assumed | d to have | constant EP      | RE across t       | he bandwidth.                                                                 |                              |                                   |                              |  |  |

# 9.1.6 Inter-frequency RSRQ Accuracy Requirements

# 9.1.6.1 Absolute RSRQ Accuracy

The requirements for absolute accuracy of RSRQ in this section apply to a cell that has different carrier frequency from the serving cell.

The accuracy requirements in Table 9.1.6.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm≥ -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$  for Bands 2, 5, 7,

 $RSRP_{dBm} \ge -124 \text{ dBm for Bands } 3, 8, 12, 13, 14, 17, 20.$ 

Table 9.1.6.1-1: RSRQ Inter frequency absolute accuracy

| Parameter             | Unit      | Accuracy [dB]    |                   | Conditions <sup>1</sup>                                                       |                   |                                   |                       |  |  |
|-----------------------|-----------|------------------|-------------------|-------------------------------------------------------------------------------|-------------------|-----------------------------------|-----------------------|--|--|
|                       |           | Normal condition | Extreme condition | Bands 1, 4, 6,<br>10, 11, 18, 19,<br>21, 33, 34, 35,<br>36, 37, 38, 39,<br>40 | Bands 2, 5, 7     | Bands 3, 8, 12,<br>13, 14, 17, 20 | Bands 9               |  |  |
|                       |           |                  |                   | lo                                                                            | lo                | lo                                | lo                    |  |  |
| RSRQ when RSRP        | dBm       | ± 2.5            | ± 4               | -                                                                             | -                 | -                                 | -                     |  |  |
| Ês/lot > -3 dB        |           |                  |                   | 121dBm/15kHz                                                                  | 119dBm/15kHz      | 118dBm/15kHz                      | 120dBm/15kHz          |  |  |
|                       |           |                  |                   | 50dBm/                                                                        | 50dBm/            | 50dBm/                            | 50dBm/                |  |  |
|                       |           |                  |                   | BW <sub>Channel</sub>                                                         | <b>BW</b> Channel | BW <sub>Channel</sub>             | BW <sub>Channel</sub> |  |  |
| RSRQ when RSRP        | dBm       | ± 3.5            | ± 4               | -                                                                             | -                 | -                                 | -                     |  |  |
| Ês/lot ≥ -6 dB        |           |                  |                   | 121dBm/15kHz                                                                  | 119dBm/15kHz      | 118dBm/15kHz                      | 120dBm/15kHz          |  |  |
|                       |           |                  |                   | 50dBm/                                                                        | 50dBm/            | 50dBm/                            | 50dBm/                |  |  |
|                       |           |                  |                   | BW <sub>Channel</sub>                                                         | <b>BW</b> Channel | <b>BW</b> Channel                 | <b>BW</b> Channel     |  |  |
| Note 1. lo is assumed | d to have | constant EF      | RE across t       | he bandwidth.                                                                 |                   | ·                                 |                       |  |  |

# 9.1.6.2 Relative Accuracy of RSRQ

The relative accuracy of RSRQ in inter frequency case is defined as the RSRQ measured from one cell compared to the RSRQ measured from another cell on a different frequency.

The accuracy requirements in Table 9.1.6.2-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP1|<sub>dBm</sub>  $\geq$  -127 dBm if RSRP1 is on Band 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

 $RSRP1|_{dBm} \ge -126 dBm if RSRP1 is on Band 9,$ 

 $RSRP1|_{dBm} \ge -125 dBm if RSRP1 is on Bands 2, 5, 7,$ 

 $RSRP1|_{dBm} \ge -124 \ dBm \ if \ RSRP1 \ is on \ Bands \ 3, \ 8, \ 12, \ 13, \ 14, \ 17, \ 20,$ 

 $RSRP2|_{dBm} \ge -127 \ dBm \ if \ RSRP2 \ is \ on \ Bands \ 1, \ 4, \ 6, \ 10, \ 11, \ 18, \ 19, \ 21, \ 33, \ 34, \ 35, \ 36, \ 37, \ 38, \ 39, \ 40, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10$ 

 $RSRP2|_{dBm} \ge -126 dBm if RSRP2 is on Band 9,$ 

 $RSRP2|_{dBm} \ge -125 dBm \text{ if } RSRP2 \text{ is on Bands } 2, 5, 7,$ 

 $RSRP2|_{dBm} \ge -124 \text{ dBm if RSRP2 is on Bands 3, 8, 12, 13, 14, 17, 20.}$ 

$$\left| RSRP1 \right|_{dBm} - RSRP2 \Big|_{dBm} \right| \le 27 dB$$

| Channel 1\_Io -Channel 2\_Io |  $\leq$  20 dB

Conditions<sup>1</sup> Parameter Unit Accuracy [dB] Extreme RSRQ is on RSRQ is on Normal RSRQ is on RSRQ is on condition condition Bands 1, 4, 6, Bands 2, 5, 7 Bands 3, 8, 12, Band 9 10, 11, 18, 19, 13, 14, 17, 20 21, 33, 34, 35, 36, 37, 38, 39, 40 lo lo RSRQ when RSRP dBm ± 3 ±4  $\hat{E}$ s/lot > -3 dB 121dBm/15kH 119dBm/15kHz 118dBm/15kHz 120dBm/15kHz z ... -50dBm]/ ... -50dBm/ ... -50dBm/ -50dBm/  $B\underline{W_{\text{Channel}}}$ BW<sub>Channel</sub>  $\mathsf{BW}_{\underline{\mathsf{Channel}}}$  $\mathsf{BW}_{\underline{\mathsf{Channel}}}$ RSRQ when RSRP dBm ±4 ±4 Ës/lot ≥ -6 dB 121dBm/15kH 119dBm/15kHz | 118dBm/15kHz | 120dBm/15kHz ... -50dBm/ ... -50dBm/ ... -50dBm/ z ... -50dBm]/

BW<sub>Channel</sub>

**BW**Channel

**BW**Channel

Table 9.1.6.2-1: RSRQ Inter frequency relative accuracy

Note 1. Io is assumed to have constant EPRE across the bandwidth.

# 9.1.7 RSRQ Measurement Report Mapping

The reporting range of RSRQ is defined from -19.5 dB to -3 with 0.5 dB resolution.

The mapping of measured quantity is defined in table 9.1.7-1. The range in the signalling may be larger than the guaranteed accuracy range.

| Reported value | Measured quantity value | Unit |
|----------------|-------------------------|------|
| RSRQ_00        | RSRQ < -19.5            | dB   |
| RSRQ_01        | -19.5 ≤ RSRQ < -19      | dB   |
| RSRQ_02        | -19 ≤ RSRQ < -18.5      | dB   |
|                |                         | •••  |
| RSRQ_32        | -4 ≤ RSRQ < -3.5        | dB   |
| RSRQ_33        | -3.5 ≤ RSRQ < -3        | dB   |
| RSRQ_34        | -3 ≤ RSRQ               | dB   |

Table 9.1.7-1: RSRQ measurement report mapping

# 9.1.8 Power Headroom

The power headroom (PH), expressed in dB, is defined as the difference between the configured maximum UE output power ( $P_{CMAX}$ ), which is defined in section 6.2.5 in TS 36.101 [5] and the estimated power for PUSCH transmission according to section 5.1.1.1 in TS 36.213 [3].

#### 9.1.8.1 Period

The reported power headroom shall be estimated over 1 subframe. The power headroom shall be estimated only in a subframe where PUSCH is transmitted.

# 9.1.8.2 Reporting Delay

The power headroom reporting delay is defined as the time between the beginning of the power headroom reference period and the time when the UE starts transmitting the power headroom over the radio interface. The reporting delay of the power headroom shall be 0 ms, which is applicable for all configured triggering mechanisms for power headroom reporting.

Note 2. The parameter Ês/lot is the minimum Ês/lot of the pair of cells.to which the requirement applies.

# 9.1.8.3 Void

# 9.1.8.4 Report Mapping

The power headroom reporting range is from -23 ...+40 dB. Table 9.1.8.4-1 defines the report mapping.

Table 9.1.8.4-1: Power headroom report mapping

| Reported value    | Measured quantity value (dB) |
|-------------------|------------------------------|
| POWER_HEADROOM_0  | -23 ≤ PH < -22               |
| POWER_HEADROOM_1  | -22 ≤ PH < -21               |
| POWER_HEADROOM_2  | -21 ≤ PH < -20               |
| POWER_HEADROOM_3  | -20 ≤ PH < -19               |
| POWER_HEADROOM_4  | -19 ≤ PH < -18               |
| POWER_HEADROOM_5  | -18 ≤ PH < -17               |
|                   |                              |
| POWER_HEADROOM_57 | 34 ≤ PH < 35                 |
| POWER_HEADROOM_58 | 35 ≤ PH < 36                 |
| POWER_HEADROOM_59 | 36 ≤ PH < 37                 |
| POWER_HEADROOM_60 | 37 ≤ PH < 38                 |
| POWER_HEADROOM_61 | 38 ≤ PH < 39                 |
| POWER_HEADROOM_62 | 39 ≤ PH < 40                 |
| POWER_HEADROOM_63 | PH ≥ 40                      |

# 9.1.9 UE Rx – Tx time difference

# 9.1.9.1 Measurement Requirement

NOTE: This measurement is used for UE positioning purposes.

The UE RX-TX time difference is measured from the serving cell.

The accuracy requirements in Table 9.1.9.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

No changes to the uplink transmission timing are applied during the measurement period.

 $RSRP|_{dBm} \ge -127 \ dBm \ for \ Bands \ 1, \ 4, \ 6, \ 10, \ 11, \ 18, \ 19, \ 21, \ 33, \ 34, \ 35, \ 36, \ 37, \ 38, \ 39, \ 40,$ 

RSRP|<sub>dBm</sub>≥ -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$  for Bands 2, 5, 7,

 $RSRP|_{dBm} \ge -124 dBm$  for Bands 3, 8, 12, 13, 14, 17, 20.

Table 9.1.9.1-1: UE Rx – Tx time difference measurement accuracy

| Parameter                      | Downlink<br>Bandwidth | Unit        | Accuracy<br>[Ts] | Conditions                                                                          |                                  |                                      |                                  |
|--------------------------------|-----------------------|-------------|------------------|-------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|----------------------------------|
|                                | [MHz]                 |             |                  | Bands 1, 4,<br>6, 10, 11, 18,<br>19, 21, 33,<br>34, 35, 36,<br>37, 38, 39<br>and 40 | Bands 2, 5,<br>7                 | Bands 3, 8,<br>12, 13, 14,<br>17, 20 | Band 9                           |
|                                |                       |             |                  | lo                                                                                  | lo                               | lo                                   | lo                               |
| UE RX-TX<br>time<br>difference | ≤3 MHz                | $T_{\rm s}$ | ± 20             | -121dBm<br>/15kHz<br>                                                               | -119dBm<br>/15kHz<br>            | -118dBm<br>/15kHz<br>                | -120dBm<br>/15kHz<br>            |
| for Ës/lot ≥<br>-3dB           | ≥ 5 MHz               |             | ± 10             | -50dBm/<br>BW <sub>Channel</sub>                                                    | -50dBm/<br>BW <sub>Channel</sub> | -50dBm/<br>BW <sub>Channel</sub>     | -50dBm/<br>BW <sub>Channel</sub> |

Note 1: lo is assumed to have constant EPRE across the bandwidth

Note 2: Ts is the basic timing unit defined in TS 36.211.

# 9.1.9.2 Measurement Report mapping

The reporting range of UE Rx - Tx time difference is defined from 0 to  $20472T_s$  with  $2T_s$  resolution for UE Rx - Tx time difference less than  $4096T_s$  and 8Ts for UE Rx - Tx time difference equal to or greater than  $4096T_s$ .

The mapping of measured quantity is defined in Table 9.1.9.2-1.

Table 9.1.9.2-1: UE Rx - Tx time difference measurement report mapping

| Reported value             | Measured quantity value           | Unit           |
|----------------------------|-----------------------------------|----------------|
| RX-TX_TIME_DIFFERENCE_0000 | $T_{UE\ Rx-Tx} < 2$               | Ts             |
| RX-TX_TIME_DIFFERENCE_0001 | $2 \le T_{UE Rx-Tx} < 4$          | T <sub>s</sub> |
| RX-TX_TIME_DIFFERENCE_0002 | $4 \le T_{UE Rx-Tx} < 6$          | T <sub>s</sub> |
|                            | •••                               |                |
| RX-TX_TIME_DIFFERENCE_2046 | $4092 \le T_{UE Rx-Tx} < 4094$    | T <sub>s</sub> |
| RX-TX_TIME_DIFFERENCE_2047 | $4094 \le T_{UE Rx-Tx} < 4096$    | Ts             |
| RX-TX_TIME_DIFFERENCE_2048 | $4096 \le T_{UE Rx-Tx} < 4104$    | Ts             |
| RX-TX_TIME_DIFFERENCE_2049 | $4104 \le T_{UE Rx-Tx} < 4112$    | T <sub>s</sub> |
|                            |                                   |                |
| RX-TX_TIME_DIFFERENCE_4093 | $20456 \le T_{UE Rx-Tx} < 20464$  | Ts             |
| RX-TX_TIME_DIFFERENCE_4094 | $20464 \le T_{UE Rx-Tx} < 20472$  | Ts             |
| RX-TX_TIME_DIFFERENCE_4095 | $20472 \leq T_{UE\ Rx\text{-}Tx}$ | T <sub>s</sub> |

# 9.1.10 Reference Signal Time Difference (RSTD)

NOTE: This measurement is used for UE positioning purposes.

# 9.1.10.1 Intra-Frequency Accuracy Requirement

The accuracy requirements in Table 9.1.10.1-1 shall apply without DRX as well as for all the DRX cycles specified in 3GPP TS 36.331 [2].

The accuracy requirements in Table 9.1.10.1-1 are valid under the following conditions:

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

PRP  $1.2|_{dBm} \ge -127$  dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

PRP  $1,2|_{dBm} \ge -126 \text{ dBm for Band 9}$ ,

PRP  $1,2|_{dBm} \ge -125 \text{ dBm for Bands } 2, 5, 7,$ 

PRP  $1.2|_{dBm} \ge -124$  dBm for Bands 3, 8, 12, 13, 14, 17, 20.

There are no measurement gaps overlapping with the PRS subframes of the measured cell.

The parameter expected RSTD Uncertainty signalled over LPP by E-SMLC as defined in 3GPP TS 36.355 [24] is less than  $5 \mu s$ .

Table 9.1.10.1-1: RSTD measurement accuracy

| Parameter                   | Minimum       | Minimum              | Unit        | Accuracy |                       | Conditi               | ons Note 1, 4         |                       |
|-----------------------------|---------------|----------------------|-------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|
|                             | bandwidth     | number               |             | [Ts]     | Bands                 | Bands                 | Bands                 | Band                  |
|                             | between the   | of available         |             |          | 1, 4, 6,              | 2, 5, 7               | 3, 8, 12,             | 9                     |
|                             | serving cell  | measurement          |             |          | 10, 11,               |                       | 13, 14,               |                       |
|                             | channel BW,   | subframes            |             |          | 18, 19,               |                       | 17, 20                |                       |
|                             | the reference | between the          |             |          | 21, 33,               |                       |                       |                       |
|                             | cell and the  | reference cell       |             |          | 34, 35,               |                       |                       |                       |
|                             | measured      | and the              |             |          | 36, 37,               |                       |                       |                       |
|                             | neighbour     | measured             |             |          | 38, 39                |                       |                       |                       |
|                             | cell PRS BW   | neighbour cell       |             |          | and 40                |                       |                       |                       |
|                             | [RB]          |                      |             |          | lo                    | lo                    | lo                    | lo                    |
| RSTD for                    | ≥6            | 6                    | $T_{\rm s}$ | ± 15     | -121dBm               | -119dBm               | -118dBm               | -120dBm               |
| (PRS Ês/Iot) <sub>ref</sub> |               |                      |             |          | /15kHz                | /15kHz                | /15kHz                | /15kHz                |
| ≥ -6dB and                  |               |                      |             |          | •••                   | •••                   | •••                   | •••                   |
| (PRS Ês/lot) <sub>i</sub>   | ≥25           | ≥2                   |             | ± 6      | -50dBm/               | -50dBm/               | -50dBm/               | -50dBm/               |
| ≥ -13dB                     | ≥50           | _ <del>_</del><br>≥1 |             | ± 5      | BW <sub>Channel</sub> | BW <sub>Channel</sub> | BW <sub>Channel</sub> | BW <sub>Channel</sub> |
|                             |               |                      |             |          |                       |                       |                       |                       |

- Note 1: When in dBm/15kHz, the minimum lo condition is expressed as the average lo per RE over all REs in an OFDM symbol.
- Note 2: Ts is the basic timing unit defined in 3GPP TS 36.211 [16].
- Note 3: Reference cell and neighbour's PRS bandwidths are as indicated in *prs-Bandwidth* in the OTDOA assistance data defined in [24].
- Note 4: The Io is defined in PRS positioning subframes. The same Io range applies to PRS and non-PRS symbols. Io levels are different in PRS and non-PRS symbols within the same subframe.

# 9.1.10.2 Inter-Frequency Accuracy Requirement

The accuracy requirements in Table 9.1.10.2-1 shall apply without DRX as well as for all the DRX cycles specified in 3GPP TS 36.331 [2].

The accuracy requirements in Table 9.1.10.2-1 are valid under the following conditions:

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

PRP  $1,2|_{dBm} \ge -127$  dBm for Bands 1, 4, 6, 10, 11, 18, 19, 21, 33, 34, 35, 36, 37, 38, 39, 40,

PRP  $1,2|_{dBm} \ge -126$  dBm for Band 9,

PRP  $1.2|_{dBm} \ge -125 \text{ dBm for Bands } 2, 5, 7,$ 

PRP  $1.2|_{dBm} \ge -124$  dBm for Bands 3, 8, 12, 13, 14, 17, 20.

There are no measurement gaps overlapping with the PRS subframes in cells belonging to the serving carrier frequency.

The parameter expected RSTD Uncertainty signalled over LPP by E-SMLC as defined in 3GPP TS 36.355 [24] is less than  $5\,\mu s$ .

Table 9.1.10.2-1: RSTD measurement accuracy

| Parameter                   | Minimum            | Minimum                    | Unit        | Accuracy |                                  | Conditi                          | ons Note 1, 4                    |                                  |
|-----------------------------|--------------------|----------------------------|-------------|----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                             | bandwidth          | number                     |             | [Ts]     | Bands                            | Bands                            | Bands                            | Band                             |
|                             | between the        | of available               |             |          | 1, 4, 6,                         | 2, 5, 7                          | 3, 8, 12,                        | 9                                |
|                             | serving cell       | measurement                |             |          | 10, 11,                          |                                  | 13, 14,                          |                                  |
|                             | channel BW,        | subframes                  |             |          | 18, 19,                          |                                  | 17, 20                           |                                  |
|                             | reference cell     | between the                |             |          | 21, 33,                          |                                  |                                  |                                  |
|                             | and the            | reference cell             |             |          | 34, 35,                          |                                  |                                  |                                  |
|                             | measured neighbour | and the                    |             |          | 36, 37,                          |                                  |                                  |                                  |
|                             | cell PRS           | measured<br>neighbour cell |             |          | 38, 39                           |                                  |                                  |                                  |
|                             | bandwidth          | neignbour cen              |             |          | and 40                           | •-                               | •-                               |                                  |
|                             | [RB]               |                            |             |          | lo                               | lo                               | lo                               | lo                               |
| RSTD for                    | ≥6                 | ≥4                         | $T_{\rm s}$ | ± 21     | -121dBm                          | -119dBm                          | -118dBm                          | -120dBm                          |
| (PRS Ês/lot) <sub>ref</sub> |                    |                            |             |          | /15kHz                           | /15kHz                           | /15kHz                           | /15kHz                           |
| ≥ -6dB and                  |                    |                            |             |          |                                  |                                  |                                  |                                  |
| (PRS Ês/Iot) <sub>i</sub>   | ≥25                | ≥2                         | 1           | ± 10     | -50dBm/<br>BW <sub>Channel</sub> | -50dBm/<br>BW <sub>Channel</sub> | -50dBm/<br>BW <sub>Channel</sub> | -50dBm/<br>BW <sub>Channel</sub> |
| ≥ -13dB                     | ≥50                | ≥1                         |             | ± 9      | Channel                          | Channel                          | Channel                          | DVV Channel                      |

Note 1: When in dBm/15kHz, the minimum lo condition is expressed as the average lo per RE over all REs in an OFDM symbol.

symbols. lo levels are different in PRS and non-PRS symbols within the same subframe.

# 9.1.10.3 RSTD Measurement Report Mapping

The reporting range of RSTD is defined from -15391 $T_s$  to 15391 $T_s$  with 1 $T_s$  resolution for absolute value of RSTD less or equal to  $4096T_s$  and 5Ts for absolute value of RSTD greater than  $4096T_s$ .

The mapping of measured quantity is defined in Table 9.1.10.3-1.

Table 9.1.10.3-1: RSTD report mapping

| Reported Value | Measured Quantity Value | Unit           |
|----------------|-------------------------|----------------|
| RSTD_0000      | -15391 > RSTD           | $T_{\rm s}$    |
| RSTD_0001      | -15391 ≤ RSTD < -15386  | $T_{\rm s}$    |
|                |                         |                |
| RSTD_2258      | -4106 ≤ RSTD < -4101    | $T_{\rm s}$    |
| RSTD_2259      | -4101 ≤ RSTD < -4096    | $T_{\rm s}$    |
| RSTD_2260      | -4096 ≤ RSTD < -4095    | $T_{\rm s}$    |
| RSTD_2261      | -4095 ≤ RSTD < -4094    | $T_{s}$        |
|                |                         | •••            |
| RSTD_6353      | -3 ≤ RSTD < -2          | Ts             |
| RSTD_6354      | -2 ≤ RSTD < -1          | Ts             |
| RSTD_6355      | -1 ≤ RSTD ≤ 0           | Ts             |
| RSTD_6356      | 0 < RSTD ≤ 1            | Ts             |
| RSTD_6357      | 1 < RSTD ≤ 2            | Ts             |
| RSTD_6358      | 2 < RSTD ≤ 3            | T <sub>s</sub> |
|                |                         |                |
| RSTD_10450     | 4094 < RSTD ≤ 4095      | Ts             |
| RSTD_10451     | 4095 < RSTD ≤ 4096      | Ts             |
| RSTD_10452     | 4096 < RSTD ≤ 4101      | $T_s$          |
| RSTD_10453     | 4101 < RSTD ≤ 4106      | Ts             |
|                |                         | •••            |
| RSTD_12709     | 15381 < RSTD ≤ 15386    | T <sub>s</sub> |
| RSTD_12710     | 15386 < RSTD ≤ 15391    | Ts             |
| RSTD_12711     | 15391 < RSTD            | Ts             |

Note 2: Ts is the basic timing unit defined in 3GPP TS 36.211 [16].

Note 3: PRS bandwidth is as indicated in prs-Bandwidth in the OTDOA assistance data defined in [24].

Note 4: The lo is defined in PRS positioning subframes. The same lo range applies to PRS and non-PRS

# 9.2 UTRAN FDD Measurements

The requirements in this clause are applicable for a UE:

- in state RRC\_CONNECTED
- performing measurements according to section 8.1.2.4.1 with appropriate measurement gaps
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in 3GPP TS 25.302 [6].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

# 9.2.1 UTRAN FDD CPICH RSCP

NOTE: This measurement is for handover between E-UTRAN and UTRAN FDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC\_CONNECTED state is specified in section 8.1.2.4.1.

In RRC\_CONNECTED state the accuracy requirements shall meet the absolute accuracy requirements in table 9.2.1-1,.

Accuracy [dB] Conditions Band I, IV, VI, X Band II, V and Band III, VIII, **Band IX** XI, XIX and XXI XII, XIII, XIV and VII **Parameter** Unit Normal **Extreme** XX condition condition lo lo lo [dBm/3,84 MHz] [dBm/3,84 MHz] [dBm/3,84 MHz] [dBm/3,84 MHz] dBm  $\pm 6$  $\pm 9$ -94...-70 -92...-70 -91...-70 -93...-70 CPICH\_RSCP dBm ±8 ± 11 -70...-50 -70...-50 -70...-50 -70...-50

Table 9.2.1-1: UTRAN FDD CPICH\_RSCP absolute accuracy

If the UE, in RRC\_CONNECTED state, needs measurement gaps to perform UTRAN FDD measurements, the UTRAN FDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.1 shall apply.

The reporting range and mapping specified for FDD CPICH RSCP in 3GPP TS 25.133 [18] shall apply.

# 9.2.2 Void

# 9.2.3 UTRAN FDD CPICH Ec/No

NOTE: This measurement is for handover between E-UTRAN and UTRAN FDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC\_CONNECTED state is specified in section 8.1.2.4.1.

In RRC\_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for FDD CPICH Ec/No in 3GPP TS 25.133 [18].

If the UE, in RRC\_CONNECTED state, needs measurement gaps to perform UTRAN FDD measurements, the UTRAN FDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.1 shall apply.

The reporting range and mapping specified for FDD CPICH Ec/No in 3GPP TS 25.133 [18] shall apply.

# 9.3 UTRAN TDD Measurements

The requirements in this clause are applicable for a UE:

- in state RRC\_CONNECTED
- performing measurements according to section 8.1.2.4.3 with appropriate measurement gaps
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in 3GPP TS 25.302 [6].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

# 9.3.1 UTRAN TDD P-CCPCH RSCP

NOTE: This measurement is for handover between E-UTRAN and UTRAN TDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC\_CONNECTED state is specified in section 8.1.2.4.3.

In RRC\_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for TDD P-CCPCH in 3GPP TS 25.123 [19].

If the UE, in RRC\_CONNECTED state, needs measurement gaps to perform UTRAN TDD measurements, the UTRAN TDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.3 shall apply.

The reporting range and mapping specified for TDD P-CCPCH RSCP in 3GPP TS 25.123 [19] shall apply.

- 9.3.2 Void
- 9.3.3 Void

# 9.4 GSM Measurements

The requirements in this clause are applicable for a UE:

- in state RRC\_CONNECTED
- performing measurements according to section 8.1.2.4.5 with appropriate measurement gaps
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in 3GPP TS 25.302 [6].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

### 9.4.1 GSM carrier RSSI

NOTE: This measurement is for handover between E-UTRAN and GSM.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC\_CONNECTED state is specified in section 8.1.2.4.5.

In RRC\_CONNECTED state the measurement accuracy requirements for RXLEV in TS 45.008 [8] shall apply.

If the UE, in RRC\_CONNECED state, needs measurement gaps to perform GSM measurements, the GSM measurement procedure and measurement gap pattern stated in section 8.1.2.4.5 shall apply.

The reporting range and mapping specified for RXLEV in TS 45.008 [8] shall apply.

# 9.5 CDMA2000 1x RTT Measurements

The requirements in this clause are applicable for a UE:

- in RRC CONNECTED state.
- synchronised to the cell that is measured.

# 9.5.1 CDMA2000 1x RTT Pilot Strength

NOTE: This measurement is for handover between E-UTRAN and cdma2000 1 x RTT.

The requirements in this section are valid for terminals supporting this capability.

CDMA2000 1xRTT Pilot Strength defined in sub-clause 5.1.10 of [4] shall meet the performance requirement defined in sub-clause 3.2.4 of [14] on the cdma2000 1xRTT neighbour cells indicated by the serving eNode B.

# 10 Measurements Performance Requirements for E-UTRAN

# 10.1 Received Interference Power

The measurement period shall be 100 ms.

# 10.1.1 Absolute accuracy requirement

Table 10.1.1-1: Received Interference Power absolute accuracy

| Parameter | Unit        | Accuracy | Conditions        |
|-----------|-------------|----------|-------------------|
|           |             | [dB]     | lob [dBm/180 kHz] |
| lob       | dBm/180 kHz | ± 4      | -11796            |

# 10.1.2 Relative accuracy requirement

The relative accuracy is defined as the Received Interference Power measured at one frequency compared to the Received Interference Power measured from the same frequency at a different time.

Table 10.1.2-1: Received Interference Power relative accuracy

| Parameter | Unit        | Accuracy | Conditions                |
|-----------|-------------|----------|---------------------------|
|           |             | [dB]     | lob [dBm/180 kHz]         |
| lob       | dBm/180 kHz | ± 0.5    | -11796                    |
|           |             |          | AND for changes ≤ ±9.0 dB |

# 10.1.3 Received Interference Power measurement report mapping

The reporting range for Received Interference Power (RIP) is from -126 ... -75 dBm.

In table 10.2.3-1 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 10.1.3-1: Received Interference Power measurement reporting range

| Reported value | Measured quantity value | Unit |
|----------------|-------------------------|------|
| RTWP_LEV _000  | RIP < -126.0            | dBm  |
| RTWP_LEV _001  | -126.0 ≤ RIP < -125.9   | dBm  |
| RTWP_LEV _002  | -125.9 ≤ RIP < -125.8   | dBm  |
| •••            |                         | •••  |
| RTWP_LEV _509  | -75.2 ≤ RIP < -75.1     | dBm  |
| RTWP_LEV _510  | -75.1 ≤ RIP < -75.0     | dBm  |
| RTWP_LEV _511  | -75.0 ≤ RIP             | dBm  |

# 10.2 Angle of Arrival (AOA)

# 10.2.1 Range/mapping

The reporting range for AOA measurement is from 0 to 360 degree, with resolution of 0.5 degree.

The mapping of the measured quantity is defined in table 10.2.1-1.

Table 10.2.1-1: AOA measurement report mapping

| Reported value | Measured quantity value | Unit   |
|----------------|-------------------------|--------|
| AOA_ANGLE _000 | 0 ≤ AOA_ANGLE < 0.5     | degree |
| AOA_ANGLE _001 | 0.5 ≤ AOA_ANGLE < 1     | degree |
| AOA_ANGLE _002 | 1 ≤ AOA_ANGLE < 1.5     | degree |
|                |                         |        |
| AOA_ANGLE _717 | 358.5 ≤ AOA_ANGLE < 359 | degree |
| AOA_ANGLE _718 | 359 ≤ AOA_ANGLE < 359.5 | degree |
| AOA_ANGLE _719 | 359.5 ≤ AOA_ANGLE < 360 | degree |

# 10.3 Timing Advance (T<sub>ADV</sub>)

# 10.3.1 Report mapping

The reporting range of  $T_{ADV}$  is defined from 0 to  $49232T_s$  with  $2T_s$  resolution for timing advance less or equal to  $4096T_s$  and  $8T_s$  for timing advance greater than  $4096T_s$ .

The mapping of measured quantity is defined in Table 10.3.1-1.

Table 10.3.1-1: T<sub>ADV</sub> measurement report mapping

| Reported value    | Measured quantity value          | Unit  |
|-------------------|----------------------------------|-------|
| TIME_ADVANCE_00   | T <sub>ADV</sub> < 2             | $T_s$ |
| TIME_ADVANCE_01   | 2 ≤ T <sub>ADV</sub> < 4         | Ts    |
| TIME_ADVANCE_02   | 4 ≤ T <sub>ADV</sub> < 6         | Ts    |
|                   |                                  | ***   |
| TIME_ADVANCE_2046 | $4092 \le T_{ADV} < 4094$        | $T_s$ |
| TIME_ADVANCE_2047 | 4094 ≤ T <sub>ADV</sub> < 4096   | $T_s$ |
| TIME_ADVANCE_2048 | $4096 \le T_{ADV} < 4104$        | Ts    |
| TIME_ADVANCE_2049 | 4104 ≤ T <sub>ADV</sub> < 4112   | $T_s$ |
|                   |                                  | ***   |
| TIME_ADVANCE_7688 | 49216 ≤ T <sub>ADV</sub> < 49224 | $T_s$ |
| TIME_ADVANCE_7689 | 49224 ≤ T <sub>ADV</sub> < 49232 | $T_s$ |
| TIME_ADVANCE_7690 | 49232 ≤ T <sub>ADV</sub>         | Ts    |

# Annex A (normative): Test Cases

# A.1 Purpose of annex

This Annex specifies test specific parameters for some of the functional requirements in sections 4 to 9. The tests provide additional information to how the requirements should be interpreted for the purpose of conformance testing. The tests in this Annex are described such that one functional requirement may be tested in one or several test and one test may verify several requirements. Some requirements may lack a test.

The conformance tests are specified in TS 36.521-3 [23]. Statistical interpretation of the requirements is described in Annex A.2.

# A.2 Requirement classification for statistical testing

Requirements in this specification are either expressed as absolute requirements with a single value stating the requirement, or expressed as a success rate. There are no provisions for the statistical variations that will occur when the parameter is tested.

Annex A outlines the tests in more detail and lists the test parameters needed. The test will result in an outcome of a test variable value for the device under test (DUT) inside or outside the test limit. Overall, the probability of a "good" DUT being inside the test limit(s) and the probability of a "bad" DUT being outside the test limit(s) should be as high as possible. For this reason, when selecting the test variable and the test limit(s), the statistical nature of the test is accounted for.

The statistical nature depends on the type of requirement. Some have large statistical variations, while others are not statistical in nature at all. When testing a parameter with a statistical nature, a confidence level is set. This establishes the probability that a DUT passing the test actually meets the requirements and determines how many times a test has to be repeated and what the pass and fail criteria are. Those aspects are not covered by TS 36.133. The details of the tests on how many times to run it and how to establish confidence in the tests are described in TS 36.521-3 [23]. This Annex establishes the variable to be used in the test and whether it can be viewed as statistical in nature or not.

# A.2.1 Types of requirements in TS 36.133

# A.2.1.1 Time and delay requirements on UE higher layer actions

A very large part of the RRM requirements are delay requirements:

- In E-UTRAN RRC\_IDLE state mobility (clause A.4) there is cell re-selection delay.
- In E-UTRAN RRC\_CONNECTED state mobility (clauses A.5 and A.8) there is handover delay, cell search delay and measurement reporting delay.
- In RRC Connection Control (clause A.6) there is RRC re-establishment delay.

All have in common that the UE is required to perform an action observable in higher layers (e.g. camp on the correct cell) within a certain time after a specific event (e.g. when a new strong pilot or reference signal appears). The delay time is statistical in nature for several reasons, among others that several of the measurements are performed by the UE in a fading radio environment.

The variations make a strict limit unsuitable for a test. Instead there is a condition set for a correct action by the UE, e.g. that the UE shall camp on the correct cell within X seconds. Then the rate of correct events is observed during repeated

tests and a limit is set on the rate of correct events, usually 90% correct events are required. How the limit is applied in the test depends on the confidence required, further detailed are in TS 36.521-3 [23].

# A.2.1.2 Measurements of power levels, relative powers and time

A very large number of requirements are on measurements that the UE performs:

- In E-UTRAN RRC CONNECTED state mobility (clause A.5) there are measurement reports.
- In Measurement Performance Requirements (clause A.9) there are requirements for all type of measurements.

The accuracy requirements on measurements are expressed in this specification as a fixed limit (e.g.  $\pm$ /-X dB), but the measurement error will have a distribution that is not easily confined in fixed limits. Assuming a Gaussian distribution of the error, the limits will have to be set at  $\pm$ /-3.29 $\sigma$  if the probability of failing a "good DUT" in a single test is to be kept at 0.1%. It is more reasonable to set the limit tighter and test the DUT by counting the rate of measurements that are within the limits, in a way similar to the requirements on delay.

# A.2.1.3 Implementation requirements

A few requirements are strict actions the UE should take or capabilities the UE should have, without any allowance for deviations. These requirements are absolute and should be tested as such. Examples are:

- "Event triggered report rate" in E-UTRAN RRC\_CONNECTED state mobility (clauses A.5 and A.8)
- "Correct behaviour at time-out" in RRC connection control (clause A.6)

# A.2.1.4 Physical layer timing requirements

There are requirements on Timing and Signaling Characteristics (clauses A.7). There are both absolute and relative limits on timing accuracy depending upon the type of requirement. Examples are:

- Initial Transmit Timing (clause A.7.1) has an absolute limit on timing accuracy.
- Timing Advance (clause A.7.2) has a relative limit on timing accuracy.

# A.3 RRM test configurations

# A.3.1 Reference Measurement Channels

# A.3.1.1 PDSCH

### A.3.1.1.1 FDD

Table A.3.1.1.1: PDSCH Reference Measurement Channels for FDD

| Parameter                             | Unit | Value |   |   |      |      |      |    |
|---------------------------------------|------|-------|---|---|------|------|------|----|
| Reference channel                     |      | R.2   |   |   | R.0  | R.1  | R.3  |    |
|                                       |      | FDD   |   |   | FDD  | FDD  | FDD  |    |
| Channel bandwidth                     | MHz  | 1.4   | 3 | 5 | 10   | 10   | 10   | 20 |
| Number of transmitter antennas        |      | 1     |   |   | 1    | 2    | 1    |    |
| Allocated resource blocks (Note 4)    |      | 2     |   |   | 24   | 24   | 24   |    |
| Allocated subframes per Radio Frame   |      | 10    |   |   | 10   | 10   | 10   |    |
| Modulation                            |      | QPS   |   |   | QPS  | QPS  | QPS  |    |
|                                       |      | K     |   |   | K    | K    | K    |    |
| Target Coding Rate                    |      | 1/3   |   |   | 1/3  | 1/3  | 1/3  |    |
| Information Bit Payload               |      |       |   |   |      |      |      |    |
| For Sub-Frames 4, 9                   | Bits | 120   |   |   | 2088 | 2088 | 2088 |    |
| For Sub-Frame 5                       | Bits | 104   |   |   | 2088 | 1736 | 2088 |    |
| For Sub-Frame 0                       | Bits | 32    |   |   | 1736 | 1736 | 1736 |    |
| For Sub-Frame 1, 2, 3, 6, 7, 8        | Bits | 0     |   |   | 0    | 0    | 2088 |    |
| Number of Code Blocks per Sub-Frame   |      | 1     |   |   | 1    | 1    |      |    |
| (Note 5)                              |      |       |   |   |      |      |      |    |
| For Sub-Frames 4, 9                   |      | 1     |   |   | 1    | 1    | 1    |    |
| For Sub-Frame 5                       |      | 1     |   |   | 1    | 1    | 1    |    |
| For Sub-Frame 0                       |      | 1     |   |   | 1    | 1    | 1    |    |
| For Sub-Frame 1, 2, 3, 6, 7, 8        |      | 0     |   |   | 0    | 0    | 1    |    |
| Binary Channel Bits Per Sub-Frame     |      |       |   |   |      |      |      |    |
| For Sub-Frames 4, 9                   | Bits | 456   |   |   | 6624 | 6336 | 6624 |    |
| For Sub-Frame 5                       | Bits | 360   |   |   | 6336 | 6048 | 6336 |    |
| For Sub-Frame 0                       | Bits | 176   |   |   | 5784 | 5520 | 5784 |    |
| For Sub-Frame 1, 2, 3, 6, 7, 8        | Bits | 0     |   |   | 0    | 0    | 6624 |    |
| Max. Throughput averaged over 1 frame | kbps | 37.6  |   |   | 800  | 765  | 2053 |    |

Note 1: 2 symbols allocated to PDCCH for 10 MHz channel BW. 4 symbols allocated to PDCCH for 1.4 MHz channel BW.

Note 2: Reference signal, synchronization signals and PBCH allocated as defined in 3GPP TS 36.211 [16].

Note 3: If necessary the information bit payload size can be adjusted to facilitate the test implementation. The payload sizes are defined in 3GPP TS 36.213 [3].

Note 4: Allocation is located in the middle of bandwidth.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 6: PDSCH allocation applies only to subframes not configured as PRS subframes.

#### A.3.1.1.2 TDD

Table A.3.1.1.2-1: PDSCH Reference Measurement Channels for TDD

| Parameter                               | Unit |       |   |   |       |        |    |
|-----------------------------------------|------|-------|---|---|-------|--------|----|
| Reference channel                       |      | R.2   |   |   | R.0   | R.1    |    |
|                                         |      | TDD   |   |   | TDD   | TDD    |    |
| Channel bandwidth                       | MHz  | 1.4   | 3 | 5 | 10    | 10     | 20 |
| Number of transmitter antennas          |      | 1     |   |   | 1     | 2      |    |
| Allocated resource blocks (Note 4)      |      | 2     |   |   | 24    | 24     |    |
| Uplink-Downlink Configuration (Note 5)  |      | 1     |   |   | 1     | 1      |    |
| Special Subframe Configuration (Note 6) |      | 6     |   |   | 6     | 6      |    |
| Allocated subframes per Radio Frame     |      | 6     |   |   | 6     | 6      |    |
| Modulation                              |      | QPSK  |   |   | QPSK  | QPSK   |    |
| Target Coding Rate                      |      | 1/3   |   |   | 1/3   | 1/3    |    |
| Information Bit Payload                 |      |       |   |   |       |        |    |
| For Sub-Frames 4,9                      | Bits | 120   |   |   | 2088  | 2088   |    |
| For Sub-Frame 5                         | Bits | 104   |   |   | 2088  | 2088   |    |
| For Sub-Frame 0                         | Bits | 56    |   |   | 2088  | 1736   |    |
| For Sub-Frame 1, 6 (DwPTS)              | Bits | 56    |   |   | 1032  | 1032   |    |
| Number of Code Blocks per Sub-Frame     |      | 1     |   |   | 1     | 1      |    |
| (Note 7)                                |      |       |   |   |       |        |    |
| For Sub-Frames 4,9                      |      | 1     |   |   | 1     | 1      |    |
| For Sub-Frame 5                         |      | 1     |   |   | 1     | 1      |    |
| For Sub-Frame 0                         |      | 1     |   |   | 1     | 1      |    |
| For Sub-Frame 1, 6 (DwPTS)              |      | 1     |   |   | 1     | 1      |    |
| Binary Channel Bits Per Sub-Frame       |      |       |   |   |       |        |    |
| For Sub-Frames 4,9                      | Bits | 456   |   |   | 6624  | 6336   |    |
| For Sub-Frame 5                         | Bits | 408   |   |   | 6480  | 6192   |    |
| For Sub-Frame 0                         | Bits | 224   |   |   | 5928  | 5664   |    |
| For Sub-Frame 1, 6 (DwPTS)              | Bits | 272   |   |   | 3696  | 3504   |    |
| Max. Throughput averaged over 1 frame   | Mbps | 0.051 |   |   | 1.041 | 1.0064 |    |
|                                         |      | 2     |   |   | 6     |        |    |

- Note 1: 2 symbols allocated to PDCCH for 10 MHz channel BW. 4 symbols allocated to PDCCH for 1.4 MHz channel BW. For special subframe (1 & 6) only 2 OFDM symbols are allocated to PDCCH for all bandwidths.
- Note 2: Reference signal, synchronization signals and PBCH allocated as defined in 3GPP TS 36.211 [16].
- Note 3: If necessary the information bit payload size can be adjusted to facilitate the test implementation. The payload sizes are defined in 3GPP TS 36.213 [3].
- Note 4: Allocation is located in the middle of bandwidth.
- Note 5: As per Table 4.2-2 in TS 36.211 [16]
- Note 6: As per Table 4.2-1 in TS 36.211 [16]
- Note 7: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 8: PDSCH allocation applies only to subframes not configured as PRS subframes.

### A.3.1.2 PCFICH/PDCCH/PHICH

#### A.3.1.2.1 FDD

Table A.3.1.2.1-1: PCFICH/PDCCH/PHICH Reference Channel for FDD

| Parameter                                    | Unit    | Value      |  |  |            |            |  |
|----------------------------------------------|---------|------------|--|--|------------|------------|--|
| Reference channel                            |         | R.8<br>FDD |  |  | R.6<br>FDD | R.7<br>FDD |  |
| Channel bandwidth                            | MHz     | 1.4        |  |  | 10         | 10         |  |
| Number of transmitter antennas               |         | 1          |  |  | 1          | 2          |  |
| Control region OFDM symbols <sup>Note1</sup> | symbols | 4          |  |  | 2          | 2          |  |
| Aggregation level                            | CCE     | 2          |  |  | 8          | 8          |  |
|                                              |         | (Note 6)   |  |  |            |            |  |
| DCI Format                                   |         | Note 3     |  |  | Note 3     | Note 3     |  |
| Cell ID                                      |         | Note 4     |  |  | Note 4     | Note 4     |  |
| Payload (without CRC)                        | Bits    | Note 5     |  |  | Note 5     | Note 5     |  |

- Note 1: The control region consists of PCFICH, PHICH and PDCCH.
- Note 2: DCI formats are defined in 3GPP TS 36.212.
- Note 3: DCI format shall depend upon the test configuration.
- Note 4: Cell ID shall depend upon the test configuration.
- Note 5: Payload size shall depend upon the test configuration.
- Note 6: For PDCCH using SI/RA/P-RNTI, Aggregation level 4 is used.

# A.3.1.2.2 TDD

Table A.3.1.2.2-1: PCFICH/PDCCH/PHICH Reference Channel for TDD

| Parameter                                    | Unit    | Value    |  |        |        |  |
|----------------------------------------------|---------|----------|--|--------|--------|--|
| Reference channel                            |         | R.8 TDD  |  | R.6    | R.7    |  |
|                                              |         |          |  | TDD    | TDD    |  |
| Channel bandwidth                            | MHz     | 1.4      |  | 10     | 10     |  |
| Number of transmitter antennas               |         | 1        |  | 1      | 2      |  |
| Control region OFDM symbols <sup>Note1</sup> | symbols | 4        |  | 2      | 2      |  |
|                                              |         | (Note 6) |  |        |        |  |
| Aggregation level                            | CCE     | 2        |  | 8      | 8      |  |
|                                              |         | (Note 7) |  |        |        |  |
| DCI Format                                   |         | Note 3   |  | Note 3 | Note 3 |  |
| Cell ID                                      |         | Note 4   |  | Note 4 | Note 4 |  |
| Payload (without CRC)                        | Bits    | Note 5   |  | Note 5 | Note 5 |  |

- Note 1: The control region consists of PCFICH, PHICH and PDCCH.
- Note 2: DCI formats are defined in 3GPP TS 36.212.
- Note 3: DCI format shall depend upon the test configuration.
- Note 4: Cell ID shall depend upon the test configuration.
- Note 5: Payload size shall depend upon the test configuration.
- Note 6: Only 2 OFDM symbols for special subframes 1 and 6.
- Note 7: For PDCCH using SI/RA/P-RNTI, Aggregation level 4 is used.

# A.3.2 OFDMA Channel Noise Generator (OCNG)

# A.3.2.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test) and/or allocations used for MBSFN. The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG\_RA and OCNG\_RB which together with a relative power level (  $\gamma$  ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols without and with reference

symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i \_RA / OCNG \_RA = PDSCH_i \_RB / OCNG \_RB$$
,

where  $\gamma_i$  denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG\_RA, OCNG\_RB, and the set of relative power levels  $\gamma$  are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a constant transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. The number of PDCCH OFDM symbols in the non-MBSFN subframes is the same as specified in the RMC used in the test. The number of PDCCH OFDM symbols in the MBSFN subframe is the maximal allowed according to 3GPP TS 36.213 [16]. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given by PDCCH\_RA/RB and PHICH\_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For subframes configured as PRS subframes the PDSCH allocation defined in the OCNG pattern does not apply.

The system information is scheduled in the allocations reserved for the OCNG patterns, in the subframes not configured for MBSFN. For this purpose the number of the RB-s allocated with PDSCH defined in the OCNG pattern can be reduced as necessary.

# A.3.2.1.1 OCNG FDD pattern 1: outer resource blocks allocation in 10 MHz

Table A.3.2.1.1-1: OP.1 FDD: OCNG FDD Pattern 1

| Allocation $n_{\it PRB}$ | Re  | PDSCH<br>Data | PMCH<br>Data |          |        |        |
|--------------------------|-----|---------------|--------------|----------|--------|--------|
|                          | 0   | 5             | 4,9          | 1-3, 6-8 |        |        |
| 0 – 12                   | 0   | 0             | 0            | N/A      | Note 1 | N/A    |
| 37 – 49                  | 0   | 0             | 0            | N/A      | INOLE  | 111/73 |
| 0-49                     | N/A | N/A           | N/A          | Note 4   | N/A    | Note 2 |

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.
- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter  $\gamma_{PRB}$  is used to scale the power of PMCH.
- Note 3: If two or more transmit antennas with CRS are used in the test, the PDSCH part of OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- Note 4: 0dB for 1 transmit antenna with CRS, +3dB for 2 transmit antennas with CRS

N/A: Not Applicable

#### A.3.2.1.2 OCNG FDD pattern 2: full bandwidth allocation in 10 MHz

Table A.3.2.1.2-1: OP.2 FDD: OCNG FDD Pattern 2

| Allocation $n_{\it PRB}$ | Re                                                   | PDSCH<br>Data   | PMCH<br>Data   |                |          |          |
|--------------------------|------------------------------------------------------|-----------------|----------------|----------------|----------|----------|
|                          | 0                                                    | 5               | 4, 9           | 1 – 3, 6 – 8   |          |          |
| 0 – 49                   | 0                                                    | 0               | 0              | N/A            | Note 1   | N/A      |
| 0 – 49                   | N/A                                                  | N/A             | N/A            | Note 4         | N/A      | Note 2   |
| with one                 | hysical resource<br>PDSCH per vir<br>rrelated pseudo | rtual UE; the d | ata transmitte | d over the OCI | NG PDSCH | ls shall |

- $\gamma_{\it PRB}$  is used to scale the power of PDSCH.
- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter  $\gamma_{PRB}$  is used to scale the power of PMCH.
- If two or more transmit antennas with CRS are used in the test, the PDSCH part of Note 3: OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{\it PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- Note 4: 0dB for 1 transmit antenna with CRS, +3dB for 2 transmit antennas with CRS

N/A: Not Applicable

#### A.3.2.1.3 OCNG FDD pattern 3: outer resource blocks allocation in 1.4 MHz

Table A.3.2.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

| Allocation | Re       | PDSCH<br>Data | PMCH<br>Data |          |  |  |
|------------|----------|---------------|--------------|----------|--|--|
| $n_{PRB}$  | Subframe |               |              |          |  |  |
|            | 0        | 5             | 4,9          | 1-3, 6-8 |  |  |

| 0 – 1 | 0   | 0   | 0   | N/A    | Note 1 | N/A    |
|-------|-----|-----|-----|--------|--------|--------|
| 4 – 5 | 0   | 0   | 0   | N/A    | 140101 | 1      |
| 0 – 5 | N/A | N/A | N/A | Note 4 | N/A    | Note 2 |

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.

- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter  $\gamma_{PRB}$  is used to scale the power of PMCH.
- Note 3: If two or more transmit antennas with CRS are used in the test, the PDSCH part of OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

Note 4: 0dB for 1 transmit antenna with CRS, +3dB for 2 transmit antennas with CRS

N/A: Not Applicable

# A.3.2.1.4 OCNG FDD pattern 4: full bandwidth allocation in 1.4 MHz

Table A.3.2.1.4-1: OP.4 FDD: OCNG FDD Pattern 4

| Allocation    | Re       | Relative power level $\gamma_{\it PRB}$ [dB] |     |        |        |        |  |  |
|---------------|----------|----------------------------------------------|-----|--------|--------|--------|--|--|
| $n_{\it PRB}$ | Subframe |                                              |     | Data   | Data   |        |  |  |
|               | 0        | 0 5 4, 9 1 - 3, 6 - 8                        |     |        |        |        |  |  |
| 0 – 5         | 0        | 0                                            | 0   | N/A    | Note 1 | N/A    |  |  |
| 0 – 5         | N/A      | N/A                                          | N/A | Note 4 | N/A    | Note 2 |  |  |

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.
- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter  $\gamma_{PRB}$  is used to scale the power of PMCH.
- Note 3: If two or more transmit antennas with CRS are used in the test, the PDSCH part of OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- Note 4: 0dB for 1 transmit antenna with CRS, +3dB for 2 transmit antennas with CRS

N/A: Not Applicable

#### A.3.2.1.5 OCNG FDD pattern 5: outer resource blocks allocation in 10 MHz (without MBSFN)

Table A.3.2.1.5-1: OP.5 FDD: OCNG FDD Pattern 5

| Allocation $n_{\it PRB}$ |     | Relative power level $\gamma_{PRB}$ [dB] Subframe (Note 1) |     |          |        |  |  |  |
|--------------------------|-----|------------------------------------------------------------|-----|----------|--------|--|--|--|
|                          | 0   | 5                                                          | 4,9 | 1-3, 6-8 |        |  |  |  |
| 0 – 12                   | 0   | 0                                                          | 0   | N/A      |        |  |  |  |
| 37 – 49                  | 0   | 0                                                          | 0   | N/A      | Note 2 |  |  |  |
| 0 – 49                   | N/A | N/A                                                        | N/A | 0        |        |  |  |  |

Note 1: PDSCH allocation applies only to subframes not configured as PRS subframes. Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.

If two or more transmit antennas with CRS are used in the test, the PDSCH part Note 3: of OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The

> parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

#### A.3.2.1.6 OCNG FDD pattern 6: full bandwidth allocation in 10 MHz (without MBSFN)

Table A.3.2.1.6-1: OP.6 FDD: OCNG FDD Pattern 6

| Allocation                                                               | Re           | Relative power level $\gamma_{\it PRB}$ [dB] |   |   |        |  |  |  |  |
|--------------------------------------------------------------------------|--------------|----------------------------------------------|---|---|--------|--|--|--|--|
| $n_{\it PRB}$                                                            | Subframe (No | ıbframe (Note 1)                             |   |   |        |  |  |  |  |
|                                                                          | 0            | 0 5 4,9 1-3,6-8                              |   |   |        |  |  |  |  |
|                                                                          |              |                                              |   |   |        |  |  |  |  |
| 0 – 49                                                                   | 0            | 0                                            | 0 | 0 | Note 2 |  |  |  |  |
| Note 1: PDSCH allocation applies only to subframes not configured as PRS |              |                                              |   |   |        |  |  |  |  |

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{\it PRB}$  is used to scale the power of PDSCH.

Note 3: If two or more transmit antennas with CRS are used in the test, the PDSCH part of OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{\it PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

# A.3.2.1.7 OCNG FDD pattern 7: full bandwidth allocation in 1.4 MHz (without MBSFN)

Table A.3.2.1.7-1: OP.7 FDD: OCNG FDD Pattern 7

| Alloca  |                    | Re                                                                                                                                                                                                       | lative power I             | evel $\gamma_{\it PRB}$ [d | B]             | PDSCH<br>Data |  |
|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------|---------------|--|
| $n_{P}$ | RB                 | Subframe (No                                                                                                                                                                                             | ote 1)                     |                            |                | Data          |  |
|         |                    | 0                                                                                                                                                                                                        | 5                          | 4, 9                       | 1 – 3, 6 – 8   |               |  |
| 0 -     | - 5                | 0 0 0 0                                                                                                                                                                                                  |                            |                            |                |               |  |
| Note 1: | PDSCH subfram      | allocation applies.                                                                                                                                                                                      | es only to sub             | frames not cor             | nfigured as PR | S             |  |
| Note 2: | virtual Ü          | physical resource blocks are assigned to an arbitrary number of UEs with one PDSCH per virtual UE; the data transmitted over the PDSCHs shall be uncorrelated pseudo random data, which is               |                            |                            |                |               |  |
|         | QPSK m             | nodulated. The                                                                                                                                                                                           | parameter $\gamma_{_I}$    | $ ho_{RB}$ is used to $s$  | scale the powe | er of         |  |
| Note 3: | If two or<br>PDSCH | CH. o or more transmit antennas with CRS are used in the test, the CH part of OCNG shall be transmitted to the virtual users by all the smit antennas with CRS and according to the antenna transmission |                            |                            |                |               |  |
|         | mode 2.            | The parameter                                                                                                                                                                                            | $\gamma_{\it PRB}$ applies | to each anten              | na port separa | ately, so     |  |
| N/A:    | transmit           | smit power of the<br>antennas with eare specified in s<br>licable                                                                                                                                        | CRS used in tl             | ne test. The ar            | ntenna transmi |               |  |

#### A.3.2.1.8 Void

### A.3.2.1.9 Void

# A.3.2.1.10 OCNG FDD pattern 10: outer resource blocks allocation in 10 MHz with user data in every subframe (without MBSFN)

Table A.3.2.1.10-1: OP.10 FDD: OCNG FDD Pattern 10

| Allocation    | Rel               | Relative power level $\gamma_{\it PRB}$ [dB] |   |   |        |  |  |  |
|---------------|-------------------|----------------------------------------------|---|---|--------|--|--|--|
| $n_{\it PRB}$ |                   | Subframe                                     |   |   |        |  |  |  |
|               | 0                 | 0 5 4,9 1-3,6-8                              |   |   |        |  |  |  |
| 0 - 12        | 0                 | 0                                            | 0 | 0 | Note 2 |  |  |  |
| 37 - 49       | 0                 | 0                                            | 0 | 0 | Note 2 |  |  |  |
| Note 1: PD    | as PRS subframes. |                                              |   |   |        |  |  |  |

Note 1: PDSCH allocation applies only to subframes not configured as PRS subframes.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.

Note 3: If two or more transmit antennas with CRS are used in the test, the PDSCH part of OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter

 $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power of the PDSCH part of OCNG is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

# A.3.2.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG\_RA and OCNG\_RB which together with a relative power level ( $\gamma$ ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols without and with reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i \_RA/OCNG\_RA = PDSCH_i \_RB/OCNG\_RB,$$

where  $\gamma_i$  denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG\_RA, OCNG\_RB, and the set of relative power levels  $\gamma$  are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. The number of PDCCH OFDM symbols in the non-MBSFN subframes is the same as specified in the RMC used in the test. The number of PDCCH OFDM symbols in the MBSFN subframe is the maximal allowed according to 3GPP TS 36.213 [16] Table 6.7-1. For any aggregation and PHICH allocation, the PDCCH any unused PHICH groups are padded with resource element groups with a power level given by PDCCH\_RA/RB and PHICH\_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For subframes configured as PRS subframes the PDSCH allocation defined in the OCNG pattern does not apply.

The system information is scheduled in the allocations reserved for the OCNG patterns, in the subframes not configured for MBSFN. For this purpose the number of the RB-s allocated with PDSCH defined in the OCNG pattern can be reduced as necessary.

# A.3.2.2.1 OCNG TDD pattern 1: outer resource blocks allocation in 10 MHz

Table A.3.2.2.1-1: OP.1 TDD: OCNG TDD Pattern 1 for 5ms downlink-to-uplink switch-point periodicity

| Allocation    |   | Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB] |                                                     |                                     |  |  |  |  |
|---------------|---|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|--|--|--|--|
| $n_{\it PRB}$ |   | Subframe (Note 1)                                           |                                                     |                                     |  |  |  |  |
|               | 0 | 5                                                           | 3 , 4, 8, 9 and 6<br>(as normal<br>subframe) Note 3 | 1 and 6 (as<br>special<br>subframe) |  |  |  |  |

| 0 – 12  | 0 | 0 | 0 | Table       | Nata 0 |
|---------|---|---|---|-------------|--------|
| 37 – 49 | 0 | 0 | 0 | A.3.2.2.1-2 | Note 2 |

- Note 1: PDSCH allocation applies only to subframes not configured as PRS subframes.
- Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.
- Note 3: Subframes available for DL transmission depends on the Uplink-Downlink configuration defined in Table 4.2-2 in 3GPP TS 36.211 [16].
- Note 4: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

Table A.3.2.2.1-2: OP.1 TDD: OCNG TDD Pattern 1 for special subframe configuration with 5ms downlink-to-uplink switch-point periodicity

| Allocation         | ج                                                                                     |     | Relative power level $\gamma_{{\scriptscriptstyle PRB}}$ [dB] |     |            |           |             |     |     |     |
|--------------------|---------------------------------------------------------------------------------------|-----|---------------------------------------------------------------|-----|------------|-----------|-------------|-----|-----|-----|
| $n_{\it PRB}$      | length                                                                                |     |                                                               | Sı  | pecial sub | frame cor | nfiguration | 1   |     |     |
|                    | <u>•</u>                                                                              | 0   | 1                                                             | 2   | 3          | 4         | 5           | 6   | 7   | 8   |
|                    | <u>S</u>                                                                              |     | Control region OFDM symbols                                   |     |            |           |             |     |     |     |
|                    |                                                                                       | 1 2 | 1 2                                                           | 1 2 | 1 2        | 1 2       | 1 2         | 1 2 | 1 2 | 1 2 |
| 0 – 12             |                                                                                       | 0   | 0                                                             | 0   | 0          | 0         | 0           | 0   | 0   | 0   |
| 0 - 12             | N                                                                                     | U   | U                                                             | U   | U          | U         | U           | U   | ><  | > < |
| 37 – 49            |                                                                                       | 0   | _                                                             | 0   | 0          | 0         | 0           | 0   | 0   | 0   |
| 37 - 49            | N                                                                                     | U   | U                                                             | U   | U          | U         | U           | U   | >   | > < |
| Note 1: Special su | Note 1: Special subframe configurations are defined in Table 4.2-1 in TS 36.211 [16]. |     |                                                               |     |            |           |             |     |     |     |

### A.3.2.2.2 OCNG TDD pattern 2: full bandwidth allocation in 10 MHz

Table A.3.2.2.2-1: OP.2 TDD: OCNG TDD Pattern 2 for 5ms downlink-to-uplink switch-point periodicity

| Allocation                     |   | Relative power level $\gamma_{\it PRB}$ [dB]                  |   |   |        |  |  |  |  |
|--------------------------------|---|---------------------------------------------------------------|---|---|--------|--|--|--|--|
| $n_{{\scriptscriptstyle PRB}}$ |   | Subframe (Note 1)                                             |   |   |        |  |  |  |  |
|                                | 0 | 0 5 3, 4, 8, 9 and 6 (as normal subframe) subframe) subframe) |   |   |        |  |  |  |  |
| 0 – 49                         | 0 | 0                                                             | 0 | 0 | Note 2 |  |  |  |  |

- Note 1: PDSCH allocation applies only to subframes not configured as PRS subframes.
- Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.
- Note 3: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211 [16].
- Note 4: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

# A.3.2.2.3 OCNG TDD pattern 3: outer resource blocks allocation in 1.4 MHz

Table A.3.2.2.3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5 ms downlink-to-uplink switch-point periodicity

| Allocation    |   | Relative power le | vel $\gamma_{PRB}$ [dB]                             |                                     | PDSCH Data |  |  |  |
|---------------|---|-------------------|-----------------------------------------------------|-------------------------------------|------------|--|--|--|
| $n_{\it PRB}$ |   | Subframe (Note 1) |                                                     |                                     |            |  |  |  |
|               | 0 | 5                 | 3 , 4, 8, 9 and 6<br>(as normal<br>subframe) Note 3 | 1 and 6 (as<br>special<br>subframe) |            |  |  |  |
| 0 – 1         | 0 | 0                 | 0                                                   | 0                                   |            |  |  |  |
| 4 – 5         | 0 | 0                 | 0                                                   | 0                                   | Note 2     |  |  |  |

- Note 1: PDSCH allocation applies only to subframes not configured as PRS subframes.
- Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.
- Note 3: Subframes available for DL transmission depends on the Uplink-Downlink configuration defined in Table 4.2-2 in 3GPP TS 36.211 [16].
- Note 4: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

# A.3.2.2.4 OCNG TDD pattern 4: full bandwidth allocation in 1.4 MHz

Table A.3.2.2.4-1: OP.4 TDD: OCNG TDD Pattern 4 for 5 ms downlink-to-uplink switch-point periodicity

| Allocation $n_{\it PRB}$ | gth    |   | Relative power level $\gamma_{PRB}$ [dB] Subframe (Note 1)          |   |   |        |  |
|--------------------------|--------|---|---------------------------------------------------------------------|---|---|--------|--|
|                          | CP len | 0 | 3 , 4, 8, 9 and 6 1 and 6 (as (as normal subframe) Note 3 subframe) |   |   |        |  |
| 0 – 5                    |        | 0 | 0                                                                   | 0 | 0 | Note 2 |  |

- Note 1: PDSCH allocation applies only to subframes not configured as PRS subframes.
- Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter  $\gamma_{PRB}$  is used to scale the power of PDSCH.
- Note 3: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211 [16].
- Note 4: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS and according to the antenna transmission mode 2. The parameter  $\gamma_{PRB}$  applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

# A.3.3 Reference DRX Configurations

Table A.3.3-1: Reference DRX Configurations

| Parameter                                                          | Value   |           | Comments                             |  |  |  |  |
|--------------------------------------------------------------------|---------|-----------|--------------------------------------|--|--|--|--|
| Reference configuration                                            | DRX_S   | DRX_L     | As defined in 4.8.2.1.5 in TS 36.508 |  |  |  |  |
| onDurationTimer                                                    | psf2    | psf6      |                                      |  |  |  |  |
| drx-InactivityTimer                                                | psf100  | psf1920   |                                      |  |  |  |  |
| drx-RetransmissionTimer                                            | psf16   | psf16     |                                      |  |  |  |  |
| longDRX-CycleStartOffset                                           | sf40, 0 | sf1280, 0 |                                      |  |  |  |  |
| shortDRX                                                           |         |           |                                      |  |  |  |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |         |           |                                      |  |  |  |  |

# A.4 E-UTRAN RRC\_IDLE state

# A.4.2 Cell Re-Selection

# A.4.2.1 E-UTRAN FDD – FDD Intra frequency case

### A.4.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD intra frequency cell reselection requirements specified in section 4.2.2.3.

The test scenario comprises of 1 E-UTRA FDD carrier and 2 cells as given in tables A.4.2.1.1-1 and A.4.2.1.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Only Cell 1 is already identified by the UE prior to the start of the test, i.e. Cell 2 is not identified by the UE prior to the start of the test. Cell 1 and Cell 2 belong to different tracking areas. Furthermore, UE has not registered with network for the tracking area containing Cell 2.

Table A.4.2.1.1-1: General test parameters for FDD intra frequency cell reselection test case

| -               | Parameter                         | Unit | Value    | Comment                                                                                                                                                                                                             |
|-----------------|-----------------------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial         | Active cell                       |      | Cell1    |                                                                                                                                                                                                                     |
| condition       | Neighbour cells                   |      | Cell2    |                                                                                                                                                                                                                     |
| T2 end          | Active cell                       |      | Cell2    |                                                                                                                                                                                                                     |
| condition       | Neighbour cells                   |      | Cell1    |                                                                                                                                                                                                                     |
| Final condition | Visited cell                      |      | Cell1    |                                                                                                                                                                                                                     |
|                 | F Channel Number                  |      | 1        | Only one FDD carrier frequency is used.                                                                                                                                                                             |
| Channel B       | andwidth (BW <sub>channel</sub> ) | MHz  | 10       |                                                                                                                                                                                                                     |
| Time offset     | t between cells                   |      | 3 ms     | Asynchronous cells                                                                                                                                                                                                  |
| Access Ba       | Access Barring Information        |      | Not Sent | No additional delays in random access procedure.                                                                                                                                                                    |
| PRACH co        | PRACH configuration               |      | 4        | As specified in table 5.7.1-2 in 3GPP TS 36.211                                                                                                                                                                     |
| DRX cycle       | length                            | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                                                                                  |
| T1              |                                   | S    | >7       | During T1, Cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that Cell 2 has not been detected by the UE prior to the start of period T2 |
| T2              |                                   | S    | 40       | T2 need to be defined so that cell re-<br>selection reaction time is taken into<br>account.                                                                                                                         |
| Т3              |                                   | S    | 15       | T3 need to be defined so that cell re-<br>selection reaction time is taken into<br>account.                                                                                                                         |

Table A.4.2.1.1-2: Cell specific test parameters for FDD intra frequency cell reselection test case in AWGN

| Parameter                                                | Unit       |      | Cell 1   |      |           | Cell 2   |       |  |  |
|----------------------------------------------------------|------------|------|----------|------|-----------|----------|-------|--|--|
|                                                          |            | T1   | T2       | T3   | T1        | T1 T2 T3 |       |  |  |
| E-UTRA RF Channel                                        |            |      | 1        |      |           | 1        |       |  |  |
| Number                                                   |            |      |          |      |           |          |       |  |  |
| BW <sub>channel</sub>                                    | MHz        |      | 10       |      |           | 10       |       |  |  |
| OCNG Patterns                                            |            |      |          |      |           |          |       |  |  |
| defined in A.3.2.1.2                                     |            | C    | P.2 FDD  |      |           | OP.2 FDD |       |  |  |
| (OP.2 FDD)                                               |            |      |          |      |           |          |       |  |  |
| PBCH_RA                                                  |            |      |          |      |           |          |       |  |  |
| PBCH_RB                                                  |            |      |          |      |           |          |       |  |  |
| PSS_RA                                                   |            |      |          |      |           |          |       |  |  |
| SSS_RA                                                   |            |      |          |      |           |          |       |  |  |
| PCFICH_RB                                                |            |      |          |      |           |          |       |  |  |
| PHICH_RA                                                 |            |      |          |      |           |          |       |  |  |
| PHICH_RB                                                 | dB         |      | 0        |      | 0         |          |       |  |  |
| PDCCH_RA                                                 |            |      |          |      |           |          |       |  |  |
| PDCCH_RB                                                 |            |      |          |      |           |          |       |  |  |
| PDSCH_RA                                                 |            |      |          |      |           |          |       |  |  |
| PDSCH_RB                                                 |            |      |          |      |           |          |       |  |  |
| OCNG_RA <sup>Note 1</sup>                                |            |      |          |      |           |          |       |  |  |
| OCNG_RB <sup>Note 1</sup>                                |            |      |          |      |           |          |       |  |  |
| Qrxlevmin                                                | dBm        | -140 | -140     | -140 | -140      | -140     | -140  |  |  |
| Pcompensation                                            | dB         | 0    | 0        | 0    | 0         | 0        | 0     |  |  |
| Qhyst <sub>s</sub>                                       | dB         | 0    | 0        | 0    | 0         | 0        | 0     |  |  |
| Qoffset <sub>s, n</sub>                                  | dB         | 0    | 0        | 0    | 0         | 0        | 0     |  |  |
| Cell_selection_and_                                      |            |      |          |      |           |          |       |  |  |
| reselection_quality_                                     |            |      | RSRP     |      |           | RSRP     |       |  |  |
| measurement                                              |            |      |          |      |           |          |       |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 16   | -3.11    | 2.79 | -infinity | 2.79     | -3.11 |  |  |
| $N_{oc}^{ m Note2}$                                      | dBm/15 kHz |      |          |      | -98       |          |       |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 16   | 13       | 16   | -infinity | 16       | 13    |  |  |
| RSRP Note3                                               | dBm/15 kHz | -82  | -85      | -82  | -infinity | -82      | -85   |  |  |
| Treselection                                             | S          | 0    | 0        | 0    | 0         | 0        | 0     |  |  |
| Sintrasearch                                             | dB         |      | Not sent |      |           | Not sent |       |  |  |
| Propagation<br>Condition                                 |            |      |          |      | AWGN      |          |       |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

subcarriers and time and shall be modelled as AWGN of appropriate power for  $\frac{N_{oc}}{N_{oc}}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.4.2.1.2 Test Requirements

The cell reselection delay to a newly detectable cell is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

The cell re-selection delay to a newly detectable cell shall be less than 34 s.

The cell reselection delay to an already detected cell is defined as the time from the beginning of time period T3, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 1.

The cell re-selection delay to an already detected cell shall be less than 8 s.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to a newly detectable cell can be expressed as:  $T_{\text{detect}, \text{EUTRAN\_Intra}} + T_{\text{SI}}$ , and to an already detected cell can be expressed as:  $T_{\text{evaluateFDD.intra}} + T_{\text{SI}}$ ,

#### Where:

T<sub>detect,EUTRAN\_Intra</sub> See Table 4.2.2.3-1 in section 4.2.2.3

T<sub>evaluateFDD,intra</sub> See Table 4.2.2.3-1 in section 4.2.2.3

T<sub>SI</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE to

camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 33.28 s, allow 34 s for the cell re-selection delay to a newly detectable cell and 7.68 s, allow 8 s for the cell re-selection delay to an already detected cell in the test case.

# A.4.2.2 E-UTRAN TDD – TDD Intra frequency case

### A.4.2.2.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD intra frequency cell reselection requirements specified in section 4.2.2.3.

The test scenario comprises of 1 E-UTRA TDD carrier and 2 cells as given in tables A.4.2.2.1-1 and A.4.2.2.1-2. The test consists of three successive time periods, with time duration of T1, T2, and T3 respectively. Only cell 1 is already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.2.1-1: General test parameters for TDD intra frequency cell re-selection test case

| F               | Parameter                         | Unit | Value    | Comment                                                                                                                                                                                                             |
|-----------------|-----------------------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial         | Active cell                       |      | Cell1    |                                                                                                                                                                                                                     |
| condition       | Neighbour cells                   |      | Cell2    |                                                                                                                                                                                                                     |
| T2 end          | Active cell                       |      | Cell2    |                                                                                                                                                                                                                     |
| condition       | Neighbour cells                   |      | Cell1    |                                                                                                                                                                                                                     |
| Final condition | Visited cell                      |      | Cell1    |                                                                                                                                                                                                                     |
| E-UTRA R        | F Channel Number                  |      | 1        | Only one TDD carrier frequency is used.                                                                                                                                                                             |
| Channel B       | andwidth (BW <sub>channel</sub> ) | MHz  | 10       |                                                                                                                                                                                                                     |
| Time offset     | t between cells                   | μs   | 3        | Synchronous cells                                                                                                                                                                                                   |
| Access Ba       | rring Information                 | -    | Not Sent | No additional delays in random access procedure.                                                                                                                                                                    |
| Special sul     | oframe configuration              |      | 6        | As specified in table 4.2-1 in 3GPP TS 36.211                                                                                                                                                                       |
| Uplink-dow      | nlink configuration               |      | 1        | As specified in table 4.2-2 in 3GPP TS 36.211                                                                                                                                                                       |
| PRACH co        | nfiguration index                 |      | 53       | As specified in table 5.7.1-3 in 3GPP TS 36.211                                                                                                                                                                     |
| DRX cycle       | length                            | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                                                                                  |
| T1              |                                   | S    | >7       | During T1, Cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that Cell 2 has not been detected by the UE prior to the start of period T2 |
| T2              |                                   | S    | 40       | T2 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                |
| Т3              |                                   | S    | 15       | T3 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                |

Table A.4.2.2.1-2: Cell specific test parameters for TDD intra frequency cell re-selection test case in AWGN

| Parameter                                                | Unit                                                                                                                     |                | Cell 1      |           |                | Cell 2         |       |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------|----------------|----------------|-------|--|
|                                                          |                                                                                                                          | T1             | T2          | T3        | T1             | T2             | T3    |  |
| E-UTRA RF Channel                                        |                                                                                                                          |                | 1           |           |                | 1              | l .   |  |
| Number                                                   |                                                                                                                          |                |             |           |                |                |       |  |
| BW <sub>channel</sub>                                    | MHz                                                                                                                      |                | 10          |           | 10             |                |       |  |
| OCNG Pattern                                             |                                                                                                                          |                |             |           | .,             |                |       |  |
| defined in A.3.2.2.2                                     |                                                                                                                          | OF             | P.2 TDD     |           | OI             | P.2 TDD        |       |  |
| (OP.2 TDD)                                               |                                                                                                                          |                |             |           |                |                |       |  |
| PBCH_RA                                                  |                                                                                                                          |                |             |           |                |                |       |  |
| PBCH_RB                                                  |                                                                                                                          |                |             |           |                |                |       |  |
| PSS_RA                                                   |                                                                                                                          |                |             |           |                |                |       |  |
| SSS_RA                                                   |                                                                                                                          |                |             |           |                |                |       |  |
| PCFICH_RB                                                |                                                                                                                          |                |             |           |                |                |       |  |
| PHICH_RA                                                 |                                                                                                                          |                |             |           |                |                |       |  |
| PHICH_RB                                                 | dB                                                                                                                       |                | 0           |           |                | 0              |       |  |
| PDCCH_RA                                                 |                                                                                                                          |                |             |           |                |                |       |  |
| PDCCH_RB                                                 |                                                                                                                          |                |             |           |                |                |       |  |
| PDSCH_RA                                                 |                                                                                                                          |                |             |           |                |                |       |  |
| PDSCH_RB                                                 |                                                                                                                          |                |             |           |                |                |       |  |
| OCNG_RA <sup>Note 1</sup>                                |                                                                                                                          |                |             |           |                |                |       |  |
| OCNG_RB <sup>Note 1</sup>                                |                                                                                                                          |                |             |           |                |                |       |  |
| Qrxlevmin                                                | dBm                                                                                                                      | -140           |             |           |                | -140           |       |  |
| Pcompensation                                            | dB                                                                                                                       |                | 0           |           |                | 0              |       |  |
| Qhysts                                                   | dB                                                                                                                       |                | 0           |           |                | 0              |       |  |
| Qoffset <sub>s, n</sub>                                  | dB                                                                                                                       |                | 0           |           |                | 0              |       |  |
| Cell_selection_and_                                      |                                                                                                                          |                |             |           |                |                |       |  |
| reselection_quality_                                     |                                                                                                                          | RSRP           |             |           | RSRP           |                |       |  |
| measurement                                              |                                                                                                                          |                |             |           |                |                |       |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB                                                                                                                       | 16             | -3.11       | 2.79      | -infinity      | 2.79           | -3.11 |  |
| $N_{oc}^{ m Note2}$                                      | dBm/15 kHz                                                                                                               |                |             | -         | 98             |                |       |  |
| $\hat{E}_s/N_{oc}$                                       | dB                                                                                                                       | 16             | 13          | 16        | -infinity      | 16             | 13    |  |
| RSRP Note3                                               | dBm/15 kHz                                                                                                               | -82            | -85         | -82       | -infinity      | -82            | -85   |  |
| Treselection                                             | S                                                                                                                        | 0              | 0           | 0         | 0              | 0              | 0     |  |
| Sintrasearch                                             | dB                                                                                                                       | N              | ot sent     | l.        | ٨              | lot sent       | I.    |  |
| Propagation                                              |                                                                                                                          |                |             | AV        | VGN            |                |       |  |
| Condition                                                |                                                                                                                          |                |             |           |                |                |       |  |
|                                                          | be used such that                                                                                                        | t both cells a | are fully a | allocated | and a const    | tant total     |       |  |
| transmitted                                              | mitted power spectral density is achieved for all OFDM symbols.                                                          |                |             |           |                |                |       |  |
|                                                          | rom other cells and r                                                                                                    |                |             |           |                |                |       |  |
| over subcarri<br>fulfilled.                              | ers and time and sha                                                                                                     | all be modelle | d as AWG    | N of app  | ropriate power | r for $N_{oc}$ | to be |  |
|                                                          | SRP levels have been derived from other parameters for information purposes. They are not ettable parameters themselves. |                |             |           |                | not            |       |  |

# A.4.2.2.2 Test Requirements

The cell reselection delay to a newly detectable cell is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

The cell re-selection delay to a newly detectable cell shall be less than 34 s.

The cell reselection delay to an already detected cell is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to a newly detectable cell can be expressed as:  $T_{\text{detect,EUTRAN\_Intra}} + T_{\text{SI-EUTRAN}}$ , and to an already detected cell can be expressed as:  $T_{\text{evaluate, E-UTRAN\_intra}} + T_{\text{SI-EUTRAN}}$ ,

#### Where:

T<sub>detect,EUTRAN\_Intra</sub> See Table 4.2.2.3-1 in section 4.2.2.3

 $T_{evaluate, E\text{-}UTRAN\_\,intra} \quad See \; Table \; 4.2.2.3\text{-}1 \; in \; section \; 4.2.2.3$ 

T<sub>SI-EUTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 33.28 s, allow 34 s for the cell re-selection delay to a newly detectable cell and 7.68 s, allow 8 s for the cell re-selection delay to an already detected cell in the test case.

### A.4.2.3 E-UTRAN FDD – FDD Inter frequency case

# A.4.2.3.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD inter-frequency cell reselection requirements specified in section 4.2.2.4.

The test scenario comprises of 2 E-UTRA FDD cells on 2 different carriers as given in tables A.4.2.3.1-1 and A.4.2.3.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 2 is of higher priority than cell 1. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.3.1-1: General test parameters for FDD-FDD inter frequency cell re-selection test case

|                      | Parameter         | Unit | Value    | Comment                                                                                                                                                                                                              |
|----------------------|-------------------|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial<br>condition | Active cell       |      | Cell2    | UE shall be forced to cell 2 in the initialisation phase, so that reselection to cell 1 occurs during the first T1 phase                                                                                             |
| T1 end               | Active cell       |      | Cell1    | UE shall perform reselection to cell 1 during T1                                                                                                                                                                     |
| condition            | Neighbour cell    |      | Cell2    |                                                                                                                                                                                                                      |
| Final condition      | Active cell       |      | Cell2    | UE shall perform reselection to cell 2 during T3                                                                                                                                                                     |
| E-UTRA R             | F Channel Number  |      | 1, 2     | Two FDD carrier frequencies are used.                                                                                                                                                                                |
| Time offse           | t between cells   |      | 3 ms     | Asynchronous cells                                                                                                                                                                                                   |
| PRACH co             | onfiguration      |      | 4        | As specified in table 5.7.1-2 in TS 36.211                                                                                                                                                                           |
| Access Ba            | rring Information | -    | Not Sent | No additional delays in random access procedure.                                                                                                                                                                     |
| DRX cycle            | length            | s    | 1.28     | The value shall be used for all cells in the test.                                                                                                                                                                   |
| T1                   | •                 | S    | 15       | T1 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |
| T2                   |                   | S    | >7       | During T2, cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T3. |
| T3                   |                   | S    | 75       | T3 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |

Table A.4.2.3.1-2: Cell specific test parameters for FDD-FDD inter-frequency cell reselection test case in AWGN

| Parameter                                                | Unit       | (    | Cell 1  |     |          | Cell 2    |     |
|----------------------------------------------------------|------------|------|---------|-----|----------|-----------|-----|
|                                                          |            | T1   | T2      | T3  | T1 T2 T3 |           |     |
| E-UTRA RF Channel                                        |            |      | 1       | •   |          | 2         |     |
| number                                                   |            |      |         |     |          |           |     |
| BW <sub>channel</sub>                                    | MHz        |      | 10      |     |          | 10        |     |
| OCNG Patterns defined in                                 |            |      |         |     |          |           |     |
| A.3.2.1.1 (OP.2 FDD)                                     |            | OF   | 2.2 FDD |     |          | OP.2 FDD  |     |
| PBCH_RA                                                  | dB         |      |         |     |          |           |     |
| PBCH_RB                                                  | dB         |      |         |     |          |           |     |
| PSS_RA                                                   | dB         |      |         |     |          |           |     |
| SSS_RA                                                   | dB         |      |         |     |          |           |     |
| PCFICH_RB                                                | dB         |      |         |     |          |           |     |
| PHICH_RA                                                 | dB         |      | _       |     | 0        |           |     |
| PHICH_RB                                                 | dB         |      | 0       |     |          |           |     |
| PDCCH_RA                                                 | dB         |      |         |     |          |           |     |
| PDCCH_RB                                                 | dB         |      |         |     |          |           |     |
| PDSCH_RA                                                 | dB         |      |         |     |          |           |     |
| PDSCH_RB                                                 | dB         |      |         |     |          |           |     |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |         |     |          |           |     |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |         |     |          |           |     |
| Qrxlevmin                                                | dBm        |      | -140    |     | -140     |           |     |
| $N_{oc}^{ m Note  2}$                                    | dBm/15 kHz |      |         |     | -98      |           |     |
| RSRP Note 3                                              | dBm/15 KHz | -84  | -84     | -84 | -102     | -infinity | -86 |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 14   | 14      | 14  | -4       | -infinity | 12  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 14   | 14      | 14  | -4       | -infinity | 12  |
| Treselection <sub>EUTRAN</sub>                           | S          | 0    |         |     |          | 0         |     |
| Snonintrasearch                                          | dB         |      | 50      |     |          | Not sent  |     |
| Thresh <sub>x, high</sub>                                | dB         |      | 48      |     |          | 48        |     |
| Thresh <sub>serving, low</sub>                           | dB         |      | 44      |     |          | 44        |     |
| Thresh <sub>x, low</sub>                                 | dB         | 50   |         |     | 50       |           |     |
| Propagation Condition                                    |            | AWGN |         |     |          |           |     |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.4.2.3.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

The cell re-selection delay to higher priority shall be less than 68 s.

The cell reselection delay to lower priority is defined as the time from the beginning of time period T1, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to lower priority shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as:  $T_{higher\_priority\_search} + T_{evaluateFDD,inter} + T_{SI}$ , and to lower priority cell can be expressed as:  $T_{evaluateFDD,inter} + T_{SI}$ ,

#### Where:

 $T_{higher\_priority\_search}$  See section 4.2.2

T<sub>evaluateFDD,inter</sub> See Table 4.2.2.4-1 in section 4.2.2.4

T<sub>SI</sub> Maximum repetition period of relevant system info blocks that needs to be received by the

UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 67.68 s for higher priority cell search and 7.68 s for lower priority cell search, allow 68 s for higher priority cell and 8 s for lower priority cell in the test case.

# A.4.2.4 E-UTRAN FDD – TDD Inter frequency case

### A.4.2.4.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-TDD inter-frequency cell reselection requirements specified in section 4.2.2.4.

The test scenario comprises of 1 E-UTRA FDD cell and 1 E-UTRA TDD cell as given in tables A.4.2.4.1-1 and A.4.2.4.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 2 is of higher priority than cell 1. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.4.1-1: General test parameters for FDD-TDD inter frequency cell re-selection test case

|                                   | Parameter            | Unit | Value    | Comment                                                                                                                                                                                                              |
|-----------------------------------|----------------------|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial                           | Active cell          |      | Cell2    | UE shall be forced to cell 2 in the initialisation                                                                                                                                                                   |
| condition                         |                      |      |          | phase, so that reselection to cell 1 occurs during                                                                                                                                                                   |
|                                   |                      |      |          | the first T1 phase                                                                                                                                                                                                   |
| T1 end                            | Active cell          |      | Cell1    | UE shall perform reselection to cell 1 during T1                                                                                                                                                                     |
| condition                         | Neighbour cell       |      | Cell2    |                                                                                                                                                                                                                      |
| Final condition                   | Active cell          |      | Cell2    | UE shall perform reselection to cell 2 during T3                                                                                                                                                                     |
| Cell 1 E-U <sup>-</sup><br>Number | TRA RF Channel       |      | 1        | One FDD carrier frequency is used. And Cell 1 is on RF channel number 1.                                                                                                                                             |
| Number                            | TRA RF Channel       |      | 2        | One TDD carrier frequencies is used. And Cell 2 is on RF channel number 2.                                                                                                                                           |
| Time offset                       | t between cells      |      | 3 ms     | Asynchronous cells                                                                                                                                                                                                   |
| E-UTRA FI configuration           | DD PRACH<br>on       |      | 4        | As specified in table 5.7.1-2 in 3GPP TS 36.211                                                                                                                                                                      |
| E-UTRA TI configuration           | E-UTRA TDD PRACH     |      | 53       | As specified in table 5.7.1-3 in 3GPP TS 36.211                                                                                                                                                                      |
| Special sul                       | oframe configuration |      | 6        | As specified in table 4.2-1 in 3GPP TS 36.211                                                                                                                                                                        |
| Uplink-dow                        | nlink configuration  |      | 1        | As specified in table 4.2-2 in 3GPP TS 36.211                                                                                                                                                                        |
| E-UTRA FI<br>Information          | DD Access Barring    | -    | Not Sent | No additional delays in random access procedure.                                                                                                                                                                     |
| E-UTRA TI<br>Information          | DD Access Barring    | -    | Not Sent | No additional delays in random access procedure.                                                                                                                                                                     |
| DRX cycle                         | length               | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                                                                                   |
| T1                                | _                    | S    | 15       | T1 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |
| T2                                |                      | S    | >7       | During T2, cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T3. |
| T3                                |                      | S    | 75       | T3 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |

Table A.4.2.4.1-2: Cell specific test parameters for FDD-TDD inter-frequency cell reselection test case in AWGN

| Parameter                        | Unit              | C            | Cell 1     |         |             | Cell 2          |      |
|----------------------------------|-------------------|--------------|------------|---------|-------------|-----------------|------|
|                                  |                   | T1           | T2         | T3      | T1          | T2              | T3   |
| E-UTRA RF Channel                |                   |              | 1          |         |             | 2               |      |
| number                           |                   |              |            |         |             |                 |      |
| BW <sub>channel</sub>            | MHz               |              | 10         |         |             | 10              |      |
| OCNG Patterns defined in         |                   |              |            |         |             |                 |      |
| A.3.2.1.1 (OP.2 FDD) and         |                   | OP           | .2 FDD     |         |             | OP.2 TDD        |      |
| A.3.2.2.2 (OP.2 TDD)             |                   |              |            |         |             |                 |      |
| PBCH_RA                          | dB                |              |            |         |             |                 |      |
| PBCH_RB                          | dB                |              |            |         |             |                 |      |
| PSS_RA                           | dB                |              |            |         |             |                 |      |
| SSS_RA                           | dB                |              |            |         |             |                 |      |
| PCFICH_RB                        | dB                |              |            |         |             |                 |      |
| PHICH_RA                         | dB                |              | _          |         | 0           |                 |      |
| PHICH_RB                         | dB                |              | 0          |         |             |                 |      |
| PDCCH_RA                         | dB                |              |            |         |             |                 |      |
| PDCCH_RB                         | dB                |              |            |         |             |                 |      |
| PDSCH_RA                         | dB                |              |            |         |             |                 |      |
| PDSCH_RB                         | dB                |              |            |         |             |                 |      |
| OCNG_RA <sup>Note 1</sup>        | dB                |              |            |         |             |                 |      |
| OCNG_RB <sup>Note 1</sup>        | dB                |              |            |         |             |                 |      |
| Qrxlevmin                        | dBm               |              | -140       |         | -140        |                 |      |
| $N_{oc}^{ m Note~2}$             | dBm/15 kHz        |              |            |         | -98         |                 |      |
| RSRP Note 3                      | dBm/15 KHz        | -84          | -84        | -84     | -102        | -infinity       | -86  |
| $\hat{E}_{_{ m s}}/I_{_{ m ot}}$ | dB                | 14           | 14         | 14      | -4          | -infinity       | 12   |
| $\hat{E}_s/N_{oc}$               | dB                | 14 14 14 -4  |            |         | -4          | -infinity       | 12   |
| Treselection <sub>EUTRAN</sub>   | S                 | 0            |            |         |             | 0               |      |
| Snonintrasearch                  | dB                |              | 50         |         |             | Not sent        |      |
| Thresh <sub>x, high</sub>        | dB                |              | 48         |         |             | 48              |      |
| Thresh <sub>serving, low</sub>   | dB                |              | 44         |         |             | 44              |      |
| Thresh <sub>x, low</sub>         | dB                | 50 50        |            |         | 50          |                 |      |
| Propagation Condition            |                   | AWGN         |            |         |             |                 |      |
| Note 1: OCNG shall be use        | ad such that both | colle are fu | lly alloca | tad and | d a constan | t total transmi | ttad |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.4.2.4.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 2.

The cell re-selection delay to higher priority shall be less than 68 s.

The cell reselection delay to lower priority is defined as the time from the beginning of time period T1, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to lower priority shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as:  $T_{higher\_priority\_search} + T_{evaluate,E-UTRAN\_inter} + T_{SI-EUTRA}$ , and to lower priority cell can be expressed as:  $T_{evaluate,E-UTRAN\_inter} + T_{SI-EUTRA}$ ,

#### Where:

 $T_{higher\_priority\_search}$  See section 4.2.2

 $T_{evaluate, E\text{-}UTRAN\_inter} \quad See \ Table \ 4.2.2.4\text{-}1 \ in section} \ 4.2.2.4$ 

T<sub>SI-EUTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 67.68 s for higher priority cell search and 7.68 s for lower priority cell search, allow 68 s for higher priority cell and 8 s for lower priority cell in the test case.

### A.4.2.5 E-UTRAN TDD – FDD Inter frequency case

# A.4.2.5.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-FDD inter-frequency cell reselection requirements specified in section 4.2.2.4.

The test scenario comprises of 1 E-UTRA TDD cell and 1 E-UTRA FDD cell as given in tables A.4.2.5.1-1 and A.4.2.5.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 2 is of higher priority than cell 1. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.5.1-1: General test parameters for TDD-FDD inter frequency cell re-selection test case

|                 | Parameter            | Unit | Value    | Comment                                                                    |    |                                                 |
|-----------------|----------------------|------|----------|----------------------------------------------------------------------------|----|-------------------------------------------------|
| Initial         | Active cell          |      | Cell2    | UE shall be forced to cell 2 in the initialisation                         |    |                                                 |
| condition       |                      |      |          | phase, so that reselection to cell 1 occurs during                         |    |                                                 |
|                 |                      |      |          | the first T1 phase                                                         |    |                                                 |
| T1 end          | Active cell          |      | Cell1    | UE shall perform reselection to cell 1 during T1                           |    |                                                 |
| condition       | Neighbour cell       |      | Cell2    |                                                                            |    |                                                 |
| Final condition | Active cell          |      | Cell2    | UE shall perform reselection to cell 2 during T3                           |    |                                                 |
| Cell 1 E-U      | TRA RF Channel       |      | 1        | One TDD carrier frequency is used. And Cell 1 is on RF channel number 1.   |    |                                                 |
|                 | TRA RF Channel       |      | 2        |                                                                            |    |                                                 |
| Number          |                      |      | 2        | One FDD carrier frequencies is used. And Cell 2 is on RF channel number 2. |    |                                                 |
| Time offse      | t between cells      |      | 3 ms     | Asynchronous cells                                                         |    |                                                 |
| E-UTRA TI       | E-UTRA TDD PRACH     |      |          |                                                                            | 53 | As specified in table 5.7.1-3 in 3GPP TS 36.211 |
|                 | bframe configuration |      | 6        | As specified in table 4.2-1 in 3GPP TS 36.211                              |    |                                                 |
| Uplink-dow      | vnlink configuration |      | 1        | As specified in table 4.2-2 in 3GPP TS 36.211                              |    |                                                 |
| E-UTRA F        | DD PRACH<br>on       |      | 4        | As specified in table 5.7.1-2 in 3GPP TS 36.211                            |    |                                                 |
|                 | DD Access Barring    | -    | Not Sent | No additional delays in random access procedure.                           |    |                                                 |
| E-UTRA T        | DD Access Barring    | -    | Not Sent | No additional delays in random access                                      |    |                                                 |
| Information     | า                    |      |          | procedure.                                                                 |    |                                                 |
| DRX cycle       | length               | S    | 1.28     | The value shall be used for all cells in the test.                         |    |                                                 |
| T1              |                      | S    | 15       | T1 need to be defined so that cell re-selection                            |    |                                                 |
|                 |                      |      |          | reaction time is taken into account.                                       |    |                                                 |
| T2              |                      | S    | >7       | During T2, cell 2 shall be powered off, and                                |    |                                                 |
|                 |                      |      |          | during the off time the physical cell identity shall                       |    |                                                 |
|                 |                      |      |          | be changed, The intention is to ensure that cell 2                         |    |                                                 |
|                 |                      |      |          | has not been detected by the UE prior to the                               |    |                                                 |
| T3              |                      | s    | 75       | start of period T3.  T3 need to be defined so that cell re-selection       |    |                                                 |
| 13              |                      | 5    | 13       | reaction time is taken into account.                                       |    |                                                 |
|                 |                      |      |          | ו המטנוטוז נווווה וא נמגבוו ווונט מטטטעוונ.                                |    |                                                 |

Table A.4.2.5.1-2: Cell specific test parameters for TDD-FDD inter-frequency cell reselection test case in AWGN

| Parameter                      | Unit       | Cell 1 |          |     |      | Cell 2    |     |
|--------------------------------|------------|--------|----------|-----|------|-----------|-----|
|                                |            | T1     | T1 T2 T3 |     | T1   | T2        | T3  |
| E-UTRA RF Channel              |            |        | 1        |     |      | 2         |     |
| number                         |            |        |          |     |      |           |     |
| BW <sub>channel</sub>          | MHz        |        | 10       |     |      | 10        |     |
| OCNG Patterns defined in       |            |        |          |     |      |           |     |
| A.3.2.1.1 (OP.2 FDD) and       |            | OP     | .2 TDD   |     |      | OP.2 FDD  |     |
| A.3.2.2.2 (OP.2 TDD)           |            |        |          |     |      |           |     |
| PBCH_RA                        | dB         |        |          |     |      |           |     |
| PBCH_RB                        | dB         |        |          |     |      |           |     |
| PSS_RA                         | dB         |        |          |     |      |           |     |
| SSS_RA                         | dB         |        |          |     |      |           |     |
| PCFICH_RB                      | dB         |        |          |     |      |           |     |
| PHICH_RA                       | dB         |        | _        |     | 0    |           |     |
| PHICH_RB                       | dB         |        | 0        |     |      |           |     |
| PDCCH_RA                       | dB         |        |          |     |      |           |     |
| PDCCH_RB                       | dB         |        |          |     |      |           |     |
| PDSCH_RA                       | dB         |        |          |     |      |           |     |
| PDSCH_RB                       | dB         |        |          |     |      |           |     |
| OCNG_RA <sup>Note 1</sup>      | dB         |        |          |     |      |           |     |
| OCNG_RB <sup>Note 1</sup>      | dB         |        |          |     |      |           |     |
| Qrxlevmin                      | dBm        | -      | 140      |     | -140 |           |     |
| $N_{oc}^{ m Note~2}$           | dBm/15 kHz |        |          |     | -98  |           |     |
| RSRP Note 3                    | dBm/15 KHz | -84    | -84      | -84 | -102 | -infinity | -86 |
| $\hat{E}_{s}/I_{ot}$           | dB         | 14     | 14       | 14  | -4   | -infinity | 12  |
| $\hat{E}_s/N_{oc}$             | dB         | 14     | 14       | 14  | -4   | -infinity | 12  |
| Treselection <sub>EUTRAN</sub> | S          | 0      |          |     |      | 0         |     |
| Snonintrasearch                | dB         |        | 50       |     |      | Not sent  |     |
| Thresh <sub>x, high</sub>      | dB         |        | 48       | •   |      | 48        |     |
| Thresh <sub>serving, low</sub> | dB         |        | 44       |     | 44   |           |     |
| Thresh <sub>x, low</sub>       | dB         | 50     |          |     | 50   |           |     |
| Propagation Condition          |            | AWGN   |          |     |      |           |     |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.4.2.5.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 2.

The cell re-selection delay to higher priority shall be less than 68 s.

The cell reselection delay to lower priority is defined as the time from the beginning of time period T1, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to lower priority shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as:  $T_{higher\_priority\_search} + T_{evaluate,E-}$  $UTRAN\_inter + T_{SI-EUTRA}$ , and to lower priority cell can be expressed as:  $T_{evaluate,E-UTRAN\_inter} + T_{SI-EUTRA}$ ,

#### Where:

 $T_{higher\_priority\_search}$  See section 4.2.2

 $T_{evaluate, E\text{-}UTRAN\_inter} \quad See \ Table \ 4.2.2.4\text{-}1 \ in section} \ 4.2.2.4$ 

T<sub>SI-EUTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 67.68 s for higher priority cell search and 7.68 s for lower priority cell search, allow 68 s for higher priority cell and 8 s for lower priority cell in the test case.

# A.4.2.6 E-UTRAN TDD – TDD: Inter frequency case

# A.4.2.6.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD inter-frequency cell reselection requirements specified in section 4.2.2.4.

The test scenario comprises of 2 E-UTRA TDD cells on 2 different carriers as given in tables A.4.2.6.1-1 and A.4.2.6.1-2. The test consists of three successive time periods, with time duration of T1, T2, and T2 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 2 is of higher priority than cell 1. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.6.1-1: General test parameters for TDD-TDD inter frequency cell reselection test case

|                      | Parameter Unit Va           |   | Value                   | Comment                                                                                                                                                                                                              |   |                                               |
|----------------------|-----------------------------|---|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------|
| Initial<br>condition | Active cell                 |   | Cell2                   | UE shall be forced to cell 2 in the initialisation phase, so that reselection to cell 1 occurs during the first T1 phase                                                                                             |   |                                               |
| T1 end               | Active cells                |   | Cell1                   | UE shall perform reselection to cell 1 during T1                                                                                                                                                                     |   |                                               |
| condition            | Neighbour cell              |   | Cell2                   |                                                                                                                                                                                                                      |   |                                               |
| Final condition      | Active cell                 |   | Cell2                   | UE shall perform reselection to cell 2 during T3                                                                                                                                                                     |   |                                               |
| E-UTRA R             | F Channel Number            |   | 1, 2                    | Two TDD carrier frequencies are used.                                                                                                                                                                                |   |                                               |
| Time offset          | t between cells             |   | 3 μs                    | Synchronous cells                                                                                                                                                                                                    |   |                                               |
| Access Ba            | rring Information           | - | Not Sent                | No additional delays in random access procedure.                                                                                                                                                                     |   |                                               |
| Special sul          | bframe configuration        |   | 6                       | As specified in table 4.2-1 in 3GPP TS 36.211                                                                                                                                                                        |   |                                               |
| Uplink-dow           | link-downlink configuration |   | -downlink configuration |                                                                                                                                                                                                                      | 1 | As specified in table 4.2-2 in 3GPP TS 36.211 |
| PRACH co             | onfiguration index          |   | 53                      | As specified in table 5.7.1-3 in 3GPP TS 36.211                                                                                                                                                                      |   |                                               |
| DRX cycle            | length                      | S | 1.28                    | The value shall be used for all cells in the test.                                                                                                                                                                   |   |                                               |
| T1                   |                             | S | 15                      | T1 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |   |                                               |
| T2                   |                             | S | >7                      | During T2, cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T3. |   |                                               |
| Т3                   |                             | S | 75                      | T3 need to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |   |                                               |

Table A.4.2.6.1-2: Cell specific test parameters for TDD-TDD inter-frequency cell reselection test case in AWGN

| Parameter                                                | Unit         | Cell 1 |         |          | Cell 2   |           |     |  |  |
|----------------------------------------------------------|--------------|--------|---------|----------|----------|-----------|-----|--|--|
|                                                          |              | T1     | T2      | T3       | T1       | T2        | T3  |  |  |
| E-UTRA RF Channel                                        |              | 1      |         |          | 2        |           |     |  |  |
| number                                                   |              |        |         |          |          |           |     |  |  |
| BW <sub>channel</sub>                                    | MHz          |        | 10      |          |          | 10        |     |  |  |
| OCNG Pattern defined in                                  |              |        |         |          |          |           |     |  |  |
| A.3.2.2.2 (OP.2 TDD)                                     |              | 0      | P.2 TDD |          | OP.2 TDD |           |     |  |  |
| PBCH_RA                                                  | dB           |        |         |          |          |           |     |  |  |
| PBCH_RB                                                  | dB           |        |         |          |          |           |     |  |  |
| PSS_RA                                                   | dB           |        |         |          |          |           |     |  |  |
| SSS_RA                                                   | dB           |        |         |          |          |           |     |  |  |
| PCFICH_RB                                                | dB           |        |         |          |          |           |     |  |  |
| PHICH_RA                                                 | dB           |        | 0       |          | 0        |           |     |  |  |
| PHICH_RB                                                 | dB           |        |         |          |          |           |     |  |  |
| PDCCH_RA                                                 | dB           | 1      |         |          |          |           |     |  |  |
| PDCCH_RB                                                 | dB           | 7      |         |          |          |           |     |  |  |
| PDSCH_RA                                                 | dB           | ]      |         |          |          |           |     |  |  |
| PDSCH_RB                                                 | dB           | ]      |         |          |          |           |     |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB           | ]      |         |          |          |           |     |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB           | 1      |         |          |          |           |     |  |  |
| Qrxlevmin                                                | dBm          |        | -140    |          | -140     |           |     |  |  |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 kHz   | -98    |         |          |          |           |     |  |  |
| RSRP Note 3                                              | dBm/15 KHz   | -84    | -84     | -84      | -102     | -infinity | -86 |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB           | 14     | 14      | 14       | -4       | -infinity | 12  |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB           | 14 14  |         | 14       | -4       | -infinity | 12  |  |  |
| Treselection <sub>EUTRAN</sub>                           | S            | 0      |         |          | 0        |           |     |  |  |
| Snonintrasearch                                          | dB           | 50     |         | Not sent |          |           |     |  |  |
| Thresh <sub>x, high</sub>                                | dB           | 48 4   |         |          | 48       |           |     |  |  |
| Thresh <sub>serving, low</sub>                           | dB           | 44 44  |         |          | 44       | •         |     |  |  |
| Thresh <sub>x, low</sub>                                 | dB           | 50 50  |         |          |          |           |     |  |  |
| Propagation Condition                                    |              | AWGN   |         |          |          | •         |     |  |  |
| N. ( 4 00NO 1 III                                        | 1 1 (1 (1 (1 |        |         |          |          |           |     |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.4.2.6.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 2.

The cell re-selection delay to higher priority shall be less than 68 s.

The cell reselection delay to lower priority is defined as the time from the beginning of time period T1, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to lower priority shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as:  $T_{higher\_priority\_search} + T_{evaluate,E-}$  $UTRAN\_inter + T_{SI-EUTRA}$ , and to lower priority cell can be expressed as:  $T_{evaluate,E-UTRAN\_inter} + T_{SI-EUTRA}$ 

#### Where:

 $T_{higher\_priority\_search}$  See section 4.2.2

 $T_{evaluate, E\text{-}UTRAN\_inter} \quad See \ Table \ 4.2.2.4\text{-}1 \ in section} \ 4.2.2.4$ 

T<sub>SI-EUTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 67.68 s for higher priority cell search and 7.68 s for lower priority cell search, allow 68 s for higher priority cell and 8 s for lower priority cell in the test case.

# A.4.2.7 E-UTRAN FDD – FDD Inter frequency case in the existence of nonallowed CSG cell

# A.4.2.7.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD inter-frequency cell reselection requirements specified in section 4.2.2.4 when there is the interference from non-allowed CSG cell and the layers have equal priority.

The test scenario comprises of 2 E-UTRA FDD cells on 2 different carriers and 1 non-allowed E-UTRA FDD CSG cell as given in tables A.4.2.7.1-1 and A.4.2.7.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Cell 1 is already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 3 is a non-allowed CSG cell. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.7.1-1: General test parameters for FDD-FDD inter frequency cell re-selection test case with non-allowed CSG cell

|                 | Parameter         | Unit | Value    | Comment                                                                              |
|-----------------|-------------------|------|----------|--------------------------------------------------------------------------------------|
| Initial         | Active cell       |      | Cell1    | UE shall be forced to cell 1 in the initialisation                                   |
| condition       |                   |      |          | phase                                                                                |
| Final condition | Active cell       |      | Cell2    | UE shall perform reselection to cell 2 during T2                                     |
| E-UTRA R        | F Channel Number  |      | 1, 2     | Two FDD carrier frequencies are used.                                                |
| Time offse      | t between cells   |      | 3 ms     | Asynchronous cells                                                                   |
| PRACH co        | nfiguration       |      | 4        | As specified in table 5.7.1-2 in TS 36.211                                           |
| Access Ba       | rring Information | -    | Not Sent | No additional delays in random access procedure.                                     |
| DRX cycle       | length            | S    | 1.28     | The value shall be used for all cells in the test.                                   |
| T1              | -                 | S    | 15       | T1 need to be defined so that the non-allowed CSG cell is identified.                |
| T2              |                   | S    | 40       | T2 need to be defined so that cell re-selection reaction time is taken into account. |
| Т3              |                   | S    | 15       | T3 need to be defined so that whether cell reselection would not occur is insured.   |

Table A.4.2.7.1-2: Cell specific test parameters for FDD-FDD inter frequency cell re-selection test case with non-allowed CSG cell

| Parameter                                           | Unit          | Cell 1 |          |       |           | Cell 2 |     | Cell 3(Non-allowed CSG cell) |       |       |  |  |
|-----------------------------------------------------|---------------|--------|----------|-------|-----------|--------|-----|------------------------------|-------|-------|--|--|
|                                                     |               | T1     | T2       | T3    | T1        | T2     | Т3  | T1                           | T2    | Т3    |  |  |
| E-UTRA RF<br>Channel Number                         |               |        | 1        |       | 2         |        |     | 1                            |       |       |  |  |
| BW <sub>channel</sub>                               | MHz           |        | 10       |       |           | 10     |     |                              | 10    |       |  |  |
| OCNG Patterns<br>defined in A.3.2.1.2<br>(OP.2 FDD) |               |        | OP.2 FD[ | )     | OP.2 FDD  |        |     | OP.2 FDD                     |       |       |  |  |
| PBCH_RA                                             | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| PBCH_RB                                             | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| PSS_RA                                              | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| SSS_RA                                              | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| PCFICH_RB                                           | dB            |        |          |       | 0         |        |     |                              |       |       |  |  |
| PHICH_RA                                            | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| PHICH_RB                                            | dB            |        | _        |       |           |        |     |                              |       |       |  |  |
| PDCCH_RA                                            | dB            |        | 0        |       |           |        |     | 0                            |       |       |  |  |
| PDCCH_RB                                            | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| PDSCH_RA                                            | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| PDSCH_RB                                            | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| OCNG_RA <sup>Note 1</sup>                           | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| OCNG_RB <sup>Note</sup>                             | dB            |        |          |       |           |        |     |                              |       |       |  |  |
| Qrxlevmin                                           | dBm           |        | -140     |       | -140      |        |     |                              | -140  |       |  |  |
| Qqualmin                                            | dB            |        |          |       | 1         | -20    |     |                              |       |       |  |  |
| $N_{oc}$ Note 2                                     | dBm/15<br>kHz |        |          |       | -98       |        |     |                              |       |       |  |  |
| RSRP Note 3                                         | dBm/15<br>kHz | -90    | -90      | -85   | -Infinity | -85    | -90 | -90                          | -85   | -60   |  |  |
| RSRQ Note 3                                         | dB            | -14.1  | -17.1    | -35.8 |           |        |     | -14.1                        | -12.1 | -10.8 |  |  |
| $\hat{	extsf{E}}_{	extsf{s}}/	extsf{I}_{	ext{ot}}$  | dB            | -0.64  | -5.21    | -25   | -Infinity | 13     | 8   | -0.64                        | 4.36  | 24.8  |  |  |
| $\hat{E}_s/N_{oc}$                                  | dB            | 8      | 8        | 13    | -Infinity | 13     | 8   | 8                            | 13    | 38    |  |  |
| Treselection                                        | S             |        | 0        |       | 0         |        |     | 0                            |       |       |  |  |
| Snonintrasearch                                     | dB            | -10    |          |       | Not sent  |        |     | Not sent                     |       |       |  |  |
| Propagation Condition                               |               | AWGN   |          |       |           |        |     |                              |       |       |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and RSRQ levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.4.2.7.2 Test Requirements

The cell reselection delay to a newly detectable cell is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

The cell re-selection delay to a newly detectable cell shall be less than 34 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

The probability of reselection from Cell 2 to Cell 1 during T3 observed during testing shall be less than 10%.

NOTE: The cell re-selection delay to a newly detectable cell can be expressed as:  $T_{\text{detect}, \text{EUTRAN\_Inter}} + T_{\text{SI}}$ ,

Where:

T<sub>detect,EUTRAN\_Inter</sub> See Table 4.2.2.4-1 in section 4.2.2.4

 $T_{SI}$  Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 33.28 s, allow 34 s for the cell re-selection delay to a newly detectable cell in the test case.

# A.4.2.8 E-UTRAN TDD – TDD Inter frequency case in the existence of nonallowed CSG cell

# A.4.2.8.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD inter-frequency cell reselection requirements specified in section 4.2.2.4 when there is the interference from non-allowed CSG cell and the layers have equal priority.

The test scenario comprises of 2 E-UTRA TDD cells on 2 different carriers and 1 non-allowed E-UTRA TDD CSG cell as given in tables A.4.2.8.1-1 and A.4.2.8.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Cell 1 is already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 3 is a non-allowed CSG cell. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.8.1-1: General test parameters for TDD-TDD inter frequency cell re-selection test case with non-allowed CSG cell

|             | Parameter            | Unit | Value    | Comment                                            |
|-------------|----------------------|------|----------|----------------------------------------------------|
| Initial     | Active cell          |      | Cell1    | UE shall be forced to cell 1 in the initialisation |
| condition   |                      |      |          | phase                                              |
| Final       | Active cell          |      | Cell2    | UE shall perform reselection to cell 2 during T2   |
| condition   |                      |      |          |                                                    |
| E-UTRA RI   | F Channel Number     |      | 1, 2     | Two TDD carrier frequencies are used.              |
| Time offset | between cells        | μs   | 3        | Synchronous cells                                  |
| Uplink-dow  | nlink configuration  |      | 1        | As specified in table 4.2-2 in 3GPP TS 36.211      |
| Special sub | oframe configuration |      | 6        | As specified in table 4.2-1 in 3GPP TS 36.211      |
| PRACH co    | nfiguration          |      | 53       | As specified in table 5.7.1-3 in TS 36.211         |
| Access Bar  | rring Information    | -    | Not Sent | No additional delays in random access              |
|             |                      |      |          | procedure.                                         |
| DRX cycle   | length               | S    | 1.28     | The value shall be used for all cells in the test. |
| T1          |                      | S    | 15       | T1 need to be defined so that the non-allowed      |
|             |                      |      |          | CSG cell is identified.                            |
| T2          |                      | S    | 40       | T2 need to be defined so that cell re-selection    |
|             |                      |      |          | reaction time is taken into account.               |
| T3          |                      | S    | 15       | T3 need to be defined so that whether cell re-     |
|             |                      |      |          | selection would not occur is insured.              |

Table A.4.2.8.1-2: Cell specific test parameters for TDD-TDD inter frequency cell re-selection test case with non-allowed CSG cell

| Parameter                 | Unit  | Cell 1 |          | С     | ell 2     |       | Cell 3<br>(Non-allowed CSG cell) |          |          |       |
|---------------------------|-------|--------|----------|-------|-----------|-------|----------------------------------|----------|----------|-------|
|                           |       | T1     | T2       | T3    | T1        | T2    | T3                               | T1       | T2       | T3    |
| E-UTRA RF Channel         |       |        | 1        |       |           | 2     |                                  |          | 1        |       |
| Number                    |       |        |          |       |           |       |                                  |          |          |       |
| BW <sub>channel</sub>     | MHz   |        | 10       |       |           | 10    |                                  | 10       |          |       |
| OCNG Pattern defined in   |       | ,      | OP.2 TDI | `     | OP.2 TDD  |       |                                  | OP.2 TDD |          |       |
| A.3.2.2.2 (OP.2 TDD)      |       | ,      | JP.2 IDI | ,     | OF.       | 2 100 |                                  |          | OP.2 100 |       |
| PBCH_RA                   | dB    |        |          |       |           |       |                                  |          |          |       |
| PBCH_RB                   | dB    |        |          |       |           |       |                                  |          |          |       |
| PSS_RA                    | dB    |        |          |       |           |       |                                  |          |          |       |
| SSS_RA                    | dB    |        |          |       |           |       |                                  |          |          |       |
| PCFICH_RB                 | dB    |        |          |       |           |       |                                  |          |          |       |
| PHICH_RA                  | dB    |        |          |       |           |       |                                  |          |          |       |
| PHICH_RB                  | dB    |        | 0        |       |           | 0     |                                  |          | 0        |       |
| PDCCH_RA                  | dB    |        |          |       |           |       |                                  |          |          |       |
| PDCCH_RB                  | dB    |        |          |       |           |       |                                  |          |          |       |
| PDSCH_RA                  | dB    |        |          |       |           |       |                                  |          |          |       |
| PDSCH_RB                  | dB    |        |          |       |           |       |                                  |          |          |       |
| OCNG_RA <sup>Note 1</sup> | dB    |        |          |       |           |       |                                  |          |          |       |
| OCNG_RB <sup>Note 1</sup> | dB    |        |          |       |           |       |                                  |          |          |       |
| Qrxlevmin                 | dBm   | -140   |          |       | -140      |       |                                  |          | -140     |       |
| Qqualmin                  | dB    |        |          |       | -20       |       |                                  |          |          |       |
| $N_{oc}^{ m Note~2}$      | dBm/  |        |          |       |           | -98   |                                  |          |          |       |
|                           | 15kHz |        |          |       |           |       |                                  |          |          |       |
| RSRP Note 3               | dBm/  | -90    | -90      | -85   | -Infinity | -85   | -90                              | -90      | -85      | -60   |
|                           | 15kHz |        |          |       |           |       |                                  |          |          |       |
| RSRQ Note 3               | dB    | -14.1  | -17.1    | -35.8 |           |       |                                  | -14.1    | -12.1    | -10.8 |
| $\hat{E}_{s}/I_{ot}$      | dB    | -0.64  | -5.21    | -25   | -Infinity | 13    | 8                                | -0.64    | 4.36     | 24.8  |
| $\hat{E}_s/N_{oc}$        | dB    | 8      | 8        | 13    | -Infinity | 13    | 8                                | 8        | 13       | 38    |
| Treselection              | S     |        | 0        | •     | 0         |       |                                  | 0        |          |       |
| Snonintrasearch           | dB    |        | 10       |       | Not sent  |       |                                  | Not sent |          |       |
| Propagation Condition     |       |        |          |       |           | AWGN  |                                  |          |          |       |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over

subcarriers and time and shall be modelled as AWGN of appropriate power for  $^{N_{\it oc}}$  to be fulfilled.

Note 3: RSRP and RSRQ levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.4.2.8.2 Test Requirements

The cell reselection delay to a newly detectable cell is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

The cell re-selection delay to a newly detectable cell shall be less than 34 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

The probability of reselection from Cell 2 to Cell 1 during T3 observed during testing shall be less than 10%.

NOTE: The cell re-selection delay to a newly detectable cell can be expressed as:  $T_{detect,EUTRAN\_Inter} + T_{SI}$ ,

### Where:

T<sub>detect,EUTRAN\_Inter</sub> See Table 4.2.2.4-1 in section 4.2.2.4

T<sub>SI</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 33.28 s, allow 34 s for the cell re-selection delay to a newly detectable cell in the test case.A.4.3 E-UTRAN to UTRAN Cell Re-Selection

# A.4.3.1 E-UTRAN FDD – UTRAN FDD:

# A.4.3.1.1 EUTRA FDD-UTRA FDD cell reselection: UTRA FDD is of higher priority

### A.4.3.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRA FDD- UTRA FDD inter-RAT cell reselection requirements specified in section 4.2.2.5 when the UTRA cell is of higher priority.

The test scenario comprises of one E-UTRA FDD and one UTRA FDD cells as given in tables A.4.3.1.1.1-1, A.4.3.1.1.1-2 and A.4.3.1.1.1-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. E-UTRA cell 1 is already identified by the UE prior to the start of the test. Cell 2 is of higher priority than cell 1.

Table A.4.3.1.1.1-1: General test parameters for E-UTRA FDD- higher priority UTRA FDD inter RAT cell re-selection test case

|                   | Parameter          | Unit | Value    | Comment                                                                                                                                                                                                               |
|-------------------|--------------------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial condition | Active cell        |      | Cell 1   | UE is on cell 1 in the initialisation phase, so that reselection to cell 2 occurs during T2                                                                                                                           |
| T2 end            | Active cell        |      | Cell 2   | UE shall perform reselection to cell 2 during T2                                                                                                                                                                      |
| condition         | Neighbour cell     |      | Cell 1   |                                                                                                                                                                                                                       |
| T3 end            | Active cell        |      | Cell 1   | UE shall perform reselection to cell 1 during T3                                                                                                                                                                      |
| condition         | Neighbour cell     |      | Cell 2   |                                                                                                                                                                                                                       |
| E-UTRA P          | RACH configuration |      | 4        | As specified in table 5.7.1-2 in TS 36.211                                                                                                                                                                            |
| E_UTRA A          | Access Barring     | -    | Not Sent | No additional delays in random access                                                                                                                                                                                 |
| Information       | า                  |      |          | procedure.                                                                                                                                                                                                            |
| DRX cycle         | length             | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                                                                                    |
| T1                |                    | S    | >20      | During T1, cell 2 shall be powered off, and during the off time the primary scrambling code shall be changed. The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T2. |
| T2                |                    | S    | 85       | T2 needs to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |
| Т3                |                    | S    | 25       | T3 needs to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |

Table A.4.3.1.1.1-2: Cell specific test parameters for cell 1(E-UTRA)

| Parameter                          | Unit       | Cell 1   |          |     |  |  |
|------------------------------------|------------|----------|----------|-----|--|--|
|                                    |            | T1 T2 T3 |          |     |  |  |
| E-UTRA RF Channel                  |            | 1        |          |     |  |  |
| number                             |            |          |          |     |  |  |
| BW <sub>channel</sub>              | MHz        |          | 10       |     |  |  |
| OCNG Patterns defined in           |            |          |          |     |  |  |
| A.3.2.1.2 (OP.2 FDD)               |            | (        | OP.2 FDD | )   |  |  |
| PBCH_RA                            | dB         |          |          |     |  |  |
| PBCH_RB                            | dB         |          |          |     |  |  |
| PSS_RA                             | dB         |          |          |     |  |  |
| SSS_RA                             | dB         |          |          |     |  |  |
| PCFICH_RB                          | dB         |          |          |     |  |  |
| PHICH_RA                           | dB         |          | _        |     |  |  |
| PHICH_RB                           | dB         |          | 0        |     |  |  |
| PDCCH_RA                           | dB         |          |          |     |  |  |
| PDCCH_RB                           | dB         |          |          |     |  |  |
| PDSCH_RA                           | dB         |          |          |     |  |  |
| PDSCH_RB                           | dB         |          |          |     |  |  |
| OCNG_RA <sup>Note 1</sup>          | dB         |          |          |     |  |  |
| OCNG_RB <sup>Note 1</sup>          | dB         |          |          |     |  |  |
| Qqualmin for UTRA                  | dB         |          | -20      |     |  |  |
| neighbour cell                     | uБ         |          | -20      |     |  |  |
| Qrxlevmin for UTRA                 | dBm        |          | -115     |     |  |  |
| neighbour cell                     | UDIII      |          | -113     |     |  |  |
| Qrxlevmin                          | dBm        |          | -140     |     |  |  |
| $N_{oc}$                           | dBm/15 kHz |          | -98      |     |  |  |
| RSRP                               | dBm/15 KHz | -84      | -84      | -84 |  |  |
| $\hat{E}_{s}/I_{ot}$               | dB         | 14 14 14 |          |     |  |  |
| $\hat{E}_s/N_{oc}$                 | dB         | 14 14 14 |          |     |  |  |
| Treselection <sub>EUTRAN</sub>     | S          | 0        |          |     |  |  |
| Snonintrasearch                    | dB         | 50       |          |     |  |  |
| Thresh <sub>x, high</sub> (Note 2) | dB         | 40       |          |     |  |  |
| Propagation Condition              |            | AWGN     |          |     |  |  |

Note 2: This refers to the value of Thresh<sub>x, high</sub> which is included in E-UTRA system information, and is a threshold for the UTRA target cell

Table A.4.3.1.1.1-3: Cell specific test parameters for cell 2(UTRA)

| Parameter              | Unit            | Cell 2 (UTRA) |        |        |  |
|------------------------|-----------------|---------------|--------|--------|--|
|                        |                 | T1            | T2     | T3     |  |
| UTRA RF Channel Number |                 | Channel       | 2      |        |  |
| CPICH_Ec/lor           | dB              |               | -10    |        |  |
| PCCPCH_Ec/lor          | dB              |               | -12    |        |  |
| SCH_Ec/lor             | dB              |               | -12    |        |  |
| PICH_Ec/lor            | dB              | -15           |        |        |  |
| OCNS_Ec/lor            | dB              | -0.941        |        |        |  |
| $\hat{I}_{or}/I_{oc}$  | dB              | -infinity     | 11     | -5     |  |
| $I_{oc}$               | dBm/3,84<br>MHz | -70           |        |        |  |
| CPICH_Ec/lo            | dB              | -infinity     | -10.33 | -16.19 |  |
| CPICH_RSCP             | dBm             | -infinity     | -69    | -85    |  |
| Propagation Condition  |                 | AWGN          |        |        |  |
| Qqualmin               | dB              | -20           |        |        |  |
| Qrxlevmin              | dBm             | -115          |        |        |  |
| QrxlevminEUTRA         | dBm             |               | -140   |        |  |

| UE_TXPWR_MAX_RACH                                                                     | dBm | 21 |  |  |  |
|---------------------------------------------------------------------------------------|-----|----|--|--|--|
| Treselection                                                                          | S   | 0  |  |  |  |
| Sprioritysearch1                                                                      | dB  | 62 |  |  |  |
| Sprioritysearch2                                                                      | dB  | 0  |  |  |  |
| Thresh <sub>serving, low</sub>                                                        | dB  | 36 |  |  |  |
| Thresh <sub>x, low</sub> (Note 1)                                                     | dB  | 50 |  |  |  |
| Note 1: his refers to the value of Thresh <sub>x, low</sub> which is included in UTRA |     |    |  |  |  |
| system information, and is a threshold for the E-UTRA target                          |     |    |  |  |  |

# A.4.3.1.1.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to higher priority shall be less than  $81\ s.$ 

cell

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as:  $T_{higher\_priority\_search} + T_{evaluateUTRA\_FDD} + T_{SI-UTRA}$ 

#### Where:

 $T_{higher\_priority\_search}$  See section 4.2.2; 60s is assumed in this test case

T<sub>evaluateUTRA-FDD</sub> See Table 4.2.2.5.1-1

T<sub>SI-UTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 80.48 s for higher priority cell search, allow 81 s for higher priority cell reselection in the test case.

# A.4.3.1.2 EUTRA FDD-UTRA FDD cell reselection: UTRA FDD is of lower priority

#### A.4.3.1.2.1 Test Purpose and Environment

This test is to verify the requirement for the EUTRA FDD- UTRA FDD inter-RAT cell reselection requirements specified in section 4.2.2.5.1 when the UTRA cell is of lower priority.

The test scenario comprises of one UTRA FDD and one E-UTRA FDD cells as given in tables A.4.3.1.2.1-1, A.4.3.1.2.1-2 and A.4.3.1.2.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRA cell 1 and UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of lower priority than cell 1.

Table A.4.3.1.2.1-1: General test parameters for EUTRA FDD- lower priority UTRA FDD inter RAT cell re-selection test case

|                      | Parameter          | Unit | Value    | Comment                                                                                |
|----------------------|--------------------|------|----------|----------------------------------------------------------------------------------------|
| Initial condition    | Active cell        |      | Cell 1   | E-UTRAN cell                                                                           |
| T1 end condition     | Active cell        |      | Cell1    | UE shall perform reselection to cell 1 during T1 for subsequent iterations of the test |
|                      | Neighbour cell     |      | Cell2    |                                                                                        |
| T2 end               | Active cell        |      | Cell2    | UE shall perform reselection to cell 2 during T2                                       |
| condition            | Neighbour cell     |      | Cell1    |                                                                                        |
| E-UTRA P             | RACH configuration |      | 4        | As specified in table 5.7.1-2 in TS 36.211                                             |
| E_UTRA A Information | ccess Barring      | -    | Not Sent | No additional delays in random access procedure.                                       |
| DRX cycle            | length             | S    | 1.28     | The value shall be used for all cells in the test.                                     |
| T1                   |                    | S    | 85       | T1 need to be defined so that cell re-selection reaction time is taken into account.   |
| T2                   |                    | S    | 25       | T2 need to be defined so that cell re-selection reaction time is taken into account.   |

Table A.4.3.1.2.1-2: Cell specific test parameters for cell 1 (E-UTRA)

| Parameter                 | Unit |    | Cell 1  |
|---------------------------|------|----|---------|
|                           |      | T1 | T2      |
| E-UTRA RF Channel         |      |    | 1       |
| number                    |      |    |         |
| BW <sub>channel</sub>     | MHz  |    | 10      |
| OCNG Patterns defined in  |      |    |         |
| A.3.2.1.2 (OP.2 FDD)      |      | OI | P.2 FDD |
| PBCH_RA                   | dB   |    |         |
| PBCH_RB                   | dB   |    |         |
| PSS_RA                    | dB   |    |         |
| SSS_RA                    | dB   |    |         |
| PCFICH_RB                 | dB   |    |         |
| PHICH_RA                  | dB   |    | _       |
| PHICH_RB                  | dB   |    | 0       |
| PDCCH_RA                  | dB   |    |         |
| PDCCH_RB                  | dB   |    |         |
| PDSCH_RA                  | dB   |    |         |
| PDSCH_RB                  | dB   |    |         |
| OCNG_RA <sup>Note 1</sup> | dB   |    |         |
| OCNG RB <sup>Note 1</sup> | dB   |    |         |

| Qqualmin for UTRA neighbour cell                         | dB         | -20      |      |  |
|----------------------------------------------------------|------------|----------|------|--|
| Qrxlevmin for UTRA neighbour cell                        | dBm        | -115     |      |  |
| Qrxlevmin                                                | dBm        |          | -140 |  |
| $N_{oc}$                                                 | dBm/15 kHz | -98      |      |  |
| RSRP                                                     | dBm/15 KHz | -86      | -102 |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 12       | -4   |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 12 -4    |      |  |
| Treselection <sub>EUTRAN</sub>                           | S          |          | 0    |  |
| Snonintrasearch                                          | dB         | Not sent |      |  |
| Thresh <sub>serving, low</sub>                           | dB         | 44       |      |  |
| Thresh <sub>x, low</sub> (Note 2)                        | dB         | 42       |      |  |
| Propagation Condition                                    |            | ı        | AWGN |  |

Note 2 : This refers to the value of  $\mathsf{Thresh}_{\mathsf{x},\,\mathsf{low}}$  which is included in E-UTRA system information, and is a threshold for the UTRA target cell

Table A.4.3.1.2.1-3: Cell specific test parameters for cell 2 (UTRA)

| Parameter                                                     | Unit            | Cell 2 (UTRA) |        |  |  |
|---------------------------------------------------------------|-----------------|---------------|--------|--|--|
|                                                               |                 | T1            | T2     |  |  |
| UTRA RF Channel Number                                        |                 | Channel 2     | 2      |  |  |
| CPICH_Ec/lor                                                  | dB              | -10           |        |  |  |
| PCCPCH_Ec/lor                                                 | dB              | -12           |        |  |  |
| SCH_Ec/lor                                                    | dB              | -12           |        |  |  |
| PICH_Ec/lor                                                   | dB              | -15           |        |  |  |
| OCNS_Ec/lor                                                   | dB              | -0.941        |        |  |  |
| $\hat{I}_{or}/I_{oc}$                                         | dB              | 13            | 13     |  |  |
| $I_{oc}$                                                      | dBm/3,84<br>MHz | -70           |        |  |  |
| CPICH_Ec/lo                                                   | dB              | -10.21        | -10.21 |  |  |
| CPICH_RSCP                                                    | dBm             | -67           | -67    |  |  |
| Propagation Condition                                         |                 | AWGN          |        |  |  |
| Qqualmin                                                      | dB              | -20           |        |  |  |
| Qrxlevmin                                                     | dBm             | -115          |        |  |  |
| QrxlevminEUTRA                                                | dBm             | -140          |        |  |  |
| UE_TXPWR_MAX_RACH                                             | dBm             | 21            |        |  |  |
| Treselection                                                  | S               | 0             |        |  |  |
| Sprioritysearch1                                              | dB              | 42            |        |  |  |
| Sprioritysearch2                                              | dB              | 0             |        |  |  |
| Thresh <sub>x, high</sub> (Note 1)                            | dB              | 48            |        |  |  |
| Note 1: This refers to the value of Thresh, which is included |                 |               |        |  |  |

Note 1: This refers to the value of Thresh<sub>x, high</sub> which is included in UTRA system information, and is a threshold for the E-UTRA target cell

# A.4.3.1.2.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateUTRA\ FDD} + T_{SI-UTRA}$ 

Where:

 $T_{evaluateUTRA-FDD}$  See Table 4.2.2.5.1-1

T<sub>SI-UTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for lower priority cell reselection, allow 21 s.

# A.4.3.1.3 EUTRA FDD-UTRA FDD cell reselection in fading propagation conditions: UTRA FDD is of lower priority

### A.4.3.1.3.1 Test Purpose and Environment

This test is to verify the requirement for the EUTRA FDD- UTRA FDD inter-RAT cell reselection requirements specified in section 4.2.2.5.1 when the UTRA cell is of lower priority, and to verify the robustness of the UE measurement filtering in a fading environment. The E-UTRA cell is in fading propagation conditions and the UTRA cell is in AWGN propagation conditions.

The test scenario comprises of one UTRA FDD and one E-UTRA FDD cells as given in tables A.4.3.1.3.1-1, A.4.3.1.3.1-2 and A.4.3.1.3.1-3. The test consists of four successive time periods, with time duration of T1 T2, T3 and T4 respectively. Both E-UTRA cell 1 and UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of lower priority than cell 1.

Table A.4.3.1.3.1-1: General test parameters for EUTRA FDD- lower priority UTRA FDD inter RAT cell re-selection test case

|                   | Parameter          | Unit | Value    | Comment                                                                                                                                              |
|-------------------|--------------------|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial condition | Active cell        |      | Cell1    | E-UTRAN cell                                                                                                                                         |
| T1 end condition  | Active cells       |      | Cell1    | UE shall perform reselection to cell 1 during T1 for subsequent iterations of the test                                                               |
|                   | Neighbour cell     |      | Cell2    |                                                                                                                                                      |
| T3 end            | Active cell        |      | Cell2    | UE shall perform reselection to cell 2 during T3                                                                                                     |
| condition         | Neighbour cell     |      | Cell1    |                                                                                                                                                      |
| E-UTRA P          | RACH configuration |      | 4        | As specified in table 5.7.1-2 in TS 36.211                                                                                                           |
| E_UTRA A          | access Barring     | -    | Not Sent | No additional delays in random access procedure.                                                                                                     |
| DRX cycle         | length             | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                   |
| T1                |                    | S    | <85      | T1 need to be defined so that cell re-selection reaction time is taken into account. T1 is terminated when the UE starts to send preambles to cell 1 |
| T2                |                    | S    | 64       | The start of T2 is defined as the time when the UE starts to send PRACH preambles to cell 1                                                          |
| Т3                |                    | S    | <25      | T3 need to be defined so that cell re-selection reaction time is taken into account. T3 is terminated when the UE starts to send preambles to cell 2 |
| T4                |                    | S    | 64       | The start of T4 is defined as the time when the UE starts to send PRACH preambles to cell 2                                                          |

Table A.4.3.1.3.1-2: Cell specific test parameters for cell 1 (E-UTRA)

| Parameter                         | Unit       |          |     | Cell 1 |      |
|-----------------------------------|------------|----------|-----|--------|------|
|                                   |            | T1       | T2  | T3     | T4   |
| E-UTRA RF Channel number          |            | 1        | •   | •      |      |
| BW <sub>channel</sub>             | MHz        | 10       |     |        |      |
| OCNG Patterns defined in A.3      |            |          |     |        |      |
|                                   |            | OP.2 FD  | DD  |        |      |
| PSS_RA                            | dB         | 0        |     |        |      |
| SSS_RA                            | dB         | 0        |     |        |      |
| PCFICH_RB                         | dB         | 0        |     |        |      |
| PHICH_RA                          | dB         | 0        |     |        |      |
| PHICH_RB                          | dB         | 0        |     |        |      |
| PDCCH_RA                          | dB         | 0        |     |        |      |
| PDCCH_RB                          | dB         | 0        |     |        |      |
| PDSCH_RA                          | dB         | 0        |     |        |      |
| PDSCH_RB                          | dB         | 0        |     |        |      |
| OCNG_RA <sup>Note 1</sup>         | dB         | 0        |     |        |      |
| OCNG_RB <sup>Note 1</sup>         | dB         | 0        |     |        |      |
| Qqualmin for UTRA neighbour       |            | -20      |     |        |      |
| Qrxlevmin for UTRA neighbou       | dBm        | -115     |     |        |      |
| Qrxlevmin                         | dBm        | -140     |     |        |      |
| $N_{oc}$                          | dBm/15 kHz | -104     |     |        |      |
| RSRP                              | dBm/15 KHz | -82      | -82 | -107   | -107 |
| $\hat{E}_{s}/I_{ot}$              | dB         | 22       | 22  | -3     | -3   |
| $\hat{E}_s/N_{oc}$                | dB         | 22       | 22  | -3     | -3   |
| Treselection <sub>EUTRAN</sub>    | S          | 0        |     |        |      |
| Snonintrasearch                   | dB         | Not sent |     |        |      |
| Thresh <sub>serving, low</sub>    | dB         | 44       |     |        |      |
| Thresh <sub>x, low</sub> (Note 2) | dB         | 42       |     |        |      |
| Propagation Condition             |            | ETU70    |     |        |      |

OCNG shall be used such that both cells are fully allocated and a constant total t spectral density is achieved for all OFDM symbols.

This refers to the value of Thresh<sub>x, low</sub> which is included in E-UTRA system inforr Note 1:

Note 2: threshold for the UTRA target cell.

Table A.4.3.1.3.1-3: Cell specific test parameters for cell 2 (UTRA)

| Parameter                          | Unit            | Cell 2 (UTRA)                                                                                  |        |        |        |  |  |
|------------------------------------|-----------------|------------------------------------------------------------------------------------------------|--------|--------|--------|--|--|
|                                    |                 | T1                                                                                             | T2     | T3     | T4     |  |  |
| UTRA RF Channel Number             |                 | Channel                                                                                        | 2      |        |        |  |  |
| CPICH_Ec/lor                       | dB              | -10                                                                                            |        |        |        |  |  |
| PCCPCH_Ec/lor                      | dB              | -12                                                                                            |        |        |        |  |  |
| SCH_Ec/lor                         | dB              | -12                                                                                            |        |        |        |  |  |
| PICH_Ec/lor                        | dB              | -15                                                                                            |        |        |        |  |  |
| OCNS_Ec/lor                        | dB              | -0.941                                                                                         |        |        |        |  |  |
| $\hat{I}_{or}/I_{oc}$              | dB              | 13                                                                                             | 13     | 13     | 13     |  |  |
| $I_{oc}$                           | dBm/3,84<br>MHz | -70                                                                                            |        |        | ·      |  |  |
| CPICH_Ec/lo                        | dB              | -10.21                                                                                         | -10.21 | -10.21 | -10.21 |  |  |
| CPICH_RSCP                         | dBm             | -67                                                                                            | -67    | -67    | -67    |  |  |
| Propagation Condition              |                 | AWGN                                                                                           |        |        |        |  |  |
| Qqualmin                           | dB              | -20                                                                                            |        |        |        |  |  |
| Qrxlevmin                          | dBm             | -115                                                                                           |        |        |        |  |  |
| QrxlevminEUTRA                     | dBm             | -140                                                                                           |        |        |        |  |  |
| UE_TXPWR_MAX_RACH                  | dBm             | 21                                                                                             |        |        |        |  |  |
| Treselection                       | S               | 0                                                                                              |        |        |        |  |  |
| Sprioritysearch1                   | dB              | 42                                                                                             |        |        |        |  |  |
| Sprioritysearch2                   | dB              | 0                                                                                              |        |        |        |  |  |
| Thresh <sub>x, high</sub> (Note 1) | dB              | 44                                                                                             |        |        |        |  |  |
| Note 1: This refers to the va      | lue of Threshx  | Note 1: This refers to the value of Thresh <sub>x, high</sub> which is included in UTRA system |        |        |        |  |  |

Note 1: This refers to the value of Thresh<sub>x, high</sub> which is included in UTRA system information, and is a threshold for the E-UTRA target cell

# A.4.3.1.3.2 Test Requirements

The probability of reselection from cell 1to cell 2 during T2 observed during testing shall be less than 10%

The probability of reselection from cell 2 to cell 1 during T4 observed during testing shall be less than 10%

The cell reselection delay to lower priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2. In order to evaluate reselection delay, the system simulator first needs to verify that the UE is camped on cell 1 at the start of T3

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateUTRA\_FDD} + T_{SI-UTRA}$ 

#### Where:

 $T_{evaluateUTRA\text{-}FDD} \qquad \quad See \; Table \; 4.2.2.5.1\text{-}1$ 

T<sub>SI-UTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for lower priority cell reselection, allow 21 s.

# A.4.3.2 E-UTRAN FDD – UTRAN TDD:

# A.4.3.2.1 Test Purpose and Environment

# A.4.3.2.1.1 Void

# A.4.3.2.1.2 1.28Mcps TDD option

This test is to verify the requirement for the E-UTRA FDD to UTRA TDD inter-RAT cell reselection requirements specified in section 4.2.2.5.2 when the UTRA cell is of lower priority.

This test scenario comprised of 1 E-UTRA FDD serving cell (Cell 1), and 1 UTRA TDD cell (Cell 2) to be re-selected. Test parameters are given in table A.4.3.2.1.2-1, A.4.3.2.1.2-2, and A.4.3.2.1.2-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Cell 2 is of lower priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS36.304.

Table A.4.3.2.1.2-1: General test parameters for E-UTRA FDD to UTRA (1.28 Mcps TDD OPTION) Cell Re-selection

| Parar                     | neter                      | Unit | Value             | Comment                                                                                |      |  |
|---------------------------|----------------------------|------|-------------------|----------------------------------------------------------------------------------------|------|--|
| Initial condition         | Active cell                |      | Cell1             | E-UTRAN cell                                                                           |      |  |
| T1 end condition          | Active cell                |      | Cell1             | UE shall perform reselection to cell 1 during T1 for subsequent iterations of the test |      |  |
|                           | Neighbour<br>cell          |      | Cell2             | 1.28 Mcps TDD OPTION cell                                                              |      |  |
| T2 end                    | Active cell                |      | Cell2             | UE shall perform reselection to cell 2 during T2                                       |      |  |
| condition                 | Neighbour<br>cell          |      | Cell1             | E-UTRA FDD cell                                                                        |      |  |
| CP length of ce           | CP length of cell 1        |      | normal            |                                                                                        |      |  |
| E-UTRA PRAC configuration | E-UTRA PRACH               |      | 4                 | As specified in table 5.7.1-2 in TS 36.211                                             |      |  |
| Time offset bet           | ween cells                 |      | 3 ms              | Asynchronous cells                                                                     |      |  |
| Access Barring            | Access Barring Information |      | Not<br>sent       | No additional delays in random access procedure.                                       |      |  |
| Treselection              |                            | S    | 0                 |                                                                                        |      |  |
| DRX cycle leng            | ORX cycle length           |      | RX cycle length s |                                                                                        | 1,28 |  |
| HCS                       |                            |      | Not<br>used       |                                                                                        |      |  |
| T1                        |                            | S    | 85                | T1 need to be defined so that cell re-selection reaction time is taken into account.   |      |  |
| T2                        | <del></del>                | S    | 25                |                                                                                        |      |  |

Table A.4.3.2.1.2-2: Cell specific test parameters for cell re-selection E-UTRA FDD to UTRA TDD test case (cell 1)

| Parameter                        | Unit      | Cell 1      |          |  |
|----------------------------------|-----------|-------------|----------|--|
|                                  |           | T1          | T2       |  |
| E-UTRA RF Channel                |           | 1           |          |  |
| Number                           |           |             |          |  |
| BW <sub>channel</sub>            | MHz       | 1           | 0        |  |
| PBCH_RA                          | dB        |             |          |  |
| PBCH_RB                          | dB        |             |          |  |
| PSS_RB                           | dB        |             |          |  |
| SSS_RB                           | dB        |             |          |  |
| PCFICH_PA                        | dB        |             |          |  |
| PHICH_PA                         | dB        |             |          |  |
| PHICH_PB                         | dB        | 0           | 0        |  |
| PDCCH_PA                         | dB        | 1           |          |  |
| PDCCH_PB                         | dB        | 1           |          |  |
| PDSCH_PA                         | dB        | 1           |          |  |
| PDSCH_PB                         | dB        | 1           |          |  |
| OCNG_RA <sup>Note1</sup>         | dB        | 1           |          |  |
| OCNG_RB <sup>Note1</sup>         | dB        | 1           |          |  |
| Qrxlevmin                        | dBm/15kHz | -140        | -140     |  |
| $N_{oc}$                         | dBm/15kHz | -(          | 98       |  |
| RSRP                             | dBm/15kHz | -87         | -101     |  |
| $\hat{E}_{s}/I_{ot}$             | dB        | 11          | <b>7</b> |  |
| Snonintrasearch                  | dB        | Not sent    |          |  |
| Thresh <sub>serving, low</sub>   | dB        | 46 (-94dBm) |          |  |
| Thresh <sub>x, low</sub> (Note2) | dB        | 24 (-79dBm) |          |  |
| Propagation Condition            |           | AW          | 'GN      |  |

Note2: This refers to the value of Threshx, low which is included in E-UTRA system information, and is a threshold for the UTRA TDD target cell

Table A.4.3.2.1.2-3: Cell specific test parameters for cell re-selection E-UTRA FDD to UTRA TDD test case (cell 2)

| Parameter                         | Unit            | Cell 2 (UTRA) |        |       |      |
|-----------------------------------|-----------------|---------------|--------|-------|------|
| Timeslot Number                   |                 | 0             |        | Dwl   | PTS  |
|                                   |                 | T1            | T2     | T1    | T2   |
| UTRA RF Channel<br>Number (Note1) |                 |               | Char   | nel 2 |      |
| PCCPCH_Ec/lor                     | dB              | -3            | -3     |       |      |
| DwPCH_Ec/lor                      | dB              |               |        | 0     | 0    |
| OCNS_Ec/lor                       | dB              | -3            | -3     |       |      |
| $\hat{I}_{or}/I_{oc}$             | dB              | 11            | 11     | 11    | 11   |
| $I_{oc}$                          | dBm/1.28<br>MHz | -80           |        |       |      |
| PCCPCH RSCP                       | dBm             | -72           | -72    | n.a.  | n.a. |
| Propagation<br>Condition          |                 | AWGN          |        |       |      |
| Qrxlevmin                         | dBm             | -103          |        |       |      |
| Qoffset1 <sub>s,n</sub>           | dB              | C1, C2: 0     |        |       |      |
| Qhyst1 <sub>s</sub>               | dB              | 0             |        |       |      |
| Thresh <sub>x, high</sub> (Note2) | dB              |               | 46 (-9 | 4dBm) |      |

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note2: This refers to the value of Thresh<sub>x, high</sub> which is included in UTRA system information, and is a threshold for the E-UTRA target cell

#### A.4.3.2.1.3 Void

# A.4.3.2.2 Test Requirements

#### A.4.3.2.2.1 1.28Mcps TDD option

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateUTRA\_TDD} + T_{SI-UTRA}$ 

#### Where:

 $T_{evaluateUTRA\_TDD}$  19.2s, See table table 4.2.2.5.2-1

 $T_{SI\text{-}UTRA}$  Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s, allow 21 s for lower priority cell reselection in the test case.

#### A.4.3.2.2.2.3 Void

# A.4.3.3 E-UTRAN TDD – UTRAN FDD:

# A.4.3.3.1 Test Purpose and Environment

This test is to verify the requirement for the EUTRA TDD- UTRA FDD inter-RAT cell reselection requirements specified in section 4.2.2.5.1 when the UTRA cell is of lower priority.

The test scenario comprises of one UTRA FDD and one E-UTRA TDD cells as given in tables A.4.3.3.1-1, A.4.3.3.1-2 and A.4.3.3.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRA cell 1 and UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of lower priority than cell 1.

Table A.4.3.3.1-1: General test parameters for EUTRA TDD- lower priority UTRA FDD inter RAT cell reselection test case

| I                 | Parameter                         | Unit | Value    | Comment                                                                                |
|-------------------|-----------------------------------|------|----------|----------------------------------------------------------------------------------------|
| Initial condition | Active cell                       |      | Cell1    | E-UTRAN cell                                                                           |
| T1 end condition  | Active cells                      |      | Cell1    | UE shall perform reselection to cell 1 during T1 for subsequent iterations of the test |
|                   | Neighbour cell                    |      | Cell2    |                                                                                        |
| T2 end            | Active cell                       |      | Cell2    | UE shall perform reselection to cell 2 during T2                                       |
| condition         | Neighbour cell                    |      | Cell1    |                                                                                        |
| E-UTRA I          | PRACH configuration               |      | 53       | As specified in table 5.7.1-3 in TS 36.211                                             |
| Uplink-dov        | wnlink configuration of cell 1    |      | 1        | As specified in table 4.2.2 in TS 36.211                                               |
| Special sub       | oframe configuration of cell 1    |      | 6        | As specified in table 4.2.1 in TS 36.211                                               |
|                   | E_UTRA Access Barring Information |      | Not Sent | No additional delays in random access procedure.                                       |
| DR                | XX cycle length                   | S    | 1.28     | The value shall be used for all cells in the test.                                     |
|                   | T1                                | S    | 85       | T1 need to be defined so that cell re-selection reaction time is taken into account.   |
|                   | T2                                | S    | 25       | T2 need to be defined so that cell re-selection reaction time is taken into account.   |

Table A.4.3.3.1-2: Cell specific test parameters for cell 1(E-UTRA)

| Parameter                 | Unit | Cell 1 |         |
|---------------------------|------|--------|---------|
|                           |      | T1     | T2      |
| E-UTRA RF Channel         |      |        | 1       |
| number                    |      |        |         |
| BW <sub>channel</sub>     | MHz  |        | 10      |
| OCNG Patterns defined in  |      |        |         |
| A.3.2.2.2 (OP.2 TDD)      |      | OI     | P.2 TDD |
| PBCH_RA                   | dB   |        |         |
| PBCH_RB                   | dB   |        |         |
| PSS_RA                    | dB   |        |         |
| SSS_RA                    | dB   |        |         |
| PCFICH_RB                 | dB   |        |         |
| PHICH_RA                  | dB   |        | _       |
| PHICH_RB                  | dB   |        | 0       |
| PDCCH_RA                  | dB   |        |         |
| PDCCH_RB                  | dB   |        |         |
| PDSCH_RA                  | dB   |        |         |
| PDSCH_RB                  | dB   |        |         |
| OCNG_RA <sup>Note 1</sup> | dB   |        |         |
| OCNG_RB <sup>Note 1</sup> | dB   | 1      |         |

| Qqualmin for UTRA neighbour cell  | dB         | -20      |      |  |
|-----------------------------------|------------|----------|------|--|
| Qrxlevmin for UTRA neighbour cell | dBm        | -115     |      |  |
| Qrxlevmin                         | dBm        |          | -140 |  |
| $N_{oc}$                          | dBm/15 kHz | -98      |      |  |
| RSRP                              | dBm/15 KHz | -86      | -102 |  |
| $\hat{E}_{s}/I_{ot}$              | dB         | 12       | -4   |  |
| $\hat{E}_s/N_{oc}$                | dB         | 12       | -4   |  |
| Treselection <sub>EUTRAN</sub>    | S          |          | 0    |  |
| Snonintrasearch                   | dB         | Not sent |      |  |
| Thresh <sub>serving, low</sub>    | dB         | 44       |      |  |
| Thresh <sub>x, low</sub> (Note 2) | dB         | 42       |      |  |
| Propagation Condition             |            | ı        | AWGN |  |
| 1                                 |            |          |      |  |

Note 2 : This refers to the value of Thresh<sub>x, low</sub> which is included in E-UTRA system information, and is a threshold for the UTRA target cell

Table A.4.3.3.1-3: Cell specific test parameters for cell 2 (UTRA)

| Parameter                          | Unit            | Cell 2 (UTRA) |        |  |
|------------------------------------|-----------------|---------------|--------|--|
|                                    |                 | T1            | T2     |  |
| UTRA RF Channel Number             |                 | Channel 2     | 2      |  |
| CPICH_Ec/lor                       | dB              | -10           |        |  |
| PCCPCH_Ec/lor                      | dB              | -12           |        |  |
| SCH_Ec/lor                         | dB              | -12           |        |  |
| PICH_Ec/lor                        | dB              | -15           |        |  |
| OCNS_Ec/lor                        | dB              | -0.941        |        |  |
| $\hat{I}_{or}/I_{oc}$              | dB              | 13            | 13     |  |
| $I_{oc}$                           | dBm/3,84<br>MHz | -70           |        |  |
| CPICH_Ec/lo                        | dB              | -10.21        | -10.21 |  |
| CPICH_RSCP                         | dBm             | -67           | -67    |  |
| Propagation Condition              |                 | AWGN          |        |  |
| Qqualmin                           | dB              | -20           |        |  |
| Qrxlevmin                          | dBm             | -115          |        |  |
| QrxlevminEUTRA                     | dBm             | -140          |        |  |
| UE_TXPWR_MAX_RACH                  | dBm             | 21            |        |  |
| Treselection                       | S               | 0             |        |  |
| Sprioritysearch1                   | dB              | 42            |        |  |
| Sprioritysearch2                   | dB              | 0             |        |  |
| Thresh <sub>x, high</sub> (Note 1) | dB              | 48            |        |  |
| Note 1: This refers to the value   |                 | high which i  |        |  |

# A.4.3.3.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

in UTRA system information, and is a threshold for the

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

E-UTRA target cell

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateUTRA\_FDD} + T_{SI-UTRA}$ 

Where:

T<sub>evaluateUTRA-FDD</sub> See Table 4.2.2.5.1-1

T<sub>SI-UTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the

UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for lower priority cell reselection, allow 21 s.

# A.4.3.4 E-UTRAN TDD – UTRAN TDD:

# A.4.3.4.1 E-UTRA to UTRA TDD cell re-selection: UTRA is of higher priority

# A.4.3.4.1.1 Test Purpose and Environment

A.4.3.4.1.1.1 Void

#### A.4.3.4.1.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the E-UTRA TDD to UTRA TDD inter-RAT cell re-selection requirements specified in section 4.2.2.5 when the UTRA cell is of higher priority.

This test scenario comprised of 1 E-UTRA TDD serving cell, and 1 UTRA TDD cell to be re-selected. Test parameters are given in table A.4.3.4.1.1.2-1, A.4.3.4.1.1.2-2, and A.4.3.4.1.1.2-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. E-UTRA cell 1 is already identified by the UE prior to the start of the test. Cell 2 is of higher priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS36.304.

Table A.4.3.4.1.1.2-1: General test parameters for E-UTRAN to UTRAN (1.28 Mcps TDD OPTION) Cell Re-selection

| Para                       | meter             | Unit | Value  | Comment                                                                                                                                                                                                               |
|----------------------------|-------------------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial                    | Active cell       |      | Cell 1 | UE is on cell 1 in the initialisation phase, so that reselection to                                                                                                                                                   |
| condition                  |                   |      |        | cell 2 occurs during T2                                                                                                                                                                                               |
| T2 end                     | Active cell       |      | Cell2  | UE shall perform reselection to cell 2 during T2                                                                                                                                                                      |
| condition                  | Neighbour<br>cell |      | Cell2  |                                                                                                                                                                                                                       |
| T3 end                     | Active cell       |      | Cell 1 | UE shall perform reselection to cell 1 during T3                                                                                                                                                                      |
| condition                  | Neighbour<br>cell |      | Cell 2 |                                                                                                                                                                                                                       |
| Uplink-down configuration  |                   |      | 1      | As specified in table 4.2.2 in TS 36.211                                                                                                                                                                              |
| Special subf configuration |                   |      | 6      | As specified in table 4.2.1 in TS 36.211                                                                                                                                                                              |
| PRACH con<br>cell 1        | figuration of     |      | 53     | As specified in table 4.7.1-3 in TS 36.211                                                                                                                                                                            |
| CP length of               | cell 1            |      | Normal |                                                                                                                                                                                                                       |
| Time offset b              | oetween cells     |      | 3 ms   | Asynchronous cells                                                                                                                                                                                                    |
| Access Barr                | ing               | -    | Not    | No additional delays in random access procedure.                                                                                                                                                                      |
| Information                |                   |      | sent   |                                                                                                                                                                                                                       |
| T <sub>reselection</sub>   |                   | S    | 0      |                                                                                                                                                                                                                       |
| DRX cycle le               | ength             | S    | 1,28   |                                                                                                                                                                                                                       |
| HCS                        |                   |      | Not    |                                                                                                                                                                                                                       |
|                            |                   |      | used   |                                                                                                                                                                                                                       |
| T1                         |                   | S    | >20    | During T1, cell 2 shall be powered off, and during the off time the primary scrambling code shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T2. |
| T2                         |                   | S    | 85     | T2 needs to be defined so that cell re-selection reaction time is taken into account                                                                                                                                  |
| T3                         |                   | S    | 25     | T3 needs to be defined so that cell re-selection reaction time is taken into account.                                                                                                                                 |

Table A.4.3.4.1.1.2-2: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 1)

| Parameter                 | Unit | Cell 1 |    |    |
|---------------------------|------|--------|----|----|
|                           |      | T1     | T2 | T3 |
| E-UTRA RF Channel         |      |        | 1  |    |
| Number                    |      |        |    |    |
| BW <sub>channel</sub>     | MHz  |        | 10 |    |
| PBCH_RA                   | dB   |        |    |    |
| PBCH_RB                   | dB   |        |    |    |
| PSS_RB                    | dB   |        |    |    |
| SSS_RB                    | dB   |        |    |    |
| PCFICH_PA                 | dB   |        |    |    |
| PHICH_PA                  | dB   |        |    |    |
| PHICH_PB                  | dB   | 0      | 0  | 0  |
| PDCCH_PA                  | dB   |        |    |    |
| PDCCH_PB                  | dB   |        |    |    |
| PDSCH_PA                  | dB   |        |    |    |
| PDSCH_PB                  | dB   |        |    |    |
| OCNG_RA <sup>Note 1</sup> | dB   |        |    |    |
| OCNG_RB <sup>Note 1</sup> | dB   |        |    |    |

| Q <sub>rxlevmin</sub>             | dBm/15kHz | -140       | -140 | -140 |  |
|-----------------------------------|-----------|------------|------|------|--|
| $N_{oc}$                          | dBm/15kHz |            | -98  |      |  |
| RSRP                              | dBm/15kHz | -87        | -87  | -87  |  |
| $\hat{E}_{s}/I_{ot}$              | dB        | 11         | 11   | 11   |  |
| Thresh <sub>x, high</sub> (Note2) | dB        | 24(-79dBm) |      |      |  |
| Snonintrasearch                   | dB        |            | 46   |      |  |
| Propagation Condition             |           |            | AWGN |      |  |

Note2: This refers to the value of  $\mathsf{Thresh}_{\mathsf{x},\,\mathsf{high}}$  which is included in E-UTRA system information, and is a threshold for the UTRA target cell

Table A.4.3.4.1.1.2-3: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 2)

| Parameter                         | Unit            | Cell 2 (UTRA) |     |        |       |      |    |
|-----------------------------------|-----------------|---------------|-----|--------|-------|------|----|
| Timeslot Number                   |                 | 0 DwPTS       |     |        |       | )    |    |
|                                   |                 | T1            | T2  | T3     | T1    | T2   | T3 |
| UTRA RF Channel<br>Number (Note1) |                 | Channel 2     |     |        |       |      |    |
| PCCPCH_Ec/lor                     | dB              | -3            | -3  | -3     |       |      |    |
| DwPCH_Ec/lor                      | dB              |               |     |        | 0     | 0    | 0  |
| OCNS_Ec/lor                       | dB              | -3            | -3  | -3     |       |      |    |
| $\hat{I}_{or}/I_{oc}$             | dB              | -inf          | 11  | -3     | -inf  | 11   | -3 |
| $I_{oc}$                          | dBm/1.28<br>MHz | -80           |     |        |       |      |    |
| PCCPCH RSCP                       | dBm             | -inf          | -72 | -86    |       | n.a. |    |
| Propagation<br>Condition          |                 |               |     | AW     | 'GN   |      |    |
| Q <sub>rxlevmin</sub>             | dBm             |               |     | -1     | 03    |      |    |
| Qoffset1 <sub>s,n</sub>           | dB              |               |     | C1, (  | C2: 0 |      |    |
| Qhyst1 <sub>s</sub>               | dB              |               |     | (      | )     |      |    |
| S <sub>nonintrasearch</sub>       | dB              | Not sent      |     |        |       |      |    |
| Thresh <sub>serving, low</sub>    | dB              |               |     | 24 (-7 | 9dBm) |      |    |
| Thresh <sub>x, low</sub> (Note2)  | dB              |               |     | 46 (-9 |       |      |    |

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note2: This refers to the value of Thresh<sub>x, low</sub> which is included in UTRA system information, and is a threshold for the E-UTRA target cell

A.4.3.4.1.1.3 Void

A.4.3.4.1.2 Test Requirements

A.4.3.4.1.2.1 Void

A.4.3.4.1.2.2 1.28 Mpcs TDD option

The cell reselection delay to higher priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to higher priority shall be less than 81 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as:  $T_{higher\_priority\_search} + T_{evaluateUTRA\_TDD} + T_{SI\_UTRA}$ ,

#### Where:

 $T_{higher\_priority\_search}$  60s, See section 4.2.2

T<sub>evaluateUTRA TDD</sub> 19.2s, See Table 4.2.2.5.2-1

T<sub>SUUTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 80.48 s, allow 81 s for higher priority cell reselection in the test case.

A.4.3.4.1.2.3 Void

# A.4.3.4.2 E-UTRA to UTRA TDD cell re-selection: UTRA is of lower priority

# A.4.3.4.2.1 Test Purpose and Environment

A.4.3.4.2.1.1 Void

#### A.4.3.4.2.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the E-UTRA TDD to UTRA TDD inter-RAT cell re-selection requirements specified in section 4.2.2.5 when the UTRA cell is of lower priority.

This test scenario comprised of 1 E-UTRA TDD serving cell (Cell 1), and 1 UTRA TDD cell (Cell 2) to be re-selected. Test parameters are given in table A.4.3.4.2.1.2-1, A.4.3.4.2.1.2-2, and A.4.3.4.2.1.2-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Cell 2 is of lower priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS36.304.

Table A.4.3.4.2.1.2-1: General test parameters for E-UTRAN to UTRAN (1.28 Mcps TDD OPTION) Cell Re-selection

| Paran                      | neter                                    | Unit | Value  | Comment                                              |
|----------------------------|------------------------------------------|------|--------|------------------------------------------------------|
| Initial condition          | Active cell                              |      | Cell 1 | E-UTRAN cell                                         |
| T1 end                     | Active cell                              |      | Cell1  | UE shall perform reselection to cell 1 during T1 for |
| condition                  |                                          |      |        | subsequent iterations of the test                    |
|                            | Neighbour cell                           |      | Cell2  | 1.28 Mcps TDD OPTION cell                            |
| T2 end                     | Active cell                              |      | Cell2  | UE shall perform reselection to cell 2 during T2     |
| condition                  | Neighbour cell                           |      | Cell1  | E-UTRA TDD cell                                      |
| Uplink-downlink of cell 1  | configuration of                         |      | 1      | As specified in table 4.2.2 in TS 36.211             |
| Special subframe of cell 1 | Special subframe configuration of cell 1 |      | 6      | As specified in table 4.2.1 in TS 36.211             |
| PRACH configura            | ation of cell 1                          |      | 53     | As specified in table 4.7.1-3 in TS 36.211           |
| CP length of cell          | 1                                        |      | Normal |                                                      |
| Time offset between        | een cells                                |      | 3 ms   | Asynchronous cells                                   |
| Access Barring Ir          | nformation                               | -    | Not    | No additional delays in random access procedure.     |
|                            |                                          |      | sent   |                                                      |
| Treselection               |                                          | S    | 0      |                                                      |
| DRX cycle length           | )                                        | S    | 1,28   |                                                      |
| HCS                        | ·                                        |      | Not    |                                                      |
|                            |                                          |      | used   |                                                      |
| T1                         |                                          | S    | 85     |                                                      |
| T2                         |                                          | S    | 25     |                                                      |

Table A.4.3.4.2.1.2-2: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 1)

| Parameter                        | Unit      | Cell 1      |      |  |
|----------------------------------|-----------|-------------|------|--|
|                                  |           | T1          | T2   |  |
| E-UTRA RF Channel                |           | ,           | 1    |  |
| Number                           |           |             |      |  |
| BW <sub>channel</sub>            | MHz       | 10          |      |  |
| PBCH_RA                          | dB        |             |      |  |
| PBCH_RB                          | dB        |             |      |  |
| PSS_RB                           | dB        |             |      |  |
| SSS_RB                           | dB        |             |      |  |
| PCFICH_PA                        | dB        |             |      |  |
| PHICH_PA                         | dB        |             |      |  |
| PHICH_PB                         | dB        | 0           | 0    |  |
| PDCCH_PA                         | dB        |             |      |  |
| PDCCH_PB                         | dB        |             |      |  |
| PDSCH_PA                         | dB        |             |      |  |
| PDSCH_PB                         | dB        |             |      |  |
| OCNG_RA <sup>Note1</sup>         | dB        |             |      |  |
| OCNG_RB <sup>Note1</sup>         | dB        |             |      |  |
| Qrxlevmin                        | dBm/15kHz | -140        | -140 |  |
| $N_{oc}$                         | dBm/15kHz | -6          | 98   |  |
| RSRP                             | dBm/15kHz | -87         | -101 |  |
| $\hat{E}_{s}/I_{ot}$             | dB        | 11          | -3   |  |
| S <sub>nonintrasearch</sub>      | dB        | Not sent    |      |  |
| Thresh <sub>serving, low</sub>   | dB        | 46 (-94dBm) |      |  |
| Thresh <sub>x, low</sub> (Note2) | dB        | 24 (-79dBm) |      |  |
| Propagation Condition            |           | AW          | 'GN  |  |

Note2: This refers to the value of  $\mathsf{Thresh}_{\mathsf{x,\,low}}$  which is included in E-UTRA system information, and is a threshold for the UTRA target cell

Table A.4.3.4.2.1.2-3: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 2)

| Parameter                         | Unit            | Cell 2 (UTRA) |        |       |      |
|-----------------------------------|-----------------|---------------|--------|-------|------|
| Timeslot Number                   |                 | 0             |        | Dwl   | PTS  |
|                                   |                 | T1            | T2     | T1    | T2   |
| UTRA RF Channel<br>Number (Note1) |                 |               | Char   | nel 2 |      |
| PCCPCH_Ec/lor                     | dB              | -3            | -3     |       |      |
| DwPCH_Ec/lor                      | dB              |               |        | 0     | 0    |
| OCNS_Ec/lor                       | dB              | -3            | -3     |       |      |
| $\hat{I}_{or}/I_{oc}$             | dB              | 11            | 11     | 11    | 11   |
| $I_{oc}$                          | dBm/1.28<br>MHz | -80           |        |       |      |
| PCCPCH RSCP                       | dBm             | -72           | -72    | n.a.  | n.a. |
| Propagation<br>Condition          |                 | AWGN          |        |       |      |
| Qrxlevmin                         | dBm             | -103          |        |       |      |
| Qoffset1 <sub>s,n</sub>           | dB              | C1, C2: 0     |        |       |      |
| Qhyst1 <sub>s</sub>               | dB              | 0             |        |       |      |
| Thresh <sub>x, high</sub> (Note2) | dB              |               | 46 (-9 | 4dBm) |      |

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note2: This refers to the value of Thresh<sub>x, high</sub> which is included in UTRA system information, and is a threshold for the E-UTRA target cell

A.4.3.4.2.1.3 Void

A.4.3.4.2.2 Test Requirements

A.4.3.4.2.2.1 Void

A.4.3.4.2.2.2 1.28 Mpcs TDD option

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send the SYNCH-UL sequence in the UpPTS for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateUTRA\_TDD} + T_{SI\_UTRA}$ ,

Where:

T<sub>evaluateUTRA TDD</sub> 19.2s, See Table 4.2.2.5.2-1

 $T_{SI\_UTRA}$  Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s, allow 21 s for lower priority cell reselection in the test case.

A.4.3.4.2.2.3 Void

# A.4.3.4.3 EUTRA TDD-UTRA TDD cell reselection in fading propagation conditions: UTRA TDD is of lower priority

# A.4.3.4.3.1 Test Purpose and Environment

This test is to verify the requirement for the EUTRA TDD- UTRA TDD inter-RAT cell reselection requirements specified in section 4.2.2.5.2 when the UTRA cell is of lower priority, and to verify the robustness of the UE measurement filtering in a fading environment. The E-UTRA cell is in fading propagation conditions and the UTRA cell is in AWGN propagation conditions.

The test scenario comprises of one UTRA TDD and one E-UTRA TDD cells as given in tables A.4.3.4.3.1-1, A.4.3.4.3.1-2 and A.4.3.4.3.1-3. The test consists of four successive time periods, with time duration of T1 T2, T3 and T4 respectively. Both E-UTRA cell 1 and UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of lower priority than cell 1.

Table A.4.3.4.3.1-1: General test parameters for EUTRA TDD- lower priority UTRA TDD inter RAT cell re-selection test case

|                         | Parameter               | Unit | Value    | Comment                                                                                                                                                    |
|-------------------------|-------------------------|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial condition       | Active cell             |      | Cell1    | E-UTRAN cell                                                                                                                                               |
| T1 end condition        | Active cells            |      | Cell1    | UE shall perform reselection to cell 1 during T1 for subsequent iterations of the test                                                                     |
|                         | Neighbour cell          |      | Cell2    |                                                                                                                                                            |
| T3 end                  | Active cell             |      | Cell2    | UE shall perform reselection to cell 2 during T3                                                                                                           |
| condition               | Neighbour cell          |      | Cell1    |                                                                                                                                                            |
| E-UTRA P                | RACH configuration      |      | 53       | As specified in table 5.7.1-3 in TS 36.211                                                                                                                 |
| Uplink-dow              | nlink configuration of  |      | 1        | As specified in table 4.2.2 in TS 36.211                                                                                                                   |
| Special sul cell 1      | oframe configuration of |      | 6        | As specified in table 4.2.1 in TS 36.211                                                                                                                   |
| E_UTRA A<br>Information | ccess Barring           | -    | Not Sent | No additional delays in random access procedure.                                                                                                           |
| DRX cycle               | length                  | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                         |
| T1                      |                         | S    | <85      | T1 need to be defined so that cell re-selection reaction time is taken into account. T1 is terminated when the UE starts to send preambles to cell 1       |
| T2                      |                         | S    | 64       | The start of T2 is defined as the time when the UE starts to send PRACH preambles to cell 1                                                                |
| ТЗ                      |                         | S    | <25      | T3 need to be defined so that cell re-selection reaction time is taken into account. T3 is terminated when the UE starts to send PRACH preambles to cell 2 |
| T4                      | T4                      |      | 64       | The start of T4 is defined as the time when the UE starts to send PRACH preambles to cell 2                                                                |

Table A.4.3.4.3.1-2: Cell specific test parameters for cell 1 (E-UTRA)

| Parameter                         | Unit       |             | Ce   | ell 1 |      |  |
|-----------------------------------|------------|-------------|------|-------|------|--|
|                                   |            | T1          | T2   | Т3    | T4   |  |
| E-UTRA RF Channel                 |            |             |      | 1     |      |  |
| number                            |            |             |      |       |      |  |
| BW <sub>channel</sub>             | MHz        |             | 1    | 0     |      |  |
| OCNG Patterns defined in          |            |             | OP.2 | TDD   |      |  |
| A.3.2.2.2 (OP.2 TDD)              |            |             |      |       |      |  |
| PSS_RA                            | dB         |             |      |       |      |  |
| SSS_RA                            | dB         |             |      |       |      |  |
| PCFICH_RB                         | dB         |             |      |       |      |  |
| PHICH_RA                          | dB         |             |      |       |      |  |
| PHICH_RB                          | dB         |             |      |       |      |  |
| PDCCH_RA                          | dB         |             | (    | )     |      |  |
| PDCCH_RB                          | dB         |             |      |       |      |  |
| PDSCH_RA                          | dB         |             |      |       |      |  |
| PDSCH_RB                          | dB         |             |      |       |      |  |
| OCNG_RA <sup>Note 1</sup>         | dB         |             |      |       |      |  |
| OCNG_RB <sup>Note 1</sup>         | dB         |             |      |       |      |  |
| Qrxlevmin for UTRA                | dBm        |             | -1   | 03    |      |  |
| neighbour cell                    |            |             |      |       |      |  |
| Qrxlevmin                         | dBm        |             |      | 40    |      |  |
| $N_{oc}$                          | dBm/15 kHz |             | -1   | 04    |      |  |
| RSRP                              | dBm/15 KHz | -82         | -82  | -107  | -107 |  |
| $\hat{E}_s/I_{ot}$                | dB         | 22          | 22   | -3    | -3   |  |
| $\hat{E}_s/N_{oc}$                | dB         | 22 22 -3 -3 |      | -3    |      |  |
| Treselection <sub>EUTRAN</sub>    | S          | 0           |      |       |      |  |
| Snonintrasearch                   | dB         | Not sent    |      |       |      |  |
| Thresh (Note 2)                   | dB         | 44          |      |       |      |  |
| Thresh <sub>x, low</sub> (Note 2) | dB         |             | 2    | 4     |      |  |
| Propagation Condition             |            |             | ET   | J70   |      |  |

Note 2: This refers to the value of Thresh<sub>x, low</sub> which is included in E-UTRA system information, and is a threshold for the UTRA target cell.

Table A.4.3.4.3.1-3: Cell specific test parameters for cell 2 (UTRA)

| Parameter                         | Unit         | Cell 2 (UTRA) |     |     |      |       |      |      |      |
|-----------------------------------|--------------|---------------|-----|-----|------|-------|------|------|------|
| Timeslot Number                   |              |               | (   | )   |      | DwPTS |      |      |      |
|                                   |              | T1            | T2  | T3  | T4   | T1    | T2   | T3   | T4   |
| UTRA RF Channel Number (Note1)    |              |               |     |     | Char | nel 2 |      |      |      |
| PCCPCH_Ec/lor                     | dB           |               | Ť   | 3   |      |       |      |      |      |
| DwPCH_Ec/lor                      | dB           |               |     |     |      |       | 1    | 0    |      |
| OCNS_Ec/lor                       | dB           | -3            |     |     |      |       |      |      |      |
| $\hat{I}_{or}/I_{oc}$             | dB           | 13            | 13  | 13  | 13   | 13    | 13   | 13   | 13   |
| $I_{oc}$                          | dBm/1.28 MHz | -80           |     |     |      |       |      |      |      |
| PCCPCH RSCP                       | dBm          | -70           | -70 | -70 | -70  | n.a.  | n.a. | n.a. | n.a. |
| Propagation Condition             |              |               |     |     | AW   | 'GN   |      |      |      |
| Qrxlevmin                         | dBm          |               |     |     | -1   | 03    |      |      |      |
| Qrxlevmin <sub>EUTRA</sub>        | dBm          | -140          |     |     |      |       |      |      |      |
| UE_TXPWR_MAX_RACH                 | dBm          | 21            |     |     |      |       |      |      |      |
| Treselection                      | S            | 0             |     |     |      |       |      |      |      |
| Thresh <sub>x, high</sub> (Note2) | dB           |               | •   |     | 4    | 4     |      |      |      |

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's

channel number.

Note2: This refers to the value of  $\mathsf{Thresh}_{x,\,\mathsf{high}}$  which is included in UTRA system information, and is a

threshold for the E-UTRA target cell

#### A.4.3.4.3.2 Test Requirements

The probability of reselection from cell 1 to cell 2 during T2 observed during testing shall be less than 10%

The probability of reselection from cell 2 to cell 1 during T4 observed during testing shall be less than 10%

The cell reselection delay to lower priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send the SYNCH-UL sequene in the UpPTS for sending the RRC CONNECTION REQUEST message on cell 2. In order to evaluate reselection delay, the system simulator first needs to verify that the UE is camped on cell 1 at the start of T3

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateUTRA\_TDD} + T_{SI-UTRA}$ 

Where:

T<sub>evaluateUTRA TDD</sub> 19.2s, See Table 4.2.2.5.2-1

T<sub>SI-UTRA</sub> Maximum repetition period of relevant system info blocks that needs to be received by the UE

to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for lower priority cell reselection, allow 21 s.

# A.4.4 E-UTRAN to GSM Cell Re-Selection

# A.4.4.1 E-UTRAN FDD – GSM:

### A.4.4.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to GSM cell re-selection delay reported in section 4.2.2.5.

This scenario implies the presence of 1 E-UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 E-UTRA carrier and 12 GSM cells. Test parameters are given in Table, A.4.4.1-1, A.4.4.1-2, A.4.4.1-3. E-UTRA FDD cell (Cell 1) and GSM cell (cell 2) shall belong to different Location Areas. The test comprises two successive time periods, T1 and T2. During initialization before the start of the test, the UE is camped on cell 1. By the end of T1, the UE has identified BSIC on the GSM BCCH carrier of cell 2 but the signal levels do not meet the reselection criterion during T1. At the start of T2, the signal levels change such that cell 2 satisfies reselection criterion. The GSM layer is configured at a lower priority than the serving E-UTRA FDD layer.

Table A.4.4.1-1: General test parameters for E-UTRA FDD GSM cell re-selection test case

|                      | Parameter         | Unit | Value    | Comment                                                                                                                                                                  |
|----------------------|-------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial<br>condition | Active cell       |      | Cell1    | UE shall be forced to cell 1 in the initialisation phase and shall be able to detect and monitor the 4 strongest GSM BCCH carriers in T1 . Cell 1 is an E-UTRA FDD cell. |
| Final condition      | Neighbour cell    |      | Cell2    | UE shall perform reselection to cell 2 during T2. Cell 2 is a GSM cell.                                                                                                  |
| E-UTRA R             | F Channel Number  |      | 1        | 1 E-UTRA FDD carrier frequency                                                                                                                                           |
| GSM ARF              | CN                |      | 1        | 12 GSM BCCH carriers are used                                                                                                                                            |
| PRACH co             | nfiguration       |      | 4        | As specified in table 5.7.1-2 in TS 36.211                                                                                                                               |
| Access Ba            | rring Information | -    | Not Sent | No additional delays in random access procedure.                                                                                                                         |
| CP length            | of cell 1         |      | Normal   |                                                                                                                                                                          |
| DRX cycle            | length            | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                                       |
| T1                   | -                 | S    | 35       | T1 need to be defined so that cell re-selection reaction time is taken into account.                                                                                     |
| T2                   |                   | S    | 35       | T2 need to be defined so that the higher layer search periodicity and cell re-selection reaction time are taken into account.                                            |
| Propagatio           | n channel         |      | AWGN     |                                                                                                                                                                          |

Table A.4.4.1-2: Cell-specific test parameters for Cell 1 – E-UTRA FDD cell

| Parameter                 | Unit |    | Cell 1  |
|---------------------------|------|----|---------|
|                           |      | T1 | T2      |
| E-UTRA RF Channel         |      |    | 1       |
| number                    |      |    |         |
| BW <sub>channel</sub>     | MHz  |    | 10      |
| OCNG Patterns defined in  |      |    |         |
| A.3.2.1.1 (OP.2 FDD)      |      | 0  | P.2 FDD |
| PBCH_RA                   | dB   |    |         |
| PBCH_RB                   | dB   |    |         |
| PSS_RA                    | dB   |    |         |
| SSS_RA                    | dB   |    |         |
| PCFICH_RB                 | dB   |    |         |
| PHICH_RA                  | dB   |    | _       |
| PHICH_RB                  | dB   |    | 0       |
| PDCCH_RA                  | dB   |    |         |
| PDCCH_RB                  | dB   |    |         |
| PDSCH_RA                  | dB   | ]  |         |
| PDSCH_RB                  | dB   | ]  |         |
| OCNG_RA <sup>Note 1</sup> | dB   | ]  |         |
| OCNG_RB <sup>Note 1</sup> | dB   | ]  |         |

| Qrxlevmin                                                | dBm        |          | -140 |
|----------------------------------------------------------|------------|----------|------|
| $N_{oc}$                                                 | dBm/15 kHz |          | -98  |
| RSRP                                                     | dBm/15 KHz | -89      | -102 |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 9        | -4   |
| $\hat{E}_s/N_{oc}$                                       | dB         | 9        | -4   |
| T <sub>reselectionEUTRAN</sub>                           | S          |          | 0    |
| S <sub>nonintrasearch</sub>                              | dB         | Not sent |      |
| Thresh <sub>serving, low</sub>                           | dB         | 44       |      |
| Thresh <sub>x, low</sub> (Note 2)                        | dB         |          | 24   |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: This refers to Thresh<sub>x, low</sub> which is included in E-UTRA system information, and is a threshold for GSM target cell.

Table A.4.4.1-3: Cell-specific test parameters for Cell 2 – GSM cell

| Parameter                     | Unit  | Cell 2 | (GSM) |  |
|-------------------------------|-------|--------|-------|--|
| raiailletei                   | Offic | T1     | T2    |  |
| Absolute RF Channel<br>Number |       | ARFCN  | 1     |  |
| RXLEV                         | dBm   | -90    | -75   |  |
| RXLEV_ACCESS_MIN              | dBm   | -105   |       |  |
| MS_TXPWR_MAX_CCH              | dBm   | 24     |       |  |

# A.4.4.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than  $26 \text{ s} + T_{BCCH}$ , where  $T_{BCCH}$  is the maximum time allowed to read BCCH data from GSM cell [8].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:  $4*T_{measureGSM} + T_{BCCH}$ , where:

 $T_{measureGSM}$  See Table 4.2.2.5.3-1 in section 4.2.2.5.3.

T<sub>BCCH</sub> Maximum time allowed to read BCCH data from GSM cell [8].

According to [8], the maximum time allowed to read the BCCH data, when being synchronized to

a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s +  $T_{BCCH}$ , allow 26 s +  $T_{BCCH}$  in the test case.

#### A.4.4.2 E-UTRAN TDD – GSM:

# A.4.4.2.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN TDD to GSM cell re-selection delay reported in section 4.2.2.5.

This scenario implies the presence of 1 E-UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 E-UTRA carrier and 12 GSM cells. Test parameters are given in Table, A.4.4.2-1, A.4.4.2-2, A.4.4.2-3. E-UTRA TDD cell (Cell 1) and GSM cell (cell 2) shall belong to different Location Areas. The test comprises two successive time periods, T1 and T2. During initialization before the start of the test, the UE is

camped on cell 1. By the end of T1, the UE has identified BSIC on the GSM BCCH carrier of cell 2 but the signal levels do not meet the reselection criterion during T1. At the start of T2, the signal levels change such that cell 2 satisfies reselection criterion. The GSM layer is configured at a lower priority than the serving E-UTRA TDD layer.

Table A.4.4.2-1: General test parameters for E-UTRA TDD GSM cell re-selection test case

|                           | Parameter              | Unit | Value    | Comment                                                                                                                                                                  |
|---------------------------|------------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial<br>condition      | Active cell            |      | Cell1    | UE shall be forced to cell 1 in the initialisation phase and shall be able to detect and monitor the 4 strongest GSM BCCH carriers in T1 . Cell 1 is an E-UTRA TDD cell. |
| Final condition           | Neighbour cell         |      | Cell2    | UE shall perform reselection to cell 2 during T2. Cell 2 is a GSM cell.                                                                                                  |
| E-UTRA R                  | F Channel Number       |      | 1        | 1 E-UTRA TDD carrier frequency                                                                                                                                           |
| GSM ARFO                  | CN                     |      | 1        | 12 GSM BCCH carriers are used                                                                                                                                            |
| Uplink-dow<br>cell 1      | nlink configuration of |      | 1        | As specified in table 4.2.2 in TS 36.211                                                                                                                                 |
| Special sub<br>for cell 1 | oframe configuration   |      | 6        | As specified in table 4.2.1 in TS 36.211                                                                                                                                 |
| PRACH co                  | nfiguration for cell 1 |      | 53       | As specified in table 5.7.1-3 in TS 36.211                                                                                                                               |
| CP length                 | of cell 1              |      | Normal   |                                                                                                                                                                          |
| Access Ba                 | rring Information      | -    | Not Sent | No additional delays in random access procedure.                                                                                                                         |
| DRX cycle                 | length                 | S    | 1.28     | The value shall be used for all cells in the test.                                                                                                                       |
| T1                        |                        | S    | 35       | T1 need to be defined so that cell re-selection reaction time is taken into account.                                                                                     |
| T2                        |                        | S    | 35       | T2 need to be defined so that the higher layer search periodicity and cell re-selection reaction time are taken into account.                                            |
| Propagatio                | n channel              |      | AWGN     |                                                                                                                                                                          |

Table A.4.4.2-2: Cell-specific test parameters for Cell 1 – E-UTRA TDD cell

| Parameter                 | Unit |    | Cell 1  |
|---------------------------|------|----|---------|
|                           |      | T1 | T2      |
| E-UTRA RF Channel         |      |    | 1       |
| number                    |      |    |         |
| BW <sub>channel</sub>     | MHz  |    | 10      |
| OCNG Patterns defined in  |      |    |         |
| A.3.2.1.1 (OP.2 TDD)      |      | 0  | P.2 TDD |
| PBCH_RA                   | dB   |    |         |
| PBCH_RB                   | dB   |    |         |
| PSS_RA                    | dB   |    |         |
| SSS_RA                    | dB   |    |         |
| PCFICH_RB                 | dB   |    |         |
| PHICH_RA                  | dB   |    |         |
| PHICH_RB                  | dB   |    | 0       |
| PDCCH_RA                  | dB   |    |         |
| PDCCH_RB                  | dB   |    |         |
| PDSCH_RA                  | dB   |    |         |
| PDSCH_RB                  | dB   |    |         |
| OCNG_RA <sup>Note 1</sup> | dB   | 1  |         |
| OCNG_RB <sup>Note 1</sup> | dB   |    |         |

| Qrxlevmin                                                | dBm        |          | -140 |
|----------------------------------------------------------|------------|----------|------|
| $N_{oc}$                                                 | dBm/15 kHz |          | -98  |
| RSRP                                                     | dBm/15 KHz | -89      | -102 |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 9        | -4   |
| $\hat{E}_s/N_{oc}$                                       | dB         | 9        | -4   |
| TreselectionEUTRAN                                       | S          |          | 0    |
| S <sub>nonintrasearch</sub>                              | dB         | Not sent |      |
| Thresh <sub>serving, low</sub>                           | dB         | 44       |      |
| Thresh <sub>x, low</sub> (Note 2)                        | dB         |          | 24   |

Note 2: This refers to Thresh<sub>x, low</sub> which is included in E-UTRA system information, and is a threshold for GSM target cell.

Table A.4.4.2-3: Cell-specific test parameters for Cell 2 - GSM cell

| Doromotor                     | Unit  | Cell 2 ( | (GSM) |
|-------------------------------|-------|----------|-------|
| Parameter                     | Offic | T1       | T2    |
| Absolute RF Channel<br>Number |       | ARFCN 1  | I     |
| RXLEV                         | dBm   | -90      | -75   |
| RXLEV_ACCESS_MIN              | dBm   | -105     |       |
| MS_TXPWR_MAX_CCH              | dBm   | 24       |       |

# A.4.4.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than  $26 \text{ s} + T_{BCCH}$ , where  $T_{BCCH}$  is the maximum time allowed to read BCCH data from GSM cell [8].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as:  $4*T_{measureGSM} + T_{BCCH}$ , where:

 $T_{measureGSM}$  See Table 4.2.2.5.3-1 in section 4.2.2.5.3.

T<sub>BCCH</sub> Maximum time allowed to read BCCH data from GSM cell [8].

According to [8], the maximum time allowed to read the BCCH data, when being synchronized to

a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s +  $T_{BCCH}$ , allow 26 s +  $T_{BCCH}$  in the test case.

# A.4.5 E-UTRAN to HRPD Cell Re-Selection

# A.4.5.1 E-UTRAN FDD – HRPD

# A.4.5.1.1 E-UTRAN FDD – HRPD Cell Reselection: HRPD is of Lower Priority

# A.4.5.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD- HRPD inter-RAT cell reselection requirements specified in section 4.2.2.5.4 when the HRPD cell is of lower priority.

The test scenario comprises of one HRPD and one E-UTRAN FDD cells as given in tables A.4.5.1.1.1-1, A.4.5.1.1.1-2 and A.4.5.1.1.1-3.

The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRAN FDD cell 1 and HRPD cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell 1. Cell 1 and cell 2 shall belong to different tracking areas.

Table A.4.5.1.1.1-1: General Test Parameters for E-UTRAN FDD - lower priority HRPD Cell Reselection

|                                       | Parameter      | Unit | Value    | Comment                                          |
|---------------------------------------|----------------|------|----------|--------------------------------------------------|
| Initial condition                     | Active cell    |      | Cell 1   | E-UTRAN FDD cell                                 |
|                                       | Neighbour cell |      | Cell 2   | HRPD cell                                        |
| Final condition                       | Active cell    |      | Cell 2   | HRPD cell is selecting during T2                 |
| DRX cycle length                      |                | S    | 1.28     |                                                  |
| E-UTRA FDD RF                         | Channel Number |      | 1        | Only one FDD carrier frequency is used.          |
| E-UTRA FDD Cha                        | MHz            | 10   |          |                                                  |
| HRPD RF Channel Number                |                |      | 1        | Only one HRPD carrier frequency is used.         |
| E-UTRA FDD PRACH configuration        |                |      | 4        | As specified in table 5.7.1-2 in TS 36.211       |
| E_UTRA FDD Access Barring Information |                | -    | Not Sent | No additional delays in random access procedure. |
| T1                                    |                | S    | 30       |                                                  |
| T2                                    | s              | 30   |          |                                                  |

Table A.4.5.1.1.1-2: Cell Specific Test Parameters for E-UTRAN FDD (Cell # 1)

| Parameter                                                | Unit       | Cell 1   |      |  |  |
|----------------------------------------------------------|------------|----------|------|--|--|
|                                                          |            | T1       | T2   |  |  |
| E-UTRA RF Channel number                                 |            | 1        |      |  |  |
| BW <sub>channel</sub>                                    | MHz        | 10       |      |  |  |
| OCNG Patterns defined in A.3.2.1.1                       |            |          |      |  |  |
| (OP.2 FDD)                                               |            | OP.2 FDD |      |  |  |
| PBCH_RA                                                  | dB         |          |      |  |  |
| PBCH_RB                                                  | dB         |          |      |  |  |
| PSS_RA                                                   | dB         |          |      |  |  |
| SSS_RA                                                   | dB         |          |      |  |  |
| PCFICH_RB                                                | dB         |          |      |  |  |
| PHICH_RA                                                 | dB         | _        |      |  |  |
| PHICH_RB                                                 | dB         | 0        |      |  |  |
| PDCCH_RA                                                 | dB         |          |      |  |  |
| PDCCH_RB                                                 | dB         |          |      |  |  |
| PDSCH_RA                                                 | dB         |          |      |  |  |
| PDSCH_RB                                                 | dB         |          |      |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |          |      |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |          |      |  |  |
|                                                          |            |          |      |  |  |
| $N_{oc}$                                                 | dBm/15 kHz | -98      |      |  |  |
| RSRP                                                     | dBm/15 KHz | -89      | -102 |  |  |
| <b>r</b> /r                                              | dB         | 9        | -4   |  |  |
| $\mathbf{\hat{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ |            |          | •    |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 9        | -4   |  |  |
| Treselection <sub>EUTRAN</sub>                           | S          | 0        |      |  |  |
| Snonintrasearch                                          | dB         | Not sent |      |  |  |
| cellReselectionPriority                                  | -          | 1        |      |  |  |
| Qrxlevmin                                                | dBm        | -14      | 0    |  |  |
| Qrxlevminoffset                                          | dB         | 0        |      |  |  |
| Pcompensation                                            | dB         | 0        |      |  |  |
| S <sub>Serving</sub> Cell                                | dB         | 51       | 38   |  |  |
| Thresh <sub>serving, low</sub>                           | dB         | 44       |      |  |  |
| Propagation Condition                                    |            | AWGN     |      |  |  |

Parameter Unit Cell 2 <u>T1</u> T2 HRPD RF Channel Number Control E<sub>b</sub> (38.4 kbps) dB 21 Control E<sub>b</sub> (76.8 kbps) dB 18 N,  $\hat{I}_{or}/I_{oc}$ dB 0 0 dBm/ 1.2288 -55 MHz CDMA2000 HRPD Pilot Strength dΒ -3 -3 **Propagation Condition AWGN** SnonServingCell,x -6 0 Treselection s hrpd-CellReselectionPriority 0 Thresh<sub>x, low</sub> -14

Table A.4.5.1.1.1-3: Cell Specific Test Parameters for HRPD (cell # 2)

# A.4.5.1.1.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2 and starts to send access probe preambles on the Access Channel on cell 2.

The cell re-selection delay to the lower priority cell 2 shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateHRPD} + T_{SI-HRPD}$ 

Where:

T<sub>evaluatHRPD</sub> See Table 4.2.2.5.4-1

T<sub>SI-HRPD</sub> Maximum repetition period of relevant system information blocks that need to be received

by the UE to camp on cell 2; 1704 ms is assumed in this test case.

This gives a total of 20.904 s for the lower priority cell reselection, allow 21 s in the test case.

# A.4.5.2 E-UTRAN TDD – HRPD

# A.4.5.2.1 E-UTRAN TDD – HRPD Cell Reselection: HRPD is of Lower Priority

#### A.4.5.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN TDD- HRPD inter-RAT cell reselection requirements specified in section 4.2.2.5.4 when the HRPD cell is of lower priority.

The test scenario comprises of one HRPD and one E-UTRAN TDD cells as given in tables A.4.5.2.1.1-1, A.4.5.2.1.1-2 and A.4.5.2.1.1-3.

The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRAN TDD cell 1 and HRPD cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell 1. Cell 1 and cell 2 shall belong to different tracking areas.

Table A.4.5.2.1.1-1: General Test Parameters for E-UTRAN TDD - lower priority HRPD Cell Reselection

|                     | Parameter                               | Unit | Value    | Comment                                          |
|---------------------|-----------------------------------------|------|----------|--------------------------------------------------|
| Initial condition   | Active cell                             |      | Cell 1   | E-UTRAN TDD cell                                 |
|                     | Neighbour cell                          |      | Cell 2   | HRPD cell                                        |
| Final condition     | Active cell                             |      | Cell 2   | HRPD cell is selecting during T2                 |
| Uplink-downlink co  | onfiguration of cell 1                  |      | 1        | As specified in table 4.2.2 in TS 36.211         |
| Special subframe    | configuration of cell 1                 |      | 6        | As specified in table 4.2.1 in TS 36.211         |
| CP length of cell 1 |                                         |      | Normal   |                                                  |
| DRX cycle length    |                                         | S    | 1.28     |                                                  |
| E-UTRA TDD RF       | Channel Number                          |      | 1        | Only one TDD carrier frequency is used.          |
| E-UTRA TDD Cha      | nnel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10       |                                                  |
| HRPD RF Channe      | el Number                               |      | 1        | Only one HRPD carrier frequency is used.         |
| E-UTRA TDD PRA      | ACH configuration of cell 1             |      | 53       | As specified in table 4.7.1-3 in TS 36.211       |
| E_UTRA TDD Acc      | ess Barring Information                 | -    | Not Sent | No additional delays in random access procedure. |
| T1                  |                                         | S    | 30       |                                                  |
| T2                  |                                         | S    | 30       |                                                  |

Table A.4.5.2.1.1-2: Cell Specific Test Parameters for E-UTRAN TDD (Cell # 1)

| Parameter                                                | Unit       | Cell 1   |      |  |  |
|----------------------------------------------------------|------------|----------|------|--|--|
|                                                          |            | T1       | T2   |  |  |
| E-UTRA RF Channel number                                 |            | 1        |      |  |  |
| BW <sub>channel</sub>                                    | MHz        | 10       |      |  |  |
| OCNG Patterns defined in A.3.2.2.2                       |            |          |      |  |  |
| (OP.2 TDD)                                               |            | OP.2 TDD |      |  |  |
| PBCH_RA                                                  | dB         |          |      |  |  |
| PBCH_RB                                                  | dB         |          |      |  |  |
| PSS_RA                                                   | dB         |          |      |  |  |
| SSS_RA                                                   | dB         |          |      |  |  |
| PCFICH_RB                                                | dB         |          |      |  |  |
| PHICH_RA                                                 | dB         |          |      |  |  |
| PHICH_RB                                                 | dB         | 0        |      |  |  |
| PDCCH_RA                                                 | dB         |          |      |  |  |
| PDCCH_RB                                                 | dB         |          |      |  |  |
| PDSCH_RA                                                 | dB         |          |      |  |  |
| PDSCH_RB                                                 | dB         |          |      |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |          |      |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |          |      |  |  |
| $N_{oc}$                                                 | dBm/15 kHz | -98      |      |  |  |
| RSRP                                                     | dBm/15 KHz | -89      | -102 |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 9        | -4   |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 9        | -4   |  |  |
| Treselection <sub>EUTRAN</sub>                           | S          | 0        |      |  |  |
| Snonintrasearch                                          | dB         | Not sent |      |  |  |
| cellReselectionPriority                                  | -          | 1        |      |  |  |
| Qrxlevmin                                                | dBm        | -140     |      |  |  |
| Qrxlevminoffset                                          | dB         | 0        |      |  |  |
| Pcompensation                                            | dB         | 0        |      |  |  |
| SservingCell                                             | dB         | 51       | 38   |  |  |
| Thresh <sub>serving, low</sub>                           | dB         | 44       |      |  |  |
| Propagation Condition                                    |            | AWGN     |      |  |  |
|                                                          |            |          |      |  |  |

-14

**Parameter** Unit Cell 2 <u>T1</u> T2 HRPD RF Channel Number Control E<sub>b</sub> (38.4 kbps) dB 21 Control E<sub>b</sub> (76.8 kbps) dB 18 N,  $\hat{I}_{or}/I_{oc}$ dB 0 0 dBm/ 1.2288 -55 MHz CDMA2000 HRPD Pilot Strength dΒ -3 -3 **Propagation Condition AWGN** SnonServingCell,x -6 0 Treselection s hrpd-CellReselectionPriority 0

Table A.4.5.2.1.1-3: Cell Specific Test Parameters for HRPD (cell # 2)

### A.4.5.2.1.2 Test Requirements

Thresh<sub>x, low</sub>

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2 and starts to send access probe preambles on the Access Channel on cell 2.

The cell re-selection delay to the lower priority cell 2 shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluateHRPD} + T_{SI-HRPD}$ 

Where:

T<sub>evaluatHRPD</sub> See Table 4.2.2.5.4-1

T<sub>SI-HRPD</sub> Maximum repetition period of relevant system information blocks that need to be received

by the UE to camp on cell 2; 1704 ms is assumed in this test case.

This gives a total of 20.904 s for the lower priority cell reselection, allow 21 s in the test case.

# A.4.6 E-UTRAN to cdma2000 1X Cell Re-Selection

# A.4.6.1 E-UTRAN FDD – cdma2000 1X

# A.4.6.1.1 E-UTRAN FDD – cdma2000 1X Cell Reselection: cdma2000 1X is of Lower Priority

# A.4.6.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD- cdma2000 1X inter-RAT cell reselection requirements specified in section 4.2.2.5.5 when the cdma2000 1X cell is of lower priority.

The test scenario comprises of one cdma2000 1X and one E-UTRAN FDD cells as given in tables A.4.6.1.1.1-1, A.4.6.1.1.1-2 and A.4.6.1.1.1-3.

The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRAN FDD cell 1 and cdma2000 1X cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell 1. Cell 1 and cell 2 shall belong to different tracking areas.

Table A.4.6.1.1.1-1: General Test Parameters for E-UTRAN FDD - lower priority cdma2000 1X Cell Reselection

|                                                       | Parameter      | Unit | Value    | Comment                                          |
|-------------------------------------------------------|----------------|------|----------|--------------------------------------------------|
| Initial condition                                     | Active cell    |      | Cell 1   | E-UTRAN FDD cell                                 |
|                                                       | Neighbour cell |      | Cell 2   | cdma2000 1X cell                                 |
| Final condition                                       | Active cell    |      | Cell 2   | cdma2000 1X cell is selecting during T2          |
| DDV social law eith                                   |                | _    | 4.00     | during 12                                        |
| DRX cycle length                                      |                | S    | 1.28     |                                                  |
| E-UTRA FDD RF Channel Number                          |                |      | 1        | Only one FDD carrier frequency is used.          |
| E-UTRA FDD Channel Bandwidth (BW <sub>channel</sub> ) |                | MHz  | 10       |                                                  |
| cdma2000 1X RF Channel Number                         |                |      | 1        | Only one cdma2000 1X carrier frequency is used.  |
| E-UTRA FDD PRACH configuration                        |                |      | 4        | As specified in table 5.7.1-2 in TS 36.211       |
| E_UTRA FDD Access Barring Information                 |                | -    | Not Sent | No additional delays in random access procedure. |
| T1                                                    |                | S    | 30       |                                                  |
| T2                                                    |                | S    | 30       |                                                  |

Table A.4.6.1.1.1-2: Cell Specific Test Parameters for E-UTRAN FDD (Cell # 1)

| Parameter                                                | Unit        | Cell 1   |      |  |  |
|----------------------------------------------------------|-------------|----------|------|--|--|
|                                                          |             | T1       | T2   |  |  |
| E-UTRA RF Channel number                                 |             | 1        |      |  |  |
| BW <sub>channel</sub>                                    | MHz         | 10       |      |  |  |
| OCNG Patterns defined in A.3.2.1.1                       |             |          |      |  |  |
| (OP.2 FDD)                                               |             | OP.2 FDD |      |  |  |
| PBCH_RA                                                  | dB          |          |      |  |  |
| PBCH_RB                                                  | dB          |          |      |  |  |
| PSS_RA                                                   | dB          |          |      |  |  |
| SSS_RA                                                   | dB          |          |      |  |  |
| PCFICH_RB                                                | dB          |          |      |  |  |
| PHICH_RA                                                 | dB          | •        |      |  |  |
| PHICH_RB                                                 | dB          | 0        |      |  |  |
| PDCCH_RA                                                 | dB          |          |      |  |  |
| PDCCH_RB                                                 | dB          |          |      |  |  |
| PDSCH_RA                                                 | dB          |          |      |  |  |
| PDSCH_RB                                                 | dB          |          |      |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB          |          |      |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB          |          |      |  |  |
|                                                          |             |          |      |  |  |
| $N_{oc}^{ m Note  2}$                                    | dBm/15 kHz  | -98      |      |  |  |
| RSRP Note 3                                              | dBm/15 KHz  | -89      | -102 |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB          | 9        | -4   |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB          | 9        | -4   |  |  |
| Treselection <sub>EUTRAN</sub>                           | S           | 0        |      |  |  |
| Snonintrasearch                                          | dB          | Not sent |      |  |  |
| cellReselectionPriority                                  | -           | 1        |      |  |  |
| Qrxlevmin                                                | dBm         | -140     |      |  |  |
| Qrxlevminoffset                                          | dB          | 0        |      |  |  |
| Pcompensation                                            | dB          | 0        |      |  |  |
| S <sub>Serving</sub> Cell                                | dB          | 51       | 38   |  |  |
| Thresh <sub>serving, low</sub>                           | dB          | 44       |      |  |  |
| Propagation Condition                                    |             | AWGN     |      |  |  |
| NI ( A ONO I III I I I I I                               | 1 (1 11 (11 |          |      |  |  |

Note 2: Iterference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: SRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

**Parameter** Unit Cell 2 T1 **T2** cdma2000 1X RF Channel Number Pilot E<sub>c</sub> -7 dB  $I_{or}$ Sync E<sub>c</sub> dB -16  $I_{or}$ Paging E<sub>c</sub> (4.8 kbps) dB -12  $\hat{I}_{or}/I_{oc}$ dB 0 dBm/ 1.2288  $I_{oc}$ -55 MHz CDMA2000 1xRTT Pilot Strength -10 -10 dΒ **Propagation Condition AWGN** -20 SnonServingCell,x Treselection 0 s oneXRTT-CellReselectionPriority 0 Thresh<sub>x, low</sub> -28

Table A.4.6.1.1.1-3: Cell Specific Test Parameters for cdma2000 1X (cell # 2)

# A.4.6.1.1.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2 and starts to send access probe preambles on the Access Channel on cell 2.

The cell re-selection delay to the lower priority cell 2 shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluatecdma2000 \ IX} + T_{SI-cdma2000 \ IX}$ 

#### Where:

 $T_{evaluatcdma2000 1X}$  See Table 4.2.2.5.5-1

T<sub>SI-cdma2000 1X</sub> Maximum repetition period of relevant system information blocks that need to be received by the UE to camp on cell 2; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for the lower priority cell reselection, allow 21 s in the test case.

# A.4.6.2 E-UTRAN TDD - cdma2000 1X

# A.4.6.2.1 E-UTRAN TDD –cdma2000 1X Cell Reselection: cdma2000 1X is of Lower Priority

# A.4.6.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN TDD- cdma2000 1X inter-RAT cell reselection requirements specified in section 4.2.2.5.5 when the cdma2000 1X cell is of lower priority.

The test scenario comprises of one cdma2000 1X and one E-UTRAN TDD cells as given in tables A.4.6.2.1.1-1, A.4.6.2.1.1-2 and A.4.6.2.1.1-3.

The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRAN TDD cell 1 and cdma2000 1X cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell 1. Cell 1 and cell 2 shall belong to different tracking areas.

Table A.4.6.2.1.1-1: General Test Parameters for E-UTRAN TDD - lower priority cdma2000 1X Cell Reselection

| Parameter                                |                                         | Unit | Value    | Comment                                          |
|------------------------------------------|-----------------------------------------|------|----------|--------------------------------------------------|
| Initial condition                        | Active cell                             |      | Cell 1   | E-UTRAN TDD cell                                 |
|                                          | Neighbour cell                          |      | Cell 2   | cdma2000 1X cell                                 |
| Final condition                          | Active cell                             |      | Cell 2   | cdma2000 1X cell is selecting during T2          |
| DRX cycle length                         |                                         | S    | 1.28     |                                                  |
| E-UTRA TDD RF Channel Number             |                                         |      | 1        | Only one TDD carrier frequency is used.          |
| E-UTRA TDD Cha                           | nnel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10       |                                                  |
| cdma2000 1X RF Channel Number            |                                         |      | 1        | Only one cdma2000 1X carrier frequency is used.  |
| E-UTRA TDD PRACH configuration           |                                         |      | 53       | As specified in table 5.7.1-3 in TS 36.211       |
| Uplink-downlink co                       | onfiguration of cell 1                  |      | 1        | As specified in table 4.2.2 in TS 36.211         |
| Special subframe configuration of cell 1 |                                         |      | 6        | As specified in table 4.2.1 in TS 36.211         |
| E_UTRA TDD Acc                           | ess Barring Information                 | -    | Not Sent | No additional delays in random access procedure. |
| T1                                       |                                         | S    | 30       |                                                  |
| T2                                       |                                         | S    | 30       |                                                  |

Table A.4.6.2.1.1-2: Cell Specific Test Parameters for E-UTRAN TDD (Cell # 1)

| Parameter                                                | Unit       | Cell 1   |      |  |  |
|----------------------------------------------------------|------------|----------|------|--|--|
|                                                          |            | T1       | T2   |  |  |
| E-UTRA RF Channel number                                 |            | 1        |      |  |  |
| BW <sub>channel</sub>                                    | MHz        | 10       |      |  |  |
| OCNG Patterns defined in A.3.2.2.2                       |            |          |      |  |  |
| (OP.2 TDD)                                               |            | OP.2 TDD |      |  |  |
| PBCH_RA                                                  | dB         |          |      |  |  |
| PBCH_RB                                                  | dB         |          |      |  |  |
| PSS_RA                                                   | dB         |          |      |  |  |
| SSS_RA                                                   | dB         |          |      |  |  |
| PCFICH_RB                                                | dB         |          |      |  |  |
| PHICH_RA                                                 | dB         | _        |      |  |  |
| PHICH_RB                                                 | dB         | 0        |      |  |  |
| PDCCH_RA                                                 | dB         |          |      |  |  |
| PDCCH_RB                                                 | dB         |          |      |  |  |
| PDSCH_RA                                                 | dB         | 1        |      |  |  |
| PDSCH_RB                                                 | dB         | ]        |      |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |          |      |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |          |      |  |  |
|                                                          |            |          |      |  |  |
| $N_{oc}^{$                                               | dBm/15 kHz | -98      |      |  |  |
| RSRP Note 3                                              | dBm/15 KHz | -89      | -102 |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 9        | -4   |  |  |
|                                                          |            |          |      |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 9        | -4   |  |  |
| Treselection <sub>EUTRAN</sub>                           | S          | 0        |      |  |  |
| Snonintrasearch                                          | dB         | Not sent |      |  |  |
| cellReselectionPriority                                  | -          | 1        |      |  |  |
| Qrxlevmin                                                | dBm        | -14      | 0    |  |  |
| Qrxlevminoffset                                          | dB         | 0        |      |  |  |
| Pcompensation                                            | dB         | 0        |      |  |  |
| SservingCell                                             | dB         | 51       | 38   |  |  |
| Thresh <sub>serving, low</sub>                           | dB         | 44       |      |  |  |
| Propagation Condition                                    |            | AWGN     |      |  |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

**Parameter** Unit Cell 2 T1 **T2** cdma2000 1X RF Channel Number Pilot E<sub>c</sub> dB [-7]  $I_{or}$ Sync E<sub>c</sub> dB [-16] Paging E<sub>c</sub> (4.8 kbps) dB [-12]  $\hat{I}_{or}/I_{oc}$ dB [0] [0] dBm/ 1.2288  $I_{oc}$ -55 MHz CDMA2000 1xRTT Pilot Strength dΒ [-10][-10] **AWGN Propagation Condition** SnonServingCell,x [-20]Treselection s 0 oneXRTT-CellReselectionPriority 0 Thresh<sub>x, low</sub> [-28]

Table A.4.6.2.1.1-3: Cell Specific Test Parameters for cdma2000 1X (cell # 2)

#### A.4.6.2.1.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2 and starts to send access probe preambles on the Access Channel on cell 2.

The cell re-selection delay to the lower priority cell 2 shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as:  $T_{evaluatecdma2000~1X} + T_{SI-cdma2000~1X}$ 

#### Where:

 $T_{evaluatcdma2000 1X}$  See Table 4.2.2.5.5-1

T<sub>SI-cdma2000 1X</sub> Maximum repetition period of relevant system information blocks that need to be received by

the UE to camp on cell 2; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for the lower priority cell reselection, allow 21 s in the test case.

## A.5 E-UTRAN RRC CONNECTED Mode Mobility

#### A.5.1 E-UTRAN Handover

#### A.5.1.1 E-UTRAN FDD - FDD Intra frequency handover

#### A.5.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD intra frequency handover requirements specified in section 5.1.2.1.

The test scenario comprises of 1 E-UTRA FDD carrier and 2 cells as given in tables A.5.1.1.1-1 and A.5.1.1.1-2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. T3 is defined as the end of the last TTI containing the RRC message implying handover.

Table A.5.1.1.1-1: General test parameters for E-UTRAN FDD-FDD intra frequency handover test case

| Par                       | ameter                      | Unit | Value                    | Comment                                          |
|---------------------------|-----------------------------|------|--------------------------|--------------------------------------------------|
| PDSCH paramete            | rs                          |      | DL Reference Measurement | As specified in section A.3.1.1.1                |
| -                         |                             |      | Channel R.0 FDD          |                                                  |
| PCFICH/PDCCH/I            | PHICH parameters            |      | DL Reference Measurement | As specified in section A.3.1.2.1                |
|                           |                             |      | Channel R.6 FDD          |                                                  |
| Initial conditions        | Active cell                 |      | Cell 1                   |                                                  |
|                           | Neighbouring cell           |      | Cell 2                   |                                                  |
| Final condition           | Active cell                 |      | Cell 2                   |                                                  |
| E-UTRA RF Chan            | nel Number                  |      | 1                        | Only one FDD carrier frequency is used.          |
| Channel Bandwidt          | th (BW <sub>channel</sub> ) | MHz  | 10                       |                                                  |
| A3-Offset                 |                             | dB   | 0                        |                                                  |
| Hysteresis                |                             | dB   | 0                        |                                                  |
| Time To Trigger           |                             | S    | 0                        |                                                  |
| Filter coefficient        |                             |      | 0                        | L3 filtering is not used                         |
| DRX                       |                             |      |                          | OFF                                              |
| CP length                 |                             |      | Normal                   |                                                  |
| Access Barring Inf        | formation                   | -    | Not Sent                 | No additional delays in random access procedure. |
| PRACH configuration       |                             |      | 4                        | As specified in table 5.7.1-2 in TS 36.211       |
| Time offset between cells |                             |      | 3 ms                     | Asynchronous cells                               |
| T1                        |                             | S    | 5                        |                                                  |
| T2                        |                             | S    | ≤5                       |                                                  |
| T3                        |                             | S    | 1                        |                                                  |

Table A.5.1.1.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra frequency handover test case

| Parameter                                                | Unit       | Cell 1 |      |      | Cell 2     |          |          |
|----------------------------------------------------------|------------|--------|------|------|------------|----------|----------|
|                                                          |            | T1     | T2   | T3   | T1         | T2       | T3       |
| E-UTRA RF Channel                                        |            |        | 1    |      |            | 1        |          |
| Number                                                   |            |        |      |      |            |          |          |
| BW <sub>channel</sub>                                    | MHz        |        | 10   |      |            | 10       |          |
| OCNG Patterns                                            |            | OP.1   | OP.1 | OP.2 | OP.2 FDD   | OP.2 FDD | OP.1 FDD |
| defined in A.3.2.1.1                                     |            | FDD    | FDD  | FDD  |            |          |          |
| (OP.1 FDD) and in                                        |            |        |      |      |            |          |          |
| A.3.2.1.2 (OP.2 FDD)                                     |            |        |      |      |            |          |          |
| PBCH_RA                                                  | dB         |        |      |      |            |          |          |
| PBCH_RB                                                  | dB         |        |      |      |            |          |          |
| PSS_RA                                                   | dB         |        |      |      |            |          |          |
| SSS_RA                                                   | dB         |        |      |      |            |          |          |
| PCFICH_RB                                                | dB         |        |      |      |            |          |          |
| PHICH_RA                                                 | dB         |        |      |      |            |          |          |
| PHICH_RB                                                 | dB         |        |      |      |            | _        |          |
| PDCCH_RA                                                 | dB         |        | 0    |      |            | 0        |          |
| PDCCH_RB                                                 | dB         |        |      |      |            |          |          |
| PDSCH_RA                                                 | dB         |        |      |      |            |          |          |
| PDSCH_RB                                                 | dB         |        |      |      |            |          |          |
| OCNG_RA <sup>Note 1</sup>                                | dB         |        |      |      |            |          |          |
| OCNG_RB <sup>Note 1</sup>                                | dB         |        |      |      |            |          |          |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 8      | -3.3 | -3.3 | -Infinity  | 2.36     | 2.36     |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 KHz |        | 1    |      | -98        | <b>.</b> | •        |
| $\hat{E}_s/N_{oc}$                                       | dB         | 8      | 8    | 8    | - Infinity | 11       | 11       |
| RSRP Note 3                                              | dBm/15 KHz | -90    | -90  | -90  | - Infinity | -87      | -87      |
| Propagation Condition                                    |            |        | •    | •    | AWGN       | •        | •        |
| Propagation Condition                                    | 1          |        |      |      | AWGN       |          |          |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

#### A.5.1.1.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 50 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 15 ms and is specified in section 11.2 in [2].

 $T_{interrupt} = 35$  ms in the test;  $T_{interrupt}$  is defined in section 5.1.2.1.2.

This gives a total of 50 ms.

## A.5.1.2 E-UTRAN TDD - TDD Intra frequency handover

## A.5.1.2.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD intra frequency handover requirements specified in section 5.2.2.4.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The test scenario comprises of 1 E-UTRA TDD carrier and 2 cells as given in tables A.5.1.2.1-1 and A.5.1.2.1-2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. T3 is defined as the end of the last TTI containing the RRC message implying handover.

Table A.5.1.2.1-1: General test parameters for E-UTRAN TDD-TDD Intra frequency handover test case

| Parameter                 |                            | Unit | Value                    | Comment                                          |
|---------------------------|----------------------------|------|--------------------------|--------------------------------------------------|
|                           |                            |      | DL Reference Measurement |                                                  |
| PDSCH parameters          | S                          |      | Channel R.0 TDD          | As specified in section A.3.1.1.2                |
| ·                         |                            |      | DL Reference Measurement |                                                  |
| PCFICH/PDCCHPI            | HICH parameters            |      | Channel R.6 TDD          | As specified in section A.3.1.2.2                |
| Initial conditions        | Active cell                |      | Cell 1                   |                                                  |
|                           | Neighbouring cell          |      | Cell 2                   |                                                  |
| Final condition           | Active cell                |      | Cell 2                   |                                                  |
| E-UTRA RF Chann           | el Number                  |      | 1                        | Only one TDD carrier frequency is used.          |
| Channel Bandwidth         | i (BW <sub>channel</sub> ) | MHz  | 10                       |                                                  |
| A3-Offset                 | <u> </u>                   | dB   | 0                        |                                                  |
| Hysteresis                |                            | dB   | 0                        |                                                  |
| Time To Trigger           |                            | s    | 0                        |                                                  |
| Filter coefficient        |                            |      | 0                        | L3 filtering is not used                         |
| DRX                       |                            |      |                          | OFF                                              |
| CP length                 |                            |      | Normal                   |                                                  |
| Access Barring Info       | ormation                   | -    | Not Sent                 | No additional delays in random access procedure. |
| Special subframe c        | onfiguration               |      | 6                        | As specified in table 4.2-1 in TS 36.211         |
| Uplink-downlink cor       | nfiguration                |      | 1                        | As specified in table 4.2-2 in TS 36.211         |
| PRACH configuration index |                            |      | 53                       | As specified in table 5.7.1-3 in TS 36.211       |
| Time offset between cells |                            |      | 3 μs                     | Synchronous cells                                |
| T1                        |                            | S    | 5                        |                                                  |
| T2                        |                            | S    | ≤5                       |                                                  |
| T3                        |                            | S    | 1                        |                                                  |

Table A.5.1.2.1-2: Cell specific test parameters for E-UTRAN TDD-TDD Intra frequency handover test case

| Parameter                 | Unit       | Cell 1 |      |      | Cell 2     |          |          |
|---------------------------|------------|--------|------|------|------------|----------|----------|
|                           |            | T1     | T2   | T3   | T1         | T2       | T3       |
| E-UTRA RF Channel         |            |        | 1    |      | 1          |          |          |
| Number                    |            |        |      |      |            |          |          |
| BW <sub>channel</sub>     | MHz        |        | 10   |      |            | 10       |          |
| OCNG Patterns             |            | OP.1   | OP.1 | OP.2 | OP.2 TDD   | OP.2 TDD | OP.1 TDD |
| defined in A.3.2.1.1      |            | TDD    | TDD  | TDD  |            |          |          |
| (OP.1 TDD) and in         |            |        |      |      |            |          |          |
| A.3.2.1.2 (OP.2 TDD)      |            |        |      |      |            |          |          |
| PBCH_RA                   | dB         |        |      |      |            |          |          |
| PBCH_RB                   | dB         |        |      |      |            |          |          |
| PSS_RA                    | dB         |        |      |      |            |          |          |
| SSS_RA                    | dB         |        |      |      |            |          |          |
| PCFICH_RB                 | dB         |        |      |      |            |          |          |
| PHICH_RA                  | dB         |        |      |      |            |          |          |
| PHICH_RB                  | dB         |        | _    |      |            | _        |          |
| PDCCH_RA                  | dB         |        | 0    |      |            | 0        |          |
| PDCCH_RB                  | dB         |        |      |      |            |          |          |
| PDSCH_RA                  | dB         |        |      |      |            |          |          |
| PDSCH_RB                  | dB         |        |      |      |            |          |          |
| OCNG_RA <sup>Note 1</sup> | dB         |        |      |      |            |          |          |
| OCNG_RB <sup>Note 1</sup> | dB         |        |      |      |            |          |          |
| $\hat{E}_{s}/I_{ot}$      | dB         | 8      | -3.3 | -3.3 | -Infinity  | 2.36     | 2.36     |
| $N_{oc}^{ m Note  2}$     | dBm/15 KHz |        |      |      | -98        |          |          |
| $\hat{E}_s/N_{oc}$        | dB         | 8      | 8    | 8    | -Infinity  | 11       | 11       |
| RSRP Note 3               | dBm/15 KHz | -90    | -90  | -90  | - Infinity | -87      | -87      |
| Propagation Condition     |            | •      | •    |      | AWGN       | •        | •        |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

### A.5.1.2.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 50 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 15 ms and is specified in section 11.2 in [2].

 $T_{interrupt} = 35$  ms in the test;  $T_{interrupt}$  is defined in section 5.2.2.4.2.

This gives a total of 50 ms.

## A.5.1.3 E-UTRAN FDD – FDD Inter frequency handover

#### A.5.1.3.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD inter-frequency handover requirements specified in section 5.1.2.1.

The test scenario comprises of two E-UTRA FDD carriers and one cell on each carrier as given in tables A.5.1.3.1-1 and A.5.1.3.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would not enter the DRX state. The test consists of three successive time periods, with time durations of T1, T2 and T3

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves

respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE.

Table A.5.1.3.1-1: General test parameters for E-UTRAN FDD-FDD Inter frequency handover test case

| Parameter                    |                               | Unit | Value                                       | Comment                                                  |
|------------------------------|-------------------------------|------|---------------------------------------------|----------------------------------------------------------|
| PDSCH parameter              | PDSCH parameters              |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                        |
| PCFICH/PDCCH/P               | PCFICH/PDCCH/PHICH parameters |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                        |
| Initial conditions           | Active cell                   |      | Cell 1                                      | Cell 1 is on RF channel number 1                         |
|                              | Neighbouring cell             |      | Cell 2                                      | Cell 2 is on RF channel number 2                         |
| Final condition              | Active cell                   |      | Cell 2                                      |                                                          |
| E-UTRA RF chann              | el number                     |      | 1, 2                                        | Two FDD carriers are used                                |
| Channel Bandwidth            | n (BW <sub>channel</sub> )    | MHz  | 10                                          |                                                          |
| A3-Offset                    |                               | dB   | -4                                          |                                                          |
| Hysteresis                   |                               | dB   | 0                                           |                                                          |
| TimeToTrigger                |                               | S    | 0                                           |                                                          |
| Filter coefficient           |                               |      | 0                                           | L3 filtering is not used                                 |
| DRX                          |                               |      | DRX_L                                       | As specified in section A.3.3                            |
| PRACH configurati            | on                            |      | 4                                           | As specified in table 5.7.1-2 in 3GPP TS 36.211          |
| Access Barring Info          | ormation                      | -    | Not sent                                    | No additional delays in random access procedure          |
| Time offset between          | n cells                       |      | 3 ms                                        | Asynchronous cells                                       |
| Gap pattern configuration Id |                               |      | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts |
| T1                           | T1                            |      | 5                                           |                                                          |
| T2                           |                               | s    | ≤5                                          |                                                          |
| T3                           |                               | S    | 1                                           |                                                          |

Table A.5.1.3.1-2: Cell specific test parameters for E-UTRAN FDD-FDD Inter frequency handover test case

| Parameter                 | Unit       | Cell 1 |      |          | Cell 2    |          |   |         |
|---------------------------|------------|--------|------|----------|-----------|----------|---|---------|
|                           |            | T1     | T2   | Т3       | T1        | T2       |   | Т3      |
| E-UTRA RF Channel         |            | 1 2    |      |          |           |          |   |         |
| number                    |            |        |      |          |           |          |   |         |
| BW <sub>channel</sub>     | MHz        |        | 10   |          |           | 10       |   |         |
| OCNG Patterns             |            | OP.1   | OP.1 | OP.2 FDD | OP.2      | OP.2 FDD | C | P.1 FDD |
| defined in A.3.2.1.1      |            | FDD    | FDD  |          | FDD       |          |   |         |
| (OP.1 FDD) and in         |            |        |      |          |           |          |   |         |
| A.3.2.1.2 (OP.2 FDD)      |            |        |      |          |           |          |   |         |
| PBCH_RA                   | dB         |        |      |          |           |          |   |         |
| PBCH_RB                   | dB         |        |      |          |           |          |   |         |
| PSS_RA                    | dB         |        |      |          |           |          |   |         |
| SSS_RA                    | dB         |        |      |          |           |          |   |         |
| PCFICH_RB                 | dB         |        |      |          |           |          |   |         |
| PHICH_RA                  | dB         |        |      |          |           |          |   |         |
| PHICH_RB                  | dB         |        | 0    |          |           | 0        |   |         |
| PDCCH_RA                  | dB         |        |      |          |           |          |   |         |
| PDCCH_RB                  | dB         |        |      |          |           |          |   |         |
| PDSCH_RA                  | dB         |        |      |          |           |          |   |         |
| PDSCH RB                  | dB         |        |      |          |           |          |   |         |
| OCNG RA <sup>Note 1</sup> | dB         |        |      |          |           |          |   |         |
| OCNG_RB <sup>Note 1</sup> | dB         |        |      |          |           |          |   |         |
| $\hat{E}_s/I_{ot}$        | dB         | 4      | 4    | 4        | -Infinit  | y 7      |   | 7       |
| Note 2                    | dBm/15 kHz |        |      |          | -98       | <u>.</u> |   |         |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4    | 4        | -Infinity | y 7      |   | 7       |
| RSRP Note 3               | dBm/15 KHz | -94    | -94  | -94      | -Infinity | y -91    |   | -91     |
| Propagation Condition     |            |        | •    |          | AWGN      | •        |   | •       |
|                           |            |        |      |          |           |          |   |         |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.5.1.3.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 50 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 15 ms and is specified in section 11.2 in [2].

 $T_{interrupt} = 35$  ms in the test;  $T_{interrupt}$  is defined in section 5.1.2.1.2.

This gives a total of 50 ms.

## A.5.1.4 E-UTRAN TDD – TDD Inter frequency handover

## A.5.1.4.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD inter frequency handover requirements specified in section 5.2.2.4.

The test scenario comprises of two E-UTRA TDD carriers and one cell on each carrier as given in tables Table A.5.1.4.1-1 and Table A.5.1.4.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

UE would not enter the DRX state. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3.

Table A.5.1.4.1-1: General test parameters for E-UTRAN TDD-TDD Inter frequency handover test case

| Parameter           |                             | Unit | Value                    | Comment                                          |
|---------------------|-----------------------------|------|--------------------------|--------------------------------------------------|
|                     |                             |      | DL Reference Measurement |                                                  |
| PDSCH paramete      | rs                          |      | Channel R.0 TDD          | As specified in section A.3.1.1.2                |
|                     |                             |      | DL Reference Measurement |                                                  |
| PCFICH/PDCCH/I      | PHICH                       |      | Channel R.6 TDD          | As specified in section A.3.1.2.2                |
| parameters          |                             |      |                          |                                                  |
| Gap Pattern Id      |                             |      | 1                        | As specified in 3GPP TS 36.133 section 8.1.2.1.  |
| Initial conditions  | Active cell                 |      | Cell 1                   |                                                  |
|                     | Neighbour cell              |      | Cell 2                   |                                                  |
| Final conditions    | Active cell                 |      | Cell 2                   |                                                  |
| E-UTRA RF chani     | nel number                  |      | 1, 2                     | Two TDD carriers are used                        |
| Channel Bandwidt    | th (BW <sub>channel</sub> ) | MHz  | 10                       |                                                  |
| A3-Offset           |                             | dB   | -4                       |                                                  |
| Hysteresis          |                             | dB   | 0                        |                                                  |
| Time to Trigger     |                             | ms   | 0                        |                                                  |
| Filter coefficient  |                             |      | 0                        |                                                  |
| DRX                 |                             |      | DRX_L                    | As specified in section A.3.3                    |
| CP length           |                             |      | Normal                   |                                                  |
| Access Barring Inf  | formation                   | -    | Not Sent                 | No additional delays in random access procedure. |
| Special subframe    | configuration               |      | 6                        | As specified in table 4.2-1 in 3GPP TS 36.211    |
| Uplink-downlink co  | onfiguration                |      | 1                        | As specified in table 4.2-2 in 3GPP TS 36.211    |
| PRACH configura     | PRACH configuration         |      | 53                       | As specified in table 5.7.1-3 in 3GPP TS 36.211  |
| Time offset between | en cells                    |      | 3 μs                     | Synchronous cells                                |
| T1                  |                             | S    | 5                        |                                                  |
| T2                  |                             | S    | ≤5                       |                                                  |
| T3                  |                             | S    | 1                        |                                                  |

Table A.5.1.4.1-2: Cell specific test parameters for E-UTRAN TDD-TDD Inter frequency handover test case

| Parameter                                                | Unit       | Cell 1 |      |          | Cell 2    | Cell 2   |          |  |  |
|----------------------------------------------------------|------------|--------|------|----------|-----------|----------|----------|--|--|
|                                                          |            | T1     | T2   | T3       | T1        | T2       | T3       |  |  |
| E-UTRA RF Channel                                        |            |        | 1    |          | 2         |          |          |  |  |
| number                                                   |            |        |      |          |           |          |          |  |  |
| BW <sub>channel</sub>                                    | MHz        |        | 10   |          |           | 10       |          |  |  |
| OCNG Patterns                                            |            | OP.1   | OP.1 | OP.2 FDD | OP.2      | OP.2 FDD | OP.1 FDD |  |  |
| defined in A.3.2.1.1                                     |            | FDD    | FDD  |          | FDD       |          |          |  |  |
| (OP.1 FDD) and in                                        |            |        |      |          |           |          |          |  |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |        |      |          |           |          |          |  |  |
| PBCH_RA                                                  | dB         |        |      |          |           |          |          |  |  |
| PBCH_RB                                                  | dB         |        |      |          |           |          |          |  |  |
| PSS_RA                                                   | dB         |        |      |          |           |          |          |  |  |
| SSS_RA                                                   | dB         |        |      |          |           |          |          |  |  |
| PCFICH_RB                                                | dB         |        |      |          |           |          |          |  |  |
| PHICH_RA                                                 | dB         |        | 0    |          |           | 0        |          |  |  |
| PHICH_RB                                                 | dB         |        | 0    |          |           | 0        |          |  |  |
| PDCCH_RA                                                 | dB         |        |      |          |           |          |          |  |  |
| PDCCH_RB                                                 | dB         |        |      |          |           |          |          |  |  |
| PDSCH_RA                                                 | dB         |        |      |          |           |          |          |  |  |
| PDSCH_RB                                                 | dB         |        |      |          |           |          |          |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |        |      |          |           |          |          |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |        |      |          |           |          |          |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{oc}}$ | dB         | 4      | 4    | 4        | -Infinity | 7        | 7        |  |  |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 kHz | -98    |      |          |           |          |          |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4      | 4    | 4        | -Infinity | 7        | 7        |  |  |
| RSRP Note 3                                              | dBm/15 KHz | -94    | -94  | -94      | -infinity | -91      | -91      |  |  |
| Propagation Condition                                    | -1 1 1 1   | U U    | •    |          | AWGN      | •        |          |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

#### A.5.1.4.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 50 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 15 ms and is specified in section 11.2 in [2].

 $T_{interrupt} = 35$  ms in the test;  $T_{interrupt}$  is defined in section 5.2.2.4.2.

This gives a total of 50 ms.

# A.5.1.5 E-UTRAN FDD – FDD Inter frequency handover: unknown target cell

#### A.5.1.5.1 Test Purpose and Environment

This test is to verify the FDD-FDD inter-frequency handover requirements for the case when the target cell is unknown as specified in section 5.1.2.1.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The test scenario comprises of two E-UTRA FDD carriers and one cell on each carrier as given in tables A.5.1.5.1-1 and A.5.1.5.1-2. No gap patterns are configured in the test case. The test consists of two successive time periods, with time durations of T1 and T2 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and start to transmit the PRACH to Cell 2.

A RRC message implying handover shall be sent to the UE during period T1. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE.

Table A.5.1.5.1-1: General test parameters for the E-UTRAN FDD-FDD Inter frequency handover test case when the target cell is unknown

| Par                 | ameter                     | Unit | Value                    | Comment                           |
|---------------------|----------------------------|------|--------------------------|-----------------------------------|
| PDSCH parameter     | PDSCH parameters           |      | DL Reference Measurement | As specified in section A.3.1.1.1 |
|                     |                            |      | Channel R.0 FDD          |                                   |
| PCFICH/PDCCH/F      | PHICH parameters           |      | DL Reference Measurement | As specified in section A.3.1.2.1 |
|                     |                            |      | Channel R.6 FDD          |                                   |
| Initial conditions  | Active cell                |      | Cell 1                   | Cell 1 is on RF channel number 1  |
|                     | Neighbouring cell          |      | Cell 2                   | Cell 2 is on RF channel number 2  |
| Final condition     | Active cell                |      | Cell 2                   |                                   |
| E-UTRA RF chann     | nel number                 |      | 1, 2                     | Two FDD carriers are used         |
| Channel Bandwidt    | h (BW <sub>channel</sub> ) | MHz  | 10                       |                                   |
| DRX                 |                            |      | OFF                      | Non-DRX test                      |
| PRACH configurat    | ion                        |      | 4                        | As specified in table 5.7.1-2 in  |
|                     |                            |      |                          | 3GPP TS 36.211                    |
| Access Barring Inf  | ormation                   | -    | Not sent                 | No additional delays in random    |
|                     |                            |      |                          | access procedure                  |
| Time offset between | en cells                   |      | 3 ms                     | Asynchronous cells                |
| T1                  | ·                          | S    | ≤5                       |                                   |
| T2                  |                            | S    | 1                        |                                   |

Table A.5.1.5.1-2: Cell specific test parameters for the E-UTRAN FDD-FDD Inter frequency handover test case when the target cell is unknown

| Parameter                 | Unit       | Cell 1<br>T1 T2 |          | Cell      | 2        |
|---------------------------|------------|-----------------|----------|-----------|----------|
|                           |            |                 |          | T1        | T2       |
| E-UTRA RF Channel         |            | 1               |          | 2         |          |
| number                    |            |                 |          |           |          |
| BW <sub>channel</sub>     | MHz        | 10              |          | 10        |          |
| OCNG Patterns             |            | OP.1 FDD        | OP.2 FDD | OP.2 FDD  | OP.1 FDD |
| defined in A.3.2.1.1      |            |                 |          |           |          |
| (OP.1 FDD) and in         |            |                 |          |           |          |
| A.3.2.1.2 (OP.2 FDD)      |            |                 |          |           |          |
| PBCH_RA                   | dB         |                 |          |           |          |
| PBCH_RB                   | dB         |                 |          |           |          |
| PSS_RA                    | dB         |                 |          |           |          |
| SSS_RA                    | dB         |                 |          |           |          |
| PCFICH_RB                 | dB         |                 |          |           |          |
| PHICH_RA                  | dB         | •               |          |           |          |
| PHICH_RB                  | dB         | 0               |          | 0         |          |
| PDCCH_RA                  | dB         |                 |          |           |          |
| PDCCH_RB                  | dB         |                 |          |           |          |
| PDSCH_RA                  | dB         |                 |          |           |          |
| PDSCH_RB                  | dB         |                 |          |           |          |
| OCNG_RA <sup>Note 1</sup> | dB         |                 |          |           |          |
| OCNG_RB <sup>Note 1</sup> | dB         |                 |          |           |          |
| $\hat{E}_s/I_{ot}$        | dB         | 4               | 4        | -Infinity | 7        |
| $N_{oc}^{ m Note~2}$      | dBm/15 kHz |                 |          | -98       |          |
| $\hat{E}_s/N_{oc}$        | dB         | 4               | 4        | -Infinity | 7        |
| RSRP Note 3               | dBm/15 KHz | -94             | -94      | -Infinity | -91      |
| Propagation Condition     |            |                 |          | AWGN      |          |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over

subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.5.1.5.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 130 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 15 ms, which is specified in section 11.2 in [2].

 $T_{interrupt}$  = 115 ms in the test. See section 5.1.2.1.2

This gives a total of 130 ms.

## A.5.1.6 E-UTRAN TDD – TDD Inter frequency handover; unknown Target Cell

#### A.5.1.6.1 Test Purpose and Environment

This test is to verify the TDD-TDD inter-frequency handover requirements for the case when the target cell is unknown as specified in section 5.2.2.4.

The test scenario comprises of two E-UTRA TDD carriers and one cell on each carrier as given in tables A.5.1.6.1-1 and A.5.1.6.1-2. No gap patterns are configured in the test case. The test consists of two successive time periods, with time durations of T1, T2 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE receives a RRC handover command from the network. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE.

Table A.5.1.6.1-1: General test parameters for the E-UTRAN TDD-TDD Inter-Frequency handover test case when the target cell is unknown

| Para                | ameter                    | Unit | Value                                       | Comment                                         |
|---------------------|---------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters    | PDSCH parameters          |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.2.2.1               |
| PCFICH/PDCCH/P      | HICH parameters           |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.2.2.2               |
| Initial conditions  | Active cell               |      | Cell 1                                      | Cell 1 is on RF channel number 1                |
|                     | Neighbouring cell         |      | Cell 2                                      | Cell 2 is on RF channel number 2                |
| Final condition     | Active cell               |      | Cell 2                                      |                                                 |
| E-UTRA RF channe    | el number                 |      | 1, 2                                        | Two TDD carriers                                |
| DRX                 |                           |      | OFF                                         | Non-DRX test                                    |
| Access Barring Info | ormation                  | -    | Not sent                                    | No additional delays in random access procedure |
| Special subframe of | onfiguration              |      | 6                                           | As specified in table 4.2-1 in 3GPP TS 36.211   |
| Uplink-downlink co  | nfiguration               |      | 1                                           | As specified in table 4.2-2 in 3GPP TS 36.211   |
| PRACH configurati   | on                        |      | 53                                          | As specified in table 5.7.1-3 in 3GPP TS 36.211 |
| Time offset betwee  | n cells                   |      | 3 μs                                        | Synchronous cells                               |
| Gap pattern configu | Gap pattern configuration |      | -                                           | No gap pattern configured                       |
| T1                  |                           | S    | ≤5                                          |                                                 |
| T2                  |                           | s    | 1                                           |                                                 |

Table A.5.1.6.1-2: Cell specific test parameters for the E-UTRAN TDD-TDD Inter frequency handover test case when the target cell is unknown

| Parameter                 | Unit       | Се       | Cell 1   |           | ell 2    |  |  |
|---------------------------|------------|----------|----------|-----------|----------|--|--|
|                           |            | T1       | T2       | T1        | T2       |  |  |
| E-UTRA RF Channel         |            | 1        |          |           | 2        |  |  |
| Number                    |            |          |          |           |          |  |  |
| BW <sub>channel</sub>     | MHz        | 1        | 0        |           | 10       |  |  |
| OCNG Patterns             |            | OP.1 TDD | OP.2 TDD | OP.2 TDD  | OP.1 TDD |  |  |
| defined in A.3.2.2.1      |            |          |          |           |          |  |  |
| (OP.1 TDD) and in         |            |          |          |           |          |  |  |
| A.3.2.2.2 (OP.2 TDD)      |            |          |          |           |          |  |  |
| PBCH_RA                   | dB         |          |          |           |          |  |  |
| PBCH_RB                   | dB         |          |          |           |          |  |  |
| PSS_RA                    | dB         |          |          |           |          |  |  |
| SSS_RA                    | dB         |          |          |           |          |  |  |
| PCFICH_RB                 | dB         |          |          |           |          |  |  |
| PHICH_RA                  | dB         |          |          |           | _        |  |  |
| PHICH_RB                  | dB         |          | )        |           | 0        |  |  |
| PDCCH_RA                  | dB         |          |          |           |          |  |  |
| PDCCH_RB                  | dB         |          |          |           |          |  |  |
| PDSCH_RA                  | dB         |          |          |           |          |  |  |
| PDSCH_RB                  | dB         |          |          |           |          |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |          |          |           |          |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |          |          |           |          |  |  |
| $N_{oc}^{$                | dBm/15 kHz |          |          | -98       |          |  |  |
| RSRP Note 4               | dBm/15 kHz | -94      | -94      | -Infinity | -93      |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4        | 4        | -Infinity | 5        |  |  |
| SCH_RP Note 4             | dBm/15 kHz | -94      | -94      | -Infinity | -93      |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4        | 4        | -Infinity | 5        |  |  |
| Propagation Condition     |            | AWGN     |          |           |          |  |  |

- Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.
- Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.5.1.6.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 130 ms from the beginning of time period T2. The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 15 ms, which is specified in section 11.2 in [2].

 $T_{interrupt}$  = 115 ms in the test. See section 5.2.2.4.2

This gives a total of 130 ms.

## A.5.1.7 E-UTRAN FDD – TDD Inter frequency handover

#### A.5.1.7.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-TDD inter frequency handover requirements specified in section 5.2.2.2.

The test scenario comprises of one E-UTRA FDD cell and one E-UTRA TDD cell as given in tables Table A.5.1.7.1-1, Table A.5.1.7.1-2 and Table A.5.1.7.1-3. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would not enter the DRX state. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3.

Table A.5.1.7.1-1: General test parameters for E-UTRAN FDD-TDD Inter frequency handover test case

| Para                           | meter                         | Unit | Value                                       | Comment                                                              |
|--------------------------------|-------------------------------|------|---------------------------------------------|----------------------------------------------------------------------|
| Cell 1 PDSCH pa                | Cell 1 PDSCH parameters       |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                    |
| Cell 1 PCFICH/Pl               | Cell 1 PCFICH/PDCCH/PHICH     |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                    |
| Cell 2 PDSCH pa                | rameters                      |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                    |
| Cell 2 PCFICH/Pl               | DCCH/PHICH                    |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                    |
| Gap Pattern Id                 |                               |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                      |
| Initial conditions             | Active cell                   |      | Cell 1                                      |                                                                      |
|                                | Neighbour cell                |      | Cell 2                                      |                                                                      |
| Final conditions               | Active cell                   |      | Cell 2                                      |                                                                      |
| Cell 1 E-UTRA R                | F channel number              |      | 1                                           | One FDD carrier is used                                              |
|                                | F channel number              |      | 2                                           | One TDD carrier is used                                              |
| Channel Bandwid                |                               | MHz  | 10                                          |                                                                      |
| A3-Offset                      | ( onamo)                      | dB   | -4                                          |                                                                      |
| Hysteresis                     |                               | dB   | 0                                           |                                                                      |
| Time to Trigger                |                               | ms   | 0                                           |                                                                      |
| Filter coefficient             |                               |      | 0                                           |                                                                      |
| DRX                            |                               |      | DRX_L                                       | As specified in section A.3.3                                        |
| CP length                      |                               |      | Normal                                      |                                                                      |
| E-UTRA FDD Acc                 | cess Barring                  | -    | Not Sent                                    | No additional delays in random access procedure.                     |
| E-UTRA TDD Acc                 | cess Barring                  | -    | Not Sent                                    | No additional delays in random access procedure.                     |
| Special subframe               | configuration                 |      | 6                                           | As specified in table 4.2-1 in 3GPP TS 36.211. Applicable to cell 2. |
| Uplink-downlink o              | Uplink-downlink configuration |      | 1                                           | As specified in table 4.2-2 in 3GPP TS 36.211. Applicable to cell 2  |
| E-UTRA FDD PRACH configuration |                               |      | 4                                           | As specified in table 5.7.1-2 in 3GPP TS 36.211                      |
| E-UTRA TDD PRACH configuration |                               |      | 53                                          | As specified in table 5.7.1-3 in 3GPP TS 36.211                      |
| Time offset between cells      |                               |      | 3 ms                                        | Asynchronous cells                                                   |
| T1                             |                               | S    | 5                                           |                                                                      |
| T2                             |                               | S    | ≤5                                          |                                                                      |
| T3                             |                               | S    | 1                                           |                                                                      |
| 10                             |                               |      |                                             | •                                                                    |

Table A.5.1.7.1-2: Cell specific test parameters for E-UTRAN FDD (cell #1) in E-UTRAN FDD-TDD Inter frequency handover test case

| Parameter                                                                       | Unit | Cell 1   |          |          |
|---------------------------------------------------------------------------------|------|----------|----------|----------|
|                                                                                 |      | T1       | T2       | T3       |
| E-UTRA RF Channel number                                                        |      |          | 1        |          |
| BW <sub>channel</sub>                                                           | MHz  |          | 10       |          |
| OCNG Patterns defined in<br>A.3.2.1.1 (OP.1 FDD) and in<br>A.3.2.1.2 (OP.2 FDD) |      | OP.1 FDD | OP.1 FDD | OP.2 FDD |
| PBCH_RA                                                                         | dB   |          |          |          |
| PBCH_RB                                                                         | dB   |          |          |          |
| PSS_RA                                                                          | dB   |          |          |          |
| SSS_RA                                                                          | dB   |          |          |          |
| PCFICH_RB                                                                       | dB   |          |          |          |
| PHICH_RA                                                                        | dB   |          | _        |          |
| PHICH_RB                                                                        | dB   |          | 0        |          |
| PDCCH_RA                                                                        | dB   |          |          |          |
| PDCCH_RB                                                                        | dB   |          |          |          |

| DDCCII DA                 | ٩D         |     |     |     |
|---------------------------|------------|-----|-----|-----|
| PDSCH_RA                  | dB         |     |     |     |
| PDSCH_RB                  | dB         |     |     |     |
| OCNG_RA <sup>Note 1</sup> | dB         |     |     |     |
| OCNG_RB <sup>Note 1</sup> | dB         |     |     |     |
| $\hat{E}_s/I_{ot}$        | dB         | 4   | 4   | 4   |
| $N_{_{OC}}^{ m Note~2}$   | dBm/15 kHz |     | -98 |     |
| $\hat{E}_s/N_{oc}$        | dB         | 4   | 4   | 4   |
| RSRP Note 3               | dBm/15 KHz | -94 | -94 | -94 |
| Propagation Condition     | AWGN       |     |     |     |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameter themselves.

Table A.5.1.7.1-3: Cell specific test parameters for E-UTRAN TDD (cell #2) in E-UTRAN FDD-TDD Inter frequency handover test case

| Parameter                   | Unit       |             | Cell 2   |          |  |
|-----------------------------|------------|-------------|----------|----------|--|
|                             |            | T1          | T2       | T3       |  |
| E-UTRA RF Channel number    |            |             | 2        |          |  |
| BW <sub>channel</sub>       | MHz        |             | 10       |          |  |
| OCNG Patterns defined in    |            | OP.2 TDD    | OP.2 TDD | OP.1 TDD |  |
| A.3.2.2.1 (OP.1 TDD) and in |            |             |          |          |  |
| A.3.2.2.2 (OP.2 TDD)        |            |             |          |          |  |
| PBCH_RA                     | dB         |             |          |          |  |
| PBCH_RB                     | dB         |             |          |          |  |
| PSS_RA                      | dB         |             |          |          |  |
| SSS_RA                      | dB         |             |          |          |  |
| PCFICH_RB                   | dB         |             |          |          |  |
| PHICH_RA                    | dB         | 1           |          |          |  |
| PHICH_RB                    | dB         |             | 0        |          |  |
| PDCCH_RA                    | dB         |             |          |          |  |
| PDCCH_RB                    | dB         |             |          |          |  |
| PDSCH_RA                    | dB         |             |          |          |  |
| PDSCH_RB                    | dB         |             |          |          |  |
| OCNG_RA <sup>Note 1</sup>   | dB         |             |          |          |  |
| OCNG_RB <sup>Note 1</sup>   | dB         |             |          |          |  |
| $\hat{E}_s/I_{ot}$          | dB         | -Infinity 7 |          | 7        |  |
| $N_{oc}^{ m Note~2}$        | dBm/15 kHz |             | -98      |          |  |
| $\hat{E}_s/N_{oc}$          | dB         | -Infinity   | 7        | 7        |  |
| RSRP Note 3                 | dBm/15 KHz | -Infinity   | -91      | -91      |  |
| Propagation Condition       |            | ÁWG         | N        |          |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameter themselves.

#### A.5.1.7.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 50 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 15 ms and is specified in section 11.2 in [2].

 $T_{interrupt} = 35$  ms in the test;  $T_{interrupt}$  is defined in section 5.2.2.4.2.

This gives a total of 50 ms.

## A.5.1.8 E-UTRAN TDD – FDD Inter frequency handover

#### A.5.1.8.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-FDD inter-frequency handover requirements specified in section 5.2.2.3.

The test scenario comprises of one E-UTRA TDD cell and one E-UTRA FDD cell as given in tables Table A.5.1.8.1-1, Table A.5.1.8.1-2 and Table A.5.1.8.1-3. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would not enter the DRX state. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE.

Table A.5.1.8.1-1: General test parameters for E-UTRAN TDD-FDD Inter frequency handover test case

| Parame                                |                        | Unit | Value                                       | Comment                                                  |
|---------------------------------------|------------------------|------|---------------------------------------------|----------------------------------------------------------|
| Cell 1 PDSCH parameters               |                        |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                        |
| Cell 1 PCFICH/PDCCH parameters        | H/PHICH                |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                        |
| Cell 2 PDSCH paramet                  | ters                   |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                        |
| Cell 2 PCFICH/PDCCh parameters        | H/PHICH                |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                        |
| Initial conditions Act                | tive cell              |      | Cell 1                                      | Cell 1 is on RF channel number 1                         |
| Ne                                    | ighbouring cell        |      | Cell 2                                      | Cell 2 is on RF channel number 2                         |
| Final condition Act                   | tive cell              |      | Cell 2                                      |                                                          |
| Cell 1 E-UTRA RF chair                | nnel number            |      | 1                                           | One TDD carrier is used                                  |
| Cell 2 E-UTRA RF chai                 | nnel number            |      | 2                                           | One FDD carrier is used                                  |
| Channel Bandwidth (B\                 | W <sub>channel</sub> ) | MHz  | 10                                          |                                                          |
| A3-Offset                             | •                      | dB   | -4                                          |                                                          |
| Hysteresis                            |                        | dB   | 0                                           |                                                          |
| TimeToTrigger                         |                        | s    | 0                                           |                                                          |
| Filter coefficient                    |                        |      | 0                                           | L3 filtering is not used                                 |
| DRX                                   |                        |      | DRX_L                                       | As specified in section A.3.3                            |
| E-UTRA TDD PRACH configuration        |                        |      | 53                                          | As specified in table 5.7.1-3 in 3GPP TS 36.211          |
| E-UTRA FDD PRACH                      | configuration          |      | 4                                           | As specified in table 5.7.1-2 in 3GPP TS 36.211          |
| E-UTRA TDD Access E<br>Information    | Barring                | -    | Not sent                                    | No additional delays in random access procedure          |
| E-UTRA FDD Access Barring Information |                        | -    | Not sent                                    | No additional delays in random access procedure          |
| Time offset between cells             |                        |      | 3 ms                                        | Asynchronous cells                                       |
| Gap pattern configurati               | ion Id                 |      | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts |
| T1                                    |                        | s    | 5                                           |                                                          |
| T2                                    |                        | s    | ≤5                                          |                                                          |
| T3                                    |                        | s    | 1                                           |                                                          |

Table A.5.1.8.1-2: Cell specific test parameters for E-UTRAN TDD (cell #1) in E-UTRAN TDD-FDD Inter frequency handover test case

| Parameter                                        | Unit       |          | Cell 1   |          |  |  |
|--------------------------------------------------|------------|----------|----------|----------|--|--|
|                                                  |            | T1       | T2       | T3       |  |  |
| E-UTRA RF Channel number                         |            |          | 1        |          |  |  |
| BW <sub>channel</sub>                            | MHz        |          | 10       |          |  |  |
| OCNG Patterns defined in                         |            | OP.1 TDD | OP.1 TDD | OP.2 TDD |  |  |
| A.3.2.2.1 (OP.1 TDD) and in A.3.2.2.2 (OP.2 TDD) |            |          |          |          |  |  |
| PBCH_RA                                          | dB         |          |          |          |  |  |
| PBCH_RB                                          | dB         |          |          |          |  |  |
| PSS_RA                                           | dB         |          |          |          |  |  |
| SSS_RA                                           | dB         |          |          |          |  |  |
| PCFICH_RB                                        | dB         |          |          |          |  |  |
| PHICH_RA                                         | dB         |          |          |          |  |  |
| PHICH_RB                                         | dB         | 0        |          |          |  |  |
| PDCCH_RA                                         | dB         |          |          |          |  |  |
| PDCCH_RB                                         | dB         |          |          |          |  |  |
| PDSCH_RA                                         | dB         |          |          |          |  |  |
| PDSCH_RB                                         | dB         |          |          |          |  |  |
| OCNG_RA <sup>Note 1</sup>                        | dB         |          |          |          |  |  |
| OCNG_RB <sup>Note 1</sup>                        | dB         |          |          |          |  |  |
| $\hat{E}_s/I_{ot}$                               | dB         | 4        | 4        | 4        |  |  |
| $N_{oc}^{ m Note  2}$                            | dBm/15 kHz |          | -98      |          |  |  |
| $\hat{E}_s/N_{oc}$                               | dB         | 4        | 4        | 4        |  |  |
| RSRP Note 3                                      | dBm/15 KHz | -94      | -94      | -94      |  |  |
| Propagation Condition                            |            | AWG      | N        |          |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.5.1.8.1-3: Cell specific test parameters for E-UTRAN FDD (cell #2) in E-UTRAN TDD-FDD Inter frequency handover test case

| Parameter                   | Unit | Cell 2   |          |          |  |
|-----------------------------|------|----------|----------|----------|--|
|                             |      | T1       | T2       | T3       |  |
| E-UTRA RF Channel number    |      |          | 2        |          |  |
| BW <sub>channel</sub>       | MHz  |          | 10       |          |  |
| OCNG Patterns defined in    |      | OP.2 FDD | OP.2 FDD | OP.1 FDD |  |
| A.3.2.1.1 (OP.1 FDD) and in |      |          |          |          |  |
| A.3.2.1.2 (OP.2 FDD)        |      |          |          |          |  |
| PBCH_RA                     | dB   |          |          |          |  |
| PBCH_RB                     | dB   |          |          |          |  |
| PSS_RA                      | dB   | 7        |          |          |  |
| SSS_RA                      | dB   |          |          |          |  |
| PCFICH_RB                   | dB   |          |          |          |  |
| PHICH_RA                    | dB   |          | _        |          |  |
| PHICH_RB                    | dB   |          | 0        |          |  |
| PDCCH_RA                    | dB   |          |          |          |  |
| PDCCH_RB                    | dB   |          |          |          |  |
| PDSCH_RA                    | dB   |          |          |          |  |
| PDSCH_RB                    | dB   |          |          |          |  |
| OCNG_RA <sup>Note 1</sup>   | dB   |          |          |          |  |
| OCNG_RB <sup>Note 1</sup>   | dB   |          |          |          |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameter themselves.

| $\hat{E}_s/I_{ot}$    | dB         | dB -Infinity 7 |     | 7   |  |  |
|-----------------------|------------|----------------|-----|-----|--|--|
| Noc Note 2            | dBm/15 kHz |                | -98 |     |  |  |
| $\hat{E}_s/N_{oc}$    | dB         | -Infinity 7 7  |     | 7   |  |  |
| RSRP Note 3           | dBm/15 KHz | -Infinity      | -91 | -91 |  |  |
| Propagation Condition |            | AWGN           |     |     |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

#### A.5.1.8.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than 50 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 15 ms and is specified in section 11.2 in [2].

 $T_{interrupt} = 35$  ms in the test;  $T_{interrupt}$  is defined in section 5.1.2.1.2.

This gives a total of 50 ms.

#### A.5.2 E-UTRAN Handover to other RATs

#### A.5.2.1 E-UTRAN FDD – UTRAN FDD Handover

#### A.5.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to UTRAN FDD handover requirements specified in section 5.3.1.

The test parameters are given in Tables A.5.2.1.1-1, A.5.2.1.1-2 and A.5.2.1.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameter themselves.

Table A.5.2.1.1-1: General test parameters for E-UTRAN FDD to UTRAN FDD handover test case

| Parameter                                  | Unit | Value                                       | Comment                                                         |
|--------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                               |
| PCFICH/PDCCH/PHICH parameters              | 5    | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                               |
| Initial conditions                         |      | Cell 1                                      | E-UTRAN cell                                                    |
| Neighbouring ce                            | II   | Cell 2                                      | UTRAN cell                                                      |
| Final condition Active cell                |      | Cell 2                                      | UTRAN cell                                                      |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                 |
| Gap Pattern Id                             |      | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts        |
| E-UTRAN FDD measurement quanti             | ity  | RSRP                                        |                                                                 |
| Inter-RAT (UTRAN FDD) measurem quantity    | ent  | CPICH Ec/N0                                 |                                                                 |
| b2-Threshold1                              | dBm  | -90                                         | Absolute E-UTRAN RSRP threshold for event B2                    |
| b2-Threshold2-UTRA                         | dB   | -18                                         | Absolute UTRAN CPICH Ec/N0 threshold for event B2               |
| Hysteresis                                 | dB   | 0                                           |                                                                 |
| TimeToTrigger                              | s    | 0                                           |                                                                 |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                        |
| DRX                                        |      | OFF                                         | Non-DRX test                                                    |
| Access Barring Information                 | -    | Not sent                                    | No additional delays in random access procedure                 |
| E-UTRA RF Channel Number                   |      | 1                                           | One E-UTRA FDD carrier frequency is used.                       |
| E-UTRA Channel Bandwidth (BWchannel)       | MHz  | 10                                          |                                                                 |
| UTRA RF Channel Number                     |      | 1                                           | One UTRA FDD carrier frequency is used.                         |
| Monitored UTRA FDD cell list size          |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell before T2. |
| Post-verification period                   |      | False                                       |                                                                 |
| T1                                         | s    | 5                                           |                                                                 |
| T2                                         | S    | ≤5                                          |                                                                 |
| T3                                         | s    | 1                                           |                                                                 |

Table A.5.2.1.1-2: Cell specific test parameters for E-UTRAN FDD to UTRAN FDD handover test case (cell 1)

| Parameter                                                                 | Unit       | Cell 1 (E-UTRA) |        |        |  |
|---------------------------------------------------------------------------|------------|-----------------|--------|--------|--|
|                                                                           |            | T1              | T2     | Т3     |  |
| E-UTRA RF Channel                                                         |            |                 | 1      |        |  |
| number                                                                    |            |                 |        |        |  |
| BW <sub>channel</sub>                                                     | MHz        |                 | 10     |        |  |
| OCNG Patterns                                                             |            | OP.1            | OP.1   | OP.2   |  |
| defined in A.3.2.1.1                                                      |            | FDD             | FDD    | FDD    |  |
| (OP.1 FDD) and in                                                         |            |                 |        |        |  |
| A.3.2.1.2 (OP.2 FDD)                                                      |            |                 |        |        |  |
| PBCH_RA                                                                   | dB         |                 |        |        |  |
| PBCH_RB                                                                   | dB         |                 |        |        |  |
| PSS_RA                                                                    | dB         |                 |        |        |  |
| SSS_RA                                                                    | dB         |                 |        |        |  |
| PCFICH_RB                                                                 | dB         |                 |        |        |  |
| PHICH_RA                                                                  | dB         |                 |        |        |  |
| PHICH_RB                                                                  | dB         |                 | 0      |        |  |
| PDCCH_RA                                                                  | dB         |                 |        |        |  |
| PDCCH_RB                                                                  | dB         |                 |        |        |  |
| PDSCH_RA                                                                  | dB         |                 |        |        |  |
| PDSCH_RB                                                                  | dB         |                 |        |        |  |
| OCNG_RA <sup>Note 1</sup>                                                 | dB         |                 |        |        |  |
| OCNG_RB <sup>Note 1</sup>                                                 | dB         |                 |        |        |  |
| $\hat{E}_s/I_{ot}$                                                        | dB         | 0               | 0      | 0      |  |
| $N_{oc}$                                                                  | dBm/15 kHz | -98             |        | ·      |  |
| $\hat{E}_s/N_{oc}$                                                        | dB         | 0 0 0           |        | 0      |  |
| RSRP Note 2                                                               | dBm/15 KHz | -98             | -98    | -98    |  |
| lo Note 2                                                                 | dBm/9 MHz  | -67.21          | -67.21 | -67.21 |  |
| Propagation Condition                                                     |            |                 | AWGN   | •      |  |
| Note 1: OCNG shall be used such that both calls are fully allocated and a |            |                 |        |        |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.2.1.1-3: Cell specific test parameters for E-UTRAN FDD to UTRAN FDD handover test case (cell 2)

| Parameter             | Unit Cell 2     |           | II 2 (UTR | A)     |
|-----------------------|-----------------|-----------|-----------|--------|
|                       |                 | T1        | T2        | T3     |
| CPICH_Ec/lor          | dB              | -10       |           |        |
| PCCPCH_Ec/lor         | dB              | -12       |           |        |
| SCH_Ec/lor            | dB              | -12       |           |        |
| PICH_Ec/lor           | dB              | -15       |           |        |
| DCH_Ec/lor            | dB              | N/A       | N/A       | Note 1 |
| OCNS_Ec/lor           | dB              | -0.941    | 0.941     | Note 2 |
| $\hat{I}_{or}/I_{oc}$ | dB              | -infinity | -1.8      | -1.8   |
| $I_{oc}$              | dBm/3,84<br>MHz | -70       | -70       | -70    |
| CPICH_Ec/Io           | dB              | -infinity | -14       | -14    |
| Propagation Condition |                 |           | AWGN      |        |

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I<sub>or</sub>.

#### A.5.2.1.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than 190 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 50 ms, which is specified in section 5.3.1.1.1.

 $T_{interrupt} = 140$  ms in the test;  $T_{interrupt}$  is defined in section 5.3.1.1.2.

This gives a total of 190 ms.

## A.5.2.2 E-UTRAN TDD - UTRAN FDD Handover

### A.5.2.2.1 Test Purpose and Environment

This test is to verify the E-UTRAN TDD - UTRAN FDD handover requirements specified in section 5.3.1.

The test scenario comprises of one E-UTRAN TDD cell and one UTRAN FDD cell as given in the tables A.5.2.2.1-1, A5.2.2.1-2 and A.5.2.2.1-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. At start of time duration T1, the UE does not have any timing information of cell 2. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before the start of T2 to enable the monitoring of UTRAN FDD. A neighbouring cell list, including the UTRAN cell (cell2), shall be sent to the UE before T2 starts. During the time T2 cell 2 becomes detectable and the UE is expected to detect and send the measurement report. A RRC message implying handover shall be sent to the UE during T2, after the UE has reported event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.2.2.1-1: General test parameters for E-UTRAN TDD-UTRAN FDD handover

| Par                                         | ameter                 | Unit | Value                                       | Comment                                                              |
|---------------------------------------------|------------------------|------|---------------------------------------------|----------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)              |                        |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                    |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD) |                        |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                    |
| Initial conditions                          | Active cell            |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                             |
|                                             | Neighbour cell         |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                               |
| Final conditions                            | Active cell            |      | Cell 2                                      |                                                                      |
| Special subframe                            |                        |      | 6                                           | As specified in table 4.2-1 in 3GPP TS 36.211. Applicable to cell 1. |
| Uplink-downlink c                           | onfiguration           |      | 1                                           | As specified in table 4.2-2 in 3GPP TS 36.211. Applicable to cell 1  |
|                                             | easurement quantity    |      | RSRP                                        |                                                                      |
| quantity                                    | FDD) measurement       |      | CPICH Ec/lo                                 |                                                                      |
| b2-Threshold1                               |                        | dBm  | -90                                         | Absolute E-UTRAN RSRP threshold for event B2                         |
| b2-Threshold2-U7                            | ΓRA                    | dB   | -18                                         | UTRAN FDD CPICH Ec/lo threshold for event B2                         |
| Hysteresis                                  |                        | dB   | 0                                           |                                                                      |
| DRX                                         |                        |      | OFF                                         | No DRX configured.                                                   |
| Time to Trigger                             |                        | ms   | 0                                           |                                                                      |
| Filter coefficient                          |                        |      | 0                                           |                                                                      |
| CP length                                   |                        |      | Normal                                      | Applicable to cell 1                                                 |
| Gap pattern confi                           |                        |      | 0                                           | As specified in Table 8.1.2.1-1; to start before T2 starts           |
| E-UTRA RF Char                              |                        |      | 1                                           | One E-UTRA TDD carrier frequency is used.                            |
| E-UTRA Channel (BW <sub>channel</sub> )     |                        | MHz  | 10                                          |                                                                      |
| UTRA RF Channe                              | UTRA RF Channel Number |      | 1                                           | One UTRA FDD carrier frequency is used.                              |
| Monitored UTRA FDD cell list size           |                        |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell list before T2. |
| Post-verification period                    |                        |      | False                                       | Post verification is not used.                                       |
| T1                                          |                        | S    | 5                                           |                                                                      |
| T2                                          |                        | S    | <u>≤</u> 5                                  |                                                                      |
| T3                                          |                        | S    | 1                                           |                                                                      |

Table A.5.2.2.1-2: Cell specific test parameters for E-UTRAN TDD (cell 1) for handover to UTRAN FDD (cell # 2)

| Parameter                 | Unit        | Cell 1 (E-UTRAN) |        |                                |  |
|---------------------------|-------------|------------------|--------|--------------------------------|--|
|                           |             | T1               | T2     | T3                             |  |
| E-UTRA RF Channel         |             |                  | 1      |                                |  |
| Number                    |             |                  |        |                                |  |
| BW <sub>channel</sub>     | MHz         |                  | 10     |                                |  |
| OCNG Pattern defined      |             |                  |        |                                |  |
| in A.3.2.2.1 (OP.1 TDD)   |             | OP 1             | TDD    | OP.2 TDD                       |  |
| and in A.3.2.2.2 (OP.2    |             | 01.1             | 100    | 01.2100                        |  |
| TDD)                      |             |                  |        |                                |  |
| PBCH_RA                   | 1           |                  |        |                                |  |
| PBCH_RB                   | 1           |                  |        |                                |  |
| PSS_RA                    |             |                  |        |                                |  |
| SSS_RA                    | <u> </u>    |                  |        |                                |  |
| PCFICH_RB                 | <u> </u>    |                  |        |                                |  |
| PHICH_RA                  | 1           |                  |        |                                |  |
| PHICH_RB                  | dB          |                  | 0      |                                |  |
| PDCCH_RA                  | <u> </u>    |                  |        |                                |  |
| PDCCH_RB                  | ]           |                  |        |                                |  |
| PDSCH_RA                  | 1           |                  |        |                                |  |
| PDSCH_RB                  | ]           |                  |        |                                |  |
| OCNG_RA <sup>Note 1</sup> | 1           |                  |        |                                |  |
| OCNG_RB <sup>Note 1</sup> |             |                  |        |                                |  |
| RSRP Note 2               | dBm/15 kHz  | -98              | -98    | -98                            |  |
|                           |             |                  |        |                                |  |
| $\hat{E}_{s}/I_{ot}$      | dB          | 0                | 0      | 0                              |  |
| s / Tot                   |             |                  |        |                                |  |
| $\hat{E}_s/N_{oc}$        | dB          | 0                | 0      | 0                              |  |
| $L_s/I_{oc}$              |             |                  |        |                                |  |
| $N_{oc}$                  | dBm/15 kHz  |                  | -98    |                                |  |
| lo Note 2                 | dBm/9 MHz   | -67.21           | -67.21 | -67.21                         |  |
| Propagation Condition     |             |                  | AWGN   |                                |  |
| Nata 4: OONO ala all la a | 1 1 1 1 1 1 |                  |        | t = t = 1 t == = = == :tt = =1 |  |

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: RSRP and Io levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.2.2.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for handover from E-UTRAN TDD cell (cell #1)

| Parameter             | Unit            | Cell 1 (UTRA) |        |        |  |
|-----------------------|-----------------|---------------|--------|--------|--|
|                       |                 | T1            | T2     | Т3     |  |
| CPICH_Ec/lor          | dB              |               | -10    |        |  |
| PCCPCH_Ec/lor         | dB              |               | -12    |        |  |
| SCH_Ec/lor            | dB              |               | -12    |        |  |
| PICH_Ec/lor           | dB              | -15           |        |        |  |
| DPCH_Ec/lor           | dB              | N/A           | N/A    | Note 1 |  |
| OCNS                  | dB              | -0.941        | -0.941 | Note 2 |  |
| $\hat{I}_{or}/I_{oc}$ | dB              | -infinity     | -1.8   | -1.8   |  |
| $I_{oc}$              | dBm/3.84<br>MHz | -70           |        |        |  |
| CPICH_Ec/lo           | dB              | -infinity     | -14    | -14    |  |
| Propagation Condition |                 | AWGN          |        |        |  |

Note 1: The DPCH level is controlled by the power control loop

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I<sub>or.</sub>

## A.5.2.2.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than 190 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 50 ms, which is specified in section 5.1.1.1.1.

 $T_{interrupt} = 140$  ms in the test;  $T_{interrupt}$  is defined in section 5.3.1.1.2.

This gives a total of 190 ms.

#### A.5.2.3 E-UTRAN FDD- GSM Handover

#### A.5.2.3.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN to GSM cell handover delay specified in section 5.3.3.

The test parameters are given in Table A.5.2.3.1 -1, A.5.2.3.1 -2 and A.5.2.3.1 -3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 shall be used. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

The RRC message implying handover to cell 2 shall be sent to the UE during period T2, after the UE has reported Event B1. The start of T3 is defined as the end of last E-UTRAN TTI containing the RRC message implying handover.

The requirements are also applicable for a UE not requiring measurement gap, in which case no measurement gap pattern should be sent for the parameters specified in Table A.5.2.3.1 -1.

Table A.5.2.3.1 -1: General test parameters for E-UTRAN FDD-GSM handover

| Para                     | Parameter        |     | Value                                       | Comment                                           |
|--------------------------|------------------|-----|---------------------------------------------|---------------------------------------------------|
| PDSCH paramete           | PDSCH parameters |     | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                 |
| PCFICH/PDCCH, parameters | /PHICH           |     | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                 |
| Gap Pattern Id           |                  |     | 1                                           | As specified in TS 36.133 section8.1.2.1.         |
| Initial conditions       | Active cell      |     | Cell 1                                      |                                                   |
|                          | Neighbour cell   |     | Cell 2                                      |                                                   |
| Final conditions         | Active cell      |     | Cell 2                                      |                                                   |
| Inter-RAT measu          | rement quantity  |     | GSM Carrier RSSI                            |                                                   |
| Threshold other s        | system           | dBm | -80                                         | Absolute GSM carrier RSSI threshold for event B1. |
| Hysteresis               |                  | dB  | 0                                           |                                                   |
| Time to Trigger          |                  | ms  | 0                                           |                                                   |
| Filter coefficient       |                  |     | 0                                           | L3 filtering is not used                          |
| DRX                      |                  |     |                                             | OFF                                               |
| T1                       |                  | S   | 20                                          |                                                   |
| T2                       |                  | S   | 7                                           |                                                   |
| T3                       | ·                | S   | 1                                           |                                                   |

Table A. A.5.2.3.1 - 2: Cell Specific Parameters for Handover from E- UTRAN FDD to GSM cell case (cell 1)

| Parameter                                                                                                                                                      | Unit                                                         | Cell 1                            |                         |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|-------------------------|--|--|
|                                                                                                                                                                |                                                              | T1, T2                            | T3                      |  |  |
| BW <sub>channel</sub>                                                                                                                                          | MHz                                                          | 10                                |                         |  |  |
| OCNG Patterns                                                                                                                                                  |                                                              |                                   |                         |  |  |
| defined in A.3.2.1.1                                                                                                                                           |                                                              |                                   |                         |  |  |
| (OP.1 FDD) and in                                                                                                                                              |                                                              | OP. 1 FDD                         | OP.2 FDD                |  |  |
| A.3.2.1.2 (OP.2                                                                                                                                                |                                                              |                                   |                         |  |  |
| FDD)                                                                                                                                                           |                                                              |                                   |                         |  |  |
| PBCH_RA                                                                                                                                                        | dB                                                           |                                   |                         |  |  |
| PBCH_ RB                                                                                                                                                       | dB                                                           |                                   |                         |  |  |
| PSS_RA                                                                                                                                                         | dB                                                           |                                   |                         |  |  |
| SSS_RA                                                                                                                                                         | dB                                                           |                                   |                         |  |  |
| PCFICH_ RB                                                                                                                                                     | dB                                                           |                                   |                         |  |  |
| PHICH_ RA                                                                                                                                                      | dB                                                           |                                   |                         |  |  |
| PHICH_ RB                                                                                                                                                      | dB                                                           | 0                                 |                         |  |  |
| PDCCH_ RA                                                                                                                                                      | dB                                                           |                                   |                         |  |  |
| PDCCH_ RB                                                                                                                                                      | dB                                                           |                                   |                         |  |  |
| PDSCH_ RA                                                                                                                                                      | dB                                                           |                                   |                         |  |  |
| PDSCH_ RB                                                                                                                                                      | dB                                                           |                                   |                         |  |  |
| OCNG_ RA Note1                                                                                                                                                 | dB                                                           |                                   |                         |  |  |
| OCNG_ RB Note1                                                                                                                                                 | dB                                                           |                                   |                         |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$                                                                                                       | dB                                                           | 4                                 |                         |  |  |
| $N_{oc}^{ m Note~2}$                                                                                                                                           | dBm/15<br>kHz                                                | -98 (AWGN)                        |                         |  |  |
|                                                                                                                                                                | dB                                                           | 4                                 |                         |  |  |
| $\hat{E}_s/N_{oc}$                                                                                                                                             | uБ                                                           | 4                                 |                         |  |  |
|                                                                                                                                                                |                                                              |                                   |                         |  |  |
| RSRP Note 3                                                                                                                                                    | dBm/15kH                                                     | -94                               |                         |  |  |
|                                                                                                                                                                | Z                                                            |                                   |                         |  |  |
| Propagation                                                                                                                                                    |                                                              | AWGN                              |                         |  |  |
| Condition                                                                                                                                                      |                                                              | 1111 011                          |                         |  |  |
| Note 1: OCNG sh                                                                                                                                                | all bo used s                                                | uch that cell 1 is fully allocate | nd and a constant total |  |  |
|                                                                                                                                                                |                                                              | tral density is achieved for al   |                         |  |  |
|                                                                                                                                                                |                                                              |                                   |                         |  |  |
| Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as |                                                              |                                   |                         |  |  |
|                                                                                                                                                                |                                                              |                                   |                         |  |  |
| AWGN of                                                                                                                                                        | AWGN of appropriate power for $^{N}{}_{oc}$ to be fulfilled. |                                   |                         |  |  |
| Note 3: RSRP leve                                                                                                                                              | els have been                                                | derived from other paramete       | ers for information     |  |  |
|                                                                                                                                                                |                                                              | settable parameters themse        |                         |  |  |
| purposes. They are not settable parameters themselves.                                                                                                         |                                                              |                                   |                         |  |  |

Table A.5.2.3.1 - 3: Cell Specific Parameters for Handover from E-UTRAN FDD to GSM cell case (cell 2)

| Parameter                  | Unit | Cell 2 (GSM) |        |  |
|----------------------------|------|--------------|--------|--|
| Parameter                  | Onit | T1           | T2, T3 |  |
| Absolute RF Channel Number |      | ARFCN 1      |        |  |
| RXLEV                      | dBm  | -85          | -75    |  |

#### A.5.2.3.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 100 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{\text{Handover delay}} = 90 \text{ ms} \text{ (Table 5.3.3.2.1-1)} + T_{\text{offset}} + T_{\text{UL}}$ 

 $T_{offset}$ : Equal to 4.65 ms, GSM timing uncertainty between the time from when the UE is ready to transmit until the start of the next timeslot in GSM 26 multiframe structure

T<sub>UL</sub>: Equal to 4.65 ms, the time the UE has to wait in case the next timeslot is an idle frame or a SACCH frame.

This gives a total of 99.3 ms, allow 100 ms in the test case.

## A.5.2.4 E-UTRAN TDD - UTRAN TDD Handover

#### A.5.2.4.1 Test Purpose and Environment

#### A.5.2.4.1.1 Void

#### A.5.2.4.1.2 1.28 Mcps TDD option

This test is to verify the requirement for E-UTRAN TDD to UTRAN TDD handover requirements specified in section 5.3.2.

The test scenario comprises of 1 E-UTRA TDD cell and 1 UTRA TDD cell as given in tables Table A.5.2.4.1.2-1, Table A.5.2.4.1.2-2, and Table A.5.2.4.1.2-3. Gap pattern configuration #0 as defined in table 8.1.2.1-1 is provided.

The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively.

E-UTRAN shall send a RRC message implying handover to UE. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The end of the last TTI containing handover message is begin of T3 duration.

Table A.5.2.4.1.2-1: General test parameters for E-UTRA TDD to UTRA(1.28 Mcps TDD OPTION) handover test case

| Parameter                               |                                        | Unit | Value                                       | Comment                                                     |
|-----------------------------------------|----------------------------------------|------|---------------------------------------------|-------------------------------------------------------------|
| PDSCH parame                            | PDSCH parameters                       |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                           |
| PCFICH/PDCCl parameters                 | H/PHICH                                |      | DL Reference Measurement Channel R.6 TDD    | As specified in section A.3.1.2.2                           |
| Initial                                 | Active cell                            |      | Cell 1                                      | E-UTRA TDD cell                                             |
| conditions                              | Neighbour<br>cell                      |      | Cell 2                                      | UTRA 1.28Mcps TDD Cell                                      |
| Final conditions                        | Active cell                            |      | Cell 2                                      |                                                             |
| Gap Pattern Id                          | Gap Pattern Id                         |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.             |
| Uplink-downlink configuration of cell 1 |                                        |      | 1                                           | As specified in table 4.2.2 in TS 36.211                    |
| Special subfram of cell 1               | pecial subframe configuration f cell 1 |      | 6                                           | As specified in table 4.2.1 in TS 36.211                    |
| CP length of cel                        | l 1                                    |      | Normal                                      |                                                             |
| Time offset betw                        | Time offset between cells              |      | 3 ms                                        | Asynchronous cells                                          |
| Access Barring Information              |                                        |      | Not Sent                                    | No additional delays in random access procedure.            |
| Assigned Sub-C<br>Number                | ssigned Sub-Channel<br>umber           |      | 1                                           | No additional delays in random access procedure due to ASC. |

| Hysteresis         | dB  | 0   |                           |
|--------------------|-----|-----|---------------------------|
| Time To Trigger    | S   | 0   |                           |
| Filter coefficient |     | 0   | L3 filtering is not used  |
| DRX                |     | OFF |                           |
| Ofn                | dB  | 0   |                           |
| Thresh1            | dBm | -93 | E-UTRA event B2 threshold |
| Thresh2            | dBm | -80 | UTRA event B2 threshold   |
| T1                 | S   | 5   |                           |
| T2                 | S   | ≤10 |                           |
| T3                 | S   | 1   |                           |

Table A.5.2.4.1.2-2: Cell specific test parameters for E-UTRA TDD to UTRA TDD handover test case (cell 1)

| Parameter                                                                         | Unit       | Cell 1 |        |             |
|-----------------------------------------------------------------------------------|------------|--------|--------|-------------|
|                                                                                   |            | T1     | T2     | T3          |
| E-UTRA RF Channel                                                                 |            |        | 1      |             |
| Number                                                                            |            |        |        |             |
| BW <sub>channel</sub>                                                             | MHz        |        | 10     |             |
| OCNG Pattern defined in<br>A.3.2.2.1 (OP.1 TDD)<br>and in A.3.2.1.2 (OP.2<br>TDD) |            |        |        | OP.2<br>TDD |
| PBCH_RA                                                                           | dB         |        |        |             |
| PBCH_RB                                                                           | dB         |        |        |             |
| PSS_RB                                                                            | dB         |        |        |             |
| SSS_RB                                                                            | dB         |        |        |             |
| PCFICH_PA                                                                         | dB         |        |        |             |
| PHICH_PA                                                                          | dB         |        |        |             |
| PHICH_PB                                                                          | dB         | 0      | 0      | 0           |
| PDCCH_PA                                                                          | dB         |        |        |             |
| PDCCH_PB                                                                          | dB         |        |        |             |
| PDSCH_PA                                                                          | dB         |        |        |             |
| PDSCH_PB                                                                          | dB         |        |        |             |
| OCNG_RA <sup>Note 1</sup>                                                         | dB         |        |        |             |
| OCNG_RB <sup>Note 1</sup>                                                         | dB         |        |        |             |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$                          | dB         | 13     | -3     | -3          |
| $\hat{E}_s/N_{oc}$                                                                | dB         | 13     | -3     | -3          |
| $N_{oc}$                                                                          | dBm/15kHz  | -98    |        |             |
| RSRP Note 2                                                                       | dBm/15kHz  | -85    | -101   | -101        |
| SCH_RP Note 2                                                                     | dBm/15 kHz | -85    | -101   | -101        |
| lo Note 2                                                                         | dBm/9MHz   | -57.01 | -68.45 | -68.45      |
| Propagation Condition                                                             |            |        | AWGN   |             |

Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: RSRP, SCH\_RP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.2.4.1.2-3: Cell specific test parameters for cell search E-UTRA to UTRA case (cell 2)

| Parameter                        | Unit         | Cell 2 (UTRA) |        |        |    |              |    |
|----------------------------------|--------------|---------------|--------|--------|----|--------------|----|
| Timeslot Number                  |              | 0             |        |        |    | <b>DwPTS</b> |    |
|                                  |              | T1            | T2     | T3     | T1 | T2           | T3 |
| UTRA RF Channel<br>Number Note 1 |              | Channel 2     |        |        |    |              |    |
| PCCPCH_Ec/lor                    | dB           |               | -3     |        |    |              |    |
| DwPCH_Ec/lor                     | dB           |               |        |        |    |              |    |
| OCNS_Ec/lor                      | dB           |               | -3     |        |    |              |    |
| $\hat{I}_{or}/I_{oc}$            | dB           | -3            | 11     | 11     | -3 | 11           | 11 |
| $I_{oc}$                         | dBm/1.28 MHz |               |        | -80    |    |              |    |
| PCCPCH RSCP Note 2               | dBm          | -86           | -72    | -72    |    | n.a.         |    |
| lo Note 2                        | dBm/1.28 MHz | -78.24        | -68.67 | -68.67 |    |              |    |
| Propagation Condition            |              | AWGN          |        |        |    |              |    |

Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note 2: PCCPCH\_RSCP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.5.2.4.1.3 Void

#### A.5.2.4.2 Test Requirements

#### A.5.2.4.2.1 Void

#### A.5.2.4.2.2 1.28 Mcps TDD option

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 120 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 50 ms, which is specified in section 5.3.2.2.1.

 $T_{interrupt}$  is defined in section 5.3.2.2.2.  $T_{interrupt} = 70$  ms in the test as following:

 $T_{interrupt1} = T_{offset} + T_{UL} + 30*F_{SFN} + 20 + 10*F_{max} ms$ 

 $T_{offset} = 10 \text{ ms}$ ;  $T_{UL} = 10 \text{ ms}$ ; and  $F_{SFN} = 1 \text{ for UE decoding SFN}$ ;  $F_{max} = 0 \text{ for SYNCH-UL sequence transmittion}$ .

This gives a total of 120 ms.

#### A.5.2.4.2.3 Void

#### A.5.2.5 E-UTRAN FDD – UTRAN TDD Handover

#### A.5.2.5.1 Test Purpose and Environment

A.5.2.5.1.1 Void

A.5.2.5.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the E-UTRAN FDD to UTRAN TDD handover requirements specified in section 5.3.2.

The test scenario comprises of two cells, E-UTRA TDD cell1 and UTRA TDD cell2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #1 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring. The test parameters are given in Tables A.5.2.5.1-1, A.5.2.5.1-2 and A.5.2.5.1-3.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.2.5.1.2-1: General test parameters for E-UTRA FDD to UTRA (1.28 Mcps TDD option) handover test case

| Paran                  | Parameter                  |     | Value                                       | Comment                                                     |
|------------------------|----------------------------|-----|---------------------------------------------|-------------------------------------------------------------|
| PDSCH paramete         | PDSCH parameters           |     | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                           |
| PCFICH/PDCCH/          | PHICH                      |     | DL Reference Measurement                    | As specified in section A.3.1.2.1                           |
| parameters             |                            |     | Channel R.6 FDD                             |                                                             |
| Initial conditions     | Active cell                |     | Cell 1                                      | E-UTRA FDD cell                                             |
|                        | Neighbour cell             |     | Cell 2                                      | UTRA 1.28Mcps TDD Cell                                      |
| Final conditions       | Active cell                |     | Cell 2                                      |                                                             |
| Gap Pattern Id         |                            |     | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.             |
| E-UTRAN FDD m quantity |                            |     | RSRP                                        |                                                             |
| UTRAN TDD mea          |                            |     | RSCP                                        |                                                             |
| CP length of cell      |                            |     | Normal                                      |                                                             |
| Access Barring In      | Access Barring Information |     | Not Sent                                    | No additional delays in random access procedure.            |
| Assigned Sub-Ch        | annel Number               |     | 1                                           | No additional delays in random access procedure due to ASC. |
| Hysteresis             |                            | dB  | 0                                           |                                                             |
| Time To Trigger        |                            | s   | 0                                           |                                                             |
| Filter coefficient     |                            |     | 0                                           | L3 filtering is not used                                    |
| DRX                    |                            |     | OFF                                         |                                                             |
| Ofn                    |                            | dB  | 0                                           |                                                             |
| Thresh1                | Thresh1                    |     | -93                                         | Absolute E-UTRAN RSRP threshold for event B2                |
| Thresh2                |                            | dBm | -80                                         | Absolute UTRAN RSCP threshold for event B2                  |
| T1                     | T1                         |     | 5                                           |                                                             |
| T2                     |                            | S   | ≤ 10                                        |                                                             |
| Т3                     |                            | S   | 1                                           |                                                             |

Table A.5.2.5.1.2-2: Cell specific test parameters for E-UTRAN FDD to UTRAN (1.28 Mcps TDD option) handover test case (cell 1)

| Parameter                                                                          | Unit       | Cell 1 (E-UTRA) |          |        |  |  |  |
|------------------------------------------------------------------------------------|------------|-----------------|----------|--------|--|--|--|
|                                                                                    |            | T1              | T2       | T3     |  |  |  |
| E-UTRA RF Channel                                                                  |            |                 | 1        |        |  |  |  |
| number                                                                             |            |                 |          |        |  |  |  |
| BW <sub>channel</sub>                                                              | MHz        |                 | 10       |        |  |  |  |
| OCNG Patterns                                                                      |            | OP.1 FDD        | OP.1 FDD | OP.2   |  |  |  |
| defined in A.3.2.1.1                                                               |            |                 |          | FDD    |  |  |  |
| (OP.1 FDD) and in                                                                  |            |                 |          |        |  |  |  |
| A.3.2.1.2 (OP.2 FDD)                                                               |            |                 |          |        |  |  |  |
| PBCH_RA                                                                            | dB         |                 |          |        |  |  |  |
| PBCH_RB                                                                            | dB         |                 |          |        |  |  |  |
| PSS_RA                                                                             | dB         |                 |          |        |  |  |  |
| SSS_RA                                                                             | dB         |                 |          |        |  |  |  |
| PCFICH_RB                                                                          | dB         |                 |          |        |  |  |  |
| PHICH_RA                                                                           | dB         |                 |          |        |  |  |  |
| PHICH_RB                                                                           | dB         |                 | 0        |        |  |  |  |
| PDCCH_RA                                                                           | dB         |                 |          |        |  |  |  |
| PDCCH_RB                                                                           | dB         |                 |          |        |  |  |  |
| PDSCH_RA                                                                           | dB         |                 |          |        |  |  |  |
| PDSCH_RB                                                                           | dB         |                 |          |        |  |  |  |
| OCNG_RA <sup>Note 1</sup>                                                          | dB         |                 |          |        |  |  |  |
| OCNG_RB <sup>Note 1</sup>                                                          | dB         |                 |          |        |  |  |  |
| $\hat{E}_s/N_{oc}$                                                                 | dB         | 13              | -3       | -3     |  |  |  |
| $N_{oc}$                                                                           | dBm/15 kHz |                 | -98      |        |  |  |  |
| $\hat{E}_s/I_{ot}$                                                                 | dB         | 13              | -3       | -3     |  |  |  |
| RSRP Note 2                                                                        | dBm/15 KHz | -85             | -101     | -101   |  |  |  |
| lo Note 2                                                                          | dBm/9MHz   | -57.01          | -68.45   | -68.45 |  |  |  |
| Propagation Condition                                                              |            |                 | AWGN     |        |  |  |  |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant |            |                 |          |        |  |  |  |

OCNG shall be used such that both cells are fully allocated and a constant Note 1: total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.2.5.1.2-3: Cell specific test parameters for E-UTRAN FDD to UTRAN (1.28 Mcps TDD option) handover test case (cell 2)

| Parameter                        | Unit         | Cell 2 (UTRA)    |        |        |      |    |    |
|----------------------------------|--------------|------------------|--------|--------|------|----|----|
| Timeslot Number                  | 0 Dw         |                  |        | 0      |      |    |    |
|                                  |              | T1               | T2     | T3     | T1   | T2 | T3 |
| UTRA RF Channel<br>Number Note 1 |              | Channel 2        |        |        |      |    |    |
| PCCPCH_Ec/lor                    | dB           |                  | -3     |        |      |    |    |
| DwPCH_Ec/lor                     | dB           | 0                |        |        |      |    |    |
| OCNS_Ec/lor                      | dB           |                  | -3     |        |      |    |    |
| $\hat{I}_{or}/I_{oc}$            | dB           | -3               | 11     | 11     | -3   | 11 | 11 |
| $I_{oc}$                         | dBm/1.28 MHz |                  |        | -80    |      |    |    |
| PCCPCH RSCP Note 2               | dBm          | -86 -72 -72 n.a. |        |        | n.a. |    |    |
| lo Note 2                        | dBm/1.28 MHz | -78.24           | -68.67 | -68.67 |      |    |    |
| Propagation Condition            |              | AWGN             |        |        |      |    |    |

In the case of multi-frequency cell, the UTRA RF Channel Number is the primary Note 1:

frequency's channel number.

Note 2: PCCPCH RSCP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.5.2.5.1.3 Void

#### A.5.2.5.2 Test Requirements

A.5.2.5.2.1 Void

#### A.5.2.5.2.2 1.28 Mcps TDD option

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 120 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 50 ms, which is specified in section 5.3.2.2.1.

 $T_{interrupt}$  is defined in section 5.3.2.2.2.  $T_{interrupt} = 70$  ms in the test as following:

$$T_{interrupt1} = T_{offset} + T_{UL} + 30*F_{SFN} + 20 + 10*F_{max} ms$$

 $T_{offset} = 10 \text{ ms}$ ;  $T_{UL} = 10 \text{ ms}$ ; and  $F_{SFN} = 1 \text{ for UE decoding SFN}$ ;  $F_{max} = 0 \text{ for SYNCH-UL sequence transmittion}$ .

This gives a total of 120 ms.

A.5.2.5.2.3 Void

#### A.5.2.6 E-UTRAN TDD - GSM Handover

#### A.5.2.6.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN to GSM cell handover delay specified in section 5.3.3.

The test parameters are given in Table A.5.2.6.1-1, A.5.2.6.1-2 and A.5.2.6.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 shall be used. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

The RRC message implying handover to cell 2 shall be sent to the UE during period T2, after the UE has reported Event B1. The start of T3 is defined as the end of last E-UTRAN TTI containing the RRC message implying handover.

The requirements are also applicable for a UE not requiring measurement gap, in which case no measurement gap pattern should be sent for the parameters specified in Table A.5.2.6.1-1.

Table A.5.2.6.1-1: General test parameters for E-UTRAN TDD toGSM neighbours handover test case in AWGN propagation condition

| Parameter                                         |                          | Unit | Value                                       | Comment                                           |
|---------------------------------------------------|--------------------------|------|---------------------------------------------|---------------------------------------------------|
| PDSCH parameters                                  |                          |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                 |
| PCFICH/PDCCH/PHICH parameters                     |                          |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                 |
| Gap Pattern Id                                    |                          |      | 1                                           | As specified in TS 36.133 section 8.1.2.1.        |
| Initial conditions                                | Active cell              |      | Cell 1                                      |                                                   |
|                                                   | Neighbour cell           |      | Cell 2                                      |                                                   |
| Final conditions                                  | Active cell              |      | Cell 2                                      |                                                   |
| Uplink-downlink configuration of cell 1           |                          |      | 1                                           | As specified in table 4.2.2 in TS 36.211          |
| Special subframe configuration of cell 1          |                          |      | 6                                           | As specified in table 4.2.1 in TS 36.211          |
| CP length of cell 1                               |                          |      | Normal                                      |                                                   |
| Inter-RAT measu                                   | rement quantity          |      | GSM Carrier RSSI                            |                                                   |
| E-UTRA RF Char                                    | E-UTRA RF Channel Number |      | 1                                           | E-UTRA RF Channel Number                          |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) |                          | MHz  | 10                                          | E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) |
| Threshold other system                            |                          | dBm  | -80                                         | Absolute GSM carrier RSSI threshold for event B1. |
| Hysteresis                                        |                          | dB   | 0                                           |                                                   |
| Time to Trigger                                   |                          | ms   | 0                                           |                                                   |
| Filter coefficient                                |                          |      | 0                                           | L3 filtering is not used                          |
| DRX                                               |                          |      | OFF                                         |                                                   |
| T1                                                |                          | S    | 20                                          |                                                   |
| T2                                                |                          | S    | 7                                           |                                                   |
| T3                                                |                          | S    | 1                                           |                                                   |

Table A.5.2.6.1-2: Cell Specific Parameters for Handover E- UTRAN TDD to GSM handover test case

| Parameter                                                                       | Unit       | Cell 1   |          |  |
|---------------------------------------------------------------------------------|------------|----------|----------|--|
|                                                                                 |            | T1, T2   | Т3       |  |
| E-UTRA RF Channel Number                                                        |            | 1        | 1        |  |
| BW <sub>channel</sub>                                                           | MHz        | 1        | 0        |  |
| OCNG Patterns defined in<br>A.3.2.2.1 (OP.1 TDD) and in<br>A.3.2.2.2 (OP.2 TDD) |            | OP.1 TDD | OP.2 TDD |  |
| PBCH_RA                                                                         | dB         |          |          |  |
| PBCH_ RB                                                                        | dB         |          |          |  |
| PSS_RA                                                                          | dB         |          |          |  |
| SSS_ RA                                                                         | dB         | 1        |          |  |
| PCFICH_ RB                                                                      | dB         | 0        |          |  |
| PHICH_ RA                                                                       | dB         |          |          |  |
| PHICH_ RB                                                                       | dB         |          |          |  |
| PDCCH_ RA                                                                       | dB         |          |          |  |
| PDCCH_ RB                                                                       | dB         |          |          |  |
| PDSCH_RA                                                                        | dB         |          |          |  |
| PDSCH_ RB                                                                       | dB         |          |          |  |
| OCNG_ RA Note1                                                                  | dB         |          |          |  |
| OCNG_ RB Note1                                                                  | dB         | 1        |          |  |
| $\hat{E}_s/N_{oc}$                                                              | dB         | 4        | 1        |  |
| $N_{\it oc}$ Note 2                                                             | dBm/15 kHz | -98 (A   | WGN)     |  |
| $\hat{E}_s/I_{ot}$ dB                                                           |            | 4        |          |  |
| RSRP Note 3 dBm/15kHz                                                           |            | -94      |          |  |
| Propagation Condition                                                           |            | AW       | GN       |  |

NOTE 1: OCNG shall be used such that cell 1 is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.2.6.1-3: Cell Specific Parameters for Handover E-UTRAN to GSM cell case (cell 2)

| Parameter           | Unit | Cell 2 (GSM) |        |  |
|---------------------|------|--------------|--------|--|
| Parameter           |      | T1           | T2, T3 |  |
| Absolute RF Channel |      | ARFCN 1      |        |  |
| Number              |      |              |        |  |
| RXLEV               | dBm  | -85          | -75    |  |

#### A.5.2.6.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 100 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{Handover delay} = 90 \text{ ms} (Table 5.3.3.2.1-1) + T_{offset} + T_{UL}$ 

 $T_{\text{offset}}$ : Equal to 4.65 ms, GSM timing uncertainty between the time from when the UE is ready to transmit until the start of the next timeslot in GSM 26 multiframe structure

 $T_{UL}$ : Equal to 4.65 ms, the time the UE has to wait in case the next timeslot is an idle frame or a SACCH frame.

This gives a total of 99.3 ms, allow 100 ms in the test case.

## A.5.2.7 E-UTRAN FDD – UTRAN FDD Handover; Unknown Target Cell

#### A.5.2.7.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to UTRAN FDD handover requirements for the case when the target cell is unknown as specified in section 5.3.1.

The test parameters are given in Tables A.5.2.7.1-1, A.5.2.7.1-2 and A.5.2.7.1-3. The test consists of two successive time periods, with time durations of T1, T2. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, cell 2 becomes detectable and the UE receives a RRC handover command from the network. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. No Gap pattern configuration shall be used.

Table A.5.2.7.1-1: General test parameters for E-UTRAN FDD to UTRAN FDD handover test case

| Parameter                                  |                   | Unit | Value                                       | Comment                                                         |
|--------------------------------------------|-------------------|------|---------------------------------------------|-----------------------------------------------------------------|
| PDSCH parameters                           |                   |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                               |
| PCFICH/PDCCH/PHICH parameters              |                   |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                               |
| Initial conditions                         | Active cell       |      | Cell 1                                      | E-UTRAN cell                                                    |
|                                            | Neighbouring cell |      | Cell 2                                      | UTRAN cell                                                      |
| Final condition                            | Active cell       |      | Cell 2                                      | UTRAN cell                                                      |
| Channel Bandwidth (BW <sub>channel</sub> ) |                   | MHz  | 10                                          |                                                                 |
| E-UTRAN FDD measurement quantity           |                   |      | RSRP                                        |                                                                 |
| Inter-RAT (UTRAN FDD) measurement quantity |                   |      | CPICH Ec/N0                                 |                                                                 |
| DRX                                        |                   |      | OFF                                         | Non-DRX test                                                    |
| Access Barring Information                 |                   | -    | Not sent                                    | No additional delays in random access procedure                 |
| E-UTRA RF Channel Number                   |                   |      | 1                                           | One E-UTRA FDD carrier frequency is used.                       |
| E-UTRA Channel Bandwidth (BWchannel)       |                   | MHz  | 10                                          |                                                                 |
| UTRA RF Channel Number                     |                   |      | 1                                           | One UTRA FDD carrier frequency is used.                         |
| Monitored UTRA FDD cell list size          |                   |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell before T2. |
| Post-verification period                   |                   |      | False                                       |                                                                 |
| T1                                         |                   | S    | ≤5                                          |                                                                 |
| T2                                         |                   | s    | 1                                           |                                                                 |

Table A.5.2.7.1-2: Cell specific test parameters for E-UTRAN FDD to UTRAN FDD handover test case (cell 1)

| Parameter                   | Unit              | Cell 1 (E-UTRA) |               |
|-----------------------------|-------------------|-----------------|---------------|
|                             |                   | T1              | T2            |
| E-UTRA RF Channel           |                   |                 | 1             |
| number                      |                   |                 |               |
| BW <sub>channel</sub>       | MHz               |                 | 10            |
| OCNG Patterns defined in    |                   | OP.1 FDD        | OP.2 FDD      |
| A.3.2.1.1 (OP.1 FDD) and in |                   |                 |               |
| A.3.2.1.2 (OP.2 FDD)        |                   |                 |               |
| PBCH_RA                     | dB                |                 |               |
| PBCH_RB                     | dB                |                 |               |
| PSS_RA                      | dB                |                 |               |
| SSS_RA                      | dB                |                 |               |
| PCFICH_RB                   | dB                |                 |               |
| PHICH_RA                    | dB                |                 |               |
| PHICH_RB                    | dB                |                 | 0             |
| PDCCH_RA                    | dB                |                 |               |
| PDCCH_RB                    | dB                |                 |               |
| PDSCH_RA                    | dB                |                 |               |
| PDSCH_RB                    | dB                |                 |               |
| OCNG_RA <sup>Note 1</sup>   | dB                |                 |               |
| OCNG_RB <sup>Note 1</sup>   | dB                |                 |               |
| $\hat{E}_s/I_{ot}$          | dB                | 0               | 0             |
| $N_{oc}^{ m Note~2}$        | dBm/15 kHz        | -               | 98            |
| $\hat{E}_s/N_{oc}$          | dB                | 0               | 0             |
| RSRP Note 3                 | dBm/15 KHz        | -98             | -98           |
| Propagation Condition       |                   | AV              | VGN           |
| Note 1: OCNG shall be use   | ed such that both | cells are fully | allocated and |
| a constant total trai       | nsmitted power s  |                 |               |
| Note 2: Interference from a |                   |                 |               |

Interference from other cells and noise sources not specified in Note 2: the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $^{N_{oc}}$ 

RSRP levels have been derived from other parameters for Note 3: information purposes. They are not settable parameters themselves.

Table A.5.2.7.1-3: Cell specific test parameters for E-UTRAN FDD to UTRAN FDD handover test case (cell 2)

| Parameter                                                                                                                                                                                     | Unit            | Cell 2    | (UTRA) |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|--------|--|
|                                                                                                                                                                                               |                 | T1        | T2     |  |
| CPICH_Ec/lor                                                                                                                                                                                  | dB              | -         | 10     |  |
| PCCPCH_Ec/lor                                                                                                                                                                                 | dB              | -         | 12     |  |
| SCH_Ec/lor                                                                                                                                                                                    | dB              | -         | 12     |  |
| PICH_Ec/lor                                                                                                                                                                                   | dB              | -         | 15     |  |
| DCH_Ec/lor                                                                                                                                                                                    | dB              | No        | ote 1  |  |
| OCNS_Ec/lor                                                                                                                                                                                   | dB              | Note 2    |        |  |
| $\hat{I}_{or}/I_{oc}$                                                                                                                                                                         | dB              | -infinity | -1.8   |  |
| $I_{oc}$                                                                                                                                                                                      | dBm/3,84<br>MHz | -70       | -70    |  |
| CPICH_Ec/lo                                                                                                                                                                                   | dB              | -infinity | -14    |  |
| Propagation Condition                                                                                                                                                                         | AWGN            |           |        |  |
| Note 1: The DPCH level is controlled by the power control loop  Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I <sub>or</sub> . |                 |           |        |  |

#### A.5.2.7.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than 290 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrunt}$ , where:

RRC procedure delay is 50ms. See section 5.3.1.1.1.

 $T_{interrupt}$  is 240ms. See section 5.3.1.1.2.

This gives a total of 290ms in the test case.

## A.5.2.8 E-UTRAN FDD - GSM Handover; Unknown Target Cell

#### A.5.2.8.1 Test Purpose and Environment

This test is to verify the E-UTRAN FDD to GSM handover requirements for the case when the target GSM cell is unknown as specified in section 5.3.3.

The test parameters are given in Table A.5.2.8.1-1, A.5.2.8.1-2 and A.5.2.8.1-3 below. The test consists of two successive time periods, with time duration of T1, T2 respectively. At the start of time duration T1, the UE will not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE receives a RRC handover command from the network. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. No Gap pattern configuration shall be used.

Table A.5.2.8.1-1: General test parameters for E-UTRAN FDD to GSM handover test case; unknown target cell

| Parameter                |                | Unit | Value                                       | Comment                                |
|--------------------------|----------------|------|---------------------------------------------|----------------------------------------|
| PDSCH paramete           | ers            |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1      |
| PCFICH/PDCCH, parameters | /PHICH         |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1      |
| Gap Pattern Id           |                |      | None                                        | No measurement gaps shall be provided. |
| Initial conditions       | Active cell    |      | Cell 1                                      |                                        |
|                          | Neighbour cell |      | Cell 2                                      |                                        |
| Final conditions         | Active cell    |      | Cell 2                                      |                                        |
| DRX                      | •              |      | OFF                                         | No DRX configured                      |
| T1                       |                | S    | 7                                           | -                                      |
| T2                       |                | S    | 1                                           |                                        |

Table A.5.2.8.1 - 2: Cell specific parameters for cell # 1 in E-UTRAN FDD to GSM handover test case; unknown target cell

| Parameter                                                                            | Unit                                                                                | Cell 1   |          |  |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|----------|--|--|--|
|                                                                                      |                                                                                     | T1       | T2       |  |  |  |
| BW <sub>channel</sub>                                                                | MHz                                                                                 |          | 10       |  |  |  |
| OCNG Patterns                                                                        |                                                                                     |          |          |  |  |  |
| defined in A.3.2.1.1                                                                 |                                                                                     |          |          |  |  |  |
| (OP.1 FDD) and in                                                                    |                                                                                     | OP.1 FDD | OP.2 FDD |  |  |  |
| A.3.2.1.2 (OP.2                                                                      |                                                                                     |          |          |  |  |  |
| FDD)                                                                                 |                                                                                     |          |          |  |  |  |
| PBCH_RA                                                                              | dB                                                                                  |          |          |  |  |  |
| PBCH_ RB                                                                             | dB                                                                                  |          |          |  |  |  |
| PSS_RA                                                                               | dB                                                                                  |          |          |  |  |  |
| SSS_RA                                                                               | dB                                                                                  |          |          |  |  |  |
| PCFICH_ RB                                                                           | dB                                                                                  |          |          |  |  |  |
| PHICH_ RA                                                                            | dB                                                                                  |          |          |  |  |  |
| PHICH_ RB                                                                            | dB                                                                                  |          | 0        |  |  |  |
| PDCCH_ RA                                                                            | dB                                                                                  |          |          |  |  |  |
| PDCCH_ RB                                                                            | dB                                                                                  |          |          |  |  |  |
| PDSCH_RA                                                                             | dB                                                                                  | -        |          |  |  |  |
| PDSCH_ RB<br>OCNG_ RA Note1                                                          | dB                                                                                  | -        |          |  |  |  |
| OCNG_ RA Note1 OCNG_ RB Note1                                                        | dB                                                                                  |          |          |  |  |  |
|                                                                                      | dB                                                                                  |          |          |  |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$                             | dB                                                                                  | 4        |          |  |  |  |
| $N_{oc}$ Note 2                                                                      | dBm/15 kHz                                                                          | -98      |          |  |  |  |
| $\hat{E}_s/N_{oc}$                                                                   | dB                                                                                  | 4        |          |  |  |  |
| 37 00                                                                                |                                                                                     |          | 7        |  |  |  |
| RSRP Note 3                                                                          | dBm/15 kHz                                                                          |          | -94      |  |  |  |
| Propagation                                                                          |                                                                                     | Δ        | .WGN     |  |  |  |
| Condition                                                                            |                                                                                     |          |          |  |  |  |
|                                                                                      | Note 1: OCNG shall be used such that cell 1 is fully allocated and a constant total |          |          |  |  |  |
|                                                                                      | transmitted power spectral density is achieved for all OFDM symbols.                |          |          |  |  |  |
| Note 2: Interference from other cells and noise sources not specified in the test is |                                                                                     |          |          |  |  |  |
|                                                                                      | assumed to be constant over subcarriers and time and shall be modelled as           |          |          |  |  |  |
| AWGN of appropriate power for $^{N_{oc}}$ to be fulfilled.                           |                                                                                     |          |          |  |  |  |
| Note 3: RSRP levels have been derived from other parameters for information          |                                                                                     |          |          |  |  |  |
| purposes. They are not settable parameters themselves.                               |                                                                                     |          |          |  |  |  |

Table A.5.2.8.1-3: Cell specific parameters for cell # 2 in E-UTRAN FDD to GSM handover test case; unknown target cell

| Parameter                  | Unit | Cell 2 (GSM) |       |  |
|----------------------------|------|--------------|-------|--|
| Parameter                  | Onit | T1 T2        |       |  |
| Absolute RF Channel Number |      | AR           | FCN 1 |  |
| RXLEV                      | dBm  | -Infinity    | -75   |  |

### A.5.2.8.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 200 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{Handover\ delay}$  = 190 ms (Table 5.3.3.2.1-1) +  $T_{offset}$  +  $T_{UL}$ 

 $T_{\text{offset}}$ : Equal to 4.65 ms is the GSM timing uncertainty from the time when the UE is ready to transmit until the start of the next timeslot in GSM 26 multiframe structure

T<sub>UL</sub>: Equal to 4.65 ms is the time the UE has to wait in case the next timeslot is an idle frame or a SACCH frame.

This gives a total of 199.3 ms, allow 200 ms in the test case.

### A.5.2.9 E-UTRAN TDD - GSM Handover; Unknown Target Cell

#### A.5.2.9.1 Test Purpose and Environment

This test is to verify the E-UTRAN TDD to GSM handover requirements for the case when the target GSM cell is unknown as specified in section 5.3.3.

The test parameters are given in Table A.5.2.9.1 -1, A.5.2.9.1 -2 and A.5.2.9.1 -3 below. The test consists of two successive time periods, with time duration of T1, T2 respectively. At the start of time duration T1, the UE will not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE receives a RRC handover command from the network. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. No Gap pattern configuration shall be used.

Table A.5.2.9.1-1: General test parameters for E-UTRAN TDD to GSM handover test case; unknown target cell

| Para                          | meter          | Unit | Value                                       | Comment                                       |
|-------------------------------|----------------|------|---------------------------------------------|-----------------------------------------------|
| PDSCH paramete                | ers            |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.2.2.1             |
| PCFICH/PDCCH, parameters      | /PHICH         |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.2.2.2             |
| Gap Pattern Id                |                |      | None                                        | No measurement gaps shall be provided.        |
| Initial conditions            | Active cell    |      | Cell 1                                      |                                               |
|                               | Neighbour cell |      | Cell 2                                      |                                               |
| Final conditions              | Active cell    |      | Cell 2                                      |                                               |
| DRX                           |                |      | OFF                                         | No DRX configured                             |
| Special subframe              | configuration  |      | 6                                           | As specified in table 4.2-1 in 3GPP TS 36.211 |
| Uplink-downlink configuration |                |      | 1                                           | As specified in table 4.2-2 in 3GPP TS 36.211 |
| T1                            |                | S    | 7                                           |                                               |
| T2                            |                | s    | 1                                           |                                               |

Table A.5.2.9.1 - 2: Cell specific parameters for cell # 1 in E-UTRAN TDD to GSM handover test case; unknown target cell

| Parameter                                                                                                                                                | Unit               | Cell 1                       |                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|------------------------|--|--|
|                                                                                                                                                          |                    | T1                           | T2                     |  |  |
| BW <sub>channel</sub>                                                                                                                                    | MHz                |                              | 10                     |  |  |
| OCNG Patterns                                                                                                                                            |                    |                              |                        |  |  |
| defined in A.3.2.2.1                                                                                                                                     |                    |                              |                        |  |  |
| (OP.1 TDD) and in                                                                                                                                        |                    | OP.1 TDD                     | OP.2 TDD               |  |  |
| A.3.2.2.2 (OP.2                                                                                                                                          |                    |                              |                        |  |  |
| TDD)                                                                                                                                                     |                    |                              |                        |  |  |
| PBCH_RA                                                                                                                                                  | dB                 |                              |                        |  |  |
| PBCH_ RB                                                                                                                                                 | dB                 |                              |                        |  |  |
| PSS_RA                                                                                                                                                   | dB                 |                              |                        |  |  |
| SSS_RA                                                                                                                                                   | dB                 |                              |                        |  |  |
| PCFICH_ RB                                                                                                                                               | dB                 |                              |                        |  |  |
| PHICH_ RA                                                                                                                                                | dB                 |                              |                        |  |  |
| PHICH_ RB                                                                                                                                                | dB                 |                              | 0                      |  |  |
| PDCCH_ RA                                                                                                                                                | dB                 |                              |                        |  |  |
| PDCCH_ RB                                                                                                                                                | dB                 |                              |                        |  |  |
| PDSCH_RA                                                                                                                                                 | dB                 |                              |                        |  |  |
| PDSCH_ RB                                                                                                                                                | dB                 |                              |                        |  |  |
| OCNG_ RA Note1                                                                                                                                           | dB                 |                              |                        |  |  |
| OCNG_ RB Note1                                                                                                                                           | dB                 |                              |                        |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$                                                                                                 | dB                 | 4                            |                        |  |  |
| $N_{oc}$ Note 2                                                                                                                                          | dBm/15 kHz         |                              | -98                    |  |  |
| $\hat{E}_s/N_{oc}$                                                                                                                                       | dB                 | 4                            |                        |  |  |
| RSRP Note 3                                                                                                                                              | dBm/15 kHz         |                              | -94                    |  |  |
| Propagation                                                                                                                                              |                    | AWGN                         |                        |  |  |
| Condition                                                                                                                                                | all ha waad ayah t | hat aall 1 is fully allocate | d and a constant total |  |  |
| Note 1: OCNG shall be used such that cell 1 is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. |                    |                              |                        |  |  |
| Note 2: Interference from other cells and noise sources not specified in the test is                                                                     |                    |                              |                        |  |  |
| assumed to be constant over subcarriers and time and shall be modelled as                                                                                |                    |                              |                        |  |  |
|                                                                                                                                                          |                    |                              |                        |  |  |
| AWGN of appropriate power for $^{N}_{oc}$ to be fulfilled.                                                                                               |                    |                              |                        |  |  |
| Note 3: RSRP levels have been derived from other parameters for information                                                                              |                    |                              |                        |  |  |
| purposes. They are not settable parameters themselves.                                                                                                   |                    |                              |                        |  |  |

Table A.5.2.9.1 - 3: Cell specific parameters for cell # 2 in E-UTRAN TDD to GSM handover test case; unknown target cell

| Parameter                  | Unit | Cell      | 2 (GSM) |
|----------------------------|------|-----------|---------|
| Farameter                  | Onit | T1 T2     |         |
| Absolute RF Channel Number |      | AR        | FCN 1   |
| RXLEV                      | dBm  | -Infinity | -75     |

### A.5.2.9.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 200 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{Handover\ delay}$  = 190 ms (Table 5.3.3.2.1-1) +  $T_{offset}$  +  $T_{UL}$ 

 $T_{\text{offset}}$ : Equal to 4.65 ms is the GSM timing uncertainty from the time when the UE is ready to transmit until the start of the next timeslot in GSM 26 multiframe structure

 $T_{UL}$ : Equal to 4.65 ms is the time the UE has to wait in case the next timeslot is an idle frame or a SACCH frame. This gives a total of 199.3 ms, allow 200 ms in the test case.

# A.5.2.10 E-UTRAN TDD to UTRAN TDD handover: unknown target cell

### A.5.2.10.1 Test Purpose and Environment

This test is to verify the requirement for E-UTRAN TDD to UTRAN TDD handover requirements specified in section 5.3.2 when the target UTRAN TDD cell is unknown.

The test scenario comprises of 1 E-UTRAN TDD cell and 1 UTRAN TDD cell as given in tables A.5.2.10.1-1, A.5.2.10.1-2, and A.5.2.10.1-3. No gap pattern is configured in the test case.

The test consists of two successive time periods, with time durations of T1 and T2 respectively. During time duration T1, a RRC message implying handover to UTRA 1.28Mcps TDD cell shall be sent to the UE. The end of the last TTI containing handover message is the beginning of T2 duration.

Table A.5.2.10.1-1: General test parameters for E-UTRAN TDD to unknown UTRAN TDD cell handover test case

| Par                        | ameter                         | Unit | Value                                          | Comment                                                                                                            |
|----------------------------|--------------------------------|------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| PDSCH parameters           |                                |      | DL Reference<br>Measurement Channel<br>R.0 TDD | As specified in section A.3.1.1.2                                                                                  |
| PCFICH/PD0<br>parameters   | CCH/PHICH                      |      | DL Reference<br>Measurement Channel<br>R.6 TDD | As specified in section A.3.1.2.2                                                                                  |
| Initial                    | Active cell                    |      | Cell 1                                         | E-UTRAN TDD cell                                                                                                   |
| conditions                 | Neighbour<br>cell              |      | Cell 2                                         | UTRA 1.28Mcps TDD cell                                                                                             |
| Final conditions           | Active cell                    |      | Cell 2                                         | UTRA 1.28Mcps TDD cell                                                                                             |
| CP length of               | cell 1                         |      | Normal                                         |                                                                                                                    |
| Uplink-downlof cell 1      | link configuration             |      | 1                                              | As specified in table 4.2.2 in TS 36.211                                                                           |
| Special subficonfiguration |                                |      | 6                                              | As specified in table 4.2.1 in TS 36.211                                                                           |
|                            | etween cells                   |      | 3 ms                                           | Asynchronous cells                                                                                                 |
| Access Barri               | ng Information                 |      | Not Sent                                       | No additional delays in random access procedure.                                                                   |
| Assigned Su<br>Number      | Assigned Sub-Channel<br>Number |      | 1                                              | No additional delays in random access procedure due to ASC.                                                        |
| TimeToTrigg                | neToTrigger s                  |      | 0                                              |                                                                                                                    |
| Filter coefficient         |                                |      | 0                                              | L3 filtering is not used                                                                                           |
| DRX                        |                                |      | OFF                                            |                                                                                                                    |
| T1                         |                                | S    | 5                                              | During T1, cell 2 shall be powered off, and during the off time the physical layer cell identity shall be changed. |
| T2                         |                                | S    | 1                                              |                                                                                                                    |

Table A.5.2.10.1-2: Cell specific test parameters for E-UTRAN TDD to unknown UTRAN TDD cell handover test case (cell 1)

| Parameter                                                          | Unit       | Ce       | ell 1    |  |  |
|--------------------------------------------------------------------|------------|----------|----------|--|--|
|                                                                    |            | T1       | T2       |  |  |
| E-UTRA RF Channel                                                  |            | 1        |          |  |  |
| Number                                                             |            |          |          |  |  |
| BWchannel                                                          | MHz        | 1        | 0        |  |  |
| OCNG Patterns defined in                                           |            | OP.1 TDD | OP.2 TDD |  |  |
| TS36.133 A.3.2.2.1 (OP.1                                           |            |          |          |  |  |
| TDD) and in A.3.2.2.2                                              |            |          |          |  |  |
| (OP.2 TDD)                                                         |            |          |          |  |  |
| PBCH_RA                                                            | dB         | -        |          |  |  |
| PBCH_RB                                                            | dB         |          |          |  |  |
| PSS_RB                                                             | dB         |          |          |  |  |
| SSS_RB                                                             | dB         |          |          |  |  |
| PCFICH_PA                                                          | dB         |          |          |  |  |
| PHICH_PA                                                           | dB         |          |          |  |  |
| PHICH_PB                                                           | dB         | 0        | 0        |  |  |
| PDCCH_PA                                                           | dB         |          |          |  |  |
| PDCCH_PB                                                           | dB         |          |          |  |  |
| PDSCH_PA                                                           | dB         |          |          |  |  |
| PDSCH_PB                                                           | dB         |          |          |  |  |
| OCNG_RANote 1                                                      | dB         |          |          |  |  |
| OCNG_RBNote 1                                                      | dB         |          |          |  |  |
| $\hat{E}_s/I_{ot}$                                                 | dB         | 3        | 3        |  |  |
| $\hat{E}_s/N_{oc}$                                                 | dB         | 3        | 3        |  |  |
| $N_{oc}$                                                           | dBm/15kHz  | -(       | 98       |  |  |
| RSRP                                                               | dBm/15kHz  | -95      | -95      |  |  |
| SCH_RP                                                             | dBm/15 kHz | -95      | -95      |  |  |
| Propagation Condition                                              | _          |          |          |  |  |
| Note 1: OCNG shall be used such that cell is fully allocated and a |            |          |          |  |  |

Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for

all OFDM symbols.

Note 2: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable

parameters themselves.

Table A.5.2.10.1-3: Cell specific test parameters for E-UTRAN TDD to unknown UTRAN TDD cell test case (cell 2)

| Parameter                                  | Unit         | Cell 2 (UTRA)      |    |           |    |
|--------------------------------------------|--------------|--------------------|----|-----------|----|
| Timeslot Number                            |              | 0 Dwl              |    | PTS       |    |
|                                            |              | T1                 | T2 | T1        | T2 |
| UTRA RF Channel<br>Number <sup>Note1</sup> |              | Channel 2          |    |           |    |
| PCCPCH_Ec/lor                              | dB           | -:                 | 3  |           |    |
| DwPCH_Ec/lor                               | dB           |                    |    | 0         |    |
| OCNS_Ec/lor                                | dB           | -(                 | 3  |           |    |
| $\hat{I}_{or}/I_{oc}$                      | dB           | -infinity 13       |    | -infinity | 13 |
| $I_{oc}$                                   | dBm/1.28 MHz | -80                |    |           |    |
| PCCPCH RSCP                                | dBm          | -infinity -70 n.a. |    | a.        |    |
| Propagation Condition                      |              | AWGN               |    |           |    |

Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the

primary frequency's channel number.

Note2: P-CCPCH RSCP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.5.2.10.2 Test Requirements

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 280 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 50 ms, which is specified in section 5.3.2.2.1.

 $T_{interrupt}$  is defined in section 5.3.2.2.2.  $T_{interrupt} = 230$  ms in the test as following:

 $T_{interrupt1} = T_{offset} + T_{UL} + 30*F_{SFN} + 180 + 10*F_{max} \ ms$ 

 $T_{offset} = 10 \text{ ms}$ ;  $T_{UL} = 10 \text{ ms}$ ; and  $F_{SFN} = 1 \text{ for UE decoding SFN}$ ;  $F_{max} = 0 \text{ for SYNCH-UL sequence transmittion}$ .

This gives a total of 280 ms.

### A.5.3 E-UTRAN Handover to Non-3GPP RATs

### A.5.3.1 E-UTRAN FDD – HRPD Handover

### A.5.3.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to HRPD handover requirements specified in section 5.4.1.

The test parameters are given in Tables A.5.3.1.1-1, A.5.3.1.1-2 and A.5.3.1.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.1.1-1: General test parameters for E-UTRAN FDD to HRPD handover test case

| Para                          | meter                    | Unit | Value                                       | Comment                                                              |
|-------------------------------|--------------------------|------|---------------------------------------------|----------------------------------------------------------------------|
| PDSCH parameters              | S                        |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                    |
| PCFICH/PDCCH/PHICH parameters |                          |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                    |
| Initial conditions            | Active cell              |      | Cell 1                                      | E-UTRAN FDD cell                                                     |
|                               | Neighbouring cell        |      | Cell 2                                      | HRPD cell                                                            |
| Final condition               | Active cell              |      | Cell 2                                      | HRPD cell                                                            |
| Channel Bandwidth             | (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                      |
| Gap Pattern Id                |                          |      | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts             |
| E-UTRAN FDD me                | asurement quantity       |      | RSRP                                        |                                                                      |
| Inter-RAT (HRPD) quantity     |                          |      | CDMA2000 HRPD Pilot<br>Strength             |                                                                      |
| b2-Threshold1                 |                          | dBm  | -90                                         | Absolute E-UTRAN RSRP threshold for event B2                         |
| b2-Threshold2-CDI             | MA2000                   | dB   | -7                                          | Absolute 'CDMA2000 HRPD Pilot Strength' threshold for event B2       |
| Hysteresis                    |                          | dB   | 0                                           |                                                                      |
| TimeToTrigger                 |                          | S    | 0                                           |                                                                      |
| Filter coefficient            |                          |      | 0                                           | L3 filtering is not used                                             |
| DRX                           |                          |      | OFF                                         | Non-DRX test                                                         |
| Access Barring Info           | ormation                 | -    | Not sent                                    | No additional delays in random access procedure                      |
| E-UTRA RF Chann               | el Number                |      | 1                                           | One E-UTRA FDD carrier frequency is used.                            |
| E-UTRA Channel E (BWchannel)  |                          | MHz  | 10                                          |                                                                      |
| HRPD RF Channel               |                          |      | 1                                           | One HRPD carrier frequency is used.                                  |
| HRPD neighbour co             | ell list size            |      | 8                                           | HRPD cells on HRPD RF channel 1 provided in the cell list before T2. |
| cdma2000-Search\              | VindowSize               |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331     |
| T1                            |                          | S    | 5                                           |                                                                      |
| T2                            |                          | S    | ≤10                                         |                                                                      |
| T3                            |                          | s    | 1                                           |                                                                      |
|                               |                          |      |                                             |                                                                      |

Table A.5.3.1.1-2: Cell specific test parameters for E-UTRAN FDD cell#1 for handover to HRPD cell # 2

| Parameter                 | Unit   | Cell 1 (E-UTRA) |      |      |
|---------------------------|--------|-----------------|------|------|
|                           |        | T1 T2 T         |      | Т3   |
| E-UTRA RF Channel         |        | 1               |      |      |
| number                    |        |                 |      |      |
| BW <sub>channel</sub>     | MHz    |                 | 10   |      |
| OCNG Patterns defined in  |        | OP.1            | FDD  | OP.2 |
| A.3.2.1.1 (OP.1 FDD) and  |        |                 |      | FDD  |
| in A.3.2.1.2 (OP.2 FDD)   |        |                 |      |      |
| PBCH_RA                   | dB     |                 |      |      |
| PBCH_RB                   | dB     |                 |      |      |
| PSS_RA                    | dB     |                 |      |      |
| SSS_RA                    | dB     |                 |      |      |
| PCFICH_RB                 | dB     |                 |      |      |
| PHICH_RA                  | dB     |                 |      |      |
| PHICH_RB                  | dB     |                 | 0    |      |
| PDCCH_RA                  | dB     |                 |      |      |
| PDCCH_RB                  | dB     |                 |      |      |
| PDSCH_RA                  | dB     |                 |      |      |
| PDSCH_RB                  | dB     |                 |      |      |
| OCNG_RA <sup>Note 1</sup> | dB     |                 |      |      |
| OCNG_RB <sup>Note 1</sup> | dB     |                 |      |      |
| $N_{oc}^{ m Note~2}$      | dBm/15 |                 | -98  |      |
|                           | kHz    |                 |      |      |
| RSRP Note 3               | dBm/15 | -98 -98 -9      |      | -98  |
|                           | KHz    |                 |      |      |
| $\hat{E}_s/N_{oc}$        | dB     | 0 0 0           |      | 0    |
| $\hat{E}_s/I_{ot}$        | dB     | 0               | 0    | 0    |
| Propagation Condition     |        |                 | AWGN |      |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{\it oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.3.1.1-3: Cell specific test parameters for HRPD (cell # 2) for handover from E-UTRAN FDD cell (cell #1)

| Parameter                                                                             | Unit              | Cell 2 (HRPD) |      |    |
|---------------------------------------------------------------------------------------|-------------------|---------------|------|----|
|                                                                                       |                   | T1            | T2   | Т3 |
| $\frac{\text{Control}  \text{E}_{\text{b}}}{\text{N}_{\text{t}}}  \text{(38.4 kbps)}$ | dB                |               | 21   |    |
| $\frac{\text{Control}  \text{E}_{\text{b}}}{\text{N}_{\text{t}}} \text{ (76.8 kbps)}$ | dB                | 18            |      |    |
| $\hat{I}_{or}/I_{oc}$                                                                 | dB                | -infinity     | 0    | 0  |
| $I_{oc}$                                                                              | dBm/1.2288<br>MHz |               | -55  |    |
| CDMA2000 HRPD Pilot<br>Strength                                                       | dB                | -infinity     | -3   | -3 |
| Propagation Condition                                                                 |                   |               | AWGN |    |

### A.5.3.1.2 Test Requirements

The UE shall start transmission of the reverse control channel in HRPD to Cell 2 less than 127 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 50 ms, which is specified in section 5.4.1.1.1.

 $T_{interrupt} = 76.66$  ms in the test;  $T_{interrupt}$  is defined in section 5.4.1.1.2.

This gives a total of 126.66 ms, allow 127 ms in the test.

### A.5.3.2 E-UTRAN FDD – cdma2000 1X Handover

#### A.5.3.2.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to cdma2000 1X handover requirements specified in section 5.4.2.

The test parameters are given in Tables A.5.3.2.1-1, A.5.3.2.1-2 and A.5.3.2.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.2.1-1: General test parameters for E-UTRAN FDD to cdma2000 1X handover test case

| Para                                 | meter                    | Unit | Value                                       | Comment                                                                            |
|--------------------------------------|--------------------------|------|---------------------------------------------|------------------------------------------------------------------------------------|
| PDSCH parameters                     |                          |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                                  |
| PCFICH/PDCCH/P                       | HICH parameters          |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                                  |
| Initial conditions                   | Active cell              |      | Cell 1                                      | E-UTRAN FDD cell                                                                   |
|                                      | Neighbouring cell        |      | Cell 2                                      | cdma2000 1X cell                                                                   |
|                                      | Active cell              |      | Cell 2                                      | cdma2000 1X cell                                                                   |
| Channel Bandwidth                    | (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                    |
| Gap Pattern Id                       |                          |      | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts                           |
| E-UTRAN FDD mea                      | asurement quantity       |      | RSRP                                        |                                                                                    |
| Inter-RAT (cdma20) quantity          | 00 1X) measurement       |      | CDMA2000 1xRTT Pilot<br>Strength            |                                                                                    |
| b2-Threshold1                        |                          | dBm  | -90                                         | Absolute E-UTRAN RSRP<br>threshold for event B2                                    |
| b2-Threshold2-CDN                    | /A2000                   | dB   | -14                                         | Absolute 'CDMA2000 1xRTT Pilot Strength' threshold for event B2                    |
| Hysteresis                           |                          | dB   | 0                                           |                                                                                    |
| TimeToTrigger                        |                          | S    | 0                                           |                                                                                    |
| Filter coefficient                   |                          |      | 0                                           | L3 filtering is not used                                                           |
| DRX                                  |                          |      | OFF                                         | Non-DRX test                                                                       |
| Access Barring Info                  | rmation                  | -    | Not sent                                    | No additional delays in random access procedure                                    |
| E-UTRA RF Chann                      | el Number                |      | 1                                           | One E-UTRA FDD carrier frequency is used.                                          |
| E-UTRA Channel B (BWchannel)         |                          | MHz  | 10                                          |                                                                                    |
| cdma2000 1X RF C                     |                          |      | 1                                           | One HRPD carrier frequency is used.                                                |
| cdma2000 1X neighbour cell list size |                          |      | 8                                           | cdma2000 1X cells on cdma2000 1X RF channel 1 provided in the cell list before T2. |
| cdma2000-SearchV                     | VindowSize               |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331                   |
| T1                                   |                          | s    | 5                                           |                                                                                    |
| T2                                   |                          | s    | ≤10                                         |                                                                                    |
| T3                                   |                          | s    | 1                                           |                                                                                    |

Table A.5.3.2.1-2: Cell specific test parameters for E-UTRAN FDD cell#1 for handover to cdma2000 1X cell #2

| Parameter                                                                                                                                                                                                                            | Unit        | Cell 1 (E-UTRA) |              |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--------------|-----------|--|
|                                                                                                                                                                                                                                      |             | T1              | T2           | T3        |  |
| E-UTRA RF Channel                                                                                                                                                                                                                    |             |                 | 1            |           |  |
| number                                                                                                                                                                                                                               |             |                 |              |           |  |
| BW <sub>channel</sub>                                                                                                                                                                                                                | MHz         |                 | 10           |           |  |
| OCNG Patterns defined in                                                                                                                                                                                                             |             | OP.1            | FDD          | OP.2      |  |
| A.3.2.1.1 (OP.1 FDD) and                                                                                                                                                                                                             |             |                 |              | FDD       |  |
| in A.3.2.1.2 (OP.2 FDD)                                                                                                                                                                                                              |             |                 |              |           |  |
| PBCH_RA                                                                                                                                                                                                                              | dB          |                 |              |           |  |
| PBCH_RB                                                                                                                                                                                                                              | dB          |                 |              |           |  |
| PSS_RA                                                                                                                                                                                                                               | dB          |                 |              |           |  |
| SSS_RA                                                                                                                                                                                                                               | dB          |                 |              |           |  |
| PCFICH_RB                                                                                                                                                                                                                            | dB          |                 |              |           |  |
| PHICH_RA                                                                                                                                                                                                                             | dB          |                 |              |           |  |
| PHICH_RB                                                                                                                                                                                                                             | dB          |                 | 0            |           |  |
| PDCCH_RA                                                                                                                                                                                                                             | dB          |                 |              |           |  |
| PDCCH_RB                                                                                                                                                                                                                             | dB          |                 |              |           |  |
| PDSCH_RA                                                                                                                                                                                                                             | dB          |                 |              |           |  |
| PDSCH_RB                                                                                                                                                                                                                             | dB          |                 |              |           |  |
| OCNG_RA <sup>Note 1</sup>                                                                                                                                                                                                            | dB          |                 |              |           |  |
| OCNG_RB <sup>Note 1</sup>                                                                                                                                                                                                            | dB          |                 |              |           |  |
| $N_{oc}$ Note 2                                                                                                                                                                                                                      | dBm/15      |                 | -98          |           |  |
|                                                                                                                                                                                                                                      | kHz         |                 | T            |           |  |
| RSRP Note 3                                                                                                                                                                                                                          | dBm/15      | -98             | -98          | -98       |  |
|                                                                                                                                                                                                                                      | KHz         |                 |              |           |  |
| $\hat{E}_s/N_{oc}$                                                                                                                                                                                                                   | dB          | 0               | 0            | 0         |  |
| $\hat{E}_s/I_{ot}$                                                                                                                                                                                                                   | dB          | 0               | 0            | 0         |  |
| Propagation Condition                                                                                                                                                                                                                | AWGN        |                 |              |           |  |
|                                                                                                                                                                                                                                      |             |                 |              |           |  |
| constant total transmitted power spectral density is achieved for all OFDM symbols.  Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall |             |                 |              |           |  |
| test is assumed to                                                                                                                                                                                                                   | be constant | over subcarri   | ers and time | and shall |  |

be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled. RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 3:

Table A.5.3.2.1-3: Cell specific test parameters for cdma2000 1X (cell # 2) for handover from E-UTRAN FDD cell (cell #1)

| Parameter                                                        | Unit              | Cell 2 (cdma2000 1X) |     |     |
|------------------------------------------------------------------|-------------------|----------------------|-----|-----|
|                                                                  |                   | T1                   | T2  | Т3  |
| Pilot E <sub>c</sub>                                             | dB                |                      | -7  |     |
| $\frac{\text{Sync} \ \text{E}_{\text{c}}}{\text{I}_{\text{or}}}$ | dB                | -16                  |     |     |
| $\frac{\text{Paging } E_{c}}{I_{or}} \text{ (4.8 kbps)}$         | dB                | -12                  |     |     |
| $\hat{I}_{or}/I_{oc}$                                            | dB                | -infinity 0 (        |     | 0   |
| $I_{oc}$                                                         | dBm/1.2288<br>MHz |                      | -55 |     |
| CDMA2000 1xRTT Pilot<br>Strength                                 | dB                | -infinity -10 -      |     | -10 |
| Propagation Condition                                            |                   | AWGN                 |     |     |

### A.5.3.2.2 Test Requirements

The UE shall start transmission of the reverse control channel in cdma2000 1X to Cell 2 less than 300 ms from the beginning of time period T3.

NOTE: The handover delay can be expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

RRC procedure delay = 130 ms, which is specified in section 5.4.2.1.1.

 $T_{interrupt} = 170$  ms in the test;  $T_{interrupt}$  is defined in section 5.4.2.1.2.

This gives a total of 300 ms.

# A.5.3.3 E-UTRAN FDD – HRPD Handover; Unknown Target Cell

#### A.5.3.3.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to HRPD handover requirements for the case when the target HRPD cell is unknown as specified in section 5.4.1.

The test parameters are given in Tables A.5.3.3.1-1, A.5.3.3.1-2 and A.5.3.3.1-3. The test consists of two successive time periods, with time durations of T1 and T2 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. During time period T1, message containing Information Element *systemTimeInfo* as defined in section 6.3.1 of TS 36.331 [2] shall be sent by the System Simulator (SS). No gap patterns are configured in the test case. No HRPD neighbour cell list shall be provided to the UE.

A RRC message implying handover to the unknown HRPD cell shall be sent to the UE towards the end of the time period T1. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.3.1-1: General test parameters for E-UTRAN FDD to HRPD handover test case; unknown target HRPD cell

| Par                             | ameter                     | Unit | Value                                       | Comment                                                          |
|---------------------------------|----------------------------|------|---------------------------------------------|------------------------------------------------------------------|
| PDSCH parameter                 | rs                         |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                |
| PCFICH/PDCCH/F                  | PHICH parameters           |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                |
| Initial conditions              | Active cell                |      | Cell 1                                      | E-UTRAN FDD cell                                                 |
|                                 | Neighbouring cell          |      | Cell 2                                      | HRPD cell                                                        |
| Final condition                 | Active cell                |      | Cell 2                                      | HRPD cell                                                        |
| Channel Bandwidt                | h (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                  |
| DRX                             |                            |      | OFF                                         | Non-DRX test                                                     |
| Access Barring Inf              | ormation                   | -    | Not sent                                    | No additional delays in random access procedure                  |
| E-UTRA RF Chani                 | nel Number                 |      | 1                                           | One E-UTRA FDD carrier frequency is used.                        |
| E-UTRA Channel I<br>(BWchannel) | Bandwidth                  | MHz  | 10                                          |                                                                  |
| HRPD RF Channe                  | l Number                   |      | 1                                           | One HRPD carrier frequency is used.                              |
| cdma2000-Search                 | WindowSize                 |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331 |
| T1                              |                            | S    | ≤5                                          |                                                                  |
| T2                              |                            | S    | 1                                           |                                                                  |

Table A.5.3.3.1-2: Cell specific test parameters for E-UTRAN FDD cell#1 for handover to unknown HRPD cell # 2

| Parameter                | Unit       | Cell 1 (E-U | TRAN FDD) |
|--------------------------|------------|-------------|-----------|
|                          |            | T1          | T2        |
| E-UTRA RF Channel        |            |             | 1         |
| number                   |            |             |           |
| BW <sub>channel</sub>    | MHz        | 1           | 0         |
| OCNG Patterns defined in |            | OP.1        | FDD       |
| A.3.2.1.1 (OP.1 FDD)     |            |             |           |
| PBCH_RA                  | dB         |             |           |
| PBCH_RB                  | dB         |             |           |
| PSS_RA                   | dB         |             |           |
| SSS_RA                   | dB         |             |           |
| PCFICH_RB                | dB         |             |           |
| PHICH_RA                 | dB         |             |           |
| PHICH_RB                 | dB         | (           | 0         |
| PDCCH_RA                 | dB         |             |           |
| PDCCH_RB                 | dB         |             |           |
| PDSCH_RA                 | dB         |             |           |
| PDSCH_RB                 | dB         |             |           |
| OCNG_RA Note 1           | dB         |             |           |
| OCNG_RB Note 1           | dB         |             |           |
| $N_{oc}^{ m Note~2}$     | dBm/15 kHz | -(          | 98        |
| RSRP Note 3              | dBm/15 kHz | -98         | -98       |
| $\hat{E}_s/N_{oc}$       | dB         | 0 0         |           |
| $\hat{E}_s/I_{ot}$       | dB         | 0           | 0         |
| Propagation Condition    |            | AW          | /GN       |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.3.3.1-3: Cell specific test parameters for unknown HRPD (cell # 2) for handover from E-UTRAN FDD cell (cell #1)

| Parameter                       | Unit               | Cell 2 (HRPD) |    |  |
|---------------------------------|--------------------|---------------|----|--|
|                                 |                    | T1            | T2 |  |
| Control $E_b$ (38.4             |                    | 2             | 1  |  |
| $N_t$                           | dB                 |               |    |  |
| kbps)                           |                    |               |    |  |
| Control $E_b$ (76.8             |                    | 18            |    |  |
| $N_t$                           | dB                 |               |    |  |
| kbps)                           |                    |               |    |  |
| $\hat{I}_{or}/I_{oc}$           | dB                 | -infinity     | 0  |  |
| $I_{oc}$                        | dBm/1.22<br>88 MHz | -55           |    |  |
| CDMA2000 HRPD<br>Pilot Strength | dB                 | -infinity     | -3 |  |
| Propagation Condition           |                    | AW            | GN |  |

#### A.5.3.3.2 Test Requirements

The UE shall start transmission of the reverse control channel in HRPD to Cell 2 less than 127 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay is expressed as: RRC procedure delay + T<sub>interrupt</sub>, where:

T<sub>interrupt</sub> also includes time to detect HRPD cell; see section 5.4.1.1.2

This gives a total of 126.66 ms, allow 127 ms in the test case.

## A.5.3.4 E-UTRAN FDD – cdma2000 1X Handover; Unknown Target cell

### A.5.3.4.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to cdma2000 1X handover requirements for the case when the target cdma2000 1X cell is unknown as specified in section 5.4.2.

The test parameters are given in Tables A.5.3.4.1-1, A.5.3.4.1-2 and A.5.3.4.1-3. The test consists of two successive time periods, with time durations of T1 and T2 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. During time period T1, message containing Information Element *systemTimeInfo* as defined in section 6.3.1 of TS 36.331 [2] shall be sent by the System Simulator (SS). No gap patterns are configured in the test case. No cdma2000 1X neighbour cell list shall be provided to the UE.

A RRC message implying handover to the unknown cdma2000 1X cell shall be sent to the UE towards the end of the time period T1. The start of T2 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.2.1-1: General test parameters for E-UTRAN FDD to cdma2000 1X handover test case; unknown target cdma2000 1X cell

| Para                         | ameter                     | Unit | Value                                       | Comment                                                          |
|------------------------------|----------------------------|------|---------------------------------------------|------------------------------------------------------------------|
| PDSCH parameter              | S                          |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                |
| PCFICH/PDCCH/P               | PHICH parameters           |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                |
| Initial conditions           | Active cell                |      | Cell 1                                      | E-UTRAN FDD cell                                                 |
|                              | Neighbouring cell          |      | Cell 2                                      | cdma2000 1X cell                                                 |
| Final condition              | Active cell                |      | Cell 2                                      | cdma2000 1X cell                                                 |
| Channel Bandwidth            | n (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                  |
| DRX                          |                            |      | OFF                                         | Non-DRX test                                                     |
| Access Barring Info          | ormation                   | -    | Not sent                                    | No additional delays in random access procedure                  |
| E-UTRA RF Chanr              | nel Number                 |      | 1                                           | One E-UTRA FDD carrier frequency is used.                        |
| E-UTRA Channel E (BWchannel) | Bandwidth                  | MHz  | 10                                          |                                                                  |
| cdma2000 1X RF (             | Channel Number             |      | 1                                           | One HRPD carrier frequency is used.                              |
| cdma2000-Search              | WindowSize                 |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331 |
| T1                           |                            | S    | ≤5                                          |                                                                  |
| T2                           |                            | S    | 1                                           |                                                                  |

Table A.5.3.2.1-2: Cell specific test parameters for E-UTRAN FDD cell#1 for handover to unknown cdma2000 1X cell # 2

| Parameter                | Unit       | Cell 1 (E-UTRAN FDD) |     |  |
|--------------------------|------------|----------------------|-----|--|
|                          |            | T1                   | T2  |  |
| E-UTRA RF Channel number |            | 1                    |     |  |
| BW <sub>channel</sub>    | MHz        | 1                    | 0   |  |
| OCNG Patterns defined in |            | OP.1                 | FDD |  |
| A.3.2.1.1 (OP.1 FDD)     |            |                      |     |  |
| PBCH_RA                  | dB         |                      |     |  |
| PBCH_RB                  | dB         |                      |     |  |
| PSS_RA                   | dB         |                      |     |  |
| SSS_RA                   | dB         |                      |     |  |
| PCFICH_RB                | dB         |                      |     |  |
| PHICH_RA                 | dB         |                      |     |  |
| PHICH_RB                 | dB         | 0                    |     |  |
| PDCCH_RA                 | dB         | 7                    |     |  |
| PDCCH_RB                 | dB         | 7                    |     |  |
| PDSCH_RA                 | dB         |                      |     |  |
| PDSCH_RB                 | dB         |                      |     |  |
| OCNG_RA Note 1           | dB         |                      |     |  |
| OCNG_RB Note 1           | dB         |                      |     |  |
| $N_{oc}^{ m Note~2}$     | dBm/15 kHz | -9                   | 98  |  |
| RSRP Note 3              | dBm/15 kHz | -98                  | -98 |  |
| $\hat{E}_s/N_{oc}$       | dB         | 0 0                  |     |  |
| $\hat{E}_s/I_{ot}$       | dB         | 0 0                  |     |  |
| Propagation Condition    |            | AW                   | 'GN |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for

 $N_{\it oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.3.2.1-3: Cell specific test parameters for unknown cdma2000 1X (cell # 2) for handover from E-UTRAN FDD cell (cell #1)

| Parameter                                                                            | Unit               | Cell 2 (cdma2000 1X) |     |  |
|--------------------------------------------------------------------------------------|--------------------|----------------------|-----|--|
|                                                                                      |                    | T1                   | T2  |  |
| Pilot E <sub>c</sub> I <sub>or</sub>                                                 | dB                 | -7                   |     |  |
| Sync E <sub>c</sub>                                                                  | dB                 | -16                  |     |  |
| $\frac{\text{Paging}  \text{E}_{\text{c}}}{\text{I}_{\text{or}}}  \text{(4.8 kbps)}$ | dB                 | -12                  |     |  |
| $\hat{I}_{or}/I_{oc}$                                                                | dB                 | -infinity 0          |     |  |
| $I_{oc}$                                                                             | dBm/1.22<br>88 MHz | -55                  |     |  |
| CDMA2000 1xRTT<br>Pilot Strength                                                     | dB                 | -infinity            | -10 |  |
| Propagation Condition                                                                |                    | AW                   | GN  |  |

### A.5.3.4.2 Test Requirements

The UE shall start transmission of the reverse control channel in cdma2000 1X to Cell 2 less than 300 ms from the beginning of time period T2.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay is expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

T<sub>interrupt</sub> also includes time to detect cdma2000 1X cell; see section 5.4.2.1.2

This gives a total of 300 ms.

## A.5.3.5 E-UTRAN TDD - HRPD Handover

### A.5.3.5.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN TDD to HRPD handover requirements specified in section 5.4.1.

The test parameters are given in Tables A.5.3.5.1-1, A.5.3.5.1-2 and A.5.3.5.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.5.1-1: General test parameters for E-UTRAN TDD to HRPD handover test case

| Parameter                           | Uı             | nit | Value                                       | Comment                                                              |
|-------------------------------------|----------------|-----|---------------------------------------------|----------------------------------------------------------------------|
| PDSCH parameters                    |                |     | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                    |
| PCFICH/PDCCH/PHICH pa               | arameters      |     | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                    |
| Initial conditions Active of        |                |     | Cell 1                                      | E-UTRAN TDD cell                                                     |
| Neighb                              | ouring cell    |     | Cell 2                                      | HRPD cell                                                            |
| Final condition Active of           | cell           |     | Cell 2                                      | HRPD cell                                                            |
| Channel Bandwidth (BWcha            | nnel) MHz      | Z   | 10                                          |                                                                      |
| Gap Pattern Id                      |                |     | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts             |
| E-UTRAN TDD measureme               | ent quantity   |     | RSRP                                        |                                                                      |
| Inter-RAT (HRPD) measure quantity   | ement          |     | CDMA2000 HRPD Pilot<br>Strength             |                                                                      |
| b2-Threshold1                       | dBm            | n   | -90                                         | Absolute E-UTRAN RSRP threshold for event B2                         |
| b2-Threshold2-CDMA2000              |                |     | -7                                          | Absolute 'CDMA2000 HRPD Pilot Strength' threshold for event B2       |
| Hysteresis                          | dB             |     | 0                                           |                                                                      |
| TimeToTrigger                       | S              |     | 0                                           |                                                                      |
| Filter coefficient                  |                |     | 0                                           | L3 filtering is not used                                             |
| DRX                                 |                |     | OFF                                         | Non-DRX test                                                         |
| Access Barring Information          | -              |     | Not sent                                    | No additional delays in random access procedure                      |
| E-UTRA RF Channel Numb              | per            |     | 1                                           | One E-UTRA TDD carrier frequency is used.                            |
| E-UTRA Channel Bandwidt (BWchannel) |                | Z   | 10                                          |                                                                      |
| Uplink-downlink configuration       |                |     | 1                                           | As specified in table 4.2.2 in TS 36.211                             |
| Special subframe configura          | tion of cell 1 |     | 6                                           | As specified in table 4.2.1 in TS 36.211                             |
| HRPD RF Channel Numbe               | r              |     | 1                                           | One HRPD carrier frequency is used.                                  |
| HRPD neighbour cell list siz        | ze             |     | 8                                           | HRPD cells on HRPD RF channel 1 provided in the cell list before T2. |
| cdma2000-SearchWindows              | Size           |     | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331     |
| T1                                  | s              |     | 5                                           |                                                                      |
| T2                                  | s              |     | ≤10                                         |                                                                      |
| T3                                  | s              |     | 1                                           |                                                                      |

Table A.5.3.5.1-2: Cell specific test parameters for E-UTRAN TDD cell#1 for handover to HRPD cell # 2

| Parameter                             | Unit   | C     | <b>A</b> ) |      |  |
|---------------------------------------|--------|-------|------------|------|--|
|                                       |        | T1 T2 |            | T3   |  |
| E-UTRA RF Channel                     |        |       | 1          |      |  |
| number                                |        |       |            |      |  |
| BW <sub>channel</sub>                 | MHz    |       | 10         |      |  |
| OCNG Patterns defined in              |        | OP.1  | TDD        | OP.2 |  |
| TS36.133 A.3.2.2.1 (OP.1              |        |       |            | TDD  |  |
| TDD) and in A.3.2.2.2                 |        |       |            |      |  |
| (OP.2 TDD)                            |        |       |            |      |  |
| PBCH_RA                               | dB     |       |            |      |  |
| PBCH_RB                               | dB     |       |            |      |  |
| PSS_RA                                | dB     |       |            |      |  |
| SSS_RA                                | dB     |       |            |      |  |
| PCFICH_RB                             | dB     |       |            |      |  |
| PHICH_RA                              | dB     |       |            |      |  |
| PHICH_RB                              | dB     |       | 0          |      |  |
| PDCCH_RA                              | dB     |       |            |      |  |
| PDCCH_RB                              | dB     |       |            |      |  |
| PDSCH_RA                              | dB     |       |            |      |  |
| PDSCH_RB                              | dB     |       |            |      |  |
| OCNG_RA <sup>Note 1</sup>             | dB     |       |            |      |  |
| OCNG_RB <sup>Note 1</sup>             | dB     |       |            |      |  |
| N <sub>oc</sub> Note 2                | dBm/15 |       | -98        |      |  |
|                                       | kHz    |       |            |      |  |
| RSRP Note 3                           | dBm/15 | -98   | -98        | -98  |  |
|                                       | KHz    |       |            |      |  |
| $\hat{E}_s/N_{oc}$ $\hat{E}_s/I_{ot}$ | dB     | 0 0   |            | 0    |  |
| $\hat{E}_s/I_{ot}$                    | dB     | 0 0 0 |            | 0    |  |
| Propagation Condition                 | _      | AWGN  |            |      |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.3.5.1-3: Cell specific test parameters for HRPD (cell # 2) for handover from E-UTRAN TDD cell (cell #1)

| Parameter                                                                             | Unit              |           |      |    |
|---------------------------------------------------------------------------------------|-------------------|-----------|------|----|
|                                                                                       |                   | T1        | T2   | Т3 |
| $\frac{\text{Control}  \text{E}_{\text{b}}}{\text{N}_{\text{t}}}  \text{(38.4 kbps)}$ | dB                |           | 21   |    |
| $\frac{\text{Control}  \text{E}_{\text{b}}}{\text{N}_{\text{t}}} $ (76.8 kbps)        | dB                |           | 18   |    |
| $\hat{I}_{or}/I_{oc}$                                                                 | dB                | -infinity | 0    | 0  |
| $I_{oc}$                                                                              | dBm/1.2288<br>MHz |           | -55  |    |
| CDMA2000 HRPD Pilot<br>Strength                                                       | dB                | -infinity | -3   | -3 |
| Propagation Condition                                                                 |                   |           | AWGN |    |

### A.5.3.5.2 Test Requirements

The UE shall start transmission of the reverse control channel in HRPD to Cell 2 less than 127 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 50 ms, which is specified in section 5.4.1.1.1.

 $T_{interrupt} = 76.66$  ms in the test;  $T_{interrupt}$  is defined in section 5.4.1.1.2.

This gives a total of 126.66 ms, allow 127 ms in the test.

### A.5.3.6 E-UTRAN TDD – cdma2000 1X Handover

#### A.5.3.6.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN TDD to cdma2000 1X handover requirements specified in section 5.4.2.

The test parameters are given in Tables A.5.3.6.1-1, A.5.3.6.1-2 and A.5.3.6.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.6.1-1: General test parameters for E-UTRAN TDD to cdma2000 1X handover test case

| Para                            | meter                    | Unit | Value                                       | Comment                                                                                  |
|---------------------------------|--------------------------|------|---------------------------------------------|------------------------------------------------------------------------------------------|
| PDSCH parameters                | 3                        |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                                        |
| PCFICH/PDCCH/P                  | ·                        |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                                        |
| Initial conditions              | Active cell              |      | Cell 1                                      | E-UTRAN TDD cell                                                                         |
|                                 | Neighbouring cell        |      | Cell 2                                      | cdma2000 1X cell                                                                         |
|                                 | Active cell              |      | Cell 2                                      | cdma2000 1X cell                                                                         |
| Channel Bandwidth               | (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                          |
| Gap Pattern Id                  |                          |      | 0                                           | As specified in Table 8.1.2.1-1 started before T2 starts                                 |
| E-UTRAN TDD mea                 | asurement quantity       |      | RSRP                                        |                                                                                          |
| Inter-RAT (cdma20 quantity      | 00 1X) measurement       |      | CDMA2000 1xRTT Pilot<br>Strength            |                                                                                          |
| b2-Threshold1                   |                          | dBm  | -90                                         | Absolute E-UTRAN RSRP<br>threshold for event B2                                          |
| b2-Threshold2-CDMA2000          |                          | dB   | -14                                         | Absolute 'CDMA2000 1xRTT Pilot Strength' threshold for event B2                          |
| Hysteresis                      |                          | dB   | 0                                           | -                                                                                        |
| TimeToTrigger                   |                          | s    | 0                                           |                                                                                          |
| Filter coefficient              |                          |      | 0                                           | L3 filtering is not used                                                                 |
| DRX                             |                          |      | OFF                                         | Non-DRX test                                                                             |
| Access Barring Info             | rmation                  | -    | Not sent                                    | No additional delays in random access procedure                                          |
| E-UTRA RF Chann                 | el Number                |      | 1                                           | One E-UTRA TDD carrier frequency is used.                                                |
| E-UTRA Channel B<br>(BWchannel) | andwidth                 | MHz  | 10                                          |                                                                                          |
| cdma2000 1X RF C                | Channel Number           |      | 1                                           | One cdma2000 1X carrier frequency is used.                                               |
| cdma2000 1X neigh               | nbour cell list size     |      | 8                                           | cdma2000 1X cells on cdma2000<br>1X RF channel 1 provided in the<br>cell list before T2. |
| cdma2000-SearchWindowSize       |                          |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331                         |
| T1                              |                          | s    | 5                                           |                                                                                          |
| T2                              |                          | S    | ≤10                                         |                                                                                          |
| T3                              |                          | s    | 1                                           |                                                                                          |

Table A.5.3.6.1-2: Cell specific test parameters for E-UTRAN TDD cell#1 for handover to cdma2000 1X cell #2

| Parameter                                    | Unit          | C              | cell 1 (E-UTRA)  |          |  |  |  |  |
|----------------------------------------------|---------------|----------------|------------------|----------|--|--|--|--|
|                                              |               | T1             | T2               | Т3       |  |  |  |  |
| E-UTRA RF Channel                            |               |                | 1                |          |  |  |  |  |
| number                                       |               |                |                  |          |  |  |  |  |
| BW <sub>channel</sub>                        | MHz           |                | 10               |          |  |  |  |  |
| OCNG Patterns defined in                     |               | OP.1           | TDD              | OP.2     |  |  |  |  |
| A.3.2.2.1 (OP.1 TDD) and                     |               |                |                  | TDD      |  |  |  |  |
| in A.3.2.2.2 (OP.2 TDD)                      |               |                |                  |          |  |  |  |  |
| PBCH_RA                                      | dB            |                |                  |          |  |  |  |  |
| PBCH_RB                                      | dB            |                |                  |          |  |  |  |  |
| PSS_RA                                       | dB            |                |                  |          |  |  |  |  |
| SSS_RA                                       | dB            |                |                  |          |  |  |  |  |
| PCFICH_RB                                    | dB            |                |                  |          |  |  |  |  |
| PHICH_RA                                     | dB            |                |                  |          |  |  |  |  |
| PHICH_RB                                     | dB            | 0              |                  |          |  |  |  |  |
| PDCCH_RA                                     | dB            |                |                  |          |  |  |  |  |
| PDCCH_RB                                     | dB            |                |                  |          |  |  |  |  |
| PDSCH_RA                                     | dB            |                |                  |          |  |  |  |  |
| PDSCH_RB                                     | dB            |                |                  |          |  |  |  |  |
| OCNG_RANote 1                                | dB            |                |                  |          |  |  |  |  |
| OCNG_RB <sup>Note 1</sup>                    | dB            |                |                  |          |  |  |  |  |
| Note 2                                       | dBm/15        |                | -98              |          |  |  |  |  |
|                                              | kHz           |                | 1                |          |  |  |  |  |
| RSRP Note 3                                  | dBm/15        | -98            | -98              | -98      |  |  |  |  |
|                                              | KHz           | _              | _                |          |  |  |  |  |
| $\hat{E}_s/N_{oc}$                           | dB            | 0              | 0                | 0        |  |  |  |  |
| $\hat{E}_s/I_{ot}$                           | dB            | 0              | 0                | 0        |  |  |  |  |
| Propagation Condition                        |               |                | AWGN             |          |  |  |  |  |
|                                              | sed such that | both cells are | e fully allocate | ed and a |  |  |  |  |
| constant total trar<br>OFDM symbols.         |               |                |                  |          |  |  |  |  |
| Note 2: Interference from test is assumed to |               |                |                  |          |  |  |  |  |

be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled. RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 3:

Table A.5.3.6.1-3: Cell specific test parameters for cdma2000 1X (cell # 2) for handover from E-UTRAN TDD cell (cell #1)

| Parameter                                                                            | Unit              | Cell 2 (cdma2000 1X) |      |     |  |  |
|--------------------------------------------------------------------------------------|-------------------|----------------------|------|-----|--|--|
|                                                                                      |                   | T1                   | T2   | Т3  |  |  |
| Pilot E <sub>c</sub> I <sub>or</sub>                                                 | dB                | -7                   |      |     |  |  |
| $\begin{array}{c c} Sync & E_c \\ \hline I_{or} \end{array}$                         | dB                | -16                  |      |     |  |  |
| $\frac{\text{Paging}  \text{E}_{\text{c}}}{\text{I}_{\text{or}}}  \text{(4.8 kbps)}$ | dB                | -12                  |      |     |  |  |
| $\hat{I}_{or}/I_{oc}$                                                                | dB                | -infinity            | 0    | 0   |  |  |
| $I_{oc}$                                                                             | dBm/1.2288<br>MHz |                      | -55  |     |  |  |
| CDMA2000 1xRTT Pilot<br>Strength                                                     | dB                | -infinity            | -10  | -10 |  |  |
| Propagation Condition                                                                |                   |                      | AWGN |     |  |  |

### A.5.3.6.2 Test Requirements

The UE shall start transmission of the reverse control channel in cdma2000 1X to Cell 2 less than 300 ms from the beginning of time period T3.

NOTE: The handover delay can be expressed as: RRC procedure delay +  $T_{interrupt}$ , where:

RRC procedure delay = 130 ms, which is specified in section 5.4.2.1.1.

 $T_{interrupt} = 170$  ms in the test;  $T_{interrupt}$  is defined in section 5.4.2.1.2.

This gives a total of 300 ms.

# A.6 RRC Connection Control

### A.6.1 RRC Re-establishment

# A.6.1.1 E-UTRAN FDD Intra-frequency RRC Re-establishment

#### A.6.1.1.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA FDD intra-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.1.1-1 and table A.6.1.1.1-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of the radio link failure.

Table A.6.1.1.1-1: General test parameters for E-UTRAN FDD intra-frequency RRC Re-establishment test case

| Parameter          |                             | Unit | Value                                       | Comment                                                       |
|--------------------|-----------------------------|------|---------------------------------------------|---------------------------------------------------------------|
| PDSCH paramete     | rs                          |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                             |
| PCFICH/PDCCH/      | PHICH parameters            |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                             |
| Initial conditions | Active cell                 |      | Cell 1                                      |                                                               |
|                    | Neighbouring cell           |      | Cell 2                                      |                                                               |
| Final condition    | Active cell                 |      | Cell 2                                      |                                                               |
| E-UTRA RF Chan     | nel Number                  |      | 1                                           | Only one FDD carrier frequency is used.                       |
| Channel Bandwid    | th (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                               |
| N310               |                             | -    | 1                                           | Maximum consecutive out-of-sync indications from lower layers |
| N311               |                             | -    | 1                                           | Minimum consecutive in-sync indications from lower layers     |
| T310               |                             | ms   | 0                                           | Radio link failure timer; T310 is disabled                    |
| T311               |                             | ms   | 3000                                        | RRC re-establishment timer                                    |
| DRX                |                             |      | OFF                                         |                                                               |
| CP length          |                             |      | Normal                                      |                                                               |
| Access Barring In  | formation                   | -    | Not Sent                                    | No additional delays in random access procedure.              |
| PRACH configura    | tion index                  |      | 4                                           | As specified in table 5.7.1-2 in TS 36.211                    |
| Time offset betwe  | en cells                    | ms   | 3                                           | Asynchronous cells                                            |
| T1                 |                             | s    | 5                                           |                                                               |
| T2                 |                             | ms   | 200                                         |                                                               |
| T3                 |                             | s    | 3                                           |                                                               |

Table A.6.1.1.1-2: Cell specific test parameters for E-UTRAN FDD intra-frequency RRC Reestablishment test case

| Parameter                 | Unit | Cell 1 |      | Cell 2 |          |          |          |
|---------------------------|------|--------|------|--------|----------|----------|----------|
|                           |      | T1     | T2   | Т3     | T1       | T2       | T3       |
| E-UTRA RF Channel         |      |        | 1    |        |          | 1        |          |
| Number                    |      |        |      |        |          |          |          |
| BW <sub>channel</sub>     | MHz  |        | 10   |        |          | 10       |          |
| OCNG Patterns             |      | OP.1   | OP.1 | OP.2   | OP.2 FDD | OP.2 FDD | OP.1 FDD |
| defined in A.3.2.1.1      |      | FDD    | FDD  | FDD    |          |          |          |
| (OP.1 FDD) and in         |      |        |      |        |          |          |          |
| A.3.2.1.2 (OP.2 FDD)      |      |        |      |        |          |          |          |
| PBCH_RA                   | dB   |        |      |        |          |          |          |
| PBCH_RB                   | dB   |        |      |        |          |          |          |
| PSS_RA                    | dB   |        |      |        |          |          |          |
| SSS_RA                    | dB   |        |      |        |          |          |          |
| PCFICH_RB                 | dB   |        |      |        |          |          |          |
| PHICH_RA                  | dB   |        |      |        |          |          |          |
| PHICH_RB                  | dB   |        | _    |        |          | _        |          |
| PDCCH_RA                  | dB   |        | 0    |        |          | 0        |          |
| PDCCH_RB                  | dB   |        |      |        |          |          |          |
| PDSCH_RA                  | dB   |        |      |        |          |          |          |
| PDSCH_RB                  | dB   |        |      |        |          |          |          |
| OCNG_RA <sup>Note 1</sup> | dB   |        |      |        |          |          |          |
| OCNG_RB <sup>Note 1</sup> | dB   |        |      |        |          |          |          |

| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 1.54 | -Infinity | -Infinity | -3.79 | 4   | 4   |
|----------------------------------------------------------|------------|------|-----------|-----------|-------|-----|-----|
| $N_{oc}^{ m Note  2}$                                    | dBm/15 KHz |      |           |           | -98   |     |     |
| $\hat{E}_s/N_{oc}$                                       | dB         | 7    | -Infinity | -Infinity | 4     | 4   | 4   |
| RSRP Note 3                                              | dBm/15 KHz | -91  | -Infinity | -Infinity | -94   | -94 | -94 |
| Propagation Condition                                    |            | AWGN |           |           |       |     |     |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.6.1.1.2 Test Requirements

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the RRCConnectionReestablishmentRequest message to cell 2.

The RRC re-establishment delay to a known E-UTRA FDD intra frequency cell shall be less than 1.5 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

$$T_{re\text{-establish delay}} = T_{UL \text{ grant}} + T_{UE \text{ re-establish delay}}$$

#### Where:

 $T_{UL\_grant}$  = It is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence  $T_{UL\_grant}$  is not used.

$$T_{UE\_re\text{-establish\_delay}} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$$

 $N_{\text{freq}} = 1$ 

 $T_{\text{search}} = 100 \text{ ms}$ 

 $T_{SI}$  = 1280 ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN FDD cell.

 $T_{PRACH} = 15$  ms; it is the additional delay caused by the random access procedure.

This gives a total of 1445 ms, allow 1.5 s in the test case.

# A.6.1.2 E-UTRAN FDD Inter-frequency RRC Re-establishment

### A.6.1.2.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA FDD inter-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.1.2-1 and table A.6.1.1.2-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of radio link failure. At the start of time period T3, cell 2, which is the neighbour cell, is activated.

Table A.6.1.2.1-1: General test parameters for E-UTRAN FDD inter-frequency RRC Re-establishment test case

| Para                      | ameter                     | Unit | Value                                       | Comment                                                                                |
|---------------------------|----------------------------|------|---------------------------------------------|----------------------------------------------------------------------------------------|
| PDSCH parameter           | S                          |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                                      |
| PCFICH/PDCCH/P            | HICH parameters            |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                                      |
| Initial conditions        | Active cell                |      | Cell 1                                      |                                                                                        |
|                           | Neighbouring cell          |      | Cell 2                                      |                                                                                        |
| Final condition           | Active cell                |      | Cell 2                                      |                                                                                        |
| E-UTRA RF Chann           | nel Number (cell 1)        |      | 1                                           |                                                                                        |
| E-UTRA RF Chann           |                            |      | 2                                           |                                                                                        |
| E-UTRA FDD inter-<br>size | -frequency carrier list    |      | 1                                           | 2 E-UTRA FDD carrier frequencies in total: 1 intra-<br>frequency and 1 inter-frequency |
| Channel Bandwidth         | n (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                        |
| N310                      |                            |      | 1                                           | Maximum consecutive out-of-sync indications from lower layers                          |
| N311                      |                            | -    | 1                                           | Minimum consecutive in-sync indications from lower layers                              |
| T310                      |                            | ms   | 0                                           | Radio link failure timer; T310 is disabled                                             |
| T311                      |                            | ms   | 5000                                        | RRC re-establishment timer                                                             |
| DRX                       |                            |      | OFF                                         |                                                                                        |
| CP length                 |                            |      | Normal                                      |                                                                                        |
| Access Barring Info       | ormation                   | -    | Not Sent                                    | No additional delays in random access procedure.                                       |
| PRACH configuration index |                            |      | 4                                           | As specified in table 5.7.1-2 in TS 36.211                                             |
| Time offset betwee        | n cells                    | ms   | 3                                           | Asynchronous cells                                                                     |
| T1                        |                            | S    | 5                                           |                                                                                        |
| T2                        |                            | ms   | 200                                         |                                                                                        |
| T3                        |                            | s    | 5                                           |                                                                                        |

Table A.6.1.2.1-2: Cell specific test parameters for E-UTRAN FDD inter-frequency RRC Reestablishment test case

| Parameter                 | Unit       |      | Cell 1    |           |            | Cell 2     |          |
|---------------------------|------------|------|-----------|-----------|------------|------------|----------|
|                           |            | T1   | T2        | T3        | T1         | T2         | T3       |
| E-UTRA RF Channel         |            |      | 1         |           |            | 2          |          |
| Number                    |            |      |           |           |            |            |          |
| BW <sub>channel</sub>     | MHz        |      | 10        |           |            | 10         |          |
| OCNG Patterns             |            | OP.1 | OP.1      | OP.2      | OP.2 FDD   | OP.2 FDD   | OP.1 FDD |
| defined in A.3.2.1.1      |            | FDD  | FDD       | FDD       |            |            |          |
| (OP.1 FDD) and in         |            |      |           |           |            |            |          |
| A.3.2.1.2 (OP.2 FDD)      |            |      |           |           |            |            |          |
| PBCH_RA                   | dB         |      |           |           |            |            |          |
| PBCH_RB                   | dB         |      |           |           |            |            |          |
| PSS_RA                    | dB         |      |           |           |            |            |          |
| SSS_RA                    | dB         |      |           |           |            |            |          |
| PCFICH_RB                 | dB         |      |           |           |            |            |          |
| PHICH_RA                  | dB         |      |           |           |            |            |          |
| PHICH_RB                  | dB         |      |           |           |            |            |          |
| PDCCH_RA                  | dB         |      | 0         |           |            | 0          |          |
| PDCCH_RB                  | dB         |      |           |           |            |            |          |
| PDSCH_RA                  | dB         |      |           |           |            |            |          |
| PDSCH_RB                  | dB         |      |           |           |            |            |          |
| OCNG_RA <sup>Note 1</sup> | dB         |      |           |           |            |            |          |
| OCNG_RB <sup>Note 1</sup> | dB         |      |           |           |            |            |          |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4    | -Infinity | -Infinity | -Infinity  | -Infinity  | 7        |
| $N_{oc}$ Note 2           | dBm/15 KHz | -98  |           |           |            |            |          |
| $\hat{E}_s/N_{oc}$        | dB         | 4    | -Infinity | -Infinity | - Infinity | - Infinity | 7        |
| RSRP Note 3               | dBm/15 KHz | -94  | -Infinity | -Infinity | - Infinity | -Infinity  | -91      |
| Propagation Condition     |            |      |           |           | AWGN       |            |          |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.6.1.2.2 Test Requirements

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the *RRCConnectionReestablishmentRequest* message to cell 2.

The RRC re-establishment delay to an unknown E-UTRA FDD inter frequency cell shall be less than 3 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

$$T_{re\text{-establish\_delay}} = T_{UL\_grant} + T_{UE\_re\text{-establish\_delay}}.$$

Where:

 $T_{UL\_grant}$  = It is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence  $T_{UL\_grant}$  is not used.

$$T_{UE\_re\text{-establish\_delay}} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$$

 $N_{\text{freq}} = 2$ 

 $T_{search} = 800 \text{ ms}$ 

 $T_{SI}$  = 1280 ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN FDD cell.

 $T_{PRACH} = 15$  ms; it is the additional delay caused by the random access procedure.

This gives a total of 2945 ms, allow 3 s in the test case.

# A.6.1.3 E-UTRAN TDD Intra-frequency RRC Re-establishment

### A.6.1.3.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA TDD intra-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.3.1-1 and table A.6.1.3.1-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of the radio link failure.

Table A.6.1.3.1-1: General test parameters for E-UTRAN TDD intra-frequency RRC Re-establishment test case

| Parameter           |                            | Unit | Value                                       | Comment                                                       |
|---------------------|----------------------------|------|---------------------------------------------|---------------------------------------------------------------|
| PDSCH parameters    | S                          |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                             |
| PCFICH/PDCCH/P      | HICH parameters            |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                             |
| Initial conditions  | Active cell                |      | Cell 1                                      |                                                               |
|                     | Neighbouring cell          |      | Cell 2                                      |                                                               |
| Final condition     | Active cell                |      | Cell 2                                      |                                                               |
| E-UTRA RF Chann     | el Number                  |      | 1                                           | Only one TDD carrier frequency is used.                       |
| Channel Bandwidth   | n (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                               |
| N310                |                            | -    | 1                                           | Maximum consecutive out-of-sync indications from lower layers |
| N311                |                            | -    | 1                                           | Minimum consecutive in-sync indications from lower layers     |
| T310                |                            | ms   | 0                                           | Radio link failure timer; T310 is disabled                    |
| T311                |                            | ms   | 3000                                        | RRC re-establishment timer                                    |
| DRX                 |                            |      | OFF                                         |                                                               |
| CP length           |                            |      | Normal                                      |                                                               |
| Access Barring Info | ormation                   | -    | Not Sent                                    | No additional delays in random access procedure.              |
| Special subframe of | configuration              |      | 6                                           | As specified in table 4.2-1 in TS 36.211                      |
| Uplink-downlink co  | nfiguration                |      | 1                                           | As specified in table 4.2-2 in TS 36.211                      |
| PRACH configurati   | PRACH configuration index  |      | 53                                          | As specified in table 5.7.1-3 in TS 36.211                    |
| Time offset betwee  | Time offset between cells  |      | 3                                           | Synchronous cells                                             |
| T1                  |                            | s    | 5                                           |                                                               |
| T2                  |                            | ms   | 200                                         |                                                               |
| T3                  |                            | s    | 3                                           |                                                               |

Table A.6.1.3.1-2: Cell specific test parameters for E-UTRAN TDD intra-frequency RRC Reestablishment test case

| Parameter                                                | Unit       |      | Cell 1    |           | Cell 2   |          |          |  |
|----------------------------------------------------------|------------|------|-----------|-----------|----------|----------|----------|--|
|                                                          |            | T1   | T2        | T3        | T1       | T2       | T3       |  |
| E-UTRA RF Channel                                        |            |      | 1         |           |          | 1        |          |  |
| Number                                                   |            |      |           |           |          |          |          |  |
| BW <sub>channel</sub>                                    | MHz        |      | 10        |           |          | 10       |          |  |
| OCNG Patterns                                            |            | OP.1 | OP.1      | OP.2      | OP.2 TDD | OP.2 TDD | OP.1 TDD |  |
| defined in A.3.2.2.1                                     |            | TDD  | TDD       | TDD       |          |          |          |  |
| (OP.1 TDD) and in                                        |            |      |           |           |          |          |          |  |
| A.3.2.2.2 (OP.2 TDD)                                     |            |      |           |           |          |          |          |  |
| PBCH_RA                                                  | dB         |      |           |           |          |          |          |  |
| PBCH_RB                                                  | dB         |      |           |           |          |          |          |  |
| PSS_RA                                                   | dB         |      |           |           |          |          |          |  |
| SSS_RA                                                   | dB         |      |           |           |          |          |          |  |
| PCFICH_RB                                                | dB         |      |           |           |          |          |          |  |
| PHICH_RA                                                 | dB         |      |           |           |          |          |          |  |
| PHICH_RB                                                 | dB         |      | •         |           |          | •        |          |  |
| PDCCH_RA                                                 | dB         |      | 0         |           |          | 0        |          |  |
| PDCCH_RB                                                 | dB         |      |           |           |          |          |          |  |
| PDSCH_RA                                                 | dB         |      |           |           |          |          |          |  |
| PDSCH_RB                                                 | dB         |      |           |           |          |          |          |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |           |           |          |          |          |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |           |           |          |          |          |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 1.54 | -Infinity | -Infinity | -3.79    | 4        | 4        |  |
| $N_{oc}$ Note 2                                          | dBm/15 KHz | -98  |           |           |          |          |          |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 7    | -Infinity | -Infinity | 4        | 4        | 4        |  |
| RSRP Note 3                                              | dBm/15 KHz | -91  | -Infinity | -Infinity | -94      | -94      | -94      |  |
| Propagation Condition                                    |            |      |           |           | AWGN     | •        |          |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.6.1.3.2 Test Requirements

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the *RRCConnectionReestablishmentRequest* message to cell 2.

The RRC re-establishment delay to a known E-UTRA TDD intra frequency cell shall be less than 1.5 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

$$T_{re\text{-establish\_delay}} = T_{UL\_grant} + T_{UE\_re\text{-establish\_delay}}.$$

Where:

 $T_{UL\_grant}$  = It is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence  $T_{UL\_grant}$  is not used.

$$T_{UE\_re\text{-establish\_delay}} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$$

 $N_{freq} = 1$ 

 $T_{search} = 100 \text{ ms}$ 

 $T_{SI}$  = 1280 ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN TDD cell.

 $T_{PRACH} = 15$  ms; it is the additional delay caused by the random access procedure.

This gives a total of 1445 ms, allow 1.5 s in the test case.

# A.6.1.4 E-UTRAN TDD Inter-frequency RRC Re-establishment

### A.6.1.4.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA TDD inter-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.4.1-1 and table A.6.1.4.1-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of radio link failure. At the start of time period T3, cell 2, which is the neighbour cell, is activated.

Table A.6.1.4.1-1: General test parameters for E-UTRAN TDD inter-frequency RRC Re-establishment test case

| Parameter                                  |                   | Unit | Value                    | Comment                             |  |
|--------------------------------------------|-------------------|------|--------------------------|-------------------------------------|--|
| PDSCH parameters                           |                   |      | DL Reference Measurement | As specified in section A.3.1.1.2   |  |
|                                            |                   |      | Channel R.0 TDD          |                                     |  |
| PCFICH/PDCCH/PHICH parameters              |                   |      | DL Reference Measurement | As specified in section A.3.1.2.2   |  |
|                                            |                   |      | Channel R.6 TDD          |                                     |  |
| Initial conditions                         | Active cell       |      | Cell 1                   |                                     |  |
|                                            | Neighbouring cell |      | Cell 2                   |                                     |  |
| Final condition                            | Active cell       |      | Cell 2                   |                                     |  |
| E-UTRA RF Channel Number (cell 1)          |                   |      | 1                        |                                     |  |
| E-UTRA RF Channel Number (cell 2)          |                   |      | 2                        |                                     |  |
| E-UTRA TDD inter-frequency carrier list    |                   |      | 1                        | 2 E-UTRA TDD carrier                |  |
| size                                       |                   |      |                          | frequencies in total: 1 intra-      |  |
|                                            |                   |      |                          | frequency and 1 inter-frequency     |  |
| Channel Bandwidth (BW <sub>channel</sub> ) |                   | MHz  | 10                       |                                     |  |
| N310                                       |                   | -    | 1                        | Maximum consecutive out-of-sync     |  |
|                                            |                   |      |                          | indications from lower layers       |  |
| N311                                       |                   | -    | 1                        | Minimum consecutive in-sync         |  |
|                                            |                   |      |                          | indications from lower layers       |  |
| T310                                       |                   | ms   | 0                        | Radio link failure timer; T310 is   |  |
|                                            |                   |      |                          | disabled                            |  |
| T311                                       |                   | ms   | 5000                     | RRC re-establishment timer          |  |
| DRX                                        |                   |      | OFF                      |                                     |  |
| CP length                                  |                   |      | Normal                   |                                     |  |
| Access Barring Information                 |                   | -    | Not Sent                 | No additional delays in random      |  |
|                                            |                   |      |                          | access procedure.                   |  |
| Special subframe configuration             |                   |      | 6                        | As specified in table 4.2-1 in TS   |  |
|                                            |                   |      |                          | 36.211                              |  |
| Uplink-downlink co                         | nfiguration       |      | 1                        | As specified in table 4.2-2 in TS   |  |
|                                            |                   |      |                          | 36.211                              |  |
| PRACH configuration index                  |                   |      | 53                       | As specified in table 5.7.1-3 in TS |  |
|                                            |                   |      |                          | 36.211                              |  |
| Time offset between cells                  |                   | μs   | 3                        | Synchronous cells                   |  |
| T1                                         |                   | S    | 5                        |                                     |  |
| T2                                         |                   | ms   | 200                      |                                     |  |
| T3                                         |                   | s    | 5                        |                                     |  |

Table A.6.1.4.1-2: Cell specific test parameters for E-UTRAN TDD inter-frequency RRC Reestablishment test case

| Parameter                                                | Unit       | Cell 1 |           | Cell 2    |            |            |          |  |
|----------------------------------------------------------|------------|--------|-----------|-----------|------------|------------|----------|--|
|                                                          |            | T1     | T2        | T3        | T1         | T2         | T3       |  |
| E-UTRA RF Channel                                        |            |        | 1         |           |            | 2          |          |  |
| Number                                                   |            |        |           |           |            |            |          |  |
| BW <sub>channel</sub>                                    | MHz        | 10     |           |           | 10         |            |          |  |
| OCNG Patterns                                            |            | OP.1   | OP.1      | OP.2      | OP.2 TDD   | OP.2 TDD   | OP.1 TDD |  |
| defined in A.3.2.2.1                                     |            | TDD    | TDD       | TDD       |            |            |          |  |
| (OP.1 TDD) and in                                        |            |        |           |           |            |            |          |  |
| A.3.2.2.2 (OP.2 TDD)                                     |            |        |           |           |            |            |          |  |
| PBCH_RA                                                  | dB         |        |           |           |            |            |          |  |
| PBCH_RB                                                  | dB         |        |           |           |            |            |          |  |
| PSS_RA                                                   | dB         |        |           |           |            |            |          |  |
| SSS_RA                                                   | dB         |        |           |           |            |            |          |  |
| PCFICH_RB                                                | dB         |        |           |           |            |            |          |  |
| PHICH_RA                                                 | dB         |        |           |           |            |            |          |  |
| PHICH_RB                                                 | dB         |        | •         |           |            |            |          |  |
| PDCCH_RA                                                 | dB         |        | 0         |           |            | 0          |          |  |
| PDCCH_RB                                                 | dB         |        |           |           |            |            |          |  |
| PDSCH_RA                                                 | dB         |        |           |           |            |            |          |  |
| PDSCH_RB                                                 | dB         |        |           |           |            |            |          |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |        |           |           |            |            |          |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |        |           |           |            |            |          |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4      | -Infinity | -Infinity | -Infinity  | -Infinity  | 7        |  |
| $N_{oc}$ Note 2                                          | dBm/15 KHz | -98    |           |           |            |            |          |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4      | -Infinity | -Infinity | - Infinity | - Infinity | 7        |  |
| RSRP Note 3                                              | dBm/15 KHz | -94    | -Infinity | -Infinity | - Infinity | -Infinity  | -91      |  |
| Propagation Condition                                    |            | AWGN   |           |           |            |            |          |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.6.1.4.2 Test Requirements

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the RRCConnectionReestablishmentRequest message to cell 2.

The RRC re-establishment delay to an unknown E-UTRA TDD inter frequency cell shall be less than 3 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

$$T_{re\text{-establish\_delay}} = T_{UL\_grant} + T_{UE\_re\text{-establish\_delay}}.$$

Where:

 $T_{UL\_grant}$  = It is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence  $T_{UL\_grant}$  is not used.

$$T_{UE\_re\text{-establish\_delay}} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$$

 $N_{\text{freq}} = 2$ 

 $T_{search} = 800 \text{ ms}$ 

 $T_{SI}$  = 1280 ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN TDD cell.

 $T_{PRACH} = 15$  ms; it is the additional delay caused by the random access procedure.

This gives a total of 2945 ms, allow 3 s in the test case.

# A.6.2 Random Access

### A.6.2.1 E-UTRAN FDD – Contention Based Random Access Test

### A.6.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.1.1-1 and A.6.2.1.1-2.

Table A.6.2.1.1-1: General test parameters for FDD contention based random access test

| Parameter                 | Unit       | Value                    | Comments                                       |  |
|---------------------------|------------|--------------------------|------------------------------------------------|--|
| E-UTRA RF Channel Number  |            | 1                        |                                                |  |
| BW <sub>channel</sub>     | MHz        | 10                       |                                                |  |
| OCNG Pattern Note 1       |            | OP.1/2 FDD Note 1        | As defined in A.3.2.1.1/2.                     |  |
| PDSCH parameters Note 4   |            | DL Reference Measurement | As defined in A.3.1.1.1.                       |  |
| ·                         |            | Channel R.0 FDD Note 4   |                                                |  |
| PCFICH/PDCCH/PHICH        |            | DL Reference Measurement | As defined in A.3.1.2.1.                       |  |
| parameters                |            | Channel R.6 FDD          |                                                |  |
| PBCH_RA                   | dB         |                          |                                                |  |
| PBCH_RB                   | dB         |                          |                                                |  |
| PSS_RA                    | dB         |                          |                                                |  |
| SSS_RA                    | dB         |                          |                                                |  |
| PCFICH_RB                 | dB         |                          |                                                |  |
| PHICH_RA                  | dB         |                          |                                                |  |
| PHICH_RB                  | dB         | 0                        |                                                |  |
| PDCCH_RA                  | dB         |                          |                                                |  |
| PDCCH_RB                  | dB         |                          |                                                |  |
| PDSCH_RA                  | dB         |                          |                                                |  |
| PDSCH_RB                  | dB         |                          |                                                |  |
| OCNG_RA Note 1            | dB         |                          |                                                |  |
| OCNG_RB Note 1            | dB         |                          |                                                |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 3                        |                                                |  |
| $N_{oc}$                  | dBm/15 KHz | -98                      |                                                |  |
| $\hat{E}_s/N_{oc}$        | dB         | 3                        |                                                |  |
| lo Note 2                 | dBm/9 MHz  | -65.5                    |                                                |  |
| RSRP Note 3               | dBm/15 KHz | -95                      |                                                |  |
| referenceSignalPower      | dBm/15 KHz | -5                       | As defined in clause 6.3.2 in 3GPP TS 36.331.  |  |
| Configured UE transmitted | dBm        | 23                       | As defined in clause 6.2.5                     |  |
| power ( $P_{ m CMAX}$ )   |            |                          | in 3GPP TS 36.101.                             |  |
| PRACH Configuration Index | -          | 4                        | As defined in table 5.7.1-2 in 3GPP TS 36.211. |  |
| Backoff Parameter Index   | -          | 2                        | As defined in table 7.2-1 in 3GPP TS 36.321.   |  |
| Propagation Condition     | -          | AWGN                     |                                                |  |

- Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. The OCNG pattern is chosen during the test according to the presence of a DL reference measurement channel.
- Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.
- Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.
- Note 4: The DL PDSCH reference measurement channel is used in the test only when a downlink transmission dedicated to the UE under test is required.

Table A.6.2.1.1-2: RACH-Configuration parameters for FDD contention based random access test

| Field                                                              | Value   | Comment       |  |  |  |
|--------------------------------------------------------------------|---------|---------------|--|--|--|
| powerRampingStep                                                   | dB2     |               |  |  |  |
| preambleInitialReceivedTargetPower                                 | dBm-120 |               |  |  |  |
| preambleTransMax                                                   | n6      |               |  |  |  |
| ra-ResponseWindowSize                                              | sf10    | 10 sub-frames |  |  |  |
| mac-ContentionResolutionTimer                                      | sf48    | 48 sub-frames |  |  |  |
| maxHARQ-Msg3Tx                                                     | 4       |               |  |  |  |
| Note: For further information see Section 6.3.2 in 3GPP TS 36.331. |         |               |  |  |  |

## A.6.2.1.2 Test Requirements

Contention based random access is triggered by *not* explicitly assigning a random access preamble via dedicated signalling in the downlink.

### A.6.2.1.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.1.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Response *not* corresponding to the transmitted Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) and shall transmit the msg3 if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

#### A.6.2.1.2.2 No Random Access Response Reception

To test the UE behavior specified in subclause 6.2.2.1.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if no Random Access Response is received within the RA Response window.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

#### A.6.2.1.2.3 Receiving a NACK on msg3

To test the UE behavior specified in subclause 6.2.2.1.3 the System Simulator shall NACK *all* UE msg3 following a successful Random Access Response.

The UE shall re-transmit the msg3 upon the reception of a NACK on msg3 until the maximum number of HARQ re-transmissions is reached.

## A.6.2.1.2.4 Reception of an Incorrect Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element *not* matching the CCCH SDU transmitted in msg3 uplink message.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires unless the received message includes a UE Contention Resolution Identity MAC control element and the UE Contention Resolution Identity included in the MAC control element matches the CCCH SDU transmitted in the uplink message.

### A.6.2.1.2.5 Reception of a Correct Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element matching the CCCH SDU transmitted in the msg3 uplink message.

The UE shall send ACK if the Contention Resolution is successful.

#### A.6.2.1.2.6 Contention Resolution Timer expiry

To test the UE behavior specified in Subclause 6.2.2.1.6 the System Simulator shall not send a response to a msg3.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if the Contention Resolution Timer expires.

## A.6.2.2 E-UTRAN FDD – Non-Contention Based Random Access Test

## A.6.2.2.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.2.1-1 and A.6.2.2.1-2.

Table A.6.2.2.1-1: General test parameters for FDD non-contention based random access test

| Parameter                     | Unit       | Value                                       | Comments                                       |
|-------------------------------|------------|---------------------------------------------|------------------------------------------------|
| E-UTRA RF Channel Number      |            | 1                                           |                                                |
| BW <sub>channel</sub>         | MHz        | 10                                          |                                                |
| OCNG Pattern                  |            | OP.1 FDD                                    | As defined in A.3.2.1.1.                       |
| PDSCH parameters              |            | DL Reference Measurement<br>Channel R.0 FDD | As defined in A.3.1.1.1.                       |
| PCFICH/PDCCH/PHICH            |            | DL Reference Measurement                    | As defined in A.3.1.2.1.                       |
| parameters                    |            | Channel R.6 FDD                             |                                                |
| PBCH_RA                       | dB         |                                             |                                                |
| PBCH_RB                       | dB         |                                             |                                                |
| PSS_RA                        | dB         |                                             |                                                |
| SSS_RA                        | dB         |                                             |                                                |
| PCFICH_RB                     | dB         |                                             |                                                |
| PHICH_RA                      | dB         |                                             |                                                |
| PHICH_RB                      | dB         | 0                                           |                                                |
| PDCCH_RA                      | dB         |                                             |                                                |
| PDCCH_RB                      | dB         |                                             |                                                |
| PDSCH_RA                      | dB         |                                             |                                                |
| PDSCH_RB                      | dB         |                                             |                                                |
| OCNG_RA Note 1                | dB         |                                             |                                                |
| OCNG_RB Note 1                | dB         |                                             |                                                |
| $\hat{E}_{s}/I_{ot}$          | dB         | 3                                           |                                                |
| $N_{oc}$                      | dBm/15 KHz | -98                                         |                                                |
| $\hat{E}_s/N_{oc}$            | dB         | 3                                           |                                                |
| lo Note 2                     | dBm/9 MHz  | -65.5                                       |                                                |
| RSRP Note 3                   | dBm/15 KHz | -95                                         |                                                |
| referenceSignalPower          | dBm/15 KHz | -5                                          | As defined in clause 6.3.2 in 3GPP TS 36.331.  |
| Configured UE transmitted     | dBm        | 23                                          | As defined in clause 6.2.5                     |
| power ( $P_{ m CMAX}$ )       |            |                                             | in 3GPP TS 36.101.                             |
| PRACH Configuration Index     | -          | 4                                           | As defined in table 5.7.1-2 in 3GPP TS 36.211. |
| Backoff Parameter Index       | -          | 2                                           | As defined in table 7.2-1 in 3GPP TS 36.321.   |
| Propagation Condition         | -          | AWGN                                        |                                                |
| Note 1: OCNC shall be used as |            | a fully allocated and a constant            | total transmitted by accord                    |

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Table A.6.2.2.1-2: RACH-Configuration parameters for FDD non-contention based random access test

| Field                                                              | Value   | Comment       |  |  |
|--------------------------------------------------------------------|---------|---------------|--|--|
| powerRampingStep                                                   | dB2     |               |  |  |
| preambleInitialReceivedTargetPower                                 | dBm-120 |               |  |  |
| preambleTransMax                                                   | n6      |               |  |  |
| ra-ResponseWindowSize                                              | sf10    | 10 sub-frames |  |  |
| Note: For further information see Section 6.3.2 in 3GPP TS 36.331. |         |               |  |  |

## A.6.2.2.2 Test Requirements

Non-Contention based random access is triggered by explicitly assigning a random access preamble via dedicated signalling in the downlink.

### A.6.2.2.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.2.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Response *not* corresponding to the transmitted Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-transmit the preamble with the calculated PRACH transmission power if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

## A.6.2.2.2.2 No Random Access Response Reception

To test the UE behavior specified in subclause 6.2.2.2.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-transmit the preamble with the calculated PRACH transmission power.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

#### A.6.2.3 E-UTRAN TDD – Contention Based Random Access Test

#### A.6.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.3.1-1 and A.6.2.3.1-2.

Table A.6.2.3.1-1: General test parameters for TDD contention based random access test

| Parameter                     | Unit       | Value                                              | Comments                                       |
|-------------------------------|------------|----------------------------------------------------|------------------------------------------------|
| E-UTRA RF Channel Number      | -          | 1                                                  |                                                |
| BW <sub>channel</sub>         | MHz        | 10                                                 |                                                |
| OCNG Pattern Note 1           | -          | OP.1/2 TDD Note 1                                  | As defined in A.3.2.2.1/2.                     |
| PDSCH parameters Note 4       | -          | DL Reference Measurement<br>Channel R.0 TDD Note 4 | As defined in A.3.1.1.2.                       |
| PCFICH/PDCCH/PHICH            |            | DL Reference Measurement                           | As defined in A.3.1.2.2.                       |
| parameters                    | _          | Channel R.6 TDD                                    | As defined in A.S. 1.2.2.                      |
| Special subframe              | -          | 6                                                  | As specified in table 4.2-1                    |
| configuration                 |            |                                                    | in 3GPP TS 36.211.                             |
| Uplink-downlink configuration | -          | 1                                                  | As specified in table 4.2-2 in 3GPP TS 36.211. |
| PBCH_RA                       | dB         |                                                    |                                                |
| PBCH_RB                       | dB         |                                                    |                                                |
| PSS_RA                        | dB         |                                                    |                                                |
| SSS_RA                        | dB         |                                                    |                                                |
| PCFICH_RB                     | dB         |                                                    |                                                |
| PHICH_RA                      | dB         |                                                    |                                                |
| PHICH_RB                      | dB         | 0                                                  |                                                |
| PDCCH_RA                      | dB         |                                                    |                                                |
| PDCCH_RB                      | dB         |                                                    |                                                |
| PDSCH_RA                      | dB         |                                                    |                                                |
| PDSCH_RB                      | dB         |                                                    |                                                |
| OCNG_RA Note 1                | dB         |                                                    |                                                |
| OCNG_RB Note 1                | dB         |                                                    |                                                |
| $\hat{E}_{s}/I_{ot}$          | dB         | 3                                                  |                                                |
| $N_{oc}$                      | dBm/15 KHz | -98                                                |                                                |
| $\hat{E}_s/N_{oc}$            | dB         | 3                                                  |                                                |
| lo Note 2                     | dBm/9 MHz  | -65.5                                              |                                                |
| RSRP Note 3                   | dBm/15 KHz | -95                                                |                                                |
| referenceSignalPower          | dBm/15 KHz | -5                                                 | As defined in clause 6.3.2 in 3GPP TS 36.331.  |
| Configured UE transmitted     | dBm        | 23                                                 | As defined in clause 6.2.5                     |
| power ( $P_{ m CMAX}$ )       |            |                                                    | in 3GPP TS 36.101.                             |
| PRACH Configuration Index     | -          | 53                                                 | As defined in table 5.7.1-3 in 3GPP TS 36.211. |
| Backoff Parameter Index       | -          | 2                                                  | As defined in table 7.2-1 in 3GPP TS 36.321.   |
| Propagation Condition         | -          | AWGN                                               |                                                |
|                               |            |                                                    |                                                |

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. The OCNG pattern is chosen during the test according to the presence of a DL reference measurement channel.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Note 4: The DL PDSCH reference measurement channel is used in the test only when a downlink transmission dedicated to the UE under test is required.

Table A.6.2.3.1-2: RACH-Configuration parameters for TDD contention based random access test

| Field                                                              | Value   | Comment       |  |  |
|--------------------------------------------------------------------|---------|---------------|--|--|
| numberOfRA-Preambles                                               | n52     |               |  |  |
| sizeOfRA-PreamblesGroupA                                           | n52     | No group B.   |  |  |
| powerRampingStep                                                   | dB2     |               |  |  |
| preambleInitialReceivedTargetPower                                 | dBm-120 |               |  |  |
| preambleTransMax                                                   | n6      |               |  |  |
| ra-ResponseWindowSize                                              | sf10    | 10 sub-frames |  |  |
| mac-ContentionResolutionTimer                                      | sf48    | 48 sub-frames |  |  |
| maxHARQ-Msg3Tx                                                     | 4       |               |  |  |
| Note: For further information see Section 6.3.2 in 3GPP TS 36.331. |         |               |  |  |

### A.6.2.3.2 Test Requirements

Contention based random access is triggered by *not* explicitly assigning a random access preamble via dedicated signalling in the downlink.

## A.6.2.3.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.1.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Response *not* corresponding to the transmitted Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) and shall transmit the msg3 if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -22 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

#### A.6.2.3.2.2 No Random Access Response reception

To test the UE behavior specified in Subclause 6.2.2.1.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if no Random Access Response is received within the RA Response window.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -22 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

#### A.6.2.3.2.3 Receiving a NACK on msg3

To test the UE behavior specified in Subclause 6.2.2.1.3 the System Simulator shall NACK *all* UE msg3 following a successful Random Access Response.

The UE shall re-transmit the msg3 upon the reception of a NACK on msg3 until the maximum number of HARQ re-transmissions is reached.

### A.6.2.3.2.4 Reception of an Incorrect Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element *not* matching the CCCH SDU transmitted in msg3 uplink message.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires unless the received message includes a UE Contention Resolution Identity MAC control element and the UE Contention Resolution Identity included in the MAC control element matches the CCCH SDU transmitted in the uplink message.

#### A.6.2.3.2.5 Reception of a Correct Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element matching the CCCH SDU transmitted in the msg3 uplink message.

The UE shall send ACK if the Contention Resolution is successful.

## A.6.2.3.2.6 Contention Resolution Timer expiry

To test the UE behavior specified in Subclause 6.2.2.1.6 the System Simulator shall *not* send a response to a msg3.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if the Contention Resolution Timer expires.

## A.6.2.4 E-UTRAN TDD – Non-Contention Based Random Access Test

#### A.6.2.4.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.4.1-1 and A.6.2.4.1-2.

Table A.6.2.4.1-1: General test parameters for TDD non-contention based random access test

| Parameter                     | Unit       | Value                    | Comments                                       |
|-------------------------------|------------|--------------------------|------------------------------------------------|
| E-UTRA RF Channel Number      | -          | 1                        |                                                |
| BW <sub>channel</sub>         | MHz        | 10                       |                                                |
| OCNG Pattern                  | -          | OP.1 TDD                 | As defined in A.3.2.2.1.                       |
| PDSCH parameters              | -          | DL Reference Measurement | As defined in A.3.1.1.2.                       |
|                               |            | Channel R.0 TDD          |                                                |
| PCFICH/PDCCH/PHICH            | -          | DL Reference Measurement | As defined in A.3.1.2.2.                       |
| parameters                    |            | Channel R.6 TDD          |                                                |
| Special subframe              | -          | 6                        | As specified in table 4.2-1                    |
| configuration                 |            |                          | in 3GPP TS 36.211.                             |
| Uplink-downlink configuration | -          | 1                        | As specified in table 4.2-2 in 3GPP TS 36.211. |
| PBCH_RA                       | dB         |                          |                                                |
| PBCH_RB                       | dB         |                          |                                                |
| PSS_RA                        | dB         |                          |                                                |
| SSS_RA                        | dB         |                          |                                                |
| PCFICH_RB                     | dB         |                          |                                                |
| PHICH_RA                      | dB         |                          |                                                |
| PHICH_RB                      | dB         | 0                        |                                                |
| PDCCH_RA                      | dB         |                          |                                                |
| PDCCH_RB                      | dB         |                          |                                                |
| PDSCH_RA                      | dB         |                          |                                                |
| PDSCH_RB                      | dB         |                          |                                                |
| OCNG_RA Note 1                | dB         |                          |                                                |
| OCNG_RB Note 1                | dB         |                          |                                                |
| $\hat{E}_{s}/I_{ot}$          | dB         | 3                        |                                                |
| $N_{oc}$                      | dBm/15 KHz | -98                      |                                                |
| $\hat{E}_s/N_{oc}$            | dB         | 3                        |                                                |
| lo Note 2                     | dBm/9 MHz  | -65.5                    |                                                |
| RSRP Note 3                   | dBm/15 KHz | -95                      |                                                |
| referenceSignalPower          | dBm/15 KHz | -5                       | As defined in clause 6.3.2 in 3GPP TS 36.331.  |
| Configured UE transmitted     | dBm        | 23                       | As defined in clause 6.2.5                     |
| power ( $P_{\rm CMAX}$ )      |            |                          | in 3GPP TS 36.101.                             |
|                               |            |                          |                                                |
| PRACH Configuration Index     | -          | 53                       | As defined in table 5.7.1-3 in 3GPP TS 36.211. |
| Backoff Parameter Index       | -          | 2                        | As defined in table 7.2-1 in 3GPP TS 36.321.   |
| Propagation Condition         | -          | AWGN                     |                                                |

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Table A.6.2.4.1-2: RACH-Configuration parameters for TDD non-contention based random access test

| Field                                                              | Value   | Comment       |  |  |
|--------------------------------------------------------------------|---------|---------------|--|--|
| powerRampingStep                                                   | dB2     |               |  |  |
| preambleInitialReceivedTargetPower                                 | dBm-120 |               |  |  |
| preambleTransMax                                                   | n6      |               |  |  |
| ra-ResponseWindowSize                                              | sf10    | 10 sub-frames |  |  |
| Note: For further information see Section 6.3.2 in 3GPP TS 36.331. |         |               |  |  |

#### A.6.2.4.2 Test Requirements

Non-Contention based random access is triggered by explicitly assigning a random access preamble via dedicated signalling in the downlink.

#### A.6.2.4.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.2.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Response *not* corresponding to the transmitted Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-transmit the preamble with the calculated PRACH transmission power if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -22 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

#### A.6.2.4.2.2 No Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.2.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-transmit the preamble with the calculated PRACH transmission power.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -22 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

## A.6.3 RRC Connection Release with Redirection

## A.6.3.1 Redirection from E-UTRAN FDD to UTRAN FDD

#### A.6.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct performing the RRC connection release with redirection to the target UTRAN FDD cell. This test will partly verify the RRC connection release with redirection to UTRAN FDD cell requirements in section 6.3.2.1.

The test parameters are given in Tables A.6.3.1.1-1, A.6.3.1.1-2 and A.6.3.1.1-3 below. The test consists of two successive time periods, with time duration of T1, and T2 respectively. The "RRCConnectionRelease" message containing the relevant system information of Cell 2 shall be sent to the UE during period T1 and the start of T2 is the instant when the last TTI containing the RRC message is sent to the UE. Prior to time duration T2, the UE shall not have any timing information of Cell 2. Cell 2 is powered up at the beginning of the T2.

Table A.6.3.1.1-1: General test parameters for RRC Connection Release with Redirection from E-UTRAN FDD to UTRAN FDD under AWGN propagation conditions

| Parameter                                   | Unit | Value                                       | Comment                                                                                         |
|---------------------------------------------|------|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)              |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.                                                              |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD) |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.                                                              |
| Active cell                                 |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                        |
| Neighbour cell                              |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                                                          |
| CP length                                   |      | Normal                                      | Applicable to cell 1                                                                            |
| E-UTRA RF Channel Number                    |      | 1                                           | One E-UTRA FDD carrier frequency is used.                                                       |
| E-UTRA Channel Bandwidth                    | MH   | 10                                          |                                                                                                 |
| (BW <sub>channel</sub> )                    | Z    |                                             |                                                                                                 |
| UTRA RF Channel Number                      |      | 1                                           | One UTRA FDD carrier frequency is used.                                                         |
| Inter-RAT (UTRA FDD) measurement quantity   |      | CPICH Ec/lo                                 |                                                                                                 |
| Filter coefficient                          |      | 0                                           | L3 filtering is not used.                                                                       |
| DRX                                         |      | OFF                                         |                                                                                                 |
| UTRA FDD cell list size                     |      | 16                                          | UTRA cells on UTRA RF channel 1 provided in the "RRCConnectionRelease" message from the E-UTRAN |
| T1                                          | S    | ≤5                                          |                                                                                                 |
| T2                                          | S    | 1                                           |                                                                                                 |

Table A.6.3.1.1-2: Cell specific test parameters for cell #1 E-UTRAN FDD to UTRAN FDD RRC release with redirection under AWGN propagation conditions

| Parameter                                    | Unit              | Cell 1                               |                         |  |  |
|----------------------------------------------|-------------------|--------------------------------------|-------------------------|--|--|
|                                              |                   | T1                                   | T2                      |  |  |
| E-UTRA RF Channel Number                     |                   | 1                                    |                         |  |  |
| BW <sub>channel</sub>                        | MHz               | 10                                   |                         |  |  |
| OCNG Pattern defined in                      |                   |                                      |                         |  |  |
| A.3.2.1.1 (OP.1 FDD)                         |                   | OP.1 FDD                             |                         |  |  |
| PBCH_RA                                      | dB                |                                      |                         |  |  |
| PBCH_RB                                      | dB                |                                      |                         |  |  |
| PSS_RA                                       | dB                |                                      |                         |  |  |
| SSS_RA                                       | dB                |                                      |                         |  |  |
| PCFICH_RB                                    | dB                |                                      |                         |  |  |
| PHICH_RA                                     | dB                |                                      |                         |  |  |
| PHICH_RB                                     | dB                | 0                                    | 0                       |  |  |
| PDCCH_RA                                     | dB                |                                      |                         |  |  |
| PDCCH_RB                                     | dB                |                                      |                         |  |  |
| PDSCH_RA                                     | dB                |                                      |                         |  |  |
| PDSCH_RB                                     | dB                |                                      |                         |  |  |
| OCNG_RA <sup>Note 1</sup>                    | dB                |                                      |                         |  |  |
| OCNG_RB <sup>Note 1</sup>                    | dB                |                                      |                         |  |  |
| $\hat{E}_{_{\mathrm{s}}}/I_{_{\mathrm{ot}}}$ | dB                | 4                                    | 4                       |  |  |
| $N_{oc}^{ m Note  3}$                        | dBm/15 kHz        | -98                                  |                         |  |  |
| $\hat{E}_s/N_{oc}$                           | dB                | 4                                    | 4                       |  |  |
| RSRP Note 4                                  | dBm/15 kHz        | -94                                  | -94                     |  |  |
| SCH_RP                                       | dBm/15 kHz        | -94                                  | -94                     |  |  |
| Propagation Condition                        |                   | AWGN                                 |                         |  |  |
| Note 1: OCNG shall be used                   | such that the cel | ll is fully allocated and a constant | total transmitted power |  |  |
| spectral density is acl                      | hieved for all OF | DM symbols.                          | •                       |  |  |

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Interference from other cells and noise sources not specified in the test is assumed to be constant Note 3: over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be

Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.1.1-3: Cell specific test parameters for cell #2 E-UTRAN FDD to UTRAN FDD RRC release with redirection under AWGN propagation conditions

| Parameter                     | Unit            | Cell 2  |    |  |
|-------------------------------|-----------------|---------|----|--|
|                               |                 | T1      | T2 |  |
| UTRA RF Channel Number        |                 | 1       |    |  |
| CPICH_Ec/lor                  | dB              | -10     |    |  |
| PCCPCH_Ec/lor                 | dB              | -12     |    |  |
| SCH_Ec/lor                    | dB              | -12     |    |  |
| PICH_Ec/lor                   | dB              | -15     |    |  |
| DPCH_Ec/lor                   | dB              | N/A     |    |  |
| OCNS                          |                 | -0.94   | 1  |  |
| $\hat{I}_{or}/I_{oc}$         | dB              | -∞ 0.02 |    |  |
| $I_{oc}$                      | dBm/3.84<br>MHz | -70     |    |  |
| CPICH_Ec/Io <sup>Note 3</sup> | dB              | -∞ -13  |    |  |
| Propagation Condition         |                 | AWGN    |    |  |

Note 1: The DPCH level is controlled by the power control loop.

The power of the OCNS channel that is added shall make the total power from the cell to be equal Note 2: to Ior.

This gives an SCH Ec/lo of -15dB Note 3:

## A.6.3.1.2 Test Requirements

The UE shall start to transmit random access to Cell 2 less than 650 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRAN FDD observed during repeated tests shall be at least 90%.

NOTE: The Re-establishment delay in this case can be expressed as

$$T_{connection\_release\_redirect\_UTRA\ FDD} = T_{RRC\_procedure\_delay} + T_{identify\_UTRA\ FDD} + T_{SI\_UTRA\ FDD} + T_{RA}$$

where

 $T_{RRC\_procedure\_delay} = 110 \text{ ms}$ 

 $T_{identify-UTRA\ FDD} = 500\ ms$ 

 $T_{SI-UTRA\ FDD}$  = the time required for acquiring all the relevant system information of the target UTRA FDD cell. This time depends upon whether the UE is provided with the relevant system information of the target UTRA FDD cell or not by the E-UTRAN before the RRC connection is released. 0 ms is assumed in this test case.

 $T_{RA}$  = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

This gives a total of 650 ms.

#### A.6.3.2 Redirection from E-UTRAN TDD to UTRAN FDD

#### A.6.3.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct performing the RRC connection release with redirection to the target UTRAN FDD cell. This test will partly verify the RRC connection release with redirection to UTRAN FDD cell requirements in section 6.3.2.1.

The test parameters are given in Tables A.6.3.2.1-1, A.6.3.2.1-2 and A.6.3.2.1-3 below. The test consists of two successive time periods, with time duration of T1, and T2 respectively. The "RRCConnectionRelease" message containing the relevant system information of Cell 2 shall be sent to the UE during period T1 and the start of T2 is the instant when the last TTI containing the RRC message is sent to the UE. Prior to time duration T2, the UE shall not have any timing information of cell 2. Cell 2 is powered up at the beginning of the T2,

Table A.6.3.2.1-1: General test parameters for RRC Connection Release with Redirection from E-UTRAN TDD to UTRAN FDD under AWGN propagation conditions

| Parameter                                   | Unit | Value                                       | Comment                                                                                         |
|---------------------------------------------|------|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)              |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.                                                              |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD) |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.                                                              |
| Active cell                                 |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                        |
| Neighbour cell                              |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                                                          |
| CP length                                   |      | Normal                                      | Applicable to cell 1                                                                            |
| E-UTRA RF Channel Number                    |      | 1                                           | One E-UTRA TDD carrier frequency is used.                                                       |
| E-UTRA Channel Bandwidth                    | MHz  | 10                                          |                                                                                                 |
| (BW <sub>channel</sub> )                    |      |                                             |                                                                                                 |
| Special subframe configuration              |      | 6                                           | As specified in table 4.2-1 in TS 36.211                                                        |
| Uplink-downlink configuration               |      | 1                                           | As specified in table 4.2-2 in TS 36.211                                                        |
| UTRA RF Channel Number                      |      | 1                                           | One UTRA FDD carrier frequency is used.                                                         |
| Inter-RAT (UTRA FDD)                        |      | CPICH Ec/lo                                 |                                                                                                 |
| measurement quantity                        |      |                                             |                                                                                                 |
| Filter coefficient                          |      | 0                                           | L3 filtering is not used.                                                                       |
| DRX                                         |      | OFF                                         |                                                                                                 |
| UTRA FDD cell list size                     |      | 16                                          | UTRA cells on UTRA RF channel 1 provided in the "RRCConnectionRelease" message from the E-UTRAN |
| T1                                          | S    | ≤5                                          |                                                                                                 |
| T2                                          | S    | 1                                           |                                                                                                 |

Table A.6.3.2.1-2: Cell specific test parameters for cell #1 E-UTRAN TDD to UTRAN FDD RRC release with redirection under AWGN propagation conditions

| Parameter                                                | Unit       | Cell 1                             |                           |  |  |
|----------------------------------------------------------|------------|------------------------------------|---------------------------|--|--|
|                                                          |            | T1                                 | T2                        |  |  |
| E-UTRA RF Channel Number                                 |            | 1                                  |                           |  |  |
| BW <sub>channel</sub>                                    | MHz        | 10                                 |                           |  |  |
| OCNG Pattern defined in                                  |            |                                    |                           |  |  |
| A.3.2.1.2 (OP.1 TDD)                                     |            | OP.1 TDD                           |                           |  |  |
| PBCH_RA                                                  | dB         |                                    |                           |  |  |
| PBCH_RB                                                  | dB         |                                    |                           |  |  |
| PSS_RA                                                   | dB         |                                    |                           |  |  |
| SSS_RA                                                   | dB         |                                    |                           |  |  |
| PCFICH_RB                                                | dB         |                                    |                           |  |  |
| PHICH_RA                                                 | dB         |                                    |                           |  |  |
| PHICH_RB                                                 | dB         | 0                                  |                           |  |  |
| PDCCH_RA                                                 | dB         |                                    |                           |  |  |
| PDCCH_RB                                                 | dB         |                                    |                           |  |  |
| PDSCH_RA                                                 | dB         |                                    |                           |  |  |
| PDSCH_RB                                                 | dB         |                                    |                           |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |                                    |                           |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |                                    |                           |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4                                  | 4                         |  |  |
| $N_{oc}^{ m Note  3}$                                    | dBm/15 kHz | -98                                | 3                         |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4                                  | 4                         |  |  |
| RSRP Note 4                                              | dBm/15 kHz | -94 -94                            |                           |  |  |
| SCH_RP                                                   | dBm/15 kHz | -94                                | -94                       |  |  |
| Propagation Condition                                    |            | AWGN                               |                           |  |  |
| Note 1: OCNG shall be used                               |            | l is fully allocated and a constan | t total transmitted power |  |  |

spectral density is achieved for all OFDM symbols.

The resources for uplink transmission are assigned to the UE prior to the start of time period T2. Note 2:

Interference from other cells and noise sources not specified in the test is assumed to be constant Note 3: over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be

RSRP levels have been derived from other parameters for information purposes. They are not Note 4: settable parameters themselves.

Table A.6.3.2.1-3: Cell specific test parameters for cell #2 E-UTRAN TDD to UTRAN FDD RRC release with redirection under AWGN propagation conditions

| Parameter                     | Unit            | Cell 2 |      |  |
|-------------------------------|-----------------|--------|------|--|
|                               |                 | T1     | T2   |  |
| UTRA RF Channel Number        |                 | 1      |      |  |
| CPICH_Ec/lor                  | dB              | -10    |      |  |
| PCCPCH_Ec/lor                 | dB              | -12    |      |  |
| SCH_Ec/lor                    | dB              | -12    |      |  |
| PICH_Ec/lor                   | dB              | -15    |      |  |
| DPCH_Ec/lor                   | dB              | N/A    |      |  |
| OCNS                          |                 | -0.941 |      |  |
| $\hat{I}_{or}/I_{oc}$         | dB              | -∞     | 0.02 |  |
| $I_{oc}$                      | dBm/3.84<br>MHz | -70    |      |  |
| CPICH_Ec/Io <sup>Note 3</sup> | dB              | -∞ -13 |      |  |
| Propagation Condition         |                 | AWGN   |      |  |

Note 1: The DPCH level is controlled by the power control loop.

The power of the OCNS channel that is added shall make the total power from the cell to be equal Note 2: to Ior.

This gives an SCH Ec/lo of -15dB Note 3:

## A.6.3.2.2 Test Requirements

The UE shall start to transmit random access to Cell 2 less than 650 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRA FDD observed during repeated tests shall be at least 90%.

NOTE: The Re-establishment delay in this case can be expressed as

 $T_{connection\_release\_redirect\_UTRA\;FDD} = T_{RRC\_procedure\_delay} + T_{identify\_UTRA\;FDD} + T_{SI\_UTRA\;FDD} + T_{RA}$ 

where

 $T_{RRC\_procedure\_delay} = 110 \text{ ms}$ 

 $T_{identify-UTRA\ FDD} = 500\ ms$ 

 $T_{SI-UTRA\ FDD}$  = the time required for acquiring all the relevant system information of the target UTRA FDD cell. This time depends upon whether the UE is provided with the relevant system information of the target UTRA FDD cell or not by the E-UTRAN before the RRC connection is released. 0 ms is assumed in this test case.

 $T_{RA}$  = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

This gives a total of 650 ms.

## A.6.3.3 Redirection from E-UTRAN FDD to GERAN when System Information is provided

#### A.6.3.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA FDD to the target GERAN cell within  $T_{connection\_release\_redirect\_GERAN}$ . This test will partly verify the RRC connection release with redirection to GERAN requirements in section 6.3.2.2.

The test parameters are given in Tables A.6.3.3.1-1, A.6.3.3.1-2 and A.6.3.3.1-3 below. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from cell 1. The "RRCConnectionRelease" message shall contain all the relevant system information of cell 2.

Table A.6.3.3.1-1: General test parameters for RRC connection release with redirection from E-UTRAN FDD to GERAN in AWGN

| Parameter                      | Unit | Value                                | Comment                                  |
|--------------------------------|------|--------------------------------------|------------------------------------------|
| PDSCH parameters (E-UTRAN FDD) |      | DL Reference Measurement Channel R.0 | As specified in section A.3.1.1.1.       |
|                                |      | FDD                                  |                                          |
| PCFICH/PDCCH/PHICH parameters  |      | DL Reference                         | As specified in section A.3.1.2.1.       |
| (E-UTRAN FDD)                  |      | Measurement Channel R.6              |                                          |
|                                |      | FDD                                  |                                          |
| Active cell                    |      | Cell 1                               | Cell 1 is on E-UTRA RF channel number 1. |
| Neighbour cell                 |      | Cell 2                               | Cell 2 is on Absolute RF Channel Number  |
|                                |      |                                      | 1 (GSM cell)                             |
| CP length                      |      | Normal                               | Applicable to cell 1                     |
| E-UTRA RF Channel Number       |      | 1                                    | One E-UTRA FDD carrier frequency is      |
|                                |      |                                      | used.                                    |
| E-UTRA Channel Bandwidth       | MHz  | 10                                   |                                          |
| (BW <sub>channel</sub> )       |      |                                      |                                          |
| DRX                            |      | OFF                                  |                                          |
| Monitored GSM cell list size   |      | 6 GSM neighbour including            | GSM cells are provided in the            |
|                                |      | ARFCN 1                              | "RRCConnectionRelease" message.          |
| T1                             | S    | 5                                    |                                          |
| T2                             | S    | 2                                    |                                          |

Table A.6.3.3.1-2: Cell specific test parameters for E-UTRA FDD cell (cell #1) for RRC connection release with redirection from E-UTRAN FDD to GERAN in AWGN

| Parameter                                                | Unit       | Cell | 1   |
|----------------------------------------------------------|------------|------|-----|
|                                                          |            | T1   | T2  |
| E-UTRA RF Channel Number                                 |            | 1    |     |
| BW <sub>channel</sub>                                    | MHz        | 10   | )   |
| OCNG Pattern defined in                                  |            |      |     |
| A.3.2.1.1 (OP.1 FDD)                                     |            | OP.1 | FDD |
| PBCH_RA                                                  | dB         |      |     |
| PBCH_RB                                                  | dB         |      |     |
| PSS_RA                                                   | dB         |      |     |
| SSS_RA                                                   | dB         |      |     |
| PCFICH_RB                                                | dB         |      |     |
| PHICH_RA                                                 | dB         | 0    |     |
| PHICH_RB                                                 | dB         | 0    |     |
| PDCCH_RA                                                 | dB         |      |     |
| PDCCH_RB                                                 | dB         |      |     |
| PDSCH_RA                                                 | dB         |      |     |
| PDSCH_RB                                                 | dB         |      |     |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |     |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |     |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4    | 4   |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    | 4   |
| $N_{oc}$                                                 | dBm/15 kHz | -98  | 3   |
| RSRP                                                     | dBm/15 kHz | -94  | -94 |
| SCH_RP                                                   | dBm/15 kHz | -94  | -94 |
| Propagation Condition                                    |            | AWO  | GN  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.3.1-3: Cell specific test parameters for GERAN cell (cell #2) for RRC connection release with redirection from E-UTRAN FDD to GERAN in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |

## A.6.3.3.2 Test Requirements

The UE shall begin to send access bursts on RACH of the target GERAN cell (cell #2) less than 1120 ms from the beginning of time period T2.

The rate of correct "RRC connection release with redirection to GERAN" observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{connection\_release\_redirect\_\ GERAN} = T_{RRC\_procedure\_delay} + T_{identify\text{-}GERAN} + T_{SI\text{-}GERAN} + T_{RA}$ 

 $T_{RRC\_procedure\_delay} = 110$  ms, which is the time for processing the received message "RRCConnectionRelease."

 $T_{identify\text{-}GERAN} = 1000 \text{ ms}$ , which is the time for identifying the target GERAN cell.

 $T_{SI\text{-}GERAN} = 0$ ; UE does not have to read the system information of the GERAN cell since all relevant SI is provided to the UE in the "*RRCConnectionRelease*" message.

 $T_{RA} = 10$  ms, which is about 2 GSM frames (2\*4.65 ms) to account for the GSM timing uncertainty.

# A.6.3.4 Redirection from E-UTRAN TDD to GERAN when System Information is provided

## A.6.3.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA TDD to the target GERAN cell within  $T_{connection\_release\_redirect\_GERAN}$ . This test will partly verify the RRC connection release with redirection to GERAN requirements in section 6.3.2.2.

The test parameters are given in Tables A.6.3.4.1-1, A.6.3.4.1-2 and A.6.3.4.1-3 below. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from cell 1. The "RRCConnectionRelease" message shall contain all the relevant system information of cell 2.

Table A.6.3.4.1-1: General test parameters for RRC connection release with redirection from E-UTRAN TDD to GERAN in AWGN

| Parameter                      | Unit | Value                     | Comment                                      |
|--------------------------------|------|---------------------------|----------------------------------------------|
| PDSCH parameters (E-UTRAN TDD) |      | DL Reference Measurement  | As specified in section A.3.1.1.2.           |
|                                |      | Channel R.0 TDD           |                                              |
| PCFICH/PDCCH/PHICH parameters  |      | DL Reference Measurement  | As specified in section A.3.1.2.2.           |
| (E-UTRAN TDD)                  |      | Channel R.6 TDD           |                                              |
| Active                         |      | Cell 1                    | Cell 1 is on E-UTRA RF channel number 1.     |
| Neighbour cell                 |      | Cell 2                    | Cell 2 is on Absolute RF Channel Number      |
|                                |      |                           | 1 (GSM cell)                                 |
| CP length                      |      | Normal                    | Applicable to cell 1                         |
| Special subframe configuration |      | 6                         | As specified in table 4.2.1 in TS 36.211.    |
|                                |      | 0                         | The same configuration applies to all cells. |
| Uplink-downlink configuration  |      | 1                         |                                              |
| E-UTRA RF Channel Number       |      | 1                         | One E-UTRA TDD carrier frequency is          |
|                                |      |                           | used.                                        |
| E-UTRA Channel Bandwidth       | MHz  | 10                        |                                              |
| (BW <sub>channel</sub> )       |      |                           |                                              |
| DRX                            |      | OFF                       |                                              |
| Monitored GSM cell list size   |      | 6 GSM neighbour including | GSM cells are provided in the                |
|                                |      | ARFCN 1                   | "RRCConnectionRelease" message.              |
| T1                             | S    | 5                         |                                              |
| T2                             | S    | 2                         |                                              |

Table A.6.3.4.1-2: Cell specific test parameters for E-UTRA TDD cell (cell #1) for RRC connection release with redirection from E-UTRAN TDD to GERAN in AWGN

| Parameter                 | Unit       | Cell | l 1 |  |  |
|---------------------------|------------|------|-----|--|--|
|                           |            | T1   | T2  |  |  |
| E-UTRA RF Channel Number  |            | 1    |     |  |  |
| BW <sub>channel</sub>     | MHz        | 10   | 0   |  |  |
| OCNG Pattern defined in   |            |      |     |  |  |
| A.3.2.2.1 (OP.1 TDD)      |            | OP.1 | TDD |  |  |
| PBCH_RA                   | dB         |      |     |  |  |
| PBCH_RB                   | dB         |      |     |  |  |
| PSS_RA                    | dB         |      |     |  |  |
| SSS_RA                    | dB         |      |     |  |  |
| PCFICH_RB                 | dB         |      |     |  |  |
| PHICH_RA                  | dB         |      |     |  |  |
| PHICH_RB                  | dB         | 0    |     |  |  |
| PDCCH_RA                  | dB         |      |     |  |  |
| PDCCH_RB                  | dB         |      |     |  |  |
| PDSCH_RA                  | dB         |      |     |  |  |
| PDSCH_RB                  | dB         |      |     |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |      |     |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |      |     |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4    | 4   |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4    | 4   |  |  |
| $N_{oc}$                  | dBm/15 kHz | -98  | 8   |  |  |
| RSRP                      | dBm/15 kHz | -94  | -94 |  |  |
| SCH_RP                    | dBm/15 kHz | -94  | -94 |  |  |
| Propagation Condition     |            | AWGN |     |  |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.4.1-3: Cell specific test parameters for GERAN cell (cell #2) for RRC connection release with redirection from E-UTRAN TDD to GERAN in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |

## A.6.3.4.2 Test Requirements

The UE shall begin to send access bursts on RACH of the target GERAN cell (cell #2) less than 1120 ms from the beginning of time period T2.

The rate of correct "RRC connection release with redirection to GERAN" observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{connection\_release\_redirect\_\ GERAN} = T_{RRC\_procedure\_delay} + T_{identify\text{-}GERAN} + T_{SI\text{-}GERAN} + T_{RA}$ 

 $T_{RRC\_procedure\_delay} = 110$  ms, which is the time for processing the received message "RRCConnectionRelease."

 $T_{identify\text{-}GERAN} = 1000 \text{ ms}, \text{ which is the time for identifying the target GERAN cell.}$ 

## A.6.3.5 E-UTRA TDD RRC connection release redirection to UTRA TDD

#### A.6.3.5.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA TDD to the target UTRA TDD cell within  $T_{connection\_release\_redirect\_UTRA\ TDD}$ . This test will partly verify the RRC connection release with redirection to UTRA TDD requirements in section 6.3.2.3.

The test parameters are given in table A.6.3.5.1-1, table A.6.3.5.1-2, and table A.6.3.5.1-3. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The "RRCConnectionRelease" message containing the relevant system information of Cell 2 shall be sent to the UE during period T1 and the start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from cell 1. The "RRCConnectionRelease" message shall contain all the relevant system information of Cell 2.

Table A.6.3.5.1-1: General test parameters for E-UTRA TDD RRC connection release redirection to UTRA TDD

| Parameter                                         | Unit | Value                                       | Comment                                                                                         |
|---------------------------------------------------|------|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.                                                              |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.                                                              |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                        |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                                                          |
| Time offset between cells                         | ms   | 3                                           | Asynchronous cells                                                                              |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.                                                       |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                                 |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                                                            |
| Special subframe configuration of cell 1          |      | 6                                           | As specified in table 4.2.1 in TS 36.211                                                        |
| Uplink-downlink configuration of cell1            |      | 1                                           | As specified in table 4.2-2 in TS 36.211                                                        |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA TDD carrier frequency is used.                                                         |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA TDD carrier frequency is used.                                                         |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                                                       |
| DRX                                               |      | OFF                                         |                                                                                                 |
| Monitored UTRA TDD cell list size                 |      | 16                                          | UTRA cells on UTRA RF channel 1 provided in the "RRCConnectionRelease" message from the E-UTRAN |
| T1                                                | S    | 5                                           |                                                                                                 |
| T2                                                | s    | 1                                           |                                                                                                 |

Table A.6.3.5.1-2: Cell specific test parameters for cell 1 in E-UTRA TDD RRC connection release redirection to UTRA TDD test

| Parameter                 | Unit       | Cell ' | 1   |  |  |
|---------------------------|------------|--------|-----|--|--|
|                           |            | T1     | T2  |  |  |
| E-UTRA RF Channel Number  |            | 1      |     |  |  |
| BW <sub>channel</sub>     | MHz        | 10     |     |  |  |
| OCNG Pattern defined in   |            |        |     |  |  |
| A.3.2.2.1 (OP.1 TDD)      |            | OP.1 T | DD  |  |  |
| PBCH_RA                   | dB         |        |     |  |  |
| PBCH_RB                   | dB         |        |     |  |  |
| PSS_RA                    | dB         |        |     |  |  |
| SSS_RA                    | dB         |        |     |  |  |
| PCFICH_RB                 | dB         |        |     |  |  |
| PHICH_RA                  | dB         | 0      |     |  |  |
| PHICH_RB                  | dB         |        |     |  |  |
| PDCCH_RA                  | dB         |        |     |  |  |
| PDCCH_RB                  | dB         |        |     |  |  |
| PDSCH_RA                  | dB         |        |     |  |  |
| PDSCH_RB                  | dB         |        |     |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |        |     |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |        |     |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4   |  |  |
| $N_{oc}^{ m Note 3}$      | dBm/15 kHz | -98    |     |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4   |  |  |
| RSRP Note 4               | dBm/15 kHz | -94    | -94 |  |  |
| SCH_RP                    | dBm/15 kHz | -94    | -94 |  |  |
| Propagation Condition     |            | AWG    | N   |  |  |

- OCNG shall be used such that the cell is fully allocated and a constant total transmitted power Note 1: spectral density is achieved for all OFDM symbols.

  The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 2:
- Interference from other cells and noise sources not specified in the test is assumed to be constant Note 3: over subcarriers and time and shall be modelled as AWGN of appropriate power for  $\,N_{oc}\,$  to be
- RSRP levels have been derived from other parameters for information purposes. They are not Note 4: settable parameters themselves.

Table A.6.3.5.1-3: Cell specific test parameters for cell 2 in E-UTRA TDD RRC connection release redirection to UTRA TDD test

| Parameter                    | Unit            | Cell 2 (UTRA TDD) |        |        |       |
|------------------------------|-----------------|-------------------|--------|--------|-------|
| Timeslot Number              |                 | (                 | )      | Dwl    | PTS   |
|                              |                 | T1                | T2     | T1     | T2    |
| UTRA RF Channel Number Note1 |                 |                   | Char   | inel 1 |       |
| PCCPCH_Ec/lor                | dB              | -4.77             | -4.77  |        |       |
| DwPCH_Ec/lor                 | dB              |                   |        | 0      | 0     |
| OCNS_Ec/Ior <sup>Note2</sup> | dB              | -1.76             | -1.76  |        |       |
| $\hat{I}_{or}/I_{oc}$        | dB              | -inf              | 8      | -inf   | 8     |
| $I_{oc}$                     | dBm/1.28<br>MHz | -80               |        |        |       |
| PCCPCH RSCP Note3            | dBm             | -inf              | -76.77 | n.a.   | n.a.  |
| PCCPCH_Ec/Io Note3           | dB              | -inf              | -5.41  | n.a.   | n.a.  |
| DwPCH_Ec/Io Note3            | dB              | n.a.              | n.a.   | -inf   | -0.64 |
| Propagation Condition        |                 |                   | AW     | GN     | ·     |

- Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.
- Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{or}$ .
- Note 3: P-CCPCH RSRP, PCCPCH\_Ec/lo and DwPCH\_Ec/lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

## A.6.3.5.2 Test Requirements

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 650 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRA TDD observed during repeated tests shall be at least 90%.

NOTE: The time delay can be expressed as:  $T_{RRC\_procedure\_delay} + T_{identify\_UTRA\ TDD} + T_{SI\_UTRA\ TDD} + T_{RA}$ , where:

 $T_{RRC\_procedure\_delay} = 110$  ms, which is specified in section 6.3.2.3.

 $T_{identify-UTRA\ TDD} = 500$  ms; which is defined in section 6.3.2.3.

 $T_{SI\text{-}UTRA\ TDD} = 0$  ms, UE does not have to read the system information of the UTRAN TDD since all relevant SI is provided to the UE in the "RRCConnectionRelease" message.

 $T_{RA} = 40$ ms. This is the additional delay caused by the random access procedure

It gives a total delay of 650 ms.

#### A.6.3.6 E-UTRA FDD RRC connection release redirection to UTRA TDD

#### A.6.3.6.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA FDD to the target UTRA TDD cell within  $T_{connection\_release\_redirect\_UTRA\ TDD}$ . This test will partly verify the RRC connection release with redirection to UTRA TDD requirements in section 6.3.2.3.

The test parameters are given in table A.6.3.6.1-1, table A.6.3.6.1-2, and table A.6.3.6.1-3. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The "RRCConnectionRelease" message containing the relevant system information of Cell 2 shall be sent to the UE during period T1 and the start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from cell 1. The "RRCConnectionRelease" message shall contain all the relevant system information of Cell 2.

Table A.6.3.6.1-1: General test parameters for E-UTRA FDD RRC connection release redirection to UTRA TDD

| Parameter                                         | Unit | Value                                       | Comment                                                                                         |
|---------------------------------------------------|------|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.                                                              |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)       |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.                                                              |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                        |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                                                          |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                                                            |
| Time offset between cells                         | ms   | 3                                           | Asynchronous cells                                                                              |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA FDD carrier frequency is used.                                                       |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                                 |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                                                       |
| DRX                                               |      | OFF                                         |                                                                                                 |
| Monitored UTRA TDD cell list size                 |      | 16                                          | UTRA cells on UTRA RF channel 1 provided in the "RRCConnectionRelease" message from the E-UTRAN |
| T1                                                | S    | 5                                           |                                                                                                 |
| T2                                                | S    | 1                                           |                                                                                                 |

Table A.6.3.6.1-2: Cell specific test parameters for cell 1 in E-UTRA FDD RRC connection release redirection to UTRA TDD test

| Parameter                 | Unit       | Cell   | 1   |  |  |  |
|---------------------------|------------|--------|-----|--|--|--|
|                           |            | T1     | T2  |  |  |  |
| E-UTRA RF Channel Number  |            | 1      |     |  |  |  |
| BW <sub>channel</sub>     | MHz        | 10     |     |  |  |  |
| OCNG Patterns defined in  |            | OP.1 F | EDD |  |  |  |
| A.3.2.1.1 (OP.1 FDD)      |            | OF.11  | -00 |  |  |  |
| PBCH_RA                   | dB         |        |     |  |  |  |
| PBCH_RB                   | dB         |        |     |  |  |  |
| PSS_RA                    | dB         |        |     |  |  |  |
| SSS_RA                    | dB         |        |     |  |  |  |
| PCFICH_RB                 | dB         |        |     |  |  |  |
| PHICH_RA                  | dB         |        |     |  |  |  |
| PHICH_RB                  | dB         | 0      |     |  |  |  |
| PDCCH_RA                  | dB         |        |     |  |  |  |
| PDCCH_RB                  | dB         |        |     |  |  |  |
| PDSCH_RA                  | dB         |        |     |  |  |  |
| PDSCH_RB                  | dB         |        |     |  |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |        |     |  |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |        |     |  |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4   |  |  |  |
| $N_{oc}^{ m Note~3}$      | dBm/15 kHz | -98    | 3   |  |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4   |  |  |  |
| RSRP Note 4               | dBm/15 kHz | -94    | -94 |  |  |  |
| SCH_RP                    | dBm/15 kHz | -94    | -94 |  |  |  |
| Propagation Condition     |            | AWG    | SN  |  |  |  |

- Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be
- Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.6.1-3: Cell specific test parameters for cell 2 in E-UTRA FDD RRC connection release redirection to UTRA TDD test

| Parameter                    | Unit            |       | Cell 2 (U | ra TDD) |       |
|------------------------------|-----------------|-------|-----------|---------|-------|
| Timeslot Number              |                 |       | 0         | Dwl     | PTS   |
|                              |                 | T1    | T2        | T1      | T2    |
| UTRA RF Channel Number Note1 |                 |       | Char      | nel 1   |       |
| PCCPCH_Ec/lor                | dB              | -4.77 | -4.77     |         |       |
| DwPCH_Ec/lor                 | dB              |       |           | 0       | 0     |
| OCNS_Ec/lor <sup>Note2</sup> | dB              | -1.76 | -1.76     |         |       |
| $\hat{I}_{or}/I_{oc}$        | dB              | -inf  | 8         | -inf    | 8     |
| $I_{oc}$                     | dBm/1.28<br>MHz |       | -8        | 30      |       |
| PCCPCH RSCP Note3            | dBm             | -inf  | -76.77    | n.a.    | n.a.  |
| PCCPCH_Ec/Io Note3           | dB              | -inf  | -5.41     | n.a.    | n.a.  |
| DwPCH_Ec/Io Note3            | dB              | n.a.  | n.a.      | -inf    | -0.64 |
| Propagation Condition        |                 |       | AW        | 'GN     |       |

- Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.
- Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{or}$ .
- Note 3: P-CCPCH RSRP, PCCPCH\_Ec/lo and DwPCH\_Ec/lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

## A.6.3.6.2 Test Requirements

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 650 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRA TDD observed during repeated tests shall be at least 90%.

NOTE: The time delay can be expressed as:  $T_{RRC\ procedure\ delay} + T_{identify-UTRA\ TDD} + T_{SI-UTRA\ TDD} + T_{RA}$ , where:

 $T_{RRC\_procedure\_delay} = 110$  ms, which is specified in section 6.3.2.3.

 $T_{identify-UTRA\ TDD} = 500$  ms; which is defined in section 6.3.2.3.

 $T_{SI\text{-}UTRA\ TDD} = 0$  ms, UE does not have to read the system information of the UTRAN TDD since all relevant SI is provided to the UE in the "RRCConnectionRelease" message.

 $T_{RA} = 40$ ms. This is the additional delay caused by the random access procedure.

This gives a total delay of 650 ms.

# A.6.3.7 E-UTRA TDD RRC connection release redirection to UTRA TDD without SI provided

#### A.6.3.7.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA TDD to the target UTRA TDD cell within  $T_{connection\_release\_redirect\_UTRA\ TDD}$ . This test will partly verify the RRC connection release with redirection to UTRA TDD requirements in section 6.3.2.3.

The test parameters are given in table A.6.3.7.1-1, table A.6.3.7.1-2, and table A.6.3.7.1-3. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The "RRCConnectionRelease" message not containing the relevant system information of Cell 2 shall be sent to the UE during period T1 and the start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from Cell 1.

Table A.6.3.7.1-1: General test parameters for E-UTRA TDD RRC connection release redirection to UTRA TDD without SI provided

| Parameter                                         | Unit | Value                                       | Comment                                          |
|---------------------------------------------------|------|---------------------------------------------|--------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.               |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.               |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.         |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.           |
| Time offset between cells                         | ms   | 3                                           | Asynchronous cells                               |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.        |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                  |
| CP length                                         |      | Normal                                      | Applicable to cell 1                             |
| Uplink-downlink configuration of cell 1           |      | 1                                           | As specified in table 4.2.2 in TS 36.211         |
| Special subframe configuration of cell 1          |      | 6                                           | As specified in table 4.2.1 in TS 36.211         |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA TDD carrier frequency is used.          |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                        |
| DRX                                               |      | OFF                                         |                                                  |
| Monitored UTRA TDD cell list size                 |      | none                                        | No explicit neighbour list is provided to the UE |
| T1                                                | s    | 5                                           |                                                  |
| T2                                                | S    | 2                                           |                                                  |

Table A.6.3.7.1-2: Cell specific test parameters for cell 1 in E-UTRA TDD RRC connection release redirection to UTRA TDD test without SI provided

| Parameter                 | Unit       | Cell   | 1               |
|---------------------------|------------|--------|-----------------|
|                           |            | T1     | T2              |
| E-UTRA RF Channel Number  |            | 1      |                 |
| BW <sub>channel</sub>     | MHz        | 10     |                 |
| OCNG Pattern defined in   |            |        |                 |
| A.3.2.2.1 (OP.1 TDD)      |            | OP.1 T | <sup>-</sup> DD |
| PBCH_RA                   | dB         |        |                 |
| PBCH_RB                   | dB         |        |                 |
| PSS_RA                    | dB         |        |                 |
| SSS_RA                    | dB         |        |                 |
| PCFICH_RB                 | dB         |        |                 |
| PHICH_RA                  | dB         |        |                 |
| PHICH_RB                  | dB         | 0      |                 |
| PDCCH_RA                  | dB         |        |                 |
| PDCCH_RB                  | dB         |        |                 |
| PDSCH_RA                  | dB         |        |                 |
| PDSCH_RB                  | dB         |        |                 |
| OCNG_RA <sup>Note 1</sup> | dB         |        |                 |
| OCNG_RB <sup>Note 1</sup> | dB         |        |                 |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4               |
| $N_{oc}^{ m Note  3}$     | dBm/15 kHz | -98    |                 |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4               |
| RSRP Note 4               | dBm/15 kHz | -94    | -94             |
| SCH_RP                    | dBm/15 kHz | -94    | -94             |
| Propagation Condition     |            | AWG    | SN              |

- Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled
- Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.7.1-3: Cell specific test parameters for cell 2 in E-UTRA TDD RRC connection release redirection to UTRA TDD test without SI provided

| Parameter                    | Unit            |       | Cell 2 (U | ra TDD) |       |
|------------------------------|-----------------|-------|-----------|---------|-------|
| Timeslot Number              |                 | (     | 0         | Dwl     | PTS   |
|                              |                 | T1    | T2        | T1      | T2    |
| UTRA RF Channel Number Note1 |                 |       | Char      | inel 1  |       |
| PCCPCH_Ec/lor                | dB              | -4.77 | -4.77     |         |       |
| DwPCH_Ec/lor                 | dB              |       |           | 0       | 0     |
| OCNS_Ec/Ior <sup>Note2</sup> | dB              | -1.76 | -1.76     |         |       |
| $\hat{I}_{or}/I_{oc}$        | dB              | -inf  | 8         | -inf    | 8     |
| $I_{oc}$                     | dBm/1.28<br>MHz |       | -8        | 30      |       |
| PCCPCH RSCP Note3            | dBm             | -inf  | -76.77    | n.a.    | n.a.  |
| PCCPCH_Ec/Io Note3           | dB              | -inf  | -5.41     | n.a.    | n.a.  |
| DwPCH_Ec/Io Note3            | dB              | n.a.  | n.a.      | -inf    | -0.64 |
| Propagation Condition        |                 |       | AW        | GN      | ·     |

Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $l_{\rm or}$ .

Note 3: P-CCPCH RSRP, PCCPCH\_Ec/lo and DwPCH\_Ec/lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

## A.6.3.7.2 Test Requirements

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 1930 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRA TDD observed during repeated tests shall be at least 90%.

NOTE: The time delay can be expressed as:  $T_{RRC\_procedure\_delay} + T_{identify\_UTRA\ TDD} + T_{SI\_UTRA\ TDD} + T_{RA}$ , where:

 $T_{RRC\_procedure\_delay} = 110$  ms, which is specified in section 6.3.2.3.

 $T_{identify\text{-UTRA TDD}} = 500 \text{ ms}$ ; which is defined in section 6.3.2.3.

T<sub>SI-UTRA TDD</sub>: Maximum repetition period of relevant system info blocks that need to be received by the UE during RRC connection release redirection to UTRA TDD cell. 1280 ms is assumed in this test case.

 $T_{RA} = 40$ ms, this is the additional delay caused by the random access procedure.

This gives a total delay of 1930 ms.

# A.6.3.8 E-UTRA FDD RRC connection release redirection to UTRA TDD without SI provided

#### A.6.3.8.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA FDD to the target UTRA TDD cell within  $T_{connection\_release\_redirect\_UTRA\ TDD}$ . This test will partly verify the RRC connection release with redirection to UTRA TDD requirements in section 6.3.2.3.

The test parameters are given in table A.6.3.8.1-1, table A.6.3.8.1-2, and table A.6.3.8.1-3. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The "RRCConnectionRelease" message not containing the relevant system information of Cell 2 shall be sent to the UE during period T1 and the start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from Cell 1.

Table A.6.3.8.1-1: General test parameters for E-UTRA FDD RRC connection release redirection to UTRA TDD without SI provided

| Parameter                                         | Unit | Value                                       | Comment                                          |
|---------------------------------------------------|------|---------------------------------------------|--------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.               |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)       |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.               |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.         |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.           |
| Time offset between cells                         | ms   | 3                                           | Asynchronous cells                               |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.        |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                  |
| CP length                                         |      | Normal                                      | Applicable to cell 1                             |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA TDD carrier frequency is used.          |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                        |
| DRX                                               |      | OFF                                         |                                                  |
| Monitored UTRA TDD cell list size                 |      | none                                        | No explicit neighbour list is provided to the UE |
| T1                                                | S    | 5                                           |                                                  |
| T2                                                | S    | 2                                           |                                                  |

Table A.6.3.8.1-2: Cell specific test parameters for cell 1 in E-UTRA FDD RRC connection release redirection to UTRA TDD test without SI provided

| Parameter                 | Unit       | Cell   | 1   |
|---------------------------|------------|--------|-----|
|                           |            | T1     | T2  |
| E-UTRA RF Channel Number  |            | 1      |     |
| BW <sub>channel</sub>     | MHz        | 10     |     |
| OCNG Patterns defined in  |            | OP.1 F | DD  |
| A.3.2.1.1 (OP.1 FDD)      |            |        |     |
| PBCH_RA                   | dB         |        |     |
| PBCH_RB                   | dB         |        |     |
| PSS_RA                    | dB         |        |     |
| SSS_RA                    | dB         |        |     |
| PCFICH_RB                 | dB         |        |     |
| PHICH_RA                  | dB         | _      |     |
| PHICH_RB                  | dB         | 0      |     |
| PDCCH_RA                  | dB         |        |     |
| PDCCH_RB                  | dB         |        |     |
| PDSCH_RA                  | dB         |        |     |
| PDSCH_RB                  | dB         |        |     |
| OCNG_RA <sup>Note 1</sup> | dB         |        |     |
| OCNG_RB <sup>Note 1</sup> | dB         |        |     |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4   |
| Noc Note 3                | dBm/15 kHz | -98    |     |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4   |
| RSRP Note 4               | dBm/15 kHz | -94    | -94 |
| SCH_RP                    | dBm/15 kHz | -94    | -94 |
| Propagation Condition     |            | AWG    | SN  |

- Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled
- Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.8.1-3: Cell specific test parameters for cell 2 in E-UTRA FDD RRC connection release redirection to UTRA TDD test without SI provided

| Parameter                    | Unit            |       | Cell 2 (U | ra TDD) |       |
|------------------------------|-----------------|-------|-----------|---------|-------|
| Timeslot Number              |                 | (     | 0         | Dwl     | PTS   |
|                              |                 | T1    | T2        | T1      | T2    |
| UTRA RF Channel Number Note1 |                 |       | Char      | inel 1  |       |
| PCCPCH_Ec/lor                | dB              | -4.77 | -4.77     |         |       |
| DwPCH_Ec/lor                 | dB              |       |           | 0       | 0     |
| OCNS_Ec/Ior <sup>Note2</sup> | dB              | -1.76 | -1.76     |         |       |
| $\hat{I}_{or}/I_{oc}$        | dB              | -inf  | 8         | -inf    | 8     |
| $I_{oc}$                     | dBm/1.28<br>MHz |       | -8        | 30      |       |
| PCCPCH RSCP Note3            | dBm             | -inf  | -76.77    | n.a.    | n.a.  |
| PCCPCH_Ec/Io Note3           | dB              | -inf  | -5.41     | n.a.    | n.a.  |
| DwPCH_Ec/Io Note3            | dB              | n.a.  | n.a.      | -inf    | -0.64 |
| Propagation Condition        |                 |       | AW        | GN      | ·     |

Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{or}$ .

Note 3: P-CCPCH RSRP, PCCPCH\_Ec/lo and DwPCH\_Ec/lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

## A.6.3.8.2 Test Requirements

The UE shall start to transmit the SYNCH-UL sequence in the UpPTS to Cell 2 less than 1930 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRA TDD observed during repeated tests shall be at least 90%.

NOTE: The time delay can be expressed as:  $T_{RRC\_procedure\_delay} + T_{identify\_UTRA\ TDD} + T_{SI\_UTRA\ TDD} + T_{RA}$ , where:

 $T_{RRC\_procedure\_delay} = 110$  ms, which is specified in section 6.3.2.3.

 $T_{identify\text{-UTRA TDD}} = 500 \text{ ms}$ ; which is defined in section 6.3.2.3.

T<sub>SI-UTRA TDD</sub>: Maximum repetition period of relevant system info blocks that need to be received by the UE during RRC connection release redirection to UTRA TDD cell. 1280 ms is assumed in this test case.

 $T_{RA} = 40$ ms, this is the additional delay caused by the random access procedure.

This gives a total delay of 1930 ms.

## A.6.3.9 Redirection from E-UTRAN FDD to UTRAN FDD without System Information

## A.6.3.9.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct performing the RRC connection release with redirection to the target UTRAN FDD cell. This test will partly verify the RRC connection release with redirection to UTRAN FDD cell requirements in section 6.3.2.1.

The test parameters are given in Tables A.6.3.9.1-1, A.6.3.9.1-2 and A.6.3.9.1-3 below. The test consists of two successive time periods, with time duration of T1, and T2 respectively. The "RRCConnectionRelease" message not containing any system information of Cell 2 shall be sent to the UE during period T1. The start of T2 is the instant when the last TTI containing the RRC message is sent to the UE. Prior to time duration T2, the UE shall not have any timing information of Cell 2. Cell 2 is powered up at the beginning of the T2.

Table A.6.3.9.1-1: General test parameters for RRC Connection Release with Redirection from E-UTRAN FDD to UTRAN FDD under AWGN propagation conditions

| Parameter                      | Unit | Value                   | Comment                                          |
|--------------------------------|------|-------------------------|--------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD) |      | DL Reference            | As specified in section A.3.1.1.1.               |
|                                |      | Measurement Channel R.0 |                                                  |
|                                |      | FDD                     |                                                  |
| PCFICH/PDCCH/PHICH parameters  |      | DL Reference            | As specified in section A.3.1.2.1.               |
| (E-UTRAN FDD)                  |      | Measurement Channel R.6 |                                                  |
|                                |      | FDD                     |                                                  |
| Active cell                    |      | Cell 1                  | Cell 1 is on E-UTRA RF channel number 1.         |
| Neighbour cell                 |      | Cell 2                  | Cell 2 is on UTRA RF channel number 1.           |
| CP length                      |      | Normal                  | Applicable to cell 1                             |
| E-UTRA RF Channel Number       |      | 1                       | One E-UTRA FDD carrier frequency is used.        |
| E-UTRA Channel Bandwidth       | MH   | 10                      |                                                  |
| (BW <sub>channel</sub> )       | Z    |                         |                                                  |
| UTRA RF Channel Number         |      | 1                       | One UTRA FDD carrier frequency is used.          |
| Inter-RAT (UTRA FDD)           |      | CPICH Ec/Io             |                                                  |
| measurement quantity           |      |                         |                                                  |
| Filter coefficient             |      | 0                       | L3 filtering is not used.                        |
| DRX                            |      | OFF                     |                                                  |
| UTRA FDD cell list size        |      | None                    | No explicit neighbour list is provided to the UE |
| T1                             | S    | ≤5                      |                                                  |
| T2                             | S    | 2                       |                                                  |

Table A.6.3.9.1-2: Cell specific test parameters for cell #1 E-UTRAN FDD to UTRAN FDD RRC release with redirection under AWGN propagation conditions

| Parameter                 | Unit       | Cell   | 1    |
|---------------------------|------------|--------|------|
|                           |            | T1     | T2   |
| E-UTRA RF Channel Number  |            | 1      |      |
| BW <sub>channel</sub>     | MHz        | 10     |      |
| OCNG Pattern defined in   |            |        |      |
| A.3.2.1.1 (OP.1 FDD)      |            | OP.1 F | FDD  |
| PBCH_RA                   | dB         |        |      |
| PBCH_RB                   | dB         |        |      |
| PSS_RA                    | dB         |        |      |
| SSS_RA                    | dB         |        |      |
| PCFICH_RB                 | dB         |        |      |
| PHICH_RA                  | dB         |        |      |
| PHICH_RB                  | dB         | 0      |      |
| PDCCH_RA                  | dB         |        |      |
| PDCCH_RB                  | dB         |        |      |
| PDSCH_RA                  | dB         |        |      |
| PDSCH_RB                  | dB         |        |      |
| OCNG_RA <sup>Note 1</sup> | dB         |        |      |
| OCNG_RB <sup>Note 1</sup> | dB         |        |      |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4    |
| $N_{oc}^{ m Note 3}$      | dBm/15 kHz | -98    |      |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4    |
| RSRP Note 4               | dBm/15 kHz | -94    | -94  |
| SCH_RP                    | dBm/15 kHz | -94    | -94  |
| Propagation Condition     |            | AWG    | SN . |

- Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled
- Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.9.1-3: Cell specific test parameters for cell #2 E-UTRAN FDD to UTRAN FDD RRC release with redirection under AWGN propagation conditions

| Parameter                     | Unit            | Cell  | 2    |
|-------------------------------|-----------------|-------|------|
|                               |                 | T1    | T1   |
| UTRA RF Channel Number        |                 | 1     |      |
| CPICH_Ec/lor                  | dB              | -10   |      |
| PCCPCH_Ec/lor                 | dB              | -12   |      |
| SCH_Ec/lor                    | dB              | -12   |      |
| PICH_Ec/lor                   | dB              | -15   |      |
| DPCH_Ec/lor                   | dB              | N/A   |      |
| OCNS                          |                 | -0.94 | 1    |
| $\hat{I}_{or}/I_{oc}$         | dB              | -∞    | 0.02 |
| $I_{oc}$                      | dBm/3.84<br>MHz | -70   |      |
| CPICH_Ec/Io <sup>Note 3</sup> | dB              | -∞    | -13  |
| Propagation Condition         |                 | AWG   | N    |

Note 1: The DPCH level is controlled by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal

to I<sub>or</sub>.

Note 3: This gives an SCH Ec/lo of -15dB

## A.6.3.9.2 Test Requirements

The UE shall start to send random access to the target UTRA FDD cell (Cell 2) less than 1930 ms from the beginning of time period T2.

The rate of correct "RRC connection release with redirection to UTRAN" observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this case can be expressed as

$$T_{connection\_release\_redirect\_UTRA\ FDD} = T_{RRC\_procedure\_delay} + T_{identify\_UTRA\ FDD} + T_{SI\_UTRA\ FDD} + T_{RA}$$

where

 $T_{RRC\_procedure\_delay} = 110 \text{ ms}$ 

 $T_{identify-UTRA\ FDD} = 500\ ms$ 

 $T_{SI\text{-}UTRA\ FDD}$  = the time required for acquiring all the relevant system information of the target UTRA FDD cell. This time depends upon whether the UE is provided with the relevant system information of the target UTRA FDD cell or not by the E-UTRAN before the RRC connection is released. Since no SI is provided, 1280 ms is assumed in this test case.

 $T_{RA}$  = The additional delay caused by the random access procedure. 40 ms is assumed in this test case.

This gives a total of 1930 ms.

## A.6.3.10 Redirection from E-UTRAN FDD to GERAN when System Information is not provided

#### A.6.3.10.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA FDD to the target GERAN cell within  $T_{connection\_release\_redirect\_GERAN}$ . This test will partly verify the RRC connection release with redirection to GERAN requirements in section 6.3.2.2.

The test parameters are given in Tables A.6.3.10.1-1, A.6.3.10.1-2 and A.6.3.10.1-3 below. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from cell 1. The "RRCConnectionRelease" message shall not contain any system information of cell 2.

Table A.6.3.10.1-1: General test parameters for RRC connection release with redirection from E-UTRAN FDD to GERAN in AWGN

| Parameter                                         | Unit    | Value                                          | Comment                                                                                       |
|---------------------------------------------------|---------|------------------------------------------------|-----------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |         | DL Reference<br>Measurement Channel R.0<br>FDD | As specified in section A.3.1.1.1.                                                            |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)       |         | DL Reference<br>Measurement Channel R.6<br>FDD | As specified in section A.3.1.2.1.                                                            |
| Active cell                                       |         | Cell 1                                         | Cell 1 is on E-UTRA RF channel number 1.                                                      |
| Neighbour cell                                    |         | Cell 2                                         | Cell 2 is on Absolute RF Channel Number 1 (GSM cell)                                          |
| CP length                                         |         | Normal                                         | Applicable to cell 1                                                                          |
| E-UTRA RF Channel Number                          |         | 1                                              | One E-UTRA FDD carrier frequency is used.                                                     |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MH<br>z | 10                                             |                                                                                               |
| DRX                                               |         | OFF                                            |                                                                                               |
| Monitored GSM cell list size                      |         | 6 GSM neighbour including<br>ARFCN 1           | Only the list of GERAN carrier frequencies is provided in the "RRCConnectionRelease" message. |
| T1                                                | S       | ≤5                                             | -                                                                                             |
| T2                                                | S       | 4                                              |                                                                                               |

Table A.6.3.10.1-2: Cell specific test parameters for E-UTRA FDD cell (cell #1) for RRC connection release with redirection from E-UTRAN FDD to GERAN in AWGN

| T1  Z  OI | T2 1 10 P.1 FDD |
|-----------|-----------------|
| OI        | 10<br>P.1 FDD   |
| OI        | P.1 FDD         |
|           |                 |
|           |                 |
|           | 0               |
|           | 0               |
|           | 0               |
|           | 0               |
|           | 0               |
|           | 0               |
|           | 0               |
|           |                 |
|           |                 |
|           |                 |
|           |                 |
|           |                 |
|           |                 |
|           |                 |
| 4         | 4               |
| 4         | 4               |
| kHz       | -98             |
| kHz -94   | -94             |
| kHz -94   | -94             |
| ,         | AWĠN            |
|           | kHz -94 kHz -94 |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.10.1-3: Cell specific test parameters for GERAN cell (cell #2) for RRC connection release with redirection from E-UTRAN FDD to GERAN in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |

#### A.6.3.10.2 Test Requirements

The UE shall begin to send access bursts on RACH of the target GERAN cell (cell #2) less than 3020 ms from the beginning of time period T2.

The rate of correct "RRC connection release with redirection to GERAN" observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{connection\_release\_redirect\_\ GERAN} = T_{RRC\_procedure\_delay} + T_{identify\text{-}GERAN} + T_{SI\text{-}GERAN} + T_{RA}$ 

 $T_{RRC\_procedure\_delay} = 110$  ms, which is the time for processing the received message "RRCConnectionRelease."

 $T_{identify\text{-}GERAN} = 1000 \text{ ms}$ , which is the time for identifying the target GERAN cell.

 $T_{SI\text{-}GERAN} = 1900$  ms, which is the maximum time allowed to read BCCH data from the target GERAN cell.

 $T_{RA}$  = 10 ms, which is about 2 GSM frames (2\*4.65 ms) to account for the GSM timing uncertainty.

# A.6.3.11 Redirection from E-UTRAN TDD to GERAN when System Information is not provided

#### A.6.3.11.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRA TDD to the target GERAN cell within  $T_{connection\_release\_redirect\_GERAN}$ . This test will partly verify the RRC connection release with redirection to GERAN requirements in section 6.3.2.2.

The test parameters are given in Tables A.6.3.11.1-1, A.6.3.11.1-2 and A.6.3.11.1-3 below. No measurement gaps are configured. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from cell 1. The "RRCConnectionRelease" message shall not contain any system information of cell 2.

Table A.6.3.11.1-1: General test parameters for RRC connection release with redirection from E-UTRAN TDD to GERAN in AWGN

| Parameter                                         | Unit | Value                                       | Comment                                                                                       |
|---------------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.                                                            |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.                                                            |
| Active                                            |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                      |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on Absolute RF Channel Number 1 (GSM cell)                                          |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                                                          |
| Special subframe configuration                    |      | 6                                           | As specified in table 4.2.1 in TS 36.211. The same configuration applies to all cells.        |
| Uplink-downlink configuration                     |      | 1                                           |                                                                                               |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.                                                     |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                               |
| DRX                                               |      | OFF                                         |                                                                                               |
| Monitored GSM cell list size                      |      | 6 GSM neighbour including ARFCN 1           | Only the list of GERAN carrier frequencies is provided in the "RRCConnectionRelease" message. |
| T1                                                | S    | ≤5                                          |                                                                                               |
| T2                                                | S    | 4                                           |                                                                                               |

Table A.6.3.11.1-2: Cell specific test parameters for E-UTRA TDD cell (cell #1) for RRC connection release with redirection from E-UTRAN TDD to GERAN in AWGN

|                           |            |          | Cell 1 |  |  |
|---------------------------|------------|----------|--------|--|--|
|                           |            | T1       | T2     |  |  |
| E-UTRA RF Channel Number  |            | 1        |        |  |  |
| BW <sub>channel</sub>     | MHz        | 10       |        |  |  |
| OCNG Pattern defined in   |            |          |        |  |  |
| A.3.2.2.1 (OP.1 TDD)      |            | OP.1 TDD |        |  |  |
| PBCH_RA                   | dB         |          |        |  |  |
| PBCH_RB                   | dB         |          |        |  |  |
| PSS_RA                    | dB         |          |        |  |  |
| SSS_RA                    | dB         |          |        |  |  |
| PCFICH_RB                 | dB         |          |        |  |  |
| PHICH_RA                  | dB         |          |        |  |  |
| PHICH_RB                  | dB         | C        | )      |  |  |
| PDCCH_RA                  | dB         |          |        |  |  |
| PDCCH_RB                  | dB         |          |        |  |  |
| PDSCH_RA                  | dB         |          |        |  |  |
| PDSCH_RB                  | dB         |          |        |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |          |        |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |          |        |  |  |
| $\hat{E}_s/I_{ot}$        | dB         | 4        | 4      |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4        | 4      |  |  |
| $N_{oc}$                  | dBm/15 kHz | -98      |        |  |  |
| RSRP                      | dBm/15 kHz | -94      | -94    |  |  |
| SCH_RP                    | dBm/15 kHz | -94      | -94    |  |  |
| Propagation Condition     |            | AWGN     |        |  |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.11.1-3: Cell specific test parameters for GERAN cell (cell #2) for RRC connection release with redirection from E-UTRAN TDD to GERAN in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |

#### A.6.3.11.2 Test Requirements

The UE shall begin to send access bursts on RACH of the target GERAN cell (cell #2) less than 3020 ms from the beginning of time period T2.

The rate of correct "RRC connection release with redirection to GERAN" observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{connection\_release\_redirect\_\ GERAN} = T_{RRC\_procedure\_delay} + T_{identify\text{-}GERAN} + T_{SI\text{-}GERAN} + T_{RA}$ 

 $T_{RRC\ procedure\ delay} = 110$  ms, which is the time for processing the received message "RRCConnectionRelease."

 $T_{identify\text{-}GERAN} = 1000 \text{ ms}$ , which is the time for identifying the target GERAN cell.

 $T_{SI\text{-}GERAN} = 1900$  ms, which is the maximum time allowed to read BCCH data from the target GERAN cell.

 $T_{RA}$  = 10 ms, which is about 2 GSM frames (2\*4.65 ms) to account for the GSM timing uncertainty.

# A.6.3.12 E-UTRAN TDD RRC connection release redirection to UTRAN FDD without SI provided

#### A.6.3.12.1 Test Purpose and Environment

The purpose of this test is to verify that the UE performs the RRC connection release with redirection from the E-UTRAN TDD to the target UTRAN FDD cell within  $T_{connection\_release\_redirect\_UTRAN\ FDD}$ . This test will partly verify the RRC connection release with redirection to UTRAN FDD requirements in section 6.3.2.1.

The test parameters are given in table A.6.3.12.1-1, table A.6.3.12.1-2, and table A.6.3.12.1-3. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2. The "RRCConnectionRelease" message not containing any system information of Cell 2 shall be sent to the UE during period T1. The start of T2 is the instant when the last TTI containing the RRC message, "RRCConnectionRelease", is received by the UE from Cell 1.

Table A.6.3.12.1-1: General test parameters for E-UTRAN TDD RRC connection release redirection to UTRAN FDD without SI provided

| Parameter                                          | Unit | Value                                       | Comment                                          |
|----------------------------------------------------|------|---------------------------------------------|--------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                     |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.               |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)        |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.               |
| Active cell                                        |      | Cell 1                                      | Cell 1 is on E-UTRAN RF channel number 1.        |
| Neighbour cell                                     |      | Cell 2                                      | Cell 2 is on UTRAN RF channel number 1.          |
| E-UTRAN RF Channel Number                          |      | 1                                           | One E-UTRAN TDD carrier frequency is used.       |
| E-UTRAN Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                  |
| Uplink-downlink configuration of cell 1            |      | 1                                           | As specified in table 4.2.2 in TS 36.211         |
| Special subframe configuration of cell 1           |      | 6                                           | As specified in table 4.2.1 in TS 36.211         |
| CP length                                          |      | Normal                                      | Applicable to cell 1                             |
| UTRAN RF Channel Number                            |      | 1                                           | One UTRAN TDD carrier frequency is used.         |
| Filter coefficient                                 |      | 0                                           | L3 filtering is not used.                        |
| DRX                                                |      | OFF                                         |                                                  |
| Monitored UTRAN FDD cell list size                 |      | None                                        | No explicit neighbour list is provided to the UE |
| T1                                                 | S    | ≤5                                          |                                                  |
| T2                                                 | s    | 2                                           |                                                  |

Table A.6.3.12.1-2: Cell specific test parameters for cell 1 in E-UTRAN TDD RRC connection release redirection to UTRAN FDD test without SI provided

| Unit       | Cell 1                                      |
|------------|---------------------------------------------|
|            | T1 T2                                       |
|            | 1                                           |
|            |                                             |
| MHz        | 10                                          |
|            | OP.1 TDD                                    |
|            | OF.1 1DD                                    |
| dB         |                                             |
| dB         | 0                                           |
| dB         |                                             |
| dB         | 4 4                                         |
| dBm/15 kHz | -98                                         |
| dB         | 4 4                                         |
| dBm/15 kHz | -94 -94                                     |
| dBm/15 kHz | -94 -94                                     |
|            | AWGN                                        |
|            | MHz  dB |

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.6.3.12.1-3: Cell specific test parameters for cell 2 in E-UTRAN TDD RRC connection release redirection to UTRAN FDD test without SI provided

| Parameter                     | Unit            | Cell 2 | 2    |
|-------------------------------|-----------------|--------|------|
|                               |                 | T1     | T1   |
| UTRAN RF Channel Number       |                 | 1      |      |
| CPICH_Ec/lor                  | dB              | -10    |      |
| PCCPCH_Ec/lor                 | dB              | -12    |      |
| SCH_Ec/lor                    | dB              | -12    |      |
| PICH_Ec/lor                   | dB              | -15    |      |
| DPCH_Ec/lor                   | dB              | N/A    |      |
| OCNS                          |                 | -0.94  | 1    |
| $\hat{I}_{or}/I_{oc}$         | dB              | -00    | 0.02 |
| $I_{oc}$                      | dBm/3.84<br>MHz | -70    |      |
| CPICH_Ec/Io <sup>Note 3</sup> | dB              | -∞     | -13  |
| Propagation Condition         |                 | AWGI   | N    |

Note 1: The DPCH level is controlled by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{or}$ .

Note 3: This gives an SCH Ec/lo of -15dB

#### A.6.3.12.2 Test Requirements

The UE shall start to send random access to the target UTRAN FDD cell (Cell 2) less than 1930 ms from the beginning of time period T2.

The rate of correct RRC connection release redirection to UTRAN FDD observed during repeated tests shall be at least 90%.

NOTE: The time delay can be expressed as:  $T_{RRC\_procedure\_delay} + T_{identify\_UTRAN\ FDD} + T_{SI\_UTRAN\ FDD} + T_{RA}$ , where:

 $T_{RRC procedure delay} = 110 \text{ ms}$ , which is specified in section 6.3.2.1.

 $T_{identify\text{-}UTRAN\,FDD}$  = 500 ms; which is defined in section 6.3.2.1.

 $T_{SI-UTRAN\,FDD}$ : Maximum repetition period of relevant system info blocks that need to be received by the UE during RRC connection release redirection to UTRAN FDD cell. 1280 ms is assumed in this test case.

 $T_{RA} = 40$ ms, this is the additional delay caused by the random access procedure.

This gives a total delay of 1930 ms.

## A.7 Timing and Signalling Characteristics

## A.7.1 UE Transmit Timing

## A.7.1.1 E-UTRAN FDD – UE Transmit Timing Accuracy Tests

#### A.7.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE is capable of following the frame timing change of the connected eNode B and that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the specified limits. This test will verify the requirements in section 7.1.2.

For this test a single cell is used. Table A.7.1.1.1-1 defines the strength of the transmitted signals and the propagation condition. The transmit timing is verified by the UE transmitting sounding reference symbols using the configuration defined in Table A.7.1.1.1-2.

Table A.7.1.1.1-1: Test Parameters for UE Transmit Timing Accuracy Tests for E-UTRAN FDD

| Parameter                                  | Unit            | Value    |                     |          |  |
|--------------------------------------------|-----------------|----------|---------------------|----------|--|
| Parameter                                  | Unit            | Test 1   | Test 2              | Test 3   |  |
| E-UTRA RF Channel Number                   |                 | 1        | 1                   | 1        |  |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz             | 10       | 10                  | 1.4      |  |
| DRX cycle                                  | ms              | OFF      | 80 <sup>Note5</sup> | OFF      |  |
| PDCCH/PCFICH/PHICH                         |                 |          |                     |          |  |
| Reference measurement channel Note1        |                 | R.6 FDD  | R.6 FDD             | R.8 FDD  |  |
| OCNG Pattern <sup>Note2</sup>              |                 | OP.2 FDD | OP.2 FDD            | OP.4 FDD |  |
| PBCH_RA                                    |                 |          |                     |          |  |
| PBCH_RB                                    |                 |          |                     |          |  |
| PSS_RA                                     |                 |          |                     |          |  |
| SSS_RA                                     |                 |          |                     |          |  |
| PCFICH_RB                                  |                 |          |                     |          |  |
| PHICH_RA                                   | dB              | 0        | 0                   | 0        |  |
| PHICH_RB                                   |                 |          |                     |          |  |
| PDCCH_RA                                   |                 |          |                     |          |  |
| PDCCH_RB                                   |                 |          |                     |          |  |
| OCNG_RA <sup>Note3</sup>                   |                 |          |                     |          |  |
| OCNG_RB <sup>Note3</sup>                   |                 |          |                     |          |  |
| $N_{oc}$                                   | dBm/15<br>kHz   | -98      | -98                 | -98      |  |
| $\hat{E}_{s}/I_{ot}$                       | dB              | 3        | 3                   | 3        |  |
| $\hat{E}_s/N_{oc}$                         | dB              | 3        | 3                   | 3        |  |
| lo <sup>Note4</sup>                        | dBm/9<br>MHz    | -65.5    | -65.5               | N/A      |  |
| IO                                         | dBm/1.08<br>MHz | N/A      | N/A                 | -74.7    |  |
| Propagation condition                      | -               | AWGN     | AWGN                | AWGN     |  |

Note 1: For the reference measurement channels, see section A.3.1.

Note 2: For the OCNG pattern, see section A.3.2.

Note 3: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 4: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 5: DRX related parameters are defined in Table A.7.1.1.1-3.

Table A.7.1.1.1-2: Sounding Reference Symbol Configuration to be used in UE Transmit Timing Accuracy Tests for E-UTRAN FDD

| Field                                                              | Test 1 | Test 2 | Test 3 | Comment                                                                   |  |
|--------------------------------------------------------------------|--------|--------|--------|---------------------------------------------------------------------------|--|
| rieiu                                                              | Value  |        |        |                                                                           |  |
| srsBandwidthConfiguration                                          | bw5    | bw5    | bw7    |                                                                           |  |
| srsSubframeConfiguration                                           | sc1    | sc3    | sc1    |                                                                           |  |
| ackNackSrsSimultaneousTransmission                                 | FALSE  | FALSE  | FALSE  |                                                                           |  |
| srsMaxUpPTS                                                        | N/A    | N/A    | N/A    | Not applicable for FDD                                                    |  |
| srsBandwidth                                                       | 0      | 0      | 0      | No hopping                                                                |  |
| srsHoppingBandwidth                                                | hbw0   | hbw0   | hbw0   |                                                                           |  |
| frequencyDomainPosition                                            | 0      | 0      | 0      |                                                                           |  |
| duration                                                           | TRUE   | TRUE   | TRUE   | Indefinite duration                                                       |  |
| Srs-ConfigurationIndex                                             | 0      | 77     | 0      | SRS periodicity of<br>2ms and 80 ms<br>for Test 1 and 2,<br>respectively. |  |
| transmissionComb                                                   | 0      | 0      | 0      |                                                                           |  |
| cyclicShift                                                        | cs0    | cs0    | cs0    | No cyclic shift                                                           |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |        |        |        |                                                                           |  |

Table A.7.1.1.1-3: drx-Configuration to be used in UE Transmit Timing Accuracy Test 2 for E-UTRAN FDD

| Field                    | Test2   | Comment |
|--------------------------|---------|---------|
| Field                    | Value   |         |
| onDurationTimer          | psf1    |         |
| drx-InactivityTimer      | psf1    |         |
| drx-RetransmissionTimer  | psf1    |         |
| longDRX-CycleStartOffset | sf80    |         |
| shortDRX                 | disable |         |

#### A.7.1.1.2 Test Requirements

For parameters specified in Tables A.7.1.1.1-1 and A.7.1.1.1-2, the initial transmit timing accuracy, the maximum amount of timing change in one adjustment, the minimum and the maximum adjustment rate shall be within the limits defined in section 7.1.2.

The following sequence of events shall be used to verify that the requirements are met.

For the 10MHz channel bandwith, the test sequence shall be carried out in RRC\_CONNECTED for both non-DRX and DRX with a cycle length of 80 ms (Tests 1 and 2, respectively):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within  $N_{TA} \times T_S \pm 12 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by  $+64 \times T_S$  (approximately  $+2\mu s$ ) compared to that in (a).
- c) The test system shall verify that for Test 1 the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within  $N_{TA} \times T_S \pm 12 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1. Skip this step for Test 2.
- d) The test system shall verify that the UE transmit timing offset stays within  $N_{TA} \times T_S \pm 12 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1. For test 2 the UE transmit timing offset shall be verified for the first transmission in the DRX cycle immediately after DL timing adjustment.

For the 1.4MHz channel bandwith, the test sequence shall be carried out in RRC\_CONNECTED for non-DRX (Tests 3):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within  $N_{TA} \times T_S \pm 24 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by  $+128 \times T_S$  (approximately  $+4\mu s$ ) compared to that in (a).
- c) The test system shall verify that the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within  $N_{TA} \times T_S \pm 24 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- d) The test system shall verify that the UE transmit timing offset stays within  $N_{TA} \times T_S \pm 24 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.

#### A.7.1.2 E-UTRAN TDD - UE Transmit Timing Accuracy Tests

#### A.7.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE is capable of following the frame timing change of the connected eNode B and that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the specified limits. This test will verify the requirements in section 7.1.2.

For this test a single cell is used. Table A.7.1.2.1-1 defines the strength of the transmitted signals and the propagation condition. The transmit timing is verified by the UE transmitting sounding reference symbols using the configuration defined in Table A.7.1.2.1-2.

Table A.7.1.2.1-1: Test Parameters for UE Transmit Timing Accuracy Tests for E-UTRAN TDD

| Parameter                                                | Unit                |          | Value               |          |
|----------------------------------------------------------|---------------------|----------|---------------------|----------|
|                                                          |                     | Test 1   | Test 2              | Test 3   |
| E-UTRA RF Channel Number                                 |                     | 1        | 1                   | 1        |
| Channel Bandwidth (BW <sub>channel</sub> )               | MHz                 | 10       | 10                  | 1.4<br>6 |
| Special subframe                                         |                     | 6        | 6                   | 6        |
| configuration Note1                                      |                     |          |                     |          |
| Uplink-downlink configuration Note2                      |                     | 1        | 1                   | 1        |
| DRX cycle                                                | ms                  | OFF      | 80 <sup>Note7</sup> | OFF      |
| PDCCH/PCFICH/PHICH                                       |                     |          |                     |          |
| Reference measurement                                    |                     | R.6 TDD  | R.6 TDD             | R.8 TDD  |
| channel <sup>Note3</sup>                                 |                     |          |                     |          |
| OCNG Pattern <sup>Note4</sup>                            |                     | OP.2 TDD | OP.2 TDD            | OP.4 TDD |
| PBCH_RA                                                  | dB                  | 0        | 0                   | 0        |
| PBCH_RB                                                  |                     |          |                     |          |
| PSS_RA                                                   |                     |          |                     |          |
| SSS_RA                                                   |                     |          |                     |          |
| PCFICH_RB                                                |                     |          |                     |          |
| PHICH_RA                                                 |                     | 0        | 0                   | 0        |
| PHICH_RB                                                 |                     | O        | O                   |          |
| PDCCH_RA                                                 |                     |          |                     |          |
| PDCCH_RB                                                 |                     |          |                     |          |
| OCNG_RA <sup>Note5</sup>                                 |                     |          |                     |          |
| OCNG_RB <sup>Note5</sup>                                 |                     |          |                     |          |
| $N_{oc}$                                                 | dBm/1<br>5 kHz      | -98      | -98                 | -98      |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB                  | 3        | 3                   | 3        |
| $\hat{E}_s/N_{oc}$                                       | dB                  | 3        | 3                   | 3        |
|                                                          | dBm/9<br>MHz        | -65.5    | -65.5               | N/A      |
| Io <sup>Note6</sup>                                      | dBm/1<br>.08<br>MHz | N/A      | N/A                 | -74.7    |
| Propagation condition                                    | -                   | AWGN     | AWGN                | AWGN     |

Note 1: For the special subframe configuration see table 4.2-1 in 3GPP TS 36.211.

Note 2: For the uplink-downlink configuration see table 4.2-2 in 3GPP TS 36.211.

Note 3: For the reference measurement channels, see section A.3.1.

Note 4: For the OCNG pattern, see section A.3.2.

Note 5: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 6: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 7: DRX related parameters are defined in Table A.7.1.2.1-3.

Table A.7.1.2.1-2: Sounding Reference Symbol Configuration to be used in UE Transmit Timing Accuracy Tests for E-UTRAN TDD

| Field                               | Test 1 | Test 2 | Tset3 | Comment                                                         |
|-------------------------------------|--------|--------|-------|-----------------------------------------------------------------|
| rieiu                               |        | Value  |       | Comment                                                         |
| srsBandwidthConfiguration           | bw5    | bw5    | bw7   |                                                                 |
| srsSubframeConfiguration            | sc3    | sc3    | sc3   | Once every 5 subframes                                          |
| ackNackSrsSimultaneousTra nsmission | FALSE  | FALSE  | FALSE |                                                                 |
| srsMaxUpPTS                         | FALSE  | FALSE  | FALSE |                                                                 |
| srsBandwidth                        | 0      | 0      | 0     | No hopping                                                      |
| srsHoppingBandwidth                 | hbw0   | hbw0   | hbw0  |                                                                 |
| frequencyDomainPosition             | 0      | 0      | 0     |                                                                 |
| duration                            | TRUE   | TRUE   | TRUE  | Indefinite duration                                             |
| Srs-ConfigurationIndex              | 15     | 85     | 15    | SRS periodicity of 10 and 80 ms for Test 1 and 2, respectively. |
| transmissionComb                    | 0      | 0      | 0     |                                                                 |
| cyclicShift                         | cs0    | cs0    | cs0   | No cyclic shift                                                 |

Table A.7.1.2.1-3: DRX Configuration to be used in UE Transmit Timing Accuracy Test 2 for E-UTRAN TDD

| Field                                                              | Test2   | Comment |  |  |
|--------------------------------------------------------------------|---------|---------|--|--|
| Field                                                              | Value   |         |  |  |
| onDurationTimer                                                    | psf1    |         |  |  |
| drx-InactivityTimer                                                | psf1    |         |  |  |
| drx-RetransmissionTimer                                            | psf1    |         |  |  |
| longDRX-CycleStartOffset                                           | sf80    |         |  |  |
| shortDRX                                                           | disable |         |  |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |         |         |  |  |

#### A.7.1.2.2 Test Requirements

For parameters specified in Tables A.7.1.2.1-1 and A.7.1.2.1-2, the initial transmit timing accuracy, the maximum amount of timing change in one adjustment, the minimum and the maximum adjustment rate shall be within the limits defined in section 7.1.2.

The following sequence of events shall be used to verify that the requirements are met.

For the 10MHz channel bandwith, the test sequence shall be carried out in RRC\_CONNECTED for both non-DRX and DRX with a cycle length of 80 ms (Tests 1 and 2, respectively):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within  $(N_{TA} + 624) \times T_S \pm 12 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by  $+64 \times T_S$  (approximately  $+2\mu s$ ) compared to that in (a).
- c) The test system shall verify that for test 1 the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within  $(N_{TA} + 624) \times T_S \pm 12 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1. Skip this step for test 2.
- d) The test system shall verify that the UE transmit timing offset stays within  $(N_{TA} + 624) \times T_S \pm 12 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1. For test 2 the UE transmit timing offset shall be verified for the first transmission in the DRX cycle immediately after DL timing adjustment.

For the 1.4MHz channel bandwith, the test sequence shall be carried out in RRC\_CONNECTED for non-DRX (Tests 3):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within  $(N_{TA}+624)\times T_S\pm 24\times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by  $+128 \times T_S$  (approximately  $+4\mu s$ ) compared to that in (a).
- c) The test system shall verify that the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within  $(N_{TA}+624)\times T_S\pm 24\times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- d) The test system shall verify that the UE transmit timing offset stays within  $(N_{TA} + 624) \times T_S \pm 24 \times T_S$  with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.

## A.7.2 UE Timing Advance

## A.7.2.1 E-UTRAN FDD – UE Timing Advance Adjustment Accuracy Test

#### A.7.2.1.1 Test Purpose and Environment

The purpose of the test is to verify E-UTRAN FDD Timing Advance adjustment accuracy requirements, defined in section 7.3.2.2, in an AWGN model.

The test parameters are given in tables A.7.2.1.1-1, A.7.2.1.1-2, and A.7.2.1.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. In each time period, timing advance commands are sent to the UE and Sounding Reference Signals (SRS), as specified in table A.7.2.1.1-3, are sent from the UE and received by the test equipment. By measuring the reception of the SRS, the transmit timing, and hence the timing advance adjustment accuracy, can be measured.

During time period T1, the test equipment shall send one message with a Timing Advance Command MAC Control Element, as specified in Section 6.1.3.5 in TS 36.321. The Timing Advance Command value shall be set to 31, which according to Section 4.2.3 in TS 36.213 results in zero adjustment of the Timing Advance. In this way, a reference value for the timing advance used by the UE is established.

During time period T2, the test equipment shall send a sequence of messages with Timing Advance Command MAC Control Elements, with Timing Advance Command value specified in table A.7.2.1.1-2. This value shall result in changes of the timing advance used by the UE, and the accuracy of the change shall then be measured, using the SRS sent from the UE.

As specified in Section 7.3.2.1, the UE adjusts its uplink timing at sub-frame n+6 for a timing advance command received in sub-frame n. This delay must be taken into account when measuring the timing advance adjustment accuracy, via the SRS sent from the UE.

The UE Time Alignment Timer, described in Section 5.2 in TS 36.321, shall be configured so that it does not expire in the duration of the test.

Table A.7.2.1.1-1: General Test Parameters for E-UTRAN FDD Timing Advance Accuracy Test

| Parameter                                                | Unit | Value                                    | Comment                                                                                                                                             |
|----------------------------------------------------------|------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PDSCH parameters                                         |      | DL Reference Measurement Channel R.0 FDD | As specified in section A.3.1.1.1                                                                                                                   |
| PCFICH/PDCCH/PHICH parameters                            |      | DL Reference Measurement Channel R.6 FDD | As specified in section A.3.1.2.1                                                                                                                   |
| Timing Advance Command $(T_A)$ value during T1           |      | 31                                       | $N_{TA}$ = 0 for the purpose of establishing<br>a reference value from which the timing<br>advance adjustment accuracy can be<br>measured during T2 |
| Timing Advance Command (T <sub>A</sub> ) value during T2 |      | [39]                                     | $N_{TA} = [128]$                                                                                                                                    |
| DRX                                                      |      | OFF                                      |                                                                                                                                                     |
| T1                                                       | S    | 5                                        |                                                                                                                                                     |
| T2                                                       | S    | 5                                        |                                                                                                                                                     |

Table A.7.2.1.1-2: Cell specific Test Parameters for E-UTRAN FDD Timing Advance Accuracy Test

| Parameter                                | Unit       | Value    |
|------------------------------------------|------------|----------|
|                                          |            | T1 T2    |
| E-UTRA RF Channel Number                 |            | 1        |
| BW <sub>channel</sub>                    | MHz        | 10       |
| OCNG Patterns defined in A.3.2.1.1       |            | OP.1 FDD |
| (OP.1 FDD)                               |            |          |
| PBCH_RA                                  | dB         |          |
| PBCH_RB                                  | dB         |          |
| PSS_RA                                   | dB         |          |
| SSS_RA                                   | dB         |          |
| PCFICH_RB                                | dB         |          |
| PHICH_RA                                 | dB         |          |
| PHICH_RB                                 | dB         |          |
| PDCCH_RA                                 | dB         | 0        |
| PDCCH_RB                                 | dB         |          |
| PDSCH_RA                                 | dB         |          |
| PDSCH_RB                                 | dB         |          |
| OCNG_RA <sup>Note1</sup>                 | dB         |          |
| OCNG_RB <sup>Note1</sup>                 | dB         |          |
| Timing Advance Command (T <sub>A</sub> ) |            | 31 [39]  |
| $\hat{E}_s/I_{ot}$                       | dB         | 3        |
| $N_{oc}$                                 | dBm/15 KHz | -98      |
| $\hat{E}_s/N_{oc}$                       | dB         | 3        |
| Io <sup>Note2</sup>                      | dBm/9 MHz  | -65.5    |
| Propagation Condition                    |            | AWGN     |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Table A.7.2.1.1-3: Sounding Reference Symbol Configuration for E-UTRAN FDD Transmit Timing Accuracy Test

| Field                                                              | Value | Comment                        |  |  |  |
|--------------------------------------------------------------------|-------|--------------------------------|--|--|--|
| srsBandwidthConfiguration                                          | bw5   |                                |  |  |  |
| srsSubframeConfiguration                                           | sc3   | Once every 5 subframes         |  |  |  |
| ackNackSrsSimultaneousTransmission                                 | FALSE |                                |  |  |  |
| srsMaxUpPTS                                                        | N/A   | Not applicable for E-UTRAN FDD |  |  |  |
| srsBandwidth                                                       | 0     | No hopping                     |  |  |  |
| srsHoppingBandwidth                                                | hbw0  |                                |  |  |  |
| frequencyDomainPosition                                            | 0     |                                |  |  |  |
| Duration                                                           | TRUE  | Indefinite duration            |  |  |  |
| Srs-ConfigurationIndex                                             | 7     | SRS periodicity of 10.         |  |  |  |
| transmissionComb                                                   | 0     |                                |  |  |  |
| cyclicShift                                                        | cs0   | No cyclic shift                |  |  |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |       |                                |  |  |  |

#### A.7.2.1.2 Test Requirements

The UE shall apply the signalled Timing Advance value to the transmission timing at the designated activation time i.e. 6 sub frames after the reception of the timing advance command.

The Timing Advance adjustment accuracy shall be within the limits specified in section 7.3.2.2.

The rate of correct Timing Advance adjustments observed during repeated tests shall be at least 90%.

#### A.7.2.2 E-UTRAN TDD – UE Timing Advance Adjustment Accuracy Test

#### A.7.2.2.1 Test Purpose and Environment

The purpose of the test is to verify E-UTRAN TDD Timing Advance adjustment accuracy requirements, defined in section 7.3.2.2, in an AWGN model.

The test parameters are given in tables A.7.2.2.1-1, A.7.2.2.1-2, and A.7.2.2.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. In each time period, timing advance commands are sent to the UE and Sounding Reference Signals (SRS), as specified in table A.7.2.2.1-3, are sent from the UE and received by the test equipment. By measuring the reception of the SRS, the transmit timing, and hence the timing advance adjustment accuracy, can be measured.

During time period T1, the test equipment shall send one message with a Timing Advance Command MAC Control Element, as specified in Section 6.1.3.5 in TS 36.321. The Timing Advance Command value shall be set to 31, which according to Section 4.2.3 in TS 36.213 results in zero adjustment of the Timing Advance. In this way, a reference value for the timing advance used by the UE is established.

During time period T2, the test equipment shall send a sequence of messages with Timing Advance Command MAC Control Elements, with Timing Advance Command value specified in table A.7.2.1.1-2. This value shall result in changes of the timing advance used by the UE, and the accuracy of the change shall then be measured, using the SRS sent from the UE.

As specified in Section 7.3.2.1, the UE adjusts its uplink timing at sub-frame n+6 for a timing advance command received in sub-frame n. This delay must be taken into account when measuring the timing advance adjustment accuracy, via the SRS sent from the UE.

The UE Time Alignment Timer, described in Section 5.2 in TS 36.321, shall be configured so that it does not expire in the duration of the test.

Table A.7.2.2.1-1: General Test Parameters for E-UTRAN TDD Timing Advance Accuracy Test

| Parameter                                                | Unit | Value                                       | Comment                                                                                                                                           |
|----------------------------------------------------------|------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| PDSCH parameters                                         |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                                                                                                 |
| PCFICH/PDCCH/PHICH parameters                            |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                                                                                                 |
| Timing Advance Command $(T_A)$ value during T1           |      | 31                                          | N <sub>TA</sub> = 0 for the purpose of establishing a reference value from which the timing advance adjustment accuracy can be measured during T2 |
| Timing Advance Command (T <sub>A</sub> ) value during T2 |      | 39                                          | $N_{TA} = 128$                                                                                                                                    |
| DRX                                                      |      | OFF                                         |                                                                                                                                                   |
| T1                                                       | S    | 5                                           |                                                                                                                                                   |
| T2                                                       | S    | 5                                           |                                                                                                                                                   |

Table A.7.2.2.1-2: Cell specific Test Parameters for E-UTRAN TDD Timing Advance Accuracy Test

| Parameter                                                | Unit       |       | Value    |  |  |
|----------------------------------------------------------|------------|-------|----------|--|--|
|                                                          |            | T1    | T2       |  |  |
| E-UTRA RF Channel Number                                 |            | 1     |          |  |  |
| BW <sub>channel</sub>                                    | MHz        |       | 10       |  |  |
| Special subframe configuration Note1                     |            |       | 6        |  |  |
| Uplink-downlink configuration Note2                      |            |       | 1        |  |  |
| OCNG Patterns defined in A.3.2.2.1                       |            |       | OP.1 TDD |  |  |
| (OP.1 TDD)                                               |            |       |          |  |  |
| PBCH_RA                                                  | dB         |       |          |  |  |
| PBCH_RB                                                  | dB         |       |          |  |  |
| PSS_RA                                                   | dB         |       |          |  |  |
| SSS_RA                                                   | dB         |       |          |  |  |
| PCFICH_RB                                                | dB         |       |          |  |  |
| PHICH_RA                                                 | dB         |       |          |  |  |
| PHICH_RB                                                 | dB         |       |          |  |  |
| PDCCH_RA                                                 | dB         |       | 0        |  |  |
| PDCCH_RB                                                 | dB         |       |          |  |  |
| PDSCH_RA                                                 | dB         |       |          |  |  |
| PDSCH_RB                                                 | dB         |       |          |  |  |
| OCNG_RA <sup>Note3</sup>                                 | dB         |       |          |  |  |
| OCNG_RB <sup>Note3</sup>                                 | dB         |       |          |  |  |
| Timing Advance Command (T <sub>A</sub> )                 |            | 31    | [39]     |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         |       | 3        |  |  |
| $N_{oc}$                                                 | dBm/15 KHz | -98   |          |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 3     |          |  |  |
| lo <sup>Note4</sup>                                      | dBm/9 MHz  | -65.5 |          |  |  |
| Propagation Condition                                    |            |       | AWGN     |  |  |

Note 1: For the special subframe configuration see table 4.2-1 in 3GPP TS 36.211.

Table A.7.2.2.1-3: Sounding Reference Symbol Configuration for E-UTRAN TDD Transmit Timing Accuracy Test

| Field                                     | Value                                                              | Comment                  |  |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------|--------------------------|--|--|--|--|--|--|--|
| srsBandwidthConfiguration                 | bw5                                                                |                          |  |  |  |  |  |  |  |
| srsSubframeConfiguration                  | sc3                                                                | Once every 5 subframes   |  |  |  |  |  |  |  |
| ackNackSrsSimultaneousTransmission        | FALSE                                                              |                          |  |  |  |  |  |  |  |
| srsMaxUpPTS                               | N/A                                                                |                          |  |  |  |  |  |  |  |
| srsBandwidth                              | bw0                                                                | No hopping               |  |  |  |  |  |  |  |
| srsHoppingBandwidth                       | hbw0                                                               |                          |  |  |  |  |  |  |  |
| frequencyDomainPosition                   | 0                                                                  |                          |  |  |  |  |  |  |  |
| Duration                                  | TRUE                                                               | Indefinite duration      |  |  |  |  |  |  |  |
| Srs-ConfigurationIndex                    | 15                                                                 | SRS periodicity of 10ms. |  |  |  |  |  |  |  |
| transmissionComb                          | 0                                                                  |                          |  |  |  |  |  |  |  |
| cyclicShift                               | cs0                                                                | No cyclic shift          |  |  |  |  |  |  |  |
| Note: For further information see section | Note: For further information see section 6.3.2 in 3GPP TS 36.331. |                          |  |  |  |  |  |  |  |

Note 2: For the uplink-downlink configuration see table 4.2-2 in 3GPP TS 36.211.

Note 3: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 4: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

#### A.7.2.2.2 Test Requirements

The UE shall apply the signalled Timing Advance value to the transmission timing at the designated activation time i.e. 6 sub frames after the reception of the timing advance command.

The Timing Advance adjustment accuracy shall be within the limits specified in section 7.3.2.2.

## A.7.3 Radio Link Monitoring

In the following section, any uplink signal transmitted by the UE is used for detecting the In-/Out-of-Sync state of the UE. In terms of measurement, the uplink signal is verified on the basis of the UE output power:

- UE output power higher than Transmit OFF power -50 dBm (as defined in TS 36.101 [5] clause 6.3.3.1) means uplink signal
- UE output power equal to or less than Transmit OFF power -50 dBm (as defined in TS 36.101 [5] clause 6.3.3.1) means no uplink signal

## A.7.3.1 E-UTRAN FDD Radio Link Monitoring Test for Out-of-sync

#### A.7.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN FDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.1.1-1, A.7.3.1.1-2 and A.7.3.1.1-3 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Figure A.7.3.1.1-4 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 2 ms.

Table A.7.3.1.1-1: General test parameters for E-UTRAN FDD out-of-sync testing

| Pa                                      | arameter                          | Unit   |                 | Va             | alue          |                | Comment                                                                                             |  |
|-----------------------------------------|-----------------------------------|--------|-----------------|----------------|---------------|----------------|-----------------------------------------------------------------------------------------------------|--|
|                                         |                                   |        | Test 1          | Test 2         | Test 3        | Test 4         |                                                                                                     |  |
| PCFICH/PDCCH/PHICH parameters           |                                   |        | R.6 FDD         | R.7 FDD        | R.6 FDD       | R.7 FDD        | As specified in section A.3.1.2.1. None of the PDCCH are intended for the UE under test             |  |
| OCNG parame                             | eters                             |        | OP.2 FDD        | OP.2 FDD       | OP.2 FDD      | OP.2 FDD       | As specified in section A.3.2.1.2.                                                                  |  |
| Active cell                             |                                   |        | Cell 1          | Cell 1         | Cell 1        | Cell 1         | Cell 1 is on E-UTRA RF channel number 1                                                             |  |
| CP length                               |                                   |        | Normal          | Normal         | Normal        | Normal         |                                                                                                     |  |
| E-UTRA RF C                             | hannel Number                     |        | 1               | 1              | 1             | 1              | One E-UTRA FDD carrier frequency is used.                                                           |  |
| E-UTRA Chan<br>(BW <sub>channel</sub> ) | nel Bandwidth                     | MHz    | 10              | 10             | 10            | 10             |                                                                                                     |  |
| Correlation Ma<br>Configuration         | Correlation Matrix and Antenna    |        | 1x2 Low         | 2x2 Low        | 1x2 Low       | 2x2 Low        | Correlation Matrix and<br>Antenna Configuration<br>are defined in TS<br>36.101 [5] Annex<br>B.2.3.2 |  |
|                                         | DCI format                        |        | 1A              | 1A             | 1A            | 1A             | As defined in section 5.3.3.1.3 in TS 36.212                                                        |  |
| Out of sync<br>transmission             | Number of Control<br>OFDM symbols |        | 2               | 2              | 2             | 2              | Out of sync threshold Qout and the                                                                  |  |
| parameters                              | Aggregation level                 | CCE    | 8               | 8              | 8             | 8              | corresponding                                                                                       |  |
| (Note 1)                                | ρ <sub>A</sub> , ρ <sub>B</sub>   |        | 0               | -3             | 0             | -3             | hypothetical                                                                                        |  |
|                                         | Ratio of PDCCH to<br>RS EPRE      | dB     | 4               | 1              | 4             | 1              | PDCCH/PCFICH transmission                                                                           |  |
|                                         | Ratio of PCFICH<br>to RS EPRE     | dB     | 4               | 1              | 4             | 1              | parameters are as specified in section 7.6.1 and Table 7.6.1-1 respectively.                        |  |
| DRX                                     |                                   |        | OFF             | OFF            | OFF           | OFF            |                                                                                                     |  |
| Layer 3 filterin                        | g                                 |        | Enabled         | Enabled        | Enabled       | Enabled        | Counters:<br>N310 = 1; N311 = 1                                                                     |  |
| T310 timer                              |                                   | ms     | 0               | 0              | 0             | 0              | T310 is disabled                                                                                    |  |
| T311 timer                              |                                   | ms     | 1000            | 1000           | 1000          | 1000           | T311 is enabled                                                                                     |  |
|                                         | eporting mode                     |        | PUCCH 1-0       | PUCCH 1-0      | PUCCH 1-0     | PUCCH 1-0      | As defined in table 7.2.2-1 in TS 36.213.                                                           |  |
| CQI reporting                           | periodicity                       | ms     | 2               | 2              | 2             | 2              | Minimum CQI reporting periodicity                                                                   |  |
| Propagation cl                          | nannel                            |        | AWGN            | AWGN           | ETU 70 Hz     | ETU 70 Hz      |                                                                                                     |  |
| T1                                      |                                   | S      | 1               | 1              | 1             | 1              |                                                                                                     |  |
| T2                                      |                                   | S      | 0.4             | 0.4            | 0.4           | 0.4            |                                                                                                     |  |
| T3                                      |                                   | S      | 0.5             | 0.5            | 0.5           | 0.5            |                                                                                                     |  |
| Note 1: PI                              | OCCH/PCFICH corre                 | enondi | na to the out o | f sync transmi | esion naramet | ars need not h | e included in the                                                                                   |  |

Note 1: PDCCH/PCFICH corresponding to the out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.1.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for out-of-sync radio link monitoring tests # 1 and # 2

| Unit          | Test 1                                   |                                             |                                                             | Test 2                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|---------------|------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|               | T1                                       | T2                                          | Т3                                                          | T1                                                                                                                                                                                                                                                                                                                                                                                        | T2                                                                                                                                                                                                                                                                                                                                                                                                      | T3        |  |
|               | 1                                        |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |
|               |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| MHz           |                                          | 10                                          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |
|               |                                          | 1x2 Low                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 2x2 Low                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |
|               |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               |                                          | OP.2 FDD                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | OP.2 FDD                                                                                                                                                                                                                                                                                                                                                                                                |           |  |
|               |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               |                                          | 0                                           |                                                             | -3                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |
| dB            |                                          | 4                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          | 0                                           |                                                             | -3                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            |                                          |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
| dB            | -4.7                                     | -9.5                                        | -13.5                                                       | -4.7                                                                                                                                                                                                                                                                                                                                                                                      | -9.5                                                                                                                                                                                                                                                                                                                                                                                                    | -13.5     |  |
| dBm/15<br>kHz | -98                                      |                                             |                                                             | -98                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               | AWGN AWGN                                |                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |
|               | dB d | MHz  dB | MHz 10 1x2 Low  OP.2 FDD  ORD  ORD  ORD  ORD  ORD  ORD  ORD | MHz 10 1x2 Low  OP.2 FDD  OBB 4  dB 4  dB 4  dB 4  dB 4  dB 6  dB 7  -98  kHz | MHz 10  1x2 Low  OP.2 FDD  OBB 4  dB 4  dB 4  dB 4  dB 4  dB 4  dB 6  dB 7  dB 7  -98  dBm/15 kHz | MHz 10 10 |  |

- Note 1: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.
- Note 3: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1.
- Note 4: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 5: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 6: The SNR in time periods T1, T2 and T3 is denoted as SNR1, SNR2 and SNR3 respectively in figure A.7.3.1.1-4.

Table A.7.3.1.1-3: Cell specific test parameters for E-UTRAN FDD (cell # 1) for out-of-sync radio link monitoring tests # 3 and # 4

| Parameter                       | Unit   |                     | Test 3   | Test 3 |      |          |       |  |
|---------------------------------|--------|---------------------|----------|--------|------|----------|-------|--|
|                                 |        | T1                  | T2       | T3     | T1   | T2       | T3    |  |
| E-UTRA RF Channel               |        |                     | 1        |        |      | 1        |       |  |
| Number                          |        |                     |          |        |      |          |       |  |
| BW <sub>channel</sub>           | MHz    |                     | 10       |        |      | 10       |       |  |
| Correlation Matrix              |        |                     | 1x2 Low  |        |      | 2x2 Low  |       |  |
| and Antenna                     |        |                     |          |        |      |          |       |  |
| Configuration                   |        |                     |          |        |      |          |       |  |
| OCNG Pattern                    |        |                     |          |        |      |          |       |  |
| defined in A.3.2.1              |        |                     | OP.2 FDD |        |      | OP.2 FDD |       |  |
| (FDD)                           |        |                     |          |        |      |          |       |  |
| ρ <sub>A</sub> , ρ <sub>B</sub> |        |                     | 0        |        | -3   |          |       |  |
| PCFICH_RB                       | dB     |                     | 4        |        |      | 1        |       |  |
| PDCCH_RA                        | dB     |                     | 4        |        |      | 1        |       |  |
| PDCCH_RB                        | dB     |                     | 4        |        |      | 1        |       |  |
| PBCH_RA                         | dB     |                     |          |        |      |          |       |  |
| PBCH_RB                         | dB     |                     |          |        |      |          |       |  |
| PSS_RA                          | dB     |                     |          |        |      |          |       |  |
| SSS_RA                          | dB     |                     |          |        |      |          |       |  |
| PHICH_RA                        | dB     |                     | 0        |        | -3   |          |       |  |
| PHICH_RB                        | dB     |                     |          |        |      |          |       |  |
| PDSCH_RA                        | dB     |                     |          |        |      |          |       |  |
| PDSCH_RB                        | dB     |                     |          |        |      |          |       |  |
| OCNG_RA <sup>Note 1</sup>       | dB     |                     |          |        |      |          |       |  |
| OCNG RB <sup>Note 1</sup>       | dB     |                     |          |        |      |          |       |  |
| SNR Note 6                      | dB     | -1.4                | -5.5     | -11.5  | -2.3 | -6.2     | -12.2 |  |
| $N_{oc}$                        | dBm/15 | -98                 |          |        | -98  |          |       |  |
| 1 oc                            | kHz    |                     |          |        |      |          |       |  |
| Propagation condition           |        | ETU 70 Hz ETU 70 Hz |          |        |      |          |       |  |

- Note 1: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.
- Note 3: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1.
- Note 4: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 5: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal
- Note 6: The SNR in time periods T1, T2 and T3 is denoted as SNR1, SNR2 and SNR3 respectively in figure A.7.3.1.1-4.

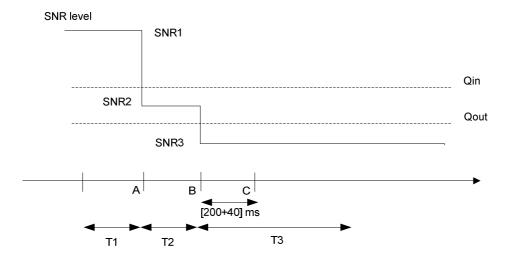



Figure A.7.3.1.1-4 SNR variation for out-of-sync testing

#### A.7.3.1.2 Test Requirements

The UE behaviour in each test during time durations T1, T2 and T3 shall be as follows:

During the period from time point A to time point B UE shall transmit uplink signal at least in all subframes configured for CQI transmission according to the configured CQI reporting mode (PUCCH 1-0).

The UE shall stop transmitting uplink signal no later than time point C (240 ms from the start of the time duration T3).

The rate of correct events observed during repeated tests shall be at least 90%.

## A.7.3.2 E-UTRAN FDD Radio Link Monitoring Test for In-sync

#### A.7.3.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN FDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.2.1-1 and A.7.3.2.1-2 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of five successive time periods, with time duration of T1, T2, T3, T4 and T5 respectively. Figure A.7.3.2.1-3 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 2 ms.

Table A.7.3.2.1-1: General test parameters for E-UTRAN FDD in-sync testing

| Test 1   Test 2   R.6 FDD   R.7 FDD   As specified in section   A.3.1.2.1.   None of the PDCCH are intended for the UE under test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pa               | arameter                  | Unit | Value     |          | Comment                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|------|-----------|----------|--------------------------------------------------|--|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                           | 0    |           |          |                                                  |  |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PCFICH/PDC0      | CH/PHICH                  |      |           |          | As specified in section                          |  |
| OCNG parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | parameters       |                           |      |           |          |                                                  |  |
| Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                |                           |      |           |          | None of the PDCCH are                            |  |
| OCNG parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                           |      |           |          | intended for the UE under                        |  |
| Active cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |      |           |          |                                                  |  |
| CP length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCNG parame      | eters                     |      | OP.2 FDD  | OP.2 FDD | A.3.2.1.2.                                       |  |
| CP length   E-UTRA RF Channel Number   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Active cell      |                           |      | Cell 1    | Cell 1   |                                                  |  |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CP length        |                           |      | Normal    | Normal   |                                                  |  |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E-UTRA RF C      | hannel Number             |      | 1         | 1        |                                                  |  |
| Correlation Matrix and Antenna   Configuration   Correlation Matrix and Antenna Configuration   Antenna Configuration are defined in TS 36.101 [5]   Annex B.2.3.2   Antenna Configuration are defined in TS 36.101 [5]   Annex B.2.3.2   Antenna Configuration are defined in TS 36.101 [5]   Annex B.2.3.2   Antenna Configuration are defined in TS 36.101 [5]   Annex B.2.3.2   Antenna Configuration are defined in TS 36.212   Antenna Configuration are defined in Section 5.3.3.1.4 in TS 36.212   In sync threshold Q <sub>in</sub> and the corresponding hypothetical phypothetical phypotheti |                  | nel Bandwidth             | MHz  | 10        | 10       |                                                  |  |
| DCI format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Correlation Ma   | trix and Antenna          |      | 1x2 Low   | 2x2 Low  | Correlation Matrix and                           |  |
| Number of Control corporation   CE   As defined in section   S.3.3.1.4 in TS 36.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Configuration    |                           |      |           |          |                                                  |  |
| DCI format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                           |      |           |          |                                                  |  |
| In sync transmission parameters (Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | DCI format                |      | 10        | 10       |                                                  |  |
| Transmission parameters (Note 1)   Aggregation level   CCE   4   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                           |      |           |          | 5.3.3.1.4 in TS 36.212                           |  |
| $ \begin{array}{ c c c c c } \hline (Note 1) & \begin{array}{ c c c c }\hline p_{A_1} & p_B & 0 & -3 & PDCCH/PCFICH \\ \hline Ratio of PDCCH & 0 & -3 & transmission parameters \\ \hline Ratio of PDCICH to RS EPRE & 1 & 1 & and Table 7.6.1-2 \\ \hline Ratio of PCFICH to RS EPRE & 1 & 1 & As defined in section and Table 7.6.1-2 \\ \hline POUT of sync transmission parameters (Note 1) & 1 & 1 & As defined in section 5.3.3.1.3 in TS 36.212 \\ \hline Out of sync transmission parameters (Note 1) & 2 & 2 & Out of sync threshold Q_{out} and the corresponding hypothetical (Note 1) & 2 & 2 & PDCCH/PCFICH transmission parameters are as specified in section 5.3.3.1.3 in TS 36.212 \\ \hline Number of Control OFDM symbols & 2 & 2 & Out of sync threshold Q_{out} and the corresponding hypothetical hypothetical PDCCH/PCFICH transmission parameters are as specified in section 7.6.1 and Table 7.6.1-1 respectively.                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                           |      | 2         | 2        |                                                  |  |
| Ratio of PDCCH to RS EPRE   Ratio of PCFICH to RS EPRE   Ratio of PDCCH   Ratio of PCFICH   Ratio of PCCH   Ratio             |                  | Aggregation level         | CCE  | 4         |          |                                                  |  |
| to RS EPRE   Ratio of PCFICH to RS EPRE   As to of PCFICH to RS EPRE   DCI format   1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Note 1)         |                           |      | 0         |          |                                                  |  |
| Number of Control transmission parameters (Note 1)   Number of Control DFDM symbols   Aggregation level to RS EPRE   Ratio of PDCCH to RS EPRE   Ratio of PDCCH to RS EPRE   Ratio of PCFICH to RS EPRE   Enabled   Enabled   Enabled   T311 timer   ms   2000   2000   T310 is enabled   T311 timer   ms   1000   1000   T311 is enabled   PUCCH 1-0   As defined in table 7.2.2-1 in TS 36.213.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                           |      | 0         | -3       | are as specified in section                      |  |
| DCI format   1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Ratio of PCFICH           |      | 4         | 1        |                                                  |  |
| Out of sync transmission parameters (Note 1)         Number of Control OFDM symbols         2         2         Out of sync threshold Qout and the corresponding hypothetical PDCCH/PCFICH transmission parameters are as specified in section 7.6.1 and Table 7.6.1-1 respectively.           (Note 1)         Ratio of PDCCH to RS EPRE Ratio of PCFICH to RS EPRE         dB         4         1         Trespectively.           DRX         OFF         OFF         OFF         OFF           Layer 3 filtering         Enabled         Enabled         Counters: N310 = 1; N311 = 1           T310 timer         ms         2000         2000         T310 is enabled           T311 timer         ms         1000         T311 is enabled           Periodic CQI reporting mode         PUCCH 1-0         PUCCH 1-0         As defined in table 7.2.2-1 in TS 36.213.           CQI reporting periodicity         ms         2         2         Minimum CQI reporting periodicity           Propagation channel         ETU 70 Hz         ETU 70 Hz         ETU 70 Hz           T2         s         0.4         0.4           T3         s         1.466           T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |      |           |          | , ,                                              |  |
| Transmission parameters (Note 1)   Aggregation level   CCE   8   8   8   PDCCH/PCFICH transmission parameters (Note 1)   PA, ρB   0   -3   PDCCH/PCFICH transmission parameters are as specified in section 7.6.1 and Table 7.6.1-1 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | DCI format                |      | 1A        | 1A       | 5.3.3.1.3 in TS 36.212                           |  |
| Aggregation level   CCE   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |      | 2         | 2        | Out of sync threshold Qout and the corresponding |  |
| Note 1   PA, PB   B   B   B   B   B   B   B   B   B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | parameters       |                           | CCE  | 8         | 8        |                                                  |  |
| Ratio of PDCCH to RS EPRE   Ratio of PCFICH to RS EPRE   OFF   OFF   OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Note 1)         |                           |      | 0         | -3       |                                                  |  |
| To RS EPRE   Ratio of PCFICH   to RS EPRE   Ratio of PCFICH   to RS EPRE   Ratio of PCFICH   to RS EPRE   DRX   OFF   OFF   Counters:   N310 = 1; N311 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | ' ' '                     |      |           |          | transmission parameters                          |  |
| To RS EPRE   Ratio of PCFICH to RS EPRE   Ratio of PCFICH to RS EPRE   DRX   OFF   OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Ratio of PDCCH            | dB   | 4         | 1        |                                                  |  |
| DRX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | to RS EPRE                |      |           |          |                                                  |  |
| Layer 3 filtering         Enabled         Enabled         Counters: N310 = 1; N311 = 1           T310 timer         ms         2000         T310 is enabled           T311 timer         ms         1000         1000         T311 is enabled           Periodic CQI reporting mode         PUCCH 1-0         PUCCH 1-0         As defined in table 7.2.2-1 in TS 36.213.           CQI reporting periodicity         ms         2         2         Minimum CQI reporting periodicity           Propagation channel         ETU 70 Hz         ETU 70 Hz         ETU 70 Hz           T1         s         0.5         0.5           T2         s         0.4         0.4           T3         s         1.46         1.46           T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                           | dB   | 4         | 1        | respectively.                                    |  |
| N310 = 1; N311 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                           |      |           |          |                                                  |  |
| T311 timer         ms         1000         1000         T311 is enabled           Periodic CQI reporting mode         PUCCH 1-0         As defined in table 7.2.2-1 in TS 36.213.           CQI reporting periodicity         ms         2         Minimum CQI reporting periodicity           Propagation channel         ETU 70 Hz         ETU 70 Hz           T1         s         0.5         0.5           T2         s         0.4         0.4           T3         s         1.46         1.46           T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Layer 3 filterin | g                         |      | Enabled   | Enabled  |                                                  |  |
| Periodic CQI reporting mode         PUCCH 1-0         PUCCH 1-0 in TS 36.213.           CQI reporting periodicity         ms         2         2         Minimum CQI reporting periodicity           Propagation channel         ETU 70 Hz         ETU 70 Hz         ETU 70 Hz           T1         s         0.5         0.5           T2         s         0.4         0.4           T3         s         1.46         1.46           T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T310 timer       |                           | ms   |           |          |                                                  |  |
| CQI reporting periodicity   ms   2   2   Minimum CQI reporting periodicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                           | ms   |           |          |                                                  |  |
| Propagation channel         ETU 70 Hz         ETU 70 Hz           T1         s         0.5         0.5           T2         s         0.4         0.4           T3         s         1.46         1.46           T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                           |      | PUCCH 1-0 |          | in TS 36.213.                                    |  |
| Propagation channel         ETU 70 Hz         ETU 70 Hz           T1         s         0.5         0.5           T2         s         0.4         0.4           T3         s         1.46         1.46           T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CQI reporting    | CQI reporting periodicity |      | 2         | 2        |                                                  |  |
| T2     s     0.4     0.4       T3     s     1.46     1.46       T4     s     0.4     0.4       T5     s     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                           |      |           |          |                                                  |  |
| T3     s     1.46     1.46       T4     s     0.4     0.4       T5     s     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | T1                        |      |           |          |                                                  |  |
| T4         s         0.4         0.4           T5         s         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                           |      |           |          |                                                  |  |
| T5 s 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                           |      |           |          |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                           |      |           |          |                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | OCCU/DOEIOU aarr          |      |           |          | L syna transmission                              |  |

Note 1: PDCCH/PCFICH corresponding to the in-sync and out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.2.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for in-sync radio link monitoring tests # 1 and # 2

| Parameter                       | Unit   | Test 1    |      |       |     |           |      | Test 2   |      |      |     |      |     |   |
|---------------------------------|--------|-----------|------|-------|-----|-----------|------|----------|------|------|-----|------|-----|---|
|                                 |        | T1        | T2   | T3    | T4  |           | T5   | T1       | T2   | Т3   | T4  | ı    | T5  |   |
| E-UTRA RF Channel               |        | 1         |      |       |     |           |      |          | 1    |      |     |      |     |   |
| Number                          |        |           |      |       |     |           |      |          |      |      |     |      |     |   |
| BW <sub>channel</sub>           | MHz    |           |      | 10    | )   |           |      | 10       |      |      |     |      |     |   |
| Correlation Matrix              |        |           |      | 1x2 L | _ow |           |      |          |      | 2x2  | Low | ,    |     |   |
| and Antenna                     |        |           |      |       |     |           |      |          |      |      |     |      |     |   |
| Configuration                   |        |           |      |       |     |           |      |          |      |      |     |      |     |   |
| OCNG Pattern                    |        |           |      |       |     |           |      |          |      |      |     |      |     |   |
| defined in A.3.2.1              |        |           |      | OP.2  | FDD |           |      | OP.2 FDD |      |      |     |      |     |   |
| (FDD)                           |        |           |      |       |     |           |      |          |      |      |     |      |     |   |
| ρ <sub>A</sub> , ρ <sub>B</sub> |        | 0         |      |       |     |           | -3   |          |      |      |     |      |     |   |
| PCFICH_RB                       | dB     | 4         |      |       |     |           |      |          | 1    |      |     |      |     |   |
| PDCCH_RA                        | dB     |           |      | 0     |     |           |      |          |      |      | -3  |      |     |   |
| PDCCH_RB                        | dB     |           |      | 0     |     |           |      |          |      |      | -3  |      |     |   |
| PBCH_RA                         | dB     |           |      | `     |     |           |      |          |      |      |     |      |     |   |
| PBCH_RB                         | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| PSS_RA                          | dB     |           |      |       |     |           |      | !        |      |      |     |      |     |   |
| SSS_RA                          | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| PHICH_RA                        | dB     |           |      | 0     |     |           |      | -3       |      |      |     |      |     |   |
| PHICH_RB                        | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| PDSCH_RA                        | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| PDSCH_RB                        | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| OCNG_RA <sup>Note 1</sup>       | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| OCNG RB <sup>Note 1</sup>       | dB     |           |      |       |     |           |      |          |      |      |     |      |     |   |
| SNR Note 6                      | dB     | -1.4      | -5.5 | -11   | .5  | -6.4      | -1.4 | -2.3     | -6.2 | 2 -1 | 2.2 | -7.3 | -2. | 3 |
| $N_{oc}$                        | dBm/15 |           | •    | -98   | 8   |           |      |          |      | -    | 98  |      |     |   |
| 1 oc                            | kHz    |           |      |       |     |           |      |          |      |      |     |      |     |   |
| Propagation condition           |        | ETU 70 Hz |      |       |     | ETU 70 Hz |      |          |      |      |     |      |     |   |

- Note 1: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.
- Note 3: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1.
- Note 4: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 5: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 6: The SNR in time periods T1, T2, T3, T4 and T5 is denoted as SNR1, SNR2, SNR3, SNR4 and SNR5 respectively in figure A.7.3.2.1-3.

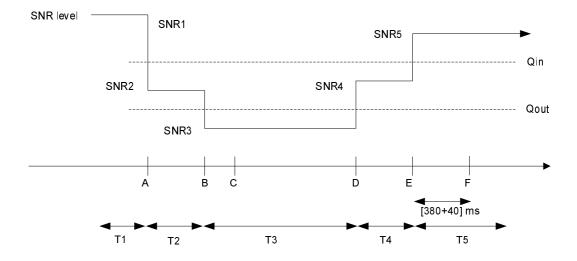



Figure A.7.3.2.1-3 SNR variation for in-sync testing

#### A.7.3.2.2 Test Requirements

The UE behaviour in each test during time durations T1, T2, T3, T4 and T5 shall be as follows:

During the period from time point A to time point F (420 ms after the start of time duration T5) the UE shall transmit uplink signal at least in all subframes configured for CQI transmission according to the configured CQI reporting mode (PUCCH 1-0).

The rate of correct events observed during repeated tests shall be at least 90%.

## A.7.3.3 E-UTRAN TDD Radio Link Monitoring Test for Out-of-sync

#### A.7.3.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN TDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.3.1-1, A.7.3.3.1-2 and A.7.3.3.1-3 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Figure A.7.3.3.1-4 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 1 ms.

Table A.7.3.3.1-1: General test parameters for E-UTRAN TDD out-of-sync testing

| Pi                                      | arameter                          | Unit |           | Va        | lue       |           | Comment                                                                                          |
|-----------------------------------------|-----------------------------------|------|-----------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------|
|                                         |                                   |      | Test 1    | Test 2    | Test 3    | Test 4    | 1                                                                                                |
| PCFICH/PDC0<br>parameters               | CH/PHICH                          |      | R.6 TDD   | R.7 TDD   | R.6 TDD   | R.7 TDD   | As specified in section A.3.1.2.2. None of the PDCCH are intended for the UE under test          |
| OCNG parame                             | eters                             |      | OP.2 TDD  | OP.2 TDD  | OP.2 TDD  | OP.2 TDD  | As specified in section A.3.2.2.2.                                                               |
| Active cell                             |                                   |      | Cell 1    | Cell 1    | Cell 1    | Cell 1    | Cell 1 is on E-UTRA RF channel number 1                                                          |
| CP length                               |                                   |      | Normal    | Normal    | Normal    | Normal    |                                                                                                  |
| E-UTRA RF C                             | hannel Number                     |      | 1         | 1         | 1         | 1         | One E-UTRA TDD carrier frequency is used.                                                        |
| E-UTRA Chan<br>(BW <sub>channel</sub> ) | nel Bandwidth                     | MHz  | 10        | 10        | 10        | 10        |                                                                                                  |
| Correlation Ma<br>Configuration         | atrix and Antenna                 |      | 1x2 Low   | 2x2 Low   | 1x2 Low   | 2x2 Low   | Correlation Matrix and<br>Antenna Configuration are<br>defined in TS 36.101 [5]<br>Annex B.2.3.2 |
|                                         | DCI format                        |      | 1A        | 1A        | 1A        | 1A        | As defined in section 5.3.3.1.3 in TS 36.212                                                     |
| Out of sync transmission                | Number of Control<br>OFDM symbols |      | 2         | 2         | 2         | 2         | Out of sync threshold Q <sub>out</sub> and the corresponding                                     |
| parameters                              | Aggregation level                 | CCE  | 8         | 8         | 8         | 8         | hypothetical                                                                                     |
| (Note 1)                                | ρ <sub>A</sub> , ρ <sub>B</sub>   |      | 0         | -3        | 0         | -3        | PDCCH/PCFICH                                                                                     |
|                                         | Ratio of PDCCH<br>to RS EPRE      | dB   | 4         | 1         | 4         | 1         | transmission parameters are as specified in section                                              |
|                                         | Ratio of PCFICH to RS EPRE        | dB   | 4         | 1         | 4         | 1         | 7.6.1 and Table 7.6.1-1 respectively.                                                            |
| DRX                                     |                                   |      | OFF       | OFF       | OFF       | OFF       |                                                                                                  |
| Layer 3 filterin                        | g                                 |      | Enabled   | Enabled   | Enabled   | Enabled   | Counters:<br>N310 = 1; N311 = 1                                                                  |
| T310 timer                              |                                   | ms   | 0         | 0         | 0         | 0         | T310 is disabled                                                                                 |
| T311 timer                              |                                   | ms   | 1000      | 1000      | 1000      | 1000      | T311 is enabled                                                                                  |
|                                         | eporting mode                     |      | PUCCH 1-0 | PUCCH 1-0 | PUCCH 1-0 | PUCCH 1-0 | As defined in table 7.2.2-1 in TS 36.213.                                                        |
| CQI reporting                           | periodicity                       | ms   | 1         | 1         | 1         | 1         | Minimum CQI reporting periodicity                                                                |
| Propagation c                           | hannel                            |      | AWGN      | AWGN      | ETU 70 Hz | ETU 70 Hz |                                                                                                  |
| T1                                      |                                   | S    | 1         | 1         | 1         | 1         |                                                                                                  |
|                                         |                                   |      | 0.4       | 0.4       | 0.4       | 0.4       |                                                                                                  |
| T2                                      |                                   | S    | 0.4       | 0.4       | 0.4       | 0.4       |                                                                                                  |

Note 1: PDCCH/PCFICH corresponding to the out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.3.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for out-of-sync radio link monitoring tests # 1 and # 2

| Parameter                 | Unit   |                | Test 1   |       |          | Test 2  |       |  |  |
|---------------------------|--------|----------------|----------|-------|----------|---------|-------|--|--|
|                           |        | T1             | T2       | T3    | T1       | T2      | T3    |  |  |
| E-UTRA RF Channel         |        |                | 1        |       |          | 1       |       |  |  |
| Number                    |        |                |          |       |          |         |       |  |  |
| BW <sub>channel</sub>     | MHz    |                | 10       |       |          | 10      |       |  |  |
| Correlation Matrix        |        |                | 1x2 Low  |       |          | 2x2 Low |       |  |  |
| and Antenna               |        |                |          |       |          |         |       |  |  |
| Configuration             |        |                |          |       |          |         |       |  |  |
| Special subframe          |        |                | 6        |       |          | 6       |       |  |  |
| configuration Note1       |        |                |          |       |          |         |       |  |  |
| Uplink-downlink           |        |                | 1        |       |          | 1       |       |  |  |
| configuration Note2       |        |                |          |       |          |         |       |  |  |
| OCNG Pattern              |        |                |          |       |          |         |       |  |  |
| defined in A.3.2.2        |        |                | OP.2 TDD |       | OP.2 TDD |         |       |  |  |
| (TDD)                     |        |                |          |       |          |         |       |  |  |
| $\rho_{A},\rho_{B}$       |        |                | 0        |       |          | -3      |       |  |  |
| PCFICH_RB                 | dB     |                | 4        |       |          | 1       |       |  |  |
| PDCCH_RA                  | dB     |                | 4        |       |          | 1       |       |  |  |
| PDCCH_RB                  | dB     |                | 4        |       | 1        |         |       |  |  |
| PBCH_RA                   | dB     |                |          |       |          |         |       |  |  |
| PBCH_RB                   | dB     |                |          |       |          |         |       |  |  |
| PSS_RA                    | dB     |                |          |       |          |         |       |  |  |
| SSS_RA                    | dB     |                |          |       |          |         |       |  |  |
| PHICH_RA                  | dB     |                | 0        |       |          | -3      |       |  |  |
| PHICH_RB                  | dB     |                |          |       |          |         |       |  |  |
| PDSCH_RA                  | dB     |                |          |       |          |         |       |  |  |
| PDSCH_RB                  | dB     |                |          |       |          |         |       |  |  |
| OCNG_RA <sup>Note 3</sup> | dB     |                |          |       |          |         |       |  |  |
| OCNG RB <sup>Note 3</sup> | dB     |                |          |       |          |         |       |  |  |
| SNR Note 8                | dB     | -5.1           | -9.1     | -13.1 | -5.2     | -9.2    | -13.2 |  |  |
| $N_{oc}$                  | dBm/15 | -98            |          |       | -98      |         |       |  |  |
| 1 * oc                    | kHz    | <del>l</del> z |          |       |          |         |       |  |  |
| Propagation condition     |        | AWGN AWGN      |          |       |          |         |       |  |  |
|                           |        |                |          |       |          |         |       |  |  |

- Note 1: For the special subframe configuration see table 4.2-1 in 3GPP TS 36.211.
- Note 2: For the uplink-downlink configuration see table 4.2-2 in 3GPP TS 36.211.
- Note 3: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 4: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.
- Note 5: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1.
- Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 8: The SNR in time periods T1, T2 and T3 is denoted as SNR1, SNR2 and SNR3 respectively in figure A.7.3.3.1-4.

Table A.7.3.3.1-3: Cell specific test parameters for E-UTRAN TDD (cell # 1) for out-of-sync radio link monitoring tests # 3 and # 4

| Parameter                                           | Unit   |                     | Test 3    |       |          | Test 4  |       |  |
|-----------------------------------------------------|--------|---------------------|-----------|-------|----------|---------|-------|--|
|                                                     |        | T1                  | T2        | T3    | T1       | T2      | T3    |  |
| E-UTRA RF Channel                                   |        | _                   | 1         |       |          | 1       |       |  |
| Number                                              |        |                     |           |       |          |         |       |  |
| BW <sub>channel</sub>                               | MHz    |                     | 10        |       |          | 10      |       |  |
| Correlation Matrix                                  |        |                     | 1x2 Low   |       |          | 2x2 Low |       |  |
| and Antenna                                         |        |                     |           |       |          |         |       |  |
| Configuration                                       |        |                     |           |       |          |         |       |  |
| Special subframe                                    |        |                     | 6         |       |          | 6       |       |  |
| configuration Note1                                 |        |                     |           |       |          |         |       |  |
| Uplink-downlink                                     |        |                     | 1         |       |          | 1       |       |  |
| configuration Note2                                 |        |                     |           |       |          |         |       |  |
| OCNG Pattern                                        |        |                     |           |       |          |         |       |  |
| defined in A.3.2.2                                  |        |                     | OP.2 TDD  |       | OP.2 TDD |         |       |  |
| (TDD)                                               |        |                     |           |       |          |         |       |  |
| ρα, ρΒ                                              | in .   |                     | 0         |       |          | -3      |       |  |
| PCFICH_RB                                           | dB     |                     | 4         |       |          | 11      |       |  |
| PDCCH_RA                                            | dB     |                     | 4         |       |          | 11      |       |  |
| PDCCH_RB                                            | dB     |                     | 4         |       |          | 1       |       |  |
| PBCH_RA                                             | dB     |                     |           |       |          |         |       |  |
| PBCH_RB                                             | dB     |                     |           |       |          |         |       |  |
| PSS_RA                                              | dB     |                     |           |       |          |         |       |  |
| SSS_RA                                              | dB     |                     | 0         |       |          | -3      |       |  |
| PHICH_RA                                            | dB     |                     | U         |       |          | -3      |       |  |
| PHICH_RB                                            | dB     |                     |           |       |          |         |       |  |
| PDSCH_RA                                            | dB     |                     |           |       |          |         |       |  |
| PDSCH_RB                                            | dB     |                     |           |       |          |         |       |  |
| OCNG_RA <sup>Note 3</sup> OCNG_RB <sup>Note 3</sup> | dB     |                     |           |       |          |         |       |  |
| SNR Note 8                                          | dB     | 4.4                 | <b>50</b> | 44.0  | 0.0      | T 5.0   | 44.0  |  |
|                                                     | dB     | -1.4                | -5.3      | -11.3 | -2.3     | -5.9    | -11.9 |  |
| $N_{oc}$                                            | dBm/15 | -98                 |           |       | -98      |         |       |  |
|                                                     | kHz    |                     |           |       |          | _       |       |  |
| Propagation condition                               |        | ETU 70 Hz ETU 70 Hz |           |       |          |         |       |  |

- Note 1: For the special subframe configuration see table 4.2-1 in 3GPP TS 36.211.
- Note 2: For the uplink-downlink configuration see table 4.2-2 in 3GPP TS 36.211.
- Note 3: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 4: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.
- Note 5: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1.
- Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 8: The SNR in time periods T1, T2 and T3 is denoted as SNR1, SNR2 and SNR3 respectively in figure A.7.3.3.1-4.

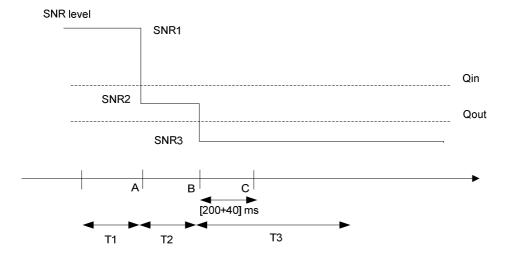



Figure A.7.3.3.1-4. SNR variation for out-of-sync testing

#### A.7.3.3.2 Test Requirements

The UE behaviour in each test during time durations T1, T2 and T3 shall be as follows:

During the period from time point A to time point B the UE shall transmit uplink signal at least in all uplink subframes configured for CQI transmission according to the configured CQI reporting mode (PUCCH 1-0).

The UE shall stop transmitting uplink signal no later than time point C (240 ms after the start of the time duration T3).

The rate of correct events observed during repeated tests shall be at least 90%.

## A.7.3.4 E-UTRAN TDD Radio Link Monitoring Test for In-sync

#### A.7.3.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN TDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.4.1-1 and A.7.3.4.1-2 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of five successive time periods, with time duration of T1, T2, T3, T4 and T5 respectively. Figure A.7.3.4.1-3 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 1 ms.

Table A.7.3.4.1-1: General test parameters for E-UTRAN TDD in-sync testing

| Pa                                      | arameter                          | Unit   | Va               | lue              | Comment                                                      |
|-----------------------------------------|-----------------------------------|--------|------------------|------------------|--------------------------------------------------------------|
|                                         |                                   | 0      | Test 1           | Test 2           |                                                              |
| PCFICH/PDC0                             | CH/PHICH                          |        | R.6 TDD          | R.7 TDD          | As specified in section                                      |
| parameters                              |                                   |        |                  |                  | A.3.1.2.2.                                                   |
| ·                                       |                                   |        |                  |                  | None of the PDCCH are                                        |
|                                         |                                   |        |                  |                  | intended for the UE under                                    |
|                                         |                                   |        |                  |                  | test                                                         |
| OCNG parame                             | eters                             |        | OP.2 TDD         | OP.2 TDD         | As specified in section A.3.2.2.2.                           |
| Active cell                             |                                   |        | Cell 1           | Cell 1           | Cell 1 is on E-UTRA RF channel number 1                      |
| CP length                               |                                   |        | Normal           | Normal           |                                                              |
| E-UTRA RF C                             | hannel Number                     |        | 1                | 1                | One E-UTRA FDD carrier frequency is used.                    |
| E-UTRA Chan<br>(BW <sub>channel</sub> ) | nel Bandwidth                     | MHz    | 10               | 10               | moquemey to dood.                                            |
| Correlation Ma                          | trix and Antenna                  |        | 1x2 Low          | 2x2 Low          | Correlation Matrix and                                       |
| Configuration                           |                                   |        |                  |                  | Antenna Configuration are                                    |
|                                         |                                   |        |                  |                  | defined in TS 36.101 [5]                                     |
|                                         | DCI format                        |        | 1C               | 1C               | Annex B.2.3.2 As defined in section                          |
|                                         |                                   |        |                  |                  | 5.3.3.1.4 in TS 36.212                                       |
| In sync transmission                    | Number of Control OFDM symbols    |        | 2                | 2                | In sync threshold Q <sub>in</sub> and the corresponding      |
| parameters                              | Aggregation level                 | CCE    | 4                | 4                | hypothetical                                                 |
| (Note 1)                                | ρ <sub>A</sub> , ρ <sub>B</sub>   |        | 0                | -3               | PDCCH/PCFICH                                                 |
|                                         | Ratio of PDCCH<br>to RS EPRE      |        | 0                | -3               | transmission parameters are as specified in section          |
|                                         | Ratio of PCFICH                   |        | 4                | 1                | and Table 7.6.1-2                                            |
|                                         | to RS EPRE                        |        |                  |                  | respectively.                                                |
|                                         | DCI format                        |        | 1A               | 1A               | As defined in section<br>5.3.3.1.3 in TS 36.212              |
| Out of sync transmission                | Number of Control<br>OFDM symbols |        | 2                | 2                | Out of sync threshold Q <sub>out</sub> and the corresponding |
| parameters                              | Aggregation level                 | CCE    | 8                | 8                | hypothetical                                                 |
| (Note 1)                                | ρ <sub>A</sub> , ρ <sub>B</sub>   | 002    | 0                | -3               | PDCCH/PCFICH                                                 |
| ,                                       | ра, рв                            |        | U                |                  | transmission parameters                                      |
|                                         | Ratio of PDCCH                    | dB     | 4                | 1                | are as specified in section                                  |
|                                         | to RS EPRE                        | u.b    | '                |                  | 7.6.1 and Table 7.6.1-1                                      |
|                                         | Ratio of PCFICH<br>to RS EPRE     | dB     | 4                | 1                | respectively.                                                |
| DRX                                     |                                   |        | OFF              | OFF              |                                                              |
| Layer 3 filterin                        | g                                 |        | Enabled          | Enabled          | Counters:<br>N310 = 1; N311 = 1                              |
| T310 timer                              |                                   | ms     | 2000             | 2000             | T310 is enabled                                              |
| T311 timer                              |                                   | ms     | 1000             | 1000             | T311 is enabled                                              |
| Periodic CQI r                          |                                   |        | PUCCH 1-0        | PUCCH 1-0        | As defined in table 7.2.2-1 in TS 36.213.                    |
| CQI reporting                           | periodicity                       | ms     | 1                | 1                | Minimum CQI reporting periodicity                            |
|                                         | Propagation channel               |        | ETU 70 Hz        | ETU 70 Hz        |                                                              |
| T1                                      |                                   | S      | 0.5              | 0.5              |                                                              |
| T2                                      |                                   | S      | 0.4              | 0.4              |                                                              |
| T3                                      |                                   | S      | 1.46             | 1.46             |                                                              |
| T4                                      |                                   | S      | 0.4              | 0.4              |                                                              |
| T5                                      | OCCU/DOCTION                      | S      | 1                | 1<br>magnetation | ovno tranomicaias                                            |
| Note 1: PI                              | DCCH/PCFICH corr                  | espond | ing to the in-sy | nic and out of   | Sync transmission                                            |

Note 1: PDCCH/PCFICH corresponding to the in-sync and out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.4.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for in-sync radio link monitoring tests # 1 and # 2

| Unit          | Test 1                                      |                                                  |                                                  | Test 2        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|---------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | T1                                          | T1 T2 T3 T4 T5                                   |                                                  | T1            | T2                                                                                                            | Т3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | 1                                                |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MHz           |                                             |                                                  | 1                                                | 0             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | 1x2                                              | Low           |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2x2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | 6                                                | 6             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | 1                                                |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | OP.2                                             | TDD           |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OP.2 TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | C                                                | )             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | `                                                |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dB            |                                             |                                                  | _                                                |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  | C                                                | )             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dB            |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dB            |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dB            |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dB            |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dB            | -1.4                                        | -5.3                                             | -11                                              | 1.3           | -6.4                                                                                                          | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ID /45        |                                             | •                                                | -9                                               | 18            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dBm/15        |                                             |                                                  | -3                                               | ,0            |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dBm/15<br>kHz |                                             |                                                  |                                                  |               |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | MHz  dB | MHz  MHz  dB | MHz  MHz  dB | T1 T2 T3  MHz | T1 T2 T3 T4  MHz 10  1x2 Low  6  1  OP.2 TDD  dB 4 dB 0 dB 0 dB dB 0 dB d | T1         T2         T3         T4           10           1x2 Low         1x2 Low           6         1           OP.2 TDD           dB         4           dB         0           dB         0 | T1         T2         T3         T4         T5           MHz         10         1x2 Low           6         1         0P.2 TDD           0         4         4           dB         0         4           dB         0         0           dB         0         0 <td>MHz         10           1         10           1x2 Low         1x2 Low           6         1           OP.2 TDD         0           dB         4           dB         0           dB         0     <!--</td--><td>T1         T2         T3         T4         T5         T1         T2           MHz         10           1           OP.2 TDD           OB         0           dB         4           dB         0         0           dB         0         0</td><td>MHz         10           1         10           1         1           6         2x2           0         0           0B         4           0B         0           0B         0</td><td>MHz         10         10         10         10         2x2 Low         2x2 Low         2x2 Low         3         14         15         11         12         13         14         10         10         10         2x2 Low         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3</td><td>T1         T2         T3         T4         T5         T1         T2         T3         T4           MHz         10         10         10         2x2 Low         2x2 Low         2x2 Low         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7</td></td> | MHz         10           1         10           1x2 Low         1x2 Low           6         1           OP.2 TDD         0           dB         4           dB         0           dB         0 </td <td>T1         T2         T3         T4         T5         T1         T2           MHz         10           1           OP.2 TDD           OB         0           dB         4           dB         0         0           dB         0         0</td> <td>MHz         10           1         10           1         1           6         2x2           0         0           0B         4           0B         0           0B         0</td> <td>MHz         10         10         10         10         2x2 Low         2x2 Low         2x2 Low         3         14         15         11         12         13         14         10         10         10         2x2 Low         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3</td> <td>T1         T2         T3         T4         T5         T1         T2         T3         T4           MHz         10         10         10         2x2 Low         2x2 Low         2x2 Low         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7</td> | T1         T2         T3         T4         T5         T1         T2           MHz         10           1           OP.2 TDD           OB         0           dB         4           dB         0         0           dB         0         0 | MHz         10           1         10           1         1           6         2x2           0         0           0B         4           0B         0           0B         0 | MHz         10         10         10         10         2x2 Low         2x2 Low         2x2 Low         3         14         15         11         12         13         14         10         10         10         2x2 Low         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 | T1         T2         T3         T4         T5         T1         T2         T3         T4           MHz         10         10         10         2x2 Low         2x2 Low         2x2 Low         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 |

- Note 1: For the special subframe configuration see table 4.2-1 in 3GPP TS 36.211.
- Note 2: For the uplink-downlink configuration see table 4.2-2 in 3GPP TS 36.211.
- Note 3: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 4: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.
- Note 5: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1.
- Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 8: The SNR in time periods T1, T2, T3, T4 and T5 is denoted as SNR1, SNR2, SNR3, SNR4 and SNR5 respectively in figure A.7.3.4.1-3.

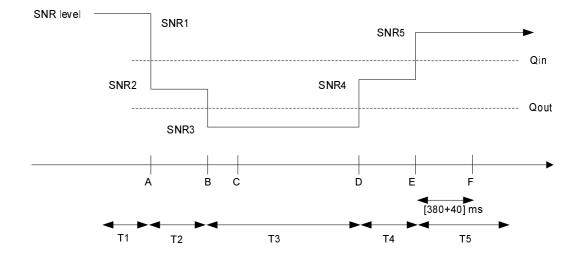



Figure A.7.3.4.1-3. SNR variation for in-sync testing

#### A.7.3.4.2 Test Requirements

The UE behaviour in each test during time durations T1, T2, T3, T4 and T5 shall be as follows:

During the period from time point A to time point F (420 ms after the start of time duration T5) the UE shall transmit uplink signal at least in all uplink subframes configured for CQI transmission according to the configured CQI reporting mode (PUCCH 1-0).

The rate of correct events observed during repeated tests shall be at least 90%.

#### A.7.3.5 E-UTRAN FDD Radio Link Monitoring Test for Out-of-sync in DRX

#### A.7.3.5.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell when DRX is used. This test will partly verify the E-UTRAN FDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.5.1-1, A.7.3.5.1-2, A.7.3.5.1-3 and A.7.3.5.1-4. There is one cell (cell 1), which is the active cell, in the test. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Figure A.7.3.5.1-5 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 2 ms. In the test, DRX configuration is enabled and DRX inactivity timer has already been expired, i.e. UE tries to decode PDCCH and to send periodic CQI during the period when On-duration timer is running. Time alignment timers shall be set to "infinity" so that UL timing alignment is maintained during the test.

Table A.7.3.5.1-1: General test parameters for E-UTRAN FDD out-of-sync tests in DRX

| Parameter                               |                                      | er Unit Value |           | lue       | Comment                                                                                             |  |
|-----------------------------------------|--------------------------------------|---------------|-----------|-----------|-----------------------------------------------------------------------------------------------------|--|
|                                         |                                      |               | Test 1    | Test 2    |                                                                                                     |  |
| PCFICH/PDC                              | CH/PHICH                             |               | R.7 FDD   | R.6 FDD   | As specified in section                                                                             |  |
| parameters                              | parameters                           |               |           |           | A.3.1.2.1.                                                                                          |  |
|                                         |                                      |               |           |           | None of the PDCCH are                                                                               |  |
| OCNG parame                             | otoro                                |               | OP.2 FDD  | OP.2 FDD  | intended for the UE under test As specified in section                                              |  |
|                                         | eters                                |               |           |           | A.3.2.1.2.                                                                                          |  |
| Active cell                             |                                      |               | Cell 1    | Cell 1    | Cell 1 is on E-UTRA RF channel number 1                                                             |  |
| CP length                               |                                      |               | Normal    | Normal    |                                                                                                     |  |
| E-UTRA RF C                             | hannel Number                        |               | 1         | 1         | One E-UTRA FDD carrier frequency is used.                                                           |  |
| E-UTRA Char<br>(BW <sub>channel</sub> ) | nnel Bandwidth                       | MHz           | 10        | 10        | noquency to accu.                                                                                   |  |
| Correlation Ma<br>Configuration         | atrix and Antenna                    |               | 2x2 Low   | 1x2 Low   | Correlation Matrix and<br>Antenna Configuration are<br>defined in TS 36.101 [5]<br>Annex B.2.3.2    |  |
|                                         | DCI format                           |               | 1A        | 1A        | As defined in section 5.3.3.1.3 in TS 36.212                                                        |  |
| Out of sync transmission parameters     | Number of<br>Control OFDM<br>symbols |               | 2         | 2         | Out of sync threshold Q <sub>out</sub> and the corresponding hypothetical PDCCH/PCFICH transmission |  |
| (Note 1)                                | Aggregation level                    | CCE           | 8         | 8         | parameters are as specified in section 7.6.1 and Table 7.6.1-                                       |  |
|                                         | ρ <sub>A</sub> , ρ <sub>B</sub>      |               | -3        | 0         | 1 respectively.                                                                                     |  |
|                                         | Ratio of PDCCH<br>to RS EPRE         | dB            | 1         | 4         |                                                                                                     |  |
|                                         | Ratio of PCFICH to RS EPRE           | dB            | 1         | 4         |                                                                                                     |  |
| DRX cycle                               |                                      | ms            | 40        | 1280      | See Table A.7.3.5.1-3                                                                               |  |
| Layer 3 filterin                        | g                                    |               | Enabled   | Enabled   | Counters:<br>N310 = 1; N311 = 1                                                                     |  |
| T310 timer                              |                                      | ms            | 0         | 0         | T310 is disabled                                                                                    |  |
| T311 timer                              |                                      | ms            | 1000      | 1000      | T311 is enabled                                                                                     |  |
|                                         | eporting mode                        |               | PUCCH 1-0 | PUCCH 1-0 | As defined in table 7.2.2-1 in TS 36.213.                                                           |  |
| CQI reporting periodicity               |                                      | ms            | 2         | 2         | Minimum CQI reporting periodicity                                                                   |  |
| Propagation c                           | hannel                               |               | ETU 70 Hz | AWGN      |                                                                                                     |  |
| T1                                      |                                      | S             | 4         | 32        |                                                                                                     |  |
| T2                                      |                                      | S             | 1.6       | 12.8      |                                                                                                     |  |
| T3                                      |                                      | S             | 1.8       | 13        |                                                                                                     |  |

Note 1: PDCCH/PCFICH corresponding to the out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.5.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for out-of-sync radio link monitoring tests # 1 and # 2 in DRX

| Parameter                                                                                   | Unit             |                                                                          | Test 1     |            |            | Test 2    |          |  |
|---------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------|------------|------------|------------|-----------|----------|--|
|                                                                                             |                  | T1                                                                       | T2         | T3         | T1         | T2        | T3       |  |
| E-UTRA RF Channel                                                                           |                  | 1                                                                        |            |            | 1          |           |          |  |
| Number                                                                                      |                  |                                                                          |            |            |            |           |          |  |
| BW <sub>channel</sub>                                                                       | MHz              | 10                                                                       |            |            | 10         |           |          |  |
| Correlation Matrix                                                                          |                  |                                                                          | 2x2 Low    |            |            | 1x2 Low   |          |  |
| and Antenna                                                                                 |                  |                                                                          |            |            |            |           |          |  |
| Configuration                                                                               |                  |                                                                          |            |            |            |           |          |  |
| OCNG Pattern                                                                                |                  |                                                                          |            |            |            |           |          |  |
| defined in A.3.2.1                                                                          |                  | OP.2 FDD                                                                 |            |            |            | OP.2 FDD  |          |  |
| (FDD)                                                                                       |                  |                                                                          |            |            |            |           |          |  |
| ρ <sub>A</sub> , ρ <sub>B</sub>                                                             |                  |                                                                          | -3         |            |            | 0         |          |  |
| PCFICH_RB                                                                                   | dB               |                                                                          | 1          |            |            | 4         |          |  |
| PDCCH_RA                                                                                    | dB               |                                                                          | 1          |            |            | 4         |          |  |
| PDCCH_RB                                                                                    | dB               |                                                                          | 1          |            |            | 4         |          |  |
| PBCH_RA                                                                                     | dB               |                                                                          |            |            |            |           |          |  |
| PBCH_RB                                                                                     | dB               |                                                                          |            |            |            |           |          |  |
| PSS_RA                                                                                      | dB               |                                                                          |            |            |            |           |          |  |
| SSS_RA                                                                                      | dB               | -3                                                                       |            |            | 0          |           |          |  |
| PHICH_RA                                                                                    | dB               |                                                                          |            |            |            |           |          |  |
| PHICH_RB                                                                                    | dB               |                                                                          |            |            |            |           |          |  |
| PDSCH_RA                                                                                    | dB               |                                                                          |            |            |            |           |          |  |
| PDSCH_RB                                                                                    | dB               |                                                                          |            |            |            |           |          |  |
| OCNG_RA <sup>Note1</sup>                                                                    | dB               |                                                                          |            |            |            |           |          |  |
| OCNG_RB <sup>Note1</sup>                                                                    | dB               |                                                                          |            |            |            |           |          |  |
| SNR Note 6                                                                                  | dB               | -2.3                                                                     | -6.2       | -12.2      | -4.7       | -9.5      | -13.5    |  |
| $N_{oc}$                                                                                    | dBm/15           |                                                                          | -98        |            |            | -98       |          |  |
|                                                                                             | kHz              |                                                                          |            |            |            |           |          |  |
| Propagation condition                                                                       |                  |                                                                          | ETU 70 Hz  |            |            | AWGN      |          |  |
|                                                                                             | be used such     |                                                                          |            |            |            |           | constant |  |
|                                                                                             | ted power spe    |                                                                          |            |            |            |           |          |  |
|                                                                                             | sources for Co   | or CQI reporting are assigned to the UE prior to the start of time       |            |            |            |           |          |  |
| period T1.                                                                                  |                  |                                                                          |            |            |            |           |          |  |
|                                                                                             | nd layer 3 filte | 3 filtering related parameters are configured prior to the start of time |            |            |            |           |          |  |
|                                                                                             | period T1.       |                                                                          |            |            |            |           |          |  |
| Note 4: The signal contains PDCCH for UEs other than the device under test as part of OCNG. |                  |                                                                          |            |            |            |           |          |  |
|                                                                                             | correspond to t  | the signal to noise ratio over the cell-specific reference signal        |            |            |            |           |          |  |
| REs.                                                                                        | ima pariada T    | 1 T2 and                                                                 | To in done | od oo CND  | 1 CND0 ~   | nd CNIDa  |          |  |
|                                                                                             | time periods T   |                                                                          | is denote  | eu as SINK | i, SINK∠ a | iiu Sinks |          |  |
| respectively                                                                                | in figure A.7.3. | .:                                                                       |            |            |            |           |          |  |

Table A.7.3.5.1-3: DRX-Configuration for E-UTRAN FDD out-of-sync tests

| Field                    | Test1   | Test2   | Comment                               |
|--------------------------|---------|---------|---------------------------------------|
| rieid                    | Value   | Value   |                                       |
| onDurationTimer          | psf2    | psf2    | As specified in section 6.3.2 in 3GPP |
| drx-InactivityTimer      | psf1    | psf1    | TS 36.331                             |
| drx-RetransmissionTimer  | psf1    | psf1    |                                       |
| longDRX-CycleStartOffset | sf40    | sf1280  |                                       |
| shortDRX                 | disable | disable |                                       |

Table A.7.3.5.1-4: TimeAlignmentTimer -Configuration for E-UTRAN FDD out-of-sync testing

| Field              | Test1<br>Value | Test2<br>Value | Comment                                                                                        |
|--------------------|----------------|----------------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | infinity       | infinity       | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 0              | 0              | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |



Figure A.7.3.5.1-5 SNR variation for out-of-sync testing in DRX

#### A.7.3.5.2 Test Requirements

The UE behaviour in each test during time durations T1, T2 and T3 shall be as follows:

In test 1 and test 2 during the period from time point A to time point B the UE shall transmit uplink signal at least once every DRX cycle, in the On-duration part of the cycle in the subframe according to the configured CQI reporting mode (PUCCH 1-0).

In test 1 the UE shall stop transmitting uplink signal no later than time point C (duration  $D_1 = 900$  ms after the start of time duration T3).

In test 2 the UE shall stop transmitting uplink signal no later than time point C (duration  $D_1 = 6500$  ms after the start of time duration T3).

The rate of correct events observed during repeated tests shall be at least 90%.

## A.7.3.6 E-UTRAN FDD Radio Link Monitoring Test for In-sync in DRX

#### A.7.3.6.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell when DRX is used. This test will partly verify the E-UTRAN FDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.6.1-1, A.7.3.6.1-2, A.7.3.6.1-3 and A.7.3.6.1-4. There is one cell (cell 1), which is the active cell, in the test. The test consists of five successive time periods, with time duration of T1, T2, T3, T4 and T5 respectively. Figure A.7.3.6.1-5 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 2 ms. In the test, DRX configuration is enabled and DRX inactivity timer has already been expired, i.e. UE tries to decode PDCCH and to send periodic CQI during the period when On-duration timer is running. Time alignment timers shall be set to "infinity" so that UL timing alignment is maintained during the test.

Table A.7.3.6.1-1: General test parameters for E-UTRAN FDD in-sync test in DRX

| Param                                | neter                             | Unit | Value     | Comment                                                                                       |
|--------------------------------------|-----------------------------------|------|-----------|-----------------------------------------------------------------------------------------------|
| PCFICH/PDCCH/PHIC                    | PCFICH/PDCCH/PHICH parameters     |      | R.6 FDD   | As specified in section A.3.1.2.1.  None of the PDCCH are intended for the UE under test      |
| OCNG parameters                      |                                   |      | OP.2 FDD  | As specified in section A.3.2.1.2.                                                            |
| Active cell                          |                                   |      | Cell 1    | Cell 1 is on E-UTRA RF channel                                                                |
|                                      |                                   |      |           | number 1                                                                                      |
| CP length                            |                                   |      | Normal    |                                                                                               |
| E-UTRA RF Channel N                  | Number                            |      | 1         | One E-UTRA FDD carrier frequency is used.                                                     |
| E-UTRA Channel Ban                   | dwidth (BW <sub>channel</sub> )   | MHz  | 10        |                                                                                               |
| Correlation Matrix and Configuration | Antenna                           |      | 1x2 Low   | Correlation Matrix and Antenna<br>Configuration are defined in TS<br>36.101 [5] Annex B.2.3.2 |
|                                      | DCI format                        |      | 1C        | As defined in section 5.3.3.1.4 in TS 36.212                                                  |
| In sync transmission parameters      | Number of Control<br>OFDM symbols |      | 2         | In sync threshold Q <sub>in</sub> and the corresponding hypothetical                          |
| (Note 1)                             | Aggregation level                 | CCE  | 4         | PDCCH/PCFICH transmission                                                                     |
|                                      | ρ <sub>A</sub> , ρ <sub>B</sub>   |      | 0         | parameters are as specified in                                                                |
|                                      | Ratio of PDCCH<br>to RS EPRE      |      | 0         | section and Table 7.6.1-2 respectively.                                                       |
|                                      | Ratio of PCFICH to RS EPRE        |      | 4         |                                                                                               |
|                                      | DCI format                        |      | 1A        | As defined in section 5.3.3.1.3 in TS 36.212                                                  |
| Out of sync transmission             | Number of Control<br>OFDM symbols |      | 2         | Out of sync threshold Q <sub>out</sub> and the corresponding hypothetical                     |
| parameters                           | Aggregation level                 | CCE  | 8         | PDCCH/PCFICH transmission                                                                     |
| (Note 1)                             | $\rho_A,  \rho_B$                 |      | 0         | parameters are as specified in section 7.6.1 and Table 7.6.1-1                                |
|                                      | Ratio of PDCCH<br>to RS EPRE      | dB   | 4         | respectively.                                                                                 |
|                                      | Ratio of PCFICH<br>to RS EPRE     | dB   | 4         |                                                                                               |
| DRX cycle                            |                                   | ms   | 40        | See Table A.7.3.6.1-3                                                                         |
| Layer 3 filtering                    |                                   |      | Enabled   | Counters:<br>N310 = 1; N311 = 1                                                               |
| T310 timer                           |                                   | ms   | 2000      | T310 is enabled                                                                               |
| T311 timer                           |                                   |      | 1000      | T311 is enabled                                                                               |
| Periodic CQI reporting mode          |                                   |      | PUCCH 1-0 | As defined in table 7.2.2-1 in TS 36.213.                                                     |
| CQI reporting periodicity            |                                   | ms   | 2         | Minimum CQI reporting periodicity                                                             |
| Propagation channel                  | •                                 |      | AWGN      |                                                                                               |
| T1                                   |                                   | S    | 4         |                                                                                               |
| T2                                   |                                   | S    | 1.6       |                                                                                               |
| T3                                   |                                   | S    | 1.46      |                                                                                               |
| T4                                   |                                   | S    | 0.4       |                                                                                               |
| T5                                   |                                   | S    | 4         |                                                                                               |

Note 1: PDCCH/PCFICH corresponding to the in-sync and out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.6.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for in-sync radio link monitoring test # 1 in DRX

| Parameter                    | Unit          |              |                | Test 1         |               |            |  |  |
|------------------------------|---------------|--------------|----------------|----------------|---------------|------------|--|--|
|                              |               | T1           | T2             | Т3             | T4            | T5         |  |  |
| E-UTRA RF Channel Number     |               | 1            |                |                |               |            |  |  |
| BW <sub>channel</sub>        | MHz           |              |                | 10             |               |            |  |  |
| Correlation Matrix and       |               |              |                | 1x2 Low        |               |            |  |  |
| Antenna Configuration        |               |              |                |                |               |            |  |  |
| OCNG Pattern defined in      |               |              |                |                |               |            |  |  |
| A.3.2.1 (FDD)                |               |              |                | OP.2 FDD       |               |            |  |  |
| ρа, ρв                       |               |              |                | 0              |               |            |  |  |
| PCFICH_RB                    | dB            |              |                | 4              |               |            |  |  |
| PDCCH_RA                     | dB            |              |                | 0              |               |            |  |  |
| PDCCH_RB                     | dB            |              |                | 0              |               |            |  |  |
| PBCH_RA                      | dB            |              |                |                |               |            |  |  |
| PBCH_RB                      | dB            |              |                |                |               |            |  |  |
| PSS_RA                       | dB            |              |                |                |               |            |  |  |
| SSS_RA                       | dB            |              |                |                |               |            |  |  |
| PHICH_RA                     | dB            |              |                | 0              |               |            |  |  |
| PHICH_RB                     | dB            |              |                |                |               |            |  |  |
| PDSCH_RA                     | dB            |              |                |                |               |            |  |  |
| PDSCH_RB                     | dB            |              |                |                |               |            |  |  |
| OCNG_RA <sup>Note1</sup>     | dB            |              |                |                |               |            |  |  |
| OCNG_RB <sup>Note1</sup>     | dB            |              |                |                |               |            |  |  |
| SNR Note 8                   | dB            | -4.7         | -9.5           | -13.5          | -8.7          | -4.7       |  |  |
| $N_{oc}$                     | dBm/15        |              |                | -98            |               |            |  |  |
| T oc                         | kHz           |              |                |                |               |            |  |  |
| Propagation condition        |               |              |                | AWGN           | <del></del>   | <u>-</u>   |  |  |
| Note 1: OCNG shall be used   | such that the | resources in | cell # 1 are f | ully allocated | and a consta  | int total  |  |  |
| transmitted power sp         |               |              |                |                |               |            |  |  |
| Note 2: The uplink resources |               |              |                |                | start of time | period T1. |  |  |

- Note 3: The timers and layer 3 filtering related parameters are configured prior to the start of time period
- Note 4: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 5: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 6: The SNR in time periods T1, T2, T3, T4 and T5 is denoted as SNR1, SNR2, SNR3, SNR4 and

SNR5 respectively in figure A.7.3.6.1-5.

Table A.7.3.6.1-3: DRX-Configuration for E-UTRAN FDD out-of-sync tests

| Field                    | Value   | Comment                               |
|--------------------------|---------|---------------------------------------|
| onDurationTimer          | psf2    | As specified in section 6.3.2 in 3GPP |
| drx-InactivityTimer      | psf1    | TS 36.331                             |
| drx-RetransmissionTimer  | psf1    |                                       |
| longDRX-CycleStartOffset | sf40    |                                       |
| shortDRX                 | disable |                                       |

Table A.7.3.6.1-4: TimeAlignmentTimer - Configuration for E-UTRAN FDD out-of-sync testing

| Field              | Value    | Comment                                                                                        |
|--------------------|----------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | infinity | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 0        | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

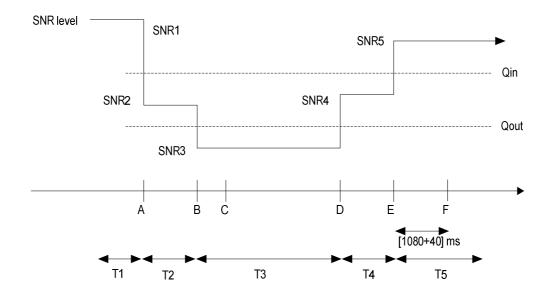



Figure A.7.3.6.1-5 SNR variation for in-sync testing in DRX

#### A.7.3.6.2 Test Requirements

The UE behaviour in each test during time durations T1, T2, T3, T4 and T5 shall be as follows:

During the period from time point A to time point F (1120 ms after the start of time duration T5) the UE shall transmit uplink signal at least once every DRX cycle, in the On-duration part of the cycle in the subframe according to the configured CQI reporting mode (PUCCH 1-0).

The rate of correct events observed during repeated tests shall be at least 90%.

## A.7.3.7 E-UTRAN TDD Radio Link Monitoring Test for Out-of-sync in DRX

#### A.7.3.7.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell when DRX is used. This test will partly verify the E-UTRAN TDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.7.1-1, A.7.3.7.1-2, A.7.3.7.1-3 and A.7.3.7.1-4. There is one cell (cell 1), which is the active cell, in the test. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Figure A.7.3.7.1-5 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 1 ms. In the test, DRX configuration is enabled and DRX inactivity timer has already been expired, i.e. UE tries to decode PDCCH and to send periodic CQI during the period when On-duration timer is running. Time alignment timers shall be set to "infinity" so that UL timing alignment is maintained during the test.

Table A.7.3.7.1-1: General test parameters for E-UTRAN TDD out-of-sync tests in DRX

| Parameter                               |                                      |     |           | Comment   |                                                                                                     |
|-----------------------------------------|--------------------------------------|-----|-----------|-----------|-----------------------------------------------------------------------------------------------------|
|                                         |                                      |     | Test 1    | Test 2    |                                                                                                     |
| PCFICH/PDC0<br>parameters               | CH/PHICH                             |     | R.7 TDD   | R.6 TDD   | As specified in section A.3.1.2.2. None of the PDCCH are intended for the UE under test             |
| OCNG parame                             | eters                                |     | OP.2 TDD  | OP.2 TDD  | As specified in section A.3.2.2.2.                                                                  |
| Active cell                             |                                      |     | Cell 1    | Cell 1    | Cell 1 is on E-UTRA RF<br>channel number 1                                                          |
| CP length                               |                                      |     | Normal    | Normal    |                                                                                                     |
| E-UTRA RF C                             | hannel Number                        |     | 1         | 1         | One E-UTRA TDD carrier frequency is used.                                                           |
| E-UTRA Chan<br>(BW <sub>channel</sub> ) | nel Bandwidth                        | MHz | 10        | 10        |                                                                                                     |
| Correlation Ma<br>Configuration         | atrix and Antenna                    |     | 2x2 Low   | 1x2 Low   | Correlation Matrix and<br>Antenna Configuration are<br>defined in TS 36.101 [5]<br>Annex B.2.3.2    |
|                                         | DCI format                           |     | 1A        | 1A        | As defined in section 5.3.3.1.3 in TS 36.212                                                        |
| Out of sync transmission parameters     | Number of<br>Control OFDM<br>symbols |     | 2         | 2         | Out of sync threshold Q <sub>out</sub> and the corresponding hypothetical PDCCH/PCFICH transmission |
| (Note 1)                                | Aggregation level                    | CCE | 8         | 8         | parameters are as specified in section 7.6.1 and Table 7.6.1-                                       |
|                                         | $\rho_A$ , $\rho_B$                  |     | -3        | 0         | 1 respectively.                                                                                     |
|                                         | Ratio of PDCCH<br>to RS EPRE         | dB  | 1         | 4         |                                                                                                     |
|                                         | Ratio of PCFICH to RS EPRE           | dB  | 1         | 4         |                                                                                                     |
| DRX cycle                               |                                      | ms  | 40        | 1280      | See Table A.7.3.7.1-3                                                                               |
| Layer 3 filterin                        | g                                    |     | Enabled   | Enabled   | Counters:<br>N310 = 1; N311 = 1                                                                     |
| T310 timer                              |                                      | ms  | 0         | 0         | T310 is disabled                                                                                    |
| T311 timer                              |                                      | ms  | 1000      | 1000      | T311 is enabled                                                                                     |
|                                         | eporting mode                        |     | PUCCH 1-0 | PUCCH 1-0 | As defined in table 7.2.2-1 in TS 36.213.                                                           |
| CQI reporting periodicity               |                                      | ms  | 1         | 1         | Minimum CQI reporting periodicity                                                                   |
| . •                                     | Propagation channel                  |     | ETU 70 Hz | AWGN      |                                                                                                     |
| T1                                      |                                      | S   | 4         | 32        |                                                                                                     |
| T2                                      |                                      | S   | 1.6       | 12.8      |                                                                                                     |
| T3                                      |                                      | S   | 1.8       | 13        |                                                                                                     |

Note 1: PDCCH/PCFICH corresponding to the out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.7.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for out-of-sync radio link monitoring tests # 1 and # 2 in DRX

| Parameter                                                                                         | Unit            |                | Test 1   |       |          | Test 2   |         |  |  |
|---------------------------------------------------------------------------------------------------|-----------------|----------------|----------|-------|----------|----------|---------|--|--|
|                                                                                                   |                 | T1             | T2       | T3    | T1 T2 T3 |          |         |  |  |
| E-UTRA RF Channel                                                                                 |                 |                | 1        |       |          | 1        |         |  |  |
| Number                                                                                            |                 |                |          |       |          |          |         |  |  |
| BW <sub>channel</sub>                                                                             | MHz             |                | 10       |       |          | 10       |         |  |  |
| Correlation Matrix                                                                                |                 |                | 2x2 Low  |       |          | 1x2 Low  |         |  |  |
| and Antenna                                                                                       |                 |                |          |       |          |          |         |  |  |
| Configuration                                                                                     |                 |                |          |       |          |          |         |  |  |
| Special subframe                                                                                  |                 |                | 6        |       |          | 6        |         |  |  |
| configuration Note1                                                                               |                 |                |          |       |          |          |         |  |  |
| Uplink-downlink                                                                                   |                 |                | 1        |       |          | 1        |         |  |  |
| configuration Note2                                                                               |                 |                |          |       |          |          |         |  |  |
| OCNG Pattern                                                                                      |                 |                |          |       |          |          |         |  |  |
| defined in A.3.2.2                                                                                |                 |                | OP.2 TDD |       |          | OP.2 TDD | )       |  |  |
| (TDD)                                                                                             |                 |                | 2        |       |          |          |         |  |  |
| ρα, ρΒ                                                                                            | I.S.            |                | -3       |       |          | 0        |         |  |  |
| PCFICH_RB                                                                                         | dB              |                | 1        |       |          | 4        |         |  |  |
| PDCCH_RA                                                                                          | dB              |                | 1        |       | 4        |          |         |  |  |
| PDCCH_RB                                                                                          | dB              |                | 1        |       |          | 4        |         |  |  |
| PBCH_RA                                                                                           | dB              |                |          |       |          |          |         |  |  |
| PBCH_RB                                                                                           | dB              |                |          |       |          |          |         |  |  |
| PSS_RA                                                                                            | dB              |                |          |       |          |          |         |  |  |
| SSS_RA                                                                                            | dB<br>dB        |                | -3       |       | 0        |          |         |  |  |
| PHICH_RA                                                                                          | dB              |                | 3        |       |          | O        |         |  |  |
| PHICH_RB<br>PDSCH_RA                                                                              | dB              | -              |          |       |          |          |         |  |  |
| PDSCH_RB                                                                                          | dВ              | -              |          |       |          |          |         |  |  |
| OCNG_RA <sup>Note3</sup>                                                                          | dВ              |                |          |       |          |          |         |  |  |
| OCNG_RA OCNG RB <sup>Note3</sup>                                                                  | dB              |                |          |       |          |          |         |  |  |
| SNR Note 8                                                                                        | dB              | -2.3           | -5.9     | -11.9 | -5.1     | -9.1     | -13.1   |  |  |
|                                                                                                   | dBm/15          | -2.5           | -98      | -11.3 | -0.1     | -98      | -13.1   |  |  |
| $N_{oc}$                                                                                          | kHz             |                | -30      |       |          | -90      |         |  |  |
| Propagation condition                                                                             | KIIZ            | ETU 70 Hz AWGN |          |       |          |          |         |  |  |
| Note 1: For the special subframe configuration see table 4.2-1 in 3GPP TS 36.211.                 |                 |                |          |       |          |          |         |  |  |
| Note 2: For the uplink-downlink configuration see table 4.2-2 in 3GPP TS 36.211.                  |                 |                |          |       |          |          |         |  |  |
| Note 3: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant |                 |                |          |       |          |          |         |  |  |
|                                                                                                   | tted power spe  |                |          |       |          |          |         |  |  |
|                                                                                                   | esources for Co |                |          |       |          |          | of time |  |  |
| period T1                                                                                         |                 |                | -        |       | •        |          |         |  |  |

- period T1.
- The timers and layer 3 filtering related parameters are configured prior to the start of time Note 5:
- Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- SNR levels correspond to the signal to noise ratio over the cell-specific reference signal Note 7:
- The SNR in time periods T1, T2 and T3 is denoted as SNR1, SNR2 and SNR3  $\,$ Note 8: respectively in figure A.7.3.7.1-5.

Table A.7.3.7.1-3: DRX-Configuration for E-UTRAN TDD out-of-sync tests

| Field                    | Test1   | Test2   | Comment                               |
|--------------------------|---------|---------|---------------------------------------|
| Field                    | Value   | Value   |                                       |
| onDurationTimer          | psf2    | psf2    | As specified in section 6.3.2 in 3GPP |
| drx-InactivityTimer      | psf1    | psf1    | TS 36.331                             |
| drx-RetransmissionTimer  | psf1    | psf1    |                                       |
| longDRX-CycleStartOffset | sf40    | sf1280  |                                       |
| shortDRX                 | disable | disable |                                       |

Table A.7.3.7.1-4: TimeAlignmentTimer - Configuration for E-UTRAN TDD out-of-sync testing

| Field              | Test1<br>Value | Test2<br>Value | Comment                                                                                        |
|--------------------|----------------|----------------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | infinity       | infinity       | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 2              | 2              | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

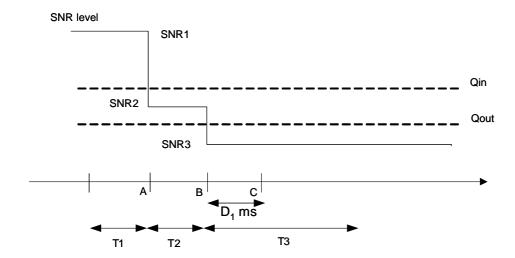



Figure A.7.3.7.1-5 SNR variation for out-of-sync testing in DRX

## A.7.3.7.2 Test Requirements

The UE behaviour in each test during time durations T1, T2 and T3 shall be as follows:

In test 1 and test 2 during the period from time point A to time point B the UE shall transmit uplink signal at least once every DRX cycle, in the On-duration part of the cycle in the uplink subframe according to the configured CQI reporting mode (PUCCH 1-0).

In test 1 the UE shall stop transmitting uplink signal no later than time point C (duration  $D_1 = 900$  ms after the start of time duration T3).

In test 2 the UE shall stop transmitting uplink signal no later than time point C (duration  $D_1 = 6500$  ms after the start of time duration T3).

The rate of correct events observed during repeated tests shall be at least 90%.

# A.7.3.8 E-UTRAN TDD Radio Link Monitoring Test for In-sync in DRX

# A.7.3.8.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell when DRX is used. This test will partly verify the E-UTRAN TDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.8.1-1, A.7.3.8.1-2, A.7.3.8.1-3 and A.7.3.8.1-4. There is one cell (cell 1), which is the active cell, in the test. The test consists of five successive time periods, with time duration of T1, T2, T3, T4 and T5 respectively. Figure A.7.3.8.1-5 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 1 ms. In the test, DRX configuration is enabled and DRX inactivity timer has already been expired, i.e. UE tries to decode PDCCH and to send periodic CQI during the period when On-duration timer is running. Time alignment timers shall be set to "infinity" so that UL timing alignment is maintained during the test.

Table A.7.3.8.1-1: General test parameters for E-UTRAN TDD in-sync test in DRX

| Param                                | neter                             | Unit     | Value                              | Comment                                                                                       |  |
|--------------------------------------|-----------------------------------|----------|------------------------------------|-----------------------------------------------------------------------------------------------|--|
| PCFICH/PDCCH/PHICH parameters        |                                   |          | R.6 TDD                            | As specified in section A.3.1.2.2.  None of the PDCCH are intended for the UE under test      |  |
| OCNG parameters                      |                                   | OP.2 TDD | As specified in section A.3.2.2.2. |                                                                                               |  |
| Active cell                          |                                   | Cell 1   | Cell 1 is on E-UTRA RF channel     |                                                                                               |  |
|                                      |                                   |          |                                    | number 1                                                                                      |  |
| CP length                            |                                   |          | Normal                             |                                                                                               |  |
| E-UTRA RF Channel N                  | Number                            |          | 1                                  | One E-UTRA TDD carrier frequency is used.                                                     |  |
| E-UTRA Channel Ban                   | dwidth (BW <sub>channel</sub> )   | MHz      | 10                                 |                                                                                               |  |
| Correlation Matrix and Configuration | Antenna                           |          | 1x2 Low                            | Correlation Matrix and Antenna<br>Configuration are defined in TS<br>36.101 [5] Annex B.2.3.2 |  |
|                                      | DCI format                        |          | 1C                                 | As defined in section 5.3.3.1.4 in TS 36.212                                                  |  |
| In sync transmission parameters      | Number of Control<br>OFDM symbols |          | 2                                  | In sync threshold Q <sub>in</sub> and the corresponding hypothetical                          |  |
| (Note 1)                             | Aggregation level                 | CCE      | 4                                  | PDCCH/PCFICH transmission                                                                     |  |
|                                      | ρ <sub>A</sub> , ρ <sub>B</sub>   |          | 0                                  | parameters are as specified in                                                                |  |
|                                      | Ratio of PDCCH<br>to RS EPRE      |          | 0                                  | section and Table 7.6.1-2 respectively.                                                       |  |
|                                      | Ratio of PCFICH to RS EPRE        |          | 4                                  |                                                                                               |  |
|                                      | DCI format                        |          | 1A                                 | As defined in section 5.3.3.1.3 in TS 36.212                                                  |  |
| Out of sync transmission             | Number of Control<br>OFDM symbols |          | 2                                  | Out of sync threshold Q <sub>out</sub> and the corresponding hypothetical                     |  |
| parameters                           | Aggregation level                 | CCE      | 8                                  | PDCCH/PCFICH transmission                                                                     |  |
| (Note 1)                             | $\rho_A$ , $\rho_B$               |          | 0                                  | parameters are as specified in section 7.6.1 and Table 7.6.1-1                                |  |
|                                      | Ratio of PDCCH<br>to RS EPRE      | dB       | 4                                  | respectively.                                                                                 |  |
|                                      | Ratio of PCFICH to RS EPRE        | dB       | 4                                  |                                                                                               |  |
| DRX cycle                            |                                   | ms       | 40                                 | See Table A.7.3.8.1-3                                                                         |  |
| Layer 3 filtering                    | Layer 3 filtering                 |          | Enabled                            | Counters:<br>N310 = 1; N311 = 1                                                               |  |
| T310 timer                           |                                   | ms       | 2000                               | T310 is enabled                                                                               |  |
| T311 timer                           |                                   | ms       | 1000                               | T311 is enabled                                                                               |  |
| Periodic CQI reporting mode          |                                   |          | PUCCH 1-0                          | As defined in table 7.2.2-1 in TS 36.213.                                                     |  |
| CQI reporting periodicity            |                                   | ms       | 1                                  | Minimum CQI reporting periodicity                                                             |  |
| Propagation channel                  |                                   |          | AWGN                               |                                                                                               |  |
| T1                                   |                                   | S        | 4                                  |                                                                                               |  |
| T2                                   |                                   | S        | 1.6                                |                                                                                               |  |
| T3                                   |                                   | S        | 1.46                               |                                                                                               |  |
| T4                                   |                                   | s<br>s   | 0.4                                |                                                                                               |  |
| T5                                   | T5                                |          |                                    |                                                                                               |  |

Note 1: PDCCH/PCFICH corresponding to the in-sync and out of sync transmission parameters need not be included in the Reference Measurement Channel.

Table A.7.3.8.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for in-sync radio link monitoring test # 1 in DRX

| Parameter                                                                                   | Unit             |                                                                   |                | Test 1         |                  |           |  |
|---------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|----------------|----------------|------------------|-----------|--|
|                                                                                             |                  | T1                                                                | T2             | Т3             | T4               | T5        |  |
| E-UTRA RF Channel Number                                                                    |                  |                                                                   |                | 1              |                  | •         |  |
| BW <sub>channel</sub>                                                                       | MHz              |                                                                   |                | 10             |                  |           |  |
| Correlation Matrix and                                                                      |                  |                                                                   |                | 1x2 Low        |                  |           |  |
| Antenna Configuration                                                                       |                  |                                                                   |                |                |                  |           |  |
| Special subframe                                                                            |                  |                                                                   |                | 6              |                  |           |  |
| configuration Note1                                                                         |                  |                                                                   |                |                |                  |           |  |
| Uplink-downlink                                                                             |                  |                                                                   |                | 1              |                  |           |  |
| configuration Note2                                                                         |                  |                                                                   |                |                |                  |           |  |
| OCNG Pattern defined in                                                                     |                  |                                                                   |                |                |                  |           |  |
| A.3.2.2 (TDD)                                                                               |                  |                                                                   |                | OP.2 TDD       |                  |           |  |
| ра, рв                                                                                      |                  |                                                                   |                | 0              |                  |           |  |
| PCFICH_RB                                                                                   | dB               |                                                                   |                | 4              |                  |           |  |
| PDCCH_RA                                                                                    | dB               |                                                                   |                | 0              |                  |           |  |
| PDCCH_RB                                                                                    | dB               | 0                                                                 |                |                |                  |           |  |
| PBCH_RA                                                                                     | dB               |                                                                   |                |                |                  |           |  |
| PBCH_RB                                                                                     | dB               |                                                                   |                |                |                  |           |  |
| PSS_RA                                                                                      | dB               |                                                                   |                |                |                  |           |  |
| SSS_RA                                                                                      | dB               |                                                                   |                | _              |                  |           |  |
| PHICH_RA                                                                                    | dB               |                                                                   |                | 0              |                  |           |  |
| PHICH_RB                                                                                    | dB               |                                                                   |                |                |                  |           |  |
| PDSCH_RA                                                                                    | dB               |                                                                   |                |                |                  |           |  |
| PDSCH_RB                                                                                    | dB               |                                                                   |                |                |                  |           |  |
| OCNG_RA <sup>Note3</sup>                                                                    | dB               |                                                                   |                |                |                  |           |  |
| OCNG_RB <sup>Note3</sup>                                                                    | dB               |                                                                   |                |                |                  |           |  |
| SNR Note 8                                                                                  | dB               | -5.1                                                              | -9.1           | -13.1          | -9.1             | -5.1      |  |
| $N_{oc}$                                                                                    | dBm/15           |                                                                   |                | -98            | •                | •         |  |
| 1 oc                                                                                        | kHz              |                                                                   |                |                |                  |           |  |
| Propagation condition                                                                       |                  |                                                                   |                | AWGN           |                  |           |  |
| Note 1: For the special subfr                                                               | ame configura    | ation see table                                                   | e 4.2-1 in 3G  | PP TS 36.21    | 1.               |           |  |
| Note 2: For the uplink-downl                                                                |                  |                                                                   |                |                |                  |           |  |
|                                                                                             |                  | he resources in cell # 1 are fully allocated and a constant total |                |                |                  |           |  |
| transmitted power spectral density is achieved for all OFDM symbols.                        |                  |                                                                   |                |                |                  |           |  |
| Note 4: The uplink resources                                                                |                  |                                                                   |                |                | start of time    | period T1 |  |
| Note 5: The timers and layer                                                                | 3 filtering rela | ated paramete                                                     | ers are config | gured prior to | the start of til | me period |  |
| T1.                                                                                         |                  |                                                                   |                |                |                  |           |  |
| Note 6: The signal contains PDCCH for LIEs other than the device under test as part of OCNG |                  |                                                                   |                |                |                  |           |  |

- Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG.
- Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.
- Note 8: The SNR in time periods T1, T2, T3, T4 and T5 is denoted as SNR1, SNR2, SNR3, SNR4 and

SNR5 respectively in figure A.7.3.8.1-5.

Table A.7.3.8.1-3: DRX-Configuration for E-UTRAN TDD out-of-sync tests

| Field                    | Value   | Comment                               |
|--------------------------|---------|---------------------------------------|
| onDurationTimer          | psf2    | As specified in section 6.3.2 in 3GPP |
| drx-InactivityTimer      | psf1    | TS 36.331                             |
| drx-RetransmissionTimer  | psf1    |                                       |
| longDRX-CycleStartOffset | sf40    |                                       |
| shortDRX                 | disable | ]                                     |

Table A.7.3.8.1-4: TimeAlignmentTimer - Configuration for E-UTRAN TDD out-of-sync testing

| Field              | Value    | Comment                                                                                        |
|--------------------|----------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | infinity | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 2        | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

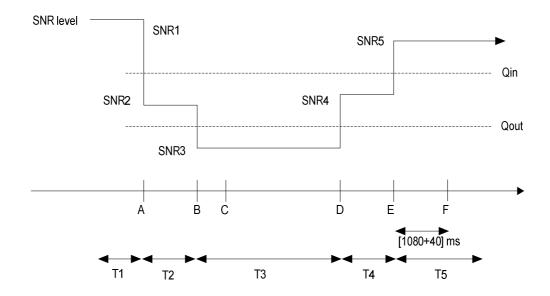



Figure A.7.3.8.1-5 SNR variation for in-sync testing in DRX

### A.7.3.8.2 Test Requirements

The UE behaviour in each test during time durations T1, T2, T3, T4 and T5 shall be as follows:

During the period from time point A to time point F (1120 ms after the start of time duration T5) the UE shall transmit uplink signal at least once every DRX cycle, in the On-duration part of the cycle in the uplink subframe according to the configured CQI reporting mode (PUCCH 1-0).

The rate of correct events observed during repeated tests shall be at least 90%.

# A.8 UE Measurements Procedures

The reference channels in this section assume transmission of PDSCH with a maximum number of 5 HARQ transmissions unless otherwise specified.

# A.8.1 E-UTRAN FDD Intra-frequency Measurements

# A.8.1.1 E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in asynchronous cells

# A.8.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD intra-frequency cell search requirements in section 8.1.2.2.1.1.

The test parameters are given in Table A.8.1.1.1-1 and A.8.1.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.1.1.1-1: General test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in asynchronous cells

| Parameter                 | Unit | Value                    | Comment                            |
|---------------------------|------|--------------------------|------------------------------------|
| PDSCH parameters          |      | DL Reference Measurement | As specified in section A.3.1.1.1  |
|                           |      | Channel R.0 FDD          |                                    |
| PCFICH/PDCCH/PHICH        |      | DL Reference Measurement | As specified in section A.3.1.2.1  |
| parameters                |      | Channel R.6 FDD          |                                    |
| Active cell               |      | Cell 1                   |                                    |
| Neighbour cell            |      | Cell 2                   | Cell to be identified.             |
| E-UTRA RF Channel         |      | 1                        | One FDD carrier frequency is used. |
| Number                    |      |                          |                                    |
| Channel Bandwidth         | MHz  | 10                       |                                    |
| (BW <sub>channel</sub> )  |      |                          |                                    |
| A3-Offset                 | dB   | -6                       |                                    |
| CP length                 |      | Normal                   |                                    |
| Hysteresis                | dB   | 0                        |                                    |
| Time To Trigger           | S    | 0                        |                                    |
| Filter coefficient        |      | 0                        | L3 filtering is not used           |
| DRX                       |      |                          | OFF                                |
| Time offset between cells |      | 3 ms                     | Asynchronous cells                 |
| T1                        | S    | 5                        |                                    |
| T2                        | S    | 5                        |                                    |

Table A.8.1.1.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in asynchronous cells

| Parameter                                                | Unit       | Ce   | ell 1 |           | Cell 2  |  |
|----------------------------------------------------------|------------|------|-------|-----------|---------|--|
|                                                          |            | T1   | T1 T2 |           | T2      |  |
| E-UTRA RF Channel                                        |            |      | 1     | 1         |         |  |
| Number                                                   |            |      |       |           |         |  |
| BW <sub>channel</sub>                                    | MHz        | Ŷ    | 10    |           | 10      |  |
| OCNG Patterns                                            |            |      |       |           |         |  |
| defined in A.3.2.1.1                                     |            | OP.1 | I FDD | OI        | P.2 FDD |  |
| (OP.1 FDD) and in                                        |            |      |       |           |         |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |      |       |           |         |  |
| PBCH_RA                                                  | dB         |      |       |           |         |  |
| PBCH_RB                                                  | dB         |      |       |           |         |  |
| PSS_RA                                                   | dB         |      |       |           |         |  |
| SSS_RA                                                   | dB         |      |       | 0         |         |  |
| PCFICH_RB                                                | dB         |      | •     |           |         |  |
| PHICH_RA                                                 | dB         |      | 0     |           |         |  |
| PHICH_PB                                                 | dB         |      |       |           |         |  |
| PDCCH_RA                                                 | dB         |      |       |           |         |  |
| PDCCH_PB                                                 | dB         |      |       |           |         |  |
| PDSCH_RA                                                 | dB         |      |       |           |         |  |
| PDSCH_RB                                                 | dB         |      |       |           |         |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |       |           |         |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |       |           |         |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4    | -1.46 | -Infinity | -1.46   |  |
| $N_{oc}^{ m Note~3}$                                     | dBm/15 KHz | -98  |       |           |         |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    | 4     | -Infinity | 4       |  |
| RSRP Note 4                                              | dBm/15 KHz | -94  | -94   | -Infinity | -94     |  |
| SCH_RP Note 4                                            | dBm/15 KHz | -94  | -94   | -Infinity | -94     |  |
| Propagation Condition                                    |            |      | E     | ΓU70      |         |  |
|                                                          |            |      |       |           |         |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

### A.8.1.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.1.2 E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

### A.8.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD intra-frequency cell search requirements in section 8.1.2.2.1.1

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The test parameters are given in Table A.8.1.2.1-1 and A.8.1.2.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. PDCCHs indicating new transmissions or retransmissions should be sent continuously to ensure that the UE would not enter the DRX state. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.1.2.1-1: General test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                 | Unit | Value                                       | Comment                            |
|---------------------------|------|---------------------------------------------|------------------------------------|
| PDSCH parameters          |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1  |
| PCFICH/PDCCH/PHICH        |      | DL Reference Measurement                    | As specified in section A.3.1.2.1  |
| parameters                |      | Channel R.6 FDD                             |                                    |
| Active cell               |      | Cell 1                                      |                                    |
| Neighbour cell            |      | Cell 2                                      | Cell to be identified.             |
| E-UTRA RF Channel         |      | 1                                           | One FDD carrier frequency is used. |
| Number                    |      |                                             |                                    |
| Channel Bandwidth         | MHz  | 10                                          |                                    |
| (BW <sub>channel</sub> )  |      |                                             |                                    |
| A3-Offset                 | dB   | -6                                          |                                    |
| CP length                 |      | Normal                                      |                                    |
| Hysteresis                | dB   | 0                                           |                                    |
| Time To Trigger           | S    | 0                                           |                                    |
| Filter coefficient        |      | 0                                           | L3 filtering is not used           |
| DRX                       |      | DRX_L                                       | As specified in section A.3.3      |
| Time offset between cells |      | 3 μs                                        | Synchronous cells                  |
| T1                        | S    | 5                                           |                                    |
| T2                        | S    | 5                                           |                                    |

Table A.8.1.2.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                                | Unit       | Ce   | II 1  |           | Cell 2 |  |
|----------------------------------------------------------|------------|------|-------|-----------|--------|--|
|                                                          |            | T1   | T1 T2 |           | T2     |  |
| E-UTRA RF Channel                                        |            | •    | 1     | 1         |        |  |
| Number                                                   |            |      |       |           |        |  |
| BW <sub>channel</sub>                                    | MHz        | 1    | 0     |           | 10     |  |
| OCNG Patterns                                            |            |      |       |           |        |  |
| defined in A.3.2.1.1                                     |            | OP.1 | FDD   | OP        | .2 FDD |  |
| (OP.1 FDD) and in                                        |            |      |       |           |        |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |      |       |           |        |  |
| PBCH_RA                                                  | dB         |      |       |           |        |  |
| PBCH_RB                                                  | dB         |      |       |           |        |  |
| PSS_RA                                                   | dB         |      |       | 0         |        |  |
| SSS_RA                                                   | dB         |      |       |           |        |  |
| PCFICH_RB                                                | dB         |      | _     |           |        |  |
| PHICH_RA                                                 | dB         | (    | )     |           |        |  |
| PHICH_RB                                                 | dB         |      |       |           |        |  |
| PDCCH_RA                                                 | dB         |      |       |           |        |  |
| PDCCH_RB                                                 | dB         |      |       |           |        |  |
| PDSCH_RA                                                 | dB         |      |       |           |        |  |
| PDSCH_RB                                                 | dB         |      |       |           |        |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |       |           |        |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |       |           |        |  |
| $\mathbf{\hat{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4    | -1.46 | -Infinity | -1.46  |  |
| $N_{_{oc}}^{}$ Note 3                                    | dBm/15 KHz |      |       | -98       |        |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    | 4     | -Infinity | 4      |  |
| RSRP Note 4                                              | dBm/15 KHz | -94  | -94   | -Infinity | -94    |  |
| SCH_RP Note 4                                            | dBm/15 KHz | -94  | -94   | -Infinity | -94    |  |
| Propagation Condition                                    |            |      | E     | TU70      |        |  |
|                                                          |            |      |       |           |        |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

### A.8.1.2.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.1.3 E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells with DRX

### A.8.1.3.1 Test Purpose and Environment

The purpose of the two tests is to verify that the UE makes correct reporting of an event in DRX. The tests will partly verify the FDD-FDD intra-frequency cell search in DRX requirements in section 8.1.2.2.1.2.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The test parameters are given in Tables A.8.1.3.1-1, A.8.1.3.1-2, A.8.1.3.1-3 and A.8.1.3.1-4. In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle.

In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

Table A.8.1.3.1-1: General test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

| Parameter                 | Unit | Value           |            | Comment                               |
|---------------------------|------|-----------------|------------|---------------------------------------|
|                           |      | Test 1          | Test 2     |                                       |
| PDSCH parameters          |      | DL Reference Me | easurement | As specified in section A.3.1.1.1     |
|                           |      | Channel R.0 FDE | )          |                                       |
| PCFICH/PDCCH/PHICH        |      | DL Reference Me | easurement | As specified in section A.3.1.2.1     |
| parameters                |      | Channel R.6 FDI | )          |                                       |
| Active cell               |      | Cell 1          |            |                                       |
| Neighbour cell            |      | Cell 2          |            | Cell to be identified.                |
| E-UTRA RF Channel         |      | 1               |            | One FDD carrier frequency is used.    |
| Number                    |      |                 |            |                                       |
| Channel Bandwidth         | MHz  | 10              |            |                                       |
| (BW <sub>channel</sub> )  |      |                 |            |                                       |
| A3-Offset                 | dB   | -6              |            |                                       |
| CP length                 |      | Normal          |            |                                       |
| Hysteresis                | dB   | 0               |            |                                       |
| Time To Trigger           | S    | 0               |            |                                       |
| Filter coefficient        |      | 0               |            | L3 filtering is not used              |
| DRX                       |      | ON              |            | DRX related parameters are defined in |
|                           |      |                 |            | Table A.8.1.3.1-3                     |
| Time offset between cells |      | 3 μs            |            | Synchronous cells                     |
| T1                        | S    | 5               | •          |                                       |
| T2                        | S    | 5               | 30         |                                       |

Table A.8.1.3.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

| Parameter                                                | Unit       | Ce   | ell 1 | (         | Cell 2  |  |
|----------------------------------------------------------|------------|------|-------|-----------|---------|--|
|                                                          |            | T1   | T2    | T1        | T2      |  |
| E-UTRA RF Channel                                        |            | 1    |       | 1         |         |  |
| Number                                                   |            |      |       |           |         |  |
| BW <sub>channel</sub>                                    | MHz        | ,    | 10    |           | 10      |  |
| OCNG Patterns                                            |            |      |       |           |         |  |
| defined in A.3.2.1.1                                     |            | OP.1 | FDD   | OF        | P.2 FDD |  |
| (OP.1 FDD) and in                                        |            |      |       |           |         |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |      |       |           |         |  |
| PBCH_RA                                                  | dB         |      |       |           |         |  |
| PBCH_RB                                                  | dB         |      |       |           |         |  |
| PSS_RA                                                   | dB         |      |       |           |         |  |
| SSS_RA                                                   | dB         |      |       | 0         |         |  |
| PCFICH_RB                                                | dB         |      | _     |           |         |  |
| PHICH_RA                                                 | dB         |      | 0     |           |         |  |
| PHICH_RB                                                 | dB         |      |       |           |         |  |
| PDCCH_RA                                                 | dB         |      |       |           |         |  |
| PDCCH_RB                                                 | dB         |      |       |           |         |  |
| PDSCH_RA                                                 | dB         |      |       |           |         |  |
| PDSCH_RB                                                 | dB         |      |       |           |         |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |       |           |         |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |       |           |         |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 4    | -1.46 | -Infinity | -1.46   |  |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 KHz |      |       | -98       |         |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    | 4     | -Infinity | 4       |  |
| RSRP Note 3                                              | dBm/15 KHz | -94  | -94   | -Infinity | -94     |  |
| SCH_RP Note 3                                            | dBm/15 KHz | -94  | -94   | -Infinity | -94     |  |
| Propagation Condition                                    |            |      | Ē     | TU70      | •       |  |
|                                                          |            |      |       |           |         |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.1.3.1-3: DRX-Configuration for E-UTRAN FDD-FDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

| Field                    | Test1<br>Value | Test2<br>Value | Comment                          |
|--------------------------|----------------|----------------|----------------------------------|
|                          | value          | value          |                                  |
| onDurationTimer          | psf1           | psf1           | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1           | psf1           | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1           | psf1           |                                  |
| longDRX-CycleStartOffset | sf40           | sf1280         | ]                                |
| shortDRX                 | disable        | disable        |                                  |

Table A.8.1.3.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN FDD-FDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

| Field              | Test1 | Test2 | Comment                                                                                        |
|--------------------|-------|-------|------------------------------------------------------------------------------------------------|
| Field              | Value | Value |                                                                                                |
| TimeAlignmentTimer | sf500 | sf500 | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 0     | 0     | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.8.1.3.2 Test Requirements

In Test 1, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE send the measurement report on PUSCH.

In Test 2, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 25600 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the

measurement reporting delays above because UE is allowed to delay the initiation of the measurement

reporting procedure to the next until the Active Time.

NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received

correct Event A3 measurement report.

### A.8.1.4 Void

# A.8.1.5 E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

### A.8.1.5.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.2.3.

The test scenario comprises of one E-UTRA FDD carrier and two cells as given in tables A.8.1.5.1-1 and A.8.1.5.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would have ACK/NACK sending during identifying a new CGI of E-UTRAN cell. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE.

Table A.8.1.5.1-1: General test parameters for E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                  | Unit | Value                                       | Comment                                       |
|--------------------------------------------|------|---------------------------------------------|-----------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.3 FDD | As specified in section A.3.1.1.1             |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1             |
| Active cell                                |      | Cell 1                                      |                                               |
| Neighbour cell                             |      | Cell 2                                      | Cell to be identified.                        |
| E-UTRA RF Channel Number                   |      | 1                                           | Only one FDD carrier frequency is used.       |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                               |
| CP length                                  |      | Normal                                      |                                               |
| A3-Offset                                  | dB   | -3                                          |                                               |
| Hysteresis                                 | dB   | 0                                           |                                               |
| Time To Trigger                            | S    | 0                                           |                                               |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                      |
| DRX                                        |      | OFF                                         | -                                             |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331. |
| Time offset between cells                  | ms   | 3                                           | Asynchronous cells                            |
| T1                                         | S    | 5                                           |                                               |
| T2                                         | S    | ≤10                                         |                                               |
| T3                                         | s    | 5                                           |                                               |

Table A.8.1.5.1-2: Cell specific test parameters for E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                 | Unit       |       | Cell 1 |       |           | Cell 2 |      |  |
|---------------------------|------------|-------|--------|-------|-----------|--------|------|--|
|                           |            | T1    | T2     | Т3    | T1        | T2     | T3   |  |
| E-UTRA RF Channel         |            |       | 1      |       | 1         |        |      |  |
| Number                    |            |       |        |       |           |        |      |  |
| BW <sub>channel</sub>     | MHz        |       | 10     |       |           | 10     |      |  |
| OCNG Patterns defined in  |            | OP.10 | OP.10  | OP.10 | OP.2      | OP.2   | OP.2 |  |
| A.3.2.1.10 (OP.10 FDD)    |            | FDD   | FDD    | FDD   | FDD       | FDD    | FDD  |  |
| and in A.3.2.1.2 (OP.2    |            |       |        |       |           |        |      |  |
| FDD)                      |            |       |        |       |           |        |      |  |
| PBCH_RA                   | dB         |       |        |       |           |        |      |  |
| PBCH_RB                   | dB         |       |        |       |           |        |      |  |
| PSS_RA                    | dB         |       |        |       |           |        |      |  |
| SSS_RA                    | dB         |       |        |       |           |        |      |  |
| PCFICH_RB                 | dB         |       |        |       |           | 0      |      |  |
| PHICH_RA                  | dB         |       | 0      |       |           | 0      |      |  |
| PHICH_PB                  | dB         |       |        |       |           |        |      |  |
| PDCCH_RA                  | dB         |       |        |       |           |        |      |  |
| PDCCH_PB                  | dB         |       |        |       |           |        |      |  |
| PDSCH_RA                  | dB         |       |        |       |           |        |      |  |
| PDSCH_RB                  | dB         |       |        |       |           |        |      |  |
| OCNG_RA <sup>Note 1</sup> | dB         |       |        |       |           |        |      |  |
| OCNG_RB <sup>Note 1</sup> | dB         |       |        |       |           |        |      |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 8     | -3.3   | -3.3  | -Infinity | 2.36   | 2.36 |  |
| $N_{oc}^{ m Note~2}$      | dBm/15 KHz |       |        | -9    | 8         |        |      |  |
| $\hat{E}_s/N_{oc}$        | dB         | 8     | 8      | 8     | -Infinity | 11     | 11   |  |
| RSRP Note 3               | dBm/15 KHz | -90   | -90    | -90   | -Infinity | -87    | -87  |  |
| SCH_RP Note3              | dBm/15 KHz | -90   | -90    | -90   | -Infinity | -87    | -87  |  |
| Propagation Condition     |            |       | •      | AW    | GN        | -      | -    |  |
| T                         |            |       |        |       |           |        |      |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

### A.8.1.5.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

Test requirement = RRC Procedure delay +  $T_{identify CGI, intra}$  + reporting delay

- = 15 + 150 + 2ms from the start of T3
- = 167 ms, allow 170 ms.

The UE shall be scheduled continuously throughout the test, and from the start of T3 until 170 ms at least 80 ACK/NACK shall be detected as being transmitted by the UE.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The overall 80 ACK/NACK number is caused by two parts. Firstly, at least 60 ACK/NACK shall be sent during identifying the cell global identifier of cell 2 according to the requirement in Section 8.1.2.2.3.1. Secondly, given that continuous DL data allocation, additional 20 ACK/NACK shall be sent from the start of T3 until 170 ms excludes 150 ms for identifying the cell global identifier of cell 2.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.8.1.6 E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

# A.8.1.6.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.2.3. The requirement is verified in a DRX configuration.

The test scenario comprises of one E-UTRA FDD carrier and two cells as given in tables A.8.1.6.1-1, A.8.1.6.1-2, A.8.1.6.1-3 and A.8.1.6.1-4. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE.

In the test UE needs to be provided at least once every 1280ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE sends scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

Table A.8.1.6.1-1: General test parameters for E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Parameter                                  | Unit | Value           | Comment                            |
|--------------------------------------------|------|-----------------|------------------------------------|
| PDSCH parameters                           |      |                 | As specified in section A.3.1.1.1  |
|                                            |      | Channel R.0 FDD |                                    |
| PCFICH/PDCCH/PHICH parameters              |      |                 | As specified in section A.3.1.2.1  |
|                                            |      | Channel R.6 FDD |                                    |
| Active cell                                |      | Cell 1          |                                    |
| Neighbour cell                             |      | Cell 2          | Cell to be identified.             |
| E-UTRA RF Channel Number                   |      | 1               | Only one FDD carrier frequency is  |
|                                            |      |                 | used.                              |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10              |                                    |
| CP length                                  |      | Normal          |                                    |
| A3-Offset                                  | dB   | -3              |                                    |
| Hysteresis                                 | dB   | 0               |                                    |
| Time To Trigger                            | S    | 0               |                                    |
| Filter coefficient                         |      | 0               | L3 filtering is not used           |
| DRX                                        |      | ON              | DRX related parameters are         |
|                                            |      |                 | defined in Table A.8.1.6.1-3       |
| si-RequestForHO                            |      | TRUE            | As specified in section 5.5.3.1 in |
|                                            |      |                 | TS 36.331.                         |
| Time offset between cells                  | ms   | 3               | Asynchronous cells                 |
| T1                                         | S    | 5               |                                    |
| T2                                         | s    | ≤30             | UE should report cell within 25.6s |
|                                            |      |                 | (20 DRX cycles)                    |
| T3                                         | S    | 5               |                                    |

Table A.8.1.6.1-2: Cell specific test parameters for E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Parameter                                                | Unit         |      | Cell 1 |      |           | Cell 2 |      |  |
|----------------------------------------------------------|--------------|------|--------|------|-----------|--------|------|--|
|                                                          |              | T1   | T2     | T3   | T1        | T2     | T3   |  |
| E-UTRA RF Channel                                        |              |      | 1      |      |           | 1      |      |  |
| Number                                                   |              |      |        |      |           |        |      |  |
| BW <sub>channel</sub>                                    | MHz          |      | 10     |      |           | 10     |      |  |
| OCNG Patterns defined in                                 |              | OP.1 | OP.1   | OP.1 | OP.2      | OP.2   | OP.2 |  |
| A.3.2.1.1 (OP.1 FDD) and                                 |              | FDD  | FDD    | FDD  | FDD       | FDD    | FDD  |  |
| in A.3.2.1.2 (OP.2 FDD)                                  |              |      |        |      |           |        |      |  |
| PBCH_RA                                                  | dB           |      |        |      |           |        |      |  |
| PBCH_RB                                                  | dB           |      |        |      |           |        |      |  |
| PSS_RA                                                   | dB           | 1    |        |      |           |        |      |  |
| SSS_RA                                                   | dB           |      |        |      |           |        |      |  |
| PCFICH_RB                                                | dB           | 1    |        |      |           |        |      |  |
| PHICH_RA                                                 | dB           | 0 0  |        |      |           |        |      |  |
| PHICH_PB                                                 | dB           |      |        |      |           |        |      |  |
| PDCCH_RA                                                 | dB           |      |        |      |           |        |      |  |
| PDCCH_PB                                                 | dB           |      |        |      |           |        |      |  |
| PDSCH_RA                                                 | dB           |      |        |      |           |        |      |  |
| PDSCH_RB                                                 | dB           |      |        |      |           |        |      |  |
| OCNG RA <sup>Note 1</sup>                                | dB           | 1    |        |      |           |        |      |  |
| OCNG_RB <sup>Note 1</sup>                                | dB           |      |        |      |           |        |      |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB           | 8    | -3.3   | -3.3 | -Infinity | 2.36   | 2.36 |  |
| Noc Note 2                                               | dBm/15 KHz   |      |        | -(   | 98        |        |      |  |
| $\hat{E}_s/N_{oc}$                                       | dB           | 8    | 8      | 8    | -Infinity | 11     | 11   |  |
| RSRP Note 3                                              | dBm/15 KHz   | -90  | -90    | -90  | -Infinity | -87    | -87  |  |
| SCH_RP Note3                                             | dBm/15 KHz   | -90  | -90    | -90  | -Infinity | -87    | -87  |  |
| Propagation Condition                                    |              |      |        | AW   | 'GN       |        |      |  |
| N. ( 4 00NO 1 III 1                                      | 1 4 4 1 4 11 |      |        |      |           |        |      |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.1.6.1-3: DRX configuration for E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field                    | Value   | Comment                          |
|--------------------------|---------|----------------------------------|
| onDurationTimer          | psf1    | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1    | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1    |                                  |
| longDRX-CycleStartOffset | sf1280  |                                  |
| shortDRX                 | disable |                                  |

Table A.8.1.6.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN FDD - FDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field              | Value    | Comment                                                                                         |
|--------------------|----------|-------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | Infinity | As specified in section 6.3.2 in 3GPP TS 36.331                                                 |
| sr-ConfigIndex     | 0        | For further information see section 6.3.2 in 3GPP TS 36.331 and section 10.1 in 3GPP TS 36.213. |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.8.1.6.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

Test requirement = RRC Procedure delay +  $T_{identify CGI, intra}$  + reporting delay

- = 15 + [150] + 2ms from the start of T3
- = [167] ms, allow [170] ms.

The rate of correct events observed during repeated tests shall be at least 90%.

# A.8.2 E-UTRAN TDD Intra-frequency Measurements

# A.8.2.1 E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

### A.8.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the TDD intra-frequency cell search requirements in section 8.1.2.2.2.1.

The test parameters are given in Table A.8.2.1.1-1 and A.8.2.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. PDCCHs indicating new transmissions or retransmissions should be sent continuously to ensure that the UE would not enter the DRX state. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.2.1.1-1: General test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                  | Unit | Value                                       | Comment                                                                        |
|--------------------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------------|
|                                            |      | DL Reference Measurement                    |                                                                                |
| PDSCH parameters                           |      | Channel R.0 TDD                             | As specified in section A.3.1.1.2                                              |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                              |
| Active cell                                |      | Cell 1                                      |                                                                                |
| Neighbour cell                             |      | Cell 2                                      | Cell to be identified.                                                         |
| E-UTRA RF Channel Number                   |      | 1                                           | One TDD carrier frequency is used.                                             |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                |
| A3-Offset                                  | dB   | -6                                          |                                                                                |
| CP length                                  |      | Normal                                      |                                                                                |
| Special subframe configuration             |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells |
| Uplink-downlink configuration              |      | 1                                           | As specified in table 4.2-2 in TS 36.211. The same configuration in both cells |
| Hysteresis                                 | dB   | 0                                           |                                                                                |
| Time To Trigger                            | S    | 0                                           |                                                                                |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                                       |
| DRX                                        |      | DRX_L                                       | As specified in section A.3.3                                                  |
| Time offset between cells                  |      | 3 μs                                        | Synchronous cells                                                              |
| T1                                         | S    | 5                                           |                                                                                |
| T2                                         | s    | 5                                           |                                                                                |

Table A.8.2.1.1-2: Cell specific test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                                | Unit       | С     | ell 1 |           | Cell 2  |  |
|----------------------------------------------------------|------------|-------|-------|-----------|---------|--|
|                                                          |            | T1 T2 |       | T1        | T1 T2   |  |
| E-UTRA RF Channel                                        |            |       | 1     |           | 1       |  |
| Number                                                   |            |       |       |           |         |  |
| BW <sub>channel</sub>                                    | MHz        |       | 10    |           | 10      |  |
| OCNG Pattern defined                                     |            |       |       |           |         |  |
| in A.3.2.2.1 (OP.1                                       |            | OP.   | 1 TDD | OP        | 2.2 TDD |  |
| TDD) and in A.3.2.2.2                                    |            |       |       |           |         |  |
| (OP.2)                                                   |            |       |       |           |         |  |
| PBCH_RA                                                  | dB         |       |       |           |         |  |
| PBCH_RB                                                  | dB         |       |       |           |         |  |
| PSS_RA                                                   | dB         |       |       |           |         |  |
| SSS_RA                                                   | dB         |       |       | 0         |         |  |
| PCFICH_RB                                                | dB         |       |       |           |         |  |
| PHICH_RA                                                 | dB         |       | 0     |           |         |  |
| PHICH_RB                                                 | dB         |       | 0     |           |         |  |
| PDCCH_RA                                                 | dB         |       |       |           |         |  |
| PDCCH_RB                                                 | dB         |       |       |           |         |  |
| PDSCH_RA                                                 | dB         |       |       |           |         |  |
| PDSCH_RB                                                 | dB         |       |       |           |         |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |       |       |           |         |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |       |       |           |         |  |
| $N_{oc}^{ m Note~3}$                                     | dBm/15 kHz |       |       | -98       |         |  |
| RSRP Note 4                                              | dBm/15 kHz | -94   | -94   | -Infinity | -94     |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4     | -1.46 | -Infinity | -1.46   |  |
| SCH_RP Note 4                                            | dBm/15 kHz | -94   | -94   | -Infinity | -94     |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4     | 4     | -Infinity | 4       |  |
| Propagation Condition                                    |            |       |       | TU70      |         |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

## A.8.2.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.2.2 E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells with DRX

### A.8.2.2.1 Test Purpose and Environment

The purpose of the two tests is to verify that the UE makes correct reporting of an event in DRX. The tests will partly verify the TDD-TDD intra-frequency cell search in DRX requirements in section 8.1.2.2.1.2.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The test parameters are given in Tables A.8.1.3.1-1, A.8.1.3.1-2, A.8.1.3.1-3 and A.8.1.3.1-4. In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle.

In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

Table A.8.2.2.1-1: General test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

| Parameter                                  | Unit | Value         |             | Comment                                   |
|--------------------------------------------|------|---------------|-------------|-------------------------------------------|
|                                            |      | Test 1 Test 2 |             | 7                                         |
|                                            |      | DL Reference  | Measurement |                                           |
| PDSCH parameters                           |      | Channel R.0 T | DD .        | As specified in section A.3.1.1.2         |
|                                            |      | DL Reference  | Measurement |                                           |
| PCFICH/PDCCH/PHICH                         |      | Channel R.6 T | DD          | As specified in section A.3.1.2.2         |
| Parameters Active cell                     |      | Cell 1        |             |                                           |
| Neighbour cell                             |      | Cell 2        |             | Cell to be identified.                    |
| E-UTRA RF Channel Number                   |      | 1             |             |                                           |
|                                            | MHz  | 10            |             | One TDD carrier frequency is used.        |
| Channel Bandwidth (BW <sub>channel</sub> ) |      |               |             |                                           |
| A3-Offset                                  | dB   | -6            |             |                                           |
| CP length                                  |      | Normal        |             |                                           |
| Special subframe configuration             |      | 6             |             | As specified in table 4.2-1 in TS 36.211. |
|                                            |      |               |             | The same configuration in both cells      |
| Uplink-downlink configuration              |      | 1             |             | As specified in table 4.2-2 in TS 36.211. |
|                                            |      |               |             | The same configuration in both cells      |
| Hysteresis                                 | dB   | 0             |             | •                                         |
| Time To Trigger                            | S    | 0             |             |                                           |
| Filter coefficient                         |      | 0             |             | L3 filtering is not used                  |
| DRX                                        |      | ON            |             | DRX related parameters are defined in     |
|                                            |      |               |             | Table A.8.2.2.1-3                         |
| Time offset between cells                  |      | 3 μs          |             | Synchronous cells                         |
| T1                                         | S    | 5             |             |                                           |
| T2                                         | s    | 5             | 30          |                                           |

Table A.8.2.2.1-2: Cell specific test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

| Parameter                                                | Unit       | Cel     | II 1  | C         | ell 2 |  |
|----------------------------------------------------------|------------|---------|-------|-----------|-------|--|
|                                                          |            | T1      | T2    | T1        | T2    |  |
| E-UTRA RF Channel                                        |            | 1       |       |           | 1     |  |
| Number                                                   |            |         |       |           |       |  |
| BW <sub>channel</sub>                                    | MHz        | 10      | 0     |           | 10    |  |
| OCNG Pattern defined                                     |            |         |       |           |       |  |
| in A.3.2.2.1 (OP.1                                       |            | OP.1    | TDD   | OP.:      | 2 TDD |  |
| TDD) and in A.3.2.2.2                                    |            |         |       |           |       |  |
| (OP.2)                                                   |            |         |       |           |       |  |
| PBCH_RA                                                  | dB         |         |       |           |       |  |
| PBCH_RB                                                  | dB         |         |       |           |       |  |
| PSS_RA                                                   | dB         |         |       |           |       |  |
| SSS_RA                                                   | dB         |         |       |           |       |  |
| PCFICH_RB                                                | dB         |         |       | 0         |       |  |
| PHICH_RA                                                 | dB         | _       |       |           |       |  |
| PHICH_RB                                                 | dB         | 0       | )     |           |       |  |
| PDCCH_RA                                                 | dB         |         |       |           |       |  |
| PDCCH_RB                                                 | dB         |         |       |           |       |  |
| PDSCH_RA                                                 | dB         |         |       |           |       |  |
| PDSCH_RB                                                 | dB         |         |       |           |       |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |         |       |           |       |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |         |       |           |       |  |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 kHz |         |       | -98       |       |  |
| RSRP Note 3                                              | dBm/15 kHz | -94     | -94   | -Infinity | -94   |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4       | -1.46 | -Infinity | -1.46 |  |
| SCH_RP Note 3                                            | dBm/15 kHz | -94 -94 |       | -Infinity | -94   |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4       | 4     | -Infinity | 4     |  |
| Propagation Condition                                    |            | •       | E     | TU70      |       |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.2.2.1-3: DRX-Configuration for E-UTRAN TDD-TDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

| Field                    | Test1   | Test2   | Comment                          |
|--------------------------|---------|---------|----------------------------------|
| rieid                    | Value   | Value   |                                  |
| onDurationTimer          | psf1    | psf1    | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1    | psf1    | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1    | psf1    |                                  |
| longDRX-CycleStartOffset | sf40    | sf1280  |                                  |
| shortDRX                 | disable | disable |                                  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.2.2.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN TDD-TDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

| Field              | Test1<br>Value | Test2<br>Value | Comment                                                                                         |
|--------------------|----------------|----------------|-------------------------------------------------------------------------------------------------|
|                    | value          | value          |                                                                                                 |
| TimeAlignmentTimer | sf500          | sf500          | As specified in section 6.3.2 in 3GPP TS 36.331                                                 |
| sr-ConfigIndex     | 2              | 2              | For further information see section 6.3.2 in 3GPP TS 36.331 and section 10.1 in 3GPP TS 36.213. |

### A.8.2.2.2 Test Requirements

In Test 1, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE send the measurement report on PUSCH.

In Test 2, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 25600 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.

NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report.

# A.8.2.3 E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

### A.8.2.3.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.2.4.

The test scenario comprises of one E-UTRA TDD carrier and two cells as given in tables A.8.2.3.1-1 and A.8.2.3.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would have ACK/NACK sending during identifying a new CGI of E-UTRAN cell. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE.

Table A.8.2.3.1-1: General test parameters for E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                      | Unit | Value                                       | Comment                                                                        |
|--------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------------|
| PDSCH parameters               |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                              |
| PCFICH/PDCCH/PHICH parameters  |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                              |
| Active cell                    |      | Cell 1                                      |                                                                                |
| Neighbour cell                 |      | Cell 2                                      | Cell to be identified.                                                         |
| E-UTRA RF Channel Number       |      | 1                                           | Only one TDD carrier frequency is used.                                        |
| Channel Bandwidth (BWchannel)  | MHz  | 10                                          |                                                                                |
| CP length                      |      | Normal                                      |                                                                                |
| Special subframe configuration |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells |
| Uplink-downlink configuration  |      | 1                                           | As specified in table 4.2-2 in TS 36.211. The same configuration in both cells |
| A3-Offset                      | dB   | -3                                          |                                                                                |
| Hysteresis                     | dB   | 0                                           |                                                                                |
| Time To Trigger                | s    | 0                                           |                                                                                |
| Filter coefficient             |      | 0                                           | L3 filtering is not used                                                       |
| DRX                            |      | OFF                                         |                                                                                |
| si-RequestForHO                |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.                                  |
| Time offset between cells      | μs   | 3                                           | Synchronous cells                                                              |
| T1                             | S    | 5                                           |                                                                                |
| T2                             | S    | ≤10                                         |                                                                                |
| T3                             | s    | 5                                           |                                                                                |

Table A.8.2.3.1-2: Cell specific test parameters for E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                 | Unit |      | Cell 1 |      |      | Cell 2 |      |
|---------------------------|------|------|--------|------|------|--------|------|
|                           |      | T1   | T2     | T3   | T1   | T2     | T3   |
| E-UTRA RF Channel         |      |      | 1      |      | 1    |        |      |
| Number                    |      |      |        |      |      |        |      |
| BW <sub>channel</sub>     | MHz  |      | 10     |      |      | 10     |      |
| OCNG Patterns defined in  |      | OP.1 | OP.1   | OP.1 | OP.2 | OP.2   | OP.2 |
| A.3.2.2.1 (OP.1 TDD) and  |      | TDD  | TDD    | TDD  | TDD  | TDD    | TDD  |
| in A.3.2.2.2 (OP.2 TDD)   |      |      |        |      |      |        |      |
| PBCH_RA                   | dB   |      |        |      |      |        |      |
| PBCH_RB                   | dB   |      |        |      |      |        |      |
| PSS_RA                    | dB   |      |        |      |      |        |      |
| SSS_RA                    | dB   |      |        |      |      |        |      |
| PCFICH_RB                 | dB   |      |        |      |      |        |      |
| PHICH_RA                  | dB   |      | 0      |      |      | 0      |      |
| PHICH_RB                  | dB   |      |        |      |      |        |      |
| PDCCH_RA                  | dB   |      |        |      |      |        |      |
| PDCCH_RB                  | dB   |      |        |      |      |        |      |
| PDSCH_RA                  | dB   |      |        |      |      |        |      |
| PDSCH_RB                  | dB   |      |        |      |      |        |      |
| OCNG_RA <sup>Note 1</sup> | dB   |      |        |      |      |        |      |
| OCNG_RB <sup>Note 1</sup> | dB   |      |        |      |      |        |      |

| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 8    | -3.3 | -3.3 | -Infinity | 2.36 | 2.36 |  |
|----------------------------------------------------------|------------|------|------|------|-----------|------|------|--|
| $N_{oc}^{ m Note~2}$                                     | dBm/15 KHz |      |      | -9   | 98        |      |      |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 8    | 8    | 8    | -Infinity | 11   | 11   |  |
| RSRP Note 3                                              | dBm/15 KHz | -90  | -90  | -90  | -Infinity | -87  | -87  |  |
| SCH_RP Note3                                             | dBm/15 KHz | -90  | -90  | -90  | -Infinity | -87  | -87  |  |
| Propagation Condition                                    |            | AWGN |      |      |           |      |      |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.8.2.3.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within [170] milliseconds from the start of T3.

Test requirement = RRC Procedure delay +  $T_{identify CGL intra}$  + reporting delay

= 15 + [150] + 2ms from the start of T3

= [167] ms, allow [170] ms.

The UE shall be scheduled continuously throughout the test, and from the start of T3 until [170] ms at least [47] ACK/NACK shall be detected as being transmitted by the UE.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The overall [47] ACK/NACK number is caused by two parts. Firstly, at least [35] ACK/NACK shall be sent during identifying the cell global identifier of cell 2 according to the requirement for UL/DL configuration #1 in Table 8.1.2.2.4.1-1 of Section 8.1.2.2.4.1. Secondly, given that continuous DL data allocation, additional [12] ACK/NACK shall be sent from the start of T3 until [170] ms excludes [150] ms for identifying the cell global identifier of cell 2.

# A.8.2.4 E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

#### A.8.2.4.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.2.4. The requirement is verified in a DRX configuration.

The test scenario comprises of one E-UTRA TDD carrier and two cells as given in tables A.8.2.4.1-1, A.8.2.4.1-2, A.8.2.4.1-3 and A.8.2.4.1-4. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE.

In the test UE needs to be provided at least once every 1280ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE sends scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

Table A.8.2.4.1-1: General test parameters for E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Parameter                      | Unit | Value                                       | Comment                                                                        |
|--------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------------|
| PDSCH parameters               |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                              |
| PCFICH/PDCCH/PHICH parameters  |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                              |
| Active cell                    |      | Cell 1                                      |                                                                                |
| Neighbour cell                 |      | Cell 2                                      | Cell to be identified.                                                         |
| E-UTRA RF Channel Number       |      | 1                                           | Only one TDD carrier frequency is used.                                        |
| Channel Bandwidth (BWchannel)  | MHz  | 10                                          |                                                                                |
| CP length                      |      | Normal                                      |                                                                                |
| Special subframe configuration |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells |
| Uplink-downlink configuration  |      | 1                                           | As specified in table 4.2-2 in TS 36.211. The same configuration in both cells |
| A3-Offset                      | dB   | -3                                          |                                                                                |
| Hysteresis                     | dB   | 0                                           |                                                                                |
| Time To Trigger                | S    | 0                                           |                                                                                |
| Filter coefficient             |      | 0                                           | L3 filtering is not used                                                       |
| DRX                            |      | ON                                          | DRX related parameters are defined in Table A.8.2.4.1-3                        |
| si-RequestForHO                |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.                                  |
| Time offset between cells      | μs   | 3                                           | Synchronous cells                                                              |
| T1                             | s    | 5                                           |                                                                                |
| T2                             | S    | ≤30                                         | UE should report cell within 25.6s (20 DRX cycles)                             |
| T3                             | S    | 5                                           |                                                                                |

Table A.8.2.4.1-2: Cell specific test parameters for E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Unit       | Cell 1                                      |                                                       | Cell 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
|------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
|            | T1                                          | T2                                                    | T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T3                                                                                                                                 |  |
|            |                                             | 1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
|            |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| MHz        |                                             | 10                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |  |
|            | OP.1                                        | OP.1                                                  | OP.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OP.2                                                                                                                               |  |
|            | TDD                                         | TDD                                                   | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDD                                                                                                                                |  |
|            |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |  |
|            |                                             | 0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         |                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         | 8                                           | -3.3                                                  | -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.36                                                                                                                               |  |
| dBm/15 KHz | -98                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
| dB         | 8                                           | 8                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                 |  |
| dBm/15 KHz | -90                                         | -90                                                   | -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -87                                                                                                                                |  |
| dBm/15 KHz | -90                                         | -90                                                   | -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -87                                                                                                                                |  |
|            |                                             |                                                       | AW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 'GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |
|            | MHz  dB | MHz  OP.1 TDD  dB | T1         T2           1         1           MHz         10           OP.1         OP.1           TDD         OP.1           TDD         OP.1           TDD         OP.1           TDD         OP.1           TDD         OP.1           TDD         OP.1           DD         OP.1 <t< td=""><td>T1         T2         T3           MHz         10           OP.1         OP.1         OP.1           TDD         OP.1         TDD           DD         OP.1         OP.1           TDD         TDD         OP.1           TDD         TDD         OP.1           DD         OP.1         TDD           DD         OP.1</td><td>T1         T2         T3         T1           MHz         10         OP.1 OP.1 OP.2 TDD           MB         0B         0B</td><td>MHz         10         10           OP.1 TDD         OP.1 TDD         OP.2 TDD           DB dB</td></t<> | T1         T2         T3           MHz         10           OP.1         OP.1         OP.1           TDD         OP.1         TDD           DD         OP.1         OP.1           TDD         TDD         OP.1           TDD         TDD         OP.1           DD         OP.1         TDD           DD         OP.1 | T1         T2         T3         T1           MHz         10         OP.1 OP.1 OP.2 TDD           MB         0B         0B | MHz         10         10           OP.1 TDD         OP.1 TDD         OP.2 TDD           DB |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.2.4.1-3: DRX configuration for E-UTRAN TDD - TDD Intra-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field                    | Value   | Comment                          |
|--------------------------|---------|----------------------------------|
| onDurationTimer          | psf1    | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1    | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1    |                                  |
| longDRX-CycleStartOffset | sf1280  |                                  |
| shortDRX                 | disable |                                  |

Table A.8.2.4.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN TDD - TDD Intra frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field              | Value    | Comment                                                                                        |
|--------------------|----------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | Infinity | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 2        | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.8.2.4.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

Test requirement = RRC Procedure delay +  $T_{identify CGI, intra}$  + reporting delay

- = 15 + 150 + 2ms from the start of T3
- = 167 ms, allow 170 ms.

The rate of correct events observed during repeated tests shall be at least 90%.

# A.8.3 E-UTRAN FDD - FDD Inter-frequency Measurements

# A.8.3.1 E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells

# A.8.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD-FDD inter-frequency cell search requirements in section 8.1.2.3.

The test parameters are given in Tables A.8.3.1.1-1 and A.8.3.1.1-2. In this test, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.3.1.1-1: General test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting in fading propagation conditions

| Parameter                                  | Unit | Value                                       | Comment                                         |
|--------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1               |
| PCFICH/PDCCH/PHICH                         |      | DL Reference Measurement                    | As specified in section A.3.1.2.1               |
| parameters                                 |      | Channel R.6 FDD                             |                                                 |
| E-UTRA RF Channel<br>Number                |      | 1, 2                                        | Two FDD carrier frequencies are used.           |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                 |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1                |
| Neighbour cell                             |      | Cell 2                                      | Cell 2 is on RF channel number 2                |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| A3-Offset                                  | dB   | -6                                          |                                                 |
| Hysteresis                                 | dB   | 0                                           |                                                 |
| CP length                                  |      | Normal                                      |                                                 |
| TimeToTrigger                              | S    | 0                                           |                                                 |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                        |
| DRX                                        |      | OFF                                         | OFF                                             |
| Time offset between cells                  |      | 3 ms                                        | Asynchronous cells                              |
| T1                                         | S    | 5                                           |                                                 |
| T2                                         | S    | 5                                           |                                                 |

Table A.8.3.1.1-2: Cell specific test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                                | Unit       | Cell 1 |       | C         | Cell 2 |  |  |
|----------------------------------------------------------|------------|--------|-------|-----------|--------|--|--|
|                                                          |            | T1     | T2    | T1        | T2     |  |  |
| E-UTRA RF Channel                                        |            | 1      |       |           | 2      |  |  |
| Number                                                   |            |        |       |           |        |  |  |
| BW <sub>channel</sub>                                    | MHz        |        | 10    |           | 10     |  |  |
| OCNG Patterns                                            |            |        |       |           |        |  |  |
| defined in A.3.2.1.1                                     |            | OP.    | 1 FDD | OP        | .2 FDD |  |  |
| (OP.1 FDD) and in                                        |            |        |       |           |        |  |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |        |       |           |        |  |  |
| PBCH_RA                                                  | dB         |        |       |           |        |  |  |
| PBCH_RB                                                  | dB         |        |       |           |        |  |  |
| PSS_RA                                                   | dB         |        |       |           |        |  |  |
| SSS_RA                                                   | dB         |        |       |           |        |  |  |
| PCFICH_RB                                                | dB         |        |       |           |        |  |  |
| PHICH_RA                                                 | dB         |        | _     |           |        |  |  |
| PHICH_RB                                                 | dB         |        | 0     | 0         |        |  |  |
| PDCCH_RA                                                 | dB         |        |       |           |        |  |  |
| PDCCH_RB                                                 | dB         |        |       |           |        |  |  |
| PDSCH_RA                                                 | dB         |        |       |           |        |  |  |
| PDSCH_RB                                                 | dB         |        |       |           |        |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |        |       |           |        |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |        |       |           |        |  |  |
| $N_{oc}^{ m Note  3}$                                    | dBm/15 kHz |        |       | -98       |        |  |  |
| RSRP Note 4                                              | dBm/15 kHz | -94    | -94   | -Infinity | -91    |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4      | 4     | -Infinity | 7      |  |  |
| SCH_RP Note 4                                            | dBm/15 kHz | -94    | -94   | -Infinity | -91    |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4      | 4     | -Infinity | 7      |  |  |
| Propagation Condition                                    |            |        |       | ETU70     |        |  |  |
|                                                          |            |        |       |           |        |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

### A.8.3.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.3.2 E-UTRAN FDD-FDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

### A.8.3.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These test will partly verify the FDD-FDD inter-frequency cell search requirements when DRX is used in section 8.1.2.3.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The common test parameters are given in Tables A.8.3.2.1-1 and A.8.3.2.1-2. DRX configuration for Test1 and Test2 are given in Table A.8.3.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.3.2.1-4. In this tests, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The tests consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.3.2.1-1: General test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Parameter                  | Unit | Test 1          | Test 2     | Comment                                     |
|----------------------------|------|-----------------|------------|---------------------------------------------|
|                            |      | Va              | lue        |                                             |
| PDSCH parameters           |      | DL Reference Me | easurement | As specified in section A.3.1.1.1 Note that |
|                            |      | Channel R.0 FDE | )          | UE may only be allocated at On Duration     |
| PCFICH/PDCCH/PHICH         |      | DL Reference Me | asurement  | As specified in section A.3.1.2.1.          |
| parameters                 |      | Channel R.6 FDE | )          |                                             |
| E-UTRA RF Channel          |      | 1,              | 2          | Two FDD carrier frequencies are used.       |
| Number                     |      |                 |            |                                             |
| Channel Bandwidth          | MHz  | 1               | 0          |                                             |
| (BW <sub>channel</sub> )   |      |                 |            |                                             |
| Active cell                |      | Ce              | II 1       | Cell 1 is on RF channel number 1            |
| Neighbour cell             |      | Ce              | II 2       | Cell 2 is on RF channel number 2            |
| Gap Pattern Id             |      | (               | )          | As specified in 3GPP TS 36.133 section      |
| •                          |      |                 |            | 8.1.2.1.                                    |
| A3-Offset                  | dB   | -6              |            |                                             |
| Hysteresis                 | dB   | 0               |            |                                             |
| CP length                  |      | Normal          |            |                                             |
| TimeToTrigger              | S    | 0               |            |                                             |
| Filter coefficient         |      | 0               |            | L3 filtering is not used                    |
| PRACH configuration        |      | 4               | 1          | As specified in table 5.7.1-2 in TS 36.211  |
| Access Barring Information | -    | Not             | Sent       | No additional delays in random access       |
|                            |      |                 |            | procedure.                                  |
| DRX                        |      | ON              |            | DRX related parameters are defined in       |
|                            |      |                 |            | Table A.8.3.2.1-3                           |
| Time offset between cells  |      | 3 ו             | ns         | Asynchronous cells                          |
| T1                         | S    | 5               |            |                                             |
| T2                         | S    | 5 30            |            |                                             |

Table A.8.3.2.1-2: Cell specific test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                                | Unit       | Cell 1 |       | C         | ell 2  |  |
|----------------------------------------------------------|------------|--------|-------|-----------|--------|--|
|                                                          |            | T1     | T2    | T1        | T2     |  |
| E-UTRA RF Channel                                        |            |        | 1     |           | 2      |  |
| Number                                                   |            |        |       |           |        |  |
| BW <sub>channel</sub>                                    | MHz        | 10 10  |       |           | 10     |  |
| OCNG Patterns                                            |            |        |       |           |        |  |
| defined in A.3.2.1.1                                     |            | OP.    | 1 FDD | OP        | .2 FDD |  |
| (OP.1 FDD) and in                                        |            |        |       |           |        |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |        |       |           |        |  |
| PBCH_RA                                                  | dB         |        |       |           |        |  |
| PBCH_RB                                                  | dB         |        |       |           |        |  |
| PSS_RA                                                   | dB         |        |       |           |        |  |
| SSS_RA                                                   | dB         |        |       | 0         |        |  |
| PCFICH_RB                                                | dB         |        |       |           |        |  |
| PHICH_RA                                                 | dB         |        | _     |           |        |  |
| PHICH_RB                                                 | dB         |        | 0     |           |        |  |
| PDCCH_RA                                                 | dB         |        |       |           |        |  |
| PDCCH_RB                                                 | dB         |        |       |           |        |  |
| PDSCH_RA                                                 | dB         |        |       |           |        |  |
| PDSCH_RB                                                 | dB         |        |       |           |        |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |        |       |           |        |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |        |       |           |        |  |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 kHz |        |       | -98       |        |  |
| RSRP Note 3                                              | dBm/15 kHz | -94    | -94   | -Infinity | -91    |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4      | 4     | -Infinity | 7      |  |
| SCH_RP Note 3                                            | dBm/15 kHz | -94    | -94   | -Infinity | -91    |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4      | 4     | -Infinity | 7      |  |
| Propagation Condition                                    |            |        |       | ETU70     |        |  |
|                                                          |            |        |       |           |        |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.3.2.1-3: drx-Configuration to be used in E-UTRAN FDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Field                                                              | Test1   | Test2   | Comment |  |  |  |
|--------------------------------------------------------------------|---------|---------|---------|--|--|--|
| rieiu                                                              | Value   | Value   |         |  |  |  |
| onDurationTimer                                                    | psf1    | psf1    |         |  |  |  |
| drx-InactivityTimer                                                | psf1    | psf1    |         |  |  |  |
| drx-RetransmissionTimer                                            | psf1    | psf1    |         |  |  |  |
| longDRX-CycleStartOffset                                           | sf40    | sf1280  |         |  |  |  |
| shortDRX                                                           | disable | disable |         |  |  |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |         |         |         |  |  |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.3.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN FDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Field              | Test1 | Test2 | Comment                                                                                       |  |  |  |
|--------------------|-------|-------|-----------------------------------------------------------------------------------------------|--|--|--|
| Field              | Value | Value |                                                                                               |  |  |  |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                                  |  |  |  |
| sr-ConfigIndex     | 0     | 0     | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213 |  |  |  |

### A.8.3.2.2 Test Requirements

In Test1 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 20\*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

# A.8.3.3 E-UTRAN FDD-FDD inter-frequency event triggered reporting under AWGN propagation conditions in asynchronous cells with DRX when L3 filtering is used

#### A.8.3.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event in DRX when L3 filtering is used. This test will partly verify the FDD-FDD inter-frequency cell search in DRX requirements in section 8.1.2.3.1.2 and the UE behaviour with the *filterCoefficent* defined in [2].

The test parameters are given in Tables A.8.3.3.1-1, A.8.3.3.1-2, A.8.3.3.1-3 and A.8.3.3.1-4. In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 and the filter coefficient is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. In this test, there are two cells on different carrier frequencies and gap pattern configuration # 1 as defined in Table 8.1.2.1-1 is provided.

The uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

Table A.8.3.3.1-1: General test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting under AWGN propagation conditions in asynchronous cells with DRX when L3 filtering is used

| Parameter                                  | Unit | Value                                       | Comment                                                 |
|--------------------------------------------|------|---------------------------------------------|---------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                       |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                       |
| Active cell                                |      | Cell 1                                      |                                                         |
| Neighbour cell                             |      | Cell 2                                      | Cell to be identified.                                  |
| E-UTRA RF Channel<br>Number                |      | 1, 2                                        | Two FDD carrier frequencies are used.                   |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                         |
| Gap Pattern Id                             |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.         |
| Neighbour A3-Offset Ofn                    | dB   | -14                                         |                                                         |
| CP length                                  |      | Normal                                      |                                                         |
| Hysteresis                                 | dB   | 0                                           |                                                         |
| Time To Trigger                            | S    | 0                                           |                                                         |
| Filter coefficient                         |      | 9                                           | L3 filtering is used                                    |
| DRX                                        |      | ON                                          | DRX related parameters are defined in Table A.8.3.3.1-3 |
| Time offset between cells                  |      | 3 ms                                        | Asynchronous cells                                      |
| T1                                         | S    | 30                                          |                                                         |
| T2                                         | S    | 9                                           |                                                         |

Table A.8.3.3.1-2: Cell specific test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting under AWGN propagation conditions in asynchronous cells with DRX when L3 filtering is used

| Parameter                                                | Unit       | C     | ell 1 |     | Cell 2  |  |  |
|----------------------------------------------------------|------------|-------|-------|-----|---------|--|--|
|                                                          |            | T1    | T2    | T1  | T2      |  |  |
| E-UTRA RF Channel                                        |            |       | 1     |     | 2       |  |  |
| Number                                                   |            |       |       |     |         |  |  |
| BW <sub>channel</sub>                                    | MHz        | 10 10 |       |     | 10      |  |  |
| OCNG Patterns                                            |            |       |       |     |         |  |  |
| defined in A.3.2.1.1                                     |            | OP ·  | 1 FDD | OF  | 2.2 FDD |  |  |
| (OP.1 FDD) and in                                        |            | 01.   | 1100  |     | .2100   |  |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |       |       |     |         |  |  |
| PBCH_RA                                                  | dB         |       |       |     |         |  |  |
| PBCH_RB                                                  | dB         |       |       |     |         |  |  |
| PSS_RA                                                   | dB         |       |       |     |         |  |  |
| SSS_RA                                                   | dB         |       |       | 0   |         |  |  |
| PCFICH_RB                                                | dB         |       |       |     |         |  |  |
| PHICH_RA                                                 | dB         |       |       |     |         |  |  |
| PHICH_RB                                                 | dB         |       | 0     |     |         |  |  |
| PDCCH_RA                                                 | dB         |       |       |     |         |  |  |
| PDCCH_RB                                                 | dB         |       |       |     |         |  |  |
| PDSCH_RA                                                 | dB         |       |       |     |         |  |  |
| PDSCH_RB                                                 | dB         |       |       |     |         |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |       |       |     |         |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |       | 1     |     | T       |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4     | 4     | 4   | 24      |  |  |
| $N_{oc}^{$                                               | dBm/15 KHz | -98   |       |     |         |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4     | 4     | 4   | 24      |  |  |
| RSRP Note 3                                              | dBm/15 KHz | -94   | -94   | -94 | -74     |  |  |
| SCH_RP Note 3                                            | dBm/15 KHz | -94   | -94   | -94 | -74     |  |  |
| Propagation Condition                                    |            |       | P     | WGN | •       |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.3.3.1-3: DRX-Configuration for E-UTRAN FDD-FDD inter-frequency event triggered reporting in DRX under AWGN propagation conditions in asynchronous cells with DRX when L3 filtering is used

| Field                    | Value   | Comment                          |
|--------------------------|---------|----------------------------------|
| onDurationTimer          | psf1    | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1    | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1    |                                  |
| longDRX-CycleStartOffset | sf1280  |                                  |
| shortDRX                 | disable |                                  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.3.3.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN FDD-FDD inter-frequency event triggered reporting in DRX under AWGN propagation conditions in asynchronous cells with DRX when L3 filtering is used

| Field              | Value | Comment                                                                                        |
|--------------------|-------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | sf500 | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 0     | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

# A.8.3.3.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 6400 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report.

# A.8.3.4 E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

# A.8.3.4.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.3.5.

The test scenario comprises of two E-UTRA FDD carriers and one cell on each carrier as given in tables A.8.3.4.1-1 and A.8.3.4.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would have ACK/NACK sending during identifying a new CGI of E-UTRAN cell. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE. Measurement gaps shall be deconfigured before the start of T3.

Table A.8.3.4.1-1: General test parameters for E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                  | Unit | Value                                       | Comment                                         |
|--------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.3 FDD | As specified in section A.3.1.1.1               |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1               |
| E-UTRA RF channel number                   |      | 1, 2                                        | Two FDD carrier frequencies are used.           |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                 |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1.               |
| Neighbour cell                             |      | Cell 2                                      | Cell 1 is on RF channel number 2.               |
| CP length                                  |      | Normal                                      |                                                 |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| A3-Offset                                  | dB   | -6                                          |                                                 |
| Hysteresis                                 | dB   | 0                                           |                                                 |
| TimeToTrigger                              | S    | 0                                           |                                                 |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                        |
| DRX                                        |      | OFF                                         |                                                 |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.   |
| Time offset between cells                  | ms   | 3                                           | Asynchronous cells                              |
| T1                                         | S    | 5                                           |                                                 |
| T2                                         | S    | ≤10                                         |                                                 |
| T3                                         | S    | 5                                           |                                                 |

Table A.8.3.4.1-2: Cell specific test parameters for E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                                | Unit       | Cell 1 |       |       | Cell 2    |      |      |  |
|----------------------------------------------------------|------------|--------|-------|-------|-----------|------|------|--|
|                                                          |            | T1     | T2    | Т3    | T1        | T2   | T3   |  |
| E-UTRA RF Channel                                        |            | 1      |       |       | 2         |      |      |  |
| Number                                                   |            |        |       |       |           |      |      |  |
| BW <sub>channel</sub>                                    | MHz        |        | 10    |       |           | 10   |      |  |
| OCNG Patterns defined in                                 |            | OP.10  | OP.10 | OP.10 | OP.2      | OP.2 | OP.2 |  |
| A.3.2.1.10 (OP.10 FDD)                                   |            | FDD    | FDD   | FDD   | FDD       | FDD  | FDD  |  |
| and in A.3.2.1.2 (OP.2                                   |            |        |       |       |           |      |      |  |
| FDD)                                                     |            |        |       |       |           |      |      |  |
| PBCH_RA                                                  | dB         |        |       |       |           |      |      |  |
| PBCH_RB                                                  | dB         |        |       |       |           |      |      |  |
| PSS_RA                                                   | dB         |        |       |       |           |      |      |  |
| SSS_RA                                                   | dB         |        |       |       |           |      |      |  |
| PCFICH_RB                                                | dB         |        | •     |       |           | 0    |      |  |
| PHICH_RA                                                 | dB         |        | 0     |       |           | 0    |      |  |
| PHICH_PB                                                 | dB         |        |       |       |           |      |      |  |
| PDCCH_RA                                                 | dB         |        |       |       |           |      |      |  |
| PDCCH_PB                                                 | dB         |        |       |       |           |      |      |  |
| PDSCH_RA                                                 | dB         |        |       |       |           |      |      |  |
| PDSCH_RB                                                 | dB         |        |       |       |           |      |      |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |        |       |       |           |      |      |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |        |       |       |           |      |      |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 4      | 4     | 4     | -Infinity | 7    | 7    |  |
| $N_{oc}^{ m Note  2}$                                    | dBm/15 KHz | -98    |       |       |           |      |      |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4      | 4     | 4     | -Infinity | 7    | 7    |  |
| RSRP Note 3                                              | dBm/15 KHz | -94    | -94   | -94   | -Infinity | -91  | -91  |  |
| SCH_RP Note3                                             | dBm/15 KHz | -94    | -94   | -94   | -Infinity | -91  | -91  |  |
| Propagation Condition                                    |            |        | AWGN  |       |           |      |      |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.8.3.4.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

 $Test \ requirement = RRC \ Procedure \ delay + \ T_{identify} \ _{CGI, inter} + reporting \ delay$ 

= 15 + 150 + 2ms from the start of T3

= 167 ms, allow 170 ms.

The UE shall be scheduled continuously throughout the test, and from the start of T3 until 170 ms at least 80 ACK/NACK shall be detected as being transmitted by the UE.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The overall 80 ACK/NACK number is caused by two parts. Firstly, at least 60 ACK/NACK shall be sent during identifying the cell global identifier of cell 2 according to the requirement in Section 8.1.2.3.5.1. Secondly, given that continuous DL data allocation, and the measurement gaps have been deconfigured before the start of T3, additional 20 ACK/NACK shall be sent from the start of T3 until 170 ms excludes 150 ms for identifying the cell global identifier of cell 2.

# A.8.3.5 E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.3.5. The requirement is verified in a DRX configuration.

The test scenario comprises of two E-UTRA FDD carriers and one cell on each carrier as given in tables A.8.3.5.1-1, A.8.3.5.1-2, A.8.3.5.1-3 and A.8.3.5.1-4. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE. Measurement gaps shall be deconfigured before the start of T3.

In the test UE needs to be provided at least once every 1280ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE sends scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

Table A.8.3.5.1-1: General test parameters for E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Parameter                                  | Unit | Value                                       | Comment                                                 |
|--------------------------------------------|------|---------------------------------------------|---------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                       |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                       |
| E-UTRA RF channel number                   |      | 1, 2                                        | Two FDD carrier frequencies are used.                   |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                         |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1.                       |
| Neighbour cell                             |      | Cell 2                                      | Cell 1 is on RF channel number 2.                       |
| CP length                                  |      | Normal                                      |                                                         |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.         |
| A3-Offset                                  | dB   | -6                                          |                                                         |
| Hysteresis                                 | dB   | 0                                           |                                                         |
| TimeToTrigger                              | S    | 0                                           |                                                         |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                |
| DRX                                        |      | ON                                          | DRX related parameters are defined in Table A.8.3.5.1-3 |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.           |
| Time offset between cells                  | ms   | 3                                           | Asynchronous cells                                      |
| T1                                         | S    | 5                                           |                                                         |
| T2                                         | S    | ≤30                                         | UE should report cell within 25.6s (20 DRX cycles)      |
| T3                                         | S    | 5                                           |                                                         |

Table A.8.3.5.1-2: Cell specific test parameters for E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Parameter                 | Unit               | Cell 1 |               |              |                | Cell 2      |            |  |
|---------------------------|--------------------|--------|---------------|--------------|----------------|-------------|------------|--|
|                           |                    | T1     | T2            | T3           | T1             | T2          | T3         |  |
| E-UTRA RF Channel         |                    |        | 1             |              | 2              |             |            |  |
| Number                    |                    |        |               |              |                |             |            |  |
| BW <sub>channel</sub>     | MHz                |        | 10            |              |                | 10          |            |  |
| OCNG Patterns defined in  |                    | OP.1   | OP.1          | OP.1         | OP.2           | OP.2        | OP.2       |  |
| A.3.2.1.1 (OP.1 FDD) and  |                    | FDD    | FDD           | FDD          | FDD            | FDD         | FDD        |  |
| in A.3.2.1.2 (OP.2 FDD)   |                    |        |               |              |                |             |            |  |
| PBCH_RA                   | dB                 |        |               |              |                |             |            |  |
| PBCH_RB                   | dB                 |        |               |              |                |             |            |  |
| PSS_RA                    | dB                 |        |               |              |                |             |            |  |
| SSS_RA                    | dB                 |        |               |              |                |             |            |  |
| PCFICH_RB                 | dB                 |        | _             |              |                | _           |            |  |
| PHICH_RA                  | dB                 |        | 0             |              |                | 0           |            |  |
| PHICH_PB                  | dB                 |        |               |              |                |             |            |  |
| PDCCH_RA                  | dB                 |        |               |              |                |             |            |  |
| PDCCH_PB                  | dB                 |        |               |              |                |             |            |  |
| PDSCH_RA                  | dB                 |        |               |              |                |             |            |  |
| PDSCH_RB                  | dB                 |        |               |              |                |             |            |  |
| OCNG_RA <sup>Note 1</sup> | dB                 |        |               |              |                |             |            |  |
| OCNG_RB <sup>Note 1</sup> | dB                 |        |               |              |                |             |            |  |
| $\hat{E}_{s}/I_{ot}$      | dB                 | 4      | 4             | 4            | -Infinity      | 7           | 7          |  |
| $N_{oc}^{ m Note~2}$      | dBm/15 KHz         |        |               | -6           | 98             |             |            |  |
| $\hat{E}_s/N_{oc}$        | dB                 | 4      | 4             | 4            | -Infinity      | 7           | 7          |  |
| RSRP Note 3               | dBm/15 KHz         | -94    | -94           | -94          | -Infinity      | -91         | -91        |  |
| SCH_RP Note3              | dBm/15 KHz         | -94    | -94           | -94          | -Infinity      | -91         | -91        |  |
| Propagation Condition     |                    |        | AWGN          |              |                |             |            |  |
|                           | sed such that both |        | y allocated a | ind a consta | nt total trans | mitted powe | r spectral |  |

density is achieved for all OFDM symbols.

Interference from other cells and noise sources not specified in the test is assumed to be constant over Note 2: subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are Note 3: not settable parameters themselves.

Table A.8.3.5.1-3: DRX configuration for E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field                    | Value   | Comment                          |
|--------------------------|---------|----------------------------------|
| onDurationTimer          | psf1    | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1    | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1    |                                  |
| longDRX-CycleStartOffset | sf1280  |                                  |
| shortDRX                 | disable |                                  |

Table A.8.3.5.1-4: TimeAlignmentTimer - Configuration for E-UTRAN FDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field              | Value    | Comment                                                                                         |
|--------------------|----------|-------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | Infinity | As specified in section 6.3.2 in 3GPP TS 36.331                                                 |
| sr-ConfigIndex     | 0        | For further information see section 6.3.2 in 3GPP TS 36.331 and section 10.1 in 3GPP TS 36.213. |

## A.8.3.5.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

 $Test \ requirement \ = RRC \ Procedure \ delay + \ T_{identify\_CGI,inter} + reporting \ delay$ 

= 15 + [150] + 2ms from the start of T3

= [167] ms, allow [170] ms.

The rate of correct events observed during repeated tests shall be at least 90%.

# A.8.4 E-UTRAN TDD - TDD Inter-frequency Measurements

# A.8.4.1 E-UTRAN TDD-TDD Inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

# A.8.4.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the TDD-TDD inter-frequency cell search requirements in section 8.1.2.3.4.

The test parameters are given in Table A.8.4.1.1-1 and A.8.4.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.4.1.1-1: General test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting in fading propagation conditions

| Parameter                                  | Unit | Value                    | Comment                                   |
|--------------------------------------------|------|--------------------------|-------------------------------------------|
|                                            |      | DL Reference Measurement |                                           |
| PDSCH parameters                           |      | Channel R.0 TDD          | As specified in section A.3.1.1.2         |
|                                            |      | DL Reference Measurement |                                           |
| PCFICH/PDCCH/PHICH                         |      | Channel R.6 TDD          | As specified in section A.3.1.2.2         |
| parameters                                 |      |                          |                                           |
| Gap Pattern Id                             |      | 1                        | As specified in 3GPP TS 36.133 section    |
|                                            |      |                          | 8.1.2.1.                                  |
| Special subframe configuration             |      | 6                        | As specified in table 4.2-1 in TS 36.211. |
|                                            |      |                          | The same configuration in both cells      |
| Uplink-downlink configuration              |      | 1                        | As specified in 3GPP TS 36.211 section    |
|                                            |      |                          | 4.2 Table 4.2-2                           |
| CP length                                  |      | Normal                   |                                           |
| E-UTRA RF Channel Number                   |      | 1, 2                     | Two TDD carrier frequencies are used.     |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                       |                                           |
| Active cell                                |      | Cell 1                   | Cell 1 is on RF channel number 1          |
| Neighbour cell                             |      | Cell 2                   | Cell 2 is on RF channel number 2          |
| A3-Offset                                  | dB   | -6                       |                                           |
| Hysteresis                                 | dB   | 0                        |                                           |
| TimeToTrigger                              | S    | 0                        |                                           |
| Filter coefficient                         |      | 0                        | L3 filtering is not used                  |
| DRX                                        |      | OFF                      |                                           |
| Time offset between cells                  |      | 3 μs                     | Synchronous cells                         |
| T1                                         | s    | 5                        |                                           |
| T2                                         | s    | 10                       |                                           |

Table A.8.4.1.1-2: Cell specific test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

| E-UTRA RF Channel Number  BW channel MHz 10 10 10  OCNG Pattern defined in A.3.2.2.1 (OP.1 TDD) and in A.3.2.2.2 (OP.2)  PBCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Number         BW <sub>channel</sub> MHz         10         10           OCNG Pattern defined in A.3.2.2.1 (OP.1 TDD) and in A.3.2.2.2 (OP.2)         OP.1 TDD         OP.2 (OP.2)           PBCH_RA         dB         DP.2 (OP.2)         OP.2 (OP.2)         OP.2 (OP.2)           PBCH_RB         dB         DP.2 (OP.2)         OP.2 (OP.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T2  |
| BW channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| OCNG Pattern defined in A.3.2.2.1 (OP.1 TDD) and in A.3.2.2.2 (OP.2)         OP.1 TDD         OP.2 OP.2 OP.2 OP.2 OP.2 OP.2 OP.2 OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| in A.3.2.2.1 (OP.1 TDD) and in A.3.2.2.2 (OP.2)  PBCH_RA  PBCH_RB  PBCH_RB  PSS_RA  DCFICH_RB  PHICH_RB  PDCCH_RB  PDCCH_RB  PDCCH_RB  PDCCH_RB  PDCCH_RB  DCNG_RA  DCNG_RA  DCNG_RB  OCNG_RB  OCNG_RB  Noc  Noc  Noc  Noc  OP.1 TDD  OP.2  Indinity  Indini |     |
| TDD) and in A.3.2.2.2 (OP.2)  PBCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| (OP.2)         BBCH_RA         dB           PBCH_RB         dB           PSS_RA         dB           PSS_RA         dB           PSS_RA         dB           PCFICH_RB         dB           PHICH_RA         dB           PHICH_RB         dB           PDCCH_RA         dB           PDCCH_RB         dB           PDSCH_RA         dB           PDSCH_RB         dB           OCNG_RA <sup>Note 1</sup> dB           OCNG_RB <sup>Note 1</sup> dB           QCNG_SOL         dB           A         4           4         -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDD |
| PBCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| PBCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| PDCCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| PDCCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| PDSCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| PDSCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ dB 4 4 -Infinity $N_{oc}$ Note 3 dBm/15 kHz -98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ dB 4 4 -Infinity $N_{oc}$ Note 3 dBm/15 kHz -98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| RSRP Note 4 dBm/15 kHz -94 -94 -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -91 |
| SCH_RP Note 4 dBm/15 kHz -94 -94 -infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -91 |
| $\hat{E}_s/N_{oc}$ dB 4 -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7   |
| Propagation Condition ETU70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

#### A.8.4.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.4.2 E-UTRAN TDD-TDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in synchronous cells

### A.8.4.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These test will partly verify the TDD-TDD inter-frequency cell search requirements when DRX is used in section 8.1.2.3.

Note 2: The resources for uplink transmission are assigned to the UE priori to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

The common test parameters are given in Tables A.8.4.2.1-1 and A.8.4.2.1-2. DRX configuration for Test1 and Test2 are given in Table A.8.4.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.4.2.1-4. In these tests, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignmend. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The tests consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.4.2.1-1: General test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Parameter                  | Unit | Test 1          | Test 2    | Comment                                      |  |  |
|----------------------------|------|-----------------|-----------|----------------------------------------------|--|--|
|                            |      | Va              | lue       |                                              |  |  |
| PDSCH parameters           |      | DL Reference Me | asurement | As specified in section A.3.1.1.2. Note that |  |  |
|                            |      | Channel R.0 TDD | )         | UE may only be allocated at On Duration      |  |  |
| PCFICH/PDCCH/PHICH         |      | DL Reference Me |           | As specified in section A.3.1.2.2.           |  |  |
| parameters                 |      | Channel R.6 TDD | )         |                                              |  |  |
| E-UTRA RF Channel          |      | 1,              | 2         | Two TDD carrier frequencies are used.        |  |  |
| Number                     |      |                 |           |                                              |  |  |
| Channel Bandwidth          | MHz  | 1               | 0         |                                              |  |  |
| (BW <sub>channel</sub> )   |      |                 |           |                                              |  |  |
| Active cell                |      | Ce              | II 1      | Cell 1 is on RF channel number 1             |  |  |
| Neighbour cell             |      | Ce              | II 2      | Cell 2 is on RF channel number 2             |  |  |
| Gap Pattern Id             |      |                 |           | As specified in 3GPP TS 36.133 section       |  |  |
| ·                          |      |                 |           | 8.1.2.1.                                     |  |  |
| Uplink-downlink            |      | 1               |           | As specified in 3GPP TS 36.211 section       |  |  |
| configuration              |      |                 |           | 4.2 Table 4.2-2                              |  |  |
| Special subframe           |      | 6               |           | As specified in table 4.2-1 in TS 36.211.    |  |  |
| configuration              |      |                 |           | The same configuration in both cells         |  |  |
| A3-Offset                  | dB   | -6              |           |                                              |  |  |
| Hysteresis                 | dB   | 0               |           |                                              |  |  |
| CP length                  |      | Normal          |           |                                              |  |  |
| TimeToTrigger              | S    | 0               |           |                                              |  |  |
| Filter coefficient         |      | (               | )         | L3 filtering is not used                     |  |  |
| PRACH configuration        |      | 4               |           | As specified in table 5.7.1-3 in TS 36.211   |  |  |
| Access Barring Information | -    | Not Sent        |           | No additional delays in random access        |  |  |
|                            |      |                 |           | procedure.                                   |  |  |
| DRX                        |      | 0               | N         | DRX related parameters are defined in        |  |  |
|                            |      |                 |           | Table A.8.4.2.1-3                            |  |  |
| Time offset between cells  |      | 3 μs            |           | Synchronous cells                            |  |  |
| T1                         | S    |                 |           |                                              |  |  |
| T2                         | S    | 5               | 30        |                                              |  |  |

Table A.8.4.2.1-2: Cell specific test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                                | Unit       | Cell 1         T1         T2         T1 |     | Ce        | ell 2 |  |
|----------------------------------------------------------|------------|-----------------------------------------|-----|-----------|-------|--|
|                                                          |            |                                         |     | T1        | T2    |  |
| E-UTRA RF Channel                                        |            |                                         |     | 2         |       |  |
| Number                                                   |            |                                         |     |           |       |  |
| BW <sub>channel</sub>                                    | MHz        | 1                                       | 0   | 1         | 0     |  |
| OCNG Patterns                                            |            |                                         |     |           |       |  |
| defined in A.3.2.1.1                                     |            | OP.1                                    | TDD | OP.2      | 2 TDD |  |
| (OP.1 TDD) and in                                        |            |                                         |     |           |       |  |
| A.3.2.1.2 (OP.2 TDD)                                     |            |                                         |     |           |       |  |
| PBCH_RA                                                  | dB         |                                         |     |           |       |  |
| PBCH_RB                                                  | dB         |                                         |     |           |       |  |
| PSS_RA                                                   | dB         |                                         |     |           |       |  |
| SSS_RA                                                   | dB         |                                         |     |           |       |  |
| PCFICH_RB                                                | dB         |                                         |     |           |       |  |
| PHICH_RA                                                 | dB         | ,                                       |     |           |       |  |
| PHICH_RB                                                 | dB         | (                                       | )   | 1         | 0     |  |
| PDCCH_RA                                                 | dB         |                                         |     |           |       |  |
| PDCCH_RB                                                 | dB         |                                         |     |           |       |  |
| PDSCH_RA                                                 | dB         |                                         |     |           |       |  |
| PDSCH_RB                                                 | dB         |                                         |     |           |       |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |                                         |     |           |       |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |                                         |     |           |       |  |
| N <sub>oc</sub> Note 2                                   | dBm/15 kHz |                                         |     | -98       |       |  |
| RSRP Note 3                                              | dBm/15 kHz | -94                                     | -94 | -Infinity | -91   |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4                                       | 4   | -Infinity | 7     |  |
| SCH_RP Note 3                                            | dBm/15 kHz | -94                                     | -94 | -Infinity | -91   |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4                                       | 4   | -Infinity | 7     |  |
| Propagation Condition                                    |            |                                         |     | ETU70     |       |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.4.2.1-3: drx-Configuration to be used in E-UTRAN TDD-TDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Field                    | Test1   | Test2   | Comment |
|--------------------------|---------|---------|---------|
| rieiu                    | Value   | Value   |         |
| onDurationTimer          | psf1    | psf1    |         |
| drx-InactivityTimer      | psf1    | psf1    |         |
| drx-RetransmissionTimer  | psf1    | psf1    |         |
| longDRX-CycleStartOffset | sf40    | sf1280  |         |
| shortDRX                 | disable | disable |         |

Table A.8.4.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN TDD-TDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Field              | Test1 | Test2 | Comment                                                                                 |
|--------------------|-------|-------|-----------------------------------------------------------------------------------------|
| Field              | Value | Value |                                                                                         |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                            |
| sr-ConfigIndex     | 2     | 2     | For further information see section 6.3.2 in 3GPP TS 36.331 and 10.1 in 3GPP TS 36.213. |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.8.4.2.2 Test Requirements

In Test1 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 20\*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

# A.8.4.3 E-UTRAN TDD-TDD inter-frequency event triggered reporting under AWGN propagation conditions in synchronous cells with DRX when L3 filtering is used

#### A.8.4.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event in DRX when L3 filtering is used. This test will partly verify the TDD-TDD inter-frequency cell search in DRX requirements in section 8.1.2.3.2.2 and the UE behaviour with the filterCoefficient defined in [2].

The test parameters are given in Tables A.8.4.3.1-1, A.8.4.3.1-2, A.8.4.3.1-3 and A.8.4.3.1-4. In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 and the filter coefficient is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. In this test, there are two cells on different carrier frequencies and gap pattern configuration # 1 as defined in Table 8.1.2.1-1 is provided.

The uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

Table A.8.4.3.1-1: General test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting under AWGN propagation conditions with DRX when L3 filtering is used

| Parameter                                  | Unit | Value                    | Comment                           |
|--------------------------------------------|------|--------------------------|-----------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement | As specified in section A.3.1.1.2 |
|                                            |      | Channel R.0 TDD          |                                   |
| PCFICH/PDCCH/PHICH                         |      | DL Reference Measurement | As specified in section A.3.1.2.2 |
| parameters                                 |      | Channel R.6 TDD          |                                   |
| Active cell                                |      | Cell 1                   |                                   |
| Neighbour cell                             |      | Cell 2                   | Cell to be identified.            |
| E-UTRA RF Channel Number                   |      | 1, 2                     | Two TDD carrier frequencies are   |
|                                            |      |                          | used.                             |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                       |                                   |
| Time offset between cells                  | μs   | 3                        | synchronous cells                 |
| Gap Pattern Id                             |      | 1                        | As specified in 3GPP TS 36.133    |
|                                            |      |                          | section 8.1.2.1.                  |
| Uplink-downlink configuration              |      | 1                        | As specified in table 4.2.2 in TS |
| of cells                                   |      |                          | 36.211                            |
| Special subframe configuration             |      | 6                        | As specified in table 4.2.1 in TS |
| of cells                                   |      |                          | 36.211                            |
| Neighbour A3-Offset Ofn                    | dB   | -14                      |                                   |
| CP length                                  |      | Normal                   |                                   |
| Hysteresis                                 | dB   | 0                        |                                   |
| Time To Trigger                            | S    | 0                        |                                   |
| Filter coefficient                         |      | 9                        | L3 filtering is used              |
| DRX                                        |      | ON                       | DRX related parameters are        |
|                                            |      |                          | defined in Table A.8.4.3.1-3      |
| T1                                         | S    | 30                       |                                   |
| T2                                         | S    | 9                        |                                   |

Table A.8.4.3.1-2: Cell specific test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting under AWGN propagation conditions with DRX when L3 filtering is used

| Parameter                                                                       | Unit       | C        | ell 1 | Cell 2   |          |  |
|---------------------------------------------------------------------------------|------------|----------|-------|----------|----------|--|
|                                                                                 |            | T1       | T2    | T1       | T2       |  |
| E-UTRA RF Channel Number                                                        |            | ,        | 1     | 2        | <u>)</u> |  |
| BW <sub>channel</sub>                                                           | MHz        | 1        | 0     | 1        | 0        |  |
| OCNG Patterns defined in A.3.2.2.1<br>(OP.1 TDD) and in A.3.2.2.2 (OP.2<br>TDD) |            | OP.1 TDD |       | OP.2 TDD |          |  |
| PBCH_RA                                                                         | dB         |          |       |          |          |  |
| PBCH_RB                                                                         | dB         |          |       |          |          |  |
| PSS_RA                                                                          | dB         |          |       |          |          |  |
| SSS_RA                                                                          | dB         |          |       |          |          |  |
| PCFICH_RB                                                                       | dB         |          |       |          |          |  |
| PHICH_RA                                                                        | dB         |          |       |          |          |  |
| PHICH_RB                                                                        | dB         | (        | )     | (        | )        |  |
| PDCCH_RA                                                                        | dB         |          |       |          |          |  |
| PDCCH_RB                                                                        | dB         |          |       |          |          |  |
| PDSCH_RA                                                                        | dB         |          |       |          |          |  |
| PDSCH_RB                                                                        | dB         |          |       |          |          |  |
| OCNG_RA <sup>Note 1</sup>                                                       | dB         |          |       |          |          |  |
| OCNG_RB <sup>Note 1</sup>                                                       | dB         |          |       |          |          |  |
| $\mathbf{\hat{E}}_{_{\mathrm{s}}}/\mathrm{I}_{_{\mathrm{ot}}}$                  | dB         | 4        | 4     | 4        | 24       |  |
| $N_{oc}^{ m Note  2}$                                                           | dBm/15 KHz | -98      |       |          |          |  |
| $\hat{E}_s/N_{oc}$                                                              | dB         | 4        | 4     | 4        | 24       |  |
| RSRP Note 3                                                                     | dBm/15 KHz | -94      | -94   | -94      | -74      |  |
| SCH_RP Note 3                                                                   | dBm/15 KHz | -94      | -94   | -94      | -74      |  |
| Propagation Condition                                                           |            | AWGN     |       |          |          |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.4.3.1-3: DRX-Configuration for E-UTRAN TDD-TDD inter-frequency event triggered reporting in DRX under AWGN propagation conditions with DRX when L3 filtering is used

| Field                    | Value   | Comment                                         |
|--------------------------|---------|-------------------------------------------------|
| onDurationTimer          | psf1    | As specified in section 6.3.2 in 3GPP TS 36.331 |
| drx-InactivityTimer      | psf1    |                                                 |
| drx-RetransmissionTimer  | sf1     |                                                 |
| longDRX-CycleStartOffset | sf1280  |                                                 |
| shortDRX                 | disable |                                                 |

Table A.8.4.3.1-4: TimeAlignmentTimer -Configuration for E-UTRAN TDD-TDD inter-frequency event triggered reporting in DRX under AWGN propagation conditions with DRX when L3 filtering is used

| Field              | Value | Comment                                                                                        |
|--------------------|-------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | sf500 | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 2     | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

#### A.8.4.3.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 6400 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of

time period T2 to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

# A.8.4.4 E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

## A.8.4.4.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.3.7.

The test scenario comprises of two E-UTRA TDD carriers and one cell on each carrier as given in tables A.8.4.4.1-1 and A.8.4.4.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would have ACK/NACK sending during identifying a new CGI of E-UTRAN cell. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE. Measurement gaps shall be deconfigured before the start of T3.

Table A.8.4.4.1-1: General test parameters for E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                  | Unit | Value                                       | Comment                                                                        |
|--------------------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.1                                              |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.1                                              |
| E-UTRA RF channel number                   |      | 1, 2                                        | Two TDD carrier frequencies are used.                                          |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1.                                              |
| Neighbour cell                             |      | Cell 2                                      | Cell 1 is on RF channel number 2.                                              |
| CP length                                  |      | Normal                                      |                                                                                |
| Special subframe configuration             |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells |
| Uplink-downlink configuration              |      | 1                                           | As specified in table 4.2-2 in TS 36.211. The same configuration in both cells |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                |
| A3-Offset                                  | dB   | -6                                          |                                                                                |
| Hysteresis                                 | dB   | 0                                           |                                                                                |
| TimeToTrigger                              | s    | 0                                           |                                                                                |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                                       |
| DRX                                        |      | OFF                                         | _                                                                              |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.                                  |
| Time offset between cells                  | μs   | 3                                           | Synchronous cells                                                              |
| T1                                         | s    | 5                                           |                                                                                |
| T2                                         | S    | ≤10                                         |                                                                                |
| T3                                         | S    | 5                                           |                                                                                |

Table A.8.4.4.1-2: Cell specific test parameters for E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Unit       |                                             | Cell 1                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cell 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    |
|------------|---------------------------------------------|-------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|            | T1                                          | T2                                                    | T3           | T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T3                                                                                                                                 |
|            |                                             | 1                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| MHz        |                                             | 10                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |
|            | OP.1                                        | OP.1                                                  | OP.1         | OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OP.2                                                                                                                               |
|            | TDD                                         | TDD                                                   | TDD          | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDD                                                                                                                                |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
| dB         |                                             | 0                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         | 4                                           | 4                                                     | 4            | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                  |
| dBm/15 KHz |                                             |                                                       | -6           | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         | 4                                           | 4                                                     | 4            | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                  |
| dBm/15 KHz | -94                                         | -94                                                   | -94          | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -91                                                                                                                                |
| dBm/15 KHz | -94                                         | -94                                                   | -94          | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -91                                                                                                                                |
|            |                                             |                                                       | AW           | 'GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            | MHz  dB | MHz  OP.1 TDD  dB | T1 T2    MHz | T1         T2         T3           MHz         10           OP.1         OP.1         OP.1           TDD         OP.1         TDD    OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  O | T1         T2         T3         T1           MHz         10         OP.1 OP.1 OP.2 TDD           MB         0B         0B | MHz         10         10           OP.1 TDD         OP.1 TDD         OP.2 TDD           DB |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.8.4.4.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

 $Test\ requirement = RRC\ Procedure\ delay +\ T_{identify\_CGI,inter} + reporting\ delay$ 

= 15 + 150 + 2ms from the start of T3

= 167 ms, allow 170 ms.

The UE shall be scheduled continuously throughout the test, and from the start of T3 until 170 ms at least 42 ACK/NACK shall be detected as being transmitted by the UE.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The overall 42 ACK/NACK number is caused by two parts. Firstly, at least 30 ACK/NACK shall be sent during identifying the cell global identifier of cell 2 according to the requirement in Section 8.1.2.3.7.1. Secondly, given that continuous DL data allocation, and the measurement gaps have been deconfigured before the start of T3, additional 12 ACK/NACK shall be sent from the start of T3 until 170 ms excludes 150 ms for identifying the cell global identifier of cell 2.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

# A.8.4.5 E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

### A.8.4.5.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.3.7. The requirement is verified in a DRX configuration.

The test scenario comprises of two E-UTRA TDD carriers and one cell on each carrier as given in tables A.8.4.5.1-1, A.8.4.5.1-2, A.8.4.5.1-3 and A.8.4.5.1-4. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE. Measurement gaps shall be deconfigured before the start of T3.

In the test UE needs to be provided at least once every 1280ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE sends scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

Table A.8.4.5.1-1: General test parameters for E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Parameter                                  | Unit | Value                                       | Comment                                                                        |
|--------------------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.1                                              |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.1                                              |
| E-UTRA RF channel number                   |      | 1, 2                                        | Two TDD carrier frequencies are used.                                          |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1.                                              |
| Neighbour cell                             |      | Cell 2                                      | Cell 1 is on RF channel number 2.                                              |
| CP length                                  |      | Normal                                      |                                                                                |
| Special subframe configuration             |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells |
| Uplink-downlink configuration              |      | 1                                           | As specified in table 4.2-2 in TS 36.211. The same configuration in both cells |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                |
| A3-Offset                                  | dB   | -6                                          |                                                                                |
| Hysteresis                                 | dB   | 0                                           |                                                                                |
| TimeToTrigger                              | S    | 0                                           |                                                                                |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                                       |
| DRX                                        |      | ON                                          | DRX related parameters are defined in Table A.8.4.5.1-3                        |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.                                  |
| Time offset between cells                  | us   | 3                                           | Synchronous cells                                                              |
| T1                                         | S    | 5                                           |                                                                                |
| T2                                         | S    | ≤30                                         | UE should report cell within 25.6s (20 DRX cycles)                             |
| T3                                         | S    | 5                                           |                                                                                |
|                                            |      | -                                           | +                                                                              |

Table A.8.4.5.1-2: Cell specific test parameters for E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Unit       |                                             | Cell 1                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cell 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    |
|------------|---------------------------------------------|-------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|            | T1                                          | T2                                                    | T3           | T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T3                                                                                                                                 |
|            |                                             | 1                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| MHz        |                                             | 10                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |
|            | OP.1                                        | OP.1                                                  | OP.1         | OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OP.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OP.2                                                                                                                               |
|            | TDD                                         | TDD                                                   | TDD          | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDD                                                                                                                                |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
| dB         |                                             | 0                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         |                                             |                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         | 4                                           | 4                                                     | 4            | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                  |
| dBm/15 KHz |                                             |                                                       | -6           | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
| dB         | 4                                           | 4                                                     | 4            | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                  |
| dBm/15 KHz | -94                                         | -94                                                   | -94          | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -91                                                                                                                                |
| dBm/15 KHz | -94                                         | -94                                                   | -94          | -Infinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -91                                                                                                                                |
|            |                                             |                                                       | AW           | 'GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |
|            | MHz  dB | MHz  OP.1 TDD  dB | T1 T2    MHz | T1         T2         T3           MHz         10           OP.1         OP.1         OP.1           TDD         OP.1         TDD    OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  OP.1 TDD  O | T1         T2         T3         T1           MHz         10         OP.1 OP.1 OP.2 TDD           MB         0B         0B | MHz         10         10           OP.1 TDD         OP.1 TDD         OP.2 TDD           DB |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.4.5.1-3: DRX configuration for E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field                    | Value   | Comment                          |
|--------------------------|---------|----------------------------------|
| onDurationTimer          | psf1    | As specified in section 6.3.2 in |
| drx-InactivityTimer      | psf1    | 3GPP TS 36.331                   |
| drx-RetransmissionTimer  | psf1    |                                  |
| longDRX-CycleStartOffset | sf1280  |                                  |
| shortDRX                 | disable |                                  |

Table A.8.4.5.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN TDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps with DRX

| Field              | Value    | Comment                                                                                        |
|--------------------|----------|------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | Infinity | As specified in section 6.3.2 in 3GPP TS 36.331                                                |
| sr-ConfigIndex     | 2        | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.8.4.5.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

Test requirement = RRC Procedure delay +  $T_{identify CGI, inter}$  + reporting delay

- = 15 + 150 + 2ms from the start of T3
- = 167 ms, allow 170 ms.

The rate of correct events observed during repeated tests shall be at least 90%.

# A.8.5 E-UTRAN FDD - UTRAN FDD Measurements

# A.8.5.1 E-UTRAN FDD - UTRAN FDD event triggered reporting under fading propagation conditions

# A.8.5.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRAN FDD- UTRAN FDD cell search requirements in section 8.1.2.4.1.

The test parameters are given in Tables A.8.5.1.1-1, A.8.5.1.1-2 and A.8.5.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.5.1.1-1: General test parameters for E-UTRAN FDD-UTRAN FDD event triggered reporting in fading propagation conditions

| Parameter                                   | Unit | Value                                       | Comment                                                    |
|---------------------------------------------|------|---------------------------------------------|------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)              |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.                         |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD) |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.                         |
| Gap Pattern Id                              |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.            |
| Active cell                                 |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                   |
| Neighbour cell                              |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                     |
| CP length                                   |      | Normal                                      | Applicable to cell 1                                       |
| E-UTRA RF Channel Number                    |      | 1                                           | One E-UTRA FDD carrier frequency is used.                  |
| E-UTRA Channel Bandwidth                    | MHz  | 10                                          |                                                            |
| (BW <sub>channel</sub> )                    |      |                                             |                                                            |
| UTRA RF Channel Number                      |      | 1                                           | One UTRA FDD carrier frequency is used.                    |
| Inter-RAT (UTRA FDD)                        |      | CPICH Ec/lo                                 |                                                            |
| measurement quantity                        |      |                                             |                                                            |
| b1-Threshold-UTRA                           | dB   | -18                                         | CPICH Ec/lo threshold for event B1.                        |
| Hysteresis                                  | dB   | 0                                           |                                                            |
| Time To Trigger                             | ms   | 0                                           |                                                            |
| Filter coefficient                          |      | 0                                           | L3 filtering is not used.                                  |
| DRX                                         |      | OFF                                         |                                                            |
| Monitored UTRA FDD cell list size           |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell list. |
| T1                                          | S    | 5                                           |                                                            |
| T2                                          | S    | 6                                           |                                                            |

Table A.8.5.1.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

| Parameter                 | Unit       | Cell 1                                 |     |  |  |
|---------------------------|------------|----------------------------------------|-----|--|--|
|                           |            | T1                                     | T2  |  |  |
| E-UTRA RF Channel Number  |            | 1                                      |     |  |  |
| BW <sub>channel</sub>     | MHz        | 10                                     |     |  |  |
| OCNG Pattern defined in   |            |                                        |     |  |  |
| A.3.2.1.1 (OP.1 FDD)      |            | OP.1 I                                 | FDD |  |  |
| PBCH_RA                   | dB         |                                        |     |  |  |
| PBCH_RB                   | dB         |                                        |     |  |  |
| PSS_RA                    | dB         |                                        |     |  |  |
| SSS_RA                    | dB         |                                        |     |  |  |
| PCFICH_RB                 | dB         |                                        |     |  |  |
| PHICH_RA                  | dB         | _                                      |     |  |  |
| PHICH_RB                  | dB         | 0                                      |     |  |  |
| PDCCH_RA                  | dB         |                                        |     |  |  |
| PDCCH_RB                  | dB         |                                        |     |  |  |
| PDSCH_RA                  | dB         |                                        |     |  |  |
| PDSCH_RB                  | dB         |                                        |     |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |                                        |     |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |                                        |     |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4                                      | 4   |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4                                      | 4   |  |  |
| N <sub>oc</sub>           | dBm/15 kHz | -98                                    | 3   |  |  |
| RSRP                      | dBm/15 kHz | -94                                    | -94 |  |  |
| SCH_RP                    | dBm/15 kHz | -94 -94                                |     |  |  |
| Propagation Condition     |            | ETU                                    | 70  |  |  |
|                           |            | alla ava fullu alla asta d'avad a assa |     |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.5.1.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

| Parameter              | Unit            | Cell            | 2    |  |
|------------------------|-----------------|-----------------|------|--|
|                        |                 | T1              | T2   |  |
| UTRA RF Channel Number |                 | 1               |      |  |
| CPICH_Ec/lor           | dB              | -10             |      |  |
| PCCPCH_Ec/lor          | dB              | -12             |      |  |
| SCH_Ec/lor             | dB              | -12             |      |  |
| PICH_Ec/lor            | dB              | -15             |      |  |
| DPCH_Ec/lor            | dB              | N/A             |      |  |
| OCNS                   |                 | -0.941          |      |  |
| $\hat{I}_{or}/I_{oc}$  | dB              | -Infinity       | -1.8 |  |
| $I_{oc}$               | dBm/3.84<br>MHz | -70             |      |  |
| CPICH_Ec/lo            | dB              | -Infinity -14   |      |  |
| Propagation Condition  |                 | Case 5 (Note 3) |      |  |

Note 1: The DPCH level is controlled by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{or}$ .

Note 3: Case 5 propagation conditions are defined in Annex A of 3GPP TS 25.101.

# A.8.5.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.5.2 E-UTRAN FDD - UTRAN FDD SON ANR cell search reporting under AWGN propagation conditions

### A.8.5.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of the strongest UTRAN cell for SON automatic neighbour relations. This test will partly verify the E-UTRAN FDD - UTRAN FDD cell search requirements for identification of a new UTRA FDD cell for SON given in section 8.1.2.4.7.1.

The test parameters are given in Tables A.8.5.2.1-1, A.8.5.2.1-2 and A.8.5.2.1-3 below. In the measurement control information it is indicated to the UE that periodical reporting with the purpose 'reportStrongestCellsForSON' is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. Prior to the start of time period T1, an interRATperiodic measurement reporting configuration with purpose reportStrongestCellsForSON is configured, and linked to a UTRA measurement object corresponding to channel UARFCN 1. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.5.2.1-1: General test parameters for E-UTRAN FDD-UTRAN FDD cell search reporting for SON ANR in AWGN propagation conditions

| Parameter                                         | Unit | Value                                       | Comment                                                                                                                                                                                                               |
|---------------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.                                                                                                                                                                                    |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)       |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.                                                                                                                                                                                    |
| Gap Pattern Id                                    |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                                                                                                                                                       |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                                                                                                                                              |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                                                                                                                                                                                |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                                                                                                                                                                                  |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA FDD carrier frequency is used.                                                                                                                                                                             |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                                                                                                                                                       |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA FDD carrier frequency is used.                                                                                                                                                                               |
| Inter-RAT (UTRA FDD) measurement quantity         |      | CPICH Ec/lo                                 |                                                                                                                                                                                                                       |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                                                                                                                                                                             |
| DRX                                               |      | OFF                                         |                                                                                                                                                                                                                       |
| Monitored UTRA FDD cell list size                 |      | None                                        | No explicit neighbour list is provided to the UE                                                                                                                                                                      |
| T1                                                | S    | >5                                          | During T1, cell 2 shall be powered off, and during the off time the primary scrambling code shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T2. |
| T2                                                | S    | 6                                           |                                                                                                                                                                                                                       |

Table A.8.5.2.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for UTRAN FDD cell search for SON ANR under AWGN propagation conditions

| Parameter                                                | Unit              | Cell                                                                                    | 1    |  |  |
|----------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|------|--|--|
|                                                          |                   | T1                                                                                      | T2   |  |  |
| E-UTRA RF Channel Number                                 |                   | 1                                                                                       |      |  |  |
| BW <sub>channel</sub>                                    | MHz               | 10                                                                                      |      |  |  |
| OCNG Pattern defined in                                  |                   |                                                                                         |      |  |  |
| A.3.2.1.1 (OP.1 FDD)                                     |                   | OP.1 FDD                                                                                |      |  |  |
| PBCH_RA                                                  | dB                |                                                                                         |      |  |  |
| PBCH_RB                                                  | dB                |                                                                                         |      |  |  |
| PSS_RA                                                   | dB                |                                                                                         |      |  |  |
| SSS_RA                                                   | dB                |                                                                                         |      |  |  |
| PCFICH_RB                                                | dB                |                                                                                         |      |  |  |
| PHICH_RA                                                 | dB                |                                                                                         |      |  |  |
| PHICH_RB                                                 | dB                | 0                                                                                       |      |  |  |
| PDCCH_RA                                                 | dB                |                                                                                         |      |  |  |
| PDCCH_RB                                                 | dB                |                                                                                         |      |  |  |
| PDSCH_RA                                                 | dB                |                                                                                         |      |  |  |
| PDSCH_RB                                                 | dB                |                                                                                         |      |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB                |                                                                                         |      |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB                |                                                                                         |      |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB                | 4                                                                                       | 4    |  |  |
| $N_{oc}^{ m Note  3}$                                    | dBm/15 kHz        | -98                                                                                     | 3    |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB                | 4                                                                                       | 4    |  |  |
| RSRP Note 4                                              | dBm/15 kHz        | -94                                                                                     | -94  |  |  |
| SCH_RP                                                   | dBm/15 kHz        | -94                                                                                     | -94  |  |  |
| Propagation Condition                                    |                   | AWC                                                                                     | GN . |  |  |
| Note 1: OCNG shall be used spectral density is ac        | hieved for all OF | ells are fully allocated and a cons<br>DM symbols.<br>are assigned to the UE prior to t |      |  |  |

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be

RSRP levels have been derived from other parameters for information purposes. They are not Note 4: settable parameters themselves.

Table A.8.5.2.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for UTRAN FDD cell search for SON ANR under AWGN propagation conditions

| Parameter              | Unit            | Cell 2        |       |  |  |
|------------------------|-----------------|---------------|-------|--|--|
|                        |                 | T1            | T2    |  |  |
| UTRA RF Channel Number |                 | 1             |       |  |  |
| CPICH_Ec/lor           | dB              | -10           |       |  |  |
| PCCPCH_Ec/lor          | dB              | -12           |       |  |  |
| SCH_Ec/lor             | dB              | -12           | -12   |  |  |
| PICH_Ec/lor            | dB              | -15           |       |  |  |
| DPCH_Ec/lor            | dB              | N/A           |       |  |  |
| OCNS                   |                 | -0.94         | 1     |  |  |
| $\hat{I}_{or}/I_{oc}$  | dB              | -Infinity     | -3.35 |  |  |
| $I_{oc}$               | dBm/3.84<br>MHz | -70           |       |  |  |
| CPICH_Ec/lo            | dB              | -Infinity -15 |       |  |  |
| Propagation Condition  |                 | AWGN          |       |  |  |

Note 1: The DPCH level is controlled by the power control loop.

The power of the OCNS channel that is added shall make the total power from the cell to be equal Note 2: to I<sub>or</sub>.

### A.8.5.2.2 Test Requirements

The UE shall send the first measurement report containing the primary scrambling code of cell 2, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The rate of correct measurement reports observed with this delay during repeated tests shall be at least 90%.

NOTE:

The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.5.3 E-UTRAN FDD-UTRAN FDD event triggered reporting when DRX is used under fading propagation conditions

### A.8.5.3.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These tests will partly verify the E-UTRAN FDD-UTRAN FDD cell search requirements when DRX is used in section 8.1.2.4.1.2.

In these tests, there are two cells, one E-UTRAN cell and one UTRAN cell, and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

The common test parameters are given in Table A.8.5.3.1-1. Cell specific test parameters are given in Table A.8.5.3.1-2 for E-UTRAN and in Table A.8.5.3.1-5 for UTRAN. DRX configuration for Test1 and Test2 are given in Table A.8.5.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.5.2.1-4.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event B1 is used. The tests consist of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.5.3.1-1: General test parameters for E-UTRAN FDD-UTRAN FDD event triggered reporting when DRX is used in fading propagation conditions

| Parameter                  | Unit | Test 1                   | Test 2    | Comment                                     |
|----------------------------|------|--------------------------|-----------|---------------------------------------------|
|                            |      | Value                    |           |                                             |
| PDSCH parameters (E-       |      | DL Reference Measurement |           | As specified in section A.3.1.1.1 Note that |
| UTRAN FDD)                 |      | Channel R.0 FDD          | )         | UE may only be allocated at On Duration     |
| PCFICH/PDCCH/PHICH         |      | DL Reference Me          | asurement | As specified in section A.3.1.2.1.          |
| parameters (E-UTRAN FDD)   |      | Channel R.6 FDD          | )         |                                             |
| Gap Pattern Id             |      | (                        | )         | As specified in 3GPP TS 36.133 section      |
| A .:                       |      |                          |           | 8.1.2.1.                                    |
| Active cell                |      | Ce                       |           | Cell 1 is on E-UTRA RF channel number 1.    |
| Neighbour cell             |      | Ce                       | II 2      | Cell 2 is on UTRA RF channel number 1.      |
| CP length                  |      | Nor                      | mal       | Applicable to cell 1                        |
| E-UTRA RF Channel          |      | 1                        |           | One E-UTRA FDD carrier frequency is         |
| Number                     |      |                          |           | used.                                       |
| E-UTRA Channel Bandwidth   | MHz  | 1                        | 0         |                                             |
| (BW <sub>channel</sub> )   |      |                          |           |                                             |
| UTRA RF Channel Number     |      | 1                        |           | One UTRA FDD carrier frequency is used.     |
| Inter-RAT (UTRA FDD)       |      | CPICH                    | ł Ec/lo   |                                             |
| measurement quantity       |      |                          |           |                                             |
| b1-Threshold-UTRA          | dB   | -1                       | 8         | CPICH Ec/lo threshold for event B1.         |
| Hysteresis                 | dB   | (                        | )         |                                             |
| TimeToTrigger              | S    | (                        | )         |                                             |
| Filter coefficient         |      | (                        | )         | L3 filtering is not used                    |
| PRACH configuration        |      | 4                        | 1         | As specified in table 5.7.1-2 in TS 36.211  |
| Access Barring Information | -    | Not                      | Sent      | No additional delays in random access       |
|                            |      |                          |           | procedure.                                  |
| DRX                        |      | ON                       |           | DRX related parameters are defined in       |
|                            |      |                          |           | Table A.8.5.3.1-3                           |
| Monitored UTRA FDD cell    |      | 1                        | 2         | UTRA cells on UTRA RF channel 1             |
| list size                  |      |                          |           | provided in the cell list.                  |
| T1                         | S    | Ę                        | 5         |                                             |
| T2                         | S    | 6                        | 30        |                                             |

Table A.8.5.3.1-2: Cell specific test parameters for E-UTRAN FDD (cell #1) event triggered reporting of UTRAN FDD cell when DRX is used under fading propagation conditions

| Parameter                                         | Unit              | Cell 1                                                                                   |     |  |
|---------------------------------------------------|-------------------|------------------------------------------------------------------------------------------|-----|--|
|                                                   |                   | T1                                                                                       | T2  |  |
| E-UTRA RF Channel Number                          |                   | 1                                                                                        |     |  |
| BW <sub>channel</sub>                             | MHz               | 10                                                                                       |     |  |
| OCNG Pattern defined in                           |                   |                                                                                          |     |  |
| A.3.2.1.1 (OP.1 FDD)                              |                   | OP.1 F                                                                                   | FDD |  |
| PBCH_RA                                           | dB                |                                                                                          |     |  |
| PBCH_RB                                           | dB                |                                                                                          |     |  |
| PSS_RA                                            | dB                |                                                                                          |     |  |
| SSS_RA                                            | dB                |                                                                                          |     |  |
| PCFICH_RB                                         | dB                |                                                                                          |     |  |
| PHICH_RA                                          | dB                |                                                                                          |     |  |
| PHICH_RB                                          | dB                | 0                                                                                        |     |  |
| PDCCH_RA                                          | dB                |                                                                                          |     |  |
| PDCCH_RB                                          | dB                |                                                                                          |     |  |
| PDSCH_RA                                          | dB                |                                                                                          |     |  |
| PDSCH_RB                                          | dB                |                                                                                          |     |  |
| OCNG_RA <sup>Note 1</sup>                         | dB                |                                                                                          |     |  |
| OCNG_RB <sup>Note 1</sup>                         | dB                |                                                                                          |     |  |
| $\hat{E}_{s}/I_{ot}$                              | dB                | 4                                                                                        | 4   |  |
| $N_{oc}^{ m Note~2}$                              | dBm/15 kHz        | -98                                                                                      | 1   |  |
| RSRP Note 3                                       | dBm/15 kHz        | -94                                                                                      | -94 |  |
| SCH_RP                                            | dBm/15 kHz        | -94                                                                                      | -94 |  |
| $\hat{E}_s/N_{oc}$                                | dB                | 4                                                                                        | 4   |  |
| Propagation Condition                             |                   | ETU                                                                                      | 70  |  |
| Note 1: OCNG shall be used spectral density is ac | hieved for all OF | ells are fully allocated and a cons<br>DM symbols.<br>e sources not specified in the tes | •   |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.5.3.1-3: drx-Configuration to be used in E-UTRAN FDD-UTRAN FDD event triggered reporting when DRX is used in fading propagation conditions

| Field                    | Test1   | Test2   | Comment |
|--------------------------|---------|---------|---------|
| Fleid                    | Value   | Value   |         |
| onDurationTimer          | psf1    | psf1    |         |
| drx-InactivityTimer      | psf1    | psf1    |         |
| drx-RetransmissionTimer  | psf1    | psf1    |         |
| longDRX-CycleStartOffset | sf40    | sf1280  |         |
| shortDRX                 | Disable | Disable |         |

Table A.8.5.3.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN FDD-UTRAN FDD event triggered reporting when DRX is used in fading propagation conditions

| Field              | Test1 | Test2 | Comment                                                                                        |
|--------------------|-------|-------|------------------------------------------------------------------------------------------------|
| rieid              | Value | Value |                                                                                                |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                                   |
| sr-ConfigIndex     | 0     | 0     | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

Table A.8.5.3.1-5: Cell specific test parameters for UTRAN FDD (cell # 2) for event triggered reporting of UTRAN FDD cell when DRX is used under fading propagation conditions

| Parameter              | Unit            | Cell 2          |      |  |
|------------------------|-----------------|-----------------|------|--|
|                        |                 | T1              | T2   |  |
| UTRA RF Channel Number |                 | 1               |      |  |
| CPICH_Ec/lor           | dB              | -10             |      |  |
| PCCPCH_Ec/lor          | dB              | -12             |      |  |
| SCH_Ec/lor             | dB              | -12             |      |  |
| PICH_Ec/lor            | dB              | -15             |      |  |
| DPCH_Ec/lor            | dB              | N/A             |      |  |
| OCNS                   |                 | -0.941          |      |  |
| $\hat{I}_{or}/I_{oc}$  | dB              | -Infinity       | -1.8 |  |
| $I_{oc}$               | dBm/3.84<br>MHz | -70             |      |  |
| CPICH_Ec/lo            | dB              | -Infinity       | -14  |  |
| Propagation Condition  |                 | Case 5 (Note 3) |      |  |

Note 1: The DPCH level is controlled by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal

Note 3: Case 5 propagation conditions are defined in Annex A of 3GPP TS 25.101.

## A.8.5.3.2 Test Requirements

In Test1 the UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 2400 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE sends the measurement report on PUSCH.

In Test2 the UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 20\*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event B1 measurement report

# A.8.5.4 E-UTRAN FDD - UTRAN FDD enhanced cell identification under AWGN propagation conditions

### A.8.5.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct enhanced reporting of UTRAN cells. This test will partly verify the Enhanced UTRA FDD cell identification requirements in section 8.1.2.4.1.11a.

The test parameters are given in Tables A.8.5.4.1-1, A.8.5.4.1-2 and A.8.5.4.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time period T1, gaps are activated and an interRAT measurement reporting configuration is configured, and linked to a UTRA measurement object corresponding to channel UARFCN 1. Prior to time duration T2, the UE shall not have any timing information of cell 2. Cell 2 is powered up at the beginning of the T2.

Table A.8.5.4.1-1: General test parameters for E-UTRAN FDD - UTRAN FDD enhanced cell identification under AWGN propagation conditions

| Parameter                         | Unit | Value                    | Comment                                   |
|-----------------------------------|------|--------------------------|-------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)    |      | DL Reference Measurement | As specified in section A.3.1.1.1.        |
|                                   |      | Channel R.0 FDD          |                                           |
| PCFICH/PDCCH/PHICH parameters     |      | DL Reference Measurement | As specified in section A.3.1.2.1.        |
| (E-UTRAN FDD)                     |      | Channel R.6 FDD          |                                           |
| Gap Pattern Id                    |      | 0                        | As specified in 3GPP TS 36.133 section    |
|                                   |      |                          | 8.1.2.1.                                  |
| Active cell                       |      | Cell 1                   | Cell 1 is on E-UTRA RF channel number 1.  |
| Neighbour cell                    |      | Cell 2                   | Cell 2 is on UTRA RF channel number 1.    |
| CP length                         |      | Normal                   | Applicable to cell 1                      |
| E-UTRA RF Channel Number          |      | 1                        | One E-UTRA FDD carrier frequency is used. |
| E-UTRA Channel Bandwidth          | MHz  | 10                       |                                           |
| (BW <sub>channel</sub> )          |      |                          |                                           |
| UTRA RF Channel Number            |      | 1                        | One UTRA FDD carrier frequency is used.   |
| Inter-RAT (UTRA FDD)              |      | CPICH Ec/lo              |                                           |
| measurement quantity              |      |                          |                                           |
| b1-Threshold-UTRA                 | dB   | -18                      | CPICH Ec/lo threshold for event B1.       |
| Hysteresis                        | dB   | 0                        |                                           |
| Time To Trigger                   | ms   | 0                        |                                           |
| Filter coefficient                |      | 0                        | L3 filtering is not used.                 |
| DRX                               |      | OFF                      |                                           |
| Monitored UTRA FDD cell list size |      | 12                       | UTRA cells on UTRA RF channel 1 provided  |
|                                   |      |                          | in the cell list                          |
| T1                                | S    | 5                        |                                           |
| T2                                | S    | 2                        |                                           |

Table A.8.5.4.1-2: Cell specific test parameters for cell #1 E-UTRAN FDD - UTRAN FDD enhanced cell identification under AWGN propagation conditions

| Parameter                                         | Unit              | Cell 1                                                                                  |      |  |  |
|---------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|------|--|--|
|                                                   |                   | T1                                                                                      | T2   |  |  |
| E-UTRA RF Channel Number                          |                   | 1                                                                                       |      |  |  |
| BW <sub>channel</sub>                             | MHz               | 10                                                                                      |      |  |  |
| OCNG Pattern defined in                           |                   |                                                                                         |      |  |  |
| A.3.2.1.1 (OP.1 FDD)                              |                   | OP.1 I                                                                                  | FDD  |  |  |
| PBCH_RA                                           | dB                |                                                                                         |      |  |  |
| PBCH_RB                                           | dB                |                                                                                         |      |  |  |
| PSS_RA                                            | dB                |                                                                                         |      |  |  |
| SSS_RA                                            | dB                |                                                                                         |      |  |  |
| PCFICH_RB                                         | dB                |                                                                                         |      |  |  |
| PHICH_RA                                          | dB                |                                                                                         |      |  |  |
| PHICH_RB                                          | dB                | 0                                                                                       |      |  |  |
| PDCCH_RA                                          | dB                |                                                                                         |      |  |  |
| PDCCH_RB                                          | dB                |                                                                                         |      |  |  |
| PDSCH_RA                                          | dB                |                                                                                         |      |  |  |
| PDSCH_RB                                          | dB                |                                                                                         |      |  |  |
| OCNG_RA <sup>Note 1</sup>                         | dB                |                                                                                         |      |  |  |
| OCNG_RB <sup>Note 1</sup>                         | dB                |                                                                                         |      |  |  |
| $\hat{E}_{s}/I_{ot}$                              | dB                | 4                                                                                       | 4    |  |  |
| $N_{oc}^{ m Note  3}$                             | dBm/15 kHz        | -98                                                                                     | 3    |  |  |
| $\hat{E}_s/N_{oc}$                                | dB                | 4                                                                                       | 4    |  |  |
| RSRP Note 4                                       | dBm/15 kHz        | -94                                                                                     | -94  |  |  |
| SCH_RP                                            | dBm/15 kHz        | -94                                                                                     | -94  |  |  |
| Propagation Condition                             |                   | AWC                                                                                     | SN . |  |  |
| Note 1: OCNG shall be used spectral density is ac | hieved for all OF | ells are fully allocated and a cons<br>DM symbols.<br>are assigned to the UE prior to t |      |  |  |

- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $\,N_{oc}\,$  to be
- RSRP levels have been derived from other parameters for information purposes. They are not Note 4: settable parameters themselves.

Table A.8.5.4.1-3: Cell specific test parameters for cell #2 E-UTRAN FDD - UTRAN FDD enhanced cell identification under AWGN propagation conditions

| Parameter                     | Unit            | Cell 2 |      |  |  |
|-------------------------------|-----------------|--------|------|--|--|
|                               |                 | T1     | T2   |  |  |
| UTRA RF Channel Number        |                 | 1      |      |  |  |
| CPICH_Ec/lor                  | dB              | -10    |      |  |  |
| PCCPCH_Ec/lor                 | dB              | -12    |      |  |  |
| SCH_Ec/lor                    | dB              | -12    | -12  |  |  |
| PICH_Ec/lor                   | dB              | -15    |      |  |  |
| DPCH_Ec/lor                   | dB              | N/A    |      |  |  |
| OCNS                          |                 | -0.94  | 1    |  |  |
| $\hat{I}_{or}/I_{oc}$         | dB              | - 00   | 0.02 |  |  |
| $I_{oc}$                      | dBm/3.84<br>MHz | -70    |      |  |  |
| CPICH_Ec/Io <sup>Note 3</sup> | dB              | -∞ -13 |      |  |  |
| Propagation Condition         |                 | AWGN   |      |  |  |

The DPCH level is controlled by the power control loop. Note 1:

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I<sub>or</sub>.

This gives an SCH Ec/lo of -15dB Note 3:

### A.8.5.4.2 Test Requirements

The UE shall send the first measurement report containing the primary scrambling code of cell 2, with a measurement reporting delay less than [960] ms from the beginning of time period T2. The rate of correct measurement reports observed with this delay during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH

## A.8.6 E-UTRAN TDD - UTRAN FDD Measurements

# A.8.6.1 E-UTRAN TDD - UTRAN FDD event triggered reporting under fading propagation conditions

#### A.8.6.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRAN TDD- UTRAN FDD cell search requirements in section 8.1.2.4.2.

The test parameters are given in Tables A.8.6.1.1-1, A.8.6.1.1-2 and A.8.6.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.6.1.1-1: General test parameters for E-UTRAN TDD-UTRAN FDD event triggered reporting in fading propagation conditions

| Parameter                                         | Unit | Value                                       | Comment                                                              |
|---------------------------------------------------|------|---------------------------------------------|----------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.                                   |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.                                   |
| Gap Pattern Id                                    |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                      |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                             |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                               |
| Special subframe configuration                    |      | 6                                           | As specified in table 4.2-1 in 3GPP TS 36.211. Applicable to cell 1. |
| Uplink-downlink configuration                     |      | 1                                           | As specified in table 4.2-2 in 3GPP TS 36.211. Applicable to cell 1. |
| CP length                                         |      | Normal                                      | Applicable to cell 1.                                                |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.                            |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                      |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA FDD carrier frequency is used.                              |
| Inter-RAT (UTRA FDD) measurement quantity         |      | CPICH Ec/lo                                 |                                                                      |
| b1-Threshold-UTRA                                 | dB   | -18                                         | CPICH Ec/lo threshold for event B1.                                  |
| Hysteresis                                        | dB   | 0                                           |                                                                      |
| Time To Trigger                                   | ms   | 0                                           |                                                                      |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                            |
| DRX                                               |      | OFF                                         |                                                                      |
| Monitored UTRA cell list size                     |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell list.           |
| T1                                                | S    | 5                                           |                                                                      |
| T2                                                | S    | 6                                           |                                                                      |

Table A.8.6.1.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

| Parameter                 | Unit       | Cell   | 1   |  |  |
|---------------------------|------------|--------|-----|--|--|
|                           |            | T1     | T2  |  |  |
| E-UTRA RF Channel Number  |            | 1      |     |  |  |
| BW <sub>channel</sub>     | MHz        | 10     |     |  |  |
| OCNG Pattern defined in   |            |        |     |  |  |
| A.3.2.2.1 (OP.1 TDD)      |            | OP.1 7 | ΓDD |  |  |
| PBCH_RA                   | dB         |        |     |  |  |
| PBCH_RB                   | dB         |        |     |  |  |
| PSS_RA                    | dB         |        |     |  |  |
| SSS_RA                    | dB         |        |     |  |  |
| PCFICH_RB                 | dB         |        |     |  |  |
| PHICH_RA                  | dB         | _      |     |  |  |
| PHICH_RB                  | dB         | 0      |     |  |  |
| PDCCH_RA                  | dB         |        |     |  |  |
| PDCCH_RB                  | dB         |        |     |  |  |
| PDSCH_RA                  | dB         | 1      |     |  |  |
| PDSCH_RB                  | dB         |        |     |  |  |
| OCNG_RA <sup>Note 1</sup> | dB         |        |     |  |  |
| OCNG_RB <sup>Note 1</sup> | dB         |        |     |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4   |  |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4   |  |  |
| $N_{oc}$                  | dBm/15 kHz | -98    |     |  |  |
| RSRP                      | dBm/15 kHz | -94    | -94 |  |  |
| SCH_RP                    | dBm/15 kHz | -94    | -94 |  |  |
| Propagation Condition     |            | ETU70  |     |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.6.1.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

| Parameter              | Unit            | Cell 2          |      |  |  |
|------------------------|-----------------|-----------------|------|--|--|
|                        |                 | T1              | T2   |  |  |
| UTRA RF Channel Number |                 | 1               |      |  |  |
| CPICH_Ec/lor           | dB              | -10             |      |  |  |
| PCCPCH_Ec/lor          | dB              | -12             |      |  |  |
| SCH_Ec/lor             | dB              | -12             |      |  |  |
| PICH_Ec/lor            | dB              | -15             |      |  |  |
| DPCH_Ec/lor            | dB              | N/A             |      |  |  |
| OCNS                   |                 | -0.94           | 1    |  |  |
| $\hat{I}_{or}/I_{oc}$  | dB              | -Infinity       | -1.8 |  |  |
| $I_{oc}$               | dBm/3.84<br>MHz | -70             |      |  |  |
| CPICH_Ec/lo            | dB              | -Infinity       | -14  |  |  |
| Propagation Condition  |                 | Case 5 (Note 3) |      |  |  |

Note 1: The DPCH level is controlled by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{or}$ .

Note 3: Case 5 propagation conditions are defined in Annex A of 3GPP TS 25.101.

# A.8.6.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

## A.8.7 E-UTRAN TDD – UTRAN TDD Measurements

# A.8.7.1 E-UTRAN TDD to UTRAN TDD cell search under fading propagation conditions

### A.8.7.1.1 Test Purpose and Environment

#### A.8.7.1.1.1 Void

#### A.8.7.1.1.2 1.28 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRA TDD to UTRA TDD cell search requirements in section 8.1.2.4.3 under fading propagation conditions.

This test scenario comprised of 1 E-UTRA TDD serving cell, and 1 UTRA TDD cell to be searched. Test parameters are given in Table A.8.7.1.1.2-1, A.8.7.1.1.2-2, and A.8.7.1.1.2-3. Gap pattern configuration #0 as defined in table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.7.1.1.2-1: General test parameters for E-UTRA TDD to UTRA(1.28 Mcps TDD OPTION) cell search in fading propagation conditions

| Parameter                                | Unit | Value                                       | Comment                                         |
|------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters                         |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2               |
| PCFICH/PDCCH/PHICH parameters            |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2               |
| Active cell                              |      | Cell 1                                      | E-UTRA TDD cell                                 |
| Neighbour cell                           |      | Cell 2                                      | UTRA 1.28Mcps TDD Cell                          |
| Gap Pattern Id                           |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| Uplink-downlink configuration of cell 1  |      | 1                                           | As specified in table 4.2.2 in TS 36.211        |
| Special subframe configuration of cell 1 |      | 6                                           | As specified in table 4.2.1 in TS 36.211        |
| CP length of cell 1                      |      | normal                                      |                                                 |
| Hysteresis                               | dB   | 0                                           |                                                 |
| TimeToTrigger                            | S    | 0                                           |                                                 |
| Filter coefficient                       |      | 0                                           | L3 filtering is not used                        |
| DRX                                      |      | OFF                                         |                                                 |
| Time offset between cells                |      | 3 ms                                        | Asynchronous cells                              |
| Ofn                                      | dB   | 0                                           |                                                 |
| Thresh                                   | dBm  | -87                                         |                                                 |
| T1                                       | S    | 5                                           |                                                 |
| T2                                       | S    | 10                                          |                                                 |

Table A.8.7.1.1.2-2: Cell specific test parameters for cell search E-UTRA TDD to UTRA TDD test case (cell 1)

| Parameter                                                | Unit               | Cell 1             |           |  |
|----------------------------------------------------------|--------------------|--------------------|-----------|--|
|                                                          |                    | T1                 | T2        |  |
| E-UTRA RF Channel                                        |                    | •                  | 1         |  |
| Number                                                   |                    |                    |           |  |
| BW <sub>channel</sub>                                    | MHz                | 1                  | 0         |  |
| OCNG Pattern defined in                                  |                    | OP 1               | TDD       |  |
| A.3.2.2.1 (OP.1 TDD)                                     |                    | 01.1               |           |  |
| PBCH_RA                                                  | dB                 |                    |           |  |
| PBCH_RB                                                  | dB                 |                    |           |  |
| PSS_RB                                                   | dB                 |                    |           |  |
| SSS_RB                                                   | dB                 |                    |           |  |
| PCFICH_PA                                                | dB                 |                    |           |  |
| PHICH_PA                                                 | dB                 |                    |           |  |
| PHICH_PB                                                 | dB                 | 0                  | 0         |  |
| PDCCH_PA                                                 | dB                 |                    |           |  |
| PDCCH_PB                                                 | dB                 |                    |           |  |
| PDSCH_PA                                                 | dB                 |                    |           |  |
| PDSCH_PB                                                 | dB                 |                    |           |  |
| OCNG_RA <sup>Note1</sup>                                 | dB                 |                    |           |  |
| OCNG_RB <sup>Note1</sup>                                 | dB                 |                    |           |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB                 | 9                  | 9         |  |
| $\hat{E}_s/N_{oc}$                                       | dB                 | 9                  | 9         |  |
| $N_{oc}$                                                 | dBm/15kHz          | -(                 | 98        |  |
| RSRP                                                     | dBm/15kHz          | -89                | -89       |  |
| SCH_RP                                                   | dBm/15kHz          | -89                | -89       |  |
| Propagation Condition                                    |                    | ET                 | J70       |  |
| Note 1: OCNG shall be u                                  | used such that cel | l is fully allocat | ted and a |  |

Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.7.1.1.2-3: Cell specific test parameters for cell search E-UTRA TDD to UTRA TDD test case (cell 2)

| Parameter                       | Unit            | Cell 2 (UTRA)           |     |      |      |
|---------------------------------|-----------------|-------------------------|-----|------|------|
| Timeslot Number                 |                 | 0 DwP                   |     | PTS  |      |
|                                 |                 | T1                      | T2  | T1   | T2   |
| UTRA RF Channel<br>Number NOTE1 |                 | Channel 2               |     |      |      |
| PCCPCH_Ec/lor                   | dB              | -3                      | -3  |      |      |
| DwPCH_Ec/lor                    | dB              |                         |     | 0    | 0    |
| OCNS_Ec/lor <sup>NO1E2</sup>    | dB              | -3                      | -3  |      |      |
| $\hat{I}_{or}/I_{oc}$           | dB              | -inf                    | 5   | -inf | 5    |
| $I_{oc}$                        | dBm/1.28<br>MHz | -80                     |     |      |      |
| PCCPCH RSCP                     | dBm             | -inf                    | -78 | n.a. | n.a. |
| Propagation<br>Condition        |                 | Case 3 <sup>NOTE3</sup> |     |      |      |

Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to  $I_{\rm or}$ .

Note 3: Case 3 propagation conditions are defined in Annex B of 3GPP TS 25.102

#### A.8.7.1.1.3 Void

#### A.8.7.1.2 Test Requirements

#### A.8.7.1.2.1 Void

### A.8.7.1.2.2 1.28 Mcps TDD option

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 6400 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

#### A.8.7.1.2.3 Void

# A.8.7.2 E-UTRAN TDD-UTRAN TDD cell search when DRX is used under fading propagation conditions

#### A.8.7.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These tests will partly verify the E-UTRAN TDD to UTRAN TDD inter-RAT cell search requirements when DRX is used in section 8.1.2.4.3.2 under fading propagation conditions.

The common test parameters are given in Tables A.8.7.2.1-1, A.8.7.2.1-2 and A.8.7.2.1-3. DRX configuration for Test1 and Test2 are given in Table A.8.7.2.1-4 and time alignment timer and scheduling request related parameters in Table

A.8.7.2.1-5. In these tests, there are two cells, 1 E-UTRAN TDD serving cell and 1 UTRAN TDD cell to be searched, Gap pattern configuration # 0 as defined in table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignmend. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event B1 is used. The tests consist of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.7.2.1-1: General test parameters for E-UTRAN TDD to UTRAN 1.28Mcps TDD cell search when DRX is used in fading propagation conditions

| Parameter                     | Unit | Test 1          | Test 2     | Comment                                                 |  |                                           |
|-------------------------------|------|-----------------|------------|---------------------------------------------------------|--|-------------------------------------------|
|                               |      | Value           |            |                                                         |  |                                           |
| PDSCH parameters              |      | DL Reference Me | easurement | As specified in section A.3.1.1.2. Note that            |  |                                           |
| ·                             |      | Channel R.0 TDD | )          | UE may only be allocated at On Duration                 |  |                                           |
| PCFICH/PDCCH/PHICH            |      | DL Reference Me | easurement | As specified in section A.3.1.2.2.                      |  |                                           |
| parameters                    |      | Channel R.6 TDE | )          |                                                         |  |                                           |
| Active cell                   |      | Cell 1          |            | E-UTRAN TDD cell                                        |  |                                           |
| Neighbour cell                |      | Cell 2          |            | UTRAN 1.28Mcps TDD cell                                 |  |                                           |
| Gap Pattern Id                |      | 0               |            | As specified in 3GPP TS 36.133 section 8.1.2.1.         |  |                                           |
| Uplink-downlink configuration |      | 1               |            | As specified in 3GPP TS 36.211 section 4.2 Table 4.2-2  |  |                                           |
| Special subframe              |      | 6               |            | 6                                                       |  | As specified in table 4.2-1 in TS 36.211. |
| configuration                 |      |                 |            | The same configuration in both cells                    |  |                                           |
| PRACH configuration           |      | 4               |            | As specified in table 5.7.1-3 in 3GPP TS 36.211         |  |                                           |
| CP length of cell 1           |      | Normal          |            |                                                         |  |                                           |
| Ofn                           | dB   | 0               |            |                                                         |  |                                           |
| Thresh                        | dBm  | -83             |            | Absolute P-CCPCH RSCP threshold for event B1            |  |                                           |
| Hysteresis                    | dB   | 0               |            |                                                         |  |                                           |
| TimeToTrigger                 | S    | 0               |            |                                                         |  |                                           |
| Filter coefficient            |      | 0               |            | L3 filtering is not used                                |  |                                           |
| Access Barring Information    | -    | Not Sent        |            | No additional delays in random access procedure.        |  |                                           |
| DRX                           |      | ON              |            | DRX related parameters are defined in Table A.8.4.2.1-3 |  |                                           |
| Time offset between cells     |      | 3 ms            |            | Asynchronous cells                                      |  |                                           |
| T1                            | S    | 5               |            |                                                         |  |                                           |
| T2                            | S    | 8               | 30         |                                                         |  |                                           |

Table A.8.7.2.1-2: Cell specific test parameters for E-UTRAN TDD to UTRAN 1.28Mcps TDD cell search when DRX is used in fading propagation conditions(cell 1)

| Parameter               | Unit      | Се   | II 1 |
|-------------------------|-----------|------|------|
|                         |           | T1   | T2   |
| E-UTRA RF Channel       |           | •    | 1    |
| Number                  |           |      |      |
| BWchannel               | MHz       | 1    | 0    |
| OCNG Patterns defined   |           | OP.1 | TDD  |
| in A.3.2.1.1 (OP.1 TDD) |           |      |      |
| PBCH_RA                 | dB        |      |      |
| PBCH_RB                 | dB        |      |      |
| PSS_RB                  | dB        |      |      |
| SSS_RB                  | dB        |      |      |
| PCFICH_PA               | dB        |      |      |
| PHICH_PA                | dB        |      |      |
| PHICH_PB                | dB        | 0    | 0    |
| PDCCH_PA                | dB        |      |      |
| PDCCH_PB                | dB        |      |      |
| PDSCH_PA                | dB        |      |      |
| PDSCH_PB                | dB        |      |      |
| OCNG_RANote1            | dB        |      |      |
| OCNG_RBNote1            | dB        |      |      |
| $\hat{E}_s/I_{ot}$      | dB        | 4    | 4    |
| $\hat{E}_s/N_{oc}$      | dB        | 4    | 4    |
| Noc Note 2              | dBm/15kHz |      | 98   |
| RSRP                    | dBm/15kHz | -94  | -94  |
| SCH_RP Note 3           | dBm/15kHz | -94  | -94  |
| Propagation Condition   |           |      | J70  |

Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power

for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.7.2.1-3: Cell specific test parameters for E-UTRAN TDD to UTRAN 1.28Mcps TDD cell search when DRX is used in fading propagation conditions(cell 2)

| Parameter                       | Cell 2 (UTRA)   |                         |     |      |      |
|---------------------------------|-----------------|-------------------------|-----|------|------|
| Timeslot Number                 |                 | (                       | )   | Dw   | PTS  |
|                                 |                 | T1                      | T2  | T1   | T2   |
| UTRA RF Channel<br>Number NOTE1 |                 | Channel 2               |     |      |      |
| PCCPCH_Ec/lor                   | dB              | -3                      | -3  |      |      |
| DwPCH_Ec/lor                    | dB              |                         |     | 0    | 0    |
| OCNS_Ec/lor <sup>NOTE2</sup>    | dB              | -3                      | -3  |      |      |
| $\hat{I}_{or}/I_{oc}$           | dB              | -inf                    | 9   | -inf | 9    |
| $I_{oc}$                        | dBm/1.28<br>MHz | -80                     |     |      |      |
| PCCPCH RSCP                     | dBm             | -inf                    | -74 | n.a. | n.a. |
| Propagation<br>Condition        |                 | Case 3 <sup>NOTE3</sup> |     |      |      |

Note 1: In the case of multi-frequency cell, the UTRA RF Channel

Number is the primary frequency's channel number.

Note 2: The power of the OCNS channel that is added shall make the

total power from the cell to be equal to lor.

Note 3: Case 3 propagation conditions are defined in Annex B of 3GPP

TS 25.102

Table A.8.7.2.1-4: drx-Configuration to be used in E-UTRAN TDD to UTRAN 1.28Mcps TDD cell search when DRX is used in fading propagation conditions

| Field                    | Test1   | Test2   | Comment |
|--------------------------|---------|---------|---------|
| Field                    | Value   | Value   |         |
| onDurationTimer          | psf1    | psf1    |         |
| drx-InactivityTimer      | psf1    | psf1    |         |
| drx-RetransmissionTimer  | psf1    | psf1    |         |
| longDRX-CycleStartOffset | sf40    | sf1280  |         |
| shortDRX                 | disable | disable |         |

Table A.8.7.2.1-5: TimeAlignmentTimer and sr-ConfigIndex -Configuration to be used in E-UTRAN TDD to UTRAN 1.28Mcps TDD cell search when DRX is used in fading propagation conditions

| Field              | Test1 | Test2 | Comment                                                                                 |
|--------------------|-------|-------|-----------------------------------------------------------------------------------------|
|                    | Value | Value |                                                                                         |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                            |
| sr-ConfigIndex     | 2     | 2     | For further information see section 6.3.2 in 3GPP TS 36.331 and 10.1 in 3GPP TS 36.213. |

#### A.8.7.2.2 Test Requirements

In Test1 the UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 6400ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 25.6s from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event B1 measurement report

# A.8.7.3 E-UTRAN TDD - UTRAN TDD SON ANR cell search reporting in AWGN propagation conditions

### A.8.7.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of the strongest UTRAN TDD cell for SON automatic neighbour relations. This test will partly verify the E-UTRAN TDD - UTRAN TDD cell search requirements for identification of a new UTRA TDD cell for SON given in section 8.1.2.4.13.

In the measurement control information it is indicated to the UE that periodical reporting with the purpose 'reportStrongestCellsForSON' is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. Prior to the start of time period T1, an interRAT periodic measurement reporting configuration with purpose reportStrongestCellsForSON is configured, and linked to a UTRA measurement object corresponding to channel UARFCN 1. During time duration T1, the UE shall not have any timing information of cell 2.

#### A.8.7.3.2 Test Parameters

The test parameters are given in Tables A.8.7.3.1-1, A.8.7.3.1-2 and A.8.7.3.1-3.

Table A.8.7.3.1-1: General test parameters for E-UTRAN TDD-UTRAN TDD cell search reporting for SON ANR in AWGN propagation conditions

| Parameter                                         | Unit | Value                                       | Comment                                                                                                                                                                                                               |
|---------------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                                                                                                                                                                     |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                                                                                                                                                                     |
| Gap Pattern Id                                    |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                                                                                                                                                       |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                                                                                                                                                              |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                                                                                                                                                                                |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                                                                                                                                                                                  |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.                                                                                                                                                                             |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA TDD carrier frequency is used.                                                                                                                                                                               |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                                                                                                                                                       |
| Uplink-downlink configuration of cell 1           |      | 1                                           | As specified in table 4.2.2 in TS 36.211                                                                                                                                                                              |
| Special subframe configuration of cell 1          |      | 6                                           | As specified in table 4.2.1 in TS 36.211                                                                                                                                                                              |
| Inter-RAT (UTRA TDD) measurement quantity         |      | P-CCPCH RSCP                                |                                                                                                                                                                                                                       |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                                                                                                                                                                             |
| DRX                                               |      | OFF                                         |                                                                                                                                                                                                                       |
| Monitored UTRA TDD cell list size                 |      | None                                        | No explicit neighbour list is provided to the UE                                                                                                                                                                      |
| T1                                                | S    | >5                                          | During T1, cell 2 shall be powered off, and during the off time the primary scrambling code shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T2. |
| T2                                                | S    | 14                                          |                                                                                                                                                                                                                       |

Table A.8.7.3.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for UTRAN TDD cell search for SON ANR under AWGN propagation conditions

| Parameter                                        | Unit                                                                                                                     | Cell 1                |                      |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--|--|
|                                                  |                                                                                                                          | T1 T2                 |                      |  |  |
| E-UTRA RF Channel Number                         |                                                                                                                          | 1                     |                      |  |  |
| BW <sub>channel</sub>                            | MHz                                                                                                                      | 10                    |                      |  |  |
| OCNG Patterns defined in                         |                                                                                                                          | OP.1 TDD              |                      |  |  |
| A.3.2.2.1 (OP.1 TDD)                             |                                                                                                                          | OF.1                  | טטו                  |  |  |
| PBCH_RA                                          | dB                                                                                                                       |                       |                      |  |  |
| PBCH_RB                                          | dB                                                                                                                       |                       |                      |  |  |
| PSS_RA                                           | dB                                                                                                                       |                       |                      |  |  |
| SSS_RA                                           | dB                                                                                                                       |                       |                      |  |  |
| PCFICH_RB                                        | dB                                                                                                                       |                       |                      |  |  |
| PHICH_RA                                         | dB                                                                                                                       |                       |                      |  |  |
| PHICH_RB                                         | dB                                                                                                                       | C                     | )                    |  |  |
| PDCCH_RA                                         | dB                                                                                                                       |                       |                      |  |  |
| PDCCH_RB                                         | dB                                                                                                                       |                       |                      |  |  |
| PDSCH_RA                                         | dB                                                                                                                       |                       |                      |  |  |
| PDSCH_RB                                         | dB                                                                                                                       |                       |                      |  |  |
| OCNG_RA <sup>Note 1</sup>                        | dB                                                                                                                       |                       |                      |  |  |
| OCNG_RB <sup>Note 1</sup>                        | dB                                                                                                                       |                       |                      |  |  |
| $\hat{E}_{s}/I_{ot}$                             | dB                                                                                                                       | 4                     | 4                    |  |  |
| $N_{oc}^{ m Note~3}$                             | dBm/15 kHz                                                                                                               | -9                    | 8                    |  |  |
| $\hat{E}_s/N_{oc}$                               | dB                                                                                                                       | 4                     | 4                    |  |  |
| RSRP Note 4                                      | dBm/15 kHz                                                                                                               | -94                   | -94                  |  |  |
| SCH_RP                                           | dBm/15 kHz                                                                                                               | -94                   | -94                  |  |  |
| Propagation Condition                            |                                                                                                                          | AW                    | GN                   |  |  |
| Note 1: OCNG shall be used                       |                                                                                                                          |                       |                      |  |  |
| Note 2: The resources for upl of time period T2. | ink transmission                                                                                                         | are assigned to the U | E prior to the start |  |  |
| Note 3: Interference from other                  | m other cells and noise sources not specified in the test is constant over subcarriers and time and shall be modelled as |                       |                      |  |  |
| AWGN of appropriate                              | propriate power for $N_{ac}$ to be fulfilled.                                                                            |                       |                      |  |  |
| Note 4: RSRP levels have be                      | RSRP levels have been derived from other parameters for information                                                      |                       |                      |  |  |

Table A.8.7.3.1-3: Cell specific test parameters for UTRAN TDD (cell # 2) for UTRAN TDD cell search for SON ANR under AWGN propagation conditions

purposes. They are not settable parameters themselves.

| Parameter                    | Unit        | Cell 2           |       |       |       |
|------------------------------|-------------|------------------|-------|-------|-------|
|                              |             | T1 T2            |       |       | Γ2    |
| UTRA RF Channel number Note2 |             |                  | Chan  | nel 2 |       |
| DL timeslot number           |             | 0                | DwPTS | 0     | DwPTS |
| PCCPCH_Ec/lor                | dB          | -3               |       | -3    |       |
| DwPCH_Ec/lor                 | dB          |                  | 0     |       | 0     |
| OCNS_Ec/lor                  | dB          | -3               |       | -3    |       |
| Îor/loc                      | dB          | -Infinity 5      |       | 5     |       |
| PCCPCH RSCP Note1            | dBm         | -Infinity        | n.a.  | -73   | n.a.  |
| lo Note1                     | dBm/1.28MHz | -Infinity -70.88 |       |       | 0.88  |
| loc                          | dBm/1.28MHz | -75              |       |       |       |
| Propagation condition        |             | AWGN             |       |       |       |

Note 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: In the case of multi-frequency network of 1.28 Mcps TDD, the UTRA RF Channel Number can be set for the primary frequency in this test.

## A.8.7.3.3 Test Requirements

The UE shall send the first measurement report containing the physical cell identity of cell 2, with a measurement reporting delay less than 12800 ms from the beginning of time period T2.

The rate of correct measurement reports observed with this delay during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.7.4 E-UTRAN TDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions

### A.8.7.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct enhanced reporting of UTRAN TDD cells. This test will partly verify the Enhanced UTRA TDD cell identification requirements in section 8.1.2.4.3.1.1a under AWGN propagation conditions.

The test parameters are given in Tables A.8.7.4.1-1, A.8.7.4.1-2 and A.8.7.4.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods of T1 and T2 respectively. During time period T1, measurement gaps are activated and an inter-RAT measurement reporting configuration is configured with linkage to a UTRA measurement object corresponding to UARFCN channel number 1. Prior to time duration T2, the UE shall not have any timing information of cell 2. Cell 2 is powered up at the beginning of T2.

Table A.8.7.4.1-1: General test parameters for E-UTRAN TDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions

| Parameter                                         | Unit | Value                                       | Comment                                                   |
|---------------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.                        |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.                        |
| Gap Pattern Id                                    |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.           |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                  |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on UTRA RF channel number 1.                    |
| Time offset between cells                         | ms   | 3                                           | Asynchronous cells                                        |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.                 |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                           |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                      |
| Uplink-downlink configuration of cell 1           |      | 1                                           | As specified in table 4.2.2 in TS 36.211                  |
| Special subframe configuration of cell 1          |      | 6                                           | As specified in table 4.2.1 in TS 36.211                  |
| UTRA RF Channel Number                            |      | 1                                           | One UTRA TDD carrier frequency is used.                   |
| Inter-RAT (UTRA TDD) measurement quantity         |      | P-CCPCH RSCP                                |                                                           |
| Thresh                                            | dBm  | -83                                         | Absolute P-CCPCH RSCP threshold for event B1              |
| Hysteresis                                        | dB   | 0                                           |                                                           |
| Time To Trigger                                   | ms   | 0                                           |                                                           |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                 |
| DRX                                               |      | OFF                                         |                                                           |
| Monitored UTRA TDD cell list size                 |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell list |
| T1                                                | S    | 5                                           |                                                           |
| T2                                                | S    | 2                                           |                                                           |

Table A.8.7.4.1-2: Cell specific test parameters for cell 1 in E-UTRAN TDD - UTRAN TDD enhanced cell identification test under AWGN propagation conditions

| E-UTRA RF Channel Number BW <sub>channel</sub>          | MHz        | <b>T1</b>                               | T2                      |  |  |
|---------------------------------------------------------|------------|-----------------------------------------|-------------------------|--|--|
|                                                         | MHz        | 1                                       |                         |  |  |
| RW-tt                                                   | MHz        |                                         |                         |  |  |
| D v v channel                                           |            | 10                                      |                         |  |  |
| OCNG Pattern defined in                                 |            |                                         |                         |  |  |
| A.3.2.2.1 (OP.1 TDD)                                    |            | OP.1 TDD                                |                         |  |  |
| PBCH_RA                                                 | dB         |                                         |                         |  |  |
| PBCH_RB                                                 | dB         |                                         |                         |  |  |
| PSS_RA                                                  | dB         |                                         |                         |  |  |
| SSS_RA                                                  | dB         |                                         |                         |  |  |
| PCFICH_RB                                               | dB         |                                         |                         |  |  |
| PHICH_RA                                                | dB         |                                         |                         |  |  |
| PHICH_RB                                                | dB         | 0                                       |                         |  |  |
| PDCCH_RA                                                | dB         |                                         |                         |  |  |
| PDCCH_RB                                                | dB         |                                         |                         |  |  |
| PDSCH_RA                                                | dB         |                                         |                         |  |  |
| PDSCH_RB                                                | dB         |                                         |                         |  |  |
| OCNG_RA <sup>Note 1</sup>                               | dB         |                                         |                         |  |  |
| OCNG_RB <sup>Note 1</sup>                               | dB         |                                         |                         |  |  |
| $\hat{E}_{s}/I_{ot}$                                    | dB         | 4                                       | 4                       |  |  |
| $N_{_{OC}}^{\mathrm{Note  3}}$                          | dBm/15 kHz | -98                                     |                         |  |  |
| $\hat{E}_s/N_{oc}$                                      | dB         | 4                                       | 4                       |  |  |
| RSRP Note 4                                             | dBm/15 kHz | -94                                     | -94                     |  |  |
| SCH_RP                                                  | dBm/15 kHz | -94                                     | -94                     |  |  |
| Propagation Condition                                   |            | AWGN                                    |                         |  |  |
| Note 1: OCNG shall be used su spectral density is achie |            | ells are fully allocated and a constant | total transmitted power |  |  |

spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Interference from other cells and noise sources not specified in the test is assumed to be constant Note 3: over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be

Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.7.4.1-3: Cell specific test parameters for cell 2 in E-UTRAN TDD - UTRAN TDD enhanced cell identification test under AWGN propagation conditions

| Parameter                    | Unit         | Cell 2 (UTRA TDD) |        |       |       |
|------------------------------|--------------|-------------------|--------|-------|-------|
| Timeslot Number              |              | 0                 |        | Dwl   | PTS   |
|                              |              | T1                | T2     | T1    | T2    |
| UTRA RF Channel Number Note1 |              |                   | Chan   | nel 1 |       |
| P-CCPCH_Ec/lor               | dB           | -4.77             | -4.77  |       |       |
| DwPCH_Ec/lor                 | dB           |                   |        | 0     | 0     |
| OCNS_Ec/lor <sup>Note2</sup> | dB           | -1.76             | -1.76  |       |       |
| $\hat{I}_{or}/I_{oc}$        | dB           | -inf              | 8      | -inf  | 8     |
| $I_{oc}$                     | dBm/1.28 MHz | -80               |        |       |       |
| P-CCPCH RSCP Note3           | dBm          | -inf              | -76.77 | n.a.  | n.a.  |
| P-CCPCH_Ec/Io Note3          | dB           | -inf              | -5.41  | n.a.  | n.a.  |
| DwPCH_Ec/Io Note3            | dB           | n.a.              | n.a.   | -inf  | -0.64 |
| Propagation Condition        |              |                   | AW     | GN    |       |

Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal

P-CCPCH RSRP, PCCPCH\_Ec/lo and DwPCH\_Ec/lo levels have been derived from other Note 3: parameters for information purposes. They are not settable parameters themselves.

## A.8.7.4.2 Test Requirements

The UE shall send the first measurement report containing the primary scrambling code of cell 2, with a measurement reporting delay less than 1120 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct measurement reports observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH

## A.8.8 E-UTRAN FDD – GSM Measurements

## A.8.8.1 E-UTRAN FDD – GSM event triggered reporting in AWGN

### A.8.8.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter-RAT (GSM) measurements. This test will partly verify the E-UTRAN FDD - GSM cell search requirements in section 8.1.2.4.5.

The test parameters are given in Tables A.8.8.1.1-1, A.8.8.1.1-2 and A.8.8.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.8.1.1-1: General test parameters for E-UTRAN FDD-GSM event triggered reporting in AWGN

| Parameter                                         | Unit | Value                                       | Comment                                                 |
|---------------------------------------------------|------|---------------------------------------------|---------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.                      |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)       |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.                      |
| Gap Pattern Id                                    |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.         |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on Absolute RF Channel<br>Number 1 (GSM cell) |
| CP length                                         |      | Normal                                      | Applicable to cell 1                                    |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA FDD carrier frequency is used.               |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                         |
| Inter-RAT (GSM) measurement quantity              |      | GSM Carrier RSSI                            |                                                         |
| b1-Threshold-GERAN                                | dBm  | -80                                         | GSM Carrier RSSI threshold for event B1.                |
| Hysteresis                                        | dB   | 0                                           |                                                         |
| Time To Trigger                                   | ms   | 0                                           |                                                         |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                               |
| DRX                                               |      | OFF                                         |                                                         |
| Monitored GSM cell list size                      |      | 6 GSM neighbours including ARFCN 1          | List of GSM cells provided before T2 starts.            |
| T1                                                | s    | 5                                           |                                                         |
| T2                                                | S    | 5                                           |                                                         |

Table A.8.8.1.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for event triggered reporting of GSM cell in AWGN

| Parameter                                                | Unit       | Cell <sup>2</sup> | 1   |  |  |
|----------------------------------------------------------|------------|-------------------|-----|--|--|
|                                                          |            |                   | T2  |  |  |
| E-UTRA RF Channel Number                                 |            | 1                 |     |  |  |
| BW <sub>channel</sub>                                    | MHz        | 10                |     |  |  |
| OCNG Pattern defined in                                  |            |                   |     |  |  |
| A.3.2.1.1 (OP.1 FDD)                                     |            | OP.1 F            | DD  |  |  |
| PBCH_RA                                                  | dB         |                   |     |  |  |
| PBCH_RB                                                  | dB         |                   |     |  |  |
| PSS_RA                                                   | dB         |                   |     |  |  |
| SSS_RA                                                   | dB         |                   |     |  |  |
| PCFICH_RB                                                | dB         |                   |     |  |  |
| PHICH_RA                                                 | dB         | 0                 |     |  |  |
| PHICH_RB                                                 | dB         |                   |     |  |  |
| PDCCH_RA                                                 | dB         |                   |     |  |  |
| PDCCH_RB                                                 | dB         |                   |     |  |  |
| PDSCH_RA                                                 | dB         |                   |     |  |  |
| PDSCH_RB                                                 | dB         |                   |     |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |                   |     |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |                   |     |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 4                 | 4   |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4                 | 4   |  |  |
| $N_{oc}$                                                 | dBm/15 kHz | -98               |     |  |  |
| RSRP                                                     | dBm/15 kHz | -94               | -94 |  |  |
| SCH_RP                                                   | dBm/15 kHz | -94               | -94 |  |  |
| Propagation Condition                                    |            | AWGN              |     |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.8.1.1-3: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell in AWGN

| Parameter                  | Unit | Cell 2    |     |  |
|----------------------------|------|-----------|-----|--|
|                            |      | T1        | T2  |  |
| Absolute RF Channel Number |      | ARFNC 1   |     |  |
| RXLEV                      | dBm  | -Infinity | -75 |  |
| GSM BSIC                   |      | N/A Valid |     |  |

## A.8.8.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report including BSIC of cell # 2, with a measurement reporting delay less than 3120 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to 3120 ms, which is the sum of the event triggered measurement reporting delay and the initial BSIC identification delay.

The event triggered measurement reporting delay =  $2*T_{Measurement\ Period,\ GSM}$  = 2\*480ms = 960ms.

Initial BSIC identification delay = 2160 ms.

## A.8.8.2 E-UTRAN FDD-GSM event triggered reporting when DRX is used in AWGN

## A.8.8.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These tests will partly verify the E-UTRAN FDD-GSM cell search requirements when DRX is used in section 8.1.2.4.5.2.

In these tests, there are two cells, one E-UTRAN cell and one GSM cell, and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

The common test parameters are given in Table A.8.8.2.1-1. Cell specific test parameters are given in Table A.8.8.2.1-2 for E-UTRAN and in Table A.8.8.2.1-5 for GSM. DRX configuration for Test1 and Test2 are given in Table A.8.8.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.8.2.1-4.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event B1 is used. The tests consist of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.8.2.1-1: General test parameters for E-UTRAN FDD-GSM event triggered reporting when DRX is used in AWGN

| Parameter                    | Unit | Test 1                     | Test 2    | Comment                                                 |
|------------------------------|------|----------------------------|-----------|---------------------------------------------------------|
|                              |      | Value                      |           |                                                         |
| PDSCH parameters (E-         |      | DL Reference Measurement   |           | As specified in section A.3.1.1.1.                      |
| UTRAN FDD)                   |      | Channel R.0 FDD            | )         | ·                                                       |
| PCFICH/PDCCH/PHICH           |      | DL Reference Me            | asurement | As specified in section A.3.1.2.1.                      |
| parameters (E-UTRAN FDD)     |      | Channel R.6 FDD            | )         |                                                         |
| Gap Pattern Id               |      | (                          | )         | As specified in 3GPP TS 36.133 section 8.1.2.1.         |
| Active cell                  |      | Ce                         | II 1      | Cell 1 is on E-UTRA RF channel number 1.                |
| Neighbour cell               |      | Ce                         | II 2      | Cell 2 is on Absolute RF Channel Number 1 (GSM cell)    |
| CP length                    |      | Nor                        | mal       | Applicable to cell 1                                    |
| E-UTRA RF Channel            |      | ,                          |           | One E-UTRA FDD carrier frequency is                     |
| Number                       |      |                            |           | used.                                                   |
| E-UTRA Channel Bandwidth     | MHz  | 10                         |           |                                                         |
| (BW <sub>channel</sub> )     |      |                            |           |                                                         |
| Inter-RAT (GSM)              |      | GSM Carrier RSSI           |           |                                                         |
| measurement quantity         |      |                            |           |                                                         |
| B1-Threshold-GERAN           | dBm  | -80                        |           | GSM Carrier RSSI threshold for event B1.                |
| Hysteresis                   | dB   | (                          |           |                                                         |
| TimeToTrigger                | S    | (                          |           |                                                         |
| Filter coefficient           |      | (                          | )         | L3 filtering is not used                                |
| PRACH configuration          |      | 4                          | 1         | As specified in table 5.7.1-2 in TS 36.211              |
| Access Barring Information   | -    | Not Sent                   |           | No additional delays in random access                   |
|                              |      |                            |           | procedure.                                              |
| DRX                          |      | ON                         |           | DRX related parameters are defined in Table A.8.8.2.1-3 |
| Monitored GSM cell list size |      | 6 GSM neighbours including |           | List of GSM cells provided before T2                    |
|                              |      | ARFCN 1                    |           | starts.                                                 |
| T1                           | S    | 5                          |           |                                                         |
| T2                           | S    | 5                          | 45        |                                                         |

Table A.8.8.2.1-2: Cell specific test parameters for E-UTRAN FDD (cell #1) event triggered reporting of GSM cell when DRX is used in AWGN

| Parameter                 | Unit              | Cell 1                                                                                   |     |  |  |
|---------------------------|-------------------|------------------------------------------------------------------------------------------|-----|--|--|
|                           |                   | T1                                                                                       | T2  |  |  |
| E-UTRA RF Channel Number  |                   | 1                                                                                        |     |  |  |
| BW <sub>channel</sub>     | MHz               | 10                                                                                       |     |  |  |
| OCNG Pattern defined in   |                   |                                                                                          |     |  |  |
| A.3.2.1.1 (OP.1 FDD)      |                   | OP.1 F                                                                                   | FDD |  |  |
| PBCH_RA                   | dB                |                                                                                          |     |  |  |
| PBCH_RB                   | dB                |                                                                                          |     |  |  |
| PSS_RA                    | dB                |                                                                                          |     |  |  |
| SSS_RA                    | dB                |                                                                                          |     |  |  |
| PCFICH_RB                 | dB                |                                                                                          |     |  |  |
| PHICH_RA                  | dB                |                                                                                          |     |  |  |
| PHICH_RB                  | dB                | 0                                                                                        |     |  |  |
| PDCCH_RA                  | dB                |                                                                                          |     |  |  |
| PDCCH_RB                  | dB                |                                                                                          |     |  |  |
| PDSCH_RA                  | dB                |                                                                                          |     |  |  |
| PDSCH_RB                  | dB                |                                                                                          |     |  |  |
| OCNG_RA <sup>Note 1</sup> | dB                |                                                                                          |     |  |  |
| OCNG_RB <sup>Note 1</sup> | dB                |                                                                                          |     |  |  |
| $\hat{E}_{s}/I_{ot}$      | dB                | 4                                                                                        | 4   |  |  |
| $N_{oc}^{ m Note  2}$     | dBm/15 kHz        | -98                                                                                      | 3   |  |  |
| RSRP Note 3               | dBm/15 kHz        | -94                                                                                      | -94 |  |  |
| SCH_RP                    | dBm/15 kHz        | -94                                                                                      | -94 |  |  |
| $\hat{E}_s/N_{oc}$        | dB                | 4                                                                                        | 4   |  |  |
| Propagation Condition     |                   | AWG                                                                                      | BN  |  |  |
| spectral density is ac    | hieved for all OF | ells are fully allocated and a cons<br>DM symbols.<br>e sources not specified in the tes |     |  |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.8.2.1-3: drx-Configuration to be used in E-UTRAN FDD-GSM event triggered reporting when DRX is used in AWGN

| Field                                                              | Test1   | Test2   | Comment |  |  |  |
|--------------------------------------------------------------------|---------|---------|---------|--|--|--|
| rieid                                                              | Value   | Value   |         |  |  |  |
| onDurationTimer                                                    | psf1    | psf1    |         |  |  |  |
| drx-InactivityTimer                                                | psf1    | psf1    |         |  |  |  |
| drx-RetransmissionTimer                                            | psf1    | psf1    |         |  |  |  |
| longDRX-CycleStartOffset                                           | sf40    | sf1280  |         |  |  |  |
| shortDRX                                                           | Disable | Disable |         |  |  |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |         |         |         |  |  |  |

Table A.8.8.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN FDD-GSM event triggered reporting when DRX is used in AWGN

| Field              | Test1 | Test2 | Comment                                                                                         |
|--------------------|-------|-------|-------------------------------------------------------------------------------------------------|
| rieid              | Value | Value |                                                                                                 |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                                    |
| sr-ConfigIndex     | 0     | 0     | For further information see section 6.3.2 in 3GPP TS 36.331 and section 10.1 in 3GPP TS 36.213. |

Table A.8.8.2.1-5: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell when DRX is used in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |

## A.8.8.2.2 Test Requirements

In Test1 the UE shall send one Event B1 triggered measurement report including BSIC of cell #2, with a measurement reporting delay less than 3120 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 42.8 seconds from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event B1 measurement report

# A.8.8.3 E-UTRAN FDD – GSM event triggered reporting in AWGN with enhanced BSIC identification

### A.8.8.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter-RAT (GSM) measurements with enhanced BSIC identification. This test will partly verify the E-UTRAN FDD - GSM cell search requirements in section 8.1.2.4.5.1.2a

The test parameters are given in Tables A.8.8.3.1-1, A.8.8.1.1-2 and A.8.8.3.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. Prior time duration T1, the UE shall not have any timing information of cell 2. During time period T1, gaps are activated and an interRAT measurement reporting configuration is configured, and linked to a GSM measurement object including channel ARFCN 1. Cell 2 is powered up at the beginning of T2.

Table A.8.8.3.1-1: General test parameters for E-UTRAN FDD-GSM event triggered reporting in AWGN with enhanced BSIC identification

| Parameter                                         | Unit | Value                                          | Comment                                                                         |
|---------------------------------------------------|------|------------------------------------------------|---------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |      | DL Reference<br>Measurement Channel R.0<br>FDD | As specified in section A.3.1.1.1.                                              |
| PCFICH/PDCCH/PHICH parameters                     |      | DL Reference                                   | As specified in section A.3.1.2.1.                                              |
| (E-UTRAN FDD)                                     |      | Measurement Channel R.6 FDD                    |                                                                                 |
| Gap Pattern Id                                    |      | 0                                              | As specified in 3GPP TS 36.133 section 8.1.2.1.                                 |
| Active cell                                       |      | Cell 1                                         | Cell 1 is on E-UTRA RF channel number 1.                                        |
| Neighbour cell                                    |      | Cell 2                                         | Cell 2 is on Absolute RF Channel Number 1 (GSM cell)                            |
| CP length                                         |      | Normal                                         | Applicable to cell 1                                                            |
| E-UTRA RF Channel Number                          |      | 1                                              | One E-UTRA FDD carrier frequency is used.                                       |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                             |                                                                                 |
| Inter-RAT (GSM) measurement quantity              |      | GSM Carrier RSSI                               |                                                                                 |
| b1-Threshold-GERAN                                | dBm  | -80                                            | GSM Carrier RSSI threshold for event B1.                                        |
| Hysteresis                                        | dB   | 0                                              |                                                                                 |
| Time To Trigger                                   | ms   | 0                                              |                                                                                 |
| Filter coefficient                                |      | 0                                              | L3 filtering is not used.                                                       |
| DRX                                               |      | OFF                                            |                                                                                 |
| Monitored GSM cell list size                      |      | 6 GSM neighbours including ARFCN 1             | List of GSM cells provided before T2 starts.                                    |
| T1                                                | S    | 5                                              | T1 ends at the end of the last TTI where the measurement configuration is given |
| T2                                                | S    | 3                                              |                                                                                 |

Table A.8.8.3.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for event triggered reporting of GSM cell in AWGN with enhanced BSIC identification

| Unit       | Cell 1                                      |                                                            |  |  |
|------------|---------------------------------------------|------------------------------------------------------------|--|--|
|            | T1                                          | T2                                                         |  |  |
|            | 1                                           |                                                            |  |  |
| MHz        | 10                                          |                                                            |  |  |
|            |                                             |                                                            |  |  |
|            | OP.1 F                                      | FDD                                                        |  |  |
| dB         |                                             |                                                            |  |  |
| dB         | 0                                           |                                                            |  |  |
| dB         |                                             |                                                            |  |  |
| dB         | 4                                           | 4                                                          |  |  |
| dB         | 4                                           | 4                                                          |  |  |
| dBm/15 kHz | -98                                         |                                                            |  |  |
| dBm/15 kHz | -94                                         | -94                                                        |  |  |
| dBm/15 kHz | -94                                         | -94                                                        |  |  |
|            | AWGN                                        |                                                            |  |  |
|            | MHz  dB | T1  MHz  10  OP.1 F  dB  dB  dB  dB  dB  dB  dB  dB  dB  d |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.8.3.1-3: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell in AWGN with enhanced BSIC identification

| Parameter                  | Unit | Cell 2  |       |  |
|----------------------------|------|---------|-------|--|
|                            |      | T1      | T2    |  |
| Absolute RF Channel Number |      | ARFCN 1 |       |  |
| RXLEV                      | dBm  | -∞      | -75   |  |
| GSM BSIC                   |      | N/A     | Valid |  |

## A.8.8.3.2 Test Requirements

The UE shall send one Event B1 triggered measurement report including BSIC of cell # 2, with a measurement reporting delay less than [2280] ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to 2280 ms, which is the sum of the event triggered measurement reporting delay and the enhanced initial BSIC identification delay.

The event triggered measurement reporting delay = 2\*T<sub>Measurement Period, GSM</sub> = 2\* 480ms = 960ms.

Initial BSIC identification delay = 1320 ms.

## A.8.9 E-UTRAN FDD - UTRAN TDD measurements

# A.8.9.1 E-UTRAN FDD - UTRAN TDD event triggered reporting in fading propagation conditions

## A.8.9.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. The test will partly verify the E-UTRAN FDD - UTRAN TDD cell search requirements in section 8.1.2.4.4 in fading environment.

The test parameters are given in Table A.8.9.1.1-1, A.8.9.1.1-2 and A.8.9.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.9.1.1-1: General test parameters for Event triggered reporting in fading propagation conditions

| Parameter                      | Unit | Value                                       | Comment                                                                             |
|--------------------------------|------|---------------------------------------------|-------------------------------------------------------------------------------------|
| PDSCH parameters               |      | DL Reference Measurement<br>Channel TBD     | As specified in TS 36.101 section TBD                                               |
| PCFICH/PDCCH/PHICH parameters  |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                                   |
| Active cell                    |      | Cell 1                                      | E-UTRA FDD Cell 1                                                                   |
| Neighbour cell                 |      | Cell 2                                      | UTRA TDD Cell 2 is to be identified.                                                |
| Gap Pattern Id                 |      | 1                                           | As specified in TS 36.133 section8.1.2.1.  Measurement Gap Repetition Period = 80ms |
| Inter-RAT measurement quantity |      | UTRA TDD PCCPCH RSCP                        |                                                                                     |
| Threshold other system         | dBm  | -75                                         | UTRA TDD PCCPCH RSCP threshold for event B1.                                        |
| Hysteresis                     | dB   | 0                                           |                                                                                     |
| CP length                      |      | Normal                                      |                                                                                     |
| TimeToTrigger                  | S    | 0                                           |                                                                                     |
| Filter coefficient             |      | 0                                           | L3 filtering is not used                                                            |
| DRX                            |      |                                             | OFF                                                                                 |
| T1                             | S    | 5                                           |                                                                                     |
| T2                             | S    | 15                                          |                                                                                     |

Table A.8.9.1.1-2: Cell specific test parameters for Event triggered reporting of UTRA TDD neighbours in fading propagation conditions (cell1)

| Parameter                                                | Unit     | Cell 1 |     |  |
|----------------------------------------------------------|----------|--------|-----|--|
|                                                          |          | T1     | T2  |  |
| E-UTRA RF Channel                                        |          | 1      |     |  |
| Number                                                   |          |        |     |  |
| BW <sub>channel</sub>                                    | MHz      | 1(     | )   |  |
| OCNG Patterns defined                                    |          | OP.1   | FDD |  |
| in A.3.2.1.1 (OP.1 FDD)                                  |          |        |     |  |
| PBCH_RA                                                  | dB       |        |     |  |
| PBCH_RB                                                  | dB       |        |     |  |
| PSS_RA                                                   | dB       |        |     |  |
| SSS_RA                                                   | dB       |        |     |  |
| PCFICH_RB                                                | dB       |        |     |  |
| PHICH_RA                                                 | dB       |        |     |  |
| PHICH_RB                                                 | dB       | 0      |     |  |
| PDCCH_RA                                                 | dB       |        |     |  |
| PDCCH_RB                                                 | dB       |        |     |  |
| PDSCH_RA                                                 | dB       |        |     |  |
| PDSCH_RB                                                 | dB       |        |     |  |
| OCNG_RA <sup>Note 1</sup>                                | dB       |        |     |  |
| OCNG_RB <sup>Note 1</sup>                                | dB       |        |     |  |
| $N_{oc}$                                                 | dBm/15KH | -9     | 8   |  |
| 1 voc                                                    | z        |        |     |  |
| RSRP                                                     | dBm      | -94    | -94 |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB       | 4      | 4   |  |
| P-SCH_RP                                                 | dBm      | -9     | 4   |  |
| S-SCH_RP                                                 | dBm      | -9     | 4   |  |
| Propagation Condition                                    |          | ETU    | J70 |  |
|                                                          |          | ETU    | J70 |  |

Note 1: OCNG shall be used such that cell 1 is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.9.1.1-3: Cell specific test parameters for Event triggered reporting of UTRA TDD neighbours in fading propagation conditions (cell2)

| Parameter                | Unit         | Се        |        | ell 2   | ell 2 |  |  |
|--------------------------|--------------|-----------|--------|---------|-------|--|--|
|                          |              |           | T1     | -       | T2    |  |  |
| Timeslot Number          |              | 0         | DwPTS  | 0       | DwPTS |  |  |
| UTRA RF Channel          |              |           | Cha    | nnel1   |       |  |  |
| Number (NOTE1)           |              |           |        |         |       |  |  |
| PCCPCH_Ec/lor            | dB           | -In       | finity | -3      |       |  |  |
| DwPCH_Ec/lor             | dB           | -Infinity |        |         | 0     |  |  |
| OCNS_Ec/lor              |              | -Infinity |        | -3      |       |  |  |
| $\hat{I}_{or}/I_{oc}$    | dB           | -Infinity |        | 9       |       |  |  |
| $I_{oc}$                 | dBm/1.28 MHz | -70       |        |         |       |  |  |
| PCCPCH_RSCP Note 3       | dB           | -Infinity |        | -64     |       |  |  |
| lo Note 3                | dBm/1.28 MHz | -70.00    |        | -60.49  |       |  |  |
| Propagation<br>Condition |              |           | Case 3 | (NOTE2) |       |  |  |

NOTE1: The DPCH of the cell is located in a timeslot other than 0.

NOTE2: Case 3 propagation conditions are specified in TS25.102 Annex B

NOTE3: PCCPCH\_RSRP and lo levels have been derived from other parameters for

information purposes. They are not settable parameters themselves.

## A.8.9.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 12800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to [2] x TTI<sub>DCCH</sub> higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.9.2 E-UTRAN FDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions

### A.8.9.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct enhanced reporting of UTRAN cells. This test will partly verify the enhanced UTRA TDD cell identification requirements in section 8.1.2.4.4 under AWGN propagation conditions.

This test scenario comprised of 1 E-UTRA FDD serving cell, and 1 UTRA TDD cell to be searched. Test parameters are given in Table A.8.9.2.1-1, A.8.9.2.1-2, and A.8.9.2.1-3. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time period T1, gaps are activated and an interRAT measurement reporting configuration is configured, and linked to a UTRA measurement object corresponding to channel UARFCN 1. Prior to time duration T2, the UE shall not have any timing information of cell 2. Cell 2 is powered up at the beginning of the T2.

Table A.8.9.2.1-1: General test parameters for E-UTRAN FDD- UTRAN TDD enhanced cell search in AWGN propagation conditions

| Parameter                                         | Unit | Value                                          | Comment                                                   |
|---------------------------------------------------|------|------------------------------------------------|-----------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)                    |      | DL Reference<br>Measurement Channel R.0<br>FDD | As specified in section A.3.1.1.1.                        |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)       |      | DL Reference<br>Measurement Channel R.6<br>FDD | As specified in section A.3.1.2.1.                        |
| Gap Pattern Id                                    |      | 0                                              | As specified in 3GPP TS 36.133 section 8.1.2.1.           |
| Active cell                                       |      | Cell 1                                         | Cell 1 is on E-UTRA RF channel number 1.                  |
| Neighbour cell                                    |      | Cell 2                                         | Cell 2 is on UTRA RF channel number 1.                    |
| CP length                                         |      | Normal                                         | Applicable to cell 1                                      |
| E-UTRA RF Channel Number                          |      | 1                                              | One E-UTRA FDD carrier frequency is used.                 |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                             |                                                           |
| UTRA RF Channel Number                            |      | 1                                              | One UTRA TDD carrier frequency is used.                   |
| Inter-RAT (UTRA TDD) measurement quantity         |      | P-CCPCH RSCP                                   |                                                           |
| Thresh                                            | dBm  | -83                                            | Absolute P-CCPCH RSCP threshold for event B1              |
| Hysteresis                                        | dB   | 0                                              |                                                           |
| Time To Trigger                                   | ms   | 0                                              |                                                           |
| Filter coefficient                                |      | 0                                              | L3 filtering is not used.                                 |
| DRX                                               |      | OFF                                            |                                                           |
| Monitored UTRA TDD cell list size                 |      | 12                                             | UTRA cells on UTRA RF channel 1 provided in the cell list |
| Time offset between cells                         | ms   | 3                                              |                                                           |
| T1                                                | S    | 5                                              |                                                           |
| T2                                                | S    | 2                                              |                                                           |

Table A.8.9.2.1-2: Cell specific test parameters for cell #1 E-UTRAN FDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions

| Parameter                                                | Unit       | Ce   | II 1 |
|----------------------------------------------------------|------------|------|------|
|                                                          |            | T1   | T2   |
| E-UTRA RF Channel Number                                 |            | •    | 1    |
| BW <sub>channel</sub>                                    | MHz        | 1    | 0    |
| OCNG Patterns defined in                                 |            | OD 1 | FDD  |
| A.3.2.1.1 (OP.1 FDD)                                     |            | UF.1 | רטט  |
| PBCH_RA                                                  | dB         |      |      |
| PBCH_RB                                                  | dB         |      |      |
| PSS_RA                                                   | dB         |      |      |
| SSS_RA                                                   | dB         |      |      |
| PCFICH_RB                                                | dB         |      |      |
| PHICH_RA                                                 | dB         |      |      |
| PHICH_RB                                                 | dB         | (    | 0    |
| PDCCH_RA                                                 | dB         |      |      |
| PDCCH_RB                                                 | dB         |      |      |
| PDSCH_RA                                                 | dB         |      |      |
| PDSCH_RB                                                 | dB         |      |      |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |      |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |      |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB         | 4    | 4    |
| $N_{oc}^{ m Note  3}$                                    | dBm/15 kHz | -9   | 98   |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    | 4    |
| RSRP Note 4                                              | dBm/15 kHz | -94  | -94  |
| SCH_RP                                                   | dBm/15 kHz | -94  | -94  |
| Propagation Condition                                    |            | AW   | GN   |

- Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $\,N_{oc}\,$  to be fulfilled.
- Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.9.2.1-3: Cell specific test parameters for cell #2 E-UTRAN FDD - UTRAN TDD enhanced cell identification under AWGN propagation conditions

| Parameter                    | Unit         |       | Cell 2 (U | TRA TDD) |       |
|------------------------------|--------------|-------|-----------|----------|-------|
| Timeslot Number              |              | (     | 0         | Dw       | PTS   |
|                              |              | T1    | T2        | T1       | T2    |
| UTRA RF Channel Number Note1 |              |       | Char      | nnel 1   |       |
| P-CCPCH_Ec/lor               | dB           | -4.77 | -4.77     |          |       |
| DwPCH_Ec/lor                 | dB           |       |           | 0        | 0     |
| OCNS_Ec/lor <sup>Note2</sup> | dB           | -1.76 | -1.76     |          |       |
| $\hat{I}_{or}/I_{oc}$        | dB           | -inf  | 8         | -inf     | 8     |
| $I_{oc}$                     | dBm/1.28 MHz |       | -{        | 30       |       |
| P-CCPCH RSCP Note3           | dBm          | -inf  | -76.77    | n.a.     | n.a.  |
| P-CCPCH_Ec/Io Note3          | dB           | -inf  | -5.41     | n.a.     | n.a.  |
| DwPCH_Ec/Io Note3            | dB           | n.a.  | n.a.      | -inf     | -0.64 |
| Propagation Condition        |              | AWGN  |           |          |       |

- Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.
- Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to lar.
- Note 3: P-CCPCH RSRP, PCCPCH\_Ec/lo and DwPCH\_Ec/lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

## A.8.9.2.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 1120 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

## A.8.10 E-UTRAN TDD – GSM Measurements

## A.8.10.1 E-UTRAN TDD – GSM event triggered reporting in AWGN

### A.8.10.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter-RAT (GSM) measurements. This test will partly verify the E-UTRAN TDD - GSM cell search requirements in section 8.1.2.4.6.

The test parameters are given in Tables A.8.10.1.1-1, A.8.8.1.1-2 and A.8.10.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.10.1.1-1: General test parameters for E-UTRAN TDD-GSM event triggered reporting in AWGN

| Parameter                                         | Unit | Value                                          | Comment                                              |
|---------------------------------------------------|------|------------------------------------------------|------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference<br>Measurement Channel R.0<br>TDD | As specified in section A.3.1.1.2.                   |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference<br>Measurement Channel R.6<br>TDD | As specified in section A.3.1.2.2.                   |
| Gap Pattern Id                                    |      | 0                                              | As specified in 3GPP TS 36.133 section 8.1.2.1.      |
| Active cell                                       |      | Cell 1                                         | Cell 1 is on E-UTRA RF channel number 1.             |
| Neighbour cell                                    |      | Cell 2                                         | Cell 2 is on Absolute RF Channel Number 1 (GSM cell) |
| Special subframe configuration                    |      | 6                                              | As specified in table 4.2-1 in 3GPP TS 36.211        |
| Uplink-downlink configuration                     |      | 1                                              | As specified in table 4.2-2 in 3GPP TS 36.211        |
| CP length                                         |      | Normal                                         | Applicable to cell 1                                 |
| E-UTRA RF Channel Number                          |      | 1                                              | One E-UTRA TDD carrier frequency is used.            |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                             |                                                      |
| Inter-RAT (GSM) measurement quantity              |      | GSM Carrier RSSI                               |                                                      |
| b1-Threshold-GERAN                                | dBm  | -80                                            | GSM Carrier RSSI threshold for event B1.             |
| Hysteresis                                        | dB   | 0                                              |                                                      |
| Time To Trigger                                   | ms   | 0                                              |                                                      |
| Filter coefficient                                |      | 0                                              | L3 filtering is not used.                            |
| DRX                                               |      | OFF                                            |                                                      |
| Monitored GSM cell list size                      |      | 6 GSM neighbours including ARFCN 1             | List of GSM cells provided before T2 starts.         |
| T1                                                | s    | 5                                              |                                                      |
| T2                                                | S    | 5                                              |                                                      |

Table A.8.10.1.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for event triggered reporting of GSM cell in AWGN

| Parameter                                                                                                                                                     | Unit       | Cell 1                                                                |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------|------|--|
|                                                                                                                                                               |            | T1                                                                    | T2   |  |
| E-UTRA RF Channel Number                                                                                                                                      |            | 1                                                                     |      |  |
| BW <sub>channel</sub>                                                                                                                                         | MHz        | 10                                                                    |      |  |
| OCNG Pattern defined in                                                                                                                                       |            |                                                                       |      |  |
| A.3.2.2.1 (OP.1 TDD)                                                                                                                                          |            | OP.1 7                                                                | ΓDD  |  |
| PBCH_RA                                                                                                                                                       | dB         |                                                                       |      |  |
| PBCH_RB                                                                                                                                                       | dB         |                                                                       |      |  |
| PSS_RA                                                                                                                                                        | dB         |                                                                       |      |  |
| SSS_RA                                                                                                                                                        | dB         |                                                                       |      |  |
| PCFICH_RB                                                                                                                                                     | dB         |                                                                       |      |  |
| PHICH_RA                                                                                                                                                      | dB         |                                                                       |      |  |
| PHICH_RB                                                                                                                                                      | dB         | 0                                                                     |      |  |
| PDCCH_RA                                                                                                                                                      | dB         |                                                                       |      |  |
| PDCCH_RB                                                                                                                                                      | dB         |                                                                       |      |  |
| PDSCH_RA                                                                                                                                                      | dB         |                                                                       |      |  |
| PDSCH_RB                                                                                                                                                      | dB         |                                                                       |      |  |
| OCNG_RA <sup>Note 1</sup>                                                                                                                                     | dB         |                                                                       |      |  |
| OCNG_RB <sup>Note 1</sup>                                                                                                                                     | dB         |                                                                       |      |  |
| $\hat{	extbf{E}}_{	ext{s}}/	extbf{I}_{	ext{ot}}$                                                                                                              | dB         | 4                                                                     | 4    |  |
| $N_{oc}^{$                                                                                                                                                    | dBm/15 kHz | -98                                                                   | 3    |  |
| $\hat{E}_s/N_{oc}$                                                                                                                                            | dB         | 4                                                                     | 4    |  |
| RSRP Note 4                                                                                                                                                   | dBm/15 kHz | -94                                                                   | -94  |  |
| SCH_RP                                                                                                                                                        | dBm/15 kHz | -94                                                                   | -94  |  |
| Propagation Condition                                                                                                                                         |            | AWG                                                                   | SN . |  |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. |            |                                                                       |      |  |
|                                                                                                                                                               |            | are assigned to the UE prior to the sources not specified in the test |      |  |

- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled
- Note 4: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.10.1.1-3: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |
| Propagation Condition      |      | AWGN      |       |  |

### A.8.10.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report including the valid BSIC of cell # 2, with a measurement reporting delay less than 3120 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to 3120 ms, which is the sum of the event triggered measurement reporting delay and the initial BSIC identification delay.

The event triggered measurement reporting delay =  $2*T_{Measurement\ Period,\ GSM}$  = 2\*480ms = 960ms.

Initial BSIC identification delay = 2160 ms.

## A.8.10.2 E-UTRAN TDD-GSM event triggered reporting when DRX is used in AWGN

## A.8.10.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These tests will partly verify the E-UTRAN TDD-GSM cell search requirements when DRX is used in section 8.1.2.4.6.

In these tests, there are two cells, one E-UTRAN cell and one GSM cell, and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

The common test parameters are given in Table A.8.10.2.1-1. Cell specific test parameters are given in Table A.8.10.2.1-2 for E-UTRAN and in Table A.8.10.2.1-5 for GSM. DRX configuration for Test1 and Test2 are given in Table A.8.10.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.10.2.1-4.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event B1 is used. The tests consist of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.10.2.1-1: General test parameters for E-UTRAN TDD-GSM event triggered reporting when DRX is used in AWGN

| Parameter                               | Unit   | Test 1                     | Test 2        | Comment                                                  |  |
|-----------------------------------------|--------|----------------------------|---------------|----------------------------------------------------------|--|
|                                         |        | Va                         | lue           |                                                          |  |
| PDSCH parameters (E-                    |        | DL Reference Measurement   |               | As specified in section A.3.1.1.2. Note that             |  |
| UTRAN TDD)                              |        | Channel R.0 TDD            | )             | UE may only be allocated at On Duration                  |  |
| PCFICH/PDCCH/PHICH                      |        | DL Reference Me            | asurement     | As specified in section A.3.1.2.2.                       |  |
| parameters (E-UTRAN TDD)                |        | Channel R.6 TDD            | )             |                                                          |  |
| Gap Pattern Id                          |        | (                          | )             | As specified in 3GPP TS 36.133 section                   |  |
|                                         |        |                            |               | 8.1.2.1.                                                 |  |
| Active cell                             |        | Ce                         | II 1          | Cell 1 is on E-UTRA RF channel number                    |  |
|                                         |        |                            |               | 1.                                                       |  |
| Neighbour cell                          |        | Ce                         | II 2          | Cell 2 is on Absolute RF Channel Number                  |  |
|                                         |        |                            |               | 1 (GSM cell)                                             |  |
| Special subframe                        |        | (                          | 5             | As specified in table 4.2-1 in TS 36.211.                |  |
| configuration                           |        |                            |               |                                                          |  |
| Uplink-downlink                         |        | 1                          | I             | As specified in 3GPP TS 36.211 section                   |  |
| configuration                           |        |                            |               | 4.2 Table 4.2-2                                          |  |
| CP length                               |        |                            | mal           | Applicable to cell 1                                     |  |
| E-UTRA RF Channel                       |        | 1                          |               | One E-UTRA TDD carrier frequency is                      |  |
| Number E-UTRA Channel Bandwidth         | NAL I— | 40                         |               | used.                                                    |  |
|                                         | MHz    | 10                         |               |                                                          |  |
| (BW <sub>channel</sub> )                |        | GSM Carrier RSSI           |               |                                                          |  |
| Inter-RAT (GSM)                         |        | GSW Carrier RSSI           |               |                                                          |  |
| measurement quantity B1-Threshold-GERAN | dBm    | 90                         |               | GSM Carrier RSSI threshold for event B1.                 |  |
|                                         | dB     | -80<br>0                   |               | GSW Carrier RSSI threshold for event B1.                 |  |
| Hysteresis                              |        |                            |               |                                                          |  |
| TimeToTrigger                           | S      |                            | )             | 1.2 filtering is not used                                |  |
| Filter coefficient                      |        |                            | <u>)</u><br>1 | L3 filtering is not used                                 |  |
| PRACH configuration                     |        |                            | •             | As specified in table 5.7.1-2 in TS 36.211               |  |
| Access Barring Information              | -      | Not Sent                   |               | No additional delays in random access                    |  |
| DRX                                     |        | ON                         |               | procedure.                                               |  |
| DRX                                     |        | ON                         |               | DRX related parameters are defined in Table A.8.10.2.1-3 |  |
| Monitored GSM cell list size            |        | 6 GSM neighbours including |               | List of GSM cells provided before T2                     |  |
|                                         |        | ARFCN 1                    |               | starts.                                                  |  |
| T1                                      | S      | 5                          |               |                                                          |  |
| T2                                      | S      | 5                          | 45            |                                                          |  |

Table A.8.10.2.1-2: Cell specific test parameters for E-UTRAN TDD (cell #1) event triggered reporting of GSM cell when DRX is used in AWGN

| Parameter                                                                                                   | Unit       | Cell 1 |            |  |
|-------------------------------------------------------------------------------------------------------------|------------|--------|------------|--|
|                                                                                                             |            | T1     | T2         |  |
| E-UTRA RF Channel Number                                                                                    |            | 1      |            |  |
| BW <sub>channel</sub>                                                                                       | MHz        | 10     |            |  |
| OCNG Patterns defined in                                                                                    |            |        |            |  |
| A.3.2.2.1 (OP.1 TDD)                                                                                        |            | OP.1 7 | <u>rdd</u> |  |
| PBCH_RA                                                                                                     | dB         |        |            |  |
| PBCH_RB                                                                                                     | dB         |        |            |  |
| PSS_RA                                                                                                      | dB         |        |            |  |
| SSS_RA                                                                                                      | dB         |        |            |  |
| PCFICH_RB                                                                                                   | dB         |        |            |  |
| PHICH_RA                                                                                                    | dB         |        |            |  |
| PHICH_RB                                                                                                    | dB         | 0      |            |  |
| PDCCH_RA                                                                                                    | dB         |        |            |  |
| PDCCH_RB                                                                                                    | dB         |        |            |  |
| PDSCH_RA                                                                                                    | dB         |        |            |  |
| PDSCH_RB                                                                                                    | dB         |        |            |  |
| OCNG_RA <sup>Note 1</sup>                                                                                   | dB         |        |            |  |
| OCNG_RB <sup>Note 1</sup>                                                                                   | dB         |        |            |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$                                                    | dB         | 4      | 4          |  |
| $N_{oc}^{ m Note~2}$                                                                                        | dBm/15 kHz | -98    | 3          |  |
| RSRP Note 3                                                                                                 | dBm/15 kHz | -94    | -94        |  |
| SCH_RP                                                                                                      | dBm/15 kHz | -94    | -94        |  |
| $\hat{E}_s/N_{oc}$                                                                                          | dB         | 4      | 4          |  |
| Propagation Condition                                                                                       |            |        |            |  |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power  |            |        |            |  |
| spectral density is achieved for all OFDM symbols.                                                          |            |        |            |  |
| Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant |            |        |            |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.10.2.1-3: drx-Configuration to be used in E-UTRAN TDD-GSM event triggered reporting when DRX is used in AWGN

| Field                                     | Test1        | Test2       | Comment |
|-------------------------------------------|--------------|-------------|---------|
| rieid                                     | Value        | Value       |         |
| onDurationTimer                           | psf1         | psf1        |         |
| drx-InactivityTimer                       | psf1         | psf1        |         |
| drx-RetransmissionTimer                   | psf1         | psf1        |         |
| longDRX-CycleStartOffset                  | sf40         | sf1280      |         |
| shortDRX                                  | Disable      | Disable     |         |
| Note: For further information see section | 6.3.2 in 3GF | P TS 36.331 |         |

Table A.8.10.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN TDD-GSM event triggered reporting when DRX is used in AWGN

| Field              | Test1<br>Value | Test2<br>Value | Comment                                                                                         |
|--------------------|----------------|----------------|-------------------------------------------------------------------------------------------------|
| TimeAlignmentTimer | sf500          | sf500          | For further information see section 6.3.2 in 3GPP TS 36.331.                                    |
| sr-ConfigIndex     | 2              | 2              | For further information see section 6.3.2 in 3GPP TS 36.331 and section 10.1 in 3GPP TS 36.213. |

Table A.8.10.2.1-5: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell when DRX is used in AWGN

| Parameter                  | Unit | Cell 2    |       |  |
|----------------------------|------|-----------|-------|--|
|                            |      | T1        | T2    |  |
| Absolute RF Channel Number |      | ARFNC 1   |       |  |
| RXLEV                      | dBm  | -Infinity | -75   |  |
| GSM BSIC                   |      | N/A       | Valid |  |

## A.8.10.2.2 Test Requirements

In Test1 the UE shall send one Event B1 triggered measurement report including BSIC of cell #2, with a measurement reporting delay less than 3120 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 42.8 seconds from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event B1 measurement report

## A. 8.11 Monitoring of Multiple Layers

# A. 8.11.1Multiple E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation conditions

### A. 8.11.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of multiple events. This test will partly verify the FDD-FDD inter-frequency cell search requirements in section 8.1.2.3.

The test parameters are given in Tables A.8.11.1.1.1-1 and A.8.11.1.1.1-2. In this test, there are three cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2 or cell 3.

Table A. 8.11.1.1-1: General test parameters for Inter-frequency E-UTRA FDD – E-UTRA FDD and E-UTRA FDD cell search under fading

| Parameter                                  | Unit | Value                                       | Comment                                                               |
|--------------------------------------------|------|---------------------------------------------|-----------------------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                     |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                     |
| E-UTRA RF Channel<br>Number                |      | 1, 2, 3                                     | Three FDD carrier frequencies are used.                               |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                       |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1                                      |
| Neighbour cell                             |      | Cell 2 and cell 3                           | Cell 2 is on RF channel number 2 and cell 3 is on RF channel number 3 |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                       |
| A3-Offset                                  | dB   | -6                                          |                                                                       |
| Hysteresis                                 | dB   | 0                                           |                                                                       |
| CP length                                  |      | Normal                                      |                                                                       |
| TimeToTrigger                              | S    | 0                                           |                                                                       |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                              |
| DRX                                        |      | OFF                                         | OFF                                                                   |
| Time offset between E-<br>UTRAN FDD cells  |      | 3 ms                                        | Asynchronous cells                                                    |
| T1                                         | S    | 5                                           |                                                                       |
| T2                                         | S    | 10                                          |                                                                       |

Table A. 8.11.1.1-2: Cell specific test parameters for Inter-frequency E-UTRA FDD – E-UTRA FDD and E-UTRA FDD cell search under fading

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit                                                                                                                                    | C   | ell 1 | Cel       | 1 2 | Cell 3    |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------|-----|-----------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         | T1  | T2    | T1        | T2  | T1        | T2  |
| E-UTRA RF<br>Channel Number                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |     | 1     | 2         |     | 3         |     |
| BW <sub>channel</sub>                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz                                                                                                                                     |     | 10 10 |           | 10  |           |     |
| OCNG Patterns<br>defined in A.3.2.1.1<br>(OP.1 FDD) and in<br>A.3.2.1.2 (OP.2<br>FDD)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         | OP. | 1 FDD | OP.2 FDD  |     | OP.2 FDD  |     |
| PBCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB                                                                                                                                      |     |       |           |     |           |     |
| PBCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB                                                                                                                                      |     |       |           |     |           |     |
| PSS_RA                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB                                                                                                                                      |     |       |           |     |           |     |
| SSS_RA                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB                                                                                                                                      |     |       |           |     |           |     |
| PCFICH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB                                                                                                                                      |     |       |           |     |           |     |
| PHICH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      |     | 0 0   |           | 0   |           |     |
| PHICH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      |     | · ·   |           |     | ŭ         |     |
| PDCCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      |     |       |           |     |           |     |
| PDCCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      |     |       |           |     |           |     |
| PDSCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      |     |       |           |     |           |     |
| PDSCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      |     |       |           |     |           |     |
| OCNG_RA <sup>Note 1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                         | dB                                                                                                                                      |     |       |           |     |           |     |
| OCNG_RB <sup>Note</sup>                                                                                                                                                                                                                                                                                                                                                                                                                           | dB                                                                                                                                      |     |       |           |     |           |     |
| $N_{oc}^{ m Note  3}$                                                                                                                                                                                                                                                                                                                                                                                                                             | dBm/15<br>kHz                                                                                                                           |     |       | •         | -98 |           |     |
| RSRP Note 4                                                                                                                                                                                                                                                                                                                                                                                                                                       | dBm/15<br>kHz                                                                                                                           | -98 | -98   | -Infinity | -95 | -Infinity | -95 |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$                                                                                                                                                                                                                                                                                                                                                                                          | dB                                                                                                                                      | 0   | 0     | -Infinity | 3   | -Infinity | 3   |
| SCH_RP Note 4                                                                                                                                                                                                                                                                                                                                                                                                                                     | dBm/15<br>kHz                                                                                                                           | -98 | -98   | -Infinity | -95 | -Infinity | -95 |
| $\hat{E}_s/N_{oc}$                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                      | 0   | 0     | -Infinity | 3   | -Infinity | 3   |
| Propagation<br>Condition                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         | AV  | VGN   | ETU       | J70 | ETU70     |     |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.  Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.  Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of |                                                                                                                                         |     |       |           |     |           |     |
| Note 4: RSRP and                                                                                                                                                                                                                                                                                                                                                                                                                                  | appropriate power for $N_{oc}$ to be fulfilled.  Note 4: RSRP and SCH_RP levels have been derived from other parameters for information |     |       |           |     |           |     |

## A. 8.11.1.2 Test Requirements

The UE shall send Event A3 triggered measurement reports for both cell 2 and cell 3, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

purposes. They are not settable parameters themselves.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

## A.8.11.2 E-UTRAN TDD – E-UTRAN TDD and E-UTRAN TDD Interfrequency event triggered reporting under fading propagation conditions

## A.8.11.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of two events. This test will partly verify the TDD-TDD inter-frequency cell search requirements in section 8.1.2.3.

The test parameters are given in Tables A.8.11.2.1-1 and A.8.11.2.1-2. In this test, there are three cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2 and cell 3.

Table A.8.11.2.1-1: General test parameters for E-UTRAN TDD - E-UTRAN TDD and E-UTRAN TDD Inter-frequency event triggered reporting under fading propagation conditions

| Parameter                                  | Unit | Value                                       | Comment                                                                        |
|--------------------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                              |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                              |
| Special subframe configuration             |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells |
| Uplink-downlink configuration              |      | 1                                           | As specified in 3GPP TS 36.211 section 4.2 Table 4.2-2                         |
| E-UTRA RF Channel<br>Number                |      | 1, 2, 3                                     | Three TDD carrier frequencies are used.                                        |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1                                               |
| Neighbor cells                             |      | Cell 2 and Cell 3                           | Cell 2 and 3 are on RF channel numbers 2 and 3 respectively                    |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                |
| A3-Offset                                  | dB   | -6                                          |                                                                                |
| Hysteresis                                 | dB   | 0                                           |                                                                                |
| CP length                                  |      | Normal                                      |                                                                                |
| TimeToTrigger                              | S    | 0                                           |                                                                                |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                                       |
| DRX                                        |      | OFF                                         | OFF                                                                            |
| Time offset between cells                  |      | 3 μs                                        | Synchronous cells                                                              |
| T1                                         | S    | 5                                           |                                                                                |
| T2                                         | s    | 10                                          |                                                                                |

Table A.8.11.2.1-2: Cell specific test parameters for E-UTRAN TDD - E-UTRAN TDD and E-UTRAN TDD Inter-frequency event triggered reporting under fading propagation conditions cells

| Parameter                                                                          | Unit              | С        | ell 1 | Cell 2     |                | Cell 3        |     |  |  |
|------------------------------------------------------------------------------------|-------------------|----------|-------|------------|----------------|---------------|-----|--|--|
|                                                                                    |                   | T1       | T2    | T1 T2      |                | T1            | T2  |  |  |
| E-UTRA RF Channel<br>Number                                                        |                   | 1        |       | 2          |                | 3             |     |  |  |
| BW <sub>channel</sub>                                                              | MHz               | 10       |       | 1          | 0              | 1             | 0   |  |  |
| OCNG Patterns defined<br>in A.3.2.2.1 (OP.1 TDD)<br>and in A.3.2.2.2 (OP.2<br>TDD) |                   | OP.1 TDD |       | OP.2 TDD   |                | OP.2 TDD      |     |  |  |
| PBCH_RA                                                                            | dB                |          |       |            |                |               |     |  |  |
| PBCH_RB                                                                            | dB                |          |       |            |                |               |     |  |  |
| PSS_RA                                                                             | dB                |          |       |            |                |               |     |  |  |
| SSS RA                                                                             | dB                |          |       | 0          |                | 0             |     |  |  |
| PCFICH_RB                                                                          | dB                |          |       |            |                |               |     |  |  |
| PHICH_RA                                                                           | dB                |          |       |            |                |               |     |  |  |
| PHICH_RB                                                                           | dB                |          | 0     |            |                |               |     |  |  |
| PDCCH_RA                                                                           | dB                |          |       |            |                |               |     |  |  |
| PDCCH_RB                                                                           | dB                |          |       |            |                |               |     |  |  |
| PDSCH_RA                                                                           | dB                |          |       |            |                |               |     |  |  |
| PDSCH_RB                                                                           | dB                |          |       |            |                |               |     |  |  |
| OCNG_RA <sup>Note 1</sup>                                                          | dB                |          |       |            |                |               |     |  |  |
| OCNG_RB <sup>Note 1</sup>                                                          | dB                |          |       |            |                |               |     |  |  |
| $N_{oc}$ Note 3                                                                    | dBm/15 kHz        |          |       | -(         | 98             |               |     |  |  |
| RSRP Note 4                                                                        | dBm/15 kHz        | -98      | -98   | -inf       | -95            | -inf          | -95 |  |  |
| $\hat{E}_{s}/I_{ot}$                                                               | dB                | 0        | 0     | -inf       | 3              | -inf          | 3   |  |  |
| SCH_RP Note 4                                                                      | dBm/15 kHz        | -98      | -98   | -inf       | -95            | -inf          | -95 |  |  |
| $\hat{E}_s/N_{oc}$                                                                 | dB                | 0 0      |       | -inf       | 3              | -inf          | 3   |  |  |
| Propagation Condition                                                              |                   | AV       | VGN   | ETU70      |                | ETU70         |     |  |  |
|                                                                                    | used such that al |          |       | and a cons | tant total tra | ansmitted pov | ver |  |  |

Note 1: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.8.11.2.2 Test Requirements

The UE shall send one Event A3 triggered measurement report for cell 2 with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall send one Event A3 triggered measurement report for cell 3 with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.11.3 E-UTRAN FDD-FDD Inter-frequency and UTRAN FDD event triggered reporting under fading propagation conditions

## A.8.11.3.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter frequency and UTRAN FDD measurements. This test will partly verify the FDD-FDD inter-frequency cell search requirements in section 8.1.2.3 and the E-UTRAN FDD- UTRAN FDD cell search requirements in section 8.1.2.4.1.

The test parameters are given in Tables A.8.11.3.1-1, A.8.11.3.1-2 and A.8.11.3.1-3. In this test, there are two cells on different carrier frequencies and one cell on UTRAN carrier frequency and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 and B2 is used. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2 and cell 3.

Table A.8.11.3.1-1: General test parameters for Combined inter-frequency and UTRAN event triggered reporting in fading propagation conditions

| Parameter                                   | Unit | Value                                       | Comment                                                                            |
|---------------------------------------------|------|---------------------------------------------|------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN FDD)              |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1.                                                 |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD) |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1.                                                 |
| Gap Pattern Id                              |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                    |
| Active cell                                 |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                           |
| Neighbour cells                             |      | Cell 2, 3                                   | Cell 2 is on E-UTRA RF channel number 2.<br>Cell 3 is on UTRA RF channel number 1. |
| CP length                                   |      | Normal                                      | Applicable to cell 1                                                               |
| E-UTRA RF Channel Number                    |      | 1, 2                                        | Two FDD carrier frequencies are used.                                              |
| E-UTRA Channel Bandwidth                    | MHz  | 10                                          |                                                                                    |
| (BW <sub>channel</sub> )                    |      |                                             |                                                                                    |
| UTRA RF Channel Number                      |      | 1                                           | One UTRA FDD carrier frequency is used.                                            |
| E-UTRAN FDD measurement                     |      | RSRP                                        |                                                                                    |
| quantity                                    |      |                                             |                                                                                    |
| Inter-RAT (UTRA FDD)                        |      | CPICH Ec/N0                                 |                                                                                    |
| measurement quantity                        |      |                                             |                                                                                    |
| A3-Offset                                   | dB   | -6                                          |                                                                                    |
| b2-Threshold-E-UTRA                         | dB   | -86                                         | RSRP threshold for event B2.                                                       |
| b2-Threshold-UTRA                           | dB   | -18                                         | CPICH Ec/N0 threshold for event B2.                                                |
| Hysteresis                                  | dB   | 0                                           |                                                                                    |
| Time To Trigger                             | ms   | 0                                           |                                                                                    |
| Filter coefficient                          |      | 0                                           | L3 filtering is not used.                                                          |
| DRX                                         |      | OFF                                         |                                                                                    |
| Monitored UTRA FDD cell list size           |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell list.                         |
| Time offset between cells                   |      | 3 ms                                        | Asynchronous cells                                                                 |
| T1                                          | S    | 5                                           |                                                                                    |
| T2                                          | S    | 8                                           |                                                                                    |

Table A.8.11.3.1-2: Cell specific test parameters for Combined inter-frequency and UTRAN event triggered reporting in fading propagation conditions

| Parameter                                                | Unit       | Ce   | ell 1 | Cel       | Cell 2 |  |  |
|----------------------------------------------------------|------------|------|-------|-----------|--------|--|--|
|                                                          |            | T1   | T2    | T1 T2     |        |  |  |
| E-UTRA RF Channel                                        |            | 1 2  |       |           | )      |  |  |
| Number                                                   |            |      |       |           |        |  |  |
| BW <sub>channel</sub>                                    | MHz        | 1    | 0     | 10        | 0      |  |  |
| OCNG Patterns                                            |            |      |       |           |        |  |  |
| defined in A.3.2.1.1                                     |            | OP.1 | FDD   | OP.2      | FDD    |  |  |
| (OP.1 FDD) and in                                        |            |      |       |           |        |  |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |      |       |           |        |  |  |
| PBCH_RA                                                  | dB         |      |       |           |        |  |  |
| PBCH_RB                                                  | dB         |      |       |           |        |  |  |
| PSS_RA                                                   | dB         |      |       |           |        |  |  |
| SSS_RA                                                   | dB         |      |       |           |        |  |  |
| PCFICH_RB                                                | dB         |      |       |           |        |  |  |
| PHICH_RA                                                 | dB         |      |       |           |        |  |  |
| PHICH_RB                                                 | dB         |      | 0     | 0         |        |  |  |
| PDCCH_RA                                                 | dB         |      |       |           |        |  |  |
| PDCCH_RB                                                 | dB         |      |       |           |        |  |  |
| PDSCH_RA                                                 | dB         |      |       |           |        |  |  |
| PDSCH_RB                                                 | dB         |      |       |           |        |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |       |           |        |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |       |           |        |  |  |
| $N_{oc}^{ m Note~3}$                                     | dBm/15 kHz |      |       | -98       |        |  |  |
| RSRP Note 4                                              | dBm/15 kHz | -94  | -94   | -Infinity | -91    |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4    | 4     | -Infinity | 7      |  |  |
| SCH_RP Note 4                                            | dBm/15 kHz | -94  | -94   | -Infinity | -91    |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    | 4     | -Infinity | 7      |  |  |
| Propagation Condition                                    |            | AV   | /GN   | ETU       | J70    |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Table A.8.11.3.1-3: Cell specific test parameters for UTRAN FDD (cell # 3) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

| Parameter              | Unit            | Cell 3         |        |  |  |  |
|------------------------|-----------------|----------------|--------|--|--|--|
|                        |                 | T1             | T2     |  |  |  |
| UTRA RF Channel Number |                 | 1              |        |  |  |  |
| CPICH_Ec/lor           | dB              | -10            |        |  |  |  |
| PCCPCH_Ec/lor          | dB              | -12            |        |  |  |  |
| SCH_Ec/lor             | dB              | -12            |        |  |  |  |
| PICH_Ec/lor            | dB              | -15            |        |  |  |  |
| DPCH_Ec/lor            | dB              | N/A            |        |  |  |  |
| OCNS                   |                 | -0.941         | 1      |  |  |  |
| $\hat{I}_{or}/I_{oc}$  | dB              | -Infinity -1.8 |        |  |  |  |
| $I_{oc}$               | dBm/3.84<br>MHz | -70            |        |  |  |  |
| CPICH_Ec/lo            | dB              | -Infinity -14  |        |  |  |  |
| Propagation Condition  |                 | Case 5 (No     | ote 3) |  |  |  |

Note 1: The DPCH level is controlled by the power control loop.

Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal

Note 3: Case 5 propagation conditions are defined in Annex A of 3GPP TS 25.101.

## A.8.11.3.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall send one Event B2 triggered measurement report, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE:

The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.11.4 InterRAT E-UTRA TDD to E-UTRA TDD and UTRA TDD cell search test case

### A.8.11.4.1 Test Purpose and Environment

This test is to verify that the UE makes correct reporting of an event when doing inter frequency measurements and UTRA TDD measurements. The test will partly verify the requirements in section 8.1.2.3.2 combined 8.1.2.4.3 under fading propagation conditions.

This test scenario comprised of 2 E-UTRA TDD cells operating on different frequency, and 1 UTRA TDD cell. Test parameters are given in table A.8.11.4.1-1, A.8.11.4.1-2, and A.8.11.4.1-3. Gap pattern configuration #0 as defined in section 8.1.2.1 is provided.

The test consists of 2 successive time periods, with time duration T1 and T2. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 and B2 shall be used.

Table A.8.11.4.1-1: General test parameters for combined E-UTRA TDD inter-frequency and UTRA TDD cells search under fading propagation conditions

| Parameter                     | Unit | Value           | Comment                                                                                        |
|-------------------------------|------|-----------------|------------------------------------------------------------------------------------------------|
| PDSCH parameters              |      | DL Reference    | As specified in section A.3.1.1.2                                                              |
| ·                             |      | Measurement     | ·                                                                                              |
|                               |      | Channel R.0 TDD |                                                                                                |
| PCFICH/PDCCH/PHICH            |      | DL Reference    | As specified in section A.3.1.2.2                                                              |
| parameters                    |      | Measurement     |                                                                                                |
|                               |      | Channel R.6 TDD |                                                                                                |
| Active cell                   |      | Cell 1          | E-UTRA TDD cell is on RF channel number 1                                                      |
| Neighbour cell                |      | Cell 2          | E-UTRA TDD cell is on RF channel number 2                                                      |
|                               |      | Cell 3          | 1.28Mcps TDD cell                                                                              |
| CP length of cell1 and cell2  |      | Normal          |                                                                                                |
| Uplink-downlink configuration |      | 1               | As specified in Table 4.2-2 in TS 36.211. The                                                  |
| of cell1 and cell2            |      |                 | same configuration in both cells                                                               |
| Special subframe              |      | 6               | As specified in table 4.2-1 in TS 36.211. The                                                  |
| configuration of cell1 and    |      |                 | same configuration in both cells                                                               |
| cell2                         |      |                 |                                                                                                |
| Gap Pattern Id                |      | 0               | As specified in 3GPP TS 36.133 section                                                         |
|                               |      |                 | 8.1.2.1.                                                                                       |
| E-UTRAN TDD                   |      | RSRP            |                                                                                                |
| measurement quantity          |      |                 |                                                                                                |
| UTRAN TDD measurement         |      | RSCP            |                                                                                                |
| quantity                      |      |                 |                                                                                                |
| DRX                           |      | OFF             |                                                                                                |
| Ofn                           | dB   | 0               | Parameter for A3 and B2 event                                                                  |
| Ocn                           | dB   | 0               | Parameter for A3 event                                                                         |
| Hysteresis                    | dB   | 0               | Parameter for A3 and B2 event                                                                  |
| Ofs                           | dB   | 0               | Parameter for A3 event                                                                         |
| Ocs                           | dB   | 0               | Parameter for A3 event                                                                         |
| A3-Offset                     | dB   | -6              | Parameter for A3 event                                                                         |
| Thresh1                       | dBm  | -86             | Absolute E-UTRAN RSRP threshold for event                                                      |
|                               |      |                 | B2                                                                                             |
| Thresh2                       | dBm  | -84             | Absolute UTRAN RSCP threshold for event B2                                                     |
| TimeToTrigger                 | S    | 0               |                                                                                                |
| Filter coefficient            |      | 0               | L3 filtering is not used                                                                       |
| Time offset between E-        | μs   | 3               | Synchronous cells                                                                              |
| UTRAN TDD cells               |      |                 |                                                                                                |
| T1                            | S    | >5              | During T1, cell 2 and cell 3 shall be powered off. During the off time the physical layer cell |
|                               |      |                 | identity of cell 2 shall be changed, and the                                                   |
|                               |      |                 |                                                                                                |
|                               |      |                 | primary scrambling code of cell 3 shall be changed.                                            |
| T2                            | S    | 15              | Glangea.                                                                                       |
| 14                            | ૅ    | 10              |                                                                                                |

Table A.8.11.4.1-2: Cell specific test parameters for combined E-UTRAN TDD inter-frequency and UTRA TDD cell search under fading propagation conditions(cell1 and cell2)

| Parameter             | Unit             | Се             | II 1            | Се            | II 2    |  |  |
|-----------------------|------------------|----------------|-----------------|---------------|---------|--|--|
|                       |                  | T1 T2          |                 | T1            | T2      |  |  |
| E-UTRA RF Channel     |                  | 1 2            |                 |               | 2       |  |  |
| Number                |                  |                |                 |               |         |  |  |
| BWchannel             | MHz              | 1              | 0               | 1             | 0       |  |  |
| OCNG Pattern defined  |                  |                |                 |               |         |  |  |
| in A.3.2.2.1 (OP.1    |                  | OP.1           | TDD             | OP.2          | TDD     |  |  |
| TDD) and in A.3.2.2.2 |                  |                |                 |               |         |  |  |
| (OP.2)                | -                |                |                 |               |         |  |  |
| PBCH_RA               | dB               |                |                 |               |         |  |  |
| PBCH_RB               | dB               |                |                 |               |         |  |  |
| PSS_RA                | dB               |                |                 |               |         |  |  |
| SSS_RA                | dB               |                |                 |               |         |  |  |
| PCFICH_RB             | dB               |                |                 | 0             |         |  |  |
| PHICH_RA              | dB               | ,              | 2               |               |         |  |  |
| PHICH_RB              | dB               | (              | 0               |               | )       |  |  |
| PDCCH_RA              | dB               |                |                 |               |         |  |  |
| PDCCH_RB              | dB               |                |                 |               |         |  |  |
| PDSCH_RA              | dB               |                |                 |               |         |  |  |
| PDSCH_RB              | dB               |                |                 |               |         |  |  |
| OCNG_RANote 1         | dB               |                |                 |               |         |  |  |
| OCNG_RBNote 1         | dB               |                |                 |               |         |  |  |
| $\hat{E}_s/I_{ot}$    | dB               | 4              | 4               | -Infinity     | 7       |  |  |
| $\hat{E}_s/N_{oc}$    | dB               | 4              | 4               | -Infinity     | 7       |  |  |
| $N_{oc}$              | dBm/15 kHz       | -98            |                 |               |         |  |  |
| RSRP                  | dBm/15 kHz       | -94            | -94             | -Infinity     | -91     |  |  |
| SCH_RP                | dBm/15 kHz       | -94            | -94             | -infinity     | -91     |  |  |
| Propagation Condition |                  | AW             | 'GN             | ETU           | J70     |  |  |
| Note 1: OCNG shall b  | e used such that | both cells are | fully allocated | and a constan | t total |  |  |

transmitted power spectral density is achieved for all OFDM symbols.

Note 2: The resources for uplink transmission are assigned to the UE priori to the start of time period T2.

Note 3: RSRP and SCH RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.11.4.1-3: Cell specific test parameters for combined E-UTRA TDD inter-frequency and UTRA TDD cell search under fading propagation conditions(cell3)

| Parameter                                                            | Unit         | Cell 3 (UTF        |    | (UTRA)    |    |  |
|----------------------------------------------------------------------|--------------|--------------------|----|-----------|----|--|
| Timeslot Number                                                      |              | 0                  |    | DwPTS     |    |  |
|                                                                      |              | T1                 | T2 | T1        | T2 |  |
| UTRA RF Channel                                                      |              | Channel 3          |    |           |    |  |
| Number*                                                              |              |                    |    |           |    |  |
| PCCPCH_Ec/lor                                                        | dB           | -3                 |    |           |    |  |
| DwPCH_Ec/lor                                                         | dB           |                    |    | 0         |    |  |
| OCNS_Ec/lor                                                          | dB           | -3                 |    |           |    |  |
| $\hat{I}_{or}/I_{oc}$                                                | dB           | -Infinity          | 9  | -Infinity | 9  |  |
| $I_{oc}$                                                             | dBm/1.28 MHz | MHz -80            |    |           |    |  |
| PCCPCH RSCP                                                          | dBm          | -Infinity -74 n.a. |    | a.        |    |  |
| Propagation Condition                                                | Case 3       |                    |    |           |    |  |
| Note1: The DPCH of all cells are located in a timeslot other than 0. |              |                    |    |           |    |  |

In the case of multi-frequency network, the UTRA RF Channel Number Note2:

can be set for the primary frequency in this test.

Note3: P-CCPCH RSCP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

### A.8.11.4.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 7680ms from the beginning of time period T2.

The UE shall send one Event B2 triggered measurement report, with a measurement reporting delay less than 12.8s from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.11.5 Combined E-UTRAN FDD – E-UTRA FDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

## A.8.11.5.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of multiple events when doing inter frequency and GSM measurements. This test will partly verify the E-UTRAN FDD-FDD inter-frequency cell search requirements in section 8.1.2.3.1 and simultaneously the E-UTRAN FDD- GSM cell search requirements in section 8.1.2.4.5.

The test parameters are given in Tables A.8.11.5.1-1, A.8.11.5.1-2 and A.8.11.5.1-3. In this test, there are two cells on different carrier frequencies and one GSM cell. Gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 and B2 is used. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2 and cell 3.

Table A.8.11.5.1-1: General test parameters for combined E-UTRAN FDD – E-UTRA FDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

425

| Parameter                                         | Unit | Value                              | Comment                                                                                                                                                                                          |
|---------------------------------------------------|------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDSCH parameters (E-                              |      | DL Reference Measurement           | As specified in section A.3.1.1.1.                                                                                                                                                               |
| UTRAN FDD)                                        |      | Channel R.0 FDD                    |                                                                                                                                                                                                  |
| PCFICH/PDCCH/PHICH                                |      | DL Reference Measurement           | As specified in section A.3.1.2.1.                                                                                                                                                               |
| parameters                                        |      | Channel R.6 FDD                    |                                                                                                                                                                                                  |
| (E-UTRAN FDD)                                     |      | _                                  |                                                                                                                                                                                                  |
| Gap Pattern Id                                    |      | 0                                  | As specified in 3GPP TS 36.133 section 8.1.2.1.                                                                                                                                                  |
| Active cell                                       |      | Cell 1                             | Cell 1 is on E-UTRA RF channel number 1.                                                                                                                                                         |
| Neighbour cells                                   |      | Cell 2, 3                          | Cell 2 is on E-UTRA RF channel number 2. Cell 3 is on Absolute RF Channel Number 3 (GSM cell).                                                                                                   |
| CP length                                         |      | Normal                             | Applicable to cell 1 and cell 2                                                                                                                                                                  |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                 |                                                                                                                                                                                                  |
| E-UTRAN FDD measurement quantity                  |      | RSRP                               |                                                                                                                                                                                                  |
| Hysteresis                                        | dB   | 0                                  | Parameter for A3 and B2 event                                                                                                                                                                    |
| A3-Offset                                         | dB   | -6                                 |                                                                                                                                                                                                  |
| TimeToTrigger                                     | s    | 0                                  |                                                                                                                                                                                                  |
| Filter coefficient                                |      | 0                                  | L3 filtering is not used                                                                                                                                                                         |
| DRX                                               |      | OFF                                | OFF                                                                                                                                                                                              |
| Time offset between E-<br>UTRAN FDD cells         | ms   | 3 ms                               | Asynchronous cells                                                                                                                                                                               |
| Inter-RAT (GSM) measurement quantity              |      | GSM Carrier RSSI                   |                                                                                                                                                                                                  |
| b2-Threshold-E-UTRA                               | dBm  | -83                                | RSRP threshold for event B2. This is the threshold for E-UTRA in the B2 configuration. E-UTRA serving cell RSCP is below this throughout the test to account for measurement accuracy and fading |
| b2-Threshold-GERAN                                | dBm  | -80                                | GSM Carrier RSSI threshold for event B2.                                                                                                                                                         |
| Monitored GSM cell list size                      |      | 6 GSM neighbours including ARFCN 3 | List of GSM cells provided before T2 starts.                                                                                                                                                     |
| T1                                                | S    | 5                                  |                                                                                                                                                                                                  |
| T2                                                | s    | 10                                 |                                                                                                                                                                                                  |

Table A.8.11.5.1-2: Cell specific test parameters for E-UTRAN FDD cells for combined E-UTRAN FDD

– E-UTRA FDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation

conditions

| Parameter                                                                                                                      | Unit       | Cell 1 |       | Cell 2    |     |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------|-----------|-----|--|
|                                                                                                                                |            | T1     | T2    | T1        | T2  |  |
| E-UTRA RF Channel                                                                                                              |            | 1      |       | 2         | 2   |  |
| Number                                                                                                                         |            |        |       |           |     |  |
| BW <sub>channel</sub>                                                                                                          | MHz        | ,      | 10    | 1         | 10  |  |
| OCNG Patterns                                                                                                                  |            |        |       |           |     |  |
| defined in A.3.2.1.1                                                                                                           |            | OP.    | I FDD | OP.2 FDD  |     |  |
| (OP.1 FDD) and in                                                                                                              |            |        |       |           |     |  |
| A.3.2.1.2 (OP.2 FDD)                                                                                                           |            |        |       |           |     |  |
| PBCH_RA                                                                                                                        | dB         |        |       |           |     |  |
| PBCH_RB                                                                                                                        | dB         |        |       |           |     |  |
| PSS_RA                                                                                                                         | dB         |        |       |           |     |  |
| SSS_RA                                                                                                                         | dB         |        |       |           |     |  |
| PCFICH_RB                                                                                                                      | dB         |        |       |           |     |  |
| PHICH_RA                                                                                                                       | dB         |        | _     | 0         |     |  |
| PHICH_RB                                                                                                                       | dB         |        | 0     |           |     |  |
| PDCCH_RA                                                                                                                       | dB         |        |       |           |     |  |
| PDCCH_RB                                                                                                                       | dB         |        |       |           |     |  |
| PDSCH_RA                                                                                                                       | dB         |        |       |           |     |  |
| PDSCH_RB                                                                                                                       | dB         |        |       |           |     |  |
| OCNG_RA <sup>Note 1</sup>                                                                                                      | dB         |        |       |           |     |  |
| OCNG_RB <sup>Note 1</sup>                                                                                                      | dB         |        |       |           |     |  |
| $N_{oc}^{ m Note  3}$                                                                                                          | dBm/15 kHz | -98    |       |           |     |  |
| RSRP Note 4                                                                                                                    | dBm/15 kHz | -94    | -94   | -Infinity | -91 |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$                                                                       | dB         | 4      | 4     | -Infinity | 7   |  |
| SCH_RP Note 4                                                                                                                  | dBm/15 kHz | -94    | -94   | -Infinity | -91 |  |
| $\hat{E}_s/N_{oc}$                                                                                                             | dB         | 4      | 4     | -Infinity | 7   |  |
| Propagation Condition                                                                                                          |            | ET     | U70   | ETI       | J70 |  |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is |            |        |       |           |     |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.11.5.1-3: Cell specific test parameters for GSM (cell # 3) for combined E-UTRAN FDD – E-UTRA FDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

| Parameter                  | Unit | Cell 3    |       |
|----------------------------|------|-----------|-------|
|                            |      | T1        | T2    |
| Absolute RF Channel Number |      | AF        | RFCN3 |
| RXLEV                      | dBm  | -Infinity | -75   |
| GSM BSIC                   |      | N/A       | Valid |

### A.8.11.5.2 Test Requirements

The UE shall send one Event A3 triggered measurement report for cell 2, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall send one Event B2 triggered measurement report including BSIC of cell 3, with a measurement reporting delay less than [7200] ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

NOTE 1: The actual overall delays measured in the test may be up to 2xTTI<sub>DCCH</sub> higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to [7200] ms, which is the sum of the event triggered measurement reporting delay and the initial BSIC identification delay.

The event triggered measurement reporting delay =  $2*T_{Measurement\ Period,\ GSM} = 2*N_{freq}*480ms = 1920ms$ .

Initial BSIC identification delay = [5280] ms, when one carrier frequency other than GSM is monitored in the gaps.

# A.8.11.6 Combined E-UTRAN TDD – E-UTRA TDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

## A.8.11.6.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of multiple events when doing inter frequency and GSM measurements. This test will partly verify the E-UTRAN TDD-TDD inter-frequency cell search requirements in section 8.1.2.3.2 and simultaneously the E-UTRAN TDD- GSM cell search requirements in section 8.1.2.4.6.

The test parameters are given in Tables A.8.11.6.1-1, A.8.11.6.1-2 and A.8.11.6.1-3. In this test, there are two cells on different carrier frequencies and one GSM cell. Gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 and B2 is used. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2 and cell 3.

Table A.8.11.6.1-1: General test parameters for combined E-UTRAN TDD – E-UTRA TDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

| Parameter                     | Unit | Value                                       | Comment                                          |
|-------------------------------|------|---------------------------------------------|--------------------------------------------------|
| PDSCH parameters (E-          |      | DL Reference Measurement                    | As specified in section A.3.1.1.2.               |
| UTRAN TDD)                    |      | Channel R.0 TDD                             | A                                                |
| PCFICH/PDCCH/PHICH            |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.               |
| parameters<br>(E-UTRAN TDD)   |      | Channel R.6 100                             |                                                  |
| Special subframe              |      | 6                                           | As specified in table 4.2-1 in TS 36.211. The    |
| configuration of cell1 and    |      | 6                                           | same configuration in both cells                 |
| cell2                         |      |                                             | Same configuration in both cells                 |
| Uplink-downlink configuration |      | 1                                           | As specified in 3GPP TS 36.211 section 4.2       |
| of cell1 and cell2            |      | '                                           | Table 4.2-2                                      |
| Gap Pattern Id                |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.  |
| Active cell                   |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.         |
| Neighbour cells               |      | Cell 2, 3                                   | Cell 2 is on E-UTRA RF channel number 2.         |
| Transfer to the               |      |                                             | Cell 3 is on Absolute RF Channel Number 3        |
|                               |      |                                             | (GSM cell).                                      |
| CP length                     |      | Normal                                      | Applicable to cell 1 and cell 2                  |
| E-UTRA Channel Bandwidth      | MHz  | 10                                          |                                                  |
| (BW <sub>channel</sub> )      |      |                                             |                                                  |
| E-UTRAN TDD measurement       |      | RSRP                                        |                                                  |
| quantity                      |      |                                             |                                                  |
| Hysteresis                    | dB   | 0                                           | Parameter for A3 and B2 event                    |
| A3-Offset                     | dB   | -6                                          |                                                  |
| TimeToTrigger                 | S    | 0                                           |                                                  |
| Filter coefficient            |      | 0                                           | L3 filtering is not used                         |
| DRX                           |      | OFF                                         | OFF                                              |
| Time offset between E-        | μS   | 3                                           | Synchronous cells                                |
| UTRAN TDD cells               | μο   |                                             | Synonical cone                                   |
|                               |      |                                             |                                                  |
| Inter-RAT (GSM)               |      | GSM Carrier RSSI                            |                                                  |
| measurement quantity          |      |                                             |                                                  |
| b2-Threshold-E-UTRA           | dBm  | -83                                         | RSRP threshold for event B2. This is the         |
|                               |      |                                             | threshold for E-UTRA in the B2 configuration. E- |
|                               |      |                                             | UTRA serving cell RSCP is below this             |
|                               |      |                                             | throughout the test to account for measurement   |
|                               |      |                                             | accuracy and fading                              |
| b2-Threshold-GERAN            | dBm  | -80                                         | GSM Carrier RSSI threshold for event B2.         |
| Monitored GSM cell list size  |      | 6 GSM neighbours including ARFCN 3          | List of GSM cells provided before T2 starts.     |
| T1                            | S    | 5                                           |                                                  |
| T2                            | S    | 10                                          |                                                  |

Table A.8.11.6.1-2: Cell specific test parameters for E-UTRAN TDD cells for combined E-UTRAN TDD – E-UTRA TDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

| Parameter                                                                                                                      | Unit       | Cell 1 |       | Cell 2    |     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------|-----------|-----|--|--|
|                                                                                                                                |            | T1     | T2    | T1        | T2  |  |  |
| E-UTRA RF Channel                                                                                                              |            | 1      |       | 2         |     |  |  |
| Number                                                                                                                         |            |        |       |           |     |  |  |
| BW <sub>channel</sub>                                                                                                          | MHz        | ,      | 10    | 1         | 10  |  |  |
| OCNG Patterns                                                                                                                  |            |        |       |           |     |  |  |
| defined in A.3.2.2.1                                                                                                           |            | OP.    | I TDD | OP.2 TDD  |     |  |  |
| (OP.1 TDD) and in                                                                                                              |            |        |       |           |     |  |  |
| A.3.2.2.2 (OP.2 TDD)                                                                                                           |            |        |       |           |     |  |  |
| PBCH_RA                                                                                                                        | dB         |        |       |           |     |  |  |
| PBCH_RB                                                                                                                        | dB         |        |       |           |     |  |  |
| PSS_RA                                                                                                                         | dB         |        |       |           |     |  |  |
| SSS_RA                                                                                                                         | dB         |        |       |           |     |  |  |
| PCFICH_RB                                                                                                                      | dB         |        |       |           |     |  |  |
| PHICH_RA                                                                                                                       | dB         |        |       |           |     |  |  |
| PHICH_RB                                                                                                                       | dB         |        | 0     | 0         |     |  |  |
| PDCCH_RA                                                                                                                       | dB         |        |       |           |     |  |  |
| PDCCH_RB                                                                                                                       | dB         |        |       |           |     |  |  |
| PDSCH_RA                                                                                                                       | dB         |        |       |           |     |  |  |
| PDSCH_RB                                                                                                                       | dB         |        |       |           |     |  |  |
| OCNG_RA <sup>Note 1</sup>                                                                                                      | dB         |        |       |           |     |  |  |
| OCNG_RB <sup>Note 1</sup>                                                                                                      | dB         |        |       |           |     |  |  |
| $N_{oc}^{ m Note~3}$                                                                                                           | dBm/15 kHz | -98    |       |           |     |  |  |
| RSRP Note 4                                                                                                                    | dBm/15 kHz | -94    | -94   | -Infinity | -91 |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$                                                                       | dB         | 4      | 4     | -Infinity | 7   |  |  |
| SCH_RP Note 4                                                                                                                  | dBm/15 kHz | -94    | -94   | -Infinity | -91 |  |  |
| $\hat{E}_s/N_{oc}$                                                                                                             | dB         | 4      | 4     | -Infinity | 7   |  |  |
| Propagation Condition                                                                                                          |            | ET     | U70   | ETI       | J70 |  |  |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is |            |        |       |           |     |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.8.11.6.1-3: Cell specific test parameters for GSM (cell # 3) for combined E-UTRAN TDD – E-UTRA TDD and GSM cell search. E-UTRA cells in fading; GSM cell in static propagation conditions

| Parameter                  | Unit | Cell 3    |       |
|----------------------------|------|-----------|-------|
|                            |      | T1        | T2    |
| Absolute RF Channel Number |      | AF        | RFCN3 |
| RXLEV                      | dBm  | -Infinity | -75   |
| GSM BSIC                   |      | N/A       | Valid |

### A.8.11.6.2 Test Requirements

The UE shall send one Event A3 triggered measurement report for cell 2, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall send one Event B2 triggered measurement report including BSIC of cell 3, with a measurement reporting delay less than [7200] ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

NOTE 1: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the

measurement reporting delays above because of TTI insertion uncertainty of the measurement

report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to [7200] ms, which is the sum

of the event triggered measurement reporting delay and the initial BSIC identification delay.

The event triggered measurement reporting delay =  $2*T_{Measurement\ Period,\ GSM} = 2*N_{freq}*480ms = 1920ms$ .

Initial BSIC identification delay = [5280] ms, when one carrier frequency other than GSM is monitored in the gaps.

## A.8.12 RSTD Intra-frequency Measurements

## A.8.12.1 E-UTRAN FDD intra-frequency RSTD measurement reporting delay test case

## A.8.12.1.1 Test Purpose and Environment

The purpose of the test is to verify that the RSTD measurement meets the requirements specified in Section 8.1.2.5.1 in an environment with fading propagation conditions.

In the test there are three synchronous cells: Cell 1, Cell 2 and Cell 3. Cell 1 is the reference as well as the serving cell. Cell 2 and Cell 3 are the neighbour cells. All cells are on the same RF channel.

The test consists of three consecutive time intervals, with duration of T1, T2 and T3. Cell 1 is active in T1, T2 and T3, whilst Cell 2 and Cell 3 are activated only in the beginning of T2. Cell 2 is active until the end of T3, and Cell 3 is active until the end of T2. The beginning of the time interval T2 shall be aligned with the first PRS positioning subframe of a positioning occasion in the reference cell, where the PRS positioning occasion is as defined in Section 8.1.2.5.1. Cell 1 transmits PRS in T2, while Cell 2 transmits PRS only in T3, and Cell 3 transmits PRS only in T2. Note: The information on when PRS is muted is conveyed to the UE using PRS muting information.

The OTDOA assistance data as defined in TS 36.355, Section 6.5.1, shall be provided to the UE during T1. The last TTI containing the OTDOA assistance data shall be provided to the UE  $\Delta T$  ms before the start of T2, where  $\Delta T = 150$  ms is the maximum processing time of the OTDOA assistance data.

The test parameters are as given in Table A.8.12.1.1-1, Table A.8.12.1.1-2, Table A.8.12.1.1-3 and Table A.8.12.1.1-4.

Table A.8.12.1.1-1: General test parameters for E-UTRAN FDD intra-frequency RSTD measurement reporting delay under fading propagation conditions

| Parameter                                                                                     | Unit | Value                                                                                 | Comment                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference cell                                                                                |      | Cell 1                                                                                | Reference cell is the cell in the OTDOA assistance data with respect to which the RSTD measurement is defined, as specified in 3GPP TS 36.214 [4] and 3GPP TS 36.355 [24]. The reference cell is the serving cell in this test case. |
| Neighbor cells                                                                                |      | Cell 2 and Cell 3                                                                     | Cell 2 and Cell 3 appear at random places in the neighbour cell list in the OTDOA assistance data, but Cell 2 always appears in the first half of the list, whilst Cell 3 appears in the second half of the list.                    |
| PCFICH/PDCCH/PHICH parameters                                                                 |      | DL Reference Measurement Channel<br>R.6 FDD                                           | As specified in section A.3.1.2.1                                                                                                                                                                                                    |
| Channel Bandwidth (BW <sub>channel</sub> )                                                    | MHz  | 10                                                                                    |                                                                                                                                                                                                                                      |
| PRS Bandwidth                                                                                 | RB   | 50                                                                                    | PRS bandwidth is as indicated in prs-Bandwidth in the OTDOA assistance data defined in [24]. Here, PRS are transmitted over the system bandwidth                                                                                     |
| PRS configuration index $I_{\rm PRS}$                                                         |      | 171                                                                                   | This corresponds to periodicity of 320 ms and PRS subframe offset of $I_{\rm PRS}$ –160 subframes, as defined in 3GPP TS 36.211 [16], Table 6.10.4.3-1                                                                               |
| Number of consecutive downlink positioning subframes $N_{\mathrm{PRS}}$                       |      | 1                                                                                     | As defined in 3GPP TS 36.211 [16]. The number of subframes in a positioning occasion                                                                                                                                                 |
| Physical cell ID PCI                                                                          |      | (PCI of Cell 1 – PCI of Cell 2)mod6=0<br>and<br>(PCI of Cell 1 – PCI of Cell 3)mod6=0 | The cell PCIs are selected such that the relative shifts of PRS patterns among cells are as given by the test parameters                                                                                                             |
| CP length                                                                                     |      | Normal                                                                                | DDV novementare are friends ar                                                                                                                                                                                                       |
| DRX                                                                                           |      | ON                                                                                    | DRX parameters are further specified in Table A.8.12.1.1-3                                                                                                                                                                           |
| Maximum radio frame transmit time offset between the cells at the UE antenna connector Note 1 | μs   | 3                                                                                     | Synchronous cells                                                                                                                                                                                                                    |
| Expected RSTD Note 1                                                                          | μs   | 3                                                                                     | The expected RSTD is what is expected at the receiver. The corresponding parameter in the OTDOA assistance data specified in TS 36.355 [24] is the expectedRSTD indicator                                                            |
| Expected RSTD uncertainty Note2                                                               | μs   | 5                                                                                     | The corresponding parameter in<br>the OTDOA assistance data<br>specified in TS 36.355 [24] is the<br>expectedRSTD-Uncertainty index                                                                                                  |
| Number of cells provided in OTDOA assistance data                                             |      | 16                                                                                    | Including the reference cell                                                                                                                                                                                                         |
| PRS muting info                                                                               |      | Cell 1: '11110000'<br>Cell 2: '00001111'<br>Cell 3: '11110000'                        | Correponds to prs-MutingInfo<br>defined in TS 36.355 [24]                                                                                                                                                                            |
| T1                                                                                            | s    | 3                                                                                     | The length of the time interval from the beginning of each test                                                                                                                                                                      |
| T2                                                                                            | S    | 1.28                                                                                  | The length of the time interval that follows immediately after time interval T1                                                                                                                                                      |

| Т3      |                                        | s                                                                                                                                                                                                                                                                                                                                                                                     | 1.28                                      | The length of the time interval that follows immediately after time interval T2 |  |
|---------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|--|
| Note 1: | UE antenna conn expectedRSTD. T        | true RSTD, which is the receive time difference for frame 0 between each two cells as seen at the antenna connector, shall be within the expected RSTD uncertainty window centered at exceeded RSTD. The true RSTD for Cell 2 and Cell 1 shall be different from the true RSTD for Cell 3 Cell 1. The parameters of expected RSTD of all neighbour cells in the OTDOA assistance data |                                           |                                                                                 |  |
| Note 2: | The parameters of are identical in the |                                                                                                                                                                                                                                                                                                                                                                                       | ed RSTD uncertainty of all neighbour cell | s in the OTDOA assistance data                                                  |  |

Table A.8.12.1.1-2: Cell-specific test parameters for E-UTRAN FDD intra-frequency RSTD measurement reporting delay under fading propagation conditions during T1

| Parameter                              | Unit           | Cell 1       | Cell 2    | Cell 3    |
|----------------------------------------|----------------|--------------|-----------|-----------|
| E-UTRA RF                              |                | 1 1 1        |           | 1         |
| Channel Number                         |                | 1            |           | · ·       |
| OCNG patterns                          |                | OP.5 FDD N/A |           | N/A       |
| defined in A.3.2.1                     |                | 01.0100      | 14/7 (    | 14/71     |
| PBCH_RA                                |                |              |           |           |
| PBCH_RB                                |                |              |           |           |
| PSS_RA                                 |                |              |           |           |
| SSS_RA                                 |                |              |           |           |
| PCFICH_RB                              |                |              |           |           |
| PHICH_RA                               | dB             | 0            | N/A       | N/A       |
| PHICH_RB                               |                |              |           |           |
| PDCCH_RA                               |                |              |           |           |
| PDCCH_RB                               |                |              |           |           |
| OCNG_RA <sup>Note 1</sup>              |                |              |           |           |
| OCNG_RB <sup>Note 1</sup>              |                |              |           |           |
| $N_{oc}^{$                             | dBm/<br>15 kHz |              | -95       |           |
| PRS $\hat{	ext{E}}_{	ext{s}}/N_{oc}$   | dB             | -Infinity    | -Infinity | -Infinity |
| Io Note 4                              | dBm/<br>9 MHz  | -64.21       | N/A       | N/A       |
| $\hat{\mathbf{E}}_{\mathrm{s}}/N_{oc}$ | dB             | 0            | -Infinity | -Infinity |
| Propagation<br>Condition               |                |              | ETU30     |           |

- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test are assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.
- Note 4: lo levels have been derived from other parameters and are given for information purpose. These are not settable test parameters.

Table A.8.12.1.1-3: Cell-specific test parameters for E-UTRAN FDD intra-frequency RSTD measurement reporting delay under fading propagation conditions during T2 and T3

| Parameter                                           | Unit           | Cell 1 |           | Cell 2    |        | Cell 3 |           |
|-----------------------------------------------------|----------------|--------|-----------|-----------|--------|--------|-----------|
|                                                     |                | T2     | T3        | T2        | Т3     | T2     | T3        |
| E-UTRA RF                                           |                |        | 1         | 1         |        | 1      |           |
| Channel Number                                      |                |        | '         | '         |        |        |           |
| OCNG patterns                                       |                | OP.    | 5 FDD     | OP.6      | FDD    | OP.6   | N/A       |
| defined in A.3.2.1                                  |                |        |           |           |        | FDD    | , .       |
| PBCH_RA                                             |                |        |           |           |        |        |           |
| PBCH_RB                                             | _              |        |           |           |        |        |           |
| PSS_RA                                              |                |        |           |           |        |        |           |
| SSS_RA                                              |                |        |           |           |        |        |           |
| PCFICH_RB                                           |                |        |           |           |        |        |           |
| PHICH_RA                                            | dB             |        | 0         | C         | 1      | 0      | N/A       |
| PHICH_RB                                            |                |        |           |           |        |        |           |
| PDCCH_RA                                            |                |        |           |           |        |        |           |
| PDCCH_RB                                            |                |        |           |           |        |        |           |
| OCNG_RA <sup>Note 1</sup>                           |                |        |           |           |        |        |           |
| OCNG_RB <sup>Note 1</sup>                           |                |        |           |           |        |        |           |
| PRS_RA                                              | dB             | -6     | N/A       | N/A       | 0      | 0      | N/A       |
| $N_{oc}$ Note 3                                     | dBm/<br>15 kHz | -98    | -95       | -98       | -95    | -98    | -95       |
| PRS $\hat{\mathrm{E}}_{\mathrm{s}}/N_{\mathit{oc}}$ | dB             | -4     | -Infinity | -Infinity | -10    | -10    | -Infinity |
| PRS $\hat{E}_{_{s}}/I_{_{ot}}^{}$ Note 4            | dB             | -4.41  | -Infinity | -Infinity | -10    | -11.46 | -Infinity |
| lo Note 4                                           | dBm/<br>9 MHz  | -69.87 | -67.15    | -69.87    | -67.15 | -69.87 | N/A       |
| PRP Note 4                                          | dBm/<br>15 kHz | -102   | -Infinity | -Infinity | -105   | -108   | -Infinity |
| RSRP Note 4                                         | dBm/<br>15 kHz | -96    | -93       | -105      | -105   | -108   | -Infinity |
| ${ m \hat{E}}_{ m s}/N_{oc}^{ m Note~4}$            | dB             | 2      | 2         | -7        | -10    | -10    | -Infinity |
| Propagation<br>Condition                            |                |        |           | ETU       | 130    |        |           |

Note 1: OCNG shall be used such that active cells (all, except Cell 3 in T3) are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols other than those in the subframes with transmitted PRS.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test are assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: If PRS\_RA is not "N/A",  $\hat{E}_s/N_{oc}$ , PRS  $\hat{E}_s/I_{ot}$ , Io, RSRP and PRP levels have been derived from other parameters and are given for information purpose. If PRS\_RA is "N/A", Io and RSRP levels have been derived from other parameters and are given for information purpose. These are not settable test parameters. Interference conditions shall be applied to all PRS symbols of DL positioning subframes.

Table A.8.12.1.1-4: DRX parameters for the test of E-UTRAN FDD intra-frequency RSTD measurement reporting delay under fading propagation conditions

| Field                    | Value   | Comment                                           |
|--------------------------|---------|---------------------------------------------------|
| onDurationTimer          | psf1    |                                                   |
| drx-InactivityTimer      | psf1    | As an acified in 2CDD TC                          |
| drx-RetransmissionTimer  | sf1     | As specified in 3GPP TS 36.331 [2], Section 6.3.2 |
| longDRX-CycleStartOffset | sf320   | 36.331 [2], Section 6.3.2                         |
| shortDRX                 | Disable |                                                   |

#### A.8.12.1.2 Test Requirements

The RSTD measurement fulfils the requirements specified in Section 8.1.2.5.1.

The UE shall perform and report the RSTD measurements for Cell 2 and Cell 3 with respect to the reference cell in the OTDOA assistance data, Cell 1, within 2560 ms starting from the beginning of time interval T2.

The rate of the correct events for each neighbour cell observed during repeated tests shall be at least 90%, where the reported RSTD measurement for each correct event shall be within the RSTD reporting range specified in Section 9.1.10.3, i.e., between RSTD\_0000 and RSTD\_12711.

NOTE: The RSTD measurement time in the test is derived from the following expression,

$$T_{PRS}(M-1)+160\left|\frac{n}{M}\right|$$
, where  $M=8$  and  $n=16$  are the parameters specified in Section 8.1.2.5.1,

Table 8.1.2.5.1-1, under Note 1. This gives the total RSTD measurement time of 2560 ms for Cell 2 and Cell 3 with respect to the reference cell Cell 1.

### A.8.12.2 E-UTRAN TDD intra-frequency RSTD measurement reporting delay test case

#### A.8.12.2.1 Test Purpose and Environment

The purpose of the test is to verify that the RSTD measurement meets the requirements specified in Section 8.1.2.5.2 in an environment with fading propagation conditions.

In the test there are three synchronous cells: Cell 1, Cell 2 and Cell 3. Cell 1 is the reference as well as the serving cell. Cell 2 and Cell 3 are the neighbour cells. All cells are on the same RF channel.

The test consists of three consecutive time intervals, with duration of T1 and T2. Cell 1 is active in T1, T2 and T3, whilst Cell 2 and Cell 3 are activated only in the beginning of T2. Cell 2 is active until the end of T3, and Cell 3 is active until the end of T2. The beginning of the time interval T2 shall be aligned with the first PRS positioning subframe of a positioning occasion in the reference cell, where the PRS positioning occasion is as defined in Section 8.1.2.5.1. Cell 1 transmits PRS in T2, while Cell 2 transmits PRS only in T3, and Cell 3 transmits PRS only in T2. Note: The information on when PRS is muted is conveyed to the UE using PRS muting information.

The OTDOA assistance data as defined in TS 36.355, Section 6.5.1, shall be provided to the UE during T1. The last TTI containing the OTDOA assistance data shall be provided to the UE  $\Delta T$  ms before the start of T2, where  $\Delta T = 150$  ms is the maximum processing time of the OTDOA assistance data.

The test parameters are as given in Table A.8.12.2.1-1, Table A.8.12.2.1-2, Table A.8.12.2.1-3, and Table A.8.12.2.1-4.

Table A.8.12.2.1-1: General test parameters for E-UTRAN TDD intra-frequency RSTD measurement reporting delay under fading propagation conditions

| Parameter                                                                                     | Unit | Value                                                                                 | Comment                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference cell                                                                                |      | Cell 1                                                                                | Reference is the cell in the OTDOA assistance data with respect to which the RSTD measurement is defined, as specified in 3GPP TS 36.214 [4] and 3GPP TS 36.355 [24]. The reference cell is the serving cell in this test case. |
| Neighbor cells                                                                                |      | Cell 2 and Cell 3                                                                     | Cell 2 and Cell 3 appear at random places in the neighbour cell list in the OTDOA assistance data, but Cell 2 always appears in the first half of the list, whilst Cell 3 appears in the second half of the list.               |
| PCFICH/PDCCH/PHICH parameters                                                                 |      | DL Reference Measurement Channel<br>R.6 TDD                                           | As specified in section A.3.1.2.2                                                                                                                                                                                               |
| Channel Bandwidth (BW <sub>channel</sub> )                                                    | MHz  | 10                                                                                    |                                                                                                                                                                                                                                 |
| PRS Bandwidth                                                                                 | RB   | 50                                                                                    | PRS bandwidth is as indicated in <i>prs-Bandwidth</i> in the OTDOA assistance data defined in [24]. Here, PRS are transmitted over the system bandwidth                                                                         |
| PRS configuration index $I_{\mathrm{PRS}}$                                                    |      | 174                                                                                   | This corresponds to periodicity of 320 ms and PRS subframe offset of $I_{\rm PRS}$ –160 subframes, as defined in 3GPP TS 36.211 [16], Table 6.10.4.3-1                                                                          |
| Number of consecutive downlink positioning subframes $N_{\mathrm{PRS}}$                       |      | 1                                                                                     | As defined in 3GPP TS 36.211 [16]. The number of subframes in a positioning occasion                                                                                                                                            |
| Physical cell ID PCI                                                                          |      | (PCI of Cell 1 – PCI of Cell 2)mod6=0<br>and<br>(PCI of Cell 1 – PCI of Cell 3)mod6=0 | The cell PCIs are selected such that the relative shifts of PRS patterns among cells are as given by the test parameters                                                                                                        |
| TDD uplink-downlink configuration                                                             |      | 1                                                                                     | As specified in TS 36.211 [16], Section 4.2; corresponds to a configuration with 5 ms switch-point periodicity and two downlink consecutive subframes                                                                           |
| TDD special subframe configuration                                                            |      | 6                                                                                     | As specified in TS 36.211 [16], Section 4.2; corresponds to DwPTS of $19760 \cdot T_{\rm s}$ and UpPTS of $4384 \cdot T_{\rm s}$                                                                                                |
| CP length                                                                                     |      | Normal                                                                                | The same CP length applies for DL and UL                                                                                                                                                                                        |
| DRX                                                                                           |      | ON                                                                                    | DRX parameters are further specified in Table A.8.12.2.1-3                                                                                                                                                                      |
| Maximum radio frame transmit time offset between the cells at the UE antenna connector Note 1 | μs   | 3                                                                                     | Synchronous cells                                                                                                                                                                                                               |
| Expected RSTD Note 1                                                                          | μs   | 3                                                                                     | The expected RSTD is what is expected at the receiver. The corresponding parameter in the OTDOA assistance data specified in TS 36.355 [24] is the expectedRSTD indicator                                                       |
| Expected RSTD uncertainty Note 2                                                              | μs   | 5                                                                                     | The corresponding parameter in the OTDOA assistance data specified in TS 36.355 [24] is the expectedRSTD-Uncertainty index                                                                                                      |
| Number of cells provided in OTDOA assistance data                                             |      | 16                                                                                    | Including the reference cell                                                                                                                                                                                                    |
| PRS muting info                                                                               |      | Cell 1: '11110000'<br>Cell 2: '00001111'<br>Cell 3: '11110000'                        | Correponds to prs-MutingInfo defined in TS 36.355 [24]                                                                                                                                                                          |
| T1                                                                                            | S    | 3                                                                                     | The length of the time interval from the beginning of each test                                                                                                                                                                 |

| T2 | S | 1.28 | The length of the time interval that follows immediately after time interval T1 |
|----|---|------|---------------------------------------------------------------------------------|
| Т3 | S | 1.28 | The length of the time interval that follows immediately after time interval T2 |

Note 1: The true RSTD, which is the receive time difference for frame 0 between each two cells as seen at the UE antenna connector, shall be within the expected RSTD uncertainty window centered at expectedRSTD. The true RSTD for Cell 2 and Cell 1 shall be different from the true RSTD for Cell 3 and Cell 1. The parameters of expected RSTD of all neighbour cells in the OTDOA assistance data are identical in the test.

Note 2: The parameters of expected RSTD uncertainty of all neighbour cells in the OTDOA assistance data are identical in the test.

Table A.8.12.2.1-2: Cell-specific test parameters for E-UTRAN TDD intra-frequency RSTD measurement reporting delay under fading propagation conditions during T1

| Parameter                                           | Unit           | Cell 1    | Cell 2    | Cell 3    |
|-----------------------------------------------------|----------------|-----------|-----------|-----------|
| E-UTRA RF                                           |                | 1         | 1         | 1         |
| Channel Number                                      |                | '         | '         | '         |
| OCNG patterns                                       |                | OP.1 TDD  | N/A       | N/A       |
| defined in A.3.2.2                                  |                | 0         | , .       | ,, .      |
| PBCH_RA                                             |                |           |           |           |
| PBCH_RB                                             |                |           |           |           |
| PSS_RA                                              |                |           |           |           |
| SSS_RA                                              |                |           |           |           |
| PCFICH_RB                                           |                |           |           |           |
| PHICH_RA                                            | dB             | 0         | N/A       | N/A       |
| PHICH_RB                                            | ub.            |           | 14/7      | 14// (    |
| PDCCH_RA                                            |                |           |           |           |
| PDCCH_RB                                            |                |           |           |           |
| OCNG_RA <sup>Note 1</sup>                           |                |           |           |           |
| OCNG_RB <sup>Note 1</sup>                           |                |           |           |           |
| PRS_RA                                              |                |           |           |           |
| $N_{oc}^{ m Note 3}$                                | dBm/<br>15 kHz |           | -95       |           |
| PRS $\hat{\mathrm{E}}_{\mathrm{s}}/N_{\mathit{oc}}$ | dB             | -Infinity | -Infinity | -Infinity |
| lo Note 4                                           | dBm/<br>9 MHz  | -64.21    | N/A       | N/A       |
| $\hat{\mathbf{E}}_{\mathrm{s}}/N_{oc}$              | dB             | 0         | -Infinity | -Infinity |
| Propagation<br>Condition                            |                |           | ETU30     |           |

- Note 1: OCNG shall be used such that active cell (Cell 1) is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test are assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.
- Note 4: lo levels have been derived from other parameters and are given for information purpose. These are not settable test parameters.

Table A.8.12.2.1-3: Cell-specific test parameters for E-UTRAN TDD intra-frequency RSTD measurement reporting delay under fading propagation conditions

| Parameter                                           | Unit           | Cell 1 |           | Cell 2    |        | Cell 3 |           |
|-----------------------------------------------------|----------------|--------|-----------|-----------|--------|--------|-----------|
|                                                     |                | T2     | T3        | T2        | Т3     | T2     | T3        |
| E-UTRA RF                                           |                | ,      | 1         | 1         |        | 1      |           |
| Channel Number                                      |                |        |           | '         |        |        |           |
| OCNG patterns                                       |                | OP.1   | TDD       | OP.2      | TDD    | OP.2   | N/A       |
| defined in A.3.2.2                                  |                | •      |           |           |        | TDD    | ,         |
| PBCH_RA                                             |                |        |           |           |        |        |           |
| PBCH_RB                                             |                |        |           |           |        |        |           |
| PSS_RA                                              |                |        |           |           |        |        |           |
| SSS_RA                                              |                |        |           |           |        |        |           |
| PCFICH_RB                                           |                |        |           |           |        |        |           |
| PHICH_RA                                            | dB             | (      | )         | 0         |        | 0      | N/A       |
| PHICH_RB                                            |                |        |           |           |        |        |           |
| PDCCH_RA                                            |                |        |           |           |        |        |           |
| PDCCH_RB                                            |                |        |           |           |        |        |           |
| OCNG_RA <sup>Note 1</sup>                           |                |        |           |           |        |        |           |
| OCNG_RB <sup>Note 1</sup>                           |                |        |           |           |        |        |           |
| PRS_RA                                              | dB             | -6     | N/A       | N/A       | 0      | 0      | N/A       |
| $N_{oc}$ Note 3                                     | dBm/<br>15 kHz | -98    | -95       | -98       | -95    | -98    | -95       |
| PRS $\hat{\mathrm{E}}_{\mathrm{s}}/N_{\mathit{oc}}$ | dB             | -4     | -Infinity | -Infinity | -10    | -10    | -Infinity |
| PRS $\hat{E}_{_{s}}/I_{_{ot}}^{}$ Note 4            | dB             | -4.41  | -Infinity | -Infinity | -10    | -11.46 | -Infinity |
| lo Note 4                                           | dBm/<br>9 MHz  | -69.87 | -67.15    | -69.87    | -67.15 | -69.87 | N/A       |
| PRP Note 4                                          | dBm/<br>15 kHz | -102   | -Infinity | -Infinity | -105   | -108   | -Infinity |
| RSRP Note 4                                         | dBm/<br>15 kHz | -96    | -93       | -105      | -105   | -108   | -Infinity |
| $\hat{	ext{E}}_{	ext{s}}/N_{oc}^{	ext{Note 4}}$     | dB             | 2      | 2         | -7        | -10    | -10    | -Infinity |
| Propagation<br>Condition                            |                |        |           | ETU       | 30     |        |           |

- Note 1: OCNG shall be used such that active cells (all, except Cell 3 in T3) are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols other than those in the subframes with transmitted PRS.
- Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.
- Note 3: Interference from other cells and noise sources not specified in the test are assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.
- Note 4: If PRS\_RA is not "N/A",  $\hat{E}_s/N_{oc}$ , PRS  $\hat{E}_s/I_{ot}$ , Io, RSRP and PRP levels have been derived from other parameters and are given for information purpose. If PRS\_RA is "N/A", Io and RSRP levels have been derived from other parameters and are given for information purpose. These are not settable test parameters. Interference conditions shall be applied to all PRS symbols of DL positioning subframes.

Table A.8.12.2.1-4: DRX parameters for the test of E-UTRAN TDD intra-frequency RSTD measurement reporting delay under fading propagation conditions

| Field                    | Value   | Comment                                                |
|--------------------------|---------|--------------------------------------------------------|
| onDurationTimer          | psf1    |                                                        |
| drx-InactivityTimer      | psf1    | As appointed in ACDD TO                                |
| drx-RetransmissionTimer  | sf1     | - As specified in 3GPP TS - 36.331 [2], Section 6.3.2. |
| longDRX-CycleStartOffset | sf320   | 36.331 [2], Section 6.3.2.                             |
| shortDRX                 | disable |                                                        |

#### A.8.12.2.2 Test Requirements

The RSTD measurement time fulfils the requirements specified in Section 8.1.2.5.2.

The UE shall perform and report the RSTD measurements for Cell 2 and Cell 3 with respect to the reference cell in the OTDOA assistance data, Cell 1, within 2560 ms starting from the beginning of time interval T2.

The rate of the correct events for each neighbour cell observed during repeated tests shall be at least 90%, where the reported RSTD measurement for each correct event shall be within the RSTD reporting range specified in Section 9.1.10.3, i.e., between RSTD\_0000 and RSTD\_12711.

NOTE: The RSTD measurement reporting delay in the test is derived from the following expression,

$$T_{PRS}(M-1)+160\left[\frac{n}{M}\right]$$
, where  $M=8$  and  $n=16$  are the parameters specified for this test case in

Section 8.1.2.5.2, Table 8.1.2.5.2-1, under Note 1. This gives the total RSTD measurement time of 2560 ms for Cell 2 and Cell 3 with respect to the reference cell Cell 1.

#### A.8.13 Void

### A.8.14 E-UTRAN TDD - FDD Inter-frequency Measurements

## A.8.14.1 E-UTRAN TDD-FDD Inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells

#### A.8.14.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the TDD-FDD inter-frequency cell search requirements in section 8.1.2.3.3.

The test parameters are given in Tables A.8.14.1.1-1 and A.8.14.1.1-2. In this test, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.14.1.1-1: General test parameters for E-UTRAN TDD-FDD inter-frequency event triggered reporting in fading propagation conditions

| Parameter                                  | Unit | Value                                       | Comment                                            |
|--------------------------------------------|------|---------------------------------------------|----------------------------------------------------|
| Cell 1 PDSCH parameters                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                  |
| Cell 1 PCFICH/PDCCH/PHICH parameters       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                  |
| Cell1 Special subframe configuration       |      | 6                                           | As specified in table 4.2-1 in TS 36.211.          |
| Cell1 Uplink-downlink configuration        |      | 1                                           | As specified in TS 36.211 section 4.2 Table 4.2-2. |
| Cell 2<br>PCFICH/PDCCH/PHICH<br>parameters |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                  |
| Cell 1 E-UTRA TDD RF<br>Channel Number     |      | 1                                           | One TDD carrier frequency is used.                 |
| Cell 2 E-UTRA FDD RF<br>Channel Number     |      | 2                                           | One FDD carrier frequency is used.                 |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                    |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1                   |
| Neighbour cell                             |      | Cell 2                                      | Cell 2 is on RF channel number 2                   |
| Gap Pattern Id                             |      | 0                                           | As specified in TS 36.133 section 8.1.2.1.         |
| A3-Offset                                  | dB   | -6                                          |                                                    |
| Hysteresis                                 | dB   | 0                                           |                                                    |
| CP length                                  |      | Normal                                      |                                                    |
| TimeToTrigger                              | S    | 0                                           |                                                    |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                           |
| DRX                                        |      | OFF                                         | OFF                                                |
| Time offset between cells                  |      | 3 ms                                        | Asynchronous cells                                 |
| T1                                         | S    | 5                                           |                                                    |
| T2                                         | S    | 5                                           |                                                    |

Table A.8.14.1.1-2: Cell specific test parameters for E-UTRAN TDD-FDD inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells

| Parameter                                                | Unit       | Unit Cell 1 |       |           | Cell 2 |  |  |
|----------------------------------------------------------|------------|-------------|-------|-----------|--------|--|--|
|                                                          |            | T1          | T2    | T1        | T2     |  |  |
| E-UTRA RF Channel                                        |            |             | 1     | 2         |        |  |  |
| Number                                                   |            |             |       |           |        |  |  |
| BW <sub>channel</sub>                                    | MHz        |             | 10    |           | 10     |  |  |
| OCNG Patterns                                            |            |             |       |           |        |  |  |
| defined in A.3.2.2.1                                     |            | OP.         | 1 TDD | OP        | .2 FDD |  |  |
| (OP.1 TDD) and in                                        |            |             |       |           |        |  |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |             |       |           |        |  |  |
| PBCH_RA                                                  | dB         |             |       |           |        |  |  |
| PBCH_RB                                                  | dB         |             |       |           |        |  |  |
| PSS_RA                                                   | dB         |             |       |           |        |  |  |
| SSS_RA                                                   | dB         |             |       |           |        |  |  |
| PCFICH_RB                                                | dB         |             |       |           |        |  |  |
| PHICH_RA                                                 | dB         |             | •     |           |        |  |  |
| PHICH_RB                                                 | dB         |             | 0     |           | 0      |  |  |
| PDCCH_RA                                                 | dB         |             |       |           |        |  |  |
| PDCCH_RB                                                 | dB         |             |       |           |        |  |  |
| PDSCH_RA                                                 | dB         |             |       |           |        |  |  |
| PDSCH_RB                                                 | dB         |             |       |           |        |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |             |       |           |        |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |             |       |           |        |  |  |
| $N_{oc}^{ m Note~3}$                                     | dBm/15 kHz |             |       | -98       |        |  |  |
| RSRP Note 4                                              | dBm/15 kHz | -94         | -94   | -Infinity | -91    |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4           | 4     | -Infinity | 7      |  |  |
| SCH_RP Note 4                                            | dBm/15 kHz | -94         | -94   | -Infinity | -91    |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4           | 4     | -Infinity | 7      |  |  |
| Propagation Condition                                    |            |             |       | ETU70     |        |  |  |
|                                                          |            |             |       |           |        |  |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

#### A.8.14.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

# A.8.14.2 E-UTRAN TDD-FDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

#### A.8.14.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These test will partly verify the TDD-FDD inter-frequency cell search requirements when DRX is used in section 8.1.2.3.

The common test parameters are given in Tables A.8.14.2.1-1 and A.8.14.2.1-2. DRX configuration for Test1 and Test2 are given in Table A.8.14.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.14.2.1-4. In these tests, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignmend. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The tests consist of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.14.2.1-1: General test parameters for E-UTRAN TDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Parameter                  | Unit | Test 1          | Test 2     | Comment                                      |
|----------------------------|------|-----------------|------------|----------------------------------------------|
|                            |      | Va              | lue        |                                              |
| Cell1 PDSCH parameters     |      | DL Reference Me | easurement | As specified in section A.3.1.1.2. Note that |
| ·                          |      | Channel R.0 TDD | )          | UE may only be allocated at On Duration      |
| Cell1PCFICH/PDCCH/PHIC     |      | DL Reference Me | asurement  | As specified in section A.3.1.2.2.           |
| H parameters               |      | Channel R.6 TDD | )          |                                              |
| Cell2 PDSCH parameters     |      | DL Reference Me | easurement | As specified in section A.3.1.1.1. Note that |
|                            |      | Channel R.0 FDD | )          | UE may only be allocated at On Duration      |
| Cell2PCFICH/PDCCH/PHIC     |      | DL Reference Me |            | As specified in section A.3.1.2.1.           |
| H parameters               |      | Channel R.6 FDD | )          |                                              |
| E-UTRA RF Channel          |      | 1               | [          | one TDD carrier frequencies is used.         |
| Number                     |      |                 |            |                                              |
| E-UTRA RF Channel          |      | 2               | 2          | one FDD carrier frequencies is used.         |
| Number                     |      |                 |            |                                              |
| Channel Bandwidth          | MHz  | 1               | 0          |                                              |
| (BW <sub>channel</sub> )   |      |                 |            |                                              |
| Active cell                |      | Ce              | II 1       | Cell 1 is on RF channel number 1             |
| Neighbour cell             |      | Ce              | II 2       | Cell 2 is on RF channel number 2             |
| Gap Pattern Id             |      | 0               |            | As specified in 3GPP TS 36.133 section       |
|                            |      |                 |            | 8.1.2.1.                                     |
| Cell1 Uplink-downlink      |      | 1               |            | As specified in 3GPP TS 36.211 section       |
| configuration              |      |                 |            | 4.2 Table 4.2-2                              |
| Cell1 Special subframe     |      | (               | 3          | As specified in table 4.2-1 in TS 36.211.    |
| configuration              |      |                 |            | The same configuration in both cells         |
| A3-Offset                  | dB   | -1              |            |                                              |
| Hysteresis                 | dB   | (               |            |                                              |
| CP length                  |      | Nor             | mal        |                                              |
| TimeToTrigger              | S    | (               | )          |                                              |
| Filter coefficient         |      | (               | )          | L3 filtering is not used                     |
| PRACH configuration        |      | 4               | 1          | As specified in table 5.7.1-3 in TS 36.211   |
| Access Barring Information | -    | Not             | Sent       | No additional delays in random access        |
|                            |      |                 |            | procedure.                                   |
| DRX                        |      | ON              |            | DRX related parameters are defined in        |
|                            |      |                 |            | Table A.8.14.2.1-3                           |
| Time offset between cells  |      | 3 ms            |            | Asynchronous cells                           |
| T1                         | S    | 5               |            | 7 to j the third to the                      |
| T2                         | S    | 5               | 30         |                                              |
| 12                         | 3    |                 | 30         |                                              |

Table A.8.14.2.1-2: Cell specific test parameters for E-UTRAN TDD-FDD inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells

| Parameter                                                | Unit       | Се    | II 1 |           | Cell 2 |  |  |
|----------------------------------------------------------|------------|-------|------|-----------|--------|--|--|
|                                                          |            | T1 T2 |      | T1        | T2     |  |  |
| E-UTRA RF Channel                                        |            | •     | 1    |           | 2      |  |  |
| Number                                                   |            |       |      |           |        |  |  |
| BW <sub>channel</sub>                                    | MHz        | 1     | 0    |           | 10     |  |  |
| OCNG Patterns                                            |            |       |      |           |        |  |  |
| defined in A.3.2.2.1                                     |            | OP.1  | TDD  | OP        | .2 FDD |  |  |
| (OP.1 TDD) and in                                        |            |       |      |           |        |  |  |
| A.3.2.1.2 (OP.2 FDD)                                     |            |       |      |           |        |  |  |
| PBCH_RA                                                  | dB         |       |      |           |        |  |  |
| PBCH_RB                                                  | dB         |       |      |           |        |  |  |
| PSS_RA                                                   | dB         |       |      |           |        |  |  |
| SSS_RA                                                   | dB         |       |      |           |        |  |  |
| PCFICH_RB                                                | dB         |       |      | 0         |        |  |  |
| PHICH_RA                                                 | dB         | ,     | _    |           |        |  |  |
| PHICH_RB                                                 | dB         | (     | )    |           |        |  |  |
| PDCCH_RA                                                 | dB         |       |      |           |        |  |  |
| PDCCH_RB                                                 | dB         |       |      |           |        |  |  |
| PDSCH_RA                                                 | dB         |       |      |           |        |  |  |
| PDSCH_RB                                                 | dB         |       |      |           |        |  |  |
| OCNG_RA <sup>Note 1</sup>                                | dB         |       |      |           |        |  |  |
| OCNG_RB <sup>Note 1</sup>                                | dB         |       |      |           |        |  |  |
| $N_{_{oC}}^{$                                            | dBm/15 kHz |       |      | -98       |        |  |  |
| RSRP Note 3                                              | dBm/15 kHz | -94   | -94  | -Infinity | -91    |  |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4     | 4    | -Infinity | 7      |  |  |
| SCH_RP Note 3                                            | dBm/15 kHz | -94   | -94  | -Infinity | -91    |  |  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4     | 4    | -Infinity | 7      |  |  |
| Propagation Condition                                    |            |       | - E  | ETU70     |        |  |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.14.2.1-3: drx-Configuration to be used in E-UTRAN TDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Field                    | Test1   | Test2   | Comment |
|--------------------------|---------|---------|---------|
| rieid                    | Value   | Value   |         |
| onDurationTimer          | psf1    | psf1    |         |
| drx-InactivityTimer      | psf1    | psf1    |         |
| drx-RetransmissionTimer  | psf1    | psf1    |         |
| longDRX-CycleStartOffset | sf40    | sf1280  |         |
| shortDRX                 | disable | disable |         |

Table A.8.14.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN TDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

| Field              | Test1 | Test2 | Comment                                                                                 |
|--------------------|-------|-------|-----------------------------------------------------------------------------------------|
| i ieiu             | Value | Value |                                                                                         |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                            |
| sr-ConfigIndex     | 2     | 2     | For further information see section 6.3.2 in 3GPP TS 36.331 and 10.1 in 3GPP TS 36.213. |

#### A.8.14.2.2 Test Requirements

In Test1 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 20\*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

# A.8.14.3 E-UTRAN TDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

#### A.8.14.3.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.3.6.

The test scenario comprises of one E-UTRA FDD carriers and one cell on each carrier as given in tables A.8.14.3.1-1 and A.8.14.3.1-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would have ACK/NACK sending during identifying a new CGI of E-UTRAN cell. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE. Measurement gaps shall be deconfigured before the start of T3.

Table A.8.14.3.1-1: General test parameters for E-UTRAN TDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                  | Unit | Value                                       | Comment                                         |
|--------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| Cell1PDSCH parameters                      |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2               |
| Cell1 PCFICH/PDCCH/PHICH parameters        |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2               |
| Cell2 PDSCH parameters                     |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1               |
| Cell2 PCFICH/PDCCH/PHICH parameters        |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1               |
| Cell1 E-UTRA RF channel number             |      | 1                                           | One TDD carrier is used                         |
| Cell2 E-UTRA RF channel number             |      | 2                                           | One FDD carrier is used                         |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                 |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1.               |
| Neighbour cell                             |      | Cell 2                                      | Cell 1 is on RF channel number 2.               |
| CP length                                  |      | Normal                                      |                                                 |
| Cell1 special subframe configuration       |      | 6                                           | As specified in table 4.2-1 in TS 36.211.       |
| Cell1 Uplink-downlink configuration        |      | 1                                           | As specified in table 4.2-2 in TS 36.211.       |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| A3-Offset                                  | dB   | -6                                          |                                                 |
| Hysteresis                                 | dB   | 0                                           |                                                 |
| TimeToTrigger                              | S    | 0                                           |                                                 |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                        |
| DRX                                        |      | OFF                                         |                                                 |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.   |
| Time offset between cells                  | ms   | 3                                           | Asynchronous cells                              |
| T1                                         | S    | 5                                           |                                                 |
| T2                                         | S    | ≤10                                         |                                                 |
| T3                                         | S    | 5                                           |                                                 |

| Table A.8.14.3.1-2: Cell specific test parameters for E-UTRAN TDD - FDD Inter-frequency |
|-----------------------------------------------------------------------------------------|
| identification of a new CGI of E-UTRA cell using autonomous gaps                        |

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit               |                 | Cell 1        |             | Cell 2         |             |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------|-------------|----------------|-------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | T1              | T2            | T3          | T1             | T2          | T3         |
| E-UTRA RF Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1               |               |             | 2              |             |            |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                 |               |             |                |             |            |
| BW <sub>channel</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MHz                |                 | 10            |             |                | 10          |            |
| OCNG Patterns defined in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | OP.1            | OP.1          | OP.1        | OP.2           | OP.2        | OP.2       |
| A.3.2.2.1 (OP.1 TDD) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | TDD             | TDD           | TDD         | FDD            | FDD         | FDD        |
| in A.3.2.1.2 (OP.2 FDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                 |               |             |                |             |            |
| PBCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB                 |                 |               |             |                |             |            |
| PBCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB                 |                 |               |             |                |             |            |
| PSS_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB                 |                 |               |             |                |             |            |
| SSS_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB                 |                 |               |             |                |             |            |
| PCFICH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB                 |                 | _             |             |                | _           |            |
| PHICH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 | 0 0             |               |             |                |             |            |
| PHICH_PB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 |                 |               |             |                |             |            |
| PDCCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 |                 |               |             |                |             |            |
| PDCCH_PB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 |                 |               |             |                |             |            |
| PDSCH_RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 |                 |               |             |                |             |            |
| PDSCH_RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 |                 |               |             |                |             |            |
| OCNG_RA <sup>Note 1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB                 |                 |               |             |                |             |            |
| OCNG_RB <sup>Note 1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB                 |                 |               |             |                |             |            |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dB                 | 4               | 4             | 4           | -Infinity      | 7           | 7          |
| $N_{oc}^{ m Note~2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm/15 KHz         |                 |               | -9          | 98             |             |            |
| $\hat{E}_s/N_{oc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                 | 4               | 4             | 4           | -Infinity      | 7           | 7          |
| RSRP Note 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dBm/15 KHz         | -94             | -94           | -94         | -Infinity      | -91         | -91        |
| SCH_RP Note3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dBm/15 KHz         | -94             | -94           | -94         | -Infinity      | -91         | -91        |
| Propagation Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AWGN               |                 |               |             |                |             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sed such that both | cells are fully | y allocated a | nd a consta | nt total trans | mitted powe | r spectral |
| The state of the s |                    |                 |               |             |                |             |            |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.8.14.3.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

 $Test \ requirement \ = RRC \ Procedure \ delay + \ T_{identify\_CGI,inter} + reporting \ delay$ 

= 15 + 150 + 2ms from the start of T3

= 167 ms, allow 170 ms.

The UE shall be scheduled continuously throughout the test, and from the start of T3 until 170 ms at least 42 ACK/NACK shall be detected as being transmitted by the UE.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The overall 42 ACK/NACK number is caused by two parts. Firstly, at least 30 ACK/NACK shall be sent during identifying the cell global identifier of cell 2 according to the requiremenet in Section 8.1.2.3.7.1. Secondly, given that continuous DL data allocation, and the measurement gaps have been deconfigured before the start of T3, additional 12 ACK/NACK shall be sent from the start of T3 until 170 ms excludes 150 ms for identifying the cell global identifier of cell 2.

### A.8.15 E-UTRAN FDD-TDD Inter-frequency Measurements

# A.8.15.1 E-UTRAN FDD-TDD Inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells

#### A.8.15.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD-TDD inter-frequency cell search requirements in section 8.1.2.3.4.

The test parameters are given in Table A.8.15.1.1-1 and A.8.15.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.15.1.1-1: General test parameters for E-UTRAN FDD-TDD inter-frequency event triggered reporting in fading propagation conditions

| Parameter                                  | Unit | Value                                       | Comment                                                                  |
|--------------------------------------------|------|---------------------------------------------|--------------------------------------------------------------------------|
| Cell 1 PDSCH parameters                    |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                        |
| Cell 1 PCFICH/PDCCH/PHICH parameters       |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                        |
| Cell 2 PCFICH/PDCCH/PHICH parameters       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                        |
| Gap Pattern Id                             |      | 1                                           | As specified in TS 36.133 section 8.1.2.1.                               |
| Cell2 Special subframe configuration       |      | 6                                           | As specified in table 4.2-1 in TS 36.211. Applicable to Cell 2.          |
| Cell2 Uplink-downlink configuration        |      | 1                                           | As specified in TS 36.211 section 4.2 Table 4.2-2. Applicable to Cell 2. |
| CP length                                  |      | Normal                                      |                                                                          |
| Cell 1 E-UTRA FDD RF<br>Channel Number     |      | 1                                           | One TDD carrier frequency is used.                                       |
| Cell 2 E-UTRA TDD RF<br>Channel Number     |      | 2                                           | One FDD carrier frequency is used.                                       |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                          |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1                                         |
| Neighbour cell                             |      | Cell 2                                      | Cell 2 is on RF channel number 2                                         |
| A3-Offset                                  | dB   | -6                                          |                                                                          |
| Hysteresis                                 | dB   | 0                                           |                                                                          |
| TimeToTrigger                              | S    | 0                                           |                                                                          |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                                                 |
| DRX                                        |      | OFF                                         |                                                                          |
| Time offset between cells                  |      | 3 ms                                        | Asynchronous cells                                                       |
| T1                                         | s    | 5                                           |                                                                          |
| T2                                         | S    | 10                                          |                                                                          |

Table A.8.15.1.1-2: Cell specific test parameters for E-UTRAN FDD-TDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

| Parameter                                                      | Unit       | C   | ell 1 | C         | ell 2 |  |
|----------------------------------------------------------------|------------|-----|-------|-----------|-------|--|
|                                                                |            | T1  | T2    | T1        | T2    |  |
| E-UTRA RF Channel                                              |            |     | 1     |           | 2     |  |
| Number                                                         |            |     |       |           |       |  |
| BW <sub>channel</sub>                                          | MHz        |     | 10    |           | 10    |  |
| OCNG Pattern defined                                           |            |     |       |           |       |  |
| in A.3.2.1.1 (OP.1                                             |            | OP. | 1 FDD | OP.       | 2 TDD |  |
| FDD) and in A.3.2.2.2                                          |            |     |       |           |       |  |
| (OP.2 TDD)                                                     |            |     |       |           |       |  |
| PBCH_RA                                                        | dB         |     |       |           |       |  |
| PBCH_RB                                                        | dB         |     |       |           |       |  |
| PSS_RA                                                         | dB         |     |       |           |       |  |
| SSS_RA                                                         | dB         |     |       |           |       |  |
| PCFICH_RB                                                      | dB         |     |       |           |       |  |
| PHICH_RA                                                       | dB         |     | •     | 0         |       |  |
| PHICH_RB                                                       | dB         |     | 0     |           |       |  |
| PDCCH_RA                                                       | dB         |     |       |           |       |  |
| PDCCH_RB                                                       | dB         |     |       |           |       |  |
| PDSCH_RA                                                       | dB         |     |       |           |       |  |
| PDSCH_RB                                                       | dB         |     |       |           |       |  |
| OCNG_RA <sup>Note 1</sup>                                      | dB         |     |       |           |       |  |
| OCNG_RB <sup>Note 1</sup>                                      | dB         |     |       |           |       |  |
| $\mathbf{\hat{E}}_{_{\mathrm{s}}}/\mathrm{I}_{_{\mathrm{ot}}}$ | dB         | 4   | 4     | -Infinity | 7     |  |
| $N_{oc}^{ m Note3}$                                            | dBm/15 kHz | -98 |       |           |       |  |
| RSRP Note 4                                                    | dBm/15 kHz | -94 | -94   | -Infinity | -91   |  |
| SCH_RP Note 4                                                  | dBm/15 kHz | -94 | -94   | -infinity | -91   |  |
| $\hat{E}_s/N_{oc}$                                             | dB         | 4   | 4     | -Infinity | 7     |  |
| Propagation Condition                                          |            |     |       | ETU70     | -     |  |

Note 2: The resources for uplink transmission are assigned to the UE priori to the start of time period T2. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.8.15.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.15.2 E-UTRAN FDD-TDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

#### A.8.15.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These tests will partly verify the FDD-TDD inter-frequency cell search requirements when DRX is used in section 8.1.2.3.4.

The common test parameters are given in Tables A.8.15.2.1-1 and A.8.15.2.1-2. DRX configuration for Test1 and Test2 are given in Table A.8.15.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.15.2.1-4. In these tests, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The tests consist of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.15.2.1-1: General test parameters for E-UTRAN FDD-TDD inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

| Parameter                 | Unit | Test 1       | Test 2      | Comment                                                  |  |
|---------------------------|------|--------------|-------------|----------------------------------------------------------|--|
|                           |      |              | lue         |                                                          |  |
| Cell 1 PDSCH parameters   |      | DL Reference | Measurement | As specified in section A.3.1.1.1 Note that              |  |
|                           |      |              | R.0 FDD     | UE may only be allocated at On Duration                  |  |
| Cell 1                    |      |              | Measurement | As specified in section A.3.1.2.1.                       |  |
| PCFICH/PDCCH/PHICH        |      | Channel      | R.6 FDD     |                                                          |  |
| parameters                |      |              |             |                                                          |  |
| Cell 2 PDSCH parameters   |      |              | Measurement | As specified in section A.3.1.1.2 Note that              |  |
|                           |      |              | R.0 TDD     | UE may only be allocated at On Duration                  |  |
| Cell 2                    |      |              | Measurement | As specified in section A.3.1.2.2.                       |  |
| PCFICH/PDCCH/PHICH        |      | Channel      | R.6 TDD     |                                                          |  |
| parameters                |      |              |             |                                                          |  |
| Cell 1 E-UTRA FDD RF      |      |              | 1           | One FDD carrier frequency is used.                       |  |
| Channel Number            | +    |              | _           |                                                          |  |
| Cell 2 E-UTRA TDD RF      |      | ;            | 2           | One TDD carrier frequency is used.                       |  |
| Channel Number            |      |              | 2           |                                                          |  |
| Channel Bandwidth         | MHz  | 1            | 0           |                                                          |  |
| (BW <sub>channel</sub> )  |      | 0-           | 11.4        | Call 4 is an DE shared number 4                          |  |
| Active cell               |      |              | ll 1        | Cell 1 is on RF channel number 1                         |  |
| Neighbour cell            |      |              | ell 2       | Cell 2 is on RF channel number 2                         |  |
| Gap Pattern Id            |      |              | 0           | As specified in 3GPP TS 36.133 section 8.1.2.1.          |  |
| A3-Offset                 | dB   |              | 6           |                                                          |  |
| Hysteresis                | dB   |              | 0           |                                                          |  |
| CP length                 |      |              | mal         |                                                          |  |
| TimeToTrigger             | S    |              | 0           |                                                          |  |
| Filter coefficient        |      |              | 0           | L3 filtering is not used                                 |  |
| E-UTRA FDD PRACH          |      |              | 4           | As specified in table 5.7.1-2 in TS 36.211               |  |
| configuration             |      |              |             |                                                          |  |
| Cell 2 Special subframe   |      | (            | 6           | As specified in table 4.2-1 in TS 36.211                 |  |
| configuration             |      |              |             |                                                          |  |
| Cell 2 Uplink-downlink    |      |              | 1           | As specified in table 4.2-2 in TS 36.211                 |  |
| configuration             |      |              |             |                                                          |  |
| E-UTRA TDD Access         | -    | Not Sent     |             | No additional delays in random access                    |  |
| Barring Information       |      |              |             | procedure.                                               |  |
| DRX                       |      | ON           |             | DRX related parameters are defined in Table A.8.15.2.1-3 |  |
| Time offset between cells | ms   | ;            | 3           | Asynchronous cells                                       |  |
| T1                        | S    |              | 5           |                                                          |  |
| T2                        | S    | 5            | 30          |                                                          |  |

Table A.8.15.2.1-2: Cell specific test parameters for E-UTRAN FDD-TDD inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

| Parameter                 | Unit       | Ce    | II 1 | Cell 2    |        |  |
|---------------------------|------------|-------|------|-----------|--------|--|
|                           |            | T1    | T2   | T1        | T2     |  |
| E-UTRA RF Channel         |            | •     | 1    |           | 2      |  |
| Number                    |            |       |      |           |        |  |
| BW <sub>channel</sub>     | MHz        | 1     | 0    |           | 10     |  |
| OCNG Patterns             |            |       |      |           |        |  |
| defined in A.3.2.1.1      |            | OP.1  | FDD  | OP        | .2 TDD |  |
| (OP.1 FDD) and in         |            |       |      |           |        |  |
| A.3.2.2.2 (OP.2 TDD)      |            |       |      |           |        |  |
| PBCH_RA                   | dB         |       |      |           |        |  |
| PBCH_RB                   | dB         |       |      |           |        |  |
| PSS_RA                    | dB         |       |      |           |        |  |
| SSS_RA                    | dB         |       |      |           |        |  |
| PCFICH_RB                 | dB         |       |      |           |        |  |
| PHICH_RA                  | dB         |       |      |           |        |  |
| PHICH_RB                  | dB         | (     | )    | 0         |        |  |
| PDCCH_RA                  | dB         |       |      |           |        |  |
| PDCCH_RB                  | dB         |       |      |           |        |  |
| PDSCH_RA                  | dB         |       |      |           |        |  |
| PDSCH_RB                  | dB         |       |      |           |        |  |
| OCNG_RA <sup>Note 1</sup> | dB         |       |      |           |        |  |
| OCNG_RB <sup>Note 1</sup> | dB         |       |      |           |        |  |
| $N_{oc}^{ m Note~2}$      | dBm/15 kHz |       |      | -98       |        |  |
| RSRP Note 3               | dBm/15 kHz | -94   | -94  | -Infinity | -91    |  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4     | 4    | -Infinity | 7      |  |
| SCH_RP Note 3             | dBm/15 kHz | -94   | -94  | -Infinity | -91    |  |
| $\hat{E}_s/N_{oc}$        | dB         | 4     | 4    | -Infinity | 7      |  |
| Propagation Condition     |            | ETU70 |      |           |        |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.15.2.1-3: drx-Configuration to be used in E-UTRAN FDD-TDD inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

| Field                                                              | Test1   | Test2   | Comment |  |  |
|--------------------------------------------------------------------|---------|---------|---------|--|--|
| rield                                                              | Value   | Value   |         |  |  |
| onDurationTimer                                                    | psf1    | psf1    |         |  |  |
| drx-InactivityTimer                                                | psf1    | psf1    |         |  |  |
| drx-RetransmissionTimer                                            | psf1    | psf1    |         |  |  |
| longDRX-CycleStartOffset                                           | sf40    | sf1280  |         |  |  |
| shortDRX                                                           | disable | disable |         |  |  |
| Note: For further information see section 6.3.2 in 3GPP TS 36.331. |         |         |         |  |  |

Table A.8.15.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN FDD-TDD inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

| Field              | Test1 | Test2 | Comment                                                                                        |
|--------------------|-------|-------|------------------------------------------------------------------------------------------------|
| Field              | Value | Value |                                                                                                |
| TimeAlignmentTimer | sf500 | sf500 | For further information see section 6.3.2 in 3GPP TS 36.331.                                   |
| sr-ConfigIndex     | 0     | 0     | For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213. |

#### A.8.15.2.2 Test Requirements

In Test1 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 20\*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

# A.8.15.3 E-UTRAN FDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

#### A.8.15.3.1 Test Purpose and Environment

This test is to verify the requirement for identification of a new CGI of E-UTRA cell with autonomous gaps in section 8.1.2.3.8.

The test scenario comprises of one E-UTRA FDD carrier and one E-UTRA TDD carrier and one cell on each carrier as given in tables A.8.15.3-1 and A.8.15.3-2. PDCCHs indicating new transmissions should be sent continuously to ensure that the UE would have ACK/NACK sending during identifying a new CGI of E-UTRAN cell. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying SI reading shall be sent to the UE during period T2, after the UE has reported Event A3. The RRC message shall create a measurement report configuration with purpose *reportCGI* and *si-RequestForHO* set to TRUE. The start of T3 is the instant when the last TTI containing the RRC message implying SI reading is sent to the UE. Measurement gaps shall be deconfigured before the start of T3.

Table A.8.15.3-1: General test parameters for E-UTRAN FDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                  | Unit | Value                                       | Comment                                         |
|--------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| Cell1 PDSCH parameters                     |      | DL Reference Measurement<br>Channel R.3 FDD | As specified in section A.3.1.1.1               |
| Cell1 PCFICH/PDCCH/PHICH parameters        |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1               |
| Cell2 PCFICH/PDCCH/PHICH parameters        |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2               |
| E-UTRA RF channel number                   |      | 1, 2                                        | One FDD and one TDD carrier frequency are used. |
| Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                 |
| Active cell                                |      | Cell 1                                      | Cell 1 is on RF channel number 1.               |
| Neighbour cell                             |      | Cell 2                                      | Cell 1 is on RF channel number 2.               |
| CP length                                  |      | Normal                                      |                                                 |
| Cell 2 Special subframe configuration      |      | 6                                           | As specified in table 4.2-1 in TS 36.211.       |
| Cell 2 Uplink-downlink configuration       |      | 1                                           | As specified in table 4.2-2 in TS 36.211.       |
| Gap Pattern Id                             |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| A3-Offset                                  | dB   | -6                                          |                                                 |
| Hysteresis                                 | dB   | 0                                           |                                                 |
| TimeToTrigger                              | S    | 0                                           |                                                 |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                        |
| DRX                                        |      | OFF                                         |                                                 |
| si-RequestForHO                            |      | TRUE                                        | As specified in section 5.5.3.1 in TS 36.331.   |
| Time offset between cells                  | ms   | 3                                           | Asynchronous cells                              |
| T1                                         | s    | 5                                           |                                                 |
| T2                                         | s    | ≤10                                         |                                                 |
| T3                                         | s    | 5                                           |                                                 |

Table A.8.15.3-2: Cell specific test parameters for E-UTRAN FDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps

| Parameter                                                                                                           | Unit       |       | Cell 1 |       |           | Cell 2 |      |
|---------------------------------------------------------------------------------------------------------------------|------------|-------|--------|-------|-----------|--------|------|
|                                                                                                                     |            | T1    | T2     | T3    | T1        | T2     | T3   |
| E-UTRA RF Channel                                                                                                   |            |       | 1      |       |           | 2      |      |
| Number                                                                                                              |            |       |        |       |           |        |      |
| BW <sub>channel</sub>                                                                                               | MHz        |       | 10     |       |           | 10     |      |
| OCNG Patterns defined in                                                                                            |            | OP.10 | OP.10  | OP.10 | OP.2      | OP.2   | OP.2 |
| A.3.2.1.10 (OP.10 FDD)                                                                                              |            | FDD   | FDD    | FDD   | TDD       | TDD    | TDD  |
| and in A.3.2.2.1 (OP.2                                                                                              |            |       |        |       |           |        |      |
| TDD)                                                                                                                |            |       |        |       |           |        |      |
| PBCH_RA                                                                                                             | dB         |       |        |       |           |        |      |
| PBCH_RB                                                                                                             | dB         |       |        |       |           |        |      |
| PSS_RA                                                                                                              | dB         |       |        |       |           |        |      |
| SSS_RA                                                                                                              | dB         |       |        |       |           |        |      |
| PCFICH_RB                                                                                                           | dB         |       | 0      |       |           | 0      |      |
| PHICH_RA                                                                                                            | dB         |       | U      |       |           | U      |      |
| PHICH_PB                                                                                                            | dB         |       |        |       |           |        |      |
| PDCCH_RA                                                                                                            | dB         |       |        |       |           |        |      |
| PDCCH_PB                                                                                                            | dB         |       |        |       |           |        |      |
| PDSCH_RA                                                                                                            | dB         |       |        |       |           |        |      |
| PDSCH_RB                                                                                                            | dB         |       |        |       |           |        |      |
| OCNG_RA <sup>Note 1</sup>                                                                                           | dB         |       |        |       |           |        |      |
| OCNG_RB <sup>Note 1</sup>                                                                                           | dB         | _     |        |       |           |        |      |
| $\hat{E}_{s}/I_{ot}$                                                                                                | dB         | 4     | 4      | 4     | -Infinity | 7      | 7    |
| $N_{oc}^{ m Note~2}$                                                                                                | dBm/15 KHz | -98   |        |       |           |        |      |
| $\hat{E}_s/N_{oc}$                                                                                                  | dB         | 4     | 4      | 4     | -Infinity | 7      | 7    |
| RSRP Note 3                                                                                                         | dBm/15 KHz | -94   | -94    | -94   | -Infinity | -91    | -91  |
| SCH_RP Note3                                                                                                        | dBm/15 KHz | -94   | -94    | -94   | -Infinity | -91    | -91  |
| Propagation Condition                                                                                               |            |       |        | AW    | GN        |        |      |
| Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral |            |       |        |       |           |        |      |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{ac}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.8.15.3.2 Test Requirements

The UE shall transmit a measurement report containing the cell global identifier of cell 2 within 170 milliseconds from the start of T3.

Test requirement = RRC Procedure delay +  $T_{identify CGL inter}$  + reporting delay

= 15 + 150 + 2ms from the start of T3

= 167 ms, allow 170 ms.

The UE shall be scheduled continuously throughout the test, and from the start of T3 until 170 ms at least 60 ACK/NACK shall be detected as being transmitted by the UE.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The overall 80 ACK/NACK number is caused by two parts. Firstly, at least 60 ACK/NACK shall be sent during identifying the cell global identifier of cell 2 according to the requirement in Section 8.1.2.3.5.1. Secondly, given that continuous DL data allocation, and the measurement gaps have been deconfigured before the start of T3, additional 20 ACK/NACK shall be sent from the start of T3 until 170 ms excludes 150 ms for identifying the cell global identifier of cell 2.

#### A.8.16 Void

#### A.8.17 E-UTRAN TDD – HRPD Measurements

# A. 8.17.1 E-UTRAN TDD-HRPD event triggered reporting under fading propagation conditions

#### A.8.17.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRAN TDD- HRPD cell search requirements in section 8.1.2.4.12.

The test parameters are given in Tables A.8.17.1.1-1, A.8.17.1.1-2 and A.8.17.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.17.1.1-1: General test parameters for E-UTRAN TDD to HRPD event triggered reporting under fading propagation conditions

| Parameter                                | Unit | Value                                       | Comment                                                              |
|------------------------------------------|------|---------------------------------------------|----------------------------------------------------------------------|
| PDSCH parameters                         |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                                    |
| PCFICH/PDCCH/PHICH parameters            |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                                    |
| Active cell                              |      | Cell 1                                      | E-UTRAN TDD cell                                                     |
| Neighbouring cell                        |      | Cell 2                                      | HRPD cell                                                            |
| Gap Pattern Id                           |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                      |
| E-UTRAN TDD measurement quantity         |      | RSRP                                        |                                                                      |
| Inter-RAT (HRPD) measurement quantity    |      | CDMA2000 HRPD Pilot<br>Strength             |                                                                      |
| b1-ThresholdCDMA2000                     | dB   | -7                                          | Absolute 'CDMA2000 HRPD Pilot Strength' threshold for event B1       |
| Hysteresis                               | dB   | 0                                           |                                                                      |
| TimeToTrigger                            | S    | 0                                           |                                                                      |
| Filter coefficient                       |      | 0                                           | L3 filtering is not used                                             |
| DRX                                      |      | OFF                                         | Non-DRX test                                                         |
| Access Barring Information               | -    | Not sent                                    | No additional delays in random access procedure                      |
| E-UTRA RF Channel Number                 |      | 1                                           | One E-UTRA TDD carrier frequency is used.                            |
| E-UTRA Channel Bandwidth (BWchannel)     | MHz  | 10                                          |                                                                      |
| Uplink-downlink configuration of cell 1  |      | 1                                           | As specified in table 4.2.2 in TS 36.211                             |
| Special subframe configuration of cell 1 |      | 6                                           | As specified in table 4.2.1 in TS 36.211                             |
| HRPD RF Channel Number                   |      | 1                                           | One HRPD carrier frequency is used.                                  |
| HRPD neighbour cell list size            |      | 8                                           | HRPD cells on HRPD RF channel 1 provided in the cell list before T2. |
| cdma2000-SearchWindowSize                |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331     |
| T1                                       | S    | 5                                           |                                                                      |
| T2                                       | S    | 3                                           |                                                                      |

Table A.8.17.1.1-2: Cell specific test parameters for E-UTRAN TDD cell#1 for event triggered reporting under fading propagation conditions

| Parameter                 | Unit          | Cell 1 (l             | E-UTRA)         |
|---------------------------|---------------|-----------------------|-----------------|
|                           |               | T1                    | T2              |
| E-UTRA RF Channel         |               |                       | 1               |
| number                    |               |                       |                 |
| BW <sub>channel</sub>     | MHz           |                       | 10              |
| OCNG Patterns defined in  |               | OP.1                  | TDD             |
| TS36.133 A.3.2.2.1 (OP.1  |               |                       |                 |
| TDD)                      |               |                       |                 |
| PBCH_RA                   | dB            |                       |                 |
| PBCH_RB                   | dB            |                       |                 |
| PSS_RA                    | dB            |                       |                 |
| SSS_RA                    | dB            |                       |                 |
| PCFICH_RB                 | dB            |                       |                 |
| PHICH_RA                  | dB            |                       |                 |
| PHICH_RB                  | dB            |                       | 0               |
| PDCCH_RA                  | dB            |                       |                 |
| PDCCH_RB                  | dB            |                       |                 |
| PDSCH_RA                  | dB            |                       |                 |
| PDSCH_RB                  | dB            |                       |                 |
| OCNG_RA <sup>Note 1</sup> | dB            |                       |                 |
| OCNG_RB <sup>Note 1</sup> | dB            |                       |                 |
| $N_{oc}^{$                | dBm/15        | -(                    | 98              |
|                           | kHz           |                       |                 |
| RSRP Note 3               | dBm/15        | -98                   | -98             |
|                           | KHz           |                       |                 |
| $\hat{E}_s/N_{oc}$        | dB            | 0                     | 0               |
| $\hat{E}_s/I_{ot}$        | dB            | 0                     | 0               |
| Propagation Condition     |               | ET                    | U70             |
| Note 1: OCNG shall be us  | sed such that | both cells are fully  | allocated and a |
|                           |               | r spectral density is |                 |
| OFDM symbols              |               |                       |                 |

OFDM symbols.

Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall Note 2: be modelled as AWGN of appropriate power for  $\,N_{oc}\,$  to be fulfilled.

RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves. Note 3:

Table A.8.17.1.1-3: Cell specific test parameters for HRPD (cell # 2) for event triggered reporting under fading propagation conditions

| Parameter                                                                             | Unit              | Cell 2 (HRPD) |     |  |
|---------------------------------------------------------------------------------------|-------------------|---------------|-----|--|
|                                                                                       |                   | T1            | T2  |  |
| $\frac{\text{Control}  \text{E}_{\text{b}}}{\text{N}_{\text{t}}}  \text{(38.4 kbps)}$ | dB                | 21            |     |  |
| $\frac{\text{Control}  \text{E}_{\text{b}}}{\text{N}_{\text{t}}} \text{ (76.8 kbps)}$ | dB                | 18            |     |  |
| $\hat{I}_{or}/I_{oc}$                                                                 | dB                | -infinity 0   |     |  |
| $I_{oc}$                                                                              | dBm/1.2288<br>MHz | -55           |     |  |
| CDMA2000 HRPD Pilot<br>Strength                                                       | dB                | -infinity -3  |     |  |
| Propagation Condition                                                                 |                   | ET            | U70 |  |

#### A.8.17.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 2134 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to  $2xTTI_{DCCH}$  higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

#### A.8.18 E-UTRAN TDD - CDMA2000 1X Measurements

## A.8.18.1 E-UTRAN TDD – CDMA2000 1X event triggered reporting under fading propagation conditions

#### A.8.18.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRAN TDD- CDMA2000 1X cell search requirements in section 8.1.2.4.10.

The test parameters are given in Tables A.8.18.1.1-1, A.8.18.1.1-2 and A.8.18.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.18.1.1-1: General test parameters for E-UTRAN TDD-CDMA2000 1X event triggered reporting in fading propagation conditions

| Parameter                                         | Unit | Value                                       | Comment                                                                            |
|---------------------------------------------------|------|---------------------------------------------|------------------------------------------------------------------------------------|
| PDSCH parameters (E-UTRAN TDD)                    |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.                                                 |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)       |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.                                                 |
| Gap Pattern Id                                    |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.                                    |
| Active cell                                       |      | Cell 1                                      | Cell 1 is on E-UTRA RF channel number 1.                                           |
| Neighbour cell                                    |      | Cell 2                                      | Cell 2 is on CDMA2000 1X RF channel number 1.                                      |
| Special subframe configuration                    |      | 6                                           | As specified in table 4.2-1 in 3GPP TS 36.211. Applicable to cell 1.               |
| Uplink-downlink configuration                     |      | 1                                           | As specified in table 4.2-2 in 3GPP TS 36.211. Applicable to cell 1.               |
| CP length                                         |      | Normal                                      | Applicable to cell 1.                                                              |
| E-UTRA RF Channel Number                          |      | 1                                           | One E-UTRA TDD carrier frequency is used.                                          |
| E-UTRA Channel Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                                                    |
| CDMA2000 1X Channel Number                        |      | 1                                           | One CDMA2000 1X carrier frequency is used.                                         |
| Inter-RAT (CDMA2000 1X) measurement quantity      |      | CDMA2000 1xRTT Pilot<br>Strength            |                                                                                    |
| B1-Threshold-CDMA2000                             | dB   | -14                                         | Absolute 'CDMA2000 1xRTT Pilot Strength' threshold for event B1                    |
| Hysteresis                                        | dB   | 0                                           |                                                                                    |
| Time To Trigger                                   | ms   | 0                                           |                                                                                    |
| Filter coefficient                                |      | 0                                           | L3 filtering is not used.                                                          |
| DRX                                               |      | OFF                                         |                                                                                    |
| cdma2000 1X neighbour cell list size              |      | 8                                           | cdma2000 1X cells on cdma2000 1X RF channel 1 provided in the cell list before T2. |
| cdma2000-SearchWindowSize                         |      | 8 (60 PN chips)                             | Search window size as defined in section 6.3.5 in 3GPP TS 36.331                   |
| T1                                                | S    | 5                                           |                                                                                    |
| T2                                                | S    | 3                                           |                                                                                    |

Table A.8.18.1.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for event triggered reporting of CDMA2000 1X cell under fading propagation conditions

| Parameter                 | Unit       | Cell   | 1   |
|---------------------------|------------|--------|-----|
|                           |            | T1     | T2  |
| E-UTRA RF Channel Number  |            | 1      |     |
| BW <sub>channel</sub>     | MHz        | 10     |     |
| OCNG Pattern defined in   |            |        |     |
| A.3.2.2.1 (OP.1 TDD)      |            | OP.1 T | DD  |
| PBCH_RA                   | dB         |        |     |
| PBCH_RB                   | dB         |        |     |
| PSS_RA                    | dB         |        |     |
| SSS_RA                    | dB         |        |     |
| PCFICH_RB                 | dB         |        |     |
| PHICH_RA                  | dB         |        |     |
| PHICH_RB                  | dB         | 0      |     |
| PDCCH_RA                  | dB         |        |     |
| PDCCH_RB                  | dB         |        |     |
| PDSCH_RA                  | dB         |        |     |
| PDSCH_RB                  | dB         |        |     |
| OCNG_RA <sup>Note 1</sup> | dB         |        |     |
| OCNG_RB <sup>Note 1</sup> | dB         |        |     |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4      | 4   |
| $\hat{E}_s/N_{oc}$        | dB         | 4      | 4   |
| $N_{oc}$                  | dBm/15 kHz | -98    |     |
| RSRP                      | dBm/15 kHz | -94    | -94 |
| SCH_RP                    | dBm/15 kHz | -94    | -94 |
| Propagation Condition     |            | ETU7   |     |

Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.

Table A.8.18.1.1-3: Cell specific test parameters for CDMA2000 1X (cell # 2) for event triggered reporting of CDMA2000 1X cell under fading propagation conditions

| Parameter                                                                            | Unit              | Cell 2 (cdma2000 1X) |                  |  |
|--------------------------------------------------------------------------------------|-------------------|----------------------|------------------|--|
|                                                                                      |                   | T1                   | T2               |  |
| $\frac{\text{Pilot}  \text{E}_{\text{c}}}{\text{I}_{\text{or}}}$                     | dB                | -7                   |                  |  |
| $\frac{\mathrm{Sync} \ \mathrm{E}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{or}}}$           | dB                | -16                  |                  |  |
| $\frac{\text{Paging}  \text{E}_{\text{c}}}{\text{I}_{\text{or}}}  \text{(4.8 kbps)}$ | dB                | -12                  |                  |  |
| $\hat{I}_{or}/I_{oc}$                                                                | dB                | -infinity 0          |                  |  |
| $I_{oc}$                                                                             | dBm/1.2288<br>MHz | -55                  |                  |  |
| CDMA2000 1xRTT Pilot<br>Strength                                                     | dB                | -infinity -10        |                  |  |
| Propagation Condition                                                                |                   | ET                   | <sup>.</sup> U70 |  |

#### A.8.18.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 2134 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to 2xTTIDCCH higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

# A.8.19 CSG Proximity Indication Testing Case for E-UTRAN FDD - FDD Inter frequency

Note: The test case in this section forms the basis for a signalling test for CSG proximity detection.

#### A.8.19.1 Test Purpose and Environment

The purpose of this test is to verify the UE has implemented properly the feature for indicating that the UE is entering or leaving the proximity of one or more CSG member cells based on proximity detection with an autonomous search function, as defined by the requirements in Section 6.4.

The test case consists of three successive segments: Test Preparation, Negative Test, and Positive Test. The test scenario comprises of three E-UTRAN FDD cells on different carriers. Cell 1 represents the serving cell in the proximity of the CSG cell, Cell 2 the CSG cell, and Cell 3 the serving cell not in the proximity of the CSG cell. The description of the test procedure is shown in Table A.8.19-1. The general test parameters and cell specific test parameters are presented in Table A.8.19-2 and Table A.8.19-3 respectively.

Table A.8.19-1: Description of the test procedures

| Parameter         | Cell Status                     | Comment                                                                                                                                                                                                                                         |
|-------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | •                               | Test Preparation                                                                                                                                                                                                                                |
| Initial Condition | Cell 1 is active                | Clean up the UE memory to be free from previously stored cell information for proximity detection.  Turn on the UE and allow sufficient time for the UE to select to Cell 1                                                                     |
| Time duration T1  | Cell 1 and Cell 2 are active    | Turn on Cell 2 at the start of T1.  Perform manual CSG selection towards Cell 2. The UE is expected to store necessary information for later proximity.detection                                                                                |
| End condition     |                                 | Turn off the UE. Turn off Cell 1 and Cell 2.                                                                                                                                                                                                    |
|                   |                                 | Negative Test                                                                                                                                                                                                                                   |
| Initial Condition | Cell 3 is active                | Turn on Cell 3. Turn on the UE and set up the UE in connected mode with Cell 3.                                                                                                                                                                 |
| Time duration T2  | Cell 3 is active                | Configure the UE with proximity indication control by sending the Reconfiguration message with ReportProximityConfig at the start of T2. The UE is not expected to report "entering" proximity in the negative test.                            |
| End condition     |                                 | Turn off the UE. Turn off Cell 3.                                                                                                                                                                                                               |
|                   | •                               | Positive Test                                                                                                                                                                                                                                   |
| Initial Condition | Cell 1 is active                | Turn on Cell 1. Turn on the UE and set up the UE in connected mode with Cell 1.                                                                                                                                                                 |
| Time duration T3  | Cell 1 and Cell 2<br>are active | Turn on Cell 2 at the start of T3. Configure the UE with proximity indication control by sending the Reconfiguration message with reportProximityConfig at the start of T3. The UE is expected to report "entering" proximity before end of T3. |
| End condition     |                                 | Turn off the UE. Turn off Cell 1 and Cell 2.                                                                                                                                                                                                    |

Table A.8.19-2: General test parameters for E-UTRAN FDD-FDD inter frequency cell proximity detection test case

| Parameter                     | Unit      | Value                                       | Comment                                                                                     |
|-------------------------------|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------|
| PDSCH parameters              |           | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                                                           |
| PDSCH allocation              | $n_{PRB}$ | 2—3                                         | 13—36                                                                                       |
| PCFICH/PDCCH/PHICH parameters |           | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                                                           |
| A3-Offset                     | dB        | -4                                          |                                                                                             |
| Hysteresis                    | dB        | 0                                           |                                                                                             |
| TimeToTrigger                 | S         | 0                                           |                                                                                             |
| Filter coefficient            |           | 0                                           | L3 filtering is not used                                                                    |
| DRX                           |           | off                                         | As specified in section A.3.3                                                               |
| PRACH configuration           |           | 4                                           | As specified in table 5.7.1-2 in 3GPP TS 36.211                                             |
| Access Barring Information    | -         | Not sent                                    | No additional delays in random access procedure                                             |
| Time offset between cells     |           | 3 ms                                        | Asynchronous cells                                                                          |
| Gap pattern configuration Id  |           | 0                                           | As specified in Table 8.1.2.1-1 started before T1 starts                                    |
| Time duration T1              | S         | [10]                                        | Defined to give enough time for<br>the UE to complete the manual<br>selection to Cell 2     |
| Time duration T2              | S         | [360]                                       | Defined to be longer enough to see whether the UE will report enter "proximity" indication. |
| Time duration T3 Note 1       | S         | [<=360]                                     | The time duration for a UE to report enters "proximity" when the UE is near a CSG cell.     |
|                               |           |                                             |                                                                                             |

Note 1: The maximum allowed time duration for the UE to decide either entering or leaving "proximity" is 360s. To reduce test time, T3 may end once UE reports entering "proximity".

Note 2: The test case assumes an environment where CSG proximity detection results not being impact by non-3GPP signals, such as GPS and WiFi. When the test case is being executed, the UE may ignore any radio signals which are not provided by the test setup which it would otherwise use in proximity estimation.

Table A.8.19-3: Cell specific test parameters for E-UTRAN FDD-FDD inter frequency cell proximity detection test case

| Parameter                                                                          | Unit       | Cell 1   |           |          |             | Cell 2 |             |
|------------------------------------------------------------------------------------|------------|----------|-----------|----------|-------------|--------|-------------|
|                                                                                    |            | T1       | T2        | Т3       | T1          | T2     | T3          |
| E-UARFCN                                                                           |            |          | Channel 1 |          | Channel 2   |        |             |
| CSG indicator                                                                      |            |          | False     |          | True        | N/A    | True        |
| Physical cell global identity                                                      |            | 1        | 1         | 1        | 2           | N/A    | 2           |
| CSG identity                                                                       |            |          | Not sent  |          | Sent        | N/A    | Sent        |
| BW <sub>channel</sub>                                                              | MHz        | 10       |           |          | 10          |        |             |
| OCNG Patterns<br>defined in A.3.2.1.1<br>(OP.1 FDD) and in<br>A.3.2.1.2 (OP.2 FDD) |            | OP.1 FDD | N/A       | OP.2 FDD | OP.2<br>FDD | N/A    | OP.2<br>FDD |
| PBCH_RA                                                                            | dB         |          |           |          |             |        |             |
| PBCH_RB                                                                            | dB         | ]        |           |          |             |        |             |
| PSS_RA                                                                             | dB         |          |           |          |             |        |             |
| SSS_RA                                                                             | dB         | ]        |           |          |             |        |             |
| PCFICH_RB                                                                          | dB         |          |           |          |             |        |             |
| PHICH_RA                                                                           | dB         |          |           |          |             |        |             |
| PHICH_RB                                                                           | dB         |          | 0         |          | 0           |        |             |
| PDCCH_RA                                                                           | dB         |          |           |          |             |        |             |
| PDCCH_RB                                                                           | dB         |          |           |          |             |        |             |
| PDSCH_RA                                                                           | dB         |          |           |          |             |        |             |
| PDSCH_RB                                                                           | dB         |          |           |          |             |        |             |
| OCNG_RA <sup>Note 1</sup>                                                          | dB         |          |           |          |             |        |             |
| OCNG_RB <sup>Note 1</sup>                                                          | dB         |          |           |          |             |        |             |
| $\hat{E}_s/I_{ot}$                                                                 | dB         | 0        | -inf      | 4        | 7           | -inf   | 7           |
| N <sub>oc</sub> Note 2                                                             | dBm/15 kHz |          | -98       |          |             | -98    |             |
| $\hat{E}_s/N_{oc}$                                                                 | dB         | 0        | -inf      | 4        | 7           | -inf   | 7           |
| RSRP Note 3                                                                        | dBm/15 KHz | -98      | -inf      | -94      | -91         | -inf   | -91         |
| Propagation Condition                                                              |            |          | AWGN      |          |             | AWGN   |             |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.8.19-4: Cell specific test parameters for E-UTRAN FDD-FDD inter frequency cell proximity detection test case (Cell 3)

| E-UARFCN                  |                    | T1             |                     |            |  |  |  |
|---------------------------|--------------------|----------------|---------------------|------------|--|--|--|
| E-UARFCN                  |                    |                | T2                  | Т3         |  |  |  |
|                           |                    | Channel 1      |                     |            |  |  |  |
| CSG indicator             |                    | False          |                     |            |  |  |  |
| Physical cell global      |                    | 3              |                     |            |  |  |  |
| identity                  |                    |                |                     |            |  |  |  |
| CSG identity              |                    |                | Not sent            |            |  |  |  |
| BW <sub>channel</sub>     | MHz                |                | 10                  |            |  |  |  |
| OCNG Patterns             |                    |                | N/A                 |            |  |  |  |
| defined in A.3.2.1.1      |                    |                |                     |            |  |  |  |
| (OP.1 FDD) and in         |                    |                |                     |            |  |  |  |
| A.3.2.1.2 (OP.2 FDD)      |                    |                |                     |            |  |  |  |
| PBCH_RA                   | dB                 |                |                     |            |  |  |  |
| PBCH_RB                   | dB                 |                |                     |            |  |  |  |
| PSS_RA                    | dB                 |                |                     |            |  |  |  |
| SSS_RA                    | dB                 |                |                     |            |  |  |  |
| PCFICH_RB                 | dB                 |                |                     |            |  |  |  |
| PHICH_RA                  | dB                 |                | _                   |            |  |  |  |
| PHICH_RB                  | dB                 |                | 0                   |            |  |  |  |
| PDCCH_RA                  | dB                 |                |                     |            |  |  |  |
| PDCCH_RB                  | dB                 |                |                     |            |  |  |  |
| PDSCH_RA                  | dB                 |                |                     |            |  |  |  |
| PDSCH_RB                  | dB                 |                |                     |            |  |  |  |
| OCNG_RA <sup>Note 1</sup> | dB                 |                |                     |            |  |  |  |
| OCNG_RB <sup>Note 1</sup> | dB                 |                |                     |            |  |  |  |
| $\hat{E}_s/I_{ot}$        | dB                 |                | -inf                |            |  |  |  |
| $N_{oc}^{ m Note~2}$      | dBm/15 kHz         | -98            |                     |            |  |  |  |
| $\hat{E}_s/N_{oc}$        | dB                 |                | -inf                |            |  |  |  |
| RSRP Note 3               | dBm/15 KHz         | -inf           |                     |            |  |  |  |
| Propagation Condition     |                    | AWGN           |                     |            |  |  |  |
|                           | e used such that b | ooth cells are | fully allocated and | a constant |  |  |  |

total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $\,N_{oc}\,$  to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves

### A.8.19.2 Test Requirements

The UE shall not send an "entering" proximity indication in T2 during Negative Test.

The UE shall send an "entering" proximity indication in T3during Positive Test.

#### Measurement Performance Requirements **A.9**

Unless explicitly stated otherwise:

- Reported measurements shall be within defined range of accuracy limits defined in Section 9 for 90 % of the reported cases.
- Cell 1 is the serving cell.
- Measurements are performed in RRC\_CONNECTED state.

- The reference channels assume transmission of PDSCH with a maximum number of 5 HARQ transmissions unless otherwise specified.

### A.9.1 RSRP

### A.9.1.1 FDD Intra frequency case

#### A.9.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.2 for FDD intra frequency measurements.

#### A.9.1.1.2 Test parameters

In this set of test cases all cells are on the same carrier frequency. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.1.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

Table A.9.1.1.2-1: RSRP FDD Intra frequency test parameters

| Parameter                                                   |                                                   | Unit              | Test 1         |             | Te          | Test 2      |             | Test 3      |                          |      |      |     |     |      |  |
|-------------------------------------------------------------|---------------------------------------------------|-------------------|----------------|-------------|-------------|-------------|-------------|-------------|--------------------------|------|------|-----|-----|------|--|
|                                                             |                                                   |                   | Cell 1         | Cell 2      | Cell 1      | Cell 2      | Cell 1      | Cell 2      |                          |      |      |     |     |      |  |
|                                                             | hannel Number                                     |                   |                | 1           |             | 1           |             | 1           |                          |      |      |     |     |      |  |
| BW <sub>channel</sub>                                       |                                                   | MHz               | 10             |             | 10          |             | 10          |             |                          |      |      |     |     |      |  |
| Measurement bandwidth                                       |                                                   | $n_{PRB}$         | 22—27          |             | 22—27       |             | 22—27       |             |                          |      |      |     |     |      |  |
| PDSCH Reference measurement channel defined in A.3.1.1.1    |                                                   |                   | R.0<br>FDD     | -           | R.0<br>FDD  | -           | R.0<br>FDD  | -           |                          |      |      |     |     |      |  |
| PDSCH alloca                                                | PDSCH allocation                                  |                   | 13—36          | -           | 13—36       | -           | 13—36       | -           |                          |      |      |     |     |      |  |
| PDCCH/PCFICH/PHICH Reference measurement channel defined in |                                                   |                   | R.6 FDD        |             | R.6 FDD     |             | R.6 FDD     |             |                          |      |      |     |     |      |  |
| A.3.1.2.1                                                   |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             | ns defined in A.3.2.1.1<br>nd A.3.2.1.2 (OP.2     |                   | OP.1<br>FDD    | OP.2<br>FDD | OP.1<br>FDD | OP.2<br>FDD | OP.1<br>FDD | OP.2<br>FDD |                          |      |      |     |     |      |  |
| PBCH_RA                                                     |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
| PBCH_RB                                                     | PBCH_RB PSS_RA SSS_RA PCFICH_RB PHICH_RA PHICH_RB |                   |                |             | 0           | 0           | 0           | 0           |                          |      |      |     |     |      |  |
|                                                             |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             |                                                   |                   | 0              | 0           |             |             |             |             |                          |      |      |     |     |      |  |
| PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RB                         |                                                   |                   |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             |                                                   |                   |                |             |             |             |             |             | OCNG_RA <sup>Note1</sup> |      |      |     |     |      |  |
|                                                             |                                                   |                   |                |             |             |             |             |             | OCNG_RB <sup>Note</sup>  | 1    |      |     |     |      |  |
|                                                             | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21           |                   |                |             |             |             |             |             | dBm/15 kHz               | -106 | -106 | -88 | -88 | -116 |  |
| $N_{oc}^{ m Note2}$                                         | Bands 2, 5 and 7                                  | -1                | 14             |             |             |             |             |             |                          |      |      |     |     |      |  |
| T oc                                                        | Bands 3, 8, 12, 13,<br>14, 17 and 20              | -113              |                |             |             |             |             |             |                          |      |      |     |     |      |  |
|                                                             | Band 9                                            | -1                | 15             |             |             |             |             |             |                          |      |      |     |     |      |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$    |                                                   | dB                | 2.5            | -6          | 2.5         | -6          | 0.46        | -5.76       |                          |      |      |     |     |      |  |
| RSRP <sup>Note3</sup>                                       | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21           | dBm/15 kHz        | -100           | -105        | -82         | -87         | -113        | -117        |                          |      |      |     |     |      |  |
|                                                             | Bands 2, 5 and 7                                  |                   |                |             |             |             | -111        | -115        |                          |      |      |     |     |      |  |
|                                                             | Bands 3, 8, 12, 13,<br>14, 17 and 20              |                   |                |             |             |             | -110        | -114        |                          |      |      |     |     |      |  |
|                                                             | Band 9                                            |                   |                |             |             |             | -112        | -116        |                          |      |      |     |     |      |  |
| lo <sup>Note3</sup>                                         | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21           | dBm/9 MHz         | -70.27         | -70.27      | -52.27      | -52.27      | -82.43      |             |                          |      |      |     |     |      |  |
|                                                             | Bands 2, 5 and 7                                  |                   |                |             |             |             | -80         | ).43        |                          |      |      |     |     |      |  |
|                                                             | Bands 3, 8, 12, 13,<br>14, 17 and 20              |                   |                |             |             |             |             | 0.43        |                          |      |      |     |     |      |  |
|                                                             | Band 9                                            |                   |                |             |             |             | -81.43      |             |                          |      |      |     |     |      |  |
| $\hat{E}_s/N_{oc}$                                          |                                                   | dB                | 6              | 1           | 6           | 1           | 3           | -1          |                          |      |      |     |     |      |  |
| Propagation c                                               |                                                   | -                 | AWGN AWGN AWGI |             |             |             |             |             |                          |      |      |     |     |      |  |
| Note 1: OC                                                  | NG shall be used such t                           | that both calle a | a fully alla   | cated and   | a constant  | total trans | mittad nav  | /Or         |                          |      |      |     |     |      |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and Io levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

#### A.9.1.1.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.2.

### A.9.1.2 TDD Intra frequency case

#### A.9.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.2 for TDD intra frequency measurements.

#### A.9.1.2.2 Test parameters

In this set of test cases all cells are on the same carrier frequency. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.2.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

Table A.9.1.2.2-1: RSRP TDD Intra frequency test parameters

| Por                                                                                                                          | ameter                                        | Unit       | Tes         | st 1        | Tes         | st 2        | Test 3      |             |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                                                                                                              |                                               | Unit       | Cell 1      | Cell 2      | Cell 1      | Cell 2      | Cell 1      | Cell 2      |
| E-UTRA RF Ch                                                                                                                 | annel Number                                  |            | •           | •           | •           | •           |             |             |
| BW <sub>channel</sub>                                                                                                        |                                               | MHz        | 1           | 0           | 1           | 0           | 10          |             |
| Special subfran                                                                                                              | e1                                            |            | (           | 3           | 6           |             | 6           |             |
| Uplink/downlink                                                                                                              | configuration <sup>Note1</sup>                |            |             | 1           | 1           |             | •           |             |
| Measurement b                                                                                                                |                                               | $n_{PRB}$  | 22-         | –27         | 22-         | <b>–27</b>  | 22-         | –27         |
| PDSCH Refere<br>channel defined                                                                                              | nce measurement<br>d in A.3.1.1.2             |            | R.0<br>TDD  | -           | R.0<br>TDD  | -           | R.0<br>TDD  | -           |
| PDSCH allocati                                                                                                               | ion                                           | $n_{PRB}$  | 13—36       | -           | 13—36       | -           | 13—36       | -           |
| defined in A.3.1                                                                                                             | surement channel .2.2                         |            | R.6         | TDD         | R.6         | TDD         | R.6         | TDD         |
| OCNG Patterns<br>A.3.2.2.1 (OP.1<br>A.3.2.2.2 (OP.2                                                                          | TDD) and                                      |            | OP.1<br>TDD | OP.2<br>TDD | OP.1<br>TDD | OP.2<br>TDD | OP.1<br>TDD | OP.2<br>TDD |
| PBCH_RA PBCH_RB PSS_RA SSS_RA PCFICH_RB PHICH_RA PHICH_RB PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RA PDSCH_RB OCNG_RA OCNG_RB Note2 |                                               | dB         | 0           | 0           | 0           | 0           | 0           | 0           |
| $N_{oc}^{ m Note3}$                                                                                                          | Bands 33, 34, 35,<br>36, 37, 38, 39<br>and 40 | dBm/15 kHz | -106        | -106        | -88         | -88         | -1          | 16          |
| $\hat{\mathrm{E}}_{_{\mathrm{s}}}/\mathrm{I}_{_{\mathrm{ot}}}$                                                               |                                               | dB         | 2.5         | -6          | 2.5         | -6          | 0.5         | -5.76       |
| RSRP <sup>Note4</sup>                                                                                                        | Bands 33, 34, 35,<br>36, 37, 38, 39<br>and 40 | dBm/15 kHz | -100        | -105        | -82         | -87         | -113        | -117        |
| lo <sup>Note4</sup>                                                                                                          | Bands 33, 34, 35,<br>36, 37, 38, 39<br>and 40 | dBm/9 MHz  | -70.27      | -70.27      | -52.27      | -52.27      | -82         | .43         |
| $\hat{E}_s/N_{oc}$                                                                                                           |                                               | dB         | 6           | 1           | 6           | 1           | 3           | -1          |
| Propagation co                                                                                                               | ndition                                       | -          | AW          | GN          | AW          | GN          | AW          | GN          |

Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.

Note 2: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is

achieved for all OFDM symbols.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and

time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled. Note 4: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters

Note 5: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

## A.9.1.2.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.2.

# A.9.1.3 FDD—FDD Inter frequency case

## A.9.1.3.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.3 for FDD—FDD inter frequency measurements.

#### A.9.1.3.2 Test parameters

In this set of test cases the cells are on different carrier frequencies. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.3.2-1 In all test cases, Cell 1 is the serving cell and Cell 2 the target cell. The inter frequency measurements are supported by a measurement gap.

Table A.9.1.3.2-1: RSRP FDD—FDD Inter frequency test parameters

| Parameter                                                                                                                                         |                                                                                                               | Unit             | Tes         | st 1        | Test 2                                   |                                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------|------------------------------------------|--------------------------------------|--|
|                                                                                                                                                   |                                                                                                               | Onit             | Cell 1      | Cell 2      | Cell 1                                   | Cell 2                               |  |
| E-UTRA RF Cha                                                                                                                                     | nnel Number                                                                                                   |                  | 1           | 2           | 1                                        | 2                                    |  |
| BW <sub>channel</sub>                                                                                                                             |                                                                                                               | MHz              | 10          | 10          | 10                                       | 10                                   |  |
| Gap Pattern Id                                                                                                                                    | Gap Pattern Id                                                                                                |                  | 0           | -           | 0                                        | -                                    |  |
| Measurement ba                                                                                                                                    |                                                                                                               | $n_{PRB}$        | 22-         | <b>–27</b>  | 22—27                                    |                                      |  |
| PDSCH Reference channel defined in                                                                                                                |                                                                                                               |                  | R.0<br>FDD  | -           | R.0<br>FDD                               | -                                    |  |
| PDSCH allocation                                                                                                                                  | n                                                                                                             | $n_{PRB}$        | 13—36       | -           | 13—36                                    | -                                    |  |
| measurement characteristics A.3.1.2.1                                                                                                             |                                                                                                               |                  |             | FDD         |                                          | R.6 FDD                              |  |
|                                                                                                                                                   | OCNG Patterns defined in A.3.2.1.1                                                                            |                  | OP.1<br>FDD | OP.2<br>FDD | OP.1                                     | OP.2                                 |  |
| PBCH_RA PBCH_RB PSS_RA SSS_RA PCFICH_RB PHICH_RA PHICH_RB PDCCH_RA PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RA PDSCH_RA PDSCH_RB OCNG_RANote1 OCNG_RBNote | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21<br>Bands 2, 5 and 7<br>Bands 3, 8, 12, 13,                            | dB<br>dBm/15 kHz | -88.65      | -88.65      | FDD $0$                                  | -117<br>-115<br>-114                 |  |
|                                                                                                                                                   | 14, 17 and 20<br>Band 9                                                                                       |                  |             |             | 2 +8dB)                                  | -116                                 |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$                                                                                          |                                                                                                               | dB               | 10          | 10          | 13                                       | -4                                   |  |
| RSRP <sup>Note3</sup>                                                                                                                             | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21<br>Bands 2, 5 and 7<br>Bands 3, 8, 12, 13,<br>14, 17 and 20<br>Band 9 | dBm/15 kHz       | -78.65      | -78.65      | (RSRP<br>for Cell<br>2<br>+25dB)         | -121<br>-119<br>-118<br>-120         |  |
| Io <sup>Note3</sup> Bands 1, 4, 6, 10, 11, 18, 19 and 21 Bands 2, 5 and 7 Bands 3, 8, 12, 13, 14, 17 and 20 Band 9                                |                                                                                                               | dBm/9 MHz        | -50.45      | -50.45      | (lo for<br>Channel<br>2<br>+19.75d<br>B) | -87.76<br>-85.76<br>-84.76<br>-86.76 |  |
| $\hat{E}_s/N_{oc}$                                                                                                                                |                                                                                                               | dB               | 10          | 10          | 13                                       | -4                                   |  |
| Propagation cond                                                                                                                                  | dition                                                                                                        | -                | AW          | 'GN         | AW                                       | GN                                   |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of

appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

#### A.9.1.3.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.3.

# A.9.1.4 TDD—TDD Inter frequency case

# A.9.1.4.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.3 for TDD—TDD inter frequency measurements.

## A.9.1.4.2 Test parameters

In this set of test cases the cells are on different carrier frequencies. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.4.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell. The inter frequency measurements are supported by a measurement gap.

Table A.9.1.4.2-1: RSRP TDD—TDD Inter frequency test parameters

| Po                                                       | rameter                                  | Unit       | Tes        | st 1       | Test 2                                   |        |
|----------------------------------------------------------|------------------------------------------|------------|------------|------------|------------------------------------------|--------|
|                                                          |                                          | Oilit      | Cell 1     | Cell 2     | Cell 1                                   | Cell 2 |
| E-UTRA RF Cha                                            | nnel Number                              |            | 1          | 2          | 1                                        | 2      |
| BW <sub>channel</sub>                                    | Note1                                    | MHz        | 10         | 10         | 10                                       | 10     |
| Special subframe                                         | configuration <sup>Note1</sup>           |            |            | 6          | (                                        |        |
| Uplink-downlink                                          | configuration                            |            |            | 1          |                                          |        |
| Gap Pattern Id                                           |                                          |            | 0          | -          | 0 -                                      |        |
| Measurement ba                                           | ndwidth                                  | $n_{PRB}$  | 22-        | <b>–27</b> | 22–                                      | -27    |
| PDSCH Reference channel defined in                       |                                          |            | R.0<br>TDD | -          | R.0<br>TDD                               | -      |
| PDSCH allocation                                         | n                                        | $n_{PRB}$  | 13—36      | -          | 13—36                                    | -      |
| PDCCH/PCFICH                                             | /PHICH Reference                         |            |            |            |                                          |        |
| measurement ch                                           | annel defined in                         |            | R.6        | TDD        | R.6                                      | TDD    |
| A.3.1.2.2                                                |                                          |            |            |            |                                          |        |
|                                                          | defined in A.3.2.2.1                     |            | OP.1       | OP.2       | OP.1                                     | OP.2   |
|                                                          | A.3.2.2.2 (OP.2 TDD)                     |            | TDD        | TDD        | TDD                                      | TDD    |
| PBCH_RA                                                  |                                          |            |            |            |                                          |        |
|                                                          | PBCH_RB                                  |            |            |            |                                          |        |
| PSS_RA                                                   |                                          |            |            |            |                                          |        |
|                                                          | SSS_RA                                   |            |            |            |                                          |        |
| PCFICH_RB<br>PHICH_RA                                    |                                          | dB 0       |            |            |                                          |        |
|                                                          |                                          |            | 0          |            |                                          |        |
| PHICH_RB                                                 |                                          | dB         | 0          | 0          | 0                                        | 0      |
|                                                          | PDCCH_RA                                 |            |            |            |                                          |        |
| PDCCH_RB                                                 |                                          |            |            |            |                                          |        |
| PDSCH_RA                                                 |                                          |            |            |            |                                          |        |
| PDSCH_RB                                                 |                                          |            |            |            |                                          |        |
| OCNG_RA <sup>Note2</sup>                                 |                                          |            |            |            |                                          |        |
| OCNG_RB <sup>Note2</sup>                                 |                                          |            |            |            |                                          |        |
| $N_{oc}^{$                                               | Bands 33, 34, 35, 36, 37, 38, 39 and 40  | dBm/15 kHz | -88.65     | -88.65     | ( $N_{oc}$ for Channel 2 +8dB)           | -117   |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ |                                          | dB         | 10         | 10         | 13                                       | -4     |
| RSRP <sup>Note4</sup>                                    | Bands 33, 34, 35, 36, 37, 38, 39 and 40. | dBm/15 kHz | -78.65     | -78.65     | (RSRP<br>for Cell<br>2<br>+25dB)         | -121   |
| Io <sup>Note4</sup>                                      | Bands 33, 34, 35, 36, 37, 38, 39 and 40  | dBm/9 MHz  | -50.45     | -50.45     | (lo for<br>Channel<br>2<br>+19.75d<br>B) | -87.76 |
| $\hat{E}_s/N_{oc}$                                       |                                          | dB         | 10         | 10         | 13                                       | -4     |
| Propagation cond                                         | dition                                   | -          | AW         | 'GN        | AWGN                                     |        |

Propagation condition - AWGN AWGN

Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.

Note 2: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of

appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 5: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

## A.9.1.4.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.3.

# A.9.1.5 FDD—TDD Inter frequency case

#### A.9.1.5.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.3 for FDD—TDD inter frequency measurements.

#### A.9.1.5.2 Test parameters

In this set of test cases the cells are on different carrier frequencies. Both absolute and relative accuracy of RSRP inter frequency measurements are tested by using the parameters in Table A.9.1.5.2-1 and Table A.9.1.5.2-2. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell. Cell 1 is FDD cell and Cell 2 is TDD cell. The inter frequency measurements are supported by a measurement gap.

Table A.9.1.5.2-1: RSRP FDD—TDD Inter frequency test parameters (FDD Cell1)

| _                                                                                                                      |                                        | Tes                          | st 1        | Tes                                   | st 2             |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|-------------|---------------------------------------|------------------|--|
| Parameter                                                                                                              | Unit                                   | Cell 1                       |             |                                       | Cell 1           |  |
| E-UTRA RF Channel Number                                                                                               |                                        | 1                            |             | 1                                     |                  |  |
| BW <sub>channel</sub>                                                                                                  | MHz                                    | 10                           |             | 10                                    |                  |  |
| Gap Pattern Id                                                                                                         |                                        | (                            | )           | (                                     | )                |  |
| Measurement bandwidth                                                                                                  | $n_{PRB}$                              | 22-                          | <b>–27</b>  | 22-                                   | <b>–27</b>       |  |
| PDSCH Reference measurement channel defined in A.3.1.1.1                                                               |                                        | R.0                          | FDD         | R.0                                   | FDD              |  |
| PDSCH allocation                                                                                                       | $n_{PRB}$                              | 13-                          | <b>–</b> 36 | 13-                                   | <b>–36</b>       |  |
| PDCCH/PCFICH/PHICH<br>Reference measurement channel<br>defined in A.3.1.2.1                                            |                                        | R.6 FDD                      |             | R.6                                   | R.6 FDD          |  |
| OCNG Patterns defined in<br>A.3.2.1.1 (OP.1 FDD) and<br>A.3.2.1.2 (OP.2 FDD)                                           |                                        | OP.1 FDD                     |             | OP.1 FDD                              |                  |  |
| PBCH_RA PBCH_RB PSS_RA SSS_RA PCFICH_RB PHICH_RA PHICH_RB PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RB OCNG_RANote1 OCNG_RBNote | dB                                     | 0                            | 0           | 0                                     | 0                |  |
| $N_{oc}^{ m \ Note2}$                                                                                                  | dBm/15 kHz                             | -88                          | 3.65        | -1                                    | 04               |  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$                                                               | dB                                     | 1                            | 0           | 1                                     | 3                |  |
| RSRPNote3                                                                                                              | dBm/15 kHz                             | -78                          | 3.65        | -9                                    | 91               |  |
| IoNote3                                                                                                                | dBm/9 MHz                              | -50                          | -50.45      |                                       | 3.01             |  |
| $\hat{E}_s/N_{oc}$                                                                                                     | dB                                     | 1                            | 10          |                                       | 3                |  |
| Propagation condition                                                                                                  | -                                      | AW                           | 'GN         | AW                                    | 'GN              |  |
| Note 1: OCNG shall be used suc<br>transmitted power spectr<br>Note 2: Interference from other c                        | al density is achievells and noise sou | ved for all (<br>rces not sp | OFDM sym    | a constant<br>nbols.<br>the test is a | total<br>assumed |  |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of

appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

Table A.9.1.5.2-2: RSRP FDD—TDD Inter frequency test parameters (TDD cell2)

| Parameter                                                                                                                                                              | Unit                | Test 1                 | Test 2               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|----------------------|--|--|--|--|
| raiailletei                                                                                                                                                            | Onit                | Cell 2                 | Cell 2               |  |  |  |  |
| E-UTRA RF Channel Number                                                                                                                                               |                     | 2                      | 2                    |  |  |  |  |
| BW <sub>channel</sub>                                                                                                                                                  | MHz                 | 10                     | 10                   |  |  |  |  |
| Special subframe                                                                                                                                                       |                     | 6                      | 6                    |  |  |  |  |
| configuration Note1                                                                                                                                                    |                     |                        | _                    |  |  |  |  |
| Uplink-downlink configuration Note1                                                                                                                                    |                     | 1                      | 1                    |  |  |  |  |
| Gap Pattern Id                                                                                                                                                         |                     | -                      | -                    |  |  |  |  |
| Measurement bandwidth                                                                                                                                                  | $n_{PRB}$           | 22—27                  | 22—27                |  |  |  |  |
| PDSCH Reference measurement channel defined in A.3.1.1.2                                                                                                               |                     | -                      | -                    |  |  |  |  |
| PDSCH allocation                                                                                                                                                       | $n_{PRB}$           | -                      | -                    |  |  |  |  |
| PDCCH/PCFICH/PHICH                                                                                                                                                     |                     |                        |                      |  |  |  |  |
| Reference measurement channel                                                                                                                                          |                     | R.6 TDD                | R.6 TDD              |  |  |  |  |
| defined in A.3.1.2.2                                                                                                                                                   |                     |                        |                      |  |  |  |  |
| OCNG Patterns defined in                                                                                                                                               |                     |                        |                      |  |  |  |  |
| A.3.2.2.1 (OP.1 TDD) and                                                                                                                                               |                     | OP.2 TDD               | OP.2 TDD             |  |  |  |  |
| A.3.2.2.2 (OP.2 TDD)                                                                                                                                                   |                     |                        |                      |  |  |  |  |
| PBCH_RA                                                                                                                                                                |                     |                        |                      |  |  |  |  |
| PBCH_RB                                                                                                                                                                | 1                   |                        |                      |  |  |  |  |
| PSS_RA                                                                                                                                                                 | 1                   |                        |                      |  |  |  |  |
| SSS_RA                                                                                                                                                                 | 1                   |                        |                      |  |  |  |  |
| PCFICH_RB                                                                                                                                                              | 1                   |                        |                      |  |  |  |  |
| PHICH_RA                                                                                                                                                               |                     | _                      | _                    |  |  |  |  |
| PHICH_RB                                                                                                                                                               | dB                  | 0                      | 0                    |  |  |  |  |
| PDCCH_RA                                                                                                                                                               | 1                   |                        |                      |  |  |  |  |
| PDCCH_RB                                                                                                                                                               | 1                   |                        |                      |  |  |  |  |
| PDSCH_RA                                                                                                                                                               | -                   |                        |                      |  |  |  |  |
| PDSCH_RB                                                                                                                                                               | -                   |                        |                      |  |  |  |  |
| OCNG_RA <sup>Note2</sup>                                                                                                                                               | 1                   |                        |                      |  |  |  |  |
| OCNG_RB <sup>Note2</sup>                                                                                                                                               |                     |                        |                      |  |  |  |  |
| N <sub>oc</sub> Note3                                                                                                                                                  | dBm/15 kHz          | -88.65                 | -112                 |  |  |  |  |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$                                                                                                               | dB                  | 10                     | -4                   |  |  |  |  |
| RSRP <sup>Note4</sup>                                                                                                                                                  | dBm/15 kHz          | -78.65                 | -116                 |  |  |  |  |
| IoNote4                                                                                                                                                                | dBm/9 MHz           | -50.45                 | -82.76               |  |  |  |  |
| $\hat{E}_s/N_{oc}$                                                                                                                                                     | dB                  | 10                     | -4                   |  |  |  |  |
| Propagation condition                                                                                                                                                  | -                   | AWGN                   | AWGN                 |  |  |  |  |
| Note 1: For special subframe and                                                                                                                                       | I uplink-downlink o | configurations see Tal | bles 4.2-1 and 4.2-  |  |  |  |  |
| 2 in 3GPP TS 36.211.                                                                                                                                                   | h 4h - 4 h - 41     | a falla alla di la la  |                      |  |  |  |  |
| Note 2: OCNG shall be used such that both cells are fully allocated and a constant total                                                                               |                     |                        |                      |  |  |  |  |
| transmitted power spectral density is achieved for all OFDM symbols.                                                                                                   |                     |                        |                      |  |  |  |  |
| Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subspiriors and time and shall be modelled as AWGN of |                     |                        |                      |  |  |  |  |
| to be constant over subcarriers and time and shall be modelled as AWGN of                                                                                              |                     |                        |                      |  |  |  |  |
| appropriate power for $rac{N_{oc}}{}$ to be fulfilled.                                                                                                                |                     |                        |                      |  |  |  |  |
| Note 4: RSRP and lo levels have been derived from other parameters for information                                                                                     |                     |                        |                      |  |  |  |  |
| purposes. They are not settable parameters themselves.                                                                                                                 |                     |                        |                      |  |  |  |  |
|                                                                                                                                                                        |                     |                        | ent interference and |  |  |  |  |
| Note 5: RSRP minimum requirements are specified assuming independent interference and                                                                                  |                     |                        |                      |  |  |  |  |

#### A.9.1.5.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.3.

noise at each receiver antenna port.

# A.9.2 RSRQ

# A.9.2.1 FDD Intra frequency case

## A.9.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.5.

475

## A.9.2.1.2 Test parameters

In this test case all cells are on the same carrier frequency. The absolute accuracy of RSRQ intra frequency measurement is tested by using the parameters in Table A.9.2.1.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

Table A.9.2.1.2-1: RSRQ FDD Intra frequency test parameters

| D.                                                       | arameter                                            | Unit                    | Tes         | st 1            |               | st 2          | Tes          | st 3          |
|----------------------------------------------------------|-----------------------------------------------------|-------------------------|-------------|-----------------|---------------|---------------|--------------|---------------|
|                                                          |                                                     | Offic                   | Cell 1      | Cell 2          | Cell 1        | Cell 2        | Cell 1       | Cell 2        |
| E-UTRA RF Cha                                            | annei Number                                        | MHz                     | 1           | <u>1</u><br>0   |               | <u>1</u><br>0 |              | <u>1</u><br>0 |
| BW <sub>channel</sub>                                    |                                                     | $n_{PRB}$               |             |                 |               |               |              |               |
|                                                          | Measurement bandwidth                               |                         |             | <del>-</del> 27 | 22—27         |               | 22—27        |               |
| channel defined                                          | nce measurement<br>in A.3.1.1.1                     |                         | R.0<br>FDD  | -               | R.0<br>FDD    | -             | R.0<br>FDD   | -             |
| PDSCH allocation                                         |                                                     | $n_{PRB}$               | 13—36       | -               | 13—36         | -             | 13—36        | -             |
| measurement ch<br>A.3.1.2.1                              | H/PHICH Reference<br>nannel defined in              |                         |             | FDD             |               | FDD           |              | FDD           |
|                                                          | defined in A.3.2.1.1<br>I A.3.2.1.2 (OP.2 FDD)      |                         | OP.1<br>FDD | OP.2<br>FDD     | OP.1<br>FDD   | OP.2<br>FDD   | OP.1<br>FDD  | OP.2<br>FDD   |
| PBCH_RA<br>PBCH_RB                                       |                                                     |                         |             |                 |               |               |              |               |
| PSS_RA<br>SSS_RA                                         |                                                     |                         |             |                 |               |               |              |               |
| PCFICH_RB                                                |                                                     |                         |             |                 |               |               |              |               |
| PHICH_RA                                                 |                                                     |                         |             |                 |               |               |              |               |
| PHICH_RB                                                 |                                                     | dB                      | 0           | 0               | 0             | 0             | 0            | 0             |
| PDCCH_RA                                                 |                                                     |                         |             |                 |               |               |              |               |
|                                                          | PDCCH_RB PDSCH_RA PDSCH_RB OCNG_RA <sup>Note1</sup> |                         |             |                 |               |               |              |               |
|                                                          |                                                     |                         |             |                 |               |               |              |               |
|                                                          |                                                     |                         |             |                 |               |               |              |               |
| OCNG_RB <sup>Note1</sup>                                 |                                                     |                         |             |                 |               |               |              |               |
| OONO_NB                                                  | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21             |                         |             |                 |               |               | -1           | 16            |
| $N_{oc}^{ m Note2}$                                      | Bands 2, 5 and 7                                    | dBm/15 kHz              | 0.4.70      | 04.70           | -103.85       | -103.85       | -114         |               |
| oc                                                       | Bands 3, 8, 12, 13,                                 |                         | -84.76      | -84.76          |               | -103.85       | -113         |               |
|                                                          | 14, 17 and 20<br>Band 9                             |                         |             |                 |               |               | -115         |               |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ |                                                     | dB                      | -1.76       | -1.76           | -4.7          | -4.7          | -5.46        | -5.46         |
|                                                          | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21             |                         |             |                 |               |               | -120         | -120          |
| RSRP <sup>Note3</sup>                                    | Bands 2, 5 and 7                                    | dBm/15 kHz              | -81.76      | -81.76          | -106.75       | -106.75       | -118         | -118          |
|                                                          | Bands 3, 8, 12, 13, 14, 17 and 20                   |                         |             |                 |               |               | -117         | -117          |
|                                                          | Band 9                                              |                         |             |                 |               |               | -119         | -119          |
|                                                          | Bands 1, 4, 6, 10,<br>11, 18, 19 and 21             |                         |             |                 |               |               |              |               |
| RSRQ <sup>Note3</sup>                                    | Bands 2, 5 and 7                                    | dB                      | 14.77       | 1177            | 16.76         | 16.76         | 17 24        | 17 24         |
| KSKQ                                                     | Bands 3, 8, 12, 13,                                 | uБ                      | -14.77      | -14.77          | -16.76        | -16.76        | -17.34       | -17.34        |
|                                                          | 14, 17 and 20<br>Band 9                             |                         |             |                 |               |               |              |               |
|                                                          | Bands 1, 4, 6, 10,                                  |                         |             |                 |               |               | -85          | 5.67          |
| lo <sup>Note3</sup>                                      | 11, 18, 19 and 21<br>Bands 2, 5 and 7               | dDres (C \$ 41 b        | F0          | 50              | 70            | 70            |              | 3.67          |
| 10                                                       | Bands 3, 8, 12, 13,                                 | dBm/9 MHz               | -50         | -50             | -73           | -73           |              | 2.67          |
|                                                          | 14, 17 and 20<br>Band 9                             |                         |             |                 |               |               |              | l.67          |
| $\hat{E}_s/N_{oc}$                                       | •                                                   | dB                      | 3           | 3               | -2.9          | -2.9          | -4           | -4            |
| Propagation cor                                          | ndition                                             | _                       | Δ۱۸۸        | 'GN             | Δ۱۸۸          | 'GN           | Δ۱۸۸         | /GN           |
| Note 1: OCNG                                             | shall be used such that be                          | oth cells are fully all |             |                 | otal transmit | ted power s   | pectral dens | sitv is       |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

## A.9.2.1.3 Test Requirements

The RSRQ measurement accuracy shall fulfil the requirements in Section 9.1.5.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

# A.9.2.2 TDD Intra frequency case

# A.9.2.2.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.5.

477

## A.9.2.2.2 Test parameters

In this test case all cells are on the same carrier frequency. The absolute accuracy of RSRQ intra frequency measurement is tested by using the parameters in Table A.9.2.2.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

Table A.9.2.2.2-1: RSRQ TDD Intra frequency test parameters

| De                                                       |                                         | l lmit        | Test 1     |            | Test 2     |             | Test 3     |        |
|----------------------------------------------------------|-----------------------------------------|---------------|------------|------------|------------|-------------|------------|--------|
| Pa                                                       | arameter                                | Unit          | Cell 1     | Cell 2     | Cell 1     | Cell 2      | Cell 1     | Cell 2 |
| E-UTRA RF Cha                                            | annel Number                            |               |            | 1          |            | 1           |            |        |
| BW <sub>channel</sub>                                    |                                         | MHz           | 1          | 0          | 1          | 0           | 10         |        |
| Special subfram                                          | Special subframe configuration Note1    |               | (          | 3          | (          | 6           | 6          |        |
| Uplink-downlink                                          | configuration Note1                     |               | ,          | 1          |            | 1           | 1          |        |
| Measurement ba                                           | andwidth                                | $n_{\it PRB}$ | 22-        | <b>–27</b> | 22-        | <b>–</b> 27 | 22-        | -27    |
| PDSCH Referen                                            | nce measurement<br>in A.3.1.1.2         |               | R.0<br>TDD | -          | R.0<br>TDD | -           | R.0<br>TDD | -      |
| PDSCH allocation                                         |                                         | $n_{PRB}$     | 13—36      | -          | 13—36      | -           | 13—36      | -      |
| PDCCH/PCFICH                                             | H/PHICH Reference                       | 1 KD          |            |            |            |             |            |        |
|                                                          | nannel defined in                       |               | R.6        | TDD        | R.6        | TDD         | R.6        | TDD    |
| A.3.1.2.2                                                |                                         |               |            |            |            |             |            |        |
| OCNG Patterns                                            | defined in A.3.2.2.1                    |               | OP.1       | OP.2       | OP.1       | OP.2        | OP.1       | OP.2   |
| (OP.1 TDD) and                                           | A.3.2.2.2 (OP.2 TDD)                    |               | TDD        | TDD        | TDD        | TDD         | TDD        | TDD    |
| PBCH_RA                                                  |                                         |               |            |            |            |             |            |        |
| PBCH_RB                                                  |                                         |               |            |            |            |             |            |        |
| PSS_RA                                                   |                                         |               |            |            |            |             |            |        |
| SSS_RA                                                   |                                         |               |            |            |            |             |            |        |
| PCFICH_RB                                                |                                         |               |            |            |            |             |            |        |
| PHICH_RA                                                 |                                         |               |            |            |            |             |            |        |
| PHICH_RB                                                 |                                         | dB            | 0          | 0          | 0          | 0           | 0          | 0      |
|                                                          | PDCCH_RA                                |               | U          | U          |            | O           |            |        |
| PDCCH RB                                                 |                                         |               |            |            |            |             |            |        |
| PDSCH RA                                                 |                                         |               |            |            |            |             |            |        |
| PDSCH RB                                                 |                                         |               |            |            |            |             |            |        |
| OCNG_RA <sup>Note2</sup>                                 |                                         |               |            |            |            |             |            |        |
| OCNG_RA                                                  |                                         |               |            |            |            |             |            |        |
| OCNG_RB <sup>Note2</sup>                                 | T =                                     |               |            |            |            |             |            |        |
| $N_{oc}^{ m Note3}$                                      | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dBm/15 kHz    | -84.76     | -84.76     | -103.85    | -103.85     | -1         | 16     |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ |                                         | dB            | -1.76      | -1.76      | -4.7       | -4.7        | -5.46      | -5.46  |
| RSRP <sup>Note4</sup>                                    | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dBm/15 kHz    | -81.76     | -81.76     | -106.75    | -106.75     | -120       | -120   |
| RSRQ <sup>Note4</sup>                                    | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dB            | -14.77     | -14.77     | -16.76     | -16.76      | -17.34     | -17.34 |
| Io <sup>Note4</sup>                                      | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dBm/9 MHz     | -50        | -50        | -73        | -73         | -85        | .67    |
| $\hat{E}_s/N_{oc}$                                       |                                         | dB            | 3          | 3          | -2.9       | -2.9        | -4         | -4     |
| Propagation con                                          | dition                                  | -             | AW         | 'GN        | AW         | /GN         | AW         | GN     |
| 1 1 1                                                    |                                         |               |            |            | 140010     | 000 TO 00   | ·          |        |

Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.

## A.9.2.2.3 Test Requirements

The RSRQ measurement accuracy shall fulfil the requirements in Sections 9.1.5.

Note 2: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 4: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 5: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

#### 479

# A.9.2.3 FDD—FDD Inter frequency case

# A.9.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.6.

## A.9.2.3.2 Test parameters

In this test case the two cells are on different carrier frequencies and measurement gaps are provided. Both RSRQ inter frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.2.3.2-1. In all tests, Cell 1 is the serving cell and Cell 2 the target cell.

Table A.9.2.3.2-1: RSRQ FDD—FDD Inter frequency test parameters

| D:                                                       | arameter                               | Unit       | Tes     |        | Test 2    |               | Test 3    |                                                                                                  |
|----------------------------------------------------------|----------------------------------------|------------|---------|--------|-----------|---------------|-----------|--------------------------------------------------------------------------------------------------|
|                                                          |                                        | Onit       | Cell 1  | Cell 2 | Cell 1    | Cell 2        | Cell 1    | Cell 2                                                                                           |
| E-UTRA RF Cha                                            | annel Number                           |            | 1       | 2      | 1         | 2             | 1         | 2                                                                                                |
| BW <sub>channel</sub>                                    |                                        | MHz        | 10      | 10     | 10        | 10            | 10        | 10                                                                                               |
| Gap Pattern Id                                           |                                        |            | 0       | -      | 0         | -             | 0         | -                                                                                                |
| Measurement b                                            | andwidth                               | $n_{PRB}$  | 22-     | –27    | 22-       | <b>–27</b>    | 22—27     |                                                                                                  |
| PDSCH Referer<br>channel defined                         | nce measurement<br>I in A.3.1.1.1      |            | R.0 FDD | -      | R.0 FDD   | -             | R.0 FDD   | -                                                                                                |
| PDSCH allocation                                         | on                                     | $n_{PRB}$  | 13—36   | -      | 13—36     | -             | 13—36     | -                                                                                                |
|                                                          | H/PHICH Reference<br>hannel defined in |            | R.6 FDD |        | R.6 FDD   |               | R.6 FDD   |                                                                                                  |
|                                                          | defined in A.3.2.1.1                   |            | OP.1    | OP.2   | OP.1      | OP.2          | OP.1 FDD  | OP.2                                                                                             |
|                                                          | d A.3.2.1.2 (OP.2 FDD)                 |            | FDD     | FDD    | FDD       | FDD           | OP. I FUU | FDD                                                                                              |
| PBCH_RA                                                  |                                        |            |         |        |           |               |           |                                                                                                  |
| PBCH_RB                                                  |                                        |            |         |        |           |               |           |                                                                                                  |
| PSS_RA                                                   |                                        |            |         |        |           |               |           |                                                                                                  |
| SSS_RA<br>PCFICH RB                                      |                                        | -          |         |        |           |               |           |                                                                                                  |
| PHICH_RA                                                 |                                        | -          |         |        |           |               |           |                                                                                                  |
| PHICH RB                                                 |                                        | dB         | 0       | 0      | 0         |               | 0         | 0                                                                                                |
| PDCCH_RA                                                 |                                        | ub.        | 0       | U      | 0         | 0             | U         | U                                                                                                |
| PDCCH_RB                                                 |                                        |            |         |        |           |               |           |                                                                                                  |
| PDSCH_RA                                                 |                                        |            |         |        |           |               |           |                                                                                                  |
| PDSCH_RB                                                 |                                        | 1          |         |        |           |               |           |                                                                                                  |
| OCNG_RA <sup>Note1</sup>                                 |                                        | ]          |         |        |           |               |           |                                                                                                  |
| OCNG_RB <sup>Note1</sup>                                 | OCNG RB <sup>Note1</sup>               |            |         |        |           |               |           |                                                                                                  |
|                                                          | Bands 1, 4, 6, 10,                     |            |         |        |           |               | -119.50   | -119.50                                                                                          |
| λ/ Note2                                                 | 11, 18, 19 and 21<br>Bands 2, 5 and 7  |            |         |        |           |               | -117.50   | 117.50                                                                                           |
| $N_{oc}^{ m Note2}$                                      | Bands 3, 8, 12, 13,                    | dBm/15 kHz | -80     | -80    | -104.70   | -104.70       | -117.50   | -117.50                                                                                          |
|                                                          | 14, 17 and 20                          |            |         |        |           |               | -116.50   | -116.50                                                                                          |
|                                                          | Band 9                                 |            |         |        |           |               | -118.50   | -118.50                                                                                          |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | -                                      | dB         | -1.75   | -1.75  | -4.0      | -4.0          | -4.0      | -4.0                                                                                             |
| S/ Tot                                                   | D-11-4 4 0 40                          |            |         |        |           |               |           |                                                                                                  |
|                                                          | Bands 1, 4, 6, 10,                     |            |         |        |           |               | -123.50   | -123.50                                                                                          |
| North                                                    | 11, 18,19 and 21<br>Bands 2, 5 and 7   |            |         |        |           |               | -121.50   | -121 50                                                                                          |
| RSRP <sup>Note3</sup>                                    | Bands 3, 8, 12, 13,                    | dBm/15 kHz | -81.75  | -81.75 | -108.70   | -108.70       |           |                                                                                                  |
|                                                          | 14, 17 and 20                          |            |         |        |           |               | -120.50   | -119.50 -117.50 -116.50 -118.50 -121.50 -122.50 -122.50 -16.25  -90.26 -88.26 -87.26 -89.26 -4.0 |
|                                                          | Band 9                                 | 1          |         |        |           |               | -122.50   | -122.50                                                                                          |
|                                                          | Bands 1, 4, 6, 10,                     |            |         |        |           |               |           |                                                                                                  |
|                                                          | 11, 18 ,19 and 21                      |            |         |        |           |               |           |                                                                                                  |
| RSRQ <sup>Note3</sup>                                    | Bands 2, 5 and 7                       | dB         | -14.76  | -14.76 | -16.25    | -16.25        | -16.25    | -16.25                                                                                           |
|                                                          | Bands 3, 8, 12, 13,                    |            | 6       | 0      | 10.20     | 10.20         |           | 10.20                                                                                            |
|                                                          | 14, 17 and 20                          |            |         |        |           |               |           |                                                                                                  |
|                                                          | Band 9<br>Bands 1, 4, 6, 10,           |            |         |        |           |               |           |                                                                                                  |
|                                                          | 11, 18 ,19 and 21                      |            |         |        |           |               | -90.26    | -90.26                                                                                           |
| Note3                                                    | Bands 2, 5 and 7                       | ID (6.1    |         |        | <b>75</b> | <b>75.</b> 10 | -88.26    | -88.26                                                                                           |
| Io <sup>Note3</sup>                                      | Bands 3, 8, 12, 13,                    | dBm/9 MHz  | -50     | -50    | -75.46    | -75.46        |           |                                                                                                  |
|                                                          | 14, 17 and 20                          |            |         |        |           |               | -87.26    |                                                                                                  |
|                                                          | Band 9                                 |            |         |        |           |               | -89.26    | -89.26                                                                                           |
| $\hat{E}_s/N_{oc}$                                       |                                        | dB         | -1.75   | -1.75  | -4.0      | -4.0          | -4.0      |                                                                                                  |
| Propagation cor                                          | ndition                                | -          | AW      | GN     | AW        | /GN           | AWC       | ÷Ν                                                                                               |

OCNG shall be used such that both cells are fully allocated and a constant total transmitted power Note 1: spectral density is achieved for all OFDM symbols.

Interference from other cells and noise sources not specified in the test is assumed to be constant over Note 2:

subcarriers and time and shall be modelled as AWGN of appropriate power for  $^{N_{oc}}$  to be fulfilled. RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They

Note 3: are not settable parameters themselves.

RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at Note 4: each receiver antenna port.

#### A.9.2.3.3 Test Requirements

The RSRQ measurement accuracy shall fulfil the requirements in Section 9.1.6.

# A.9.2.4 TDD—TDD Inter frequency case

## A.9.2.4.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.6.

#### A.9.2.4.2 Test parameters

In this test case the two cells are on different carrier frequencies and measurement gaps are provided. Both RSRQ inter frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.2.4.2-1. In all tests, Cell 1 is the serving cell and Cell 2 the target cell.

Table A 9.2.4.2-1: RSRQ TDD—TDD Inter frequency test parameters

|                                                                | Parameter                               | Unit                           | Tes     | st 1       | Tes     | st 2    | Test 3   |          |  |
|----------------------------------------------------------------|-----------------------------------------|--------------------------------|---------|------------|---------|---------|----------|----------|--|
|                                                                |                                         | Offic                          | Cell 1  | Cell 2     | Cell 1  | Cell 2  | Cell 1   | Cell 2   |  |
| E-UTRA RF C                                                    | hannel Number                           |                                | 1       | 2          | 1       | 2       | 1        | 2        |  |
| BW <sub>channel</sub>                                          |                                         | MHz                            | 10      | 10         | 10      | 10      | 10       | 10       |  |
| Gap Pattern Id                                                 |                                         |                                | 0       | -          | 0       | -       | 0        | -        |  |
|                                                                | me configuration Note1                  |                                | (       | 3          | (       | 6       | 6        |          |  |
| Uplink-downlin                                                 | k configuration Note1                   |                                |         | 1          | 1       |         | 1        |          |  |
| Measurement                                                    | bandwidth                               | $n_{{\scriptscriptstyle PRB}}$ | 22-     | <b>–27</b> | 22-     | 22—27   |          | 22—27    |  |
| PDSCH Reference channel define                                 | ence measurement<br>ed in A.3.1.1.2     |                                | R.0 TDD | -          | R.0 TDD | -       | R.0 TDD  | -        |  |
| PDSCH alloca                                                   | tion                                    | $n_{{\scriptscriptstyle PRB}}$ | 13—36   | -          | 13—36   | -       | 13—36    | -        |  |
|                                                                | CH/PHICH Reference channel defined in   |                                | R.6 TDD |            | R.6 TDD |         | R.6 TDD  |          |  |
|                                                                | is defined in A.3.2.2.1                 |                                | OP.1    | OP.2       | OP.1    | OP.2    | OP.1     | OP.2     |  |
| PBCH RA                                                        | nd A.3.2.2.2 (OP.2 TDD)                 |                                | TDD     | TDD        | TDD     | TDD     | TDD<br>0 | TDD<br>0 |  |
| PBCH_RB<br>PSS_RA<br>SSS_RA                                    |                                         |                                |         |            |         |         | 0        | 0        |  |
| PCFICH_RB                                                      |                                         |                                |         |            |         |         |          |          |  |
| PHICH_RA                                                       |                                         |                                |         |            |         |         |          |          |  |
| PHICH_RB                                                       |                                         | dB                             | 0       | 0          | 0       | 0       |          |          |  |
| PDCCH_RA                                                       |                                         |                                |         |            |         |         |          |          |  |
| PDCCH_RB                                                       |                                         |                                |         |            |         |         |          |          |  |
| PDSCH_RA                                                       |                                         |                                |         |            |         |         |          |          |  |
| PDSCH_RB                                                       | )                                       |                                |         |            |         |         |          |          |  |
| OCNG_RA <sup>Note2</sup>                                       |                                         |                                |         |            |         |         |          |          |  |
| OCNG_RB <sup>Note2</sup>                                       | 2                                       |                                |         |            |         |         |          |          |  |
| $N_{oc}^{$                                                     | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dBm/15 kHz                     | -80     | -80        | -104.70 | -104.70 | -119.50  | -119.50  |  |
| $\mathbf{\hat{E}}_{_{\mathrm{s}}}/\mathbf{I}_{_{\mathrm{ot}}}$ |                                         | dB                             | -1.75   | -1.75      | -4.0    | -4.0    | -4.0     | -4.0     |  |
| RSRP <sup>Note4</sup>                                          | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dBm/15 kHz                     | -81.75  | -81.75     | -108.70 | -108.70 | -123.50  | -123.50  |  |
| RSRQ <sup>Note4</sup>                                          | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dB                             | -14.76  | -14.76     | -16.25  | -16.25  | -16.25   | -16.25   |  |
| lo <sup>Note4</sup>                                            | Bands 33, 34, 35, 36, 37, 38, 39 and 40 | dBm/9 MHz                      | -50     | -50        | -75.46  | -75.46  | -90.26   | -90.26   |  |
| $\hat{E}_s/N_{oc}$                                             |                                         | dB                             | -1.75   | -1.75      | -4.0    | -4.0    | -4.0     | -4.0     |  |
| Propagation co                                                 | ondition                                | _                              | AW      | 'GN        | AW      | /GN     | AW       | GN       |  |
|                                                                | ocial subframe and unlink               | dan malimin a andian mad       |         |            |         |         |          |          |  |

#### **Test Requirements** A.9.2.4.3

The RSRQ measurement accuracy shall fulfil the requirements in Section 9.1.6.

Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.

Note 2: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $\,N_{ac}\,$  to be fulfilled.

Note 4: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 5: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

# A.9.2.4A FDD—TDD Inter frequency case

## A.9.2.4A.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Sections 9.1.6.1 and 9.1.6.2 for FDD—TDD inter frequency measurements.

#### A.9.2.4A.2 Test parameters

In this set of test cases the two cells are on different carrier frequencies. Both absolute and relative accuracy of RSRQ inter frequency measurements are tested by using the parameters in Table A.9.2.4A.2-1 and Table A.9.2.4A.2-2. In all test cases, Cell 1 is the PCell and Cell 2 the target cell. Cell 1 is FDD cell and Cell 2 is TDD cell. The inter frequency measurements are supported by a measurement gap.

Table A.9.2.4A.2-1: RSRQ FDD—TDD Inter frequency test parameters (FDD Cell1)

| Parameter                                                                                                                    | Unit          | Test 1   | Test 2   | Test 3   |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|----------|--|
|                                                                                                                              | Oilit         | Cell 1   | Cell 1   | Cell 1   |  |
| E-UTRA RF Channel Number                                                                                                     |               | 1        | 1        | 1        |  |
| BW <sub>channel</sub>                                                                                                        | MHz           | 10       | 10       | 10       |  |
| Gap Pattern Id                                                                                                               |               | 0        | 0        | 0        |  |
| Measurement bandwidth                                                                                                        | $n_{PRB}$     | 22—27    | 22—27    | 22—27    |  |
| PDSCH Reference measurement channel defined in A.3.1.1.1                                                                     |               | R.0 FDD  | R.0 FDD  | R.0 FDD  |  |
| PDSCH allocation                                                                                                             | $n_{PRB}$     | 13—36    | 13—36    | 13—36    |  |
| PDCCH/PCFICH/PHICH Reference measurement channel defined in A.3.1.2.1                                                        |               | R.6 FDD  | R.6 FDD  | R.6 FDD  |  |
| OCNG Patterns defined in<br>A.3.2.1.1 (OP.1 FDD) and<br>A.3.2.1.2 (OP.2 FDD)                                                 |               | OP.1 FDD | OP.1 FDD | OP.1 FDD |  |
| PBCH_RA PBCH_RB PSS_RA SSS_RA PCFICH_RB PHICH_RA PHICH_RB PDCCH_RA PDCCH_RA PDSCH_RA PDSCH_RA PDSCH_RB OCNG_RA Note1 OCNG_RB | dB            | 0        | 0        | 0        |  |
| $N_{oc}^{ m Note2}$                                                                                                          | dBm/15<br>kHz | -80      | -104.70  | -114.5   |  |
| $\hat{E}_{s}/I_{ot}$                                                                                                         | dB            | -1.75    | -4.0     | -4.0     |  |
| RSRP <sup>Note3</sup>                                                                                                        | dBm/15<br>kHz | -81.75   | -108.70  | -118.5   |  |
| RSRQ <sup>Note3</sup>                                                                                                        | dB            | -14.76   | -16.25   | -16.25   |  |
| Io <sup>Note3</sup>                                                                                                          | dBm/9<br>MHz  | -50      | -75.46   | -85.26   |  |
| $\hat{E}_s/N_{oc}$                                                                                                           | dB            | -1.75    | -4.0     | -4.0     |  |
| Propagation condition                                                                                                        | -             | AWGN     | AWGN     | AWGN     |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $\frac{N_{oc}}{N_{oc}}$  to be fulfilled.

Note 3: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They

are not settable parameters themselves.

Note 4: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

Table A.9.2.4A.2-2: RSRQ FDD—TDD Inter frequency test parameters (TDD cell2)

| Parameter                                                                                                                                     | Unit              | Test 1                | Test 2               | Test 3     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------------|------------|
| Farameter                                                                                                                                     | Offic             | Cell 2                | Cell 2               | Cell 2     |
| E-UTRA RF Channel Number                                                                                                                      |                   | 2                     | 2                    | 2          |
| BW <sub>channel</sub>                                                                                                                         | MHz               | 10                    | 10                   | 10         |
| Gap Pattern Id                                                                                                                                |                   | -                     | -                    | -          |
| Special subframe configuration                                                                                                                |                   | 6                     | 6                    | 6          |
| Uplink-downlink configuration Note1                                                                                                           |                   | 1                     | 1                    | 1          |
| Measurement bandwidth                                                                                                                         | $n_{PRB}$         | 22—27                 | 22—27                | 22—27      |
| PDSCH Reference measurement channel defined in A.3.1.1.2                                                                                      |                   | -                     | -                    | -          |
| PDSCH allocation                                                                                                                              | $n_{PRB}$         | -                     | -                    | -          |
| PDCCH/PCFICH/PHICH<br>Reference measurement channel<br>defined in A.3.1.2.2                                                                   |                   | R.6 TDD               | R.6 TDD              | R.6 TDD    |
| OCNG Patterns defined in<br>A.3.2.2.1 (OP.1 TDD) and<br>A.3.2.2.2 (OP.2 TDD)                                                                  |                   | OP.2 TDD              | OP.2 TDD             | OP.2 TDD   |
| PBCH_RA PBCH_RB PSS_RA SSS_RA PCFICH_RB PHICH_RA PHICH_RA PDCCH_RA PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RA PDSCH_RB OCNG_RA OCNG_RB Note2 OCNG_RB | dB                | 0                     | 0                    | 0          |
| $N_{oc}^{ m Note3}$                                                                                                                           | dBm/15 kHz        | -80                   | -104.70              | -114.50    |
| $\hat{E}_{s}/I_{ot}$                                                                                                                          | dB                | -1.75                 | -4.0                 | -4.0       |
| RSRP <sup>Note4</sup>                                                                                                                         | dBm/15 kHz        | -81.75                | -108.70              | -118.50    |
| RSRO <sup>Note4</sup>                                                                                                                         | dB                | -14.76                | -16.25               | -16.25     |
| Io <sup>Note4</sup>                                                                                                                           | dBm/9 MHz         | -50                   | -75.46               | -85.26     |
| $\hat{E}_s/N_{oc}$                                                                                                                            | dB                | -1.75                 | -4.0                 | -4.0       |
| Propagation condition                                                                                                                         | -                 | AWGN                  | AWGN                 | AWGN       |
| Note 1: For special subframe and                                                                                                              | uplink-downlink c | onfigurations see Tab | oles 4.2-1 and 4.2-2 | in 3GPP TS |
| 36 211                                                                                                                                        |                   | -                     |                      |            |

OCNG shall be used such that both cells are fully allocated and a constant total transmitted power Note 2: spectral density is achieved for all OFDM symbols.

Interference from other cells and noise sources not specified in the test is assumed to be constant over Note 3: subcarriers and time and shall be modelled as AWGN of appropriate power for  $\,N_{oc}\,$  to be fulfilled.

Note 4: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 5: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

#### A.9.2.4A.3 **Test Requirements**

The RSRQ measurement accuracy shall fulfil the requirements in sections 9.1.6.1 and 9.1.6.2.

A.9.2.5 Void

A.9.2.5.1 Void

A.9.2.5.2 Void

Table A.9.2.5.2-1: Void

Table A.9.2.5.2-2: Void

A.9.2.5.3 Void

# A.9.3 UTRAN FDD CPICH RSCP

#### A.9.3.1 E-UTRAN FDD

## A.9.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH RSCP absolute measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.2.1. There are two different test setups with different UTRAN parameters.

#### A.9.3.1.2 Parameters

The test parameters are given in Tables A.9.3.1.2-1, A.9.3.1.2-2 and A.9.3.1.2-3 below.

Table A.9.3.1.2-1: General test parameters for UTRAN FDD CPICH RSCP absolute measurement accuracy test in E-UTRAN FDD

| Parameter                          | Unit | Value                                       | Comment                                |
|------------------------------------|------|---------------------------------------------|----------------------------------------|
| PDSCH parameters                   |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1      |
| PCFICH/PDCCH/PHICH                 |      | DL Reference Measurement                    | As specified in section A.3.1.2.1      |
| parameters                         |      | Channel R.6 FDD                             |                                        |
| E-UTRAN RF Channel                 |      | 1                                           | One E-UTRAN FDD carrier frequency is   |
| Number                             |      |                                             | used.                                  |
| UTRAN RF Channel                   |      | 1                                           | One UTRAN FDD carrier frequency is     |
| Number                             |      |                                             | used.                                  |
| E-UTRAN Channel                    | MHz  | 10                                          |                                        |
| Bandwidth (BW <sub>channel</sub> ) |      |                                             |                                        |
| Active cell                        |      | Cell 1                                      | E-UTRAN cell 1 on RF channel number 1  |
| Neighbor cells                     |      | Cell 2                                      | UTRAN cell 2 on RF channel number 1    |
| Gap Pattern Id                     |      | 0                                           | As specified in 3GPP TS 36.133 section |
|                                    |      |                                             | 8.1.2.1.                               |
| Inter-RAT (UTRAN FDD)              |      | CPICH RSCP                                  |                                        |
| measurement quantity               |      |                                             |                                        |
| Monitored UTRA FDD cell            |      | 12                                          | UTRA cells on UTRA RF channel 1        |
| list size                          |      |                                             | provided in the cell list.             |
| CP length                          |      | Normal                                      |                                        |
| Filter coefficient                 |      | 0                                           | L3 filtering is not used               |
| DRX                                |      | OFF                                         | OFF                                    |

Table A.9.3.1.2-2: E-UTRAN FDD cell specific test parameters for UTRAN FDD CPICH RSCP absolute measurement accuracy test in E-UTRAN FDD

| Parameter                                     | Unit       | Test 1 | Test 2 |
|-----------------------------------------------|------------|--------|--------|
| E-UTRAN RF Channel                            |            |        | 4      |
| Number                                        |            |        | 1      |
| BW <sub>channel</sub>                         | MHz        | 1      | 0      |
| OCNG Patterns defined in A.3.2.1.1 (OP.1 FDD) |            | OP.1   | FDD    |
| PBCH_RA                                       | dB         |        |        |
| PBCH_RB                                       | dB         |        |        |
| PSS_RA                                        | dB         |        |        |
| SSS_RA                                        | dB         |        |        |
| PCFICH_RB                                     | dB         |        |        |
| PHICH_RA                                      | dB         |        |        |
| PHICH_RB                                      | dB         |        | 0      |
| PDCCH_RA                                      | dB         |        |        |
| PDCCH_RB                                      | dB         |        |        |
| PDSCH_RA                                      | dB         |        |        |
| PDSCH_RB                                      | dB         |        |        |
| OCNG_RA <sup>Note 1</sup>                     | dB         |        |        |
| OCNG_RB <sup>Note 1</sup>                     | dB         |        |        |
| $N_{oc}^{ m Note~2}$                          | dBm/15 kHz | -(     | 98     |
| RSRP Note 3                                   | dBm/15 kHz | -(     | 94     |
| $\hat{E}_{s}/I_{ot}$                          | dB         |        | 4      |
| SCH_RP Note 3                                 | dBm/15 kHz | -(     | 94     |
| $\hat{E}_s/N_{oc}$                            | dB         |        | 4      |
| Propagation Condition                         |            | AW     | /GN    |

Note 1: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.9.3.1.2-3: UTRAN FDD cell specific test parameters for UTRAN FDD CPICH RSCP absolute measurement accuracy test in E-UTRAN FDD

|                                 | Parameter                                                 |                 | Test 1 | Test 2 |
|---------------------------------|-----------------------------------------------------------|-----------------|--------|--------|
|                                 |                                                           |                 | Cell 2 | Cell 2 |
|                                 | CPICH_Ec/lor                                              | dB              | -10    | -10    |
|                                 | PCCPCH_Ec/lor                                             | dB              | -12    | -12    |
|                                 | SCH_Ec/lor                                                | dB              | -12    | -12    |
|                                 | PICH_Ec/lor                                               | dB              | -15    | -15    |
|                                 | DPCH_Ec/lor                                               | dB              | -      | -      |
|                                 | OCNS_Ec/lor                                               | dB              | -0.94  | -0.94  |
| loc                             | Band I, IV, VI, X, XI, XIX, XXI                           | dBm/3.84<br>MHz |        | -94.46 |
|                                 | Band II, V, VII                                           |                 | 00.00  | -92.46 |
|                                 | Band III, VIII, XII, XIII, XIV,<br>XX<br>Band IX (Note 2) |                 | -60.00 | -91.46 |
|                                 |                                                           |                 |        | -93.46 |
|                                 | Îor/loc                                                   | dB              | 9.54   | -9.54  |
| CPICH<br>RSCP,                  | Band I, IV, VI, X, XI, XIX, XXI                           | dBm             |        | -114.0 |
| Note 1                          | Band II, V, VII                                           |                 | 60.46  | -112.0 |
|                                 | Band III, VIII, XII, XIII, XIV, XX                        |                 | -60.46 | -111.0 |
|                                 | Band IX (Note 2)                                          |                 |        | -113.0 |
| Io, Note 1                      | ` '                                                       |                 |        | -94.0  |
|                                 |                                                           |                 | F0 00  | -92.0  |
| Band III, VIII, XII, XIII, XIV, |                                                           |                 | -50.00 | -91.0  |
|                                 | Band IX (Note 2)                                          | ]               |        | -93.0  |
| Property C                      | opagation condition                                       | -               | AWGN   | AWGN   |

NOTE 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

## A.9.3.1.3 Test Requirements

The CPICH RSCP measurement absolute accuracy shall meet the requirements in Section 9.2.1.

#### A.9.3.2 E-UTRAN TDD

#### A.9.3.2.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH RSCP absolute measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.2.1. There are three different test setups with different UTRAN parameters.

#### A.9.3.2.2 Parameters

The test parameters are given in Tables A.9.3.2.2-1, A.9.3.2.2-2 and A.9.3.2.2-3 below.

Table A.9.3.2.2-1: General test parameters for UTRAN FDD CPICH RSCP absolute measurement accuracy test in E-UTRAN TDD

| Parameter                          | Unit | Value                                       | Comment                                         |
|------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters                   |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2               |
| PCFICH/PDCCH/PHICH                 |      | DL Reference Measurement                    | As specified in section A.3.1.2.2               |
| parameters                         |      | Channel R.6 TDD                             |                                                 |
| E-UTRAN RF Channel                 |      | 1                                           | One E-UTRAN TDD carrier frequency is            |
| Number                             |      |                                             | used.                                           |
| UTRAN RF Channel                   |      | 1                                           | One UTRAN FDD carrier frequency is              |
| Number                             |      |                                             | used.                                           |
| E-UTRAN Channel                    | MHz  | 10                                          |                                                 |
| Bandwidth (BW <sub>channel</sub> ) |      |                                             |                                                 |
| Active cell                        |      | Cell 1                                      | E-UTRAN cell 1 on RF channel number 1           |
| Neighbor cells                     |      | Cell 2                                      | UTRAN cell 2 on RF channel number 1             |
| Gap Pattern Id                     |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| Inter-RAT (UTRAN FDD)              |      | CPICH RSCP                                  |                                                 |
| measurement quantity               |      |                                             |                                                 |
| Monitored UTRA FDD cell            |      | 12                                          | UTRA cells on UTRA RF channel 1                 |
| list size                          |      |                                             | provided in the cell list.                      |
| CP length                          |      | Normal                                      |                                                 |
| Filter coefficient                 |      | 0                                           | L3 filtering is not used                        |
| DRX                                |      | OFF                                         | OFF                                             |

Table A.9.3.2.2-2: E-UTRAN TDD cell specific test parameters for UTRAN FDD CPICH RSCP absolute measurement accuracy test in E-UTRAN TDD

| Parameter                                     | Unit       | Test 1 | Test 2 |
|-----------------------------------------------|------------|--------|--------|
| E-UTRAN RF Channel Number                     |            |        | 1      |
| BW <sub>channel</sub>                         | MHz        | 1      | 10     |
| Special subframe configuration Note1          |            |        | 6      |
| Uplink-downlink configuration Note1           |            |        | 1      |
| OCNG Patterns defined in A.3.2.2.1 (OP.1 TDD) |            | OP.1   | I TDD  |
| PBCH_RA                                       | dB         |        |        |
| PBCH_RB                                       | dB         |        |        |
| PSS_RA                                        | dB         |        |        |
| SSS_RA                                        | dB         |        |        |
| PCFICH_RB                                     | dB         |        |        |
| PHICH_RA                                      | dB         |        |        |
| PHICH_RB                                      | dB         |        | 0      |
| PDCCH_RA                                      | dB         |        |        |
| PDCCH_RB                                      | dB         |        |        |
| PDSCH_RA                                      | dB         |        |        |
| PDSCH_RB                                      | dB         |        |        |
| OCNG_RA <sup>Note 2</sup>                     | dB         |        |        |
| OCNG_RB <sup>Note 2</sup>                     | dB         |        |        |
| $N_{oc}^{ m Note  3}$                         | dBm/15 kHz | -!     | 98     |
| RSRP Note 4                                   | dBm/15 kHz | -      | 94     |
| $\hat{E}_{s}/I_{ot}$                          | dB         |        | 4      |
| SCH_RP Note 4                                 | dBm/15 kHz | -(     | 94     |
| $\hat{E}_s/N_{oc}$                            | dB         |        | 4      |
| Propagation Condition                         |            | AW     | /GN    |

- Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.
- Note 2: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.
- Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.9.3.2.2-3: UTRAN FDD cell specific test parameters for UTRAN FDD CPICH RSCP absolute measurement accuracy test in E-UTRAN TDD

|                                                 | Parameter                       |          | Test 1 | Test 2 |
|-------------------------------------------------|---------------------------------|----------|--------|--------|
|                                                 |                                 |          | Cell 2 | Cell 2 |
|                                                 | CPICH_Ec/lor                    | dB       | -10    | -10    |
|                                                 | PCCPCH_Ec/lor                   | dB       | -12    | -12    |
|                                                 | SCH_Ec/lor                      | dB       | -12    | -12    |
|                                                 | PICH_Ec/lor                     | dB       | -15    | -15    |
|                                                 | DPCH_Ec/lor                     | dB       | -      | 1      |
|                                                 | OCNS_Ec/lor                     | dB       | -0.94  | -0.94  |
| loc                                             | Band I, IV, VI, X, XI, XIX,     | dBm/3.84 |        | -94.46 |
|                                                 | XXI                             | MHz      |        |        |
|                                                 | Band II, V, VII                 |          | -60.00 | -92.46 |
|                                                 | Band III, VIII, XII, XIII, XIV, |          | -00.00 | -91.46 |
|                                                 | XX                              |          |        |        |
|                                                 | Band IX (Note 2)                |          |        | -93.46 |
|                                                 | Îor/loc                         | dB       | 9.54   | -9.54  |
| CPICH                                           | Band I, IV, VI, X, XI, XIX,     | dBm      |        | -114.0 |
| RSCP,                                           | XXI                             |          |        |        |
| Note 1                                          | Band II, V, VII                 |          | -60.46 | -112.0 |
|                                                 | Band III, VIII, XII, XIII, XIV, |          | -00.40 | -111.0 |
|                                                 | XX                              |          |        |        |
|                                                 | Band IX (Note 2)                |          |        | -113.0 |
| Io, Note 1                                      | Band I, IV, VI, X, XI, XIX,     | dBm/3.84 |        | -94.0  |
|                                                 | XXI                             | MHz      |        |        |
| Band II, V, VII Band III, VIII, XII, XIII, XIV, |                                 |          | -50.00 | -92.0  |
|                                                 |                                 |          | -30.00 | -91.0  |
|                                                 | XX                              | ]        |        |        |
|                                                 | Band IX (Note 2)                |          |        | -93.0  |
| Pr                                              | opagation condition             | -        | AWGN   | AWGN   |

NOTE 1: CPICH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for test 2 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

#### A.9.3.2.3 Test Requirements

The CPICH RSCP measurement absolute accuracy shall meet the requirements in Section 9.2.1.

#### A.9.4 UTRAN FDD CPICH Ec/No

#### A.9.4.1 E-UTRAN FDD

#### A.9.4.1.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH Ec/No absolute measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.2.3. There are three different test setups with different UTRAN parameters.

#### A.9.4.1.2 Parameters

The test parameters are given in Tables A.9.4.1.2-1, A.9.4.1.2-2 and A.9.4.1.2-3 below.

Table A.9.4.1.2-1: General test parameters for UTRAN FDD CPICH Ec/No absolute measurement accuracy test in E-UTRAN FDD

| Parameter                          | Unit | Value                                       | Comment                                |
|------------------------------------|------|---------------------------------------------|----------------------------------------|
| PDSCH parameters                   |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1      |
| PCFICH/PDCCH/PHICH                 |      | DL Reference Measurement                    | As specified in section A.3.1.2.1      |
| parameters                         |      | Channel R.6 FDD                             |                                        |
| E-UTRAN RF Channel                 |      | 1                                           | One E-UTRAN FDD carrier frequency is   |
| Number                             |      |                                             | used.                                  |
| UTRAN RF Channel                   |      | 1                                           | One UTRAN FDD carrier frequency is     |
| Number                             |      |                                             | used.                                  |
| E-UTRAN Channel                    | MHz  | 10                                          |                                        |
| Bandwidth (BW <sub>channel</sub> ) |      |                                             |                                        |
| Active cell                        |      | Cell 1                                      | E-UTRAN cell 1 on RF channel number 1  |
| Neighbor cells                     |      | Cell 2                                      | UTRAN cell 2 on RF channel number 1    |
| Gap Pattern Id                     |      | 0                                           | As specified in 3GPP TS 36.133 section |
|                                    |      |                                             | 8.1.2.1.                               |
| Inter-RAT (UTRAN FDD)              |      | CPICH Ec/N0                                 |                                        |
| measurement quantity               |      |                                             |                                        |
| Monitored UTRA FDD cell            |      | 12                                          | UTRA cells on UTRA RF channel 1        |
| list size                          |      |                                             | provided in the cell list.             |
| CP length                          |      | Normal                                      |                                        |
| Filter coefficient                 |      | 0                                           | L3 filtering is not used               |
| DRX                                |      | OFF                                         | OFF                                    |

Table A.9.4.1.2-2: E-UTRAN FDD cell specific test parameters for UTRAN FDD CPICH Ec/No absolute measurement accuracy test in E-UTRAN FDD

| Parameter                                        | Unit | Test 1 | Test 2   | Test 3 |
|--------------------------------------------------|------|--------|----------|--------|
| E-UTRAN RF Channel Number                        |      |        | 1        |        |
| BW <sub>channel</sub>                            | MHz  |        | 10       |        |
| OCNG Patterns defined in<br>A.3.2.1.1 (OP.1 FDD) |      |        | OP.1 FDD |        |

| PBCH_RA                   | dB         |      |
|---------------------------|------------|------|
| PBCH_RB                   | dB         |      |
| PSS_RA                    | dB         |      |
| SSS_RA                    | dB         |      |
| PCFICH_RB                 | dB         |      |
| PHICH_RA                  | dB         |      |
| PHICH_RB                  | dB         | 0    |
| PDCCH_RA                  | dB         |      |
| PDCCH_RB                  | dB         |      |
| PDSCH_RA                  | dB         |      |
| PDSCH_RB                  | dB         |      |
| OCNG_RA <sup>Note 1</sup> | dB         |      |
| OCNG_RB <sup>Note 1</sup> | dB         |      |
| $N_{oc}^{ m Note  2}$     | dBm/15 kHz | -98  |
| RSRP Note 3               | dBm/15 kHz | -94  |
| $\hat{E}_{s}/I_{ot}$      | dB         | 4    |
| SCH_RP Note 3             | dBm/15 kHz | -94  |
| $\hat{E}_s/N_{oc}$        | dB         | 4    |
| Propagation Condition     |            | AWGN |
|                           |            |      |

Note 1: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes.

They are not settable parameters themselves.

Table A.9.4.1.2-3: UTRAN FDD cell specific test parameters for UTRAN FDD CPICH Ec/No absolute measurement accuracy test in E-UTRAN FDD

| Darameter |                                       | Unit        | Test 1 | Test 2 | Test 3 |        |
|-----------|---------------------------------------|-------------|--------|--------|--------|--------|
|           | Parameter                             | Unit        | Cell 2 | Cell 2 | Cell 2 |        |
|           | CPICH_Ec/lor                          | dB          | -10    | -10    | -10    |        |
| F         | PCCPCH_Ec/lor                         | dB          | -12    | -12    | -12    |        |
|           | SCH_Ec/lor                            | dB          | -12    | -12    | -12    |        |
|           | PICH_Ec/lor                           | dB          | -15    | -15    | -15    |        |
|           | DPCH_Ec/lor                           | dB          | ı      | -      | -      |        |
|           | OCNS_Ec/lor                           | dB          | -0.94  | -0.94  | -0.94  |        |
|           | Band I, IV, VI, X,<br>XI, XIX, XXI    | dBm/        | /      |        |        | -94.46 |
| laa       | Band II, V, VII                       |             | -52.22 | -87.27 | -92.46 |        |
| loc       | Band III, VIII, XII,<br>XIII, XIV, XX | 3.84<br>MHz |        |        | -91.46 |        |
|           | Band IX (Note 2)                      |             |        |        | -93.46 |        |
|           | Îor/loc                               | dB          | -1.75  | -4.7   | -9.54  |        |
| CP        | ICH Ec/Io, Note 1                     | dBm         | -14.0  | -16.0  | -20.0  |        |
|           | Band I, IV, VI, X,<br>XI, XIX, XXI    |             |        |        | -94    |        |
| lo,       | Band II, V, VII                       | dBm/        | 50     | 86     | -92.0  |        |
| Note<br>1 | Band III, VIII, XII,<br>XIII, XIV, XX | 3.84<br>MHz | -50    | -86    | -91.0  |        |
|           | Band IX (Note 2)                      |             |        |        | -93    |        |
| Pro       | pagation condition                    | -           | AWGN   | AWGN   | AWGN   |        |

NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

NOTE 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

#### A.9.4.1.3 Test Requirements

The CPICH Ec/No measurement absolute accuracy shall meet the requirements in Section 9.2.3.

#### A.9.4.2 E-UTRAN TDD

#### A.9.4.2.1 Test Purpose and Environment

The purpose of this test is to verify that the CPICH Ec/No absolute measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.2.3. There are three different test setups with different UTRAN parameters.

#### A.9.4.2.2 Parameters

The test parameters are given in Tables A.9.4.2.2-1, A.9.4.2.2-2 and A.9.4.2.2-3 below.

Table A.9.4.2.2-1: General test parameters for UTRAN FDD CPICH Ec/No absolute measurement accuracy test in E-UTRAN TDD

| Parameter                                             | Unit | Value                                       | Comment                                                    |
|-------------------------------------------------------|------|---------------------------------------------|------------------------------------------------------------|
| PDSCH parameters                                      |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2                          |
| PCFICH/PDCCH/PHICH parameters                         |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2                          |
| E-UTRAN RF Channel<br>Number                          |      | 1                                           | One E-UTRAN TDD carrier frequency is used.                 |
| UTRAN RF Channel<br>Number                            |      | 1                                           | One UTRAN FDD carrier frequency is used.                   |
| E-UTRAN Channel<br>Bandwidth (BW <sub>channel</sub> ) | MHz  | 10                                          |                                                            |
| Active cell                                           |      | Cell 1                                      | E-UTRAN cell 1 on RF channel number 1                      |
| Neighbor cells                                        |      | Cell 2                                      | UTRAN cell 2 on RF channel number 1                        |
| Gap Pattern Id                                        |      | 0                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.            |
| Inter-RAT (UTRAN FDD) measurement quantity            |      | CPICH Ec/N0                                 |                                                            |
| Monitored UTRA FDD cell list size                     |      | 12                                          | UTRA cells on UTRA RF channel 1 provided in the cell list. |
| CP length                                             |      | Normal                                      |                                                            |
| Filter coefficient                                    |      | 0                                           | L3 filtering is not used                                   |
| DRX                                                   |      | OFF                                         | OFF                                                        |

Table A.9.4.2.2-2: E-UTRAN TDD cell specific test parameters for UTRAN FDD CPICH Ec/No absolute measurement accuracy test in E-UTRAN TDD

| Parameter                                        | Unit | Test 1 | Test 2   | Test 3 |
|--------------------------------------------------|------|--------|----------|--------|
| E-UTRAN RF Channel Number                        |      |        | 1        |        |
| BW <sub>channel</sub>                            | MHz  | 10     |          |        |
| Special subframe configuration Note1             |      |        | 6        |        |
| Uplink-downlink configuration Note1              |      |        | 1        |        |
| OCNG Patterns defined in<br>A.3.2.1.2 (OP.1 TDD) |      |        | OP.1 TDD |        |

| PBCH_RA                   | dB     |      |
|---------------------------|--------|------|
| PBCH_RB                   | dB     |      |
| PSS_RA                    | dB     |      |
| SSS_RA                    | dB     |      |
| PCFICH_RB                 | dB     |      |
| PHICH_RA                  | dB     |      |
| PHICH_RB                  | dB     | 0    |
| PDCCH_RA                  | dB     |      |
| PDCCH_RB                  | dB     |      |
| PDSCH_RA                  | dB     |      |
| PDSCH_RB                  | dB     |      |
| OCNG_RA <sup>Note 2</sup> | dB     |      |
| OCNG_RB <sup>Note 2</sup> | dB     |      |
| $N_{oc}$ Note 3           | dBm/15 | -98  |
|                           | kHz    | -90  |
| RSRP Note 4               | dBm/15 | -94  |
|                           | kHz    | -94  |
| $\hat{E}_{s}/I_{ot}$      | dB     | 4    |
| SCH_RP Note 4             | dBm/15 | -94  |
|                           | kHz    | -34  |
| $\hat{E}_s/N_{oc}$        | dB     | 4    |
| Propagation Condition     |        | AWGN |
|                           |        |      |

Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.

Note 4: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 2: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled

Table A.9.4.2.2-3: UTRAN FDD cell specific test parameters for UTRAN FDD CPICH Ec/No absolute measurement accuracy test in E-UTRAN TDD

|           | Parameter                             |              | Test 1     | Test 2 | Test 3 |
|-----------|---------------------------------------|--------------|------------|--------|--------|
|           | Parameter                             | Unit         | Cell 2     | Cell 2 | Cell 2 |
|           | CPICH_Ec/lor                          | dB           | -10        | -10    | -10    |
| F         | PCCPCH_Ec/lor                         | dB           | -12        | -12    | -12    |
|           | SCH_Ec/lor                            | dB           | -12        | -12    | -12    |
|           | PICH_Ec/lor                           | dB           | -15        | -15    | -15    |
|           | DPCH_Ec/lor                           | dB           | -          | -      | -      |
|           | OCNS_Ec/lor                           | dB           | -0.94      | -0.94  | -0.94  |
|           | Band I, IV, VI, X,<br>XI, XIX, XXI    | -ID/         |            |        | -94.46 |
| loo       | loc Band III, V, VII 3.8              | dBm/         | -52.22     | -87.27 | -92.46 |
| 100       |                                       | MHz          |            |        | -91.46 |
|           |                                       |              |            |        | -93.46 |
|           | Îor/loc                               | dB           | -1.75      | -4.7   | -9.54  |
| CP        | PICH Ec/Io, Note 1                    | dBm          | -14.0      | -16.0  | -20.0  |
|           | Band I, IV, VI, X,<br>XI, XIX, XXI    | alDrag/      |            |        | -94    |
| lo,       | Band II, V, VII                       | dBm/<br>3.84 | <b>5</b> 0 | 86     | -92.0  |
| Note<br>1 | Band III, VIII, XII,<br>XIII, XIV, XX | MHz          | -50        | -86    | -91.0  |
|           | Band IX (Note 2)                      |              |            |        | -93    |
| Pro       | pagation condition                    | -            | AWGN       | AWGN   | AWGN   |

NOTE 1: CPICH Ec/lo and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

NOTE 2: For the UE which supports both Band III and Band IX operating frequencies, the measurement performance requirements for Band III shall apply to the multi-band UE.

Tests shall be done sequentially. Test 1 shall be done first. After test 1 has been executed test parameters for tests 2 and 3 shall be set within 5 seconds so that UE does not loose the Cell 2 in between the tests.

#### A.9.4.2.3 Test Requirements

The CPICH Ec/No measurement absolute accuracy shall meet the requirements in Section 9.2.3.

## A.9.5 UTRAN TDD measurement

# A.9.5.1 P-CCPCH RSCP absolute accuracy for E-UTRAN FDD

#### A.9.5.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UTRAN TDD P-CCPCH RSCP measurement absolute accuracy is within the specified limits. This test will verify the requirements in section 9.3.1 and applies to UE supporting this capability.

Gap pattern configuration with id #1 as specified in Table 8.1.2.1-1 is provided. In the measurement control information it is indicated to the UE that periodic reporting of the UTRA TDD P-CCPCH RSRP measurement is used.

#### A.9.5.1.2 Test parameters

In this set of test cases there are two cells. Cell 1 is a E-UTRA FDD cell and cell 2 is a UTRA TDD cell. The absolute accuracy of P-CCPCH RSCP measurements are tested by using test parameters in Table A.9.5.1-1, Table A.9.5.1-2, and Table A.9.5.1-3. In all test cases, Cell 1 is the serving cell and Cell 2 is the target cell.

Table A.9.5.1-1: General test parameters for UTRA TDD P-CCPCH RSCP measurement absolute accuracy in E-UTRAN FDD

| Parameter                                  | Unit | Value                                       | Comment                                            |
|--------------------------------------------|------|---------------------------------------------|----------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 FDD | As specified in section A.3.1.1.1                  |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 FDD | As specified in section A.3.1.2.1                  |
| E-UTRAN RF Channel Number                  |      | 1                                           | One E-UTRAN FDD carrier frequency is used.         |
| UTRAN RF Channel Number                    |      | 2                                           | One UTRAN TDD carrier frequency is used.           |
| E-UTRAN Channel Bandwidth (BWchannel)      | MHz  | 10                                          |                                                    |
| Active cell                                |      | Cell 1                                      | E-UTRAN FDD cell 1 on RF channel number 1          |
| Neighbor cells                             |      | Cell 2                                      | 1.28Mcps UTRA TDD cell 2 on<br>RF channel number 2 |
| Gap Pattern Id                             |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1.    |
| CP length of cell 1                        |      | Normal                                      |                                                    |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                           |
| DRX                                        |      | OFF                                         | OFF                                                |
| Inter-RAT (UTRAN TDD) measurement quantity |      | P-CCPCH RSRP                                |                                                    |

Table A.9.5.1-2: UTRA TDD P-CCPCH RSCP measurement tests parameters (cell 1)

| Parameter                                | Unit       | Test 1 | Test 2   | Test 3 |  |
|------------------------------------------|------------|--------|----------|--------|--|
| E-UTRA RF Channel Number                 |            |        | 1        |        |  |
| BWchannel                                | MHz        |        | 10       |        |  |
| OCNG Patterns defined in A.3.2.1.1 (OP.1 |            |        | OP.1 FDD | 1      |  |
| FDD)                                     |            | '      | JF.T FDL |        |  |
| PBCH_RA                                  |            |        |          |        |  |
| PBCH_RB                                  |            |        |          |        |  |
| PSS_RA                                   |            |        |          |        |  |
| SSS_RA                                   |            |        |          |        |  |
| PCFICH_RB                                |            |        |          |        |  |
| PHICH_RA                                 |            |        |          |        |  |
| PHICH_RB                                 | dB         | 0      |          |        |  |
| PDCCH_RA                                 |            |        |          |        |  |
| PDCCH_RB                                 |            |        |          |        |  |
| PDSCH_RA                                 |            |        |          |        |  |
| PDSCH_RB                                 |            |        |          |        |  |
| OCNG_RA <sup>Note1</sup>                 |            |        |          |        |  |
| OCNG_RB <sup>Note1</sup>                 |            |        |          |        |  |
| $N_{oc}^{ m Note2}$                      | dBm/15 kHz |        | -98      |        |  |
| $\hat{E}_s / I_{ot}$                     | dB         |        | 4        |        |  |
| RSRP <sup>Note3</sup>                    | dBm/15 kHz |        | -94      |        |  |
| Io <sup>Note3</sup>                      | dBm/9 MHz  |        | -64.76   |        |  |
| $\hat{E}_s / N_{oc}$                     | dB         |        | 4        |        |  |
| Propagation condition                    | -          |        | AWGN     |        |  |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as

AWGN of appropriate power for  $^{\begin{subarray}{c} \begin{subarray}{c} \begin{subar$ 

Note 3: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

Table A.9.5.1-3: UTRA TDD P-CCPCH RSCP measurement tests parameters (cell 2)

| Parameter                    | Unit Test 1 |       | Test 2 |       | Test 3 |      |        |
|------------------------------|-------------|-------|--------|-------|--------|------|--------|
| DL timeslot number           |             | 0     |        | DwPTS |        | 0    | DwPTS  |
| UTRA RF Channel number Note2 |             | Char  | nel 2  | Char  | nel 2  | Char | nnel 2 |
| PCCPCH_Ec/lor                | dB          | -3    |        | -3    |        | -3   |        |
| DwPCH_Ec/lor                 | dB          |       | 0      |       | 0      |      | 0      |
| OCNS_Ec/lor                  | dB          | -3    |        | -3    |        | -3   |        |
| loc                          | dBm/1.28MHz | -54   | 4.1    | -75   | 5.2    | -6   | 97     |
| Îor/loc                      | dB          |       | 2      | Į.    | 5      | (    | 0      |
| PCCPCH RSCP Note1            | dBm         | -55.1 |        | -73.2 |        | -100 |        |
| lo Note1                     | dBm/1.28MHz | -5    | 50     | -6    | 69     | -6   | 94     |
| Propagation condition        |             |       | AWGN   |       |        | •    |        |

Note 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: In the case of multi-frequency network of 1.28 Mcps TDD, the UTRA RF Channel Number can be set for the primary frequency in this test.

#### A.9.5.1.3 Test Requirements

The UTRA TDD P-CCPCH RSCP measurement accuracy shall meet the requirements in section 9.3.1.

## A.9.5.2 P-CCPCH RSCP absolute accuracy for E-UTRAN TDD

## A.9.5.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UTRAN TDD P-CCPCH RSCP measurement accuracy is within the specified limits. This test will verify the requirements in section 9.3.1 and applies to UE supporting this capability.

Gap pattern configuration with id #1 as specified in Table 8.1.2.1-1 is provided. In the measurement control information it is indicated to the UE that periodic reporting of the UTRA TDD P-CCPCH RSRP measurement is used.

#### A.9.5.2.2 Test parameters

In this set of test cases there are two cells. Cell 1 is a E-UTRA TDD cell and cell 2 is a UTRA TDD cell. The absolute accuracy of P-CCPCH RSCP measurements are tested by using test parameters in Table A.9.5.2-1, Table A.9.5.2-2, and Table A.9.5.2-3. In all test cases, Cell 1 is the serving cell and Cell 2 is the target cell.

Table A.9.5.2-1: General test parameters for UTRA TDD P-CCPCH RSCP measurement

| Parameter                                  | Unit | Value                                       | Comment                                         |
|--------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters                           |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2               |
| PCFICH/PDCCH/PHICH parameters              |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2               |
| E-UTRAN RF Channel Number                  |      | 1                                           | One E-UTRAN TDD carrier frequency is used.      |
| UTRAN RF Channel Number                    |      | 2                                           | One UTRAN TDD carrier frequency is used.        |
| E-UTRAN Channel Bandwidth (BWchannel)      | MHz  | 10                                          |                                                 |
| Active cell                                |      | Cell 1                                      | E-UTRA TDD cell1 on RF channel number 1         |
| Neighbour cell                             |      | Cell 2                                      | 1.28Mcps UTRA TDD Cell2 on RF channel number 2  |
| Gap Pattern Id                             |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| Uplink-downlink configuration of cell 1    |      | 1                                           | As specified in table 4.2.2 in TS 36.211        |
| Special subframe configuration of cell 1   |      | 6                                           | As specified in table 4.2.1 in TS 36.211        |
| CP length of cell 1                        |      | Normal                                      |                                                 |
| Filter coefficient                         |      | 0                                           | L3 filtering is not used                        |
| DRX                                        |      | OFF                                         |                                                 |
| Time offset between cells                  | ms   | 3                                           | Asynchronous cells                              |
| Inter-RAT (UTRAN TDD) measurement quantity |      | P-CCPCH RSCP                                |                                                 |

Table A.9.5.2-2: UTRA TDD P-CCPCH RSCP measurement tests parameters (cell 1)

| Parameter                                | Unit       | Test 1 | Test 2   | Test 3 |
|------------------------------------------|------------|--------|----------|--------|
| E-UTRA RF Channel Number                 |            | 1      |          |        |
| BWchannel                                | MHz        |        | 10       |        |
| OCNG Patterns defined in A.3.2.2.1 (OP.1 |            | ,      | OP.1 TDD |        |
| TDD)                                     |            | `      | JF.1 100 | '      |
| PBCH_RA                                  |            |        |          |        |
| PBCH_RB                                  |            |        |          |        |
| PSS_RA                                   |            |        |          |        |
| SSS_RA                                   |            |        |          |        |
| PCFICH_RB                                |            |        |          |        |
| PHICH_RA                                 |            | dB 0   |          |        |
| PHICH_RB                                 | dB         |        |          |        |
| PDCCH_RA                                 |            |        |          |        |
| PDCCH_RB                                 |            |        |          |        |
| PDSCH_RA                                 |            |        |          |        |
| PDSCH_RB                                 |            |        |          |        |
| OCNG_RA <sup>Note1</sup>                 |            |        |          |        |
| OCNG_RB <sup>Note1</sup>                 |            |        |          |        |
| $N_{oc}^{ m Note2}$                      | dBm/15 kHz |        | -98      |        |
| $\hat{E}_s / I_{ot}$                     | dB         |        | 4        |        |
| RSRP <sup>Note3</sup>                    | dBm/15 kHz |        | -94      |        |
| Io <sup>Note3</sup>                      | dBm/9 MHz  |        | -64.76   |        |
| $\hat{E}_s / N_{oc}$                     | dB         |        | 4        |        |
| Propagation condition                    | -          |        | AWGN     |        |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

Table A.9.5.2-3: UTRA TDD P-CCPCH RSCP measurement tests parameters (cell 2)

| Parameter                    | Unit        | Test 1 |       | Tes   | st 2  | Test 3 |        |
|------------------------------|-------------|--------|-------|-------|-------|--------|--------|
| DL timeslot number           |             | 0      |       | DwPTS |       | 0      | DwPTS  |
| UTRA RF Channel number Note2 |             | Char   | nel 2 | Char  | nel 2 | Char   | nnel 2 |
| PCCPCH_Ec/lor                | dB          | -3     |       | -3    |       | -3     |        |
| DwPCH_Ec/lor                 | dB          |        | 0     |       | 0     |        | 0      |
| OCNS_Ec/lor                  | dB          | -3     |       | -3    |       | -3     |        |
| loc                          | dBm/1.28MHz | -54    | 4.1   | -7    | 5.2   | -(     | 97     |
| Îor/loc                      | dB          | 2      | 2     |       | 5     | (      | 0      |
| PCCPCH RSCP Note1            | dBm         | -55.1  |       | -73.2 |       | -100   |        |
| lo Note1                     | dBm/1.28MHz | -5     | 50    | -6    | 69    | -(     | 94     |
| Propagation condition        |             |        |       | AW    | 'GN   |        |        |

Note 1: PCCPCH RSCP and lo levels have been calculated from other parameters for information purposes. They are not settable parameters themselves.

Note 2: In the case of multi-frequency network of 1.28 Mcps TDD, the UTRA RF Channel Number can be set for the primary frequency in this test.

#### A.9.5.2.3 Test Requirements

The UTRA TDD P-CCPCH RSCP measurement accuracy shall meet the requirements in section 9.3.1.

## A.9.6 GSM Carrier RSSI

## A.9.6.1 E-UTRAN FDD

#### A.9.6.1.1 Test Purpose and Environment

The purpose of this test is to verify that the GSM Carrier RSSI measurement accuracy is within the specified limits when the active cell is E-UTRAN FDD. This test will verify the requirements in section 9.4.1. There are 12 different test setups with different signal levels for the GSM cells.

Measurement gaps are configured to measure on the GSM cells. Table A.9.6.1.1-2 defines the cell specific test parameters for the E-UTRAN FDD cell. In the measurement control information it is indicated to the UE that periodic reporting of the GSM RSSI measurement is used. The limits of the GSM test parameters in terms of GSM BCCH received level at the receiver inputs are defined in Table A.9.6.1.1-3.

Table A.9.6.1.1-1: General GSM Carrier RSSI test parameters

| Parameter                                   | Unit | Value                                       | Comment                                         |
|---------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters<br>(E-UTRAN FDD)           |      | DL Reference Measurement Channel R.0 FDD    | As specified in section A.3.1.1.1.              |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD) |      | DL Reference Measurement Channel<br>R.6 FDD | As specified in section A.3.1.2.1.              |
| Active cell                                 | -    | Cell 1                                      |                                                 |
| DRX                                         | -    | OFF                                         |                                                 |
| Gap pattern Id                              |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| Filtering coefficient                       | -    | 0                                           | L3 filtering is not used.                       |
| Inter-RAT measurement quantity              |      | GSM Carrier RSSI                            |                                                 |
| Monitored cell list size                    |      | 6 GSM neighbours including ARFCN 1          | Included in the Measurement control information |

Table A.9.6.1.1.-2: E-UTRAN FDD Cell specific test parameters for GSM Carrier RSSI accuracy test in E-UTRAN FDD

| Parameter                                     | Unit | Tests 1-12 |
|-----------------------------------------------|------|------------|
| E-UTRAN RF Channel<br>Number                  |      | 1          |
| BW <sub>channel</sub>                         | MHz  | 10         |
| OCNG Patterns defined in A.3.2.1.1 (OP.1 FDD) |      | OP.1 FDD   |

| PBCH_RA                                                  | dB         |      |
|----------------------------------------------------------|------------|------|
| PBCH_RB                                                  | dB         |      |
| PSS_RA                                                   | dB         |      |
| SSS_RA                                                   | dB         |      |
| PCFICH_RB                                                | dB         |      |
| PHICH_RA                                                 | dB         | 0    |
| PHICH_RB                                                 | dB         | 0    |
| PDCCH_RA                                                 | dB         |      |
| PDCCH_RB                                                 | dB         |      |
| PDSCH_RA                                                 | dB         |      |
| PDSCH_RB                                                 | dB         |      |
| OCNG_RA <sup>Note 1</sup>                                | dB         |      |
| OCNG_RB <sup>Note 1</sup>                                | dB         |      |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 kHz | -98  |
| RSRP Note 3                                              | dBm/15 kHz | -94  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4    |
| SCH_RP Note 3                                            | dBm/15 kHz | -94  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4    |
| Propagation Condition                                    |            | AWGN |

Note 1: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.9.6.1.1-3: BCCH signal levels at receiver input in dBm

| Step | BCCH1  | BCCH2  | ВССН3 | BCCH4 | BCCH5 | ВССН6 |
|------|--------|--------|-------|-------|-------|-------|
| 1    | -38.5  | -38.5  | NA    | NA    | NA    | NA    |
| 2    | -48.5  | -48.5  | NA    | NA    | NA    | NA    |
| 3    | -70.5  | -70.5  | NA    | NA    | NA    | NA    |
| 4    | -109.5 | -109.5 | NA    | NA    | NA    | NA    |
| 5    | -57.5  | NA     | -54.5 | NA    | NA    | NA    |
| 6    | -64.5  | NA     | -59.5 | NA    | NA    | NA    |
| 7    | -71.5  | NA     | NA    | -64.5 | NA    | NA    |
| 8    | -78.5  | NA     | NA    | -69.5 | NA    | NA    |
| 9    | -85.5  | NA     | NA    | NA    | -74.5 | NA    |
| 10   | -92.5  | NA     | NA    | NA    | -79.5 | NA    |
| 11   | -99.5  | NA     | NA    | NA    | NA    | -84.5 |
| 12   | -106.5 | NA     | NA    | NA    | NA    | -89.5 |

#### A.9.6.1.2 Test Requirements

The GSM Carrier RSSI measurement accuracy shall meet the requirements in section 9.4.1.

#### A.9.6.2 E-UTRAN TDD

#### A.9.6.2.1 Test Purpose and Environment

The purpose of this test is to verify that the GSM Carrier RSSI measurement accuracy is within the specified limits when the active cell is E-UTRAN TDD. This test will verify the requirements in section 9.4.1. There are 12 different test setups with different signal levels for the GSM cells.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Measurement gaps are configured to measure on the GSM cells. Table A.9.6.2.1-2 defines the cell specific test parameters for the E-UTRAN TDD cell. In the measurement control information it is indicated to the UE that periodic reporting of the GSM RSSI measurement is used. The limits of the GSM test parameters in terms of GSM BCCH received level at the receiver inputs are defined in Table A.9.6.2.1-3.

Table A.9.6.2.1-1: General GSM Carrier RSSI test parameters

| Parameter                                   | Unit | Value                                       | Comment                                         |
|---------------------------------------------|------|---------------------------------------------|-------------------------------------------------|
| PDSCH parameters<br>(E-UTRAN TDD)           |      | DL Reference Measurement<br>Channel R.0 TDD | As specified in section A.3.1.1.2.              |
| PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD) |      | DL Reference Measurement<br>Channel R.6 TDD | As specified in section A.3.1.2.2.              |
| Active cell                                 | -    | Cell 1                                      |                                                 |
| DRX                                         | -    | OFF                                         |                                                 |
| Uplink-downlink configuration of cell 1     |      | 1                                           | As specified in table 4.2.2 in TS 36.211        |
| Special subframe configuration of cell 1    |      | 6                                           | As specified in table 4.2.1 in TS 36.211        |
| Gap pattern Id                              |      | 1                                           | As specified in 3GPP TS 36.133 section 8.1.2.1. |
| Filtering coefficient                       | -    | 0                                           | L3 filtering is not used.                       |
| Inter-RAT measurement quantity              |      | GSM Carrier RSSI                            |                                                 |
| Monitored cell list size                    |      | 6 GSM neighbours including ARFCN 1          | Included in the Measurement control information |

Table A.9.6.2.1-2: E-UTRAN TDD Cell specific test parameters for GSM Carrier RSSI accuracy test in E-UTRAN TDD

| Parameter                                     | Unit | Tests 1 - 12 |
|-----------------------------------------------|------|--------------|
| E-UTRAN RF Channel<br>Number                  |      | 1            |
| BW <sub>channel</sub>                         | MHz  | 10           |
| OCNG Patterns defined in A.3.2.2.1 (OP.1 TDD) |      | OP.1 TDD     |

| PBCH_RA                                                  | dB         |                                                                                      |
|----------------------------------------------------------|------------|--------------------------------------------------------------------------------------|
| PBCH_RB                                                  | dB         |                                                                                      |
| PSS_RA                                                   | dB         |                                                                                      |
| SSS_RA                                                   | dB         |                                                                                      |
| PCFICH_RB                                                | dB         |                                                                                      |
| PHICH_RA                                                 | dB         |                                                                                      |
| PHICH_RB                                                 | dB         | 0                                                                                    |
| PDCCH_RA                                                 | dB         |                                                                                      |
| PDCCH_RB                                                 | dB         |                                                                                      |
| PDSCH_RA                                                 | dB         |                                                                                      |
| PDSCH_RB                                                 | dB         |                                                                                      |
| OCNG_RA <sup>Note 1</sup>                                | dB         |                                                                                      |
| OCNG_RB <sup>Note 1</sup>                                | dB         |                                                                                      |
| $N_{oc}^{ m Note~2}$                                     | dBm/15 kHz | -98                                                                                  |
| RSRP Note 3                                              | dBm/15 kHz | -94                                                                                  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$ | dB         | 4                                                                                    |
| SCH_RP Note 3                                            | dBm/15 kHz | -94                                                                                  |
| $\hat{E}_s/N_{oc}$                                       | dB         | 4                                                                                    |
| Propagation Condition                                    |            | AWGN                                                                                 |
| NISTS 4. CONIC SESTIMATE AND SESTIMATE                   |            | Ha a a ta di a cadi a la a cada a tita ta litua cada a "tta di cada cada a cada a li |

Note 1: OCNG shall be used such that all cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $\,N_{oc}\,$  to be fulfilled.

Note 3: RSRP and SCH\_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.9.6.2.1-3: BCCH signal levels at receiver input in dBm

| Step | BCCH1  | BCCH2  | BCCH3 | BCCH4 | BCCH5 | ВССН6 |
|------|--------|--------|-------|-------|-------|-------|
| 1    | -38.5  | -38.5  | NA    | NA    | NA    | NA    |
| 2    | -48.5  | -48.5  | NA    | NA    | NA    | NA    |
| 3    | -70.5  | -70.5  | NA    | NA    | NA    | NA    |
| 4    | -109.5 | -109.5 | NA    | NA    | NA    | NA    |
| 5    | -57.5  | NA     | -54.5 | NA    | NA    | NA    |
| 6    | -64.5  | NA     | -59.5 | NA    | NA    | NA    |
| 7    | -71.5  | NA     | NA    | -64.5 | NA    | NA    |
| 8    | -78.5  | NA     | NA    | -69.5 | NA    | NA    |
| 9    | -85.5  | NA     | NA    | NA    | -74.5 | NA    |
| 10   | -92.5  | NA     | NA    | NA    | -79.5 | NA    |
| 11   | -99.5  | NA     | NA    | NA    | NA    | -84.5 |
| 12   | -106.5 | NA     | NA    | NA    | NA    | -89.5 |

#### A.9.6.2.2 Test Requirements

The GSM Carrier RSSI measurement accuracy shall meet the requirements in section 9.4.1.

#### A.9.7 UE Rx – Tx Time Difference

#### A.9.7.1 E-UTRAN FDD UE Rx – Tx time difference case

#### A.9.7.1.1 Test Purpose and Environment

The purpose of this test is to verify that the E-UTRAN FDD UE Rx - Tx time difference measurement accuracy is within the specified limits in Section 9.1.9.

There is only one active cell in the test. The tested UE is connected with the serving cell, configured to transmit SRS signals periodically, and signaled to report UE Rx – Tx time difference measurement. The test equipment measures the transmit timing of the UE using the transmitted SRS, and measures the receive timing using the downlink CRS. The test equipment then compares the difference of these two timings to the UE Rx-Tx measurement reported by the UE.

#### A.9.7.1.2 Test parameters

The parameters for this test case are defined in Table A.9.7.1.2-1, and the SRS configuration used is defined in Table A.9.7.1.2-2.

Table A.9.7.1.2-1: FDD UE Rx – Tx time difference test parameters

| Parameter                                                              | Unit                   | Test 1          | Test 2   |
|------------------------------------------------------------------------|------------------------|-----------------|----------|
| E-UTRAN RF Channel Number                                              |                        | 1               | 1        |
| BW <sub>channel</sub>                                                  | MHz                    | 1.4             | 10       |
| DRX                                                                    |                        | 0               | FF       |
| PDSCH Reference measurement channel defined in A.3.1.1.1               |                        | R.2 FDD         | R.0 FDD  |
| PDSCH allocation                                                       | $n_{PRB}$              | 2—3             | 13—36    |
| PDCCH/PCFICH/PHICH Reference measurement channel defined in A.3.1.2.1  |                        | R.8 FDD         | R.6 FDD  |
| OCNG Patterns defined in A.3.2.1.3 (OP.3 FDD) and A.3.2.1.1 (OP.1 FDD) |                        | OP.3 FDD        | OP.1 FDD |
| PBCH_RA                                                                | dB                     |                 |          |
| PBCH_RB                                                                | dB                     |                 |          |
| PSS_RA                                                                 | dB                     |                 |          |
| SSS_RA                                                                 | dB                     |                 |          |
| PCFICH_RB                                                              | dB                     |                 |          |
| PHICH_RA                                                               | dB                     |                 |          |
| PHICH_RB                                                               | dB                     | 0               | 0        |
| PDCCH_RA                                                               | dB                     |                 |          |
| PDCCH_RB                                                               | dB                     |                 |          |
| PDSCH_RA                                                               | dB                     |                 |          |
| PDSCH_RB                                                               | dB                     |                 |          |
| OCNG_RA <sup>Note1</sup>                                               | dB                     |                 |          |
| OCNG_RB <sup>Note1</sup>                                               | dB                     |                 |          |
| $N_{oc}^{ m Note2}$                                                    | dBm/15 kHz             | -98             | -98      |
| RSRP Note3                                                             | dBm/15 kHz             | -101            | -101     |
| $\hat{E}_s/N_{oc}$                                                     | dB                     | -3              | -3       |
| To Note3                                                               | dBm/1.08 MHz           | -77.66          | N/A      |
|                                                                        | dBm/9 MHz              | N/A             | -68.45   |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$               | dB                     | -3              | -3       |
| Propagation Condition                                                  |                        | AW              | 'GN      |
| Note 1: OCNG shall be used such that the resources in the active cell  | are fully allocated an | d a constant to | ntal     |

Note 1: OCNG shall be used such that the resources in the active cell are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Table A.9.7.1.2-2: Sounding Reference Symbol Configuration to be used in FDD UE Rx – Tx time difference test

| Field                                   | Test 1           | Test 2      | Comment                        |
|-----------------------------------------|------------------|-------------|--------------------------------|
| Field                                   | Va               | lue         | Comment                        |
| srsBandwidthConfiguration               | bw7              | bw5         |                                |
| srsSubframeConfiguration                | S                | c1          |                                |
| ackNackSrsSimultaneousTransmission      | FAI              | LSE         |                                |
| srsMaxUpPTS                             | N                | /A          | Not applicable for FDD         |
| srsBandwidth                            |                  | 0           | No hopping                     |
| srsHoppingBandwidth                     | hb               | w0          |                                |
| frequencyDomainPosition                 | (                | 0           |                                |
| Duration                                | TR               | UE          | Indefinite duration            |
| Srs-ConfigurationIndex                  | (                | 0           | SRS periodicity of 2ms for all |
| -                                       |                  |             | Tests.                         |
| transmissionComb                        | 0                |             |                                |
| cyclicShift                             | C                | s0          | No cyclic shift                |
| Note: For further information see secti | on 6.3.2 in 3GPF | PTS 36.331. |                                |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

#### A.9.7.1.3 Test Requirements

The UE Rx – Tx time difference measurement accuracy shall fulfill the requirements in Section 9.1.9.

#### A.9.7.2 E-UTRA TDD

#### A.9.7.2.1 Test Purpose and Environment

The purpose of this test is to verify that the E-UTRAN TDD UE Rx-Tx time difference measurement accuracy is within the specified limits in section 9.1.9.

There is only one cell in the test. The tested UE is connected with the serving cell, configured to transmit SRS signals periodcally, and signaled to report UE Rx - Tx time difference measurement. The test equipment measures the transmit timing of the UE using the transmitted SRS, and measures the receive timing using the downlink CRS. The test equipment then compares the difference of these two timings to the UE Rx - Tx measurement reported by the UE.

#### A.9.7.2.2 Test parameters

The parameters for this test case are defined in Table A.9.7.2.2-1, and the SRS configuration used is defined in Table A.9.7.2.2-2.

Table A.9.7.2.2-1: Cell specific test parameters for UE Rx-Tx time difference measurement

| Parameter                                                | Unit                         | Tests 1  | Tests 2  |
|----------------------------------------------------------|------------------------------|----------|----------|
| E-UTRAN RF Channel Number                                | -                            | 1        | 1        |
| BW <sub>channel</sub>                                    | MHz                          | 1.4      | 10       |
| Uplink-downlink configuration of cell Note1              |                              | 1        | 1        |
| Special subframe configuration of cell Note1             |                              | 6        | 6        |
| PDSCH Reference measurement channel defined in           | -                            | R.2 TDD  | R.0 TDD  |
| A.3.1.1.2                                                |                              |          |          |
| PDSCH allocation                                         | $n_{\scriptscriptstyle PRB}$ | 2-3      | 13-36    |
| PDCCH/PCFICH/PHICH Reference measurement                 | -                            | R.8 TDD  | R.6 TDD  |
| channel defined in A.3.1.2.2                             |                              |          |          |
| OCNG Patterns defined in A.3.2.2.3 (OP.3 TDD) and        | -                            | OP.3 TDD | OP.1 TDD |
| A.3.2.2.1 (OP.1 TDD)                                     |                              |          |          |
| PBCH_RA                                                  | dB                           |          |          |
| PBCH_RB                                                  | dB                           |          |          |
| PSS_RA                                                   | dB                           |          |          |
| SSS_RA                                                   | dB                           |          |          |
| PCFICH_RB                                                | dB                           |          |          |
| PHICH_RA                                                 | dB                           |          |          |
| PHICH_RB                                                 | dB                           | 0        | 0        |
| PDCCH_RA                                                 | dB                           |          |          |
| PDCCH_RB                                                 | dB                           |          |          |
| PDSCH_RA                                                 | dB                           |          |          |
| PDSCH_RB                                                 | dB                           |          |          |
| OCNG_RA <sup>Note2</sup>                                 | dB                           |          |          |
| OCNG_RB <sup>Note2</sup>                                 | dB                           |          |          |
| N <sub>oc</sub> Note 3                                   | dBm/15 kHz                   | -98      | -98      |
| RSRP Note 4                                              | dBm/15 kHz                   | -101     | -101     |
| $\hat{E}_s/N_{oc}$                                       | dB                           | -3       | -3       |
| lo Note 4                                                | dBm/1.08 MHz                 | -77.66   | N/A      |
|                                                          | dBm/9 MHz                    | N/A      | -68.45   |
| $\hat{\mathbf{E}}_{\mathrm{s}}/\mathbf{I}_{\mathrm{ot}}$ | dB                           | -3       | -3       |
| Propagation Condition                                    |                              | AW       | 'GN      |

- Note 1: For special subframe and uplink-downlink configurations see Tables 4.2-1 and 4.2-2 in 3GPP TS 36.211.
- Note 2: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
- Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modeled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.
- Note 4: RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.9.7.2.2-2: Sounding Reference Symbol Configuration to be used in TDD UE Rx – Tx time difference test

| Field                                     | Test 1           | Test 2                  | Comment                                |
|-------------------------------------------|------------------|-------------------------|----------------------------------------|
| Field                                     | Va               | lue                     | Comment                                |
| srsBandwidthConfiguration                 | bw7              | bw5                     |                                        |
| srsSubframeConfiguration                  | SC               | :1                      |                                        |
| ackNackSrsSimultaneousTransmission        | FAL              | SE                      |                                        |
| srsMaxUpPTS                               | TR               | UE                      |                                        |
| srsBandwidth                              | (                | )                       | No hopping                             |
| srsHoppingBandwidth                       | hb               | w0                      |                                        |
| frequencyDomainPosition                   | (                | )                       |                                        |
| Duration                                  | TR               | UE                      | Indefinite duration                    |
| Srs-ConfigurationIndex                    | 10               |                         | SRS periodicity of 10ms for all Tests. |
| transmissionComb                          | (                | )                       |                                        |
| cyclicShift                               | CS               | 0                       | No cyclic shift                        |
| Note: For further information see section | on 6.3.2 in 3GPF | <sup>o</sup> TS 36.331. |                                        |

### A.9.7.2.3 Test Requirements

The UE Rx – Tx time difference measurement accuracy shall fulfill the requirements in section 9.1.9.

#### A.9.8 RSTD

### A.9.8.1 E-UTRAN FDD RSTD intra frequency case

#### A.9.8.1.1 Test Purpose and Environment

The purpose of this test is to verify that the RSTD intra-frequency measurement accuracy is within the specified limits in section 9.1.10.1 in AWGN channels.

In the test, there are two synchronous cells, Cell 1 as the reference cell and Cell 2 as the neighbour cell on the same frequency.

The OTDOA assistance data as defined in TS 36.355, Section 6.5.1, shall be provided to the UE before the measurement period. The last TTI containing the OTDOA assistance data shall be provided to the UE  $\Delta T$  ms before the start of measurement period, where  $\Delta T = 150$  ms is the maximum processing time of the OTDOA assistance data.

A time span of  $T_{RSTD\ IntraFreqFDD,\ E-UTRAN}$  is provided for the measurement period, and PRS are configured according to  $I_{PRS}$  in Tables A.9.8.1.1-1 and A.9.8.1.1-2 during this time.

The test parameters are given in Table A.9.8.1.1-1 and Table A.9.8.1.1-2.

Table A.9.8.1.1-1: General Test Parameters for intra frequency RSTD Tests for E-UTRAN FDD

| Parameter                                                                                  | Unit | Value                                           |                                                 | Comment                                         |                                                   |                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------|------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                            |      | Test1                                           | Test2                                           | Test3                                           | Test4                                             | 1                                                                                                                                                                                             |
| PCFICH/PDCCH/PHICH                                                                         |      | R 8                                             | FDD                                             | R 6                                             | FDD                                               | As specified in section                                                                                                                                                                       |
| parameters                                                                                 |      | 14.0                                            |                                                 | 11.0                                            |                                                   | A.3.1.2.1                                                                                                                                                                                     |
| OCNG Patterns defined in A.3.2.1                                                           |      | OP.7 FDD                                        |                                                 | OP.6 FDD                                        |                                                   | OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols (other than those in the PRS subframes). |
| Reference cell                                                                             |      |                                                 |                                                 | ell 1                                           |                                                   |                                                                                                                                                                                               |
| Neighbour cell                                                                             |      |                                                 |                                                 | ell 2                                           |                                                   |                                                                                                                                                                                               |
| E-UTRA RF Channel Number                                                                   |      |                                                 |                                                 | 1                                               |                                                   | One FDD carrier frequency is used.                                                                                                                                                            |
| Channel Bandwidth (BW <sub>channel</sub> )                                                 | MHz  | 1                                               | .4                                              | 1                                               | 0                                                 |                                                                                                                                                                                               |
| PRS Bandwidth                                                                              | RB   | •                                               | ô                                               | 5                                               | 0                                                 | PRS bandwidth is as indicated in <i>prs-Bandwidth</i> in the OTDOA assistance data defined in [24].                                                                                           |
| PRS configuration Index $I_{PRS}$                                                          |      | 1                                               | 2                                               | :                                               | 2                                                 | As defined in 3GPP TS 36.211                                                                                                                                                                  |
| Number of consecutive positioning downlink subframes $N_{\mathrm{PRS}}$                    |      | 6 1                                             |                                                 |                                                 |                                                   | As defined in 3GPP TS 36.211                                                                                                                                                                  |
| prs-MutingInfo                                                                             |      |                                                 | Cell 2: '1                                      | 1110000'<br>1110000'                            |                                                   | See section 6.5.1.2 in 3GPP<br>TS 36.355 for more<br>information                                                                                                                              |
| Cell ID                                                                                    |      | (Cell ID of cell 1 – Cell ID of cell 2) mod 6 = | (Cell ID of cell 1 – Cell ID of cell 2) mod 6 = | (Cell ID of cell 1 – Cell ID of cell 2) mod 6 = | (Cell ID of cell 1 – Cell ID of cell 2) mod 6 = 3 |                                                                                                                                                                                               |
| expectedRSTD <sup>Note1</sup>                                                              | us   | 3                                               | 0                                               | 0                                               | -3                                                |                                                                                                                                                                                               |
| expectedRSTDUncertainty Note2                                                              | us   | 5                                               | 5                                               | 5                                               | 5                                                 |                                                                                                                                                                                               |
| CP length                                                                                  |      | -                                               |                                                 | mal                                             | -                                                 |                                                                                                                                                                                               |
| DRX                                                                                        |      |                                                 |                                                 | FF                                              |                                                   |                                                                                                                                                                                               |
| Radio frame transmit time<br>difference between cells (cell 2<br>TX time – cell 1 TX time) |      |                                                 | 3                                               | Synchronous cells                               |                                                   |                                                                                                                                                                                               |
| Number of cells provided in OTDOA assistance data                                          |      |                                                 | 1                                               | 6                                               |                                                   | The number of cells includes the reference cell                                                                                                                                               |
| $T_{ m RSTD~IntraFreqFDD,E-UTRAN}$                                                         | ms   |                                                 | 25                                              | 660                                             |                                                   | Derived according to the RSTD measurement requirements specified in Section 8.1.2.5.1                                                                                                         |

Note 1: The parameters of expected RSTD of all neighbour cells in the OTDOA assistance data are identical in the test

Note 2: The parameters of expected RSTD uncertainty of all neighbour cells in the OTDOA assistance data are identical in the test.

Table A.9.8.1.1-2: Cell Specific Test Parameters for intra frequency RSTD Tests for E-UTRAN FDD

Toota

| Parameter                                  | Unit            | Test1   |         | Test2  |        | Test3   |         | Test4 |       |
|--------------------------------------------|-----------------|---------|---------|--------|--------|---------|---------|-------|-------|
|                                            | Offic           | Cell1   | Cell2   | Cell1  | Cell2  | Cell1   | Cell2   | Cell1 | Cell2 |
| E-UTRA RF Channel                          |                 |         |         |        | 1      |         |         |       |       |
| Number                                     |                 |         |         |        | I      |         |         |       |       |
| PBCH_RA                                    |                 |         |         |        |        |         |         |       |       |
| PBCH_RB                                    |                 |         |         |        |        |         |         |       |       |
| PSS_RA                                     |                 |         |         |        |        |         |         |       |       |
| SSS_RA                                     |                 |         |         |        |        |         |         |       |       |
| PCFICH_RB                                  |                 |         |         |        |        |         |         |       |       |
| PHICH_RA                                   | dB              | 0       | 0       | 0      | 0      | 0       | 0       | 0     | 0     |
| PHICH_RB                                   |                 |         |         |        |        |         |         |       |       |
| PDCCH_RA                                   |                 |         |         |        |        |         |         |       |       |
| PDCCH_RB                                   |                 |         |         |        |        |         |         |       |       |
| OCNG_RA <sup>Note1</sup>                   |                 |         |         |        |        |         |         |       |       |
| OCNG_RB <sup>Note1</sup>                   |                 |         |         |        |        |         |         |       |       |
| PRS_RA                                     | dB              | 0       | 0       | -3     | 0      | 0       | 0       | -3    | 0     |
| $N_{oc}^{ m Note2}$                        | dBm/15 kHz      | -98     | -98     | -98    | -98    | -98     | -98     | -98   | -98   |
| PRS $\hat{\mathrm{E}}_{\mathrm{s}}/N_{oc}$ | dB              | -2.37   | -8.02   | -6     | -13    | -2.37   | -8.02   | -6    | -13   |
| PRS $\hat{E}_{_{s}}/I_{_{ot}}$ Note3       | dB              | -3      | -10     | -6     | -13    | -3      | -10     | -6    | -13   |
| lo <sup>Note3</sup>                        | dBm/1.08<br>MHz | -78.92  | -78.92  | -79.21 | -79.21 | N/A     | N/A     | N/A   | N/A   |
|                                            | dBm/9 MHz       | N/A     | N/A     | N/A    | N/A    | -69.72  | -69.72  | -70   | -70   |
| PRP Note3                                  | dBm/15kHz       | -100.37 | -106.02 | -104   | -111   | -100.37 | -106.02 | -104  | -111  |
| ${ m \hat{E}}_{ m s}/N_{oc}^{ m Note  3}$  | dB              | -2.37   | -8.02   | -3     | -13    | -2.37   | -8.02   | -3    | -13   |
| RSRP Note 3                                | dBm/15kHz       | -100.37 | -106.02 | -101   | -111   | -100.37 | -106.02 | -101  | -111  |
| Propagation                                |                 |         |         |        | AW     | GN      |         |       |       |

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

 $E_s/N_{oc}$ , PRS  $\hat{E}_s/I_{oc}$ , lo, RSRP and PRP levels have been derived from other parameters for information Note 3: purposes. They are not settable parameters themselves. Io values are derived in the case that there is no PBCH, PSS or SSS in the OFDM symbols carrying PRS

#### A.9.8.1.2 **Test Requirements**

The RSTD measurement accuracy shall fulfill the requirements in section 9.1.10.1.

## A.9.8.2 E-UTRAN TDD RSTD intra frequency case

#### A.9.8.2.1 Test Purpose and Environment

The purpose of this test is to verify that the RSTD intra-frequency measurement accuracy is within the specified limits in section 9.1.10.1 in AWGN channels.

In the test, there are two synchronous cells, Cell 1 as the reference cell and Cell 2 as the neighbour cell on the same frequency.

The OTDOA assistance data as defined in TS 36.355, Section 6.5.1, shall be provided to the UE before the measurement period. The last TTI containing the OTDOA assistance data shall be provided to the UE  $\Delta T$  ms before the start of measurement period, where  $\Delta T = 150$  ms is the maximum processing time of the OTDOA assistance data.

A time span of  $T_{RSTD\;IntraFreqTDD,\;E-UTRAN}$  is provided for the measurement period, and PRS are configured according to  $I_{PRS}$  in Tables A.9.8.2.1-1 and A.9.8.2.1-2 during this time.

The test parameters are given in Table A.9.8.2.1-1 and Table A.9.8.2.1-2.

Table A.9.8.2.1-1: General Test Parameters for intra frequency RSTD Tests for E-UTRAN TDD

| Parameter                                                                                  | Unit     | Va                                                |                                                   | lue                                               |                                                   | Comment                                                                                                                                                                                                                                                     |  |  |  |
|--------------------------------------------------------------------------------------------|----------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                            |          | Test1                                             | Test2                                             | Test3                                             | Test4                                             | <u> </u>                                                                                                                                                                                                                                                    |  |  |  |
| PCFICH/PDCCH/PHICH parameters                                                              |          | R.8 TDD                                           |                                                   | R.6 TDD                                           |                                                   | As specified in section A.3.1.2.2                                                                                                                                                                                                                           |  |  |  |
| OCNG Patterns defined in A.3.2.2                                                           |          | OP.4 TDD                                          |                                                   | OP.2 TDD                                          |                                                   | OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols (other than those in the PRS subframes). There is no PDSCH allocated in the subframe transmitting PRS. |  |  |  |
| Reference cell                                                                             |          |                                                   |                                                   |                                                   |                                                   |                                                                                                                                                                                                                                                             |  |  |  |
| Neighbour cell                                                                             |          | Cell 2                                            |                                                   |                                                   |                                                   | 0 700 : (                                                                                                                                                                                                                                                   |  |  |  |
| E-UTRA RF Channel Number                                                                   |          | 1                                                 |                                                   | _                                                 |                                                   | One TDD carrier frequency is used.                                                                                                                                                                                                                          |  |  |  |
| Channel Bandwidth (BW <sub>channel</sub> )                                                 | MHz      | 1.4                                               |                                                   | 10                                                |                                                   |                                                                                                                                                                                                                                                             |  |  |  |
| PRS Bandwidth                                                                              | RB       | 6                                                 |                                                   | 50                                                |                                                   | PRS bandwidth is as indicated in prs-Bandwidth in the OTDOA assistance data defined in [24].                                                                                                                                                                |  |  |  |
| Special subframe configuration                                                             |          | 6                                                 |                                                   | 6                                                 |                                                   | As specified in table 4.2-1 in TS 36.211. The same configuration in both cells.                                                                                                                                                                             |  |  |  |
| Uplink-downlink configuration                                                              |          | 3                                                 |                                                   | 1                                                 |                                                   | As specified in table 4.2-2 in TS 36.211 and table 8.1.2.5.2-2. The same configuration in both cells.                                                                                                                                                       |  |  |  |
| PRS configuration Index $I_{PRS}$                                                          |          | 9                                                 |                                                   | 14                                                |                                                   | As defined in 3GPP TS 36.211                                                                                                                                                                                                                                |  |  |  |
| Number of consecutive positioning downlink subframes $N_{\mathrm{PRS}}$                    |          | 6                                                 |                                                   | 1                                                 |                                                   | As defined in 3GPP TS 36.211                                                                                                                                                                                                                                |  |  |  |
| prs-MutingInfo                                                                             |          |                                                   |                                                   | 1110000'<br>1110000'                              |                                                   | See section 6.5.1.2 in 3GPP TS 36.355 for more information                                                                                                                                                                                                  |  |  |  |
| Cell ID                                                                                    |          | (Cell ID of cell 1 - Cell ID of cell 2) mod 6 = 0 | (Cell ID of cell 1 - Cell ID of cell 2) mod 6 = 1 | (Cell ID of cell 1 - Cell ID of cell 2) mod 6 = 0 | (Cell ID of cell 1 – Cell ID of cell 2) mod 6 = 3 |                                                                                                                                                                                                                                                             |  |  |  |
| expectedRSTD <sup>Note1</sup>                                                              | us       | 3                                                 | 0                                                 | 0                                                 | -3                                                |                                                                                                                                                                                                                                                             |  |  |  |
| expectedRSTDUncertainty Note2                                                              | us       | 5                                                 | 5                                                 | 5                                                 | 5                                                 |                                                                                                                                                                                                                                                             |  |  |  |
| CP length                                                                                  |          | Normal                                            |                                                   |                                                   |                                                   |                                                                                                                                                                                                                                                             |  |  |  |
| DRX                                                                                        | <u> </u> | OFF                                               |                                                   |                                                   |                                                   |                                                                                                                                                                                                                                                             |  |  |  |
| Radio frame transmit time<br>difference between cells (cell<br>2 TX time – cell 1 TX time) |          | 3 us                                              |                                                   |                                                   |                                                   | Synchronous cells                                                                                                                                                                                                                                           |  |  |  |
| Number of cells provided in OTDOA assistance data                                          |          | 16                                                |                                                   |                                                   |                                                   | The number of cells includes the reference cell                                                                                                                                                                                                             |  |  |  |
| T <sub>RSTD IntraFreqTDD</sub> , E-UTRAN                                                   | ms       | 2560                                              |                                                   |                                                   |                                                   | Derived according to the RSTD measurement requirements specified in Section 8.1.2.5.2                                                                                                                                                                       |  |  |  |
| test.                                                                                      | -        |                                                   | _                                                 |                                                   |                                                   | stance data are identical in the                                                                                                                                                                                                                            |  |  |  |
| Note 2: The parameters of exp                                                              | pecied   | US ID MICE                                        | italiliy ol all                                   | neignbout (                                       | cus iii tile C                                    | OTDOA assistance data are                                                                                                                                                                                                                                   |  |  |  |

Note 2: The parameters of expected RSTD uncertainty of all neighbour cells in the OTDOA assistance data are identical in the test.

Table A.9.8.2.1-2: Cell Specific Test Parameters for intra frequency RSTD Tests for E-UTRAN TDD

| Doromotor                                                         | l lmit          | Te      | st1     | Те     | st2      | Te      | st3     | Те    | st4   |
|-------------------------------------------------------------------|-----------------|---------|---------|--------|----------|---------|---------|-------|-------|
| Parameter                                                         | Unit            | Cell1   | Cell2   | Cell1  | Cell2    | Cell1   | Cell2   | Cell1 | Cell2 |
| E-UTRA RF Channel                                                 |                 |         |         |        | 1        |         |         |       |       |
| Number                                                            |                 |         |         |        | <u> </u> |         |         |       |       |
| PBCH_RA                                                           |                 |         |         |        |          |         |         |       |       |
| PBCH_RB                                                           |                 |         |         |        |          |         |         |       |       |
| PSS_RA                                                            |                 |         |         |        |          |         |         |       |       |
| SSS_RA                                                            |                 |         |         |        |          |         |         |       |       |
| PCFICH_RB                                                         |                 |         |         |        |          |         |         |       |       |
| PHICH_RA                                                          | dB              | 0       | 0       | 0      | 0        | 0       | 0       | 0     | 0     |
| PHICH_RB                                                          |                 |         |         |        |          |         |         |       |       |
| PDCCH_RA                                                          |                 |         |         |        |          |         |         |       |       |
| PDCCH_RB                                                          |                 |         |         |        |          |         |         |       |       |
| OCNG_RA <sup>Note1</sup>                                          |                 |         |         |        |          |         |         |       |       |
| OCNG_RB <sup>Note1</sup>                                          |                 |         |         |        |          |         |         |       |       |
| PRS_RA                                                            | dB              | 0       | 0       | -3     | 0        | 0       | 0       | -3    | 0     |
| $N_{oc}^{ m Note2}$                                               | dBm/15 kHz      | -98     | -98     | -98    | -98      | -98     | -98     | -98   | -98   |
| PRS $\hat{\mathrm{E}}_{\mathrm{s}}/N_{\mathit{oc}}$               | dB              | -2.37   | -8.02   | -6     | -13      | -2.37   | -8.02   | -6    | -13   |
| PRS $\hat{E}_{_{s}}/I_{_{ot}}$ Note3                              | dB              | -3      | -10     | -6     | -13      | -3      | -10     | -6    | -13   |
| lo Note3                                                          | dBm/1.08<br>MHz | -78.92  | -78.92  | -79.21 | -79.21   | N/A     | N/A     | N/A   | N/A   |
|                                                                   | dBm/9 MHz       | N/A     | N/A     | N/A    | N/A      | -69.72  | -69.72  | -70   | -70   |
| PRP Note3                                                         | dBm/15kHz       | -100.37 | -106.02 | -104   | -111     | -100.37 | -106.02 | -104  | -111  |
| $\hat{\mathrm{E}}_{\mathrm{s}}/N_{\mathit{oc}}^{\mathrm{Note 3}}$ | dB              | -2.37   | -8.02   | -3     | -13      | -2.37   | -8.02   | -3    | -13   |
| RSRP Note 3                                                       | dBm/15kHz       | -100.37 | -106.02 | -101   | -111     | -100.37 | -106.02 | -101  | -111  |
| Propagation condition                                             |                 |         |         |        | AW       | GN      | •       |       | •     |

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols (other than those in the PRS subframes). There is no PDSCH allocated in the subframe transmitting PRS.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for  $N_{oc}$  to be fulfilled.

Note 3:  $\hat{E}_s/N_{oc}$ , PRS  $\hat{E}_s/I_{ot}$ , Io, RSRP and PRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves. Io values are derived in the case that there is no PBCH, PSS or SSS in the OFDM symbols carrying PRS.

#### A.9.8.2.2 Test Requirements

The RSTD measurement accuracy shall fulfill the requirements in section 9.1.10.1.

# Annex B (informative): Change history:

| Change Hi |           | TSG Doo   | CD  | ГР      | Subject                                                                                | Ol4   | Nour  |
|-----------|-----------|-----------|-----|---------|----------------------------------------------------------------------------------------|-------|-------|
| Date      | TSG#      | TSG Doc.  | CR  | R<br>ev | Subject                                                                                | Old   | New   |
| 2007-12   | RP#3<br>8 | RP-071037 |     |         | Approved version in TSG RAN#38                                                         | -     | 8.0.0 |
| 2008-03   | RP#3<br>9 | RP-080123 | 2   |         | Updates of TS36.133                                                                    | 8.0.0 | 8.1.0 |
| 2008-05   | RP#4<br>0 | RP-080325 | 3   |         | Updates of TS36.133                                                                    | 8.1.0 | 8.2.0 |
| 2008-09   | RP#4<br>1 | RP-080644 | 006 | 1       | E-UTRAN TDD intra frequency measurements when DRX is used                              | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4<br>1 | RP-080644 | 800 | 1       | E-UTRAN TDD - UTRAN TDD measurements                                                   | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4<br>1 | RP-080644 | 012 |         | RSRQ reporting Range                                                                   | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4<br>1 | RP-080644 | 018 | 1       | Interfrequency and UTRA interRAT DRX peformance requirements                           | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4<br>1 | RP-080644 | 020 | 1       | Additions to UE transmit timing requirements                                           | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080644 | 043 |         | Received interference power measurement performance requirement                        | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080644 | 044 |         | Cell Synchronization requirement for E-UTRA TDD                                        | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080644 | 047 |         | Power Headroom Requirements                                                            | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080644 | 048 |         | Event Triggering and Reporting Criteria Capability Requirements                        | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 004 |         | Correction of E-UTRAN to UTRAN TDD handover                                            | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 016 | 1       | Definition of Symbols                                                                  | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 019 | 1       | Idle mode requirements updates                                                         | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 021 | 1       | General updates to 36.133                                                              | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 023 | 1       | Handover requirements for E-UTRAN to cdma200 HRPD/1x                                   | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 024 |         | Inter-frequency and inter-RAT measurement requirements for multiple layer monitoring   | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 025 |         | Side conditions for UE measurement procedures and measurement performance requirements | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 026 |         | Correction to cell reselection Requirement from E-<br>UTRAN to HRPD/cdma200 1x         | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080642 | 027 |         | IRAT Measurement requirements in TS 36.133                                             | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 022 | 1       | Corrections to Handover requirements                                                   | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 028 |         | Measurement reporting requirements                                                     | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 029 | 2       | RRC re-establishment requirements                                                      | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 032 |         | Correction to UE measurement requirements                                              | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 033 |         | Correction for the definition of interruption time                                     | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 040 | 1       | Correction to idle mode higher priority search                                         | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 045 |         | requirements  E-UTRAN TDD inter frequency measurement                                  | 8.2.0 | 8.3.0 |
| 2008-09   | RP#4      | RP-080713 | 046 |         | requirements Updates of the Measurement procedures in                                  | 8.2.0 | 8.3.0 |

|         | l         | 1         |     |   | 4#48                                                                      | 1     | 1     |
|---------|-----------|-----------|-----|---|---------------------------------------------------------------------------|-------|-------|
| 2008-12 | RP#4<br>2 | RP-080919 | 53  |   | Introduction of 700MHz Bands 12, 14 and 17                                | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080928 | 88  | 1 | CR to 36.133 on Radio Link Failure Monitoring                             | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080929 | 51  |   | Correction to idle mode requirements                                      | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080929 | 52  |   | Definition of out of service area                                         | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080929 | 54  |   | Measurement requirements for UTRAN TDD cells in idle state                | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080929 | 69  | 2 | Correction of Inter-RAT UTRA cell reselection requirement                 | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080929 | 55  |   | Correction of E_UTRAN cell measurement requirements in idle state         | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080930 | 76  |   | Correction to HO Requirements                                             | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080931 | 71  |   | Random access requirements                                                | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080932 | 85  |   | Cell phase synchronization error for large cell                           | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080932 | 63  | 4 | Synchronization Requirements for E-UTRAN to 1xRTT and HRPD Handovers      | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 49  |   | E-UTRAN TDD-TDD intra/inter frequency measurement reporting requirements  | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 50  |   | E-UTRAN FDD – UTRAN FDD Measurement reporting requirements                | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 58  |   | Measurement requirement for E-UTRAN TDD to UTRAN TDD/FDD when DRX is used | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 60  |   | Interfrequency and GSM measurement performance requirements in large DRX  | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 62  |   | Correction of implementation margin for transmission gap.                 | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 72  |   | Alignement of DRX cycle dependent requirements                            | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 73  | 1 | Alignement of side conditions for mobility measurements                   | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 66  | 1 | Measurement models in RRC_CONNECTED                                       | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 78  | 1 | Limitation of maximum number of layers for multiple monitoring            | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 83  | 1 | GSM Cell identification requirements for parallel monitoring              | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 87  |   | UE transmit timing requirement                                            | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080933 | 56  |   | Correction of TS 36.133 section 8.1.2.1.1.                                | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080934 | 77  |   | Correction to RSRQ Report Mapping                                         | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 |           | 86  |   | Missing side conditions for RSRP and RSRQ                                 | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080935 | 81  | 1 | Phase I RRM Test Cases                                                    | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 |           | 80  | 1 | Test Configuration for RRM Tests: Measurement Reference Channels and OCNG | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080936 | 75  |   | Cdma200 1xRTT Measurement Requirements                                    | 8.3.0 | 8.4.0 |
| 2008-12 | RP#4<br>2 | RP-080937 | 74  | 1 | E-UTRA to UTRA cell search requirements for SON                           | 8.3.0 | 8.4.0 |
| 2009-03 | RP#4<br>3 | RP-090182 | 101 | 1 | Correction of A3-offset parameter in RRM test case                        | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090182 | 105 |   | Some Editorial Corrections                                                | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090182 | 145 |   | Clarifications for the DRX state                                          | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090183 | 89  |   | Modification on measurements of UTRAN TDD cells                           | 8.4.0 | 8.5.0 |
| L       |           | I         |     | I | I.                                                                        | ı     | 1     |

|         |           |           | 1   |   | T                                                                                                                          |       |       |
|---------|-----------|-----------|-----|---|----------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 2009-03 | RP#4<br>3 | RP-090183 | 91  |   | Clarification of the correct behavior when<br>Treselection is not a multiple of idle mode<br>reselection evaluation period | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090183 | 98  |   | Clarification of 'Out of Service Area' Concept and Definition                                                              | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090183 | 118 |   | Radio link monitoring                                                                                                      | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090183 | 142 | 1 | Update of RRC_IDLE state mobility side conditions                                                                          | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090183 | 150 |   | UE measurement capability in Idle mode                                                                                     | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090184 | 133 |   | Removal of RRC re-establishment procedure delay                                                                            | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090184 | 138 | 1 | Correction for the UE Re-establishment delay requirement                                                                   | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090185 | 92  | 2 | Cell phase synchronization accuracy                                                                                        | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090185 | 97  |   | Radio link monitoring in DRX                                                                                               | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090185 | 120 |   | UE Transmit Timing                                                                                                         | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090185 | 137 | 1 | Clarification of the reference point for the UE initial transmission timing control requirement                            | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 90  |   | Correction of section 8.1.2.2.2.2 in TS36.133                                                                              | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 93  | 1 | cdma2000 1xRTT and HRPD Measurement Requirements                                                                           | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 94  |   | Event Triggered Periodic Reporting Requirements for IRAT Measurements                                                      | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 95  |   | Measurement Reporting Requirements for E-<br>UTRAN TDD – UTRAN TDD Measurements                                            | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 99  | 1 | Clarification of UE behavior when measurement gap is used                                                                  | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 100 |   | E-UTRA to UTRA cell search requirements in DRX for SON                                                                     | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 110 | 1 | Correction to GSM BSIC Requirements for Parallel Monitoring                                                                | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 117 |   | Alignment of terminology for GAP                                                                                           | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 134 |   | Inter frequency and Inter RAT cell search requirement when DRX is used                                                     | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 139 |   | Correction of E-UTRAN FDD – UTRAN FDD measurements when no DRX                                                             | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 146 |   | Addition of the definition of "when DRX is used"                                                                           | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090186 | 147 | 1 | Corrections to E-UTRAN inter-frequency side conditions                                                                     | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090187 | 96  |   | Correction to Intra-frequency RSRP Accuracy Requirements                                                                   | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090187 | 136 | 1 | Power Headroom reporting delay                                                                                             | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 103 | 1 | E-UTRAN -GSM Handover Test Case                                                                                            | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 104 | 1 | E-UTRAN FDD - UTRAN TDD Cell Search Test<br>Cases in Fading                                                                | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 106 | 1 | E-UTRA FDD to UTRA FDD Handover Test Case                                                                                  | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 107 | 1 | Correction of E-UTRA FDD-FDD Intra-frequency cell reselection test case                                                    | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 108 | 1 | Correction of E-UTRA FDD-FDD priority based Inter-frequency cell reselection test case                                     | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 111 |   | E-UTRAN TDD - UTRAN FDD Handover Test Case                                                                                 | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 112 | 1 | E-UTRAN FDD - GSM Cell Search Test Case in AWGN                                                                            | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 113 |   | E-UTRAN - UTRAN FDD Cell Search Test Cases in Fading                                                                       | 8.4.0 | 8.5.0 |

| 2009-03 | RP#4<br>3 | RP-090370 | 114 | 1 | E-UTRAN UE Timing Accuracy Related Test Cases                                                                                 | 8.4.0 | 8.5.0 |
|---------|-----------|-----------|-----|---|-------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 2009-03 | RP#4<br>3 | RP-090370 | 115 | 1 | Inclusion of MBSFN Configurations for RRM Test Cases                                                                          | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 116 |   | E-UTRAN FDD HRPD Cell Reselection Test Case;<br>HRPD of Low Priority                                                          | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 122 | 1 | Clarification on Annex A.9: Measurement performance requirements                                                              | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 125 |   | E-UTRA TDD – UTRA TDD cell reselection: UTRA is of higher priority                                                            | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 126 |   | E-UTRA TDD – UTRA TDD cell reselection: UTRA is of lower priority                                                             | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 127 |   | E-UTRA FDD – UTRA TDD cell reselection                                                                                        | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 128 | 1 | E-UTRA TDD-UTRA TDD cell search (fading)                                                                                      | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 129 | 1 | E-UTRA TDD-UTRA TDD handover                                                                                                  | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 132 | 1 | Addition of E-UTRA FDD to UTRA FDD reselection test cases                                                                     | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 141 | 1 | Correction and introduction of some test related parameters                                                                   | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 143 |   | Description of Annex A in TS 36.133                                                                                           | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 148 |   | Reselection from E-UTRA to GSM cell test case                                                                                 | 8.4.0 | 8.5.0 |
| 2009-03 | RP#4<br>3 | RP-090370 | 149 |   | Radio Link Monitoring Test Cases                                                                                              | 8.4.0 | 8.5.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 151 |   | E-UTRA FDD UTRA TDD HO delay test case                                                                                        | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 153 |   | Correction of CQI reporting periodicity for TDD RLM test cases                                                                | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 157 |   | Correction to inter RAT reselection requirements to exclude equal priority. (Technically Endorsed CR in R4-50bis - R4-091092) | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 167 |   | Clarification of the number of monitoring carriers in idle mode. (Technically Endorsed CR in R4-50bis - R4-091394)            | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 180 |   | Correction of Core spec references in A.9 Measurements performance test cases                                                 | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 984 |   | UTRA FDD-E-UTRA FDD/ TDD handover test cases                                                                                  | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 184 |   | SON ANR UTRAN FDD Cell Search Test Case                                                                                       | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 187 |   | E-UTRAN FDD cdma2000 1x RTT Cell Reselection<br>Test Case; Cdma2000 1X of Low Priority                                        | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 188 |   | E-UTRAN FDD cdma2000 HO Test cases                                                                                            | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 190 |   | E-UTRAN Random Access Test Cases                                                                                              | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 191 |   | E-UTRAN RRC Re-establishment Test Cases                                                                                       | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 192 |   | E-UTRAN TDD - GSM Cell Search Test Case in AWGN                                                                               | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 197 |   | Correction to E-UTRAN FDD - GSM Handover Test case                                                                            | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 173 | 1 | Correction of cell reselection test cases                                                                                     | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 179 | 1 | Test cases of E-UTRA TDD intra-frequency cell search in fading environment when DRX is used                                   | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 152 | 1 | E-UTRA TDD GSM handover test case                                                                                             | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 178 | 1 | Test cases of E-UTRA FDD intra-frequency cell search in fading environment when DRX is used                                   | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546 | 201 | 1 | Test case for E-UTRA FDD E-UTRA FDD inter frequency cell search when DRX is used in fading conditions                         | 8.5.0 | 8.6.0 |

| 2009-05 | RP#4<br>4 | RP-090546  | 185 | 1 | Correction to Radio Link Monitoring Tests                                                       | 8.5.0 | 8.6.0 |
|---------|-----------|------------|-----|---|-------------------------------------------------------------------------------------------------|-------|-------|
| 2009-05 | RP#4<br>4 | RP-090546  | 203 |   | Correction to E-UTRAN FDD to HRPD Cell<br>Reselection Test Case                                 | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4<br>4 | RP-090546  | 177 | 1 | Introduction of New Reference Channels and OCNG Patterns for 1.4MHz Bandwidth                   | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090546  | 200 | 2 | Test case for E-UTRA TDD E-UTRA TDD inter                                                       | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | frequency cell search when DRX is used in fading conditions                                     |       |       |
| 2009-05 | RP#4<br>4 | RP-090547  | 158 |   | Alignment of inter frequency and inter RAT RRM reselection testcases with core requirements.    | 8.5.0 | 8.6.0 |
|         |           |            |     |   | (Technically Endorsed CR in R4-50bis - R4-091094)                                               |       |       |
| 2009-05 | RP#4      | RP-090547  | 160 |   | Correction relating E-UTRAN TDD - UE Transmit                                                   | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | Timing Accuracy Tests. (Technically Endorsed CR in R4-50bis - R4-091198)                        |       |       |
| 2009-05 | RP#4      | RP-090547  | 165 |   | Modifications of T3 and the verification point for in-                                          | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | sync test cases. (Technically Endorsed CR in R4-                                                |       |       |
| 2009-05 | RP#4      | RP-090547  | 172 |   | 50bis - R4-091386)  E-UTRAN UE Timing Accuracy Related Test Cases.                              | 8.5.0 | 8.6.0 |
| 2009-05 | 4         | RP-090547  | 172 |   | (Technically Endorsed CR in R4-50bis - R4-091517)                                               | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090547  | 171 | 1 | Reference measurement Channels for Radio Link                                                   | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | Monitoring Tests with 2 Antennas. (Technically                                                  |       |       |
| 2222.25 | 55"4      | DD 000540  | 170 |   | Endorsed CR in R4-50bis - R4-091508)                                                            | 0.50  | 0.00  |
| 2009-05 | RP#4<br>4 | RP-090548  | 170 |   | Misalignment between TS36.133 and TS36.321. (Technically Endorsed CR in R4-50bis - R4-091457)   | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090548  | 193 |   | Correction to Inter-RAT HO Interruption Time                                                    | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | Definition                                                                                      |       |       |
| 2009-05 | RP#4<br>4 | RP-090548  | 195 |   | CR c2k RRC delay                                                                                | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090548  | 196 |   | CR c2k interruption time                                                                        | 8.5.0 | 8.6.0 |
| 2009-05 | 4<br>RP#4 | RP-090548  | 162 |   | Clarifications to UE UL timing requirements.                                                    | 8.5.0 | 8.6.0 |
| 2000 00 | 4         | 111 000010 | 102 |   | (Technically Endorsed CR in R4-50bis - R4-091357)                                               | 0.0.0 | 0.0.0 |
| 2009-05 | RP#4<br>4 | RP-090548  | 176 |   | Corrections of Random Access Requirements                                                       | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090548  | 154 |   | Correction of TGRP in clause 8.1.2.1.1                                                          | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090548  | 168 |   | Clarifications for the Relative RSRP and RSRQ                                                   | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | measurement requirements. (Technically Endorsed CR in R4-50bis - R4-091407)                     |       |       |
| 2009-05 | RP#4      | RP-090549  | 161 |   | E-UTRAN UTRAN HO Command Processing                                                             | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | Delay. (Technically Endorsed CR in R4-50bis - R4-<br>091291)                                    |       |       |
| 2009-05 | RP#4      | RP-090549  | 175 |   | Corrections of Cell Reselection Requirements in Idle                                            | 8.5.0 | 8.6.0 |
| 2009-05 | 4<br>RP#4 | RP-090549  | 181 | 2 | Mode  Removal of [] from ranking criteria in Idle mode cell                                     | 8.5.0 | 8.6.0 |
| 0000.05 | 4         | DD 000550  | 150 |   | reselection                                                                                     | 0.50  | 0.00  |
| 2009-05 | RP#4<br>4 | RP-090550  | 156 |   | Correction on the TDD-TDD inter frequency measurements. (Technically Endorsed CR in R4-         | 8.5.0 | 8.6.0 |
|         | -         |            |     |   | 50bis - R4-091071)                                                                              |       |       |
| 2009-05 | RP#4      | RP-090550  | 159 |   | Correction to the Referenced Section Number for                                                 | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | Tinter1. (Technically Endorsed CR in R4-50bis - R4-                                             |       |       |
|         |           |            |     |   | 091153)                                                                                         |       |       |
| 2009-05 | RP#4<br>4 | RP-090551  | 166 |   | Further clarification of DRX/Non-DRX state. (Technically Endorsed CR in R4-50bis - R4-091389)   | 8.5.0 | 8.6.0 |
| 2009-05 | RP#4      | RP-090551  | 202 |   | Correction on reference to 3GPP2 specification                                                  | 8.5.0 | 8.6.0 |
| 2009-05 | 4<br>RP#4 | RP-090551  | 169 | 1 | OCNG simplification. (Technically Endorsed CR in                                                | 8.5.0 | 8.6.0 |
|         | 4         |            |     |   | R4-50bis - R4-091410)                                                                           |       |       |
| 2009-05 | RP#4<br>4 | RP-090559  | 155 |   | Introduction of Extended LTE800 requirements. (Technically Endorsed CR in R4-50bis - R4-091063) | 8.6.0 | 9.0.0 |
| 2009-05 | RP#4      | RP-090817  | 211 |   | Correction to TDD RMC references in RLM test                                                    | 9.0.0 | 9.1.0 |
|         | 5         |            |     |   | cases                                                                                           |       |       |
| 2009-05 | RP#4<br>5 | RP-090880  | 205 |   | Introduction of Reference DRX configurations                                                    | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4      | RP-090880  | 207 |   | Addition of DRX configurations into non DRX test                                                | 9.0.0 | 9.1.0 |
| 1       | 5         |            |     | l | cases                                                                                           | 1     |       |

|         | 1         |           |     |   |                                                                                                                          |       |       |
|---------|-----------|-----------|-----|---|--------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 2009-05 | RP#4<br>5 | RP-090880 | 225 |   | Correction to HO Test Cases                                                                                              | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090880 | 227 |   | Correction to E-UTRAN GSM BSIC Identification Requirements with DRX                                                      | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090880 | 259 |   | Corrections of Test Cases                                                                                                | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090880 | 314 |   | E-UTRA FDD - E-UTRA FDD and UTRA FDD cell search test cases                                                              | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090880 | 315 |   | E-UTRAN Radio Link Monitoring Test Cases in DRX                                                                          | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090880 | 316 |   | Inter-frequency E-UTRA - E-UTRA HO test cases: unknown target cell                                                       | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090880 | 263 | 2 | E-UTRA FDD UTRA FDD Blind Handover test case: unknown target cell                                                        | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 321 | 1 | Small corrections to Measurements performance tests parameters                                                           | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 285 | 1 | E-UTRAN GSM Cell Search in DRX Test Cases                                                                                | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 267 |   | Set 3.2. E-UTRA TDD to UTRA TDD cell search in DRX under fading                                                          | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 269 |   | Set 3.6. Test case of E-UTRA TDD to E-UTRA TDD and UTRA TDD combined cell search under fading                            | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 271 |   | Set 3.12. E-UTRA TDD to UTRA TDD blind handover test                                                                     | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 279 |   | E-UTRAN FDD - UTRAN FDD Cell Search in DRX Test Cases                                                                    | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 281 |   | E-UTRAN TDD- E-UTRAN TDD and E-UTRAN TDD Inter-frequency Cell Search Test Case                                           | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 283 |   | E-UTRAN GSM Blind Handover Test Cases                                                                                    | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 287 |   | E-UTRAN FDD cdma2000 Blind HO Test cases                                                                                 | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 302 |   | RRM Test case for multiple E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation conditions | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090836 | 304 |   | Fading reselection test case between E-UTRA and UTRA (UTRA of lower priority                                             | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090828 | 233 |   | CR SI HRPD correction                                                                                                    | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 215 | 1 | Corrections to Measurements of HRPD cells and cdma2000 1X                                                                | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 231 |   | CR reference correction                                                                                                  | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 235 | 1 | Corrections to Measurements of GSM cells in RRC_IDLE                                                                     | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 247 |   | Range of Idle Mode Es/lot side conditions                                                                                | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 249 |   | Removal of [] from Tdetect, Tmeasure and Tevaluate                                                                       | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 245 | 1 | Clarification to applicability of RSRP side conditions in Idle mode                                                      | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 317 |   | CR Idle mode IF measurement condition                                                                                    | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 318 |   | CR Idle mode IF measurement period                                                                                       | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090879 | 217 | 2 | Corrections to E-UTRAN RRC_IDLE state mobility requirements                                                              | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090814 | 265 | 1 | Correction to Random Access                                                                                              | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090816 | 221 |   | E-UTRAN TDD-TDD inter frequency cell search/measurement requirements when DRX is used                                    | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090816 | 223 |   | E-UTRAN inter RAT measurement requirements                                                                               | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4<br>5 | RP-090816 | 229 |   | Correction to Monitoring of Multiple Layers Using Gaps                                                                   | 9.0.0 | 9.1.0 |
| 2009-05 | RP#4      | RP-090816 | 219 | 1 | E-UTRAN FDD-FDD inter frequency measurements                                                                             | 9.0.0 | 9.1.0 |

|                    | _              | 1                      | 1          | 1   | t DDV : d                                                                       | 1              |                |
|--------------------|----------------|------------------------|------------|-----|---------------------------------------------------------------------------------|----------------|----------------|
| 2000 05            | 5<br>RP#4      | RP-090816              | 222        |     | when DRX is used                                                                | 0.00           | 9.1.0          |
| 2009-05            | 5 KP#4         | RP-090616              | 322        |     | CR GSM measurement period                                                       | 9.0.0          | 9.1.0          |
| 2009-05            | RP#4           | RP-090816              | 323        |     | CR cdma2000 1x and HRPD number of carriers                                      | 9.0.0          | 9.1.0          |
| 2003-03            | 5              | 1030010                | 323        |     | ON Camazooo 1x and 111(1 b hamber of camers                                     | 3.0.0          | 3.1.0          |
| 2009-05            | RP#4           | RP-090816              | 213        | 1   | Editorial correction on E-UTRAN inter frequency                                 | 9.0.0          | 9.1.0          |
| 2000 00            | 5              | 111 000010             | 2.0        |     | measurements                                                                    | 0.0.0          | 0.1.0          |
| 2009-05            | RP#4           | RP-090816              | 261        | 1   | E-UTRAN TDD intra frequency measurements                                        | 9.0.0          | 9.1.0          |
|                    | 5              |                        |            |     |                                                                                 |                |                |
| 2009-05            | RP#4           | RP-090816              | 319        | 1   | Clarification of the number of monitoring cells for                             | 9.0.0          | 9.1.0          |
|                    | 5              |                        |            |     | intra frequency measurements                                                    |                |                |
| 2009-05            | RP#4           | RP-090815              | 237        |     | Correction of timing advance adjustment accuracy                                | 9.0.0          | 9.1.0          |
|                    | 5              |                        |            |     | test case                                                                       |                |                |
| 2009-05            | RP#4           | RP-090815              | 291        |     | Correction to UE Transmit Timing Requirements                                   | 9.0.0          | 9.1.0          |
|                    | 5              |                        |            |     |                                                                                 |                |                |
| 2009-12            | RP-46          | RP-091275              | 329        |     | Defining requirements for UTRA TDD                                              | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | measurements for SON (Technically endorsed at                                   |                |                |
| 2000 42            | DD 40          | DD 004070              | 222        |     | RAN 4 52bis in R4-093512)  Modification of test case of E-UTRA TDD intra        | 0.4.0          | 0.00           |
| 2009-12            | RP-46          | RP-091272              | 332        |     | frequency cell reselection (Technically endorsed at                             | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | RAN 4 52bis in R4-093552)                                                       |                |                |
| 2009-12            | RP-46          | RP-091272              | 333        |     | Modification of test case of E-UTRA TDD inter                                   | 9.1.0          | 9.2.0          |
| 2000 12            | 141 10         | 111 001272             | 000        |     | frequency cell reselection (Technically endorsed at                             | 0.1.0          | 0.2.0          |
|                    |                |                        |            |     | RAN 4 52bis in R4-093553)                                                       |                |                |
| 2009-12            | RP-46          | RP-091286              | 334        |     | Introduction of Extended LTE1500 requirements for                               | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | TS36.133 (Technically endorsed at RAN 4 52bis in                                |                |                |
|                    |                |                        |            |     | R4-093636)                                                                      |                |                |
| 2009-12            | RP-46          | RP-091272              | 336        |     | Addition of E-UTRA TDD to UTRA FDD reselection                                  | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | test cases (Technically endorsed at RAN 4 52bis in                              |                |                |
|                    |                |                        |            |     | R4-093686)                                                                      |                |                |
| 2009-12            | RP-46          | RP-091271              | 338        |     | Correction of missing accuracy requirements for                                 | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | UTRAN FDD (Technically endorsed at RAN 4 52bis                                  |                |                |
| 2000 42            | DD 40          | DD 004075              | 240        |     | in R4-093689)                                                                   | 040            | 0.0.0          |
| 2009-12            | RP-46          | RP-091275              | 340        |     | CR cdma2000 HRPD measurement period (Technically endorsed at RAN 4 52bis in R4- | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | 093720)                                                                         |                |                |
| 2009-12            | RP-46          | RP-091275              | 342        |     | CR cdma2000 1x measurement period (Technically                                  | 9.1.0          | 9.2.0          |
| 2000 12            | 141 10         | 141 001270             | 0.12       |     | endorsed at RAN 4 52bis in R4-093721)                                           | 0.1.0          | 0.2.0          |
| 2009-12            | RP-46          | RP-091272              | 344        |     | Correction for E-UTRAN FDD - UTRAN FDD Cell                                     | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | Search in DRX Test Cases (Technically endorsed at                               |                |                |
|                    |                |                        |            |     | RAN 4 52bis in R4-093890)                                                       |                |                |
| 2009-12            | RP-46          | RP-091272              | 346        |     | Revise geometry factors for Intra freq Reselection                              | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | Test Cases                                                                      |                |                |
| 2009-12            | RP-46          | RP-091271              | 348        |     | Corrections on RRM parameters for Bands 12, 14,                                 | 9.1.0          | 9.2.0          |
| 0000 40            | DD 40          | DD 004074              | 054        | 1   | 17                                                                              | 0.4.0          | 0.0.0          |
| 2009-12            | RP-46          | RP-091271              | 351        | 1   | Corrections to PDSCH RMC-s                                                      | 9.1.0          | 9.2.0          |
| 2009-12<br>2009-12 | RP-46<br>RP-46 | RP-091271<br>RP-091275 | 353<br>356 | 1   | Corrections of TS36.133  UTRA TDD P-CCPCH RSCP absolute accuracy                | 9.1.0<br>9.1.0 | 9.2.0          |
| 2009-12            | KF-40          | KF-091275              | 330        | '   | measurement in E-UTRAN                                                          | 9.1.0          | 9.2.0          |
| 2009-12            | RP-46          | RP-091275              | 358        | 1   | E-UTRAN TDD - UTRAN TDD cell search for SON                                     | 9.1.0          | 9.2.0          |
| 2009-12            | RP-46          | RP-091275              | 361        | t ' | Cell Search Requirements for Intra-LTE Handover                                 | 9.1.0          | 9.2.0          |
| 2000-12            | 111 40         | 11. 001270             | 301        |     | to Unknown Target Cell                                                          | 0.1.0          | 0.2.0          |
| 2009-12            | RP-46          | RP-091273              | 365        |     | Combined E-UTRAN interfrequency and GSM cell                                    | 9.1.0          | 9.2.0          |
|                    |                | 23.2.3                 |            |     | search test cases (Scenario set 3.2)                                            |                |                |
| 2009-12            | RP-46          | RP-091271              | 367        | 1   | Correction in UE UTRA TDD P-CCPCH RSCP                                          | 9.1.0          | 9.2.0          |
|                    |                |                        |            | L   | measurement capability for R9                                                   |                | <u>L</u>       |
| 2009-12            | RP-46          | RP-091273              | 374        |     | E-UTRAN GSM RSSI Measurement Accuracy                                           | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | Tests                                                                           |                |                |
| 2009-12            | RP-46          | RP-091273              | 375        |     | E-UTRAN UTRAN FDD CPICH RSCP                                                    | 9.1.0          | 9.2.0          |
|                    |                |                        |            |     | Measurement Accuracy Tests                                                      |                |                |
| 2009-12            | RP-46          | RP-091273              | 376        |     | E-UTRAN UTRAN FDD CPICH Ec/No                                                   | 9.1.0          | 9.2.0          |
| 0000 10            | DD 10          | DD 004077              | 070        | ļ   | Measurement Accuracy Tests                                                      | 0.4.0          |                |
| 2009-12            | RP-46          | RP-091275              | 378        |     | Cell Timing Change Requirements for Event                                       | 9.1.0          | 9.2.0          |
| 2000 42            | DD 46          | DD 001071              | 200        |     | Triggered Reporting                                                             | 0.1.0          | 020            |
| 2009-12<br>2009-12 | RP-46<br>RP-46 | RP-091271<br>RP-091271 | 380<br>382 |     | Correction to Power Headroom Requirements Editorial corrections to 36.133       | 9.1.0<br>9.1.0 | 9.2.0<br>9.2.0 |
| 2009-12            |                |                        |            |     |                                                                                 |                |                |
| ZUU9-1Z            | RP-46          | RP-091271              | 387        |     | Editorial corrections to the time units for RRC Re-                             | 9.1.0          | 9.2.0          |

|                    |                | 1                      | ı          |   | establishment test cases                                                                          | l              | ı     |
|--------------------|----------------|------------------------|------------|---|---------------------------------------------------------------------------------------------------|----------------|-------|
| 2009-12            | RP-46          | RP-091272              | 389        | 1 | Introduction of cell search test case in DRX to verify                                            | 9.1.0          | 9.2.0 |
| 2009-12            | 111 -40        | 1091272                | 303        | ' | L3 filtering                                                                                      | 9.1.0          | 9.2.0 |
| 2009-12            | RP-46          | RP-091271              | 391        |   | Correction to ONCG Patterns                                                                       | 9.1.0          | 9.2.0 |
| 2009-12            | RP-46          | RP-091275              | 329        |   | Defining requirements for UTRA TDD                                                                | 9.1.0          | 9.2.0 |
|                    |                |                        |            |   | measurements for SON (Technically endorsed at                                                     |                |       |
|                    |                |                        |            |   | RAN 4 52bis in R4-093512)                                                                         |                |       |
| 2009-12            | RP-46          | RP-091272              | 332        |   | Modification of test case of E-UTRA TDD intra                                                     | 9.1.0          | 9.2.0 |
|                    |                |                        |            |   | frequency cell reselection (Technically endorsed at                                               |                |       |
| 2222 12            | DD 40          | DD 004070              | 200        |   | RAN 4 52bis in R4-093552)                                                                         | 0.4.0          | 000   |
| 2009-12            | RP-46          | RP-091272              | 333        |   | Modification of test case of E-UTRA TDD inter frequency cell reselection (Technically endorsed at | 9.1.0          | 9.2.0 |
|                    |                |                        |            |   | RAN 4 52bis in R4-093553)                                                                         |                |       |
| 2010-03            | RP-47          | RP-100254              | 410        |   | Idle mode corrections                                                                             | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100254              | 405        |   | UE measurement capability requirements in Idle                                                    | 9.2.0          | 9.3.0 |
| 2010 00            | 101 47         | 100204                 | 100        | 1 | and Connected                                                                                     | 0.2.0          | 0.0.0 |
| 2010-03            | RP-47          | RP-100254              | 423        |   | Correction to UE Measurement Capability                                                           | 9.2.0          | 9.3.0 |
|                    |                |                        |            |   | Requirements in Idle Mode                                                                         |                |       |
| 2010-03            | RP-47          | RP-100254              | 412        |   | Removal of activation time from interRAT handover                                                 | 9.2.0          | 9.3.0 |
|                    |                |                        |            |   | requirements                                                                                      |                |       |
| 2010-03            | RP-47          | RP-100254              | 417        | 1 | Correction to UE Transmit Timing Requirements                                                     | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100254              | 402        |   | Correction of E-UTRAN TDD inter frequency                                                         | 9.2.0          | 9.3.0 |
|                    |                |                        |            |   | measurements_R9                                                                                   |                |       |
| 2010-03            | RP-47          | RP-100254              | 414        | 1 | Enhanced GSM Requirements for CSFB                                                                | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100254              | 415        | 1 | Enhanced UTRA FDD Requirements for CSFB                                                           | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100255              | 399        |   | Correction of RSRP value in E-UTRAN FDDFDD                                                        | 9.2.0          | 9.3.0 |
| 0010.00            | DD 47          | DD 400055              | 207        |   | Inter frequency reselection test                                                                  | 0.00           | 000   |
| 2010-03            | RP-47          | RP-100255              | 397        |   | Addition of missing Es/Noc parameters in RRM test                                                 | 9.2.0          | 9.3.0 |
| 2040.02            | DD 47          | DD 400055              | 404        |   | Cases                                                                                             | 0.00           | 0.00  |
| 2010-03            | RP-47          | RP-100255              | 421        | 4 | Correction to RRC Re-establishment Test Case                                                      | 9.2.0          | 9.3.0 |
| 2010-03<br>2010-03 | RP-47<br>RP-47 | RP-100255<br>RP-100255 | 427<br>419 | 1 | Correction of UE transmit timing test case  Correction to RLM Test Cases                          | 9.2.0<br>9.2.0 | 9.3.0 |
| 2010-03            | RP-47          | RP-100255              | 407        | ı | Editorial Corrections in TS36.133(Rel-9)                                                          | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100262              | 413        |   | Introduction of LTE in 800 MHz for Europe                                                         | 9.2.0          | 9.3.0 |
| 2010-03            | 131 -41        | 100203                 | 713        |   | requirements in TS 36.133                                                                         | 3.2.0          | 3.3.0 |
| 2010-03            | RP-47          | RP-100264              | 395        |   | Corrections for Extended UMTS1500 in                                                              | 9.2.0          | 9.3.0 |
|                    |                |                        |            |   | TS36.133(Rel-9)                                                                                   |                |       |
| 2010-03            | RP-47          | RP-100269              | 393        |   | AOA and TA measurement report mappings                                                            | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100269              | 403        | 2 | Mapping of UE RxTx time difference measurement                                                    | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100266              | 425        | 2 | Home eNode B synchronization requirement                                                          | 9.2.0          | 9.3.0 |
| 2010-03            | RP-47          | RP-100266              | 424        |   | Minimum requirements on SI reading for HeNB                                                       | 9.2.0          | 9.3.0 |
|                    |                |                        |            | 2 | inbound mobility                                                                                  |                |       |
| 2010-06            | RP-48          | RP-100622              | 473        |   | Clarification on radio link monitoring                                                            | 9.3.0          | 9.4.0 |
| 2010-06            |                |                        |            |   | Corrections of section numbering on the test case of                                              | 9.3.0          | 9.4.0 |
|                    | DD 40          | DD 400000              | 470        |   | E-UTRAN FDD-FDD inter-frequency cell search                                                       |                |       |
| 2010.06            | RP-48          | RP-100622              | 472        | 1 | requirements for L3 fitering                                                                      | 020            | 0.40  |
| 2010-06<br>2010-06 | RP-48<br>RP-48 | RP-100622<br>RP-100622 | 466<br>464 | 1 | Correction to RRM Test Cases  Correction to RRM Requirements                                      | 9.3.0          | 9.4.0 |
| 2010-06            | RP-48          | RP-100622<br>RP-100622 | 462        | 1 | Correction to RRM Requirements  Correction to Absolute RSRP/RSRQ Definitions                      | 9.3.0          | 9.4.0 |
| 2010-06            | INF *40        | 111-100022             | 402        | + | UE Measurement Capability Requirements for                                                        | 9.3.0          | 9.4.0 |
| 2010-00            | RP-48          | RP-100622              | 457        |   | CDMA2000                                                                                          | 3.3.0          | 3.4.0 |
| 2010-06            | 111 70         | 11 100022              | 107        |   | Correction of E-UTRAN Inter-frequency Cell Re-                                                    | 9.3.0          | 9.4.0 |
| _0.000             | RP-48          | RP-100622              | 455        | 1 | selection Requirements                                                                            | 0.0.0          | 5     |
| 2010-06            | RP-48          | RP-100622              | 451        | 1 | Correction to idle mode requirements(Rel-9)                                                       | 9.3.0          | 9.4.0 |
| 2010-06            | RP-48          | RP-100622              | 449        | 1 | Editorial corrections to 36.133(Rel-9)                                                            | 9.3.0          | 9.4.0 |
| 2010-06            |                |                        |            |   | Correction to TDD intrafrequency accuracy test                                                    | 9.3.0          | 9.4.0 |
|                    | RP-48          | RP-100622              | 447        |   | case                                                                                              |                |       |
| 2010-06            |                |                        |            |   | Correction of Io value in E-UTRAN FDD and TDD                                                     | 9.3.0          | 9.4.0 |
|                    | RP-48          | RP-100622              | 441        | 1 | Inter frequency RSRP tests                                                                        |                |       |
| 2010-06            | RP-48          | RP-100627              | 444        | 2 | Corrections to CSG SI reading core requirement                                                    | 9.3.0          | 9.4.0 |
| 2010-06            | RP-48          | RP-100627              | 445        | 1 | RSRQ idle mode requirements                                                                       | 9.3.0          | 9.4.0 |
| 2010-06            | RP-48          | RP-100630              | 470        | 1 | Test cases for R9 cell reselection enhancements                                                   | 9.3.0          | 9.4.0 |
| 2010-06            | RP-48          | RP-100630              | 460        |   | Missing E-UTRA - UTRA FDD DRX Requirements                                                        | 9.3.0          | 9.4.0 |
| 2010-06            | DD 40          | DD 400004              | 440        |   | Corrections to enhanced cell identification core                                                  | 9.3.0          | 9.4.0 |
| 2040.00            | RP-48          | RP-100631              | 442        | 2 | requirement  Applicability of mobility requirements with inter-                                   | 0.2.0          | 0.40  |
| 2010-06            | RP-48          | RP-100632              | 469        | 1 | Applicability of mobility requirements with inter-                                                | 9.3.0          | 9.4.0 |

| 2010-06   RP-48   RP-100632   439   UE RX-TX Time Difference Measurement   9.3.0   9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 1       |            |     |   | , DOTD                                            |          | 1              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------|-----|---|---------------------------------------------------|----------|----------------|
| RP-48   RP-100632   439   Requirements for E-CID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0040.00 |         |            |     |   | frequency RSTD measurements                       | 0.00     | 0.40           |
| 2010-06   RP-48   RP-100632   438   2   CR UE RX-TX time-difference measurement   9.3.0   9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2010-06 | DD 40   | DD 100633  | 420 |   |                                                   | 9.3.0    | 9.4.0          |
| RP-48   RP-100632   438   2   requirement   Requirements for OTDOA   9.3.0   9.2010-06   RP-48   RP-100632   432   5   RSTD Measurement Requirements for OTDOA   9.3.0   9.2010-09   RP-49   RP-100914   477   1   Cell identity Change time in RRM Test cases   9.4.0   9.2010-09   RP-49   RP-100919   537   Correction of drx-Retransmission Timer parameters   9.4.0   9.2010-09   RP-49   RP-100920   506   Correction of drx-Retransmission Timer parameters   9.4.0   9.2010-09   RP-49   RP-100915   508   Correction of drx-Retransmission Timer parameters   9.4.0   9.2010-09   RP-49   RP-100915   508   Correction of drx-Retransmission Timer parameters   9.4.0   9.2010-09   RP-49   RP-100915   508   Correction of drx-Retransmission Timer parameters   9.4.0   9.2010-09   RP-49   RP-100914   523   3.6133(Rs)   3.6133(Rs)   9.4.0   9.2010-09   RP-49   RP-100914   523   3.6133(Rs)   3.6133(Rs)   9.4.0   9.2010-09   RP-49   RP-100920   525   1   Correction of Time to Trigger unit for 36.133(Rs)   9.4.0   9.2010-09   RP-49   RP-100920   528   1   Correction of Time to Trigger unit for 36.133(Rs)   9.4.0   9.2010-09   RP-49   RP-100910   539   E-UTRAN FDD Intra Frequency RSTD   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100919   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100910   540   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100914   547   Correction to E-Dianaced BSIC Verification   9.4.0   9.2010-09   RP-49   RP-100915   540   Cor | 2010.06 | KP-46   | RP-100632  | 439 |   |                                                   | 0.2.0    | 9.4.0          |
| 2010-06 RP-48 RP-100632 433 5 RSTD Measurement Requirements for OTDOA 9.3.0 9.2010-09 RP-49 RP-40 RP-100914 477 1 Cell identity change time in RRM Test cases 9.4.0 9.2010-09 RP-49 RP-100919 537 A correction of dra-Retransmission Timer parameters 9.4.0 9.2010-09 RP-49 RP-100920 506 Correction of Io Value in RRSM PF DD and TDD Intra 100-09 RP-49 RP-100920 521 I Editorial corrections to 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 521 I Editorial corrections to 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 525 I Correction of Time to Trigger unit for 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 525 I Correction of Time to Trigger unit for 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 528 I Correction of Time to Trigger unit for 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 528 I Correction to Time to Trigger unit for 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 528 I Correction to Time to Trigger unit for 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100920 528 I Correction to Time to Trigger unit for 36.133 (R9) 9.4.0 9.2010-09 RP-49 RP-100919 538 I Requirement Accuracy test case 9.4.0 9.2010-09 RP-49 RP-100919 538 I Requirement Accuracy test case 9.4.0 9.2010-09 RP-49 RP-100919 539 Enhanced CSFB Requirements with DRX 9.4.0 9.2010-09 RP-49 RP-100920 524 I Editorial correction to E-CID Requirements 9.4.0 9.2010-09 RP-49 RP-100919 539 Enhanced CSFB Requirements with DRX 9.4.0 9.2010-09 RP-49 RP-100919 539 Enhanced CSFB Requirements with DRX 9.4.0 9.2010-09 RP-49 RP-100919 540 Correction to E-CID Requirements 9.4.0 9.2010-09 RP-49 RP-100910 SPA 10  | 2010-06 | DD 40   | DD 100633  | 120 | 2 |                                                   | 9.3.0    | 9.4.0          |
| 2010-09   RP-49   RP-100919   S37   A clarification text in the RSTD intra-frequency   Q.4.0   9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2010.06 |         |            |     |   |                                                   | 0.2.0    | 9.4.0          |
| 2010-09   RP-49   RP-100919   S37   Cell identity change time in RRM Test cases   9,4.0   9,1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |            |     |   |                                                   |          |                |
| 2010-09   RP-49   RP-100919   S37   A clarification text in the RSTD intra-frequency   9.4.0   9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |            |     |   |                                                   |          | 9.4.0          |
| RP-49   RP-100919   537   accuracy requirements   9,4,0   9,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KP-49   | RP-100914  | 4// | - |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100915   508   Correction of dx-RetransmissionTimer parameters   9.4.0   9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2010-09 | DD_4Ω   | PP-100010  | 537 |   |                                                   | 0.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100915   508   Correction of Io value in RSRP FDD and TDD Intra   9,4,0   9,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2010-00 |         |            |     |   |                                                   |          | 9.5.0          |
| RP-49   RP-100915   508   frequency test   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 111 -43 | 100320     | 300 |   |                                                   | 3.4.0    | 3.3.0          |
| 2010-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2010 03 | RP-49   | RP-100915  | 508 |   |                                                   | 940      | 9.5.0          |
| Alignment of REFSENS between 36.101 and   9.4.0   9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2010-09 |         |            |     | 1 |                                                   |          | 9.5.0          |
| RP-49   RP-100914   523   36.133(R9)   9.40   9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 111 10  | 100020     | 021 |   |                                                   | 0.1.0    | 0.0.0          |
| 2010-09   RP-49   RP-100915   505   1   Correction of Time to Trigger unit for 36.133(R9)   9.4.0   9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2010 00 | RP-49   | RP-100914  | 523 |   |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100915   505   1   Corrections to 36.133(R9)   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2010-09 |         |            |     | 1 |                                                   |          | 9.5.0          |
| 2010-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |            |     |   |                                                   |          | 9.5.0          |
| RP-49   RP-100920   528   1   Measurement Accuracy test case   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |            | 000 |   |                                                   | 01.110   | 0.0.0          |
| 2010-09   RP-49   RP-100919   538   1   Requirements   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _0.00   | RP-49   | RP-100920  | 528 | 1 |                                                   | 9.4.0    | 9.5.0          |
| RP-49   RP-100919   538   1   Requirements   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2010-09 |         |            |     |   |                                                   |          |                |
| 2010-09   RP-49   RP-100919   539   Enhanced CSFB Requirements with DRX   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | RP-49   | RP-100919  | 538 | 1 |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100919   540   Correction to E-CID Requirements   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2010-09 | RP-49   | RP-100919  | 539 |   |                                                   |          | 9.5.0          |
| RP-49   RP-100920   S44   1   Addition of UTRA and GSM enhanced cell identification test cases   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |         |            |     |   |                                                   |          | 9.5.0          |
| RP-49   RP-100920   544   1   identification test cases   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |            |     |   |                                                   |          |                |
| RP-49   RP-100920   547   1   Measurement Accuracy test cases   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | RP-49   | RP-100920  | 544 | 1 |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100914   479   1   Scrambling code change time in RRM Test cases   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2010-09 |         |            |     |   | E-UTRAN FDD UE Rx – Tx Time Difference            |          |                |
| 2010-09   RP-49   RP-100914   549   Introduction of CSG cell reselection requirements   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | RP-49   | RP-100920  | 547 | 1 | Measurement Accuracy test case                    | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100920   S27   36.133(R9)   S21010-09   RP-49   RP-100920   A88   Z   Test case for TDD UE Rx-Tx time difference measurement   S4.0   | 2010-09 | RP-49   | RP-100914  | 479 | 1 | Scrambling code change time in RRM Test cases     | 9.4.0    | 9.5.0          |
| RP-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2010-09 | RP-49   | RP-100914  | 549 |   | Introduction of CSG cell reselection requirements | 9.4.0    | 9.5.0          |
| RP-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2010-09 |         |            |     |   | correction of redundant Hysteresis(Hys) for       |          |                |
| RP-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | RP-49   | RP-100920  | 527 |   |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100914   483   Clarification of Radio link monitoring test cases   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2010-09 |         |            |     |   | Test case for TDD UE Rx-Tx time difference        |          |                |
| Test case for E-UTRA TDD event triggered reporting when L3 filtering is used in R9   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |            |     | 2 |                                                   |          | 9.5.0          |
| RP-49   RP-100915   485   reporting when L3 filtering is used in R9   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | RP-49   | RP-100914  | 483 |   |                                                   | 9.4.0    | 9.5.0          |
| E-UTRA TDD - UTRA TDD cell reselection in fading propagation conditions: UTRA TDD is of lower priority in R9   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2010-09 |         |            |     |   |                                                   |          |                |
| RP-49   RP-100915   487   Propagation conditions: UTRA TDD is of lower priority in R9   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | RP-49   | RP-100915  | 485 |   |                                                   | 9.4.0    | 9.5.0          |
| RP-49   RP-100915   487   Priority in R9   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2010-09 |         |            |     |   |                                                   |          |                |
| Test case for E-UTRAN TDD in the existence of non-allowed CSG cell   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | DD 40   | DD 400045  | 407 |   |                                                   |          |                |
| RP-49   RP-100924   492   non-allowed CSG cell   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0010.00 | RP-49   | RP-100915  | 487 |   |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100915   494   PDCCH Aggregation level for RRM tests   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2010-09 | DD 40   | DD 400004  | 400 |   |                                                   | 0.40     | 0.50           |
| Correction of ES/lot value in E-UTRAN RSRQ FDD   intra frequency test   9.4.0   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9. | 0040.00 |         |            |     |   |                                                   |          | 9.5.0          |
| RP-49   RP-100915   503   intra frequency test   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | RP-49   | RP-100915  | 494 |   |                                                   | 9.4.0    | 9.5.0          |
| 2010-09         RP-49         RP-100915         496         Corrections to RRM OCNG Patterns         9.4.0         9.5           2010-09         RP-49         RP-100919         498         RRC timer accuracy requirement         9.4.0         9.5           2010-09         RP-49         RP-100915         501         Correction of OCNG         9.4.0         9.5           2010-09         RP-49         RP-100914         477         1         Cell identity change time in RRM Test cases         9.4.0         9.5           2010-09         RP-49         RP-100919         537         A clarification text in the RSTD intra-frequency accuracy requirements         9.4.0         9.5           2010-09         RP-49         RP-100920         506         Correction of drx-RetransmissionTimer parameters         9.4.0         9.5           2010-09         RP-49         RP-100915         508         frequency test         9.4.0         9.5           2010-09         RP-49         RP-100920         521         1         Editorial corrections to 36.133 (R9)         9.4.0         9.5           2010-09         RP-49         RP-100914         523         36.133(R9)         9.4.0         9.5           2010-09         RP-49         RP-100915         505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010-09 | DD 40   | DD 100015  | E02 |   |                                                   | 0.4.0    | 0.5.0          |
| RP-49   RP-100919   498   RRC timer accuracy requirement   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2010.00 |         |            |     |   |                                                   |          | 9.5.0          |
| 2010-09   RP-49   RP-100915   501   Correction of OCNG   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |            |     |   |                                                   |          |                |
| 2010-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |            |     |   |                                                   |          | 9.5.0<br>9.5.0 |
| A clarification text in the RSTD intra-frequency accuracy requirements   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |            |     | 1 |                                                   |          | 9.5.0          |
| RP-49   RP-100919   537   accuracy requirements   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 116-49  | 111-100914 | 711 | - |                                                   | ਹ.4.∪    | 9.0.0          |
| 2010-09   RP-49   RP-100920   506   Correction of drx-RetransmissionTimer parameters   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2010-03 | RP-49   | RP-100919  | 537 |   |                                                   | 9.4 0    | 9.5.0          |
| Correction of lo value in RSRP FDD and TDD Intra   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2010-09 |         |            |     |   | Correction of drx-RetransmissionTimer parameters  |          | 9.5.0          |
| RP-49   RP-100915   508   frequency test   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 111 -10 | 711 100020 | 555 |   |                                                   | 0.7.0    | 0.0.0          |
| 2010-09         RP-49         RP-100920         521         1         Editorial corrections to 36.133 (R9)         9.4.0         9.5           2010-09         RP-49         RP-100914         523         Alignment of REFSENS between 36.101 and 36.133 (R9)         9.4.0         9.5           2010-09         RP-49         RP-100920         525         1         Correction of Time to Trigger unit for 36.133 (R9)         9.4.0         9.5           2010-09         RP-49         RP-100915         505         1         Corrections to 36.133 (R9)         9.4.0         9.5           2010-09         RP-49         RP-100920         528         1         Measurement Accuracy test case         9.4.0         9.5           2010-09         RP-49         RP-100919         538         1         Requirements         9.4.0         9.5           2010-09         RP-49         RP-100919         538         1         Requirements         9.4.0         9.5           2010-09         RP-49         RP-100919         538         1         Requirements         9.4.0         9.5           2010-09         RP-49         RP-100919         539         Enhanced CSFB Requirements with DRX         9.4.0         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2010 00 | RP-49   | RP-100915  | 508 |   |                                                   | 9.4 0    | 9.5.0          |
| 2010-09   RP-49   RP-100914   523   Alignment of REFSENS between 36.101 and 36.133(R9)   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2010-09 |         |            |     | 1 |                                                   |          | 9.5.0          |
| RP-49         RP-100914         523         36.133(R9)         9.4.0         9.5           2010-09         RP-49         RP-100920         525         1         Correction of Time to Trigger unit for 36.133(R9)         9.4.0         9.5           2010-09         RP-49         RP-100915         505         1         Corrections to 36.133(R9)         9.4.0         9.5           2010-09         RP-49         RP-100920         528         1         Measurement Accuracy test case         9.4.0         9.5           2010-09         RP-49         RP-100919         538         1         Requirements         9.4.0         9.5           2010-09         RP-49         RP-100919         539         Enhanced CSFB Requirements with DRX         9.4.0         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 10      | 11 100020  | 021 | † |                                                   | 00       | 0.0.0          |
| 2010-09   RP-49   RP-100920   525   1   Correction of Time to Trigger unit for 36.133(R9)   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | RP-49   | RP-100914  | 523 |   |                                                   | 9.4.0    | 9.5.0          |
| 2010-09   RP-49   RP-100915   505   1   Corrections to 36.133(R9)   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2010-09 |         |            |     | 1 |                                                   |          | 9.5.0          |
| 2010-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |            |     |   | Corrections to 36.133(R9)                         |          | 9.5.0          |
| RP-49   RP-100920   528   1   Measurement Accuracy test case   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |            |     |   |                                                   | <u> </u> |                |
| 2010-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | RP-49   | RP-100920  | 528 | 1 |                                                   | 9.4.0    | 9.5.0          |
| RP-49         RP-100919         538         1         Requirements         9.4.0         9.5           2010-09         RP-49         RP-100919         539         Enhanced CSFB Requirements with DRX         9.4.0         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2010-09 |         |            | Ī   |   |                                                   | İ        |                |
| 2010-09   RP-49   RP-100919   539   Enhanced CSFB Requirements with DRX   9.4.0   9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | RP-49   | RP-100919  | 538 | 1 |                                                   | 9.4.0    | 9.5.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2010-09 |         |            |     |   | Enhanced CSFB Requirements with DRX               |          | 9.5.0          |
| 1 = 0.0 00   10   100010   0.0     0.0100110110 = 010 1.0quiloinoi10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2010-09 | RP-49   | RP-100919  | 540 |   | Correction to E-CID Requirements                  | 9.4.0    | 9.5.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |            |     | 1 |                                                   |          | 9.5.0          |

|                    |                |                        | I          |   | identification test coops                                                               |                | 1              |
|--------------------|----------------|------------------------|------------|---|-----------------------------------------------------------------------------------------|----------------|----------------|
| 2010-09            |                |                        |            |   | identification test cases  E-UTRAN FDD UE Rx – Tx Time Difference                       |                |                |
| 2010-03            | RP-49          | RP-100920              | 547        | 1 | Measurement Accuracy test case                                                          | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100914              | 479        | 1 | Scrambling code change time in RRM Test cases                                           | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100914              | 549        |   | Introduction of CSG cell reselection requirements                                       | 9.4.0          | 9.5.0          |
| 2010-09            |                |                        |            |   | correction of redundant Hysteresis(Hys) for                                             |                |                |
|                    | RP-49          | RP-100920              | 527        |   | 36.133(R9)                                                                              | 9.4.0          | 9.5.0          |
| 2010-09            |                |                        |            |   | Test case for TDD UE Rx-Tx time difference                                              |                |                |
|                    | RP-49          | RP-100920              | 488        | 2 | measurement                                                                             | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100914              | 483        |   | Clarification of Radio link monitoring test cases                                       | 9.4.0          | 9.5.0          |
| 2010-09            | DD 40          | DD 400045              | 405        |   | Test case for E-UTRA TDD event triggered                                                | 0.4.0          | 0.50           |
| 0040.00            | RP-49          | RP-100915              | 485        |   | reporting when L3 filtering is used in R9                                               | 9.4.0          | 9.5.0          |
| 2010-09            |                |                        |            |   | E-UTRA TDD - UTRA TDD cell reselection in fading                                        |                |                |
|                    | RP-49          | RP-100915              | 487        |   | propagation conditions: UTRA TDD is of lower priority in R9                             | 9.4.0          | 9.5.0          |
| 2010-09            | NF-49          | KF-100915              | 407        |   | Test case for E-UTRAN TDD in the existence of                                           | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100924              | 492        |   | non-allowed CSG cell                                                                    | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100915              | 494        |   | PDCCH Aggregation level for RRM tests                                                   | 9.4.0          | 9.5.0          |
| 2010-09            |                |                        |            |   | Correction of ES/lot value in E-UTRAN RSRQ FDD                                          | 00             | 0.0.0          |
|                    | RP-49          | RP-100915              | 503        |   | intra frequency test                                                                    | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100915              | 496        |   | Corrections to RRM OCNG Patterns                                                        | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100919              | 498        |   | RRC timer accuracy requirement                                                          | 9.4.0          | 9.5.0          |
| 2010-09            | RP-49          | RP-100915              | 501        |   | Correction of OCNG                                                                      | 9.4.0          | 9.5.0          |
| 2010-12            | RP-50          | RP-101331              | 634        |   | Corrections to 36.133 performance requirements                                          | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101331              | 637        |   | Correction to intra frequency cell identification time                                  | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101331              | 591        | 1 | Correction to Radio link monitoring test cases                                          | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101331              | 565        | 1 | Corrections and Clarifications to TS36.133                                              | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101332              | 562        |   | PDCCH Aggregation Level for RRM Tests                                                   | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101332              | 570        |   | MIMO correlation scenario for RLM test cases                                            | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101332              | 579        |   | Removal of [] from PDSCH and                                                            | 9.5.0          | 9.6.0          |
|                    |                |                        |            |   | PCFICH/PDCCH/PHICH Measurement Channel                                                  |                |                |
| 0040.40            | DD 50          | DD 404000              | 504        |   | references in Annex A.                                                                  | 0.5.0          | 0.00           |
| 2010-12            | RP-50          | RP-101332              | 584        | 4 | Enabling HARQ for RRM Tests  Completion of CSG cell reselection requirements            | 9.5.0          | 9.6.0          |
| 2010-12<br>2010-12 | RP-50<br>RP-50 | RP-101335<br>RP-101343 | 642<br>567 | 1 | Clarification of measurements requirements for                                          | 9.5.0<br>9.5.0 | 9.6.0<br>9.6.0 |
| 2010-12            | KF-30          | KF-101343              | 307        |   | HRPD and cdma2000 1x                                                                    | 9.5.0          | 9.0.0          |
| 2010-12            | RP-50          | RP-101343              | 588        |   | Addition of Band 18, 19 and 21 into UE Rx - Tx time                                     | 9.5.0          | 9.6.0          |
| 2010 12            | 141 00         | 101040                 | 300        |   | difference requirements                                                                 | 0.0.0          | 0.0.0          |
| 2010-12            | RP-50          | RP-101343              | 603        |   | Correction to Enhanced GSM Cell Identification                                          | 9.5.0          | 9.6.0          |
|                    |                |                        |            |   | Requirements                                                                            |                |                |
| 2010-12            | RP-50          | RP-101343              | 551        | 3 | E-UTRAN TDD Intra Frequency RSTD                                                        | 9.5.0          | 9.6.0          |
|                    |                |                        |            |   | Measurement Accuracy test case                                                          |                |                |
| 2010-12            | RP-50          | RP-101343              | 639        |   | Correction to Enhanced UTRA FDD Cell                                                    | 9.5.0          | 9.6.0          |
|                    |                |                        |            |   | Identification Requirements                                                             |                |                |
| 2010-12            | RP-50          | RP-101343              | 631        | 1 | Correction of reselection requirement for UTRAN                                         | 9.5.0          | 9.6.0          |
|                    |                | 55                     |            |   | FDD cells                                                                               |                |                |
| 2010-12            | RP-50          | RP-101343              | 620        | 2 | Correction for Measurements of inter-RAT cells                                          | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101343              | 597        | 1 | E-UTRAN FDD intra-frequency RSTD measurement reporting delay test case                  | 9.5.0          | 9.6.0          |
| 2010-12            | DD FO          | RP-101343              | 599        | 1 | E-UTRAN TDD intra-frequency RSTD measurement                                            | 0.5.0          | 0.6.0          |
| 2010-12            | RP-50          | AF-101343              | 599        | ' | reporting delay test case                                                               | 9.5.0          | 9.6.0          |
| 2010-12            | RP-50          | RP-101387              | 647        |   | Removal of square brackets from scope of                                                | 9.5.0          | 9.6.0          |
| 2010-12            | 131 -00        | 101307                 | 57/        |   | TS36.133                                                                                | 5.5.0          | 3.0.0          |
| 2011-04            | RP-51          | RP-110340              | 066        | - | Correction to E-UTRAN TDD in-sync test                                                  | 9.6.0          | 9.7.0          |
| _0                 | 5.             | 1 1.0010               | 2          |   | requirements                                                                            | 0.0.0          | 00             |
| 2011-04            | RP-51          | RP-110348              | 066        | 1 | RSTD requirements, RMC and OCNG patterns                                                | 9.6.0          | 9.7.0          |
|                    |                | <u> </u>               | 4          |   | , , , , , , , , , , , , , , , , , , ,                                                   |                | <u> </u>       |
| 2011-04            | RP-51          | RP-110339              | 067        | - | Modification on test case of E-UTRA TDD to UTRA                                         | 9.6.0          | 9.7.0          |
|                    |                |                        | 5          |   | TDD cell reselection(R9)                                                                |                |                |
| 2011-04            | RP-51          | RP-110348              | 067        | 2 | Corrections to RSTD measurement for Rel-9                                               | 9.6.0          | 9.7.0          |
|                    |                |                        | 8          |   |                                                                                         |                |                |
| 2011-04            | RP-51          | RP-110339              | 068        | 1 | Value of MS_TXPWR_MAX_CCH for EUTRA-GSM                                                 | 9.6.0          | 9.7.0          |
| 0044.04            | DD ::          | DD 440000              | 0          |   | reselection test cases A.4.4.x                                                          | 0.0.0          | 070            |
| 2011-04            | RP-51          | RP-110339              | 068        | 1 | Rearrangement of Time periods for EUTRA-UTRA                                            | 9.6.0          | 9.7.0          |
| 2011-04            | RP-51          | RP-110339              | 6<br>068   | 1 | reselection test case A.4.3.1.1  Removal of "Force to Cell 2" during initialisation for | 9.6.0          | 9.7.0          |
| 2011-04            | וכ-סו          | VL-110338              | 9          | ' | EUTRA-UTRA reselection test case A.4.3.1.2                                              | 9.0.0          | 9.7.0          |
| <u> </u>           |                | l                      |            | 1 | LOTTA COTTA TOUGHEORIUT LEGI DAGE A.4.J. 1.2                                            |                | 1              |

| 0044.01 | DD = :         | DD 440046              | 000             |          | OND ( DDM A O                                                                                | 0.00           | 070      |
|---------|----------------|------------------------|-----------------|----------|----------------------------------------------------------------------------------------------|----------------|----------|
| 2011-04 | RP-51          | RP-110340              | 069<br>2        | 1        | SNR for RRM A.8.x test cases using ETU70                                                     | 9.6.0          | 9.7.0    |
| 2011-04 | RP-51          | RP-110339              | 070<br>2        | -        | Correction to test cases of E-UTRA to UTRA cell reselection when UE is in idle state         | 9.6.0          | 9.7.0    |
| 2011-04 | RP-51          | RP-110347              | 070             | 1        | Addition of test cases for FDD intra-frequency SI                                            | 9.6.0          | 9.7.0    |
|         |                |                        | 8               |          | reading using autonomous gaps with both non DRX                                              |                |          |
| 0044.04 | DD =4          | DD 440047              | 074             |          | and DRX for Rel-9                                                                            | 0.00           | 0 7 0    |
| 2011-04 | RP-51          | RP-110347              | 071             | 1        | Addition of test cases for FDD inter-frequency SI                                            | 9.6.0          | 9.7.0    |
|         |                |                        | 0               |          | reading using autonomous gaps with both non DRX and DRX for Rel-9                            |                |          |
| 2011-04 | RP-51          | RP-110339              | 071             | 1        | Modification on Test Requirements in E-UTRA -                                                | 9.6.0          | 9.7.0    |
|         |                |                        | 8               |          | UTRA TDD SON Test Case (A.8.7.3) (R9)                                                        | 0.0.0          | 00       |
| 2011-04 | RP-51          | RP-110348              | 072             | 2        | Requirements for reporting criteria with positioning                                         | 9.6.0          | 9.7.0    |
|         |                |                        | 6               |          | measurements                                                                                 |                |          |
| 2011-04 | RP-51          | RP-110340              | 073             | -        | Correction of RLM evaluation period in DRX                                                   | 9.6.0          | 9.7.0    |
| 2011 01 | DD 54          | DD 440040              | 5               |          | Competing of interference or an accurate and                                                 | 0.00           | 0.7.0    |
| 2011-04 | RP-51          | RP-110340              | 073<br>8        | -        | Correction of inter-frequency measurement accuracy test cases                                | 9.6.0          | 9.7.0    |
| 2011-04 | RP-51          | RP-110339              | 074             | -        | Modification on Test Requirements in E-UTRA                                                  | 9.6.0          | 9.7.0    |
| 2011 01 | 0.             | 111 110000             | 3               |          | GSM cell reselection Test Case (A.4.4) (R9)                                                  | 0.0.0          | 0.7.0    |
| 2011-04 | RP-51          | RP-110348              | 074             | -        | Correction on FDD Intra Frequency RSTD                                                       | 9.6.0          | 9.7.0    |
|         |                |                        | 6               |          | Measurement Accuracy test case                                                               |                |          |
| 2011-04 | RP-51          | RP-110348              | 075             | 1        | RSTD test case corrections                                                                   | 9.6.0          | 9.7.0    |
|         |                |                        | 0               |          |                                                                                              |                |          |
| 2011-04 | RP-51          | RP-110344              | 075             | -        | Correction of serving cell performance requirements                                          | 9.6.0          | 9.7.0    |
| 2044.00 | חם בס          | DD 440700              | 2               |          | for autonomous SI acquisition                                                                | 0.7.0          | 0.00     |
| 2011-06 | RP-52          | RP-110786              | 764             |          | Rearrangement of Time periods for EUTRA-UTRA reselection test case A.4.3.4.1                 | 9.7.0          | 9.8.0    |
| 2011-06 | RP-52          | RP-110786              | 767             |          | Removal of "Force to Cell 2" during initialisation for                                       | 9.7.0          | 9.8.0    |
| 2011 00 | 141 02         | 111 110700             | , 0,            |          | EUTRA -UTRA reselection test cases                                                           | 0.7.0          | 0.0.0    |
| 2011-06 | RP-52          | RP-110787              | 770             |          | Clarification of Radio link monitoring test                                                  | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | requirements                                                                                 |                |          |
|         |                |                        |                 |          | (The CR was not implemented as it is not based on                                            |                |          |
| 0044.00 | DD =0          | DD 440704              | 700             |          | the latest version of the specification)                                                     | 070            | 0.00     |
| 2011-06 | RP-52          | RP-110794              | 796             |          | Editorial Correction to Cell Re-selection                                                    | 9.7.0          | 9.8.0    |
| 2011-06 | RP-52          | RP-110789              | 807             |          | Requirements  Correction to side conditions for TDD inter-                                   | 9.7.0          | 9.8.0    |
| 2011-00 | KF-32          | KF-110769              | 807             |          | frequency CGI identification for Rel-9                                                       | 9.7.0          | 9.6.0    |
| 2011-06 | RP-52          | RP-110786              | 813             |          | Correction to inter-RAT cell identificiation time in                                         | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | DRX for Rel-9                                                                                |                |          |
| 2011-06 | RP-52          | RP-110787              | 816             |          | Correction to identification time of UTRA FDD cell                                           | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | for SON in DRX for Rel-9                                                                     |                |          |
| 2011-06 | RP-52          | RP-110787              | 821             |          | Correction to requirements of E-UTRAN                                                        | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | TDDUTRAN TDD measurements for SON when                                                       |                |          |
| 2011.06 | DD 50          | DD 440704              | 770             | 1        | DRX is used for Rel-9                                                                        | 0.7.0          | 0.00     |
| 2011-06 | RP-52<br>RP-52 | RP-110794<br>RP-110789 | 779<br>855      | 1        | Correction to RSTD measurement for Rel-9 Correction on E-UTRAN FDD RSTD intra frequency      | 9.7.0<br>9.7.0 | 9.8.0    |
| 2011-00 | 111 -02        | 10109                  | 000             |          | case                                                                                         | 9.7.0          | 9.0.0    |
| 2011-06 | RP-52          | RP-110790              | 803             | 1        | Addition of test cases for TDD intra-frequency SI                                            | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | reading using autonomous gaps with both non DRX                                              |                |          |
|         |                |                        |                 |          | and DRX for Rel-9                                                                            |                |          |
| 2011-06 | RP-52          | RP-110790              | 805             | 1        | Addition of test cases for TDD inter-frequency SI                                            | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | reading using autonomous gaps with both non DRX                                              |                |          |
| 2044.00 | DD CO          | DD 440707              | 007             | 4        | and DRX for Rel-9                                                                            | 0.7.0          | 0.00     |
| 2011-06 | RP-52          | RP-110787              | 827             | 1        | Addition of missing EsNoc parameters in E-UTRAN TDD UTRAN TDD Measurements test cases for    | 9.7.0          | 9.8.0    |
|         |                |                        |                 |          | Rel-9                                                                                        |                | 1        |
| 2011-09 | RP-53          | RP-111246              | 862             |          | Thresholds and margins for reporting of neighbour                                            | 9.8.0          | 9.9.0    |
|         |                |                        |                 |          | cells in RRM test A.8.9.1                                                                    |                | <u> </u> |
| 2011-09 | RP-53          | RP-111246              | 901             |          | Thresholds and margins for RRM tests A.5.2.1 and                                             | 9.8.0          | 9.9.0    |
|         |                |                        |                 |          | A.5.2.2                                                                                      |                |          |
| 2011-09 | RP-53          | RP-111246              | 904             |          | Thresholds and margins for RRM tests A.5.2.4 and                                             | 9.8.0          | 9.9.0    |
| 2044.00 | חם כי          | DD 444047              | 000             |          | A.5.2.5                                                                                      | 0.0.0          | 000      |
| 2011-09 | RP-53<br>RP-53 | RP-111247<br>RP-111247 | 888<br>914      |          | Removing [] in section 8.1.2.2.2.2 for Rel-9 Adding condition of UTRA TDD measurement report | 9.8.0<br>9.8.0 | 9.9.0    |
| 2011-09 | NF-00          | NF-111241              | 31 <del>4</del> |          | delay requirements applied                                                                   | 9.0.0          | 9.9.0    |
| 2011-09 | RP-53          | RP-111247              | 929             |          | Clarify time points and time duration for RLM tests                                          | 9.8.0          | 9.9.0    |
| 2011-00 | 11. 00         | 131 111471             | 020             | <u> </u> | Clarify and points and and and addition for New 18515                                        | 0.0.0          | 0.0.0    |

|         |       |           | l        |   | A 7.2 v                                                                                                   | <u> </u> |            |
|---------|-------|-----------|----------|---|-----------------------------------------------------------------------------------------------------------|----------|------------|
| 2011-09 | RP-53 | RP-111250 | 948      | 1 | A.7.3.x  Correction of references                                                                         | 9.8.0    | 9.9.0      |
| 2011-09 | RP-53 | RP-111251 | 925      | 1 | Adding enhanced UTRA TDD cell identification requirements for Rel-9                                       | 9.8.0    | 9.9.0      |
| 2011-09 | RP-53 | RP-111251 | 968      |   | CR for E-UTRAN FDD GSM event triggered reporting in AWGN with enhanced BSIC identification in R9          | 9.8.0    | 9.9.0      |
| 2011-09 | RP-53 | RP-111252 | 893      |   | Requirements for RRC Connection Release with Redirection                                                  | 9.8.0    | 9.9.0      |
| 2011-09 | RP-53 | RP-111252 | 959      |   | Missing RSRQ in Intra-frequency measurement                                                               | 9.8.0    | 9.9.0      |
| 2011-09 | RP-53 | RP-111252 | 964      | 1 | requirements  Requirements for RRC Connection Release with Redirection for TDD in R9                      | 9.8.0    | 9.9.0      |
| 2011-12 | RP-54 | RP-111681 | 981      |   | Corrections of inter-frequency measurement accuracy RSRP test cases                                       | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111682 | 983      |   | Removing [] in CSFB requirement for Rel-9                                                                 | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 986      |   | Clarification on RSTD test cases                                                                          | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 991      |   | Clarification on PRS bandwidth                                                                            | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 100<br>0 |   | Test case for enhanced UTRA TDD cell identification for R9                                                | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 100      |   | Test case for RRC connection release redirection to UTRA TDD for R9                                       | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 101<br>5 |   | E-UTRAN FDD - UTRAN TDD enhanced cell identification test under AWGN propagation conditions in R9         | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 101<br>7 | 1 | E-UTRAN FDD RRC connection release with redirection to UTRAN TDD in R9                                    | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111681 | 103<br>0 |   | Correction for the identification time in DRX for UTRA TDD in R9                                          | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111681 | 103<br>8 | 1 | Correction of E-UTRAN TDD-TDD inter frequency handover test case in R9                                    | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 104<br>0 |   | Clarification of Expected RSTD and Expected RSTD uncertainty in RSTD test cases in R9                     | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111680 | 104<br>2 |   | Thresholds and margins for RRM tests A.8.11.3 and A.8.11.4                                                | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 104<br>5 |   | Thresholds and margins for RRM tests A.8.11.5 and A.8.11.6                                                | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 104<br>8 |   | RRC Connection Release with Redirection from E-<br>UTRAN FDD to GERAN                                     | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 105<br>0 |   | RRC Connection Release with Redirection from E-<br>UTRAN TDD to GERAN                                     | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 105<br>7 |   | Adding Band XX                                                                                            | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 106<br>5 |   | Test cases for RRC connection release with redirection to UTRAN FDD                                       | 9.9.0    | 9.10.<br>0 |
| 2011-12 | RP-54 | RP-111683 | 107<br>3 |   | Applicable PRS BW for RSTD accuracy requirements                                                          | 9.9.0    | 9.10.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 107<br>6 | 1 | RSTD signalling modifications                                                                             | 9.10.0   | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 107<br>8 | 1 | Test case for E-UTRA TDD RRC connection release redirection to UTRA TDD without SI provided for R9        | 9.10.0   | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 108<br>0 | 1 | Test case for E-UTRA FDD RRC connection release redirection to UTRA TDD without SI provided for R9        | 9.10.0   | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120291 | 108<br>3 |   | Thresholds and margins for E-UTRAN to C2K RRM reselection test cases (Rel-9)                              | 9.10.0   | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 108<br>6 |   | Addition of E-UTRAN TDD-HRPD Cell Reselection: HRPD is of Lower Priority test case R9                     | 9.10.0   | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120293 | 108<br>8 |   | Addition of E-UTRAN TDD-cdma2000 1X Cell<br>Reselection: cdma2000 1X is of Lower Priority test<br>case R9 | 9.10.0   | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120293 | 109<br>0 |   | Addition of E-UTRAN TDD-HRPD Handover test case R9                                                        | 9.10.0   | 9.11.<br>0 |

| 2012-03 | RP-55 | RP-120294 | 109<br>2 |   | Addition of E-UTRAN TDD-cdma2000 1X Handover test case R9                                                                                                     | 9.10.0 | 9.11.<br>0 |
|---------|-------|-----------|----------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| 2012-03 | RP-55 | RP-120294 | 109      |   | Addition of E-UTRAN FDD-TDD inter frequency RSRQ measurement accuracy test case R9                                                                            | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110      |   | Addition of E-UTRAN FDD-TDD Inter frequency cell reselection test case R9                                                                                     | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110      |   | Addition of E-UTRAN TDD-FDD Inter frequency cell reselection test case R9                                                                                     | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110      |   | Addition of E-UTRAN FDD-TDD Inter frequency handover test case R9                                                                                             | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110<br>3 |   | Addition of E-UTRAN TDD-FDD Inter frequency handover test case R9                                                                                             | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110<br>4 |   | Addition of E-UTRAN TDD-FDD Inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells test case R9                  | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110<br>5 |   | Addition of E-UTRAN FDD-TDD Inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells test case R9                  | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 110<br>6 |   | Addition of E-UTRAN FDD-TDD inter frequency measurement accuracy test case R9                                                                                 | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120292 | 111<br>7 | 1 | Thresholds and margins in RRM test case A.8.11.4                                                                                                              | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120292 | 112<br>0 |   | TDD PRACH Test cases value of PRACH Configuration Index and first preamble power                                                                              | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120292 | 112<br>3 | 1 | PDSCH and OCNG pattern in PRACH Test cases A.6.2.1 and A.6.2.3                                                                                                | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 113<br>0 | 1 | Correction of PRS BW definition for RSTD measurements                                                                                                         | 9.10.0 | 9.11.<br>0 |
| 2012-03 | RP-55 | RP-120294 | 114<br>7 |   | Correction of RSTD accuracy test cases for TDD                                                                                                                | 9.10.0 | 9.11.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 116<br>3 | 1 | Corrections to FDD-TDD Inter-freq RSRP measurement accuracy test case parameters                                                                              | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120771 | 116<br>6 |   | OCNG and PDSCH for FDD-TDD event triggered reporting test cases                                                                                               | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120771 | 116<br>9 |   | RRC Connection Release with Redirection from E-<br>UTRAN FDD to GERAN without System Information                                                              | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120771 | 117<br>2 |   | RRC Connection Release with Redirection from E-<br>UTRAN TDD to GERAN without System Information                                                              | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120769 | 118<br>1 |   | Addition of E-UTRAN TDD-FDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells test case R9 | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120769 | 118<br>4 |   | Addition of E-UTRAN TDD - FDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps test case R9                                   | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120769 | 118<br>7 |   | Addition of E-UTRAN FDD-TDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells R9           | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120769 | 119<br>0 |   | Addition of E-UTRAN FDD - TDD Inter-frequency identification of a new CGI of E-UTRA cell using autonomous gaps test case R9                                   | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120769 | 119<br>3 | 1 | Addition of E-UTRAN TDD-HRPD event triggered reporting under fading propagation conditions test case R9                                                       | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120769 | 119<br>6 | 1 | Addition of E-UTRAN TDD-CDMA2000 1X event triggered reporting under fading propagation conditions test case R9                                                | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 119<br>9 |   | E-UTRA TDD RRC connection release redirection to UTRA FDD test without SI provided R9                                                                         | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 122<br>4 |   | Editorial corrections on the test cases of RRC connection release with redirection to UTRAN FDD                                                               | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 122<br>5 | 1 | Finalization of Rel.9 cell reselection enhancement related test cases                                                                                         | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 122<br>8 |   | E-UTRAN FDD to UTRAN FDD RRC connection release with redirection test case when SI is not provided                                                            | 9.11.0 | 9.12.<br>0 |

| 2012-06 | RP-56 | RP-120767 | 126<br>3 |   | Editorial corrections                                                                         | 9.11.0 | 9.12.<br>0 |
|---------|-------|-----------|----------|---|-----------------------------------------------------------------------------------------------|--------|------------|
| 2012-06 | RP-56 | RP-120767 | 126<br>9 |   | sr-ConfigIndex in TDD DRX test cases                                                          | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120764 | 127<br>5 | 1 | RRM: Clarifications to the OCNG patterns                                                      | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 132<br>9 | 1 | Correction to E-UTRAN FDD/TDD - UTRAN FDD /TDD enhanced cell identification test case R9      | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120770 | 133<br>2 |   | Correction to E-UTRAN TDD redirection to UTRAN FDD test configuration R9                      | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120764 | 135<br>6 | 1 | UL Transmit Timing Requirements                                                               | 9.11.0 | 9.12.<br>0 |
| 2012-06 | RP-56 | RP-120766 | 135<br>9 | 1 | Correction of a timer period in inter-frequency measurement tests                             | 9.11.0 | 9.12.<br>0 |
| 2012-09 | RP-57 | RP-121301 | 138<br>3 |   | Identification of Cell 3 in RRM Test cases A.4.2.7 and A.4.2.8                                | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121301 | 138<br>8 |   | Making FDD-TDD Inter-freq RSRQ measurement accuracy test case band-agnostic                   | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121295 | 139<br>6 | 1 | Modification of Handover Delay Requirement and Test Cases from E-UTRAN to cdma2000 1x (Rel-9) | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121301 | 141<br>6 |   | Correction for E-UTRA TDD RRC connection release redirection to UTRA TDD test case R9         | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121301 | 142      |   | Correction to E-UTRAN TDD-FDD Inter-frequency event triggered reporting test case R9          | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121294 | 142<br>9 | 1 | Correction to RSRQ accuracy test cases R9                                                     | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121297 | 143<br>6 |   | Radio conditions for PBCH reading in E-UTRA                                                   | 9.12.0 | 9.13.<br>0 |
| 2012-09 | RP-57 | RP-121301 | 145<br>1 |   | Editorial correction RRM                                                                      | 9.12.0 | 9.13.<br>0 |
| 2012-12 | RP-58 | RP-121850 | 146<br>8 |   | Remove [] from 10% requirement in RRM Test cases A.4.2.7 and A.4.2.8                          | 9.13.0 | 9.14.<br>0 |
| 2012-12 | RP-58 | RP-121859 | 151<br>2 | 1 | E-UTRAN CSG Proximity Indication Requirements (Rel-9)                                         | 9.13.0 | 9.14.<br>0 |
| 2012-12 | RP-58 | RP-121854 | 151<br>4 |   | Correction of OCNG Patterns for UE Rx - Tx Time Difference Test Cases                         | 9.13.0 | 9.14.<br>0 |
| 2012-12 | RP-58 | RP-121854 | 152<br>5 |   | Clarification on inter-frequency RSTD measurement accuracy requirement R9                     | 9.13.0 | 9.14.<br>0 |
| 2012-12 | RP-58 | RP-121849 | 153<br>5 |   | Correction on test cases for handover to UTRAN TDD for Rel-9                                  | 9.13.0 | 9.14.<br>0 |
| 2012-12 | RP-58 | RP-121852 | 154<br>7 |   | Conditions in CSG reselection requirements                                                    | 9.13.0 | 9.14.<br>0 |
| 2012-12 | RP-58 | RP-121852 | 155<br>1 |   | Correcting inconsistency between inter-RAT UTRA measurements and requirements                 | 9.13.0 | 9.14.<br>0 |
| 2013-03 | RP-59 | RP-130260 | 157<br>7 | 1 | RRM: RMC and OCNG pattern for FDD CGI test with autonomous gaps (Rel-9)                       | 9.14.0 | 9.15.<br>0 |
| 2013-03 | RP-59 | RP-130261 | 158<br>0 | 1 | Correction to CSG proxmity requirement                                                        | 9.14.0 | 9.15.<br>0 |
| 2013-03 | RP-59 | RP-130261 | 158<br>5 | 1 | E-UTRAN FDD Proximity Indication Test Case (Rel-9)                                            | 9.14.0 | 9.15.<br>0 |
| 2013-03 | RP-59 | RP-130258 | 162<br>0 |   | Editorial corrections RRM                                                                     | 9.14.0 | 9.15.<br>0 |
| 2013-03 | RP-59 | RP-130261 | 164<br>0 | 1 | Modification of PRS configuration for RSTD measurement reporting delay test cases(Rel-9)      | 9.14.0 | 9.15.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 164<br>6 |   | Correction to test parameters for combined E-UTRA - E-UTRA and GSM cell search - Rel 9        | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 167<br>1 |   | Remove [] from GCI identification Test cases A.8.4.4 and A.8.4.5                              | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130761 | 167<br>5 |   | Cell 1 levels for RSRP Test cases A.9.1.3 and A.9.1.4                                         | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130761 | 168<br>1 |   | Update on the GSM carrier RSSI measurement period when DRX is used                            | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 169<br>0 |   | sr-ConfigIndex in TDD-FDD Inter-frequency event triggered DRX Test case A.8.14.2              | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130761 | 170<br>4 |   | Section numbering correction                                                                  | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 171      | 1 | Editorial corrections in RSTD requirements                                                    | 9.15.0 | 9.16.      |

|         |       |           | 4        |   |                                                                                               |        | 0          |
|---------|-------|-----------|----------|---|-----------------------------------------------------------------------------------------------|--------|------------|
| 2013-06 | RP-60 | RP-130763 | 171<br>8 |   | A clarification on measurement gap pattern in RSTD requirements                               | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 174<br>0 |   | Time Alignment Timer in Test Case A.8.2.4                                                     | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 174<br>1 |   | RRM: Adding required measurement gap                                                          | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130761 | 174<br>7 |   | TDD PRACH configuration index for Test Cases A.8.7.2, A.8.15.2                                | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 175<br>0 | 1 | GSM cell list size for Test Cases A.6.3.10, A.6.3.11                                          | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 175<br>3 | 1 | Neighbour list for Test cases A.8.5.4, A.8.7.4, A.8.9.2                                       | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 175<br>6 | 1 | Additional corrections on intra-frequency RSTD test parameters (Rel-9)                        | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 176<br>5 | 1 | Corrections of E-UTRAN FDD CSG Proximity Indication Test Case (Rel-9)                         | 9.15.0 | 9.16.<br>0 |
| 2013-06 | RP-60 | RP-130763 | 178<br>7 |   | Correction of reporting time for intra-frequency RSTD reporting delay test cases (Rel-9 only) | 9.15.0 | 9.16.<br>0 |
| 2013-09 | RP-61 | RP-131279 | 185<br>1 |   | Cell time offset in TDD Inter-RAT test cases                                                  | 9.16.0 | 9.17.<br>0 |
| 2013-12 | RP-62 | RP-131925 | 204<br>9 |   | Correction of Proximity Indication Test Case                                                  | 9.17.0 | 9.18.<br>0 |
| 2013-12 | RP-62 | RP-131925 | 207<br>5 | 1 | Correction in RSTD requirements                                                               | 9.17.0 | 9.18.<br>0 |
| 2013-12 | RP-62 | RP-131925 | 210<br>8 | 2 | Corrections to CGI Reading in Autonomous Gap                                                  | 9.17.0 | 9.18.<br>0 |
| 2013-12 | RP-62 | RP-131925 | 215<br>2 | 1 | Correction in RSTD test cases                                                                 | 9.17.0 | 9.18.<br>0 |
| 03-2014 | RP-63 | RP-140367 | 223<br>0 |   | Missing condition in CGI identification requirements                                          | 9.18.0 | 9.19.<br>0 |
| 06-2014 | RP-64 | RP-140910 | 226<br>4 | 1 | RRM: Clean-up of time offset between cells in RSTD tests (Rel-9)                              | 9.19.0 | 9.20.<br>0 |
| 06-2014 | RP-64 | RP-140910 | 230<br>9 | 1 | Clarification on UE Transmit Timing Accuracy test cases in DRX mode R9                        | 9.19.0 | 9.20.<br>0 |

# History

| Document history |               |             |  |  |  |
|------------------|---------------|-------------|--|--|--|
| V9.1.0           | October 2009  | Publication |  |  |  |
| V9.2.0           | February 2010 | Publication |  |  |  |
| V9.3.0           | April 2010    | Publication |  |  |  |
| V9.4.0           | July 2010     | Publication |  |  |  |
| V9.5.0           | October 2010  | Publication |  |  |  |
| V9.6.0           | January 2011  | Publication |  |  |  |
| V9.7.0           | May 2011      | Publication |  |  |  |
| V9.8.0           | June 2011     | Publication |  |  |  |
| V9.9.0           | November 2011 | Publication |  |  |  |
| V9.10.0          | January 2012  | Publication |  |  |  |
| V9.11.1          | July 2012     | Publication |  |  |  |
| V9.12.0          | July 2012     | Publication |  |  |  |
| V9.13.0          | November 2012 | Publication |  |  |  |
| V9.14.0          | February 2013 | Publication |  |  |  |
| V9.15.0          | April 2013    | Publication |  |  |  |
| V9.16.0          | July 2013     | Publication |  |  |  |
| V9.17.0          | October 2013  | Publication |  |  |  |
| V9.18.0          | January 2014  | Publication |  |  |  |
| V9.19.0          | April 2014    | Publication |  |  |  |
| V9.20.0          | July 2014     | Publication |  |  |  |