
ETSI TS 136 133 V8.6.0 (2009-07)

Technical Specification

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 8.6.0 Release 8)

Reference RTS/TSGR-0436133v860

Keywords

LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: <u>http://portal.etsi.org/chaircor/ETSI_support.asp</u>

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2009. All rights reserved.

DECTTM, **PLUGTESTSTM**, **UMTSTM**, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

LTE[™] is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

Contents

Intelle	Intellectual Property Rights		
Forew	Foreword		
Forew	Foreword12		
1	Scope	13	
2	References	13	
3	Definitions, symbols and abbreviations		
3.1	Definitions		
3.2	Symbols		
3.3	Abbreviations		
3.4	Test tolerances	10	
4	E-UTRAN RRC_IDLE state mobility	17	
4.1	Cell Selection		
4.2	Cell Re-selection		
4.2.1	Introduction		
4.2.2	Requirements		
4.2.2.1			
4.2.2.2			
4.2.2.3			
4.2.2.4			
4.2.2.5			
4.2.2.5			
4.2.2.5			
4.2.2.5			
4.2.2.5			
4.2.2.5			
4.2.2.6			
4.2.2.7			
4.2.2.8			
	E-UTRAN RRC_CONNECTED state mobility		
5.1	E-UTRAN Handover		
5.1.1	Introduction		
5.1.2	Requirements		
5.1.2.1			
5.1.2.1 5.1.2.1			
5.2.2.2	· · · · · · · · · · · · · · · · · · ·		
5.2.2.2			
5.2.2.2			
5.2.2.2			
5.2.2.3			
5.2.2.3			
5.2.2.4			
5.2.2.4			
5.2.2.4	•		
5.3	Handover to other RATs		
5.3.1	E-UTRAN - UTRAN FDD Handover		
5.3.1.1			
5.3.1.1			
5.3.1.1			
5.3.2	E-UTRAN - UTRAN TDD Handover		
5.3.2.1	Introduction		
5.3.2.2	Requirements		

5.3.2.2.1 5.3.2.2.2 5.3.3 5.3.3.1 5.3.3.2 5.3.3.2.1 5.3.3.2.2 5.4 5.4.1 5.4.1.1 5.4.1.1	Handover delay Interruption time E-UTRAN - GSM Handover Introduction Requirements Handover delay Interruption time Handover to Non-3GPP RATs E-UTRAN – HRPD Handover Introduction Handover delay	
5.4.1.1.2 5.4.2 5.4.2.1 5.4.2.1.1 5.4.2.1.2	Interruption time E-UTRAN – cdma2000 1X Handover Introduction Handover delay Interruption time	
6 DI	Connection Mahility Control	20
	RC Connection Mobility Control	
6.1 6.1.1	RRC Re-establishment Introduction	
0		
6.1.2	Requirements	
6.1.2.1	UE Re-establishment delay requirement	
6.2	Random Access	
6.2.1	Introduction	
6.2.2	Requirements	
6.2.2.1	Contention based random access	
6.2.2.1.1	Correct behaviour when receiving Random Access Response reception	
6.2.2.1.2	Correct behaviour when not receiving Random Access Response reception	
6.2.2.1.3	Correct behaviour when receiving a NACK on msg3	
6.2.2.1.4	Void	
6.2.2.1.5	Correct behaviour when receiving a message over Temporary C-RNTI	
6.2.2.1.6	Correct behaviour when contention Resolution timer expires	
6.2.2.2	Non-Contention based random access	
6.2.2.2.1	Correct behaviour when receiving Random Access Response	
6.2.2.2.2	Correct behaviour when not receiving Random Access Response	
7 Ti	ming and signalling characteristics	34
7.1	UE transmit timing	
7.1.1	Introduction	
7.1.2	Requirements	
7.2	UE timer accuracy	
7.2.1	Introduction	
7.2.2	Requirements	
7.3	Timing Advance	
7.3.1	Introduction	
7.3.2	Requirements	
7.3.2.1	Timing Advance adjustment delay	
7.3.2.2	Timing Advance adjustment accuracy	
7.4	Cell phase synchronization accuracy (TDD).	
7.4.1	Definition	
7.4.2	Minimum requirements	
7.4.2	Synchronization Requirements for E-UTRAN to 1xRTT and HRPD Handovers	
7.5.1	Introduction.	
7.5.2	eNodeB Synchronization Requirements	
7.5.2.1	Synchronized E-UTRAN	
7.5.2.2	Non-Synchronized E-UTRAN	
7.6	Radio Link Monitoring	
7.6.1	Introduction	
7.6.2	Requirements	
7.6.2.1	Minimum requirement when no DRX is used	
7.6.2.2	Minimum requirement when DRX is used	
7.6.2.3	Minimum requirement at transitions	40

	UE Measurements Procedures in RRC_CONNECTED State	
8.1	General Measurement Requirements	
8.1.1	Introduction	
8.1.2	Requirements	
8.1.2.1	UE measurement capability	
8.1.2.1.	1 Internet of the second Barbs	
8.1.2.2	E-UTRAN intra frequency measurements	
8.1.2.2.		
8.1.2.2.		
8.1.2.3	E-UTRAN inter frequency measurements	
8.1.2.3.		
8.1.2.3.		
8.1.2.3.		
8.1.2.3.		
8.1.2.4	Inter RAT measurements	
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.1.2.4.		
8.2	Capabilities for Support of Event Triggering and Reporting Criteria	
8.2.1	Introduction	
8.2.2	Requirements	68
9	Measurements performance requirements for UE	68
9.1	E-UTRAN measurements	
9.1.2	Intra-frequency RSRP Accuracy Requirements	
9.1.2.1	Absolute RSRP Accuracy	
9.1.2.1	Relative Accuracy of RSRP	
9.1.3	Inter-frequency RSRP Accuracy Requirements	
9.1.3.1	Absolute RSRP Accuracy	
9.1.3.2	Relative Accuracy of RSRP	
9.1.3.2	RSRP Measurement Report Mapping	
9.1.4	Intra-frequency RSRQ Accuracy Requirements	
9.1.5.1	Absolute RSRQ Accuracy	
9.1.5.1	Inter-frequency RSRQ Accuracy Requirements	
9.1.6.1	Absolute RSRQ Accuracy	
9.1.6.2	Relative Accuracy of RSRQ	
9.1.7	RSRQ Measurement Report Mapping	
9.1.7	Power Headroom	
9.1.8	Power Headroom	
9.1.8.1	Reporting Delay	
9.1.8.2	Void	
9.1.8.4	Report Mapping	
9.1.8.4	UTRAN FDD Measurements	
9.2 9.2.1	UTRAN FDD Measuements	
9.2.1	UTRAN FDD carrier RSSI	
9.2.2	UTRAN FDD CPICH Ec/No	
9.3	UTRAN TDD Measurements UTRAN TDD P-CCPCH RSCP	
9.3.1	UTRAN TDD P-CCPCH RSCP	
9.3.2		
9.3.3 9.4	Void	
	GSM Measurements	
9.4.1 9.5	GSM carrier RSSI CDMA2000 1x RTT Measurements	
2.5		

9.5.1	CDMA2000 1x RTT Pilot Strength	79
10	Measurements Performance Requirements for E-UTRAN	
10.1	Received Interference Power	
10.1.1	Absolute accuracy requirement.	
10.1.2	Relative accuracy requirement	
10.1.3	Received Interference Power measurement report mapping	
Anne	x A (normative): Test Cases	81
	Purpose of annex	
	•	
A.2	Requirement classification for statistical testing	81
A.2.1	Types of requirements in TS 36.133	
A.2.1.		
A.2.1.2		
A.2.1.3		
A.2.1.4	4 Physical layer timing requirements	
A.3	RRM test configurations	83
A.3.1	Reference Measurement Channels	
A.3.1.		
A.3.1.1	1.1 FDD	
A.3.1.1		
A.3.1.2		
A.3.1.2		
A.3.1.2		
A.3.2	OFDMA Channel Noise Generator (OCNG)	
A.3.2.1		
A.3.2.1	1.1 OCNG FDD pattern 1: outer resource blocks allocation in 10 MHz	86
A.3.2.1	•	
A.3.2.1		
A.3.2.1	•	
A.3.2.2	•	
A.3.2.2	2.1 OCNG TDD pattern 1: outer resource blocks allocation in 10 MHz	90
A.3.2.2		
A.3.2.2	2.3 OCNG TDD pattern 3: outer resource blocks allocation in 1.4 MHz	93
A.3.2.2	2.4 OCNG TDD pattern 4: full bandwidth allocation in 1.4 MHz	94
A.4	E-UTRAN RRC IDLE state	
A.4.2	Cell Re-Selection	
A.4.2.1		
A.4.2.		
A.4.2.	1	
A.4.2.2	1	
A.4.2.2		
A.4.2.2	-	
A.4.2.3		
A.4.2.3		
A.4.2.3		
A.4.2.4	4 E-UTRAN FDD – TDD Inter frequency case	101
A.4.2.5	5 E-UTRAN TDD – FDD Inter frequency case	101
A.4.2.6	6 E-UTRAN TDD – TDD: Inter frequency case	101
A.4.2.6	5.1 Test Purpose and Environment	101
A.4.2.6	6.2 Test Requirements	102
A.4.3	E-UTRAN to UTRAN Cell Re-Selection	
A.4.3.		
A.4.3.		
A.4.3.	I I I I I I I I I I I I I I I I I I I	
A.4.3.	1	
A.4.3.	1 2	
A.4.3.1	1	
A.4.3.1	1	
A.4.3.2	2 E-UTRAN FDD – UTRAN TDD:	108

A.4.3.2.1 Test Purpose and Environment	
A.4.3.2.1.1 3.84Mcps TDD option	
A.4.3.2.1.2 1.28Mcps TDD option	
A.4.3.2.1.3 7.68Mcps TDD option	
A.4.3.2.1 Test Requirements	
A.4.3.2.1.1 3.84Mcps TDD option	
A.4.3.2.1.2 1.28Mcps TDD option	
A.4.3.2.2.2.3 7.68Mcps TDD option	
A.4.3.3 E-UTRAN TDD – UTRAN FDD:	111
A.4.3.4 E-UTRAN TDD – UTRAN TDD:	
A.4.3.4.1 E-UTRA to UTRA TDD cell re-selection: UTRA is of higher priority	
A.4.3.4.1.1 Test Purpose and Environment	
A.4.3.4.1.1.1 3.84 Mcps TDD option	
A.4.3.4.1.1.2 1.28 Mcps TDD option	
A.4.3.4.1.1.3 7.68 Mcps TDD option	
A.4.3.4.1.2 Test Requirements	
A.4.3.4.1.2.1 3.84 Mpcs TDD option	
A.4.3.4.1.2.2 1.28 Mpcs TDD option	
A.4.3.4.2 E-UTRA to UTRA TDD cell re-selection: UTRA is of lower priority	
A.4.3.4.2.1 Test Purpose and Environment	
A.4.3.4.2.1.1 3.84 Mcps TDD option	
A.4.3.4.2.1.2 1.28 Mcps TDD option	
A.4.3.4.2.1.3 7.68 Mcps TDD option	
A.4.3.4.2.2 Test Requirements	
A.4.3.4.2.2.1 3.84 Mpcs TDD option	
A.4.3.4.2.2.2 1.28 Mpcs TDD option	
A.4.3.4.2.2.3 7.68 Mpcs TDD option	
A.4.4 E-UTRAN to GSM Cell Re-Selection	
A.4.4.1 E-UTRAN FDD – GSM:	
A.4.4.1.1 Test Purpose and Environment	
A.4.4.1.2 Test Requirements	
A.4.4.2 E-UTRAN TDD – GSM:	
A.4.4.2.1 Test Purpose and Environment	
A.4.4.2.2 Test Requirements	
A.4.5 E-UTRAN to HRPD Cell Re-Selection	121
A.4.5.1 E-UTRAN FDD – HRPD	121
A.4.5.1.1 E-UTRAN FDD – HRPD Cell Reselection: HRPD is of Lower Priority	
A.4.5.1.1.1 Test Purpose and Environment	121
A.4.5.1.1.2 Test Requirements	124
A.4.6 E-UTRAN to cdma2000 1X Cell Re-Selection	124
A.4.6.1 E-UTRAN FDD – cdma2000 1X	124
A.4.6.1.1 E-UTRAN FDD – cdma2000 1X Cell Reselection: cdma2000 1X is of Lower Priority	124
A.4.6.1.1.1 Test Purpose and Environment	124
A.4.6.1.1.2 Test Requirements	127
A 5 E LITE AN DEC CONNECTED Mode Mobility	107
A.5 E-UTRAN RRC CONNECTED Mode Mobility	
A.5.1 E-UTRAN Handover	
A.5.1.1 E-UTRAN FDD - FDD Intra frequency handover	
A.5.1.1.1 Test Purpose and Environment	
A.5.1.1.2 Test Requirements A.5.1.2 E-UTRAN TDD - TDD Intra frequency handover	
1 0	
A.5.1.3 E-UTRAN FDD – FDD Inter frequency handover A.5.1.3.1 Test Purpose and Environment	
I · · · · · · · · · · · · · · · · · · ·	
A.5.1.3.2 Test Requirements A.5.1.4 E-UTRAN TDD – TDD Inter frequency handover	
I · · · · · · · · · · · · · · · · · · ·	
A.5.1.4.2 Test Requirements A.5.2 E-UTRAN Handover to other RATs	
A.5.2 E-UTRAN Handover to other RATS A.5.2.1 E-UTRAN FDD – UTRAN FDD Handover	
A.5.2.1 E-OTRAN FDD – OTRAN FDD Handover A.5.2.1.1 Test Purpose and Environment	

A.5.2.1.2	Test Requirements	
A.5.2.2	E-UTRAN TDD - UTRAN FDD Handover	
A.5.2.2.1		
A.5.2.2.2	Test Requirements	
A.5.2.3 E-U	FRAN FDD- GSM Handover	
A.5.2.3.1	Test Purpose and Environment	141
A.5.2.3.2	Test Requirements	
A.5.2.4	E-UTRAN TDD - UTRAN TDD Handover	
A.5.2.4.1	Test Purpose and Environment	143
A.5.2.4.1.1	3.84 Mcps TDD option	
A.5.2.4.1.2	1.28 Mcps TDD option	
A.5.2.4.1.3	7.68 Mcps TDD option	
A.5.2.4.2	Test Requirements	
A.5.2.4.2.1	3.84 Mcps TDD option	145
A.5.2.4.2.2	1.28 Mcps TDD option	145
A.5.2.4.2.3	7.68 Mcps TDD option	145
A.5.2.5	E-UTRAN FDD – UTRAN TDD Handover	145
A.5.2.5.1	Test Purpose and Environment	145
A.5.2.5.1.1	3.84 Mcps TDD option	145
A.5.2.5.1.2	1.28 Mcps TDD option	145
A.5.2.5.1.3	7.68 Mcps TDD option	148
A.5.2.5.2	Test Requirements	148
A.5.2.5.2.1	3.84 Mcps TDD option	148
A.5.2.5.2.2	1.28 Mcps TDD option	148
A.5.2.5.2.3	7.68 Mcps TDD option	
A.5.2.6	E-UTRAN TDD - GSM Handover	
A.5.2.6.1	Test Purpose and Environment	148
A.5.2.6.2	Test Requirements	
A.5.3	E-UTRAN Handover to Non-3GPP RATs	
A.5.3.1	E-UTRAN FDD – HRPD Handover	
A.5.3.1.1	Test Purpose and Environment	
A.5.3.1.2	Test Requirements	
A.5.3.2	E-UTRAN FDD – cdma2000 1X Handover	
A.5.3.2.1	Test Purpose and Environment	
A.5.3.2.2	Test Requirements	
A.6 RRC	Connection Control	
	RC Re-establishment	
A.6.1.1	E-UTRAN FDD Intra-frequency RRC Re-establishment	
A.6.1.1.1	Test Purpose and Environment	
A.6.1.1.2	Test Requirements	
A.6.1.2	E-UTRAN FDD Inter-frequency RRC Re-establishment	
A.6.1.2.1	Test Purpose and Environment	
A.6.1.2.2	Test Requirements	
A.6.1.3	E-UTRAN TDD Intra-frequency RRC Re-establishment	
A.6.1.3.1	Test Purpose and Environment	
A.6.1.3.2	Test Requirements	
A.6.1.4	E-UTRAN TDD Inter-frequency RRC Re-establishment	
A.6.1.4.1	Test Purpose and Environment	
A.6.1.4.2	Test Requirements	
A.6.2	Random Access	
A.6.2.1	E-UTRAN FDD – Contention Based Random Access Test	
A.6.2.1.1	Test Purpose and Environment	
A.6.2.1.2.1	Random Access Response Reception	
A.6.2.1.2.2	No Random Access Response Reception	
A.6.2.1.2.3	Receiving a NACK on msg3	
A.6.2.1.2.4	Reception of an Incorrect Message over Temporary C-RNTI	
A.6.2.1.2.5	Reception of a Correct Message over Temporary C-RNTI	169
A.6.2.1.2.6	Contention Resolution Timer expiry	
A.6.2.2	E-UTRAN FDD - Non-Contention Based Random Access Test	
A.6.2.2.1	Test Purpose and Environment	
A.6.2.2.2.1	Random Access Response Reception	171

	N. D. J. J. A. J. D. J. J. D. J.	171
A.6.2.2.2.2	No Random Access Response Reception	
A.6.2.3	E-UTRAN TDD - Contention Based Random Access Test	
A.6.2.3.1	Test Purpose and Environment	
A.6.2.3.2.1 Random Access Response Reception		.173
A.6.2.3.2.2	No Random Access Response reception	.173
A.6.2.3.2.3	Receiving a NACK on msg3	
A.6.2.3.2.4	Reception of an Incorrect Message over Temporary C-RNTI	
A.6.2.3.2.5	Reception of a Correct Message over Temporary C-RNTI	
A.6.2.3.2.6	Contention Resolution Timer expiry	
A.6.2.4		
	E-UTRAN TDD – Non-Contention Based Random Access Test	
A.6.2.4.1	Test Purpose and Environment	
A.6.2.4.2.1	Random Access Response Reception	
A.6.2.4.2.2	No Random Access Response Reception	.176
A.7 Timing a	nd Signalling Characteristics	176
-		
	ransmit Timing	
	UTRAN FDD – UE Transmit Timing Accuracy Tests	
A.7.1.1.1	Test Purpose and Environment	
A.7.1.1.2	Test Requirements	
A.7.1.2	E-UTRAN TDD - UE Transmit Timing Accuracy Tests	.179
A.7.1.2.1	Test Purpose and Environment	.179
A.7.1.2.2	Test Requirements	.181
A.7.2	UE Timing Advance	
A.7.2.1	E-UTRAN FDD – UE Timing Advance Adjustment Accuracy Test	
A.7.2.1.1	Test Purpose and Environment	
A.7.2.1.1 A.7.2.1.2	Test Requirements	
A.7.2.2	E-UTRAN TDD – UE Timing Advance Adjustment Accuracy Test	
A.7.2.2.1	Test Purpose and Environment	.185
A.7.2.2.2	Test Requirements	
	Link Monitoring	
A.7.3.1 E-	UTRAN FDD Radio Link Monitoring Test for Out-of-sync	.187
A.7.3.1.1	Test Purpose and Environment	.187
A.7.3.1.2	Test Requirements	.191
A.7.3.2 E-	UTRAN FDD Radio Link Monitoring Test for In-sync	
A.7.3.2.1	Test Purpose and Environment	.191
A.7.3.2.2	Test Requirements	
	UTRAN TDD Radio Link Monitoring Test for Out-of-sync	
A.7.3.3.1	Test Purpose and Environment	
A.7.3.3.2	Test Requirements.	
	UTRAN TDD Radio Link Monitoring Test for In-sync	
A.7.3.4.1	Test Purpose and Environment	
A.7.3.4.2	Test Requirements	.201
A.8 UE Meas	surements Procedures	201
	UTRAN FDD Intra-frequency Measurements	.201
	UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions	
	asynchronous cells	
A.8.1.1.1	Test Purpose and Environment	.201
A.8.1.1.2	Test Requirements	.203
A.8.1.2 E-	UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions	
	synchronous cells	.203
A.8.1.2.1	Test Purpose and Environment	
A.8.1.2.2	Test Requirements	
	UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions	.205
		205
	synchronous cells with DRX	
A.8.1.3.1	Test Purpose and Environment	
A.8.1.3.2	Test Requirements.	
	UTRAN TDD Intra-frequency Measurements	.208
	UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation	
CO	nditions in synchronous cells	.208
A.8.2.1.1	Test Purpose and Environment	.208
A.8.2.1.2	Test Requirements	.210

A.8.2.2	E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation	
	conditions in synchronous cells with DRX	
A.8.2.2.1	Test Purpose and Environment	210
A.8.2.2.2	Test Requirements	213
A.8.3	E-UTRAN FDD - FDD Inter-frequency Measurements	213
A.8.3.1	E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation	
	conditions in asynchronous cells	213
A.8.3.1.1	Test Purpose and Environment	213
A.8.3.1.2	Test Requirements	
A.8.3.2	E-UTRAN FDD-FDD Inter-frequency event triggered reporting when DRX is used under fading	
	propagation conditions in asynchronous cells	215
A.8.3.2.1	Test Purpose and Environment	
A.8.3.2.2	Test Requirements	
A.8.4	E-UTRAN TDD - TDD Inter-frequency Measurements	
A.8.4.1	E-UTRAN TDD-TDD Inter-frequency event triggered reporting under fading propagation	
	conditions in synchronous cells	
A.8.4.1.1	Test Purpose and Environment	
A.8.4.1.2	Test Requirements	
A.8.4.2	E-UTRAN TDD-TDD Inter-frequency event triggered reporting when DRX is used under fading	
11.0.4.2	propagation conditions in synchronous cells	220
A.8.4.2.1	Test Purpose and Environment	
A.8.4.2.2	Test Requirements	
	E-UTRAN FDD - UTRAN FDD Measurements	
A.8.5.1		
	E-UTRAN FDD - UTRAN FDD event triggered reporting under fading propagation conditions	
A.8.5.1.1	Test Purpose and Environment	
A.8.5.1.2	Test Requirements	226
A.8.5.2	E-UTRAN FDD - UTRAN FDD SON ANR cell search reporting under AWGN propagation	22.6
	conditions	
A.8.5.2.1	Test Purpose and Environment	
A.8.5.2.2	Test Requirements	
	E-UTRAN TDD - UTRAN FDD Measurements	
A.8.6.1	E-UTRAN TDD - UTRAN FDD event triggered reporting under fading propagation conditions	
A.8.6.1.1	Test Purpose and Environment	
A.8.6.1.2	Test Requirements	
A.8.7	E-UTRAN TDD – UTRAN TDD Measurements	
A.8.7.1	E-UTRAN TDD to UTRAN TDD cell search under fading propagation conditions	
A.8.7.1.1	Test Purpose and Environment	
A.8.7.1.1.	1 3.84 Mcps TDD option	230
A.8.7.1.1.2	2 1.28 Mcps TDD option	230
A.8.7.1.1.	7.68 Mcps TDD option	232
A.8.7.1.2	Test Requirements	232
A.8.7.1.2.	1 3.84 Mcps TDD option	232
A.8.7.1.2.2	1 1	
A.8.7.1.2.3		
	E-UTRAN FDD – GSM Measurements	
A.8.8.1	E-UTRAN FDD – GSM event triggered reporting in AWGN	
A.8.8.1.1	Test Purpose and Environment	
A.8.8.1.2	Test Requirements	
	E-UTRAN FDD - UTRAN TDD measurements	
A.8.9.1	E-UTRAN FDD - UTRAN TDD event triggered reporting in fading propagation conditions	
A.8.9.1.1	Test Purpose and Environment	
A.8.9.1.2	Test Requirements	
A.8.9.1.2 A.8.10		
A.8.10 A.8.10.1	E-UTRAN TDD – GSM Measurements	
	E-UTRAN TDD – GSM event triggered reporting in AWGN	
A.8.10.1.1		
A.8.10.1.2	Test Requirements	238
A.9 Me	asurement Performance Requirements	239
A.9.1	RSRP	
A.9.1.1	FDD Intra frequency case	
A.9.1.1.1	Test Purpose and Environment	
A.9.1.1.1 A.9.1.1.2	Test parameters	
43.7.1.1.4	1 voi parametero	

A.9.1.4	TDD—TDD Inter frequency case	
A.9.1.4.1	Test Purpose and Environment	
A.9.1.4.2	Test parameters	
A.9.1.4.3	Test Requirements	
A.9.2	RSRQ	
A.9.2.1	FDD Intra frequency case	
A.9.2.1.1	Test Purpose and Environment	
A.9.2.1.2	Test parameters	
A.9.2.1.3	Test Requirements	
A.9.2.2	TDD Intra frequency case	
A.9.2.2.1	Test Purpose and Environment	
A.9.2.2.2 A.9.2.2.3	Test parameters	
A.9.2.2.3 A.9.2.3	Test Requirements	
A.9.2.3 A.9.2.3.1	FDD—FDD Inter frequency case	
A.9.2.3.1 A.9.2.3.2	Test Purpose and Environment Test parameters	
A.9.2.3.2 A.9.2.3.3	Test Requirements	
A.9.2.3.3 A.9.2.4	TDD—TDD Inter frequency case	
A.9.2.4.1	Test Purpose and Environment	
A.9.2.4.2	Test parameters	
A.9.2.4.3	Test Requirements	
11.7.2.1.5	T est Requirements.	
Annex B	B (informative): Change history:	
History.		259

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies requirements for support of Radio Resource Management for the FDD and TDD modes of [Evolved UTRA]. These requirements include requirements on measurements in UTRAN and the UE as well as requirements on node dynamical behaviour and interaction, in terms of delay and response characteristics.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TS 36.304: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode"
- [2] 3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC) protocol specification".
- [3] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures"
- [4] 3GPP TS 36.214: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements"
- [5] 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception"
- [6] 3GPP TS 25.302: "Services provided by the Physical Layer".
- [7] 3GPP TS 25.331: "RRC Protocol Specification".
- [8] 3GPP TS 45.008: "Radio subsystem link control".
- [9] 3GPP TS 45.005: "Radio transmission and reception".
- [10] 3GPP TS 45.010: "Radio subsystem synchronization".
- [11] 3GPP2 C.S0024-B: "cdma2000 High Rate Packet Data Air Interface Specification".
- [12] 3GPP2 C.S0002-D: "Physical Layer Standard for cdma2000 Spread Spectrum Systems Release A".
- [13] 3GPP2 C.S0033-B: "Recommended Minimum Performance Standards for cdma2000 High Rate Packet Data Access Terminal".
- [14] 3GPP2 C.S0011-C: "Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Mobile Stations".
- [15] 3GPP2 C.S0005-D: Upper Layer (Layer 3) Signaling Specification for cdma2000 Spread Spectrum Systems
- [16] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation"

- [17] 3GPP TS 36.321: "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification".
- [18] 3GPP TS 25.133: "Requirements for Support of Radio Resource Management (FDD)".
- [19] 3GPP TS 25.123: "Requirements for Support of Radio Resource Management (TDD)".
- [20] 3GPP TS 25.214: "Physical layer procedures (FDD)".
- [21] 3GPP TS 36.312: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding".
- [22] 3GPP TS 36.302: "Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer"
- [23] 3GPP TS 36.521-3: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Radio Resource Management conformance testing".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [x] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [x].

3.2 Symbols

For the purposes of the present document, the following symbols apply:

[]	Values included in square bracket must be considered for further studies, because it
	means that a decision about that value was not taken.
BW _{Channel}	Channel bandwidth, defined in TS 36.101 subclause 3.2
CPICH_Ec	Average energy per PN chip for the CPICH
CPICH_Ec/Io	The ratio of the received energy per PN chip for the CPICH to the total received power spectral density at the UE antenna connector.
Ec	Average energy per PN chip.
Ês	Received energy per RE (power normalized to the subcarrier spacing) during the useful
	part of the symbol, i.e. excluding the cyclic prefix, at the UE antenna connector
Іо	The total received power density, including signal and interference, as measured at the UE antenna connector.
Іос	The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized to the chip rate) of a band limited noise source (simulating interference from cells, which are not defined in a test procedure) as measured at the UE antenna connector.
Iot	The received power spectral density of the total noise and interference for a certain RE (power integrated over the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
N_{oc}	The power spectral density of a white noise source (average power per RE normalised
	to the subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as measured at the UE antenna connector
n _{PRB}	Physical Resource Block number as defined in subclause 3.1 in 3GPP TS 36.211.
$P_{\rm CMAX}$	Configured UE transmitted power as defined in subclause 6.2.5 in 3GPP TS 36.101.
S	Defined in TS 36.304, subclause 5.2.3.2 for E-UTRAN
SCH_Ec/Ior	The ratio of the transmit energy per PN chip of the SCH to the total transmit power spectral density at the UTRA Node B antenna connector

3GPP TS 36.133 version 8.6.0 Release 8

15

SCH_RP	Received (linear) average power of the resource elements that carry E-UTRA synchronisation signal, measured at the UE antenna connectorS _{ServingCcell} Defined in TS 36.304
Sintersearch	Defined in TS 25.304, subclause 5.2.6.1.5
Sintrasearch	Defined in TS 25.304, subclause 5.2.6.1.5 for UTRAN and in TS 36.304 , subclause
	5.2.4.7 for E-UTRAN
Snonintrasearch	Defined in TS 36.304, subclause 5.2.4.7
SsearchRAT	Defined in TS 25.304, subclause 5.2.6.1.5
Thresh _{x, high}	Defined in TS 36.304, subclause 5.2.4.7
Thresh _{x, low}	Defined in TS 36.304, subclause 5.2.4.7
Thresh _{serving, low}	Defined in TS 36.304, subclause 5.2.4.7
T _{RE-ESTABLISH-REQ}	The RRC Re-establishment delay requirement, the time between the moment when erroneous CRCs are applied, to when the UE starts to send preambles on the PRACH.
Treselection	Defined in TS 25.304, subclause 5.2.6.1.5
Treselection _{RAT}	Defined in TS 36.304, subclause 5.2.4.7
Treselection _{EUTRAN}	Defined in TS 36.304, subclause 5.2.4.7
Treselection _{UTRAN}	Defined in TS 36.304, subclause 5.2.4.7
Treselection _{GERAN}	Defined in TS 36.304, subclause 5.2.4.7
T _s	Basic time unit, defined in TS 36.211, clause 4

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [x] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [x].

1x RTT ARQ AWGN BCCH BCH CCCH SDU CPICH CPICH Ec/No C-RNTI DCCH DL DRX DTCH DUT eNB E-UTRA E-UTRA FDD GERAN GSM HARQ HO HRPD MAC OCNG OFDM OFDMA PBCH	CDMA2000 1x Radio Transmission Technology Automatic Repeat Request Additive White Gaussian Noise Broadcast Control Channel Broadcast Channel Common Control Channel SDU Common Pilot Channel CPICH Received energy per chip divided by the power density in the band Cell RNTI Dedicated Control Channel Downlink Discontinuous Reception Dedicated Traffic Channel Device Under Test E-UTRAN NodeB Evolved UTRA Evolved UTRA Evolved UTRA Frequency Division Duplex GSM EDGE Radio Access Network Global System for Mobile communication Hybrid Automatic Repeat Request Handover High Rate Packet Data Medium Access Control OFDMA Channel Noise Generator Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiple Access Physical Broadcast Channel
РВСН Р-ССРСН	Physical Broadcast Channel Primary Common Control Physical Channel

3GPP TS 36.133 version 8.6.0 Release 8

PCFICH PDCCH PDSCH PHICH PLMN PRACH	Physical Control Format Indicator CHannel Physical Downlink Control CHannel Physical Downlink Shared CHannel Physical Hybrid-ARQ Indicator CHannel Public Land Mobile Network Physical Random Access CHannel
PUCCH	Physical Uplink Control CHannel
PUSCH	Physical Uplink Shared Channel
RSCP	Received Signal Code Power
RSRP	Reference Signal Received Power
RSRQ	Reference Signal Received Quality
RSSI	Received Signal Strength Indicator
QAM	Quadrature Amplitude Modulation
RACH	Random Access Channel
RAT	Radio Access Technology
RNC	Radio Network Controller
RNTI	Radio Network Temporary Identifier
RRC	Radio Resource Control
RRM	Radio Resource Management
SCH	Synchronization Channel
SDU	Service Data Unit
SFN	System Frame Number
SON	Self Optimized Network
TDD	Time Division Duplex
TTI	Transmission Time Interval
UE	User Equipment
UL	Uplink
UMTS	Universal Mobile Telecommunication System
UTRA	Universal Terrestrial Radio Access
UTRAN	Universal Terrestrial Radio Access Network

3.4 Test tolerances

The requirements given in the present document make no allowance for measurement uncertainty. The test specification 36.521-3 [23] defines the test tolerances. These test tolerances are individually calculated for each test. The test tolerances are then added to the limits in this specification to create test limits. The measurement results are compared against the test limits as defined by the shared risk principle.

Shared Risk is defined in [ETR 273 Part 1 sub-part 2 section 6.5].

4 E-UTRAN RRC_IDLE state mobility

4.1 Cell Selection

After a UE has switched on and a PLMN has been selected, the Cell selection process takes place, as described in TS36.304. This process allows the UE to select a suitable cell where to camp on in order to access available services. In this process the UE can use stored information (*Stored information cell selection*) or not (*Initial cell selection*).

4.2 Cell Re-selection

4.2.1 Introduction

The cell reselection procedure allows the UE to select a more suitable cell and camp on it.

When the UE is in either *Camped Normally* state or *Camped on Any Cell* state on a cell, the UE shall attempt to detect, synchronise, and monitor intra-frequency, inter-frequency and inter-RAT cells indicated by the serving cell. For intra-frequency and inter-frequency cells the serving cell may not provide explicit neighbour list but carrier frequency information and bandwidth information only. UE measurement activity is also controlled by measurement rules defined in TS36.304, allowing the UE to limit its measurement activity.

4.2.2 Requirements

[Editor's Note: Requirements for multiple Tx antennas are still FFS. So far only 1Tx antenna case has been considered. The number of Tx antennas and possibly CP length may need to be provided per frequency layer. Details are FFS. Low mobility and high mobility requirements are still FFS]

The UE shall search every layer of higher priority at least every $T_{higher_priority_search} = (60 * N_{layers})$ seconds, where N_{layers} is the total number of configured higher priority E-UTRA, UTRA FDD, UTRA TDD, CDMA2000 1x and HRPD carrier frequencies and is additionally increased by one if one or more groups of GSM frequencies is configured as a higher priority.

Editors note: The measurement of cells that are detected in this search is still to be described.

4.2.2.1 Measurement and evaluation of serving cell

The UE shall measure the RSRP level of the serving cell and evaluate the cell selection criterion S defined in [1] for the serving cell at least every DRX cycle.

The UE shall filter the RSRP measurements of the serving cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by, at least DRX cycle/2.

If the UE has evaluated in N_{serv} consecutive DRX cycles that the serving cell does not fulfil the cell selection criterion S, the UE shall initiate the measurements of all neighbour cells indicated by the serving cell, regardless of the measurement rules currently limiting UE measurement activities.

If the UE in RRC_IDLE has not found any new suitable cell based on searches and measurements using the intrafrequency, inter-frequency and inter-RAT information indicated in the system information for 10 s, the UE shall initiate cell selection procedures for the selected PLMN as defined in [1].

After this 10 s period a UE in RRC_IDLE state is considered to be "out of service area" and shall perform actions according to [1].

DRX cycle length [s]	N _{serv} [number of DRX cycles]
0.32	4
0.64	4
1.28	2
2.56	2

Table 4.2.2.1-1: N_{serv}

4.2.2.2 Void

4.2.2.3 Measurements of intra-frequency E-UTRAN cells

The UE shall be able to identify new intra-frequency cells and perform RSRP measurements of identified intrafrequency cells without an explicit intra-frequency neighbour list containing physical layer cell identities.

The UE shall be able to evaluate whether a newly detectable intra-frequency cell meets the reselection criteria defined in TS36.304 within $T_{detect,EUTRAN_Intra}$ when that Treselection=0. An intra frequency cell is considered to be detectable if:

- RSRP $|_{dBm} \ge -124 \text{ dBm}$ for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40 and RSRP $\hat{E}s/Iot \ge -3 \text{ dB}$,
- RSRP $|_{dBm} \ge -123 \text{ dBm}$ for Bands 9 and RSRP $\hat{E}s/\text{Iot} \ge -3 \text{ dB}$,
- RSRP $|_{dBm} \ge -122$ dBm for Bands 2, 5, 7, 11, 17 and RSRP $\hat{E}s/Iot \ge -3$ dB,
- RSRP $|_{dBm} \ge -121$ dBm for Bands 3, 8, 12, 13, 14 and RSRP $\hat{E}s/Iot \ge -3$ dB,
- SCH_RP \geq -124 dBm for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40 and SCH $\hat{E}s/Iot \geq$ -3 dB,
- SCH_RP|_{dBm} \geq -123 dBm for Band 9 and SCH \hat{E} s/Iot \geq -3 dB,
- SCH_RP $|_{dBm} \ge -122$ dBm for Bands 2, 5, 7, 11, 17 and SCH $\hat{E}s/Iot \ge -3$ dB,
- SCH_RP $|_{dBm} \ge -121$ dBm for Bands 3, 8, 13, 14 and SCH $\hat{E}s/Iot \ge -3$ dB.

The UE shall measure RSRP at least every $T_{measure,EUTRAN_Intra}$ (see table 4.2.2.3-1) for intra-frequency cells that are identified and measured according to the measurement rules.

The UE shall filter RSRP measurements of each measured intra-frequency cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least $T_{measure,EUTRAN_Intra}/2$

For an intra-frequency cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that the intra-frequency cell has met reselection criterion defined [1] within $T_{evaluate,E-UTRAN_intra}$ when $T_{reselection} = 0$ as specified in table 4.2.2.3-1 provided that the cell is at least [3]dB better ranked.

If $T_{reselection}$ timer has a non zero value and the intra-frequency cell is better ranked than the serving cell, the UE shall evaluate this intra-frequency cell for the $T_{reselection}$ time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

Table 4.2.2.3-1 : T _{detect,EUTRAN_Intra} ,	T _{measure,EUTRAN_Intra} and T _{evaluate, E-UTRAN_intra}
--	--

DRX cycle length [s]	T _{detect,EUTRAN_Intra} [s] (number of DRX cycles)	T _{measure,EUTRAN_Intra} [s] (number of DRX cycles)	T _{evaluate,E-UTRAN_intra} [s] (number of DRX cycles)
0.32	[11.52 (36)]	[1.28 (4)]	[5.12 (16)]
0.64	[17.92 (28)]	[1.28 (2)]	[5.12 (8)]
1.28	[32(25)]	[1.28 (1)]	[6.4 (5)]
2.56	[58.88 (23)]	[2.56 (1)]	[7.68 (3)]

4.2.2.4 Measurements of inter-frequency E-UTRAN cells

The UE shall be able to identify new inter-frequency cells and perform RSRP measurements of identified interfrequency cells if carrier frequency information is provided by the serving cell, even if no explicit neighbour list with physical layer cell identities is provided.

If the S_{ServingCell}of the E-UTRA serving cell (or other cells on the same frequency layer) is greater than S_{nonintrasearch} then

- the UE may not search for, or measure inter-frequency or inter-RAT layers of equal or lower priority.
- the UE shall search for inter-frequency layers of higher priority at least every $T_{higher_priority_search}$ where $T_{higher_priority_search}$ is described in section 4.2.2.

If the $S_{ServingCell}$ of the E-UTRA serving cell is less than or equal to $S_{nonintrasearch}$ then the UE shall search for and measure inter-frequency layers of higher, equal or lower priority in preparation for possible reselection. In this scenario, the minimum rate at which the UE is required to search for and measure higher priority layers is not reduced and shall be the same as that defined below for a lower or equal priority interfrequency layers.

The UE shall be able to evaluate whether a newly detectable lower or equal priority inter-frequency cell meets the reselection criteria defined in TS36.304 within $K_{carrier} * T_{detect,EUTRAN_Inter}$ if at least carrier frequency information is provided for inter-frequency neighbour cells by the serving cells when $T_{reselection} = 0$ provided that the reselection criteria is met by a margin of at least 5dB for reselections based on ranking or 6dB for reselections based on absolute priorities. The parameter $K_{carrier}$ is the number of E-UTRA inter-frequency carriers indicated by the serving cell. An inter-frequency cell is considered to be detectable if:

- RSRP $|_{dBm} \ge -124 \text{ dBm}$ for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40 and RSRP $\hat{E}s/Iot \ge -3 \text{ dB}$,
- RSRP $|_{dBm} \ge -123 \text{ dBm}$ for Bands 9 and RSRP $\hat{E}s/Iot \ge -3 \text{ dB}$,
- RSRP $|_{dBm} \ge -122 \text{ dBm}$ for Bands 2, 5, 7, 11, 17 and RSRP $\hat{E}s/Iot \ge -3 \text{ dB}$,
- RSRP $|_{dBm} \ge -121$ dBm for Bands 3, 8, 12, 13, 14 and RSRP $\hat{E}s/Iot \ge -3$ dB,
- SCH_RP|_{dBm} \ge -124 dBm for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40 and SCH $\hat{E}s/Iot \ge$ -3 dB,
- SCH_RP|_{dBm} \geq -123 dBm for Band 9 and SCH $\hat{E}s/Iot \geq$ -3 dB,
- SCH_RP $|_{dBm} \ge -122 \text{ dBm}$ for Bands 2, 5, 7, 11, 17 and SCH $\hat{E}s/Iot \ge -3 \text{ dB}$,
- SCH_RP $|_{dBm} \ge -121$ dBm for Bands 3, 8, 13, 14 and SCH $\hat{E}s/Iot \ge -3$ dB.

When higher priority cells are found by the higher priority search, they shall be measured at least every $T_{measure,E-}_{UTRAN_Inter}$. If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell. If the UE detects on a E-UTRA carrier a cell whose physical identity is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform measurements on that cell.

The UE shall measure RSRP at least every $K_{carrier} * T_{measure,EUTRAN_Inter}$ (see table 4.2.2.3-1) for identified lower or equal priority inter-frequency cells. If the UE detects on a E-UTRA carrier a cell whose physical identity is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform measurements on that cell.

The UE shall filter RSRP measurements of each measured higher, lower and equal priority inter-frequency cell using at least 2 measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least $T_{measure,EUTRAN_Inter}/2$.

The UE shall not consider a E-UTRA neighbour cell in cell reselection, if it is indicated as not allowed in the measurement control system information of the serving cell.

For an inter-frequency cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that the inter-frequency cell has met reselection criterion defined TS 36.304

within $K_{carrier} * T_{evaluate,E-UTRAN_Inter}$ when $T_{reselection} = 0$ as specified in table 4.2.2.4-1 provided that the reselection criteria is met by a margin of at least [5]dB for reselections based on ranking or 6dB for reselections based on absolute priorities.

If $T_{reselection}$ timer has a non zero value and the inter-frequency cell is better ranked than the serving cell, the UE shall evaluate this inter-frequency cell for the $T_{reselection}$ time. If this cell remains better ranked within this duration, then the UE shall reselect that cell.

DRX cycle length [s]	T _{detect,EUTRAN_Inter} [s] (number of DRX cycles)	T _{measure,EUTRAN_Inter} [s] (number of DRX cycles)	T _{evaluate,E} - UTRAN_Inter [s] (number of DRX cycles)
0.32	[11.52 (36)]	[1.28 (4)]	[5.12 (16)]
0.64	[17.92 (28)]	[1.28 (2)]	[5.12 (8)]
1.28	[32(25)]	[1.28 (1)]	[6.4 (5)]
2.56	[58.88 (23)]	[2.56 (1)]	[7.68 (3)]

Table 4.2.2.4-1 : T_{detect,EUTRAN_Inter}, T_{measure,EUTRAN_Inter} and T_{evaluate,E-UTRAN_Inter}

4.2.2.5 Measurements of inter-RAT cells

If the S_{ServingCell} of the E-UTRA serving cell (or other cells on the same frequency layer) is greater than S_{nonintrasearch} then

- the UE may not search for, or measure inter-RAT layers of lower priority.
- the UE shall search for inter-RAT layers of higher priority at least every T_{higher_priority_search} where T_{higher priority search} is described in section 4.2.2.

If the $S_{ServingCell}$ of the E-UTRA serving cell is less than or equal to $S_{nonintrasearch}$ then the UE shall search for and measure inter-RAT layers of higher, lower priority in preparation for possible reselection. In this scenario, the minimum rate at which the UE is required to search for and measure such layers is not reduced and shall be the same as that defined below for lower priority RATs.

4.2.2.5.1 Measurements of UTRAN FDD cells

When the measurement rules indicate that UTRA FDD cells are to be measured, the UE shall measure CPICH Ec/Io and CPICH RSCP of detected UTRA FDD cells in the neighbour cell list at the minimum measurement rate specified in this section. The parameter $N_{UTRA_carrier}$ is the number of carriers used for all UTRA FDD cells in the neighbour cell list. The UE shall filter CPICH Ec/Io and CPICH RSCP measurements of each measured UTRA FDD cell using at least [2] measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least half the minimum specified measurement period.

The UE shall evaluate whether newly detectable UTRA FDD cells have met the reselection criteria in TS 36.304 within time ($N_{UTRA_carrier}$) * $T_{detectUTRA_FDD}$ except when UTRA FDD is of higher priority than the currently selected E-UTRAN frequency layer and the $S_{servingCell}$ of the E-UTRA serving cell (or other cells on the same frequency layer) is greater than $S_{nonintrasearch}$ when Treselection_{RAT} = 0 provided that the reselection criteria is met by a margin of at least [6]dB.

Cells which have been detected shall be measured at least every $(N_{UTRA_carrier}) * T_{measureUTRA_FDD}$ except when UTRA FDD is of higher priority than the currently selected E-UTRAN frequency layer and the $S_{ServingCell}$ of the E-UTRA serving cell (or other cells on the same frequency layer) is greater than $S_{nonintrasearch}$.

When higher priority UTRA FDD cells are found by the higher priority search, they shall be measured at least every $T_{measure,UTRA_FDD}$. If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell.

For a cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that an already identified UTRA FDD cell has met reselection criterion defined in 3GPP TS 36.304 [1] within ($N_{UTRA_carrier}$) * $T_{evaluateUTRA_FDD}$ when $T_{reselection} = 0$ as speficied in table 4.2.2.5.1-1 provided that the reselection criteria is met by a margin of at least [6]dB.

DRX cycle length [s]	T _{detectUTRA_FDD} [S]	T _{measureUTRA_FDD} [s] (number of DRX cycles)	T _{evaluateUTRA_FDD} [s] (number DRX cycles)	of
0.32		5.12 (16)	15.36 (48)	
0.64	30	5.12 (8)	15.36 (24)	
1.28		6.4(5)	19.2 (15)	
2.56	60	7.68 (3)	23.04 (9)	

4.2.2.5.2 Measurements of UTRAN TDD cells

When the measurement rules indicate that UTRA TDD cells are to be measured, the UE shall measure P-CCPCH RSCP of detected UTRA TDD cells in the neighbour cell list at the minimum measurement rate specified in this section. The parameter $N_{UTRA_carrier_TDD}$ is the number of carriers used for all UTRA TDD cells in the neighbour cell list. The UE shall filter P-CCPCH RSCP measurements of each measured UTRA TDD cell using at least [2] measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least half the minimum specified measurement period. P-CCPCH RSCP of UTRAN TDD cells shall not be filtered over a longer period than that specified in table 4.2.2.5.2-1.

The UE shall evaluate whether newly detectable UTRA TDD cells have met the reselection criteria in TS 36.304 within time $(N_{UTRA_carrier_TDD}) * T_{detectUTRA_TDD}$ except when UTRA TDD is of higher priority than the currently selected E-UTRAN frequency layer and the S_{ServingCell} of the E-UTRA serving cell (or other cells on the same frequency layer) is greater than S_{nonintrasearch} when T_{reselection} = 0 provided that the reselection criteria is met by a margin of at least [6]dB.

Cells which have been detected shall be measured at least every $(N_{UTRA_carrier_TDD}) * T_{measureUTRA_TDD}$ except when UTRA TDD is of higher priority than the currently selected E-UTRAN frequency layer and the $S_{ServingCell}$ of the E-UTRA serving cell (or other cells on the same frequency layer) is greater than $S_{nonintrasearch}$.

When higher priority UTRA TDD cells are found by the higher priority search, they shall be measured at least every $T_{measure,UTRA_TDD}$. If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell.

For a cell that has been already detected, but that has not been reselected to, the filtering shall be such that the UE shall be capable of evaluating that an already identified UTRA TDD cell has met reselection criterion defined in [1] within $N_{\text{UTRA_carrier_TDD}} *T_{\text{evaluateUTRA_TDD}}$ when $T_{\text{reselection}} = 0$ as specified in table 4.2.2.5.2-1 provided that the reselection criteria is met by a margin of at least [6]dB.

DRX cycle length [s]	T _{detect} UTRA_TDD	T _{measureUTRA_TDD} [s] (number of DRX cycles)	T _{evaluateUTRA_TDD} [s] (number of DRX cycles)
0.32		5.12 (16)	15.36 (48)
0.64	30	5.12 (8)	15.36 (24)
1.28		6.4(5)	19.2 (15)
2.56	60	7.68 (3)	23.04 (9)

Table 4.2.2.5.2-1: $T_{detectUTRA_TDD}$, $T_{measureUTRA_TDD}$ and $T_{evaluateUTRA_TDD}$

4.2.2.5.3 Measurements of GSM cells

If the $S_{\text{ServingCell}}$ of the E-UTRA serving cell is less than or equal to $S_{\text{nonintrasearch}}$ then the UE shall measure, according to the measurement rules defined in [1], at least every $T_{\text{measure,GSM}}$ (see table 4.2.2.5.3-1):

- if a detailed neighbour cell list is provided, the signal level of the GSM BCCH carrier of each GSM neighbour cell indicated in the measurement control system information of the serving cell; or
- if only BCCH carriers are provided, the signal level of the GSM BCCH carriers indicated in the measurement control system information of the serving cell.

Note : If it is concluded that only blacklist, or only whitelist can be used for reselection to GSM then one of these bullets can be deleted.

When higher priority GSM BCCH carriers are found by the higher priority search, they shall be measured at least every $T_{measure,GSM}$, and the UE shall decode the BSIC of the GSM BCCH carrier. If, after detecting a cell in a higher priority search, it is determined that reselection has not occurred then the UE is not required to continuously measure the detected cell to evaluate the ongoing possibility of reselection, or to continuously verify the BSIC of the GSM BCCH carrier every 30s. However, the minimum measurement filtering requirements specified later in this section shall still be met by the UE before it makes any determination that it may stop measuring the cell.

The UE shall maintain a running average of 4 measurements for each GSM BCCH carrier. The measurement samples for each cell shall be as far as possible uniformly distributed over the averaging period.

If continuous GSM measurements are required by the measurement rules in [1], the UE shall attempt to verify the BSIC at least every 30 seconds for each of the 4 strongest GSM BCCH carriers. If a change of BSIC is detected for one GSM cell then that GSM BCCH carrier shall be treated as a new GSM neighbour cell. If the UE detects on a BCCH carrier a BSIC which is indicated as not allowed for that carrier in the measurement control system information of the serving cell, the UE is not required to perform BSIC re-confirmation for that cell.

The UE shall not consider the GSM BCCH carrier in cell reselection, if the UE cannot demodulate the BSIC of that GSM BCCH carrier. Additionally, the UE shall not consider a GSM neighbour cell in cell reselection, if it is indicated as not allowed in the measurement control system information of the serving cell.

DRX cycle length [s]	T _{measure,GSM} [s] (number of DRX cycles)	
0.32	[5.12 (16)]	
0.64	[5.12 (8)]	
1.28	[6.4(5)]	
2.56	[7.68 (3)]	

Table 4.2.2.5.3-1:	T _{measure,GSM,}
--------------------	---------------------------

4.2.2.5.4 Measurements of HRPD cells

In order to perform measurement and cell reselection to HRPD cell, the UE shall acquire the timing of HRPD cells.

When the measurement rules indicate that HRPD cells are to be measured, the UE shall measure CDMA2000 HRPD Pilot Strength of HRPD cells in the neighbour cell list at the minimum measurement rate specified in this section.

The parameter 'Number of HRPD Neighbor Frequency', which is transmitted on E-UTRAN BCCH, is the number of carriers used for all HRPD cells in the neighbour cell list.

When the RSRP of the E-UTRA serving cell (or other cells on the same frequency layer) is lower than 'HRPD Start Measuring E-UTRAN Rx Power Strength Threshold' and HRPD is of lower priority than the currently selected E-UTRAN frequency layer, the UE shall measure CDMA2000 HRPD Pilot Strength of the HRPD cells at least every (Number of HRPD Neighbor Frequency)*T_{measureHRPD}. In case HRPD is of higher priority than the currently selected E-UTRAN frequency layer the UE shall measure HRPD cells at least every T_{higher_proirty_search}. The parameter T_{higher_proirty_search} is defined in section 4.2.2.

The UE shall be capable of evaluating that the HRPD cell has met cell reselection criterion defined in [1] within $T_{evaluateHRPD}$.

Table 4.2.2.5.4-1 gives values of $T_{measureHRPD}$ and $T_{evaluateHRPD}$.

DRX cycle length [s]	T _{measureHRPD} [s] (number of DRX cycles)	T _{evaluateHRPD} [s] (number of DRX cycles)
0.32	5.12 (16)	15.36 (48)
0.64	5.12 (8)	15.36 (24)
1.28	6.4 (5)	19.2 (15)
2.56	7.68 (3)	23.04 (9)

Table 4.2.2.5.4-1: TmeasureHRPD and TevaluateHRPD

4.2.2.5.5 Measurements of cdma2000 1X

In order to perform measurement and cell reselection to cdma2000 1X cell, the UE shall acquire the timing of cdma2000 1X cells.

When the measurement rules indicate that cdma2000 1X cells are to be measured, the UE shall measure cdma2000 1x RTT Pilot Strength of cdma2000 1X cells in the neighbour cell list at the minimum measurement rate specified in this section.

The parameter 'Number of CDMA2000 1X Neighbor Frequency', which is transmitted on E-UTRAN BCCH, is the number of carriers used for all cdma2000 1X cells in the neighbour cell list.

When the RSRP of the E-UTRA serving cell (or other cells on the same frequency layer) is lower than 'CDMA2000 1X Start Measuring E-UTRAN Rx Power Strength Threshold' and cdma2000 1X is of lower priority than the currently selected E-UTRAN frequency layer, the UE shall measure Pilot Ec/Io of the CDMA2000 1X cells at least every (Number of CDMA2000 1X Neighbor Frequency)*T_{measureCDMA2000_1X}. In case cdma2000 1X is of higher priority than the currently selected E-UTRAN frequency layer, the UE shall measure cdma2000 1X cells at least every the currently selected E-UTRAN frequency layer, the UE shall measure cdma2000 1X cells at least every Thigher_proirty_search. The parameter Thigher_proirty_search is defined in section 4.2.2.

The UE shall be capable of evaluating that the cdma2000 1X cell has met cell reselection criterion defined in [1] within $T_{evaluateCDMA2000_{1X}}$.

Table 4.2.2.5.5-1 gives values of $T_{measureCDMA2000_{1X}}$ and $T_{evaluateCDMA2000_{1X}}$.

DRX cycle length [s]	T _{measureCDMA2000_1X} [s] (number of DRX cycles)	T _{evaluateCDMA2000_1X} [s] (number of DRX cycles)
0.32	5.12 (16)	15.36 (48)
0.64	5.12 (8)	15.36 (24)
1.28	6.4 (5)	19.2 (15)
2.56	7.68 (3)	23.04 (9)

Table 4.2.2.5.5-1: TmeasureCDMA2000 1X and TevaluateCDMA2000 1X

4.2.2.6 Evaluation of cell re-selection criteria

The UE shall evaluate the intra-frequency, inter-frequency and inter-RAT cell reselection criteria defined in [1] at least every DRX cycle. When a non zero value of $T_{reselection}$ is used, the UE shall only perform reselection on an evaluation which occurs simultaneously to, or later than the expiry of the $T_{reselection}$ timer.

4.2.2.7 Maximum interruption in paging reception

UE shall perform the cell re-selection with minimum interruption in monitoring downlink channels for paging reception.

At intra-frequency and inter-frequency cell re-selection, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable to start monitoring downlink channels of the target intra-frequency and inter-frequency cell for paging reception. The interruption time shall not exceed $T_{SI-EUTRA} + 50$ ms.

At inter-RAT cell re-selection, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable to start monitoring downlink channels for paging reception of the target inter-RAT cell. For E-UTRAN to UTRA cell re-selection the interruption time must not exceed $T_{SI-UTRA} + 50$ ms. For E-UTRAN to GSM cell re-selection the interruption time must not exceed $T_{BCCH} + 50$ ms.

 $T_{SI-EUTRA}$ is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [2] for a E-UTRAN cell.

 $T_{SI-UTRA}$ is the time required for receiving all the relevant system information data according to the reception procedure and the RRC procedure delay of system information blocks defined in [7] for a UTRAN cell.

T_{BCCH} is the maximum time allowed to read BCCH data from a GSM cell defined in [8].

These requirements assume sufficient radio conditions, so that decoding of system information can be made without errors and does not take into account cell re-selection failure.

At cell re-selection to HRPD, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable of starting to monitor downlink channels for paging reception of the target HRPD cell. For HRPD cell reselection the interruption time must not exceed $T_{SI-HRPD} + 50$ ms.

 $T_{SI-HRPD}$ is the time required for receiving all the relevant system information data according to the reception procedure and the upper layer (Layer 3) procedure delay of system information blocks defined in [15] in for HRPD cell.

At cell re-selection to cdma2000 1X, the UE shall monitor the downlink of serving cell for paging reception until the UE is capable of starting to monitor downlink channels for paging reception of the target cdma2000 1X cell. For cdma2000 1X cell re-selection the interruption time must not exceed $T_{SI-cdma2000_{-1}X} + 50$ ms.

 $T_{SI-cdma2000_1X}$ is the time required for receiving all the relevant system information data according to the reception procedure and the upper layer (Layer 3) procedure delay of system information blocks defined in [15] for cdma2000 1X cell.

4.2.2.8 void

4.2.2.9 UE measurement capability

For idle mode cell re-selection purposes, the UE shall be capable of monitoring at least:

- Intra-frequency carrier, and
- Depending on UE capability, 3 FDD E-UTRA inter-frequency carriers, and
- Depending on UE capability, 3 TDD E-UTRA inter-frequency carriers, and
- Depending on UE capability, 3 FDD UTRA carriers, and
- Depending on UE capability, 3 TDD UTRA carriers, and
- Depending on UE capability, 32 GSM carriers.

For a UE supporting E-UTRA measurements in RRC_IDLE state, the UE shall be capable of monitoring a total of at least 8 carrier frequency layers, which includes serving layer, comprising of any allowed combination of E-UTRA FDD, E-UTRA TDD, UTRA FDD, UTRA TDD and GSM layers (one GSM layer corresponds to 32 cells).

5

E-UTRAN RRC_CONNECTED state mobility

Note: For the performance requirements specified hereafter, the state when no DRX is used is defined as follows:

DRX parameters are not configured; or

- DRX parameters are configured and
 - *drx-InactivityTimer* is running; or
 - o drx-RetransmissionTimer is running; or
 - o mac-ContentionResolutionTimer is running; or
 - o a Scheduling Request sent on PUCCH is pending; or
 - an uplink grant for a pending HARQ retransmission can occur and there is data in the corresponding HARQ buffer; or
 - a PDCCH indicating a new transmission addressed to the C-RNTI of the UE has not been received after successful reception of a Random Access Response for the explicitly signaled preamble (only applicable to UEs in RRC_CONNECTED).

Otherwise

- It is the state when DRX is used.

5.1 E-UTRAN Handover

5.1.1 Introduction

5.1.2 Requirements

5.1.2.1 E-UTRAN FDD – FDD

The requirements in this section are applicable to both intra-frequency and inter-frequency handovers.

5.1.2.1.1 Handover delay

Procedure delays for all procedures that can command a handover are specified in [2].

When the UE receives a RRC message implying handover the UE shall be ready to start the transmission of the new uplink PRACH channel within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

Where:

 $D_{handover}$ equals the maximum RRC procedure delay to be defined in section 11.2 in 3GPP TS 36.331 [2] plus the interruption time stated in section 5.1.2.1.2.

5.1.2.1.2 Interruption time

The interruption time is the time between end of the last TTI containing the RRC command on the old PDSCH and the time the UE starts transmission of the new PRACH, excluding the RRC procedure delay. This requirement applies when UE is not required to perform any synchronisation procedure before transmitting on the new PRACH.

When intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than Tinterrupt

$$T_{interrupt} = T_{search} + T_{IU} + 20 ms$$

Where:

 T_{search} is the time required to search the target cell when the target cell is not already known when the handover command is received by the UE. If the target cell is known, then $T_{search} = 0$ ms. Regardless of whether DRX is in use by the UE, T_{search} shall still be based on non-DRX target cell search times.

 T_{IU} is the interruption uncertainty in acquiring the first available PRACH occasion in the new cell. T_{IU} can be up to 30 ms.

NOTE: The actual value of T_{IU} shall depend upon the PRACH configuration used in the target cell.

In the interruption requirement a cell is known if it has been meeting the relevant cell identification requirement during the last 5 seconds otherwise it is unknown. Relevant cell identification requirements are described in Section 8.1.2.2.1 for intra-frequency handover and Section 8.1.2.3.1 for inter-frequency handover.

5.2.2.2 E-UTRAN FDD – TDD

The requirements in this section are applicable to handover from FDD to TDD. The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 5.2.2.4 apply for this section.

5.2.2.2.1 (Void)

5.2.2.2.2 (Void)

5.2.2.3 E-UTRAN TDD – FDD

The requirements in this section are applicable to handover from TDD to FDD. The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 5.1.2.1 apply for this section.

5.2.2.3.1	(Void)
-----------	--------

5.2.2.3.2 (Void)

5.2.2.4 E-UTRAN TDD – TDD

The requirements in this section are applicable to both intra-frequency and inter-frequency handovers.

5.2.2.4.1 Handover delay

Procedure delays for all procedures that can command a handover are specified in 3GPP TS 36.331 [2].

When the UE receives a RRC message implying handover, the UE shall be ready to start the transmission of the new uplink UpPTS or PRACH channel within $D_{handover}$ seconds from the end of the last TTI containing the RRC command.

Where:

 $D_{handover}$ equals the maximum RRC procedure delay to be defined in section 11.2 in 3GPP TS36.331 [2] plus the interruption time stated in section 5.1.2.4.2.

5.2.2.4.2 Interruption time

The interruption time is the time between end of the last TTI containing the RRC command on the old PDSCH and the time the UE starts transmission of the new UpPTS or PRACH, excluding the RRC procedure delay. This requirement applies when UE is not required to perform any synchronisation procedure before transmitting on the new UpPTS or PRACH.

When intra-frequency or inter-frequency handover is commanded, the interruption time shall be less than Tinterrupt

 $T_{interrupt} = T_{search} + T_{IU} + 20 ms$

Where

 T_{search} is the time required to search the target cell when the target cell is not already known when the handover command is received by the UE. If the target cell is known, then $T_{search} = 0$ ms. Regardless of whether DRX is in use by the UE, T_{search} shall still be based on non-DRX target cell search times.

 T_{IU} is the interruption uncertainty in acquiring the first available UpPTS or PRACH occasion in the new cell. T_{IU} can be up to 30 ms.

NOTE: The actual value of T_{IU} shall depend upon the UpPTS or PRACH configuration used in the target cell.

In the interruption requirement a cell is known if it has been meeting the relevant cell identification requirement during the last 5 seconds otherwise it is unknown. Relevant cell identification requirements are described in Section 8.1.2.2.2 for intra-frequency handover and Section 8.1.2.3.4 for inter-frequency handover.

5.3 Handover to other RATs

5.3.1 E-UTRAN - UTRAN FDD Handover

5.3.1.1 Introduction

The purpose of inter-RAT handover from E-UTRAN to UTRAN FDD is to change the radio access mode from E-UTRAN to UTRAN FDD. The handover procedure is initiated from E-UTRAN with a RRC message that implies a hard handover as described in [2].

5.3.1.1.1 Handover delay

When the UE receives a RRC message implying handover to UTRAN with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last E-UTRAN TTI containing the RRC command, the UE shall be ready to start the transmission of the new UTRA uplink DPCCH within D_{handover} seconds from the end of the last E-UTRAN TTI containing the RRC MOBILITY FROM E-UTRA command.

[Editor's note: An accurate definition for the concept of 'activation time' is still needed]

If the access is delayed to an indicated activation time later than E-UTRAN RRC procedure delay seconds from the end of the last TTI containing the E-UTRAN RRC command, the UE shall be ready to start the transmission of the new uplink DPCCH at the designated activation time + interruption time.

where:

- D_{handover} equals the RRC procedure delay, which is 50 ms plus the interruption time stated in section 5.3.1.1.2.

5.3.1.1.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission on the uplink DPCCH in UTRAN FDD, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

The target cell is known if it has been measured by the UE during the last 5 seconds otherwise it is unknown. The UE shall always perform a UTRA synchronisation procedure as part of the handover procedure.

If the target cell is known the interruption time shall be less than Tinterrupt1

 $T_{interrupt1} = T_{IU} + T_{sync} + 50 + 10 * F_{max} ms$

If the target cell is unknown the interruption time shall be less than Tinterrupt2

$$T_{interrupt2} = T_{IU} + T_{sync} + 150 + 10 * F_{max} ms$$

This requirement shall be met, provided that there is one target cell in the MOBILITY FROM E-UTRA command. Performance requirements for E-UTRA to UTRA soft handover are not specified. When UE is connected to an E-UTRA cell, UTRA SFN timing measurements are not reported. This implies that the timing of the DPCH of the UTRA target cells in the active set cannot be configured by UTRAN to guarantee that all target cells fall within the UE reception window of T_0 +/- 148 chips.

Where:

T_{IU}	is the interruption uncertainty when changing the timing from the E-UTRAN to the new UTRAN cell. T_{IU} can be up to one UTRA frame (10 ms).
F _{max}	denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH on the UTRA target cell.
T _{sync}	is the time required for measuring the downlink DPCCH channel as stated in 3GPP TS 25.214 section 4.3.1.2 [20]. In case higher layers indicate the usage of a post-verification period $T_{sync}=0$ ms. Otherwise $T_{sync}=40$ ms.

The phase reference is the primary CPICH.

The requirements in this section assume that N312 has the smallest possible value i.e. only one insync is required.

5.3.2 E-UTRAN - UTRAN TDD Handover

5.3.2.1 Introduction

The purpose of inter-RAT handover from E-UTRAN to UTRAN TDD is to change the radio access mode from E-UTRAN to UTRAN TDD. The handover procedure is initiated from E-UTRAN with a RRC message that implies a hard handover as described in [2].

5.3.2.2 Requirements

The requirements in this section shall apply to UE supporting E-UTRAN and UTRAN TDD.

5.3.2.2.1 Handover delay

When the UE receives a RRC message implying E-UTRAN/UTRAN TDD handover with the activation time "now" or earlier than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH or the SYNC-UL within D_{handover} seconds from the end of the last TTI containing the RRC MOBILITY FROM E-UTRA command.

If the access is delayed to an indicated activation time later than RRC procedure delay seconds from the end of the last TTI containing the RRC command, the UE shall be ready to start the transmission of the new uplink DPCH at the designated activation time + interruption time.

Where:

- D_{handover} equals the RRC procedure delay, which is 50 ms plus the interruption time stated in section 5.3.2.2.

5.3.2.2.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission on the uplink DPCH or the SYNC-UL in UTRAN TDD, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

The UE shall always perform a UTRA synchronisation procedure as part of the handover procedure.

If the target cell has been measured by the UE during the last 5 seconds, the interruption time shall be less than Tinterrupt1

$$T_{interruptl} = T_{offset} + T_{UL} + 30*F_{SFN} + [20] + 10*F_{max} ms$$

If the target cell has not been measured by the UE during the last 5 seconds, the interruption time shall be less than Tinterrupt2

$$\Gamma_{\text{interrupt2}} = T_{\text{offset}} + T_{\text{UL}} + 30*F_{\text{SFN}} + [180] + 10*F_{\text{max}} \text{ ms}$$

Where:

T _{offset}	Equal to 10 ms, the frame timing uncertainty between the old cell and the target cell and the time that can elapse until the appearance of a Beacon channel
T _{UL}	Equal to 10 ms, the time that can elapse until the appearance of the UL timeslot in the target cell
F _{SFN}	Equal to 1 if SFN decoding is required and equal to 0 otherwise
F _{max}	denotes the maximum number of radio frames within the transmission time intervals of all transport channels that are multiplexed into the same CCTrCH.

The interruption time requirements for an unknown target cell shall apply only if the signal quality of the unknown target cell is sufficient for successful synchronisation with one attempt.

5.3.3 E-UTRAN - GSM Handover

5.3.3.1 Introduction

The purpose of inter-RAT handover from E-UTRAN to GSM is to transfer a connection between the UE and E-UTRAN to GSM. The handover procedure is initiated from E-UTRAN with a RRC message (MOBILITY FROM E-UTRA). The procedure is described in in 3GPP TS 36.331 [2].

5.3.3.2 Requirements

The requirements in this section shall apply to UE supporting E-UTRAN and GSM.

The requirements given below in Tables 5.3.3.2.1-1 and 5.3.3.2.2-1 for the case where the UE has not synchronised to the GSM cell before receiving the RRC MOBILITY FROM E-UTRA command are valid when the signal quality of the GSM cell is sufficient for successful synchronisation with one attempt. If the UE is unable to synchronise to the GSM cell on the first attempt, it shall continue to search for synchronisation information for up to 800 ms duration. If after 800 ms the UE has not synchronised to the GSM cell it shall follow the handover failure procedure specified in [2].

5.3.3.2.1 Handover delay

When the UE receives a RRC MOBILITY FROM E-UTRA command with the activation time "now" or earlier than RRC procedure delay (see below) from the end of the last TTI containing the RRC command, the UE shall be ready to transmit (as specified in [10]) on the channel of the new RAT within the value in table 5.3.3.2.1-1 from the end of the last TTI containing the RRC command.

If the access is delayed to an indicated activation time later than RRC procedure delay from the end of the last TTI containing the RRC command, the UE shall be ready to transmit (as specified in [10]) on the channel of the new RAT at the designated activation time + interruption time.

The UE shall process the RRC procedures for the MOBILITY FROM E-UTRA command within 50 ms, which is noted as RRC procedure delay. If the activation time is used, it corresponds to the CFN of the E-UTRAN channel.

UE synchronisation status	handover delay [ms]
The UE has synchronised to the GSM cell before the	90
RRC MOBILITY FROM E-UTRA COMMAND is received	
The UE has not synchronised to the GSM cell before	190
the RRC MOBILITY FROM E-UTRA COMMAND is	
received	

Table 5.3.3.2.1-1: E-UTRAN/GSM handover - handover delay

5.3.3.2.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission on the uplink channel in GSM, excluding the RRC procedure delay. The interruption time depends on whether the UE has synchronized to the target GSM cell or not and shall be less than the value specified in table 5.3.3.2.2-1.

Synchronisation status	Interruption time [ms]
The UE has synchronised to the GSM cell before the	40
RRC MOBILITY FROM E-UTRA COMMAND is received	
The UE has not synchronised to the GSM cell before	140
the RRC MOBILITY FROM E-UTRA COMMAND is	
received	

5.4 Handover to Non-3GPP RATs

5.4.1 E-UTRAN – HRPD Handover

5.4.1.1 Introduction

The handover procedure from E-UTRAN to HRPD is initiated when E-UTRAN sends handover command to the UE through dedicated RRC signalling.

5.4.1.1.1 Handover delay

The handover delay ($D_{handover}$) is defined as the sum of the RRC procedure delay, which is 50 ms and the interruption time specified in section 5.4.1.1.2.

When the UE receives a RRC message implying handover to HRPD, the UE shall be ready to start the transmission of the new reverse control channel in HRPD within $D_{handover}$ from the end of the last E-UTRAN TTI containing the RRC command.

5.4.1.1.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission of the reverse control channel in HRPD, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

An HRPD cell is known if it has been measured by the UE during the last 5 seconds otherwise it is unknown. Under the reference conditions specified in sub-clause 6.6 of [13], the interruption time shall be less than $T_{interrupt}$

$$T_{interrupt} = T_{IU} + [40] + [10] * KC * SW_K + [10] * OC * SW_O ms$$

Where:

- T_{IU} It is the interruption uncertainty when changing the timing from the E-UTRAN to the new HRPD cell. T_{IU} can be up to one HRPD frame (26.66 ms).
- SW_K is $SW_{K} = \left[\frac{\text{srch}_win_k}{60}\right]$ where srch_win_k is the number of HRPD chips indicated by the search window for known target HRPD cells in the message

SW₀ is SW₀ = $\left| \frac{\text{srch}_win_o}{60} \right|$ where srch_win_o is the number of HRPD chips indicated by the search window for unknown target HRPD cells in the message KC It is the number of known target HRPD cells in the message, and

OC It is the number of unknown target HRPD cells in the message.

Note: An additional delay in the interruption time may occur due to the reverse link silence interval [11], which is specific to HRPD.

5.4.2 E-UTRAN – cdma2000 1X Handover

5.4.2.1 Introduction

The handover procedure from E-UTRAN to cdma2000 1X is initiated when E-UTRAN sends handover command to the UE through dedicated RRC signalling.

5.4.2.1.1 Handover delay

The handover delay ($D_{handover}$) is defined as the sum of the RRC procedure delay, which is 130 ms and the interruption time specified in section 5.4.2.1.2.

When the UE receives a RRC message implying handover to cdma2000 1X, the UE shall be ready to start the transmission of the new reverse control channel in cdma2000 1X within $D_{handover}$ from the end of the last E-UTRAN TTI containing the RRC command.

5.4.2.1.2 Interruption time

The interruption time is the time between the end of the last TTI containing the RRC command on the E-UTRAN PDSCH and the time the UE starts transmission of the reverse control channel in cdma2000 1X, excluding the RRC procedure delay. The interruption time depends on whether the target cell is known to the UE or not.

A cdma2000 1X cell is known if it has been measured by the UE during the last 5 seconds otherwise it is unknown. Under the reference conditions specified in sub-clause 4.2.1 of [14], the interruption time shall be less than T_{interrupt}:

$$\Gamma_{\text{interrupt}} = T_{\text{IU}} + [40] + [10] * \text{KC} * \text{SW}_{\text{K}} + [10] * \text{OC} * \text{SW}_{\text{O}} \text{ ms}$$

Where:

 T_{IU} It is the interruption uncertainty when changing the timing from the E-UTRAN to the new
cdma2000 1X cell. T_{IU} can be up to one cdma2000 1X frame (20 ms). SW_K is $SW_K = \left[\frac{\text{srch}_win}{60}\right]$ where srch_win_k is the number of cdma2000 1x chips indicated by
the search window for known target cdma2000 1x cells in the message SW_O is $SW_O = \left[\frac{\text{srch}_win}{60}\right]$ where srch_win_o is the number of cdma2000 1x chips indicated by
the search window for known target cdma2000 1x cells in the message

the search window for unknown target cdma2000 1x cells in the message

KC It is the number of known target cdma2000 1X cells in the message, and

OC It is the number of unknown target cdma2000 1X cells in the message.

6 RRC Connection Mobility Control

6.1 RRC Re-establishment

The requirements in this section are applicable to both E-UTRAN FDD and TDD.

6.1.1 Introduction

RRC connection re-establishment is initiated when a UE in RRC connected mode looses RRC connection due to any of these reasons: radio link failure, handover failure or radio link problem. The RRC es-tablishment procedure is specified in section 5.3.7 in TS 36.331 [2].

6.1.2 Requirements

In RRC connected mode the UE shall be capable of sending *RRCConnectionReestablishmentRequest* message within $T_{re-establish_delay}$ seconds from the moment it detects a loss in RRC connection. The total RRC connection delay ($T_{re-establish_delay}$) shall be less than:

$$\Gamma_{\text{re-establish_delay}} = T_{\text{UL_grant}} + T_{\text{UE_re-establish_delay}}$$

 T_{UL_grant} : It is the time required to acquire and process uplink grant from the target cell. The uplink grant is required to transmit *RRCConnectionReestablishmentRequest* message.

The UE re-establishment delay ($T_{UE_re-establish_delay}$) is specified in section 6.1.2.1.

6.1.2.1 UE Re-establishment delay requirement

The UE re-establishment delay ($T_{UE_re-establish_delay}$) is the time between the moments when any of the conditions requiring RRC re-establishment as defined in section 5.3.7 in TS 36.331 [2] is detected by the UE to the time when the UE sends PRACH to the target cell. The UE re-establishment delay ($T_{UE_re-establish_delay}$) requirement shall be less than:

 $T_{UE\text{-}re\text{-}establish_delay} = 50 \ ms + N_{freq} * Tsearch + T_{SI} + T_{PRACH}$

T_{search}: It is the time required by the UE to search the target cell.

 $T_{\text{search}} = \text{It is [100] ms if the target cell is known by the UE; the target cell is known if it has been measured by the UE in the last 5 seconds.$

 $T_{search} = It$ is 800 ms if the target cell is unknown by the UE; the target cell is unknown if it has not been measured by the UE in the last 5 seconds.

 T_{SI} = It is the time required for receiving all the relevant system information according to the reception procedure and the RRC procedure delay of system information blocks defined in TS 36.331 [2] for E-UTRAN cell.

 T_{PRACH} = The additional delay caused by the random access procedure; it will be at least 10 ms due to random access occasion and there might be additional delay due to ramping procedure.

 N_{freq} : It is the total number of E-UTRA frequencies to be monitored for RRC re-establishment; $N_{freq} = 1$ if the target cell is known.

There is no requirement if the target cell does not contain the UE context.

6.2 Random Access

6.2.1 Introduction

The random access procedure is used when establishing the layer 1 communication between the UE and E-UTRAN. The random access is specified in section 6 of TS 36.213[3] and the control of the RACH transmission is specified in section 5.1 of TS 36.321[17].

6.2.2 Requirements

The UE shall have capability to calculate PRACH transmission power according to the PRACH power formula defined in TS 36.213[3] and apply this power level at the first preamble or additional preambles. The absolute power applied to the first preamble shall have an accuracy as specified in table 6.3.5.1.1-1 of TS 36.101[5]. The relative power applied to additional preambles shall have an accuracy as specified in table 6.3.5.2.1-1 of 36.101[5].

The UE shall indicate a Random Access problem to upper layers if the maximum number of preamble transmission counter has been reached.

6.2.2.1 Contention based random access

6.2.2.1.1 Correct behaviour when receiving Random Access Response reception

The UE may stop monitoring for Random Access Response(s) and shall transmit the msg3 if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

6.2.2.1.2 Correct behaviour when not receiving Random Access Response reception

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if no Random Access Response is received within the TTI window [RA_WINDOW_BEGIN—RA_WINDOW_END].

6.2.2.1.3 Correct behaviour when receiving a NACK on msg3

The UE shall re-transmit the msg3 upon the reception of a NACK on msg3.

6.2.2.1.4 Void

6.2.2.1.5 Correct behaviour when receiving a message over Temporary C-RNTI

The UE shall send ACK if the Contention Resolution is successful.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires unless the received message includes a UE Contention Resolution Identity MAC control element and the UE Contention Resolution Identity included in the MAC control element matches the CCCH SDU transmitted in the uplink message.

6.2.2.1.6 Correct behaviour when contention Resolution timer expires

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if the Contention Resolution Timer expires.

6.2.2.2 Non-Contention based random access

6.2.2.2.1 Correct behaviour when receiving Random Access Response

The UE may stop monitoring for Random Access Response(s) if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-transmit the preamble with the calculated PRACH transmission power if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

6.2.2.2.2 Correct behaviour when not receiving Random Access Response

The UE shall re-transmit the preamble with the calculated PRACH transmission power.

7 Timing and signalling characteristics

7.1 UE transmit timing

7.1.1 Introduction

The UE shall have capability to follow the frame timing change of the connected eNode B. The uplink frame transmission takes place $(N_{\text{TA}} + N_{\text{TA offset}}) \times T_{\text{s}}$ before the reception of the first detected path (in time) of the corresponding downlink frame from the reference cell UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are defined in the following requirements.

7.1.2 Requirements

The UE initial transmission timing error shall be less than or equal to $\pm T_e$ where the timing error limit value T_e is specified in Table 7.1.2-1. This requirement applies when it is the first transmission in a DRX cycle for PUCCH, PUSCH and SRS or it is the PRACH transmission. The reference point for the UE initial transmit timing control requirement shall be the downlink timing minus $(N_{TA_Ref} + N_{TA \text{ offset}}) \times T_s$. The downlink timing is defined as the time when [the first detected path (in time)] of the corresponding downlink frame is received from the reference cell. N_{TA_Ref} for PRACH is defined as 0. $(N_{TA_Ref} + N_{TA \text{ offset}})$ (in T_s units) for other channels is the difference between UE transmission timing and the Downlink timing immediately after when the last timing advance in section 7.3 was applied. N_{TA_Ref} for other channels is not changed until next timing advance is received.

Downlink Bandwidth (MHz)	T _e _	
1.4	24*T _S	
≥3	12*Ts	
Note: T _S is the basic timing unit defined in TS 36.211		

Table	7 1 2-1	٠т	Timing	Frror	l imit
Iavic	1.1.2-1	. I A	Immy		

When it is not the first transmission in a DRX cycle or there is no DRX cycle, and when it is the transmission for PUCCH, PUSCH and SRS transmission, the UE shall be capable of changing the transmission timing according to the received downlink frame except when the timing advance in section 7.3 is applied. When the transmission timing error between the UE and the reference timing exceeds $\pm T_e$ the UE is required to adjust its timing to within $\pm T_e$. The reference timing shall be $(N_{TA_Ref} + N_{TA \text{ offset}}) \times T_s$ before the downlink timing. All adjustments made to the UE uplink timing shall follow these rules:

1) The maximum amount of the timing change in one adjustment shall be T_q seconds.

- 2) The minimum adjustment rate shall be $7*T_s$ per second.
- 3) The maximum adjustment rate shall be T_q per 200ms.

where the maximum autonomous time adjustment step T_q is specified in Table 7.1.2-2.

Table 7.1.2-2: T_q Maximum Autonomous Time Adjustment Step

Downlink Bandwidth (MHz)	T _q _	
1.4	4*T _S	
≥3	2*T _S	
Note: T _S is the basic timing unit defined in TS 36.211		

7.2 UE timer accuracy

7.2.1 Introduction

UE timers are used in different protocol entities to control the UE behaviour.

7.2.2 Requirements

For UE timers specified in section 7.3 in [2], UE shall comply with the timer accuracies according to Table 7.2.2-1.

The requirements are only related to the actual timing measurements internally in the UE. They do not include the following:

- Inaccuracy in the start and stop conditions of a timer (e.g. UE reaction time to detect that start and stop conditions of a timer is fulfilled), or
- Inaccuracies due to restrictions in observability of start and stop conditions of a UE timer (e.g. TTI alignment when UE sends messages at timer expiry).

Timer value [s]	Accuracy
timer value < [4]	± [0.1s]
timer value \geq [4]	± [2.5%]

7.3 Timing Advance

7.3.1 Introduction

The timing advance is initiated from E-UTRAN with MAC message that implies and adjustment of the timing advance, see 3GPP TS 36.321 [17] section 5.2.

7.3.2 Requirements

7.3.2.1 Timing Advance adjustment delay

UE shall adjust the timing of its uplink transmission timing at sub-frame n+6 for a timing advancement command received in sub-frame n.

7.3.2.2 Timing Advance adjustment accuracy

The UE shall adjust the timing of its transmissions with an relative accuracy better than or equal to $[\pm 4* T_S \text{ seconds}]$ to the signalled timing advance value compared to the timing of preceding uplink transmission. The timing advance command is expressed in multiples of $16* T_S$ and is relative to the current uplink timing.

7.4 Cell phase synchronization accuracy (TDD)

7.4.1 Definition

Cell phase synchronization accuracy is defined as the maximum absolute deviation in frame start timing between any pair of cells on the same frequency that have overlapping coverage areas.

7.4.2 Minimum requirements

The cell phase synchronization accuracy measured at BS antenna connectors shall be better than the requirement specified in table 7.4.2-1. If a cell's coverage area overlaps with another cell with different cell radius then the cell phase synchronization accuracy corresponding to the larger of the two cell sizes applies to the overlapping cells with different radii.

Table 7.4.2-1 (Cell phase s	ynchronization	requirement	(TDD)
-----------------	--------------	----------------	-------------	-------

Cell Type	Cell Radius	Requirement
Small cell	≤ 3 km	≤ 3 μs
Large cell	> 3 km	≤ 10 μs

7.5 Synchronization Requirements for E-UTRAN to 1xRTT and HRPD Handovers

7.5.1 Introduction

This section contains the synchronization requirements for eNodeB capable of supporting E-UTRAN to CDMA 1xRTT and HRPD handovers. To facilitate E-UTRAN to CDMA 1xRTT and HRPD handovers, the CDMA System Time reference needs to be provided to the UE in order for the UE to report the pilot PN phases of the target 1xRTT or HRPD cells. This is achieved through the SIB8 message broadcasted by the serving eNodeB:

If the eNodeB is synchronized to the GPS time then the size of CDMA System Time information is 39 bits and the unit is 10 ms based on a 1.2288 Mcps chip rate.

If the eNodeB is not synchronized to the GPS time then the size of CDMA System Time information is 49 bits and the unit is 8 CDMA chips based on 1.2288 Mcps chip rate.

The CDMA system time reference provided by the serving eNodeB has to be within a certain level of accuracy in order to facilitate accurate reporting of the pilot PN phases of the target 1xRTT or HRPD cells and enable reliable handover to the 1xRTT or HRPD networks.

7.5.2 eNodeB Synchronization Requirements

7.5.2.1 Synchronized E-UTRAN

The eNodeB shall be synchronized to the GPS time. With external source of CDMA System Time disconnected, the eNodeB shall maintain the timing accuracy within $\pm 10 \ \mu s$ of CDMA System Time for a period of not less than 8 hours.

The timing deviation between the SFN boundary at or immediately after the ending boundary of the SI-window in which *SystemInformationBlockType8* (containing the broadcasted CDMA System Time with 10-ms granularity) is transmitted and the broadcasted CDMA System Time shall be within 10 µs.

7.5.2.2 Non-Synchronized E-UTRAN

The timing deviation between the SFN boundary at or immediately after the end of the boundary of the SI-window in which *SystemInformationBlockType8* (containing the broadcasted CDMA System Time with 8-chip granularity) is transmitted and the broadcasted CDMA System Time shall be within 10 μ s. With external source of CDMA System Time disconnected the SFN boundary at or immediately after the broadcasted CDMA System Time in the SIB8 message shall maintain the timing accuracy within ±10 μ s of CDMA System Time for a period of not less than 8 hours.

7.6 Radio Link Monitoring

7.6.1 Introduction

The UE shall monitor the downlink link quality based on the cell-specific reference signal in order to detect the downlink radio link quality of the serving cell as specified in [3].

The UE shall estimate the downlink radio link quality and compare it to the thresholds Q_{out} and Q_{in} for the purpose of monitoring downlink radio link quality of the serving cell.

The threshold Q_{out} is defined as the level at which the downlink radio link cannot be reliably received and shall correspond to [10%] block error rate of a hypothetical PDCCH transmission taking into account the PCFICH errors with transmission parameters specified in Table 7.6.1-1.

The threshold Q_{in} is defined as the level at which the downlink radio link quality can be significantly more reliably received than at Q_{out} and shall correspond to [2%] block error rate of a hypothetical PDCCH transmission taking into account the PCFICH errors with transmission parameters specified in Table 7.6.1-2.

Table 7.6.1-1 PDCCH/PCFICH transmission parameters for out-of-sync

Attribute	Value
DCI format	1A
Number of control OFDM symbols	[2]; Bandwidth \geq [10] MHz
	[3]; [3] MHz \leq Bandwidth \leq [5] MHz
	[4]; Bandwidth = [1.4] MHz
Aggregation level (CCE)	4; Bandwidth = [1.4] MHz
	8; Bandwidth ≥ [3] MHz
Ratio of PDCCH RE energy to average RS RE energy	[4] dB; when single antenna port is used for cell- specific reference signal transmission by the serving cell
	[1] dB: when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell
Ratio of PCFICH RE energy to average RS RE energy	[4] dB; when single antenna port is used for cell- specific reference signal transmission by the serving cell
	[1] dB: when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell

Note 1: DCI format 1A is defined in section 5.3.3.1.3 in 3GPP TS 36.212 [21].

Note 2: A hypothetical PCFICH transmission corresponding to the number of control symbols shall be assumed.

ETSI

Attribute	Value
DCI format	1C
Number of control OFDM symbols	[2]; Bandwidth \geq [10] MHz
	[3]; [3] MHz \leq Bandwidth \leq [5] MHz
	[4]; Bandwidth = [1.4] MHz
Aggregation level (CCE)	4
Ratio of PDCCH RE energy to average RS RE energy	[0] dB; when single antenna port is used for cell- specific reference signal transmission by the serving cell
	[-3] dB; when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell
Ratio of PCFICH RE energy to average RS RE energy	[4] dB; when single antenna port is used for cell- specific reference signal transmission by the serving cell
	[1] dB: when two or four antenna ports are used for cell-specific reference signal transmission by the serving cell

Table 7.6.1-2 PDCCH/PCFICH transmission parameters for in-sync

Note 1: DCI format 1C is defined in section 5.3.3.1.4 in 3GPP TS 36.212 [21].

Note 2: A hypothetical PCFICH transmission corresponding to the number of control symbols shall be assumed.

7.6.2 Requirements

7.6.2.1 Minimum requirement when no DRX is used

When the downlink radio link quality estimated over the last [200] ms period becomes worse than the threshold Q_{out} , Layer 1 of the UE shall send an out-of-sync indication to the higher layers within [200] ms Q_{out} evaluation period. A Layer 3 filter shall be applied to the out-of-sync indications as specified in [2].

When the downlink radio link quality estimated over the last [100] ms period becomes better than the threshold Q_{in} , Layer 1 of the UE shall send an in-sync indication to the higher layers within [100] ms Q_{in} evaluation period. A L3 filter shall be applied to the in-sync indications as specified in [2].

The out-of-sync and in-sync evaluations shall be performed as specified in section 4.2.1 in [3]. Two successive indications from Layer 1 shall be separated by at least [10] ms.

The transmitter power shall be turned off within [40] ms after expiry of T310 timer as specified in section 5.3.11 in [2].

7.6.2.2 Minimum requirement when DRX is used

When DRX is used the Q_{out} evaluation period ($T_{Evaluate}Q_{out}DRX$) and the Q_{in} evaluation period ($T_{Evaluate}Q_{in}DRX$) is specified in Table 7.6.2.2-1 will be used.

When the downlink radio link quality estimated over the last $T_{Evaluate}Q_{out_DRX}$ [s] period becomes worse than the threshold Q_{out} , Layer 1 of the UE shall send out-of-sync indication to the higher layers within $T_{Evaluate}Q_{out_DRX}$ [s] evaluation period. A Layer 3 filter shall be applied to the out-of-sync indications as specified in [2].

When the downlink radio link quality estimated over the last $T_{Evaluate}Q_{in_DRX}$ [s] period becomes better than the threshold Q_{in} , Layer 1 of the UE shall send in-sync indications to the higher layers within $T_{Evaluate}Q_{in_DRX}$ [s] evaluation period. A L3 filter shall be applied to the in-sync indications as specified in [2].

The out-of-sync and in-sync evaluations shall be performed as specified in section 4.2.1 in [3]. Two successive indications from Layer 1 shall be separated by at least max([10] ms, DRX_cycle_length).

Upon start of T310 timer as specified in section 5.3.11 in [2], the UE shall monitor the link for recovery using the evaluation period and Layer 1 indication interval corresponding to the non-DRX mode until the expiry of T310 timer.

The transmitter power shall be turned off within [40] ms after expiry of T310 counter as specified in section 5.3.11 in [2].

7.6.2.3 Minimum requirement at transitions

The out-of-sync and in-sync evaluations shall be performed as specified in section 4.2.1 in [3]. Two successive indications from Layer 1 shall be separated by at least max([10] ms, DRX_cycle_length).

When the UE transitions between DRX and non-DRX or when DRX cycle periodicity changes, for a duration of time equal to the evaluation period corresponding to the second mode after the transition occurs, the UE shall use an evaluation period that is no less than the minimum of evaluation periods corresponding to the first mode and the second mode. Subsequent to this duration, the UE shall use an evaluation period corresponding to the second mode. This requirement shall be applied to both out-of-sync evaluation and in-sync evaluation.

DRX cycle length (s)	T _{Evaluate} _Q _{out_DRX} and T _{Evaluate} _Q _{in_DRX} (s) (DRX cycles)
≤0.04	[Note (20)]
0.08	[0.8 (10)]
0.16	[1.6 (10)]
0.32	[3.2 (10)]
0.64	[6.4 (10)]
1.28	[6.4 (5)]
2.56	[12.8 (5)]
Note: Evaluation period length in time depends on the length of the DRX cycle in use	

Table 7.6.2.2-1: Qout and Qin Evaluation Period in DRX

8 UE Measurements Procedures in RRC_CONNECTED State

8.1 General Measurement Requirements

8.1.1 Introduction

This section contains requirements on the UE regarding measurement reporting in RRC_CONNECTED state. The requirements are split in E-UTRA intra frequency, E-UTRA inter frequency, Inter-RAT UTRA FDD, UTRA TDD and GSM measurements. These measurements may be used by the E-UTRAN, e.g. for handover decisions. The measurement quantities are defined in [4], the measurement model is defined in [22] and measurement accuracies are specified in section 9. Control of measurement reporting is specified in [2].

8.1.2 Requirements

8.1.2.1 UE measurement capability

If the UE requires measurement gaps to identify and measure inter-frequency and/or inter-RAT cells, in order for the requirements in the following subsections to apply the E-UTRAN must provide a single measurement gap pattern with constant gap duration for concurrent monitoring of all frequency layers and RATs.

During the measurement gaps the UE:

- shall not transmit any data
- is not expected to tune its receiver on the E-UTRAN serving carrier frequency.

Inter-frequency and inter-RAT measurement requirements within this section rely on the UE being configured with one measurement gap pattern. UEs shall only support those measurement gap patterns listed in Table 8.1.2.1-1 that are relevant to its measurement capabilities.

Gap Pattern Id	MeasurementGap Length (MGL, ms)	Measurement Gap Repetition Period (MGRP, ms)	Minimum available time for inter-frequency and inter-RAT measurements during 480ms period (Tinter1, ms)	Measurement Purpose
0	6	40	60	Inter-Frequency E-UTRAN FDD and TDD, UTRAN FDD, GERAN, LCR TDD, HRPD, CDMA2000 1x
1	6	80	30	Inter-Frequency E-UTRAN FDD and TDD, UTRAN FDD, GERAN, LCR TDD, HRPD, CDMA2000 1x

[Editor's note: Further patterns still need to be defined in order to fulfil all required Inter-RAT monitoring purposes.]

- NOTE 1: For E-UTRAN FDD, the UE shall not transmit in the subframe occurring immediately after the measurement gap.
- NOTE 2: For E-UTRAN TDD, the UE shall not transmit in the uplink subframe occurring immediately after the measurement gap if the subframe occurring immediately before the measurement gap is a downlink subframe.

The requirements in section 9 are applicable for a UE performing measurements according to this section.

8.1.2.1.1 Monitoring of multiple layers using gaps

When monitoring of multiple inter-frequency E-UTRAN and inter-RAT (UTRAN, GSM) using gaps is configured, the UE shall be capable of performing one measurement of the configured measurement type (RSRP, RSRQ, UTRAN TDD P-CCPCH RSCP, UTRAN FDD CPICH measurements, GSM carrier RSSI, etc.) of detected cells on all the layers

The effective total number of frequencies being monitored is

 $N_{freq} = N_{freq, E-UTRA} + N_{freq, UTRA} + M_{gsm}$

where

 $N_{\mbox{\scriptsize freq, E-UTRA}}$ is the number of E-UTRA carriers being monitored (FDD and TDD)

 $N_{\mbox{freq},\mbox{UTRA}}$ is the number of UTRA carriers being monitored (FDD and TDD)

3GPP TS 36.133 version 8.6.0 Release 8

 M_{GSM} is an integer which is a function of the number of GSM carriers on which measurements are being performed. M_{GSM} is equal to 0 if no GSM carrier is being monitored. For a MGRP of 40 ms, M_{GSM} is equal to 1 if cells on up to 32 GSM carriers are being measured. For a MGRP of 80 ms, M_{GSM} is equal to [ceil($N_{carriers,GSM}$ /20)] where $N_{carriers,GSM}$ is the number of GSM carriers on which cells are being measured.

[Editor's note: If additional gap patterns with periodicities other than 40 ms or 80 ms are added, M_{GSM} would need to be defined for them.]

[Editor's note: Requirements for measurements on other RATs (cdma2000 and HRPD) when multiple layers are being monitored will need to be included into this section when the individual requirements for those RATs are defined in Section 8.1.2.]

[Editor's note: A mandatory behaviour on how the UE utilizes measurement gaps for the different layers will not be specified in 36.133.]

8.1.2.1.1.1 Maximum allowed layers for multiple monitoring

The UE shall be capable of monitoring using gaps a total of at least 7 carrier frequency layers comprising of any allowed combination of E-UTRA FDD, E-UTRA TDD, UTRA FDD, UTRA TDD and GSM layers (one GSM layer corresponds to 32 cells). The minimum performance requirements on the number of carriers which shall be monitored for each individual RAT are also applicable when multiple monitoring is used.

8.1.2.2 E-UTRAN intra frequency measurements

The UE shall be able to identify new intra-frequency cells and perform RSRP measurements of identified intrafrequency cells without an explicit intra-frequency neighbour cell list containing physical layer cell identities. During the RRC_CONNECTED state the UE shall continuously measure identified intra frequency cells and additionally search for and identify new intra frequency cells.

8.1.2.2.1 E-UTRAN FDD intra frequency measurements

8.1.2.2.1.1 E-UTRAN intra frequency measurements when no DRX is used

When no DRX is in use the UE shall be able to identify a new detectable FDD intra frequency cell within

$$T_{\text{identify intra}} = T_{\text{basic identify } E-UTRA_FDD, \text{ intra}} \cdot \frac{T_{\text{Measurement Period, Intra}}}{T_{\text{Intra}}} \quad ms$$

where

T_{basic_identify_E-UTRA_FDD, intra} is 800 ms

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH_RP \geq -127 dBm for Bands 1, 4, 6, 10 and SCH $\hat{E}s/Iot \geq$ 6 dB.
- SCH_RP|_{dBm} \geq -126 dBm for Band [9] and SCH \hat{E} s/Iot \geq 6 dB,
- SCH_RP $|_{dBm} \ge -125$ dBm for Bands 2, 5, 7, 11, 17 and SCH $\hat{E}s/Iot \ge -6$ dB,
- SCH_RP $|_{dBm} \ge -124$ dBm for Bands 3, 8, 12, 13, 14 and SCH $\hat{E}s/Iot \ge -6$ dB.

 $T_{Measurement_Period,Intra} = 200$ ms. The measurement period for Intra frequency RSRP measurements.

 T_{Intra} : This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing. Time is assumed to be available for performing intra frequency measurements whenever the receiver is guaranteed to be active on the intra frequency carrier.

Identification of a cell shall include detection of the cell and additionally performing a single measurement with measurement period of $T_{Measurement_Period Intra}$. If higher layer filtering is used, an additional cell identification delay can be expected.

In the RRC_CONNECTED state the measurement period for intra frequency measurements is 200 ms. When no measurement gaps are activated, the UE shall be capable of performing RSRPand RSRQ measurements for 8 identified-intra-frequency cells, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of 200 ms. When measurement gaps are activated the UE shall be capable of performing measurements for at least $Y_{measurement intra}$ cells, where $Y_{measurement intra}$ is defined in the following equation. If the UE has identified more than $Y_{measurement intra}$ cells, the UE shall perform measurements of all identified cells but the reporting rate of RSRP and RSRQ measurements of cells from UE physical layer to higher layers may be decreased.

$$\mathbf{Y}_{\text{measurement intra}} = Floor \left\{ X_{\text{basic measurement FDD}} \cdot \frac{\mathbf{T}_{\text{Intra}}}{\mathbf{T}_{\text{Measurement}} \text{Period, Intra}} \right\} \text{ cells}$$

where

 $X_{\text{basic measurement FDD}} = 8 \text{ (cells)}$

 $T_{Measurement_Period Intra} = 200 \text{ ms.}$ The measurement period for Intra frequency RSRP measurements.

 T_{Intra} : This is the time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing. Time is assumed to be available for performing intra frequency measurements whenever the receiver is guaranteed to be active on the intra frequency carrier.

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.2.1.1.1 Measurement Reporting Requirements

8.1.2.2.1.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.2.1.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.1.1.1.3 Event Triggered Reporting.

8.1.2.2.1.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH}. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify intra}$ defined in Section 8.1.2.2.1.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period Intra}$ provided the timing to that cell has not changed more than [FFS] while measurement gap has not been available and the L3 filter has not been used.

8.1.2.2.1.2 E-UTRAN intra frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable FDD intra frequency cell within $T_{identify_intra}$ as shown in table 8.1.2.2.1.2-1

DRX cycle length (s)	T _{identify_intra} (s) (DRX cycles)	
≤0.04	0.8 (Note1)	
0.04 <drx-< td=""><td>[Note2 (40)]</td></drx-<>	[Note2 (40)]	
cycle≤0.08		
0.08 <drx-< td=""><td>[Note2(20)]</td></drx-<>	[Note2(20)]	
cycle≤2.56		
Note1: Number of DRX cycle		
depends upon the DRX cycle in use		
Note2: Time depends upon the DRX		
cycle in use		

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH_RP \geq -127 dBm for Bands 1, 4, 6, 10 and SCH $\hat{E}s/Iot \geq$ 6 dB.
- SCH_RP|_{dBm} \geq -126 dBm for Band 9 and SCH Ês/Iot \geq 6 dB,
- SCH_RP $|_{dBm} \ge$ -125 dBm for Bands 2, 5, 7, 11, 17 and SCH $\hat{E}s/Iot \ge$ 6 dB,
- SCH_RP $|_{dBm} \ge -124$ dBm for Bands 3, 8, 12, 13, 14 and SCH $\hat{E}s/Iot \ge -6$ dB.

In the RRC_CONNECTED state with DRX cycles of 80ms or greater the measurement period for intra frequency measurements is $T_{measure_intra}$ as shown in table 8.1.2.2.1.2-2. The UE shall be capable of performing RSRP measurements for [8] identified-intra-frequency cells, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{measure_intra}$.

Table 8.1.2.2.1.2-2: Requirement to measure FDD intrafrequency cells

DRX cycle length (s)	T _{measure_intra} (s) (DRX cycles)	
≤0.04	0.2 (Note1)	
0.04 <drx- cycle≤2.56</drx- 	Note2 (5)	
Note1: Number of DRX cycle depends upon the DRX cycle in use Note2: Time depends upon the DRX cycle in use		

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.2.1.2.1 Measurement Reporting Requirements

8.1.2.2.1.1.2.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.2.1.1.2.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.1.1.2.3 Event Triggered Reporting.

8.1.2.2.1.1.2.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH} . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify_{intra}}$ defined in Section 8.1.2.2.1.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{measure_intra}$ provided the timing to that cell has not changed more than [FFS] while measurement gap has not been available and the L3 filter has not been used.

8.1.2.2.2 E-UTRAN TDD intra frequency measurements

8.1.2.2.2.1 E-UTRAN intra frequency measurements when no DRX is used

When no DRX is in use the UE shall be able to identify a new detectable TDD intra frequency cell within

$$T_{\text{identify intra}} = T_{\text{basic identify } E-UTRA_TDD, intra} \cdot \frac{T_{\text{Measurement Period, Intra}}}{T_{\text{Intra}}} \quad ms$$

where

T_{basic_identify_E-UTRA_TDD, intra} is [800] ms

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH_RP \geq -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH $\hat{E}_s/Iot \geq$ 6 dB.

T_{Measurement Period Intra} = [200] ms. The measurement period for Intra frequency RSRP measurements.

 T_{Intra} : This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing.

If higher layer filtering is used, an additional cell identification delay can be expected.

In the RRC_CONNECTED state the measurement period for intra frequency measurements is [200] ms. When no measurement gaps are activated, the UE shall be capable of performing RSRP measurements for [8] identified-intra-frequency cells, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of [200] ms. When measurement gaps are activated the UE shall be capable of performing measurements for at least $Y_{measurement intra}$ cells, where $Y_{measurement intra}$ is defined in the following equation. If the UE has identified more than $Y_{measurement intra}$ cells, the UE shall perform measurements of all identified cells but the reporting rate of RSRP measurements of cells from UE physical layer to higher layers may be decreased.

$$Y_{\text{measurement intra}} = Floor \left\{ X_{\text{basic measurement TDD}} \cdot \frac{T_{\text{Intra}}}{T_{\text{Measurement_Period, Intra}}} \right\} \text{cells}$$

where

 $X_{\text{basic measurement TDD}} = [8] \text{ (cells)}$

T_{Measurement Period Intra} = [200] ms. The measurement period for Intra frequency RSRP measurements.

 T_{Intra} : This is the minimum time that is available for intra frequency measurements, during the measurement period with an arbitrarily chosen timing.

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.2.2.1.1 Measurement Reporting Requirements

8.1.2.2.2.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.2.2.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.2.1.1.3 Event Triggered Reporting.

8.1.2.2.2.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH} . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify intra}$ defined in Section 8.1.2.2.2.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period Intra}$ provided the timing to that cell has not changed more than [FFS] Ts while measurement gap has not been available and the L3 filter has not been used.

8.1.2.2.2.2 E-UTRAN intra frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable TDD intra frequency cell within $T_{identify_{intra}}$ as shown in table 8.1.2.2.2-1

DRX cycle length (s)	T _{identify_intra} (s) (DRX cycles)	
≤0.04	0.8 (Note1)	
0.04 <drx-< td=""><td>[Note2 (40)]</td></drx-<>	[Note2 (40)]	
cycle≤0.08		
0.08 <drx-< td=""><td>[Note2(20)]</td></drx-<>	[Note2(20)]	
cycle≤2.56		
Note1: Number of DRX cycle		
depends upon the DRX cycle in use		
Note2: Time depends upon the DRX		
cycle in use		

A cell shall be considered detectable when

- RSRP related side condition given in Section 9.1 are fulfilled for a corresponding Band,
- SCH_RP \geq -127 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH $\hat{E}s/Iot \geq$ 6 dB.

In the RRC_CONNECTED state with DRX cycles of 80ms or greater the measurement period for intra frequency measurements is $T_{measure_intra}$ as shown in table 8.1.2.2.2.2.2. The UE shall be capable of performing RSRP measurements for [8] identified-intra-frequency cells and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{measure_intra}$.

Table 8.1.2.2.2.2-2: Requirement to measure TDD intra frequency cells

DRX cycle T _{measure_intra} (s		
length (s)	(DRX cycles)	
≤0.04	0.2 (Note1)	
0.04 <drx-< td=""><td>Note2 (5)</td></drx-<>	Note2 (5)	
cycle≤2.56		
Note1: Number of DRX cycle		
depends upon the DRX cycle in		
use.		
Note2: Time depends upon the		
DRX cycle in use.		

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.2.2.2.1 Measurement Reporting Requirements

8.1.2.2.2.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.2.2.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.2.2.1.3 Event Triggered Reporting.

8.1.2.2.2.2.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH} . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify_{intra}}$ defined in Section 8.1.2.2.2.2 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_intra}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{measure_intra}$ provided the timing to that cell has not changed more than [FFS] Ts while measurement gap has not been available and the L3 filter has not been used.

8.1.2.3 E-UTRAN inter frequency measurements

The UE shall be able to identify new inter-frequency cells and perform RSRP measurements of identified interfrequency cells if carrier frequency information is provided by the serving cell, even if no explicit neighbour list with physical layer cell identities is provided.

8.1.2.3.1 E-UTRAN FDD – FDD inter frequency measurements

8.1.2.3.1.1 E-UTRAN FDD – FDD inter frequency measurements when no DRX is used

When measurement gaps are scheduled the UE shall be able to identify a new FDD inter-frequency within $T_{Identify_Inter}$ according to the following expression:

$$\Gamma_{\text{Identify_Inter}} = \Gamma_{\text{Basic_Identify_Inter}} \cdot \frac{480}{T_{\text{Inter}}} \cdot N_{freq} \quad ms$$

Where:

 $T_{Basic_Identify_Inter} = 480$ ms. It is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new FDD inter-frequency cell is defined.

 N_{freq} is defined in section 8.1.2.1.1 and T_{inter1} is defined in section 8.1.2.1

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP $|_{dBm} \ge -125$ dBm and for Bands 1, 4, 6, 10, and RSRP $\hat{E}s/Iot \ge -4$ dB,
- RSRP $|_{dBm} \ge -124 \text{ dBm}$ for Bands 9 and RSRP $\hat{E}s/Iot \ge -4 \text{ dB}$,
- RSRP $|_{dBm} \ge -123 \text{ dBm}$ for Bands 2, 5, 7, 11, 17 and RSRP $\hat{E}s/Iot \ge -4 \text{ dB}$,
- RSRP $|_{dBm} \ge -122 \text{ dBm}$ for Bands 3, 8, 12, 13, 14 and RSRP $\hat{E}s/Iot \ge -4 \text{ dB}$,
- other RSRP related side conditions given in Section 9.1 are fulfilled.
- SCH_RP|_{dBm} \geq -125 dBm for Bands 1, 4, 6, 10 and SCH $\hat{E}s/Iot \geq$ -4 dB,
- SCH_RP|_{dBm} \geq -124 dBm for Band 9 and SCH \hat{E} s/Iot \geq -4 dB,
- SCH_RP $|_{dBm} \ge -123$ dBm for Bands 2, 5, 7, 11, 17 and SCH $\hat{E}s/Iot \ge -4$ dB,
- SCH_RP $|_{dBm} \ge -122 \text{ dBm}$ for Bands 3, 8, 12, 13, 14 and SCH_RP/Iot $\ge -4 \text{ dB}$.

When measurement gaps are scheduled for FDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.3 with measurement period given by table 8.1.2.3.1.1-1.

Configuration	Physical Layer Measurement period: T _{Measurement_Period_Inter_FDD} [ms]	Measurement bandwidth [RB]
0	480 x N _{freq}	6
1 (Note)	240 x N _{freq}	50
TBD TBD TBD TBD		TBD
Note: This configuration is optional		

Table 8.1.2.3.1.1-1: RSRP measurement period and measurement bandwidth

Where:

 N_{freq} is defined in section 8.1.2.1.1 and T_{inter1} is defined in section 8.1.2.1.

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per FDD inter-frequency for up to 3 FDD inter-frequencies and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period defined in Table 8.1.2.3.1-1.

8.1.2.3.1.1.1 Measurement Reporting Requirements

8.1.2.3.1.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.1.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.5 Event Triggered Reporting.

8.1.2.3.1.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH} . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than T $_{identify-inter}$ defined in Section 8.1.2.2.1.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_inter}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_Inter_FDD}$ provided the timing to that cell has not changed more than [FFS] while measurement gap has not been available and the L3 filter has not been used.

8.1.2.3.1.2 E-UTRAN FDD – FDD inter frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable E-UTRAN FDD inter frequency cell within $T_{identify_inter}$ as shown in table 8.1.2.3.1.2-1

DRX	Tidentify_inter (s) (DRX cycles)		
cycle	Gap period =	Gap period	
length (s)	40 ms	= 80 ms	
≤0.16	Non DRX	Non DRX	
	Requirements	Requirements	
	in section	in section	
	8.1.2.3.1.1 are	8.1.2.3.1.1	
	applicable	are applicable	
0.256	5.12*N _{freq}	7.68*N _{freq}	
	(20*N _{freq})	(30*N _{freq})	
0.32	6.4*N _{freq}	7.68*N _{freq}	
	(20*N _{freq})	(24*N _{freq})	
>0.32	Note (20*N _{freq})	Note	
(20*N _{freq})			
Note: Time depends upon the DRX			
cycle in use			

Table 8.1.2.3.1.2-1: Requirement to identify a newly detectable FDD interfrequency cell

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP $|_{dBm} \ge -125$ dBm and for Bands 1, 4, 6, 10, and RSRP $\hat{E}s/Iot \ge -4$ dB,
- RSRP $|_{dBm} \ge -124 \text{ dBm}$ for Bands 9 and RSRP $\hat{E}s/Iot \ge -4 \text{ dB}$,
- RSRP $|_{dBm} \ge -123 \text{ dBm}$ for Bands 2, 5, 7, 11, 17 and RSRP $\hat{E}s/Iot \ge -4 \text{ dB}$,
- RSRP $|_{dBm} \ge -122 \text{ dBm}$ for Bands 3, 8, 12, 13, 14 and RSRP $\hat{E}_s/Iot \ge -4 \text{ dB}$,
- other RSRP related side conditions given in Section 9.1 are fulfilled.
- SCH_RP|_{dBm} \geq -125 dBm for Bands 1, 4, 6, 10 and SCH $\hat{E}s/Iot \geq -4 dB$,
- SCH_RP|_{dBm} \geq -124 dBm for Band 9 and SCH \hat{E} s/Iot \geq -4 dB,
- SCH_RP $|_{dBm} \ge -123$ dBm for Bands 2, 5, 7, 11, 17 and SCH $\hat{E}s/Iot \ge -4$ dB,
- SCH_RP $|_{dBm} \ge -122$ dBm for Bands 3, 8, 13, 14 and SCH $\hat{E}s/Iot \ge -4$ dB.

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per FDD inter-frequency for up to 3 FDD inter-frequencies and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period defined in table 8.1.2.3.1.2-2.

Table 8.1.2.3.1.2-2: Requirement to measure FDD interfrequency cells
--

DRX cycle length (s)	T _{measure_inter} (s) (DRX cycles)
≤0.04	Non DRX
	Requirements in
	section 8.1.2.3.1.1
	are applicable
0.04 <drx-< td=""><td>Note (6*N_{freq})</td></drx-<>	Note (6*N _{freq})
cycle≤0.08	
0.08 <drx-< td=""><td>Note (5*N_{freq})</td></drx-<>	Note (5*N _{freq})
cycle≤0.16	
Note: Time depends upon the DRX	
cycle in use	

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.3.1.2.1 Measurement Reporting Requirements

8.1.2.3.1.1.2.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.1.1.2.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.2.5 Event Triggered Reporting.

8.1.2.3.1.1.2.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH}. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify_{inter}}$ defined in Section 8.1.2.2.1.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{identify_inter}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{measure_inter}$ provided the timing to that cell has not changed more than [FFS] while measurement gap has not been available and the L3 filter has not been used.

8.1.2.3.2 E-UTRAN TDD – TDD inter frequency measurements

8.1.2.3.2.1 E-UTRAN TDD – TDD inter frequency measurements when no DRX is used

When measurement gaps are scheduled the UE shall be able to identify a new TDD inter-frequency within $T_{Identify_Inter}$ according to the following expression:

$$T_{\text{Identify_Inter}} = T_{\text{Basic_Identify_Inter}} \cdot \frac{480}{T_{\text{Inter}}} \cdot N_{freq} \quad ms$$

Where:

 $T_{Basic_Identify_Inter} = 480$ ms. It is the time period used in the inter frequency equation where the maximum allowed time for the UE to identify a new TDD inter-frequency cell is defined.

 N_{freq} is defined in section 8.1.2.1.1 and T_{inter1} is defined in section 8.1.2.1

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP $_{dBm} \ge -125 \text{ dBm}$ and for Bands 33, 34, 35, 36, 37, 38, 39, 40 and RSRP $\hat{E}_s/Iot \ge -4 \text{ dB}$,
- other RSRP related side conditions given in Section 9.1 are fulfilled,
- SCH_RP|_{dBm} \ge -125 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH $\hat{E}s/Iot \ge -4 dB$.

When measurement gaps are scheduled for TDD inter frequency measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in sub-clause 9.1.3 with measurement period ($T_{Measurement Period TDD Inter$) given by table 8.1.2.3.2.1-1:

Table 8.1.2.3.2.1-1: T _{Measurement_Period_TDD_Int}	ter for different configurations
--	----------------------------------

Configuration	Measurement bandwidth [RB]	Number of UL/DL sub- frames per half frame (5 ms)		DwPTS		T _{Measurement_} Period_TDD _Inter [ms]
		DL	UL	Normal CP	Extended CP	
0	6	2	2	$19760 \cdot T_s$	$20480 \cdot T_s$	480 x N _{freq}
1 (Note 1)	50	2	2	$19760 \cdot T_s$	$20480 \cdot T_s$	240 x N _{freq}
Note 1: This configuration is optional						
Note 2: T _s is defined in 3GPP TS 36.211 [16]						

Where:

N_{freq} is defined in section 8.1.2.1.1.

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per TDD inter-frequency for up to 3 TDD inter-frequencies and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period $T_{Measurement_Period_TDD_Inter}$.

8.1.2.3.2.1.1 Measurement Reporting Requirements

8.1.2.3.2.1.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.2.1.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.3.2.1.1.3 Event Triggered Reporting.

8.1.2.3.2.1.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: $[2] \times TTI_{DCCH}$. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{Identify_Inter}$ defined in Section 8.1.2.3.2.1 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{Identify_Inter}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{Measurement_Period_TDD_Inter}$ provided the timing to that cell has not changed more than [FFS] Ts while measurementgap has not been available and the L3 filter has not been used.

8.1.2.3.2.2 E-UTRAN TDD – TDD inter frequency measurements when DRX is used

When DRX is in use the UE shall be able to identify a new detectable E-UTRAN TDD inter frequency cell within $T_{identify inter}$ as shown in table 8.1.2.3.2.2-1

DRX	T _{identify_inter} (s) (DRX cycles)	
cycle	Gap period =	Gap period =
length	40 ms	80 ms
(s)		
≤0.04	Non DRX	Non DRX
	Requirements	Requirements
	in section	in section
	8.1.2.3.1.1 are	8.1.2.3.1.1 are
	applicable	applicable
0.08	[3.84*N _{freq}	[7.68*N _{freq}
	(48*N _{freq})]	(96*N _{freq})]
0.16	[3.84*N _{freq}	[7.68*N _{freq}
	(24*N _{freq})]	(48*N _{freq})]
0.32	[6.4*N _{freq}	[7.68*N _{freq}
	(20*N _{freq})]	(24*N _{freq})]
0.64	[12.8*N _{freq}	[12.8*N _{freq}
	(20*N _{freq})]	(20*N _{freq})]
1.28	[25.6*N _{freq}	[25.6*N _{freq}
	(20*N _{freq})]	(20*N _{freq})]
2.56	[51.2*N _{freq}	[51.2*N _{freq}
	(20*N _{freq})]	(20*N _{freq})]

A cell shall be considered detectable provided following conditions are fulfilled:

- RSRP $|_{dBm} \ge -125 \text{ dBm}$ and for Bands 33, 34, 35, 36, 37, 38, 39, 40 and RSRP $\hat{E}s/Iot \ge -4 \text{ dB}$,
- RSRP related side conditions given in Section 9.1 are fulfilled,
- SCH_RP|_{dBm} \geq -125 dBm for Bands 33, 34, 35, 36, 37, 38, 39, 40 and SCH $\hat{E}s/Iot \geq -4$ dB.

The UE shall be capable of performing RSRP and RSRQ measurements of at least 4 inter-frequency cells per TDD inter-frequency for up to 3 TDD inter-frequencies and the UE physical layer shall be capable of reporting RSRP and RSRQ measurements to higher layers with the measurement period defined in Table 8.1.2.3.2.2-2.

Table 8.1.2.3.2.2-2: Requirement to measure TDD interfrequency cells

DRX cycle length (s)	T _{measure_inter} (s) (DRX cycles)
≤0.04	Non DRX
	Requirements in
	section 8.1.2.3.1.1
	are applicable
[0.04 <drx-< td=""><td>0.48*N_{freq} (6*N_{freq})</td></drx-<>	0.48*N _{freq} (6*N _{freq})
cycle≤0.08]	
0.08 <drx-< td=""><td>Note (5*N_{freq})</td></drx-<>	Note (5*N _{freq})
cycle≤2.56]	
Note: Time depends upon the DRX	
cycle in use	

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.3.2.2.1 Measurement Reporting Requirements

8.1.2.3.2.2.1.1 Periodic Reporting

Reported measurements contained in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.3.2.2.1.2 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.3.2.2.1.3 Event Triggered Reporting.

8.1.2.3.2.2.1.3 Event Triggered Reporting

Reported measurements contained in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is: [2] x TTI_{DCCH} . This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{Identify_{Inter}}$ defined in Section 8.1.2.3.2.2 When L3 filtering is used an additional delay can be expected.

If a cell has been detectable at least for the time period $T_{Identify_Inter}$ and then enters or leaves the reporting range, the event triggered measurement reporting delay shall be less than $T_{measure_inter}$ provided the timing to that cell has not changed more than [FFS] Ts while measurement gap has not been available and the L3 filter has not been used.

8.1.2.3.3 E-UTRAN TDD – FDD inter frequency measurements

8.1.2.3.3.1 E-UTRAN TDD – FDD inter frequency measurements when no DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.1.1 also apply for this section.

8.1.2.3.3.2 E-UTRAN TDD – FDD inter frequency measurements when DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.1.2 also apply for this section.

8.1.2.3.3.2 (Void)

8.1.2.3.4 E-UTRAN FDD – TDD inter frequency measurements

8.1.2.3.4.1 E-UTRAN FDD – TDD inter frequency measurements when no DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.2.1 also apply for this section.

8.1.2.3.4.2 E-UTRAN FDD – TDD inter frequency measurements when DRX is used

The requirements in this section shall apply to UE supporting FDD and TDD.

The requirements in section 8.1.2.3.2.2 also apply for this section.

8.1.2.4 Inter RAT measurements

8.1.2.4.1 E-UTRAN FDD – UTRAN FDD measurements

8.1.2.4.1.1 E-UTRAN FDD – UTRAN FDD measurements when no DRX is used

8.1.2.4.1.1.1 Identification of a new UTRA FDD cell

When explicit neighbour list is provided and no DRX is used the UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, UTRA_FDD}} = T_{\text{basic_identify_UTRA_FDD}} \cdot \frac{480}{T_{\text{interl}}} \cdot N_{Freq} \quad ms$$

A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

8.1.2.4.1.1.2 UE UTRA FDD CPICH measurement capability

When measurement gaps are scheduled for UTRA FDD inter RAT measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in Section 9.2 with measurement period given by

$$\mathbf{T}_{\text{measurement}_UTRA_FDD} = Max \left\{ \mathbf{T}_{\text{Measurement}_Period UTRA_FDD}, \mathbf{T}_{\text{basic}_measurement}_UTRA_FDD} \cdot \frac{480}{\mathbf{T}_{\text{interl}}} \cdot N_{Freq} \right\} ms$$

If the UE does not need measurement gaps to perform UTRA FDD measurements, the measurement period for UTRA FDD measurements is 480 ms.

The UE shall be capable of performing UTRA FDD CPICH measurements for $X_{basic\ measurementUTRA_FDD}$ inter-frequency cells per FDD frequency for up to 3 UTRA FDD carriers and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{Measurement_UTRA_FDD}$.

 $X_{\text{basic measurement UTRA_FDD}} = 6$

 $T_{Measurement_Period UTRA_FDD} = 480$ ms. The period used for calculating the measurement period $T_{measurement_UTRA_FDD}$ for UTRA FDD CPICH measurements.

 $T_{\text{basic_identify}_UTRA_FDD} = 300 \text{ ms.}$ This is the time period used in the inter RAT equation where the maximum allowed time for the UE to identify a new UTRA FDD cell is defined.

 $T_{\text{basic_measurement_UTRA_FDD}} = 50$ ms. This is the time period used in the equation for defining the measurement period for inter RAT CPICH measurements.

 N_{freq} is defined in section 8.1.2.1.1 and T_{inter1} is defined in section 8.1.2.1

8.1.2.4.1.1.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.4.1.1.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay uncertainty for the uplink DCCH. This measurement reporting delay excludes a delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify, UTRA_FDD}$ defined in Section 8.1.2.4.1.1.1 When L3 filtering is used an additional delay can be expected.

8.1.2.4.1.1.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.1.1.4 Event Triggered Reporting.

8.1.2.4.1.2 E-UTRAN FDD – UTRAN FDD measurements when DRX is used

When explicit neighbour list is provided and DRX is used the UE shall be able to identify a new detectable cell belonging to the neighbour cell list within $T_{identify,UTRA_FDD}$ as shown in table 8.1.2.4.1.2-1

DRX cycle length (s)	T _{identify_inter} (s) (DRX cycles)	
	Gap period =	Gap period
	40 ms	= 80 ms
≤0.04	Non DRX	Non DRX
	Requirements	Requirements
	in section	in section
	8.1.2.3.1.1 are	8.1.2.3.1.1
	applicable	are applicable
0.04 <drx-< td=""><td>Note(40*</td><td>4.8* N_{frea}</td></drx-<>	Note(40*	4.8* N _{frea}
cycle≤0.08	N _{freq})	
0.08 <drx-< td=""><td>Note(20*</td><td>4.8* N_{freq}</td></drx-<>	Note(20*	4.8* N _{freq}
cycle≤0.16	N _{freq})	
0.16 <drx-< td=""><td>Note (20*</td><td>Note</td></drx-<>	Note (20*	Note
cycle≤2.56	N _{freg})	(20* N _{freq})
Note: Time depends upon the DRX cycle in use		

Table 8.1.2.4.1.2-1: Requirement to identify a newly detectable UTRA FDD cell

A cell shall be considered detectable provided following conditions are fulfilled: A cell shall be considered detectable when

- CPICH Ec/Io \geq -20 dB,

 SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

The UE shall be capable of performing RSCP and Ec/Io measurements of at least 6 UTRA cells per UTRA FDD carrier for up to 3 UTRA FDD carriers and the UE physical layer shall be capable of reporting RSCP and Ec/Io measurements to higher layers with the measurement period defined in table 8.1.2.3.1.2-2.

DRX cycle T _{measure_inter} (s) length (s) (DRX cycles)			
≤0.04	Non DRX		
	Requirements in		
section 8.1.2.4.1.1			
are applicable			
0.04 <drx- (6*n<sub="" note="">freq)</drx->			
cycle≤0.08			
0.04 <drx- (5*n<sub="" note="">freq)</drx->			
cycle≤2.56			
Note: Time depends upon the DRX			
cycle in use			

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.4.1.2.1 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.4.1.2.2 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay uncertainty for the uplink DCCH. This measurement reporting delay excludes a delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify,UTRA_FDD}$ defined in Section 8.1.2.4.1.2 When L3 filtering is used an additional delay can be expected.

8.1.2.4.1.2.3 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.1.2.2 Event Triggered Reporting.

8.1.2.4.2 E-UTRAN TDD – UTRAN FDD measurements

The requirements in section 8.1.2.4.1 also apply for this section.

8.1.2.4.2.2 E-UTRAN TDD – UTRAN FDD measurements when DRX is used

8.1.2.4.3 E-UTRAN TDD – UTRAN TDD measurements

8.1.2.4.3.1 E-UTRAN TDD – UTRAN TDD measurements when no DRX is used

8.1.2.4.3.1.1 Identification of a new UTRA TDD cell

When explicit neighbour list is provided and no DRX is used the UE shall be able to identify a new detectable cell belonging to the monitored set within

$$T_{\text{identify, UTRA_TDD}} = Max \left\{ 5000, T_{\text{basic identify UTRA_TDD}} \cdot \frac{480}{T_{\text{interl}}} \cdot N_{Freq} \right\} ms$$

If the UE does not require transmit gap to perform inter-RAT UTRA TDD measurements, the UE shall be able to identify a new detectable inter-RAT UTRA TDD cell belonging to the monitored set within 5000 ms.

A cell shall be considered detectable when

- P-CCPCH Ec/Io \geq -8 dB,
- DwPCH_Ec/Io \geq -5 dB.

When L3 filtering is used an additional delay can be expected.

8.1.2.4.3.1.2 UE UTRA TDD P-CCPCH RSCP measurement capability

When measurement gaps are scheduled for UTRA TDD inter RAT measurements the UE physical layer shall be capable of reporting measurements to higher layers with measurement accuracy as specified in Section 9.3 with measurement period given by

$$T_{\text{measurement UTRA_TDD}} = Max \left\{ T_{\text{Measurement_Period UTRA_TDD}}, T_{\text{basic measurement UTRA_TDD}} \cdot \frac{480}{T_{\text{interl}}} \cdot N_{Freq} \right\} ms$$

If the UE does not need measurement gaps to perform UTRA TDD measurements, the measurement period for UTRA TDD measurements is 480 ms.

The UE shall be capable of performing UTRA TDD P-CCPCH RSCP measurements for $X_{\text{basic measurementUTRA_TDD}}$ interfrequency cells per TDD frequency of the monitored set for up to 3 UTRA TDD carrier frequencies, and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period of $T_{\text{Measurement}}$ UTRA_TDD.

 $X_{\text{basic measurement TDDinter}} = 6$

 $T_{Measurement_Period UTRA_TDD} = 480$ ms is the period used for calculating the measurement period $T_{measurement_UTRA_TDD}$ for UTRA TDD P-CCPCH RSCP measurements.

 $T_{\text{basic_identify}_UTRA_TDD} = 800 \text{ ms}$ is the time period used in the inter RAT equation where the maximum allowed time for the UE to identify a new UTRA TDD cell is defined.

 $T_{\text{basic_measurement_UTRA_TDD}} = 50 \text{ ms}$ is the time period used in the equation for defining the measurement period for inter RAT P-CCPCH RSCP measurements.

 N_{freq} is defined in section 8.1.2.1.1 and T_{inter1} is defined in section 8.1.2.1

8.1.2.4.3.1.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.4.3.1.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay uncertainty for the uplink DCCH. This measurement reporting delay excludes a delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify, UTRA_TDD}$ defined in Section 8.1.2.4.3.1.1 When L3 filtering is used an additional delay can be expected.

8.1.2.4.3.1.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.3.1.4 Event Triggered Reporting.

8.1.2.4.3.2 E-UTRAN TDD – UTRAN TDD measurements when DRX is used

When explicit neighbour list is provided and DRX is used the UE shall be able to identify a new detectable cell belonging to the neighbour cell list within $T_{identify,UTRA_TDD}$ as shown in table 8.1.2.4.3.2-1

DRX cycle	T _{identify_UTRA_TDD} (s) (DRX cycles)			
length (s)	Gap period = 40 ms	Gap period = 80 ms		
≤0.04	Non DRX Requirements in section 8.1.2.4.3.1 are applicable	Non DRX Requirements in section 8.1.2.4.3.1 are applicable		
0.08	3.2* N _{freq} (40* N _{freq})	7.2* N _{freq} (90* N _{freq})		
0.16	3.2* N _{freq} (20* N _{freq})	7.2* N _{freq} (45* N _{freq})		
0.32	6.4* N _{freq} (20* N _{freq})	7.36* N _{freq} (23* N _{freq})		
0.64	12.8 * N _{freq} (20* N _{freq})	12.8 * N _{freq} (20* N _{freq})		
1.28	25.6 * N _{freq} (20* N _{freq})	25.6* N _{freq} (20* N _{freq})		
2.56	51.2* N _{freq} (20* N _{freq})	51.2* N _{freq} (20* N _{freq})		

Table 8.1.2.4.3.2-1: Requirement to identify a newly detectable UTRA TDD cell

A cell shall be considered detectable provided following conditions are fulfilled: A cell shall be considered detectable when

- P-CCPCH Ec/Io \geq -8 dB,
- $DwPCH_Ec/Io \ge -5 dB$.

When L3 filtering is used an additional delay can be expected.

The UE shall be capable of performing UTRA TDD P-CCPCH RSCP measurements of at least 6 UTRA cells per UTRA TDD carrier for up to 3 UTRA TDD carriers and the UE physical layer shall be capable of reporting measurements to higher layers with the measurement period defined in table 8.1.2.4.3.2-2.

DRX cycle length (s)	T _{measure_UTRA_TDD} (s) (DRX cycles)		
≤0.04	Non DRX		
	Requirements in		
	section 8.1.2.4.3.1		
	are applicable		
0.08	0.48*N _{freq} (6*N _{freq})		
0.16	0.8*N _{freq} (5*N _{freq})		
0.32	1.6*N _{freq} (5*N _{freq})		
0.64	3.2*N _{freq} (5*N _{freq})		
1.28	6.4*N _{freq} (5*N _{freq})		
2.56	12.8*N _{freq} (5*N _{freq})		

The measurement accuracy for all measured cells shall be as specified in the sub-clause 9.1.

8.1.2.4.3.2.1 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

8.1.2.4.3.2.2 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section 9.

The UE shall not send any event triggered measurement reports, as long as the reporting criteria is not fulfilled.

The measurement reporting delay is defined as the time between any event that will trigger a measurement report until the UE starts to transmit the measurement report over the Uu interface. This requirement assumes that the measurement report is not delayed by other RRC signalling on the DCCH. This measurement reporting delay excludes a delay uncertainty resulted when inserting the measurement report to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay uncertainty for the uplink DCCH. This measurement reporting delay excludes a delay uncertainty is twice the TTI of the uplink DCCH. This measurement reporting delay excludes a delay which caused by no UL resources for UE to send the measurement report.

The event triggered measurement reporting delay, measured without L3 filtering shall be less than $T_{identify, UTRA_TDD}$ defined in Section 8.1.2.4.3.2 When L3 filtering is used an additional delay can be expected.

8.1.2.4.3.2.3 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.3.2.2 Event Triggered Reporting.

8.1.2.4.4 E-UTRAN FDD – UTRAN TDD measurements

The requirements in section 8.1.2.4.3 also apply for this section.

8.1.2.4.5 E-UTRAN FDD – GSM measurements

8.1.2.4.5.1 E-UTRAN FDD – GSM measurements when no DRX is used

[Editor's note: GERAN neighbour cell list requirement should be added]

The requirements in this section apply only to UE supporting E-UTRAN FDD and GSM.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

In RRC_CONNECTED state when a supported measurement gap pattern sequence according to Table 8.1.2.1-1 is configured by E-UTRAN the UE shall continuously measure GSM cells, search for new GSM cells given in the monitored set and re-confirm the BSIC for already detected cells. During DRX periods the UE may use other periods of time outside the specified measurement gap patterns.

8.1.2.4.5.1.1 GSM carrier RSSI

This measurement shall be based on measurement gaps allocated for GSM carrier RSSI measurement as described in section 8.1.2.1. A UE supporting GSM measurements shall measure minimum number of 10 GSM carrier RSSI measurement samples ($N_{GSM \text{ carrier RSSI}}$) per measurement gap. In RRC_CONNECTED state the measurement period, $T_{Measurement Period, GSM}$, for the GSM carrier RSSI measurement is 480 ms.

The UE shall meet the measurement accuracy requirements stated for RXLEV in [8], when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, when at least 25% of the measurement gaps available for GSM monitoring purposes are used for GSM RSSI purposes the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

8.1.2.4.5.1.2 BSIC verification

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

If no BSIC verification is required then 100% of the measurement gaps available for GSM monitoring shall be used for GSM RSSI purposes.

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- **Initial BSIC identification:** Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the E-UTRAN FDD and GSM cells. The UE shall trigger the initial BSIC identification within the available measurement gap pattern sequence. The requirements for BSIC re-confirmation can be found in section 8.1.2.4.5.1.2.1.
- **BSIC re-confirmation:** Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available measurement gap pattern. The requirements for BSIC re-confirmation can be found in section 8.1.2.4.5.1.2.2.

If the network requests measurements on a GSM cell with BSIC verified, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to section 8.1.2.4.5.1 when a measurement gap pattern sequence is activated.
- The UE shall perform measurement reporting as defined in [2].
- The UE shall perform BSIC identification if BSIC verified measurements are activated by RRC. The UE shall use the most recently available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation on all the GSM cells that have been successfully identified.

- The UE shall perform all configured event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the most recently available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting.
- Event-triggered and periodic reports shall be triggered according to [2].

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification). Once a GSM cell has been identified the BSIC shall be re-confirmed at least once every $8*T_{re-confirm,GSM}$ seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified". If a measurement gap pattern sequence is deactivated by the network after BSIC has been identified or verified, the UE shall consider the BSIC as non-verified.

 $T_{identify,GSM}$ indicates the maximum time allowed for the UE to decode the unknown BSIC of the GSM cell in one GSM BCCH carrier in the initial BSIC identification procedure.

 $T_{re-confirm,GSM}$ indicates the maximum time allowed for the re-confirmation of the BSIC of one GSM cell in the BSIC re-confirmation procedure.

The UE shall be able to decode a BSIC within a measurement gap when the time difference between the middle of the received GSM synchronisation burst at the UE and the middle of the effective measurement gap is within the limits specified in table 8.1.2.4.5.1.2-1.

Table 8.1.2.4.5.1.2-1: The gap length and maximum time difference for BSIC verification

Gap length [ms]	Maximum time difference [μs]
6	± 2350 μs

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [9].

8.1.2.4.5.1.2.1 Initial BSIC identification

This measurement shall be made on GSM cells that are requested with BSIC verified. The measurement shall be based on the measurement gaps used for Initial BSIC identification as described in section 8.1.2.4.5.1.2

The UE shall continuously attempt to decode the BSIC of SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the Inter-RAT cell info list. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BCCH carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall immediately continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within T_{identify,GSM} ms, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall continue to try to perform BSIC identification of the next GSM BCCH carrier in signal strength order. The GSM BCCH carrier for which the BSIC identification failed shall not be re-considered for BSIC identification until BSIC identification attempts have been made for all the rest of the 8 strongest GSM BCCH carriers in the monitored set with unknown BSIC.

 $T_{identify,GSM}$ values are given for a set of reference gap patterns in table 8.1.2.4.5.1.2.1-1. The requirements in the table represent the time required to guarantee at least two attempts to decode the BSIC for one GSM BCCH carrier.

Number	T _{identify,gsm} (ms)		T _{reconfirm,gsm} (ms)		
of carriers					
other	40ms gap	80ms gap	40ms gap	80ms gap	
than	configuration	configuration	configuration	configuration	
GSM	(ID 0)	(ID 1)	(ID 0)	(ID 1)	
0	2160	5280	1920	5040	

Table 8.1.2.4.5.1.2.1-1

1	[5280]	[21760]	[5040]	[17280]
2	[5280]	[31680]	[5040]	[29280]
		No		No
3	[19440]	requirement	[13320]	requirement
		No		No
4	[31680]	requirement	[29280]	requirement
		No		No
5	[31680]	requirement	[29280]	requirement

8.1.2.4.5.1.2.2 BSIC re-confirmation

The UE shall maintain the timing information of up to 8 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

For each measurement gap used for GSM BSIC reconfirmation as described in section 8.1.2.4.5.1.2, the UE shall attempt to decode the BSIC falling within the measurement gap according to table 8.1.2.4.5.1.2.1-1. If more than one BSIC can be decoded within the same measurement gap, priority shall be given to the least recently decoded BSIC.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM cell within $T_{re-confirm,GSM}$ seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.1.2.4.5.1.2.1.

8.1.2.4.5.1.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section [2].

8.1.2.4.5.1.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section [2].

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH.

The event triggered reporting delay requirement is valid when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period $T_{Measurement Period, GSM}$ (see section 8.1.2.4.5.1).

When no BSIC verification is required, the event triggered measurement reporting delay for a GSM carrier measured without L3 filtering shall be less than $2*T_{Measurement Period, GSM}$, where $T_{Measurement Period, GSM}$ is defined in section 8.1.2.4.5.1. When L3 filtering is used an additional delay can be expected.

When BSIC verification is required, the event triggered measurement reporting delay for a GSM cell with verified BSIC, measured without L3 filtering shall be less than $2*T_{Measurement Period, GSM}$, where $T_{Measurement Period, GSM}$ is defined in section 8.1.2.4.5.1. When L3 filtering is used an additional delay can be expected. For a GSM cell with non-verified BSIC an additional delay according to section 8.1.2.4.5.2.1 (Initial BSIC identification) can be expected.

8.1.2.4.5.1.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.5.1.4 Event Triggered Reporting.

8.1.2.4.5.2 E-UTRAN FDD – GSM measurements when DRX is used

The requirements in this section apply only to UE supporting E-UTRAN FDD and GSM.

Measurements on GSM cells can be requested with BSIC verified or BSIC non-verified.

In RRC_CONNECTED state when a supported measurement gap pattern sequence according to Table 8.1.2.1-1 is configured by E-UTRAN the UE shall continuously measure GSM cells, search for new GSM cells given in the monitored set and re-confirm the BSIC for already detected cells. During DRX periods the UE may use other periods of time outside the specified measurement gap patterns. The UE is not required to make measurements of GSM cells during DRX periods if a measurement gap pattern has not been configured.

8.1.2.4.5.2.1 GSM carrier RSSI

This measurement shall be based on measurement gaps allocated for GSM carrier RSSI measurement as described in section 8.1.2.1. A UE supporting GSM measurements shall measure minimum number of 10 GSM carrier RSSI measurement samples ($N_{GSM carrier RSSI}$) per DRX cycle. In RRC_CONNECTED state the measurement period, $T_{Measurement Period, GSM}$, for the GSM carrier RSSI measurement is shown in table 8.1.2.4.5.2.1-1.

DRX cycle length (s)	T _{measure,GSM} (s) (DRX cycles)		
≤0.04	Non DRX		
	Requirements are		
	applicable		
[0.08]	0.48 (6)		
[0.16]	0.8 (5)		
[0.32]	1.6 (5)		
[0.64]	3.2 (5)		
[1.28]	6.4 (5)		
[2.56]	12.8 (5)		

Table 8.1.2.4.5.2.1-1: GSM measurement period for large DRX

The UE shall meet the measurement accuracy requirements stated for RXLEV in [8], when the given measurement time allows the UE to take at least 3 GSM carrier RSSI samples per GSM carrier in the monitored set during the measurement period.

In case the UE is not able to acquire the required number of samples per GSM carrier during one measurement period, the UE shall measure as many GSM carriers as possible during that measurement period using at least 3 samples per GSM carrier. The GSM carriers that were not measured during that measurement period shall be measured in the following measurement periods.

8.1.2.4.5.2.2 BSIC verification

Measurements on a GSM cell can be requested with BSIC verified or BSIC non-verified. If GSM measurements are requested with BSIC verified the UE shall be able to report the GSM cells with BSIC verified for those cells where the verification of BSIC has been successful.

The procedure for BSIC verification on a GSM cell can be divided into the following two tasks:

- **Initial BSIC identification:** Includes searching for the BSIC and decoding the BSIC for the first time when there is no knowledge about the relative timing between the E-UTRAN FDD and GSM cells.
- **BSIC re-confirmation:** Tracking and decoding the BSIC of a GSM cell after initial BSIC identification is performed. The UE shall trigger the BSIC re-confirmation within the available measurement gap pattern

If the network requests measurements on a GSM cell, the UE shall behave as follows:

- The UE shall perform GSM carrier RSSI measurements according to section 8.1.2.4.5.2.1 when a measurement gap pattern sequence is activated.
- The UE shall perform measurement reporting as defined in [2].
- The UE shall perform BSIC identification if BSIC verified measurements are activated by RRC. The UE shall use the most recently available GSM carrier RSSI measurement results for arranging GSM cells in signal strength order for performing BSIC identification.
- The UE shall perform BSIC re-confirmation on all the GSM cells that have been successfully identified.

- The UE shall perform all configured event evaluation for event-triggered reporting after the BSIC has been verified for a GSM cell. The UE shall use the most recently available GSM carrier RSSI measurement results in event evaluation and event-triggered reporting.
- Event-triggered and periodic reports shall be triggered according to[2].

The BSIC of a GSM cell is considered to be "verified" if the UE has decoded the SCH of the BCCH carrier and identified the BSIC at least one time (initial BSIC identification). Once a GSM cell has been identified the BSIC shall be re-confirmed at least once every 30 seconds. Otherwise the BSIC of the GSM cell is considered as "non-verified".

The UE shall be able to perform BSIC verification at levels down to the reference sensitivity level or reference interference levels as specified in [9].

8.1.2.4.5.2.2.1 Initial BSIC identification

This measurement shall be made on GSM cells that are requested with BSIC verified.

The UE shall make at least one attempt every 30s to decode the BSIC of SCH on the BCCH carrier of the 8 strongest BCCH carriers of the GSM cells indicated in the Inter-RAT cell info list. If the UE has not successfully decoded the BSIC of the GSM BCCH carrier within 60 s, the UE shall abort the BSIC identification attempts for that GSM BCCH carrier. The UE shall give priority for BSIC decoding attempts in decreasing signal strength order to BCCH carriers with unknown BSIC. The strongest BCCH carrier is defined as the BCCH carrier having the highest measured GSM carrier RSSI value.

If the BSIC of the GSM BCCH carrier has been successfully decoded the UE shall continue BSIC identification with the next GSM BCCH carrier, in signal strength order, with unknown BSIC. The GSM cell for which the BSIC has been successfully identified shall be moved to the BSIC re-confirmation procedure.

8.1.2.4.5.2.2.2 BSIC re-confirmation

The UE shall maintain the timing information of up to 8 identified GSM cells. Initial timing information is obtained from the initial BSIC identification. The timing information shall be updated every time the BSIC is decoded.

At least every 30 seconds, the UE shall attempt to decode the BSIC of each identified GSM cell.

If the UE fails to decode the BSIC after two successive attempts or if the UE has not been able to re-confirm the BSIC for a GSM cell within 60 seconds, the UE shall abort the BSIC re-confirmation attempts for that GSM cell. The GSM cell shall be treated as a new GSM cell with unidentified BSIC and the GSM cell shall be moved to the initial BSIC identification procedure, see section 8.1.2.4.5.2.2.1.

8.1.2.4.5.2.3 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section [2].

8.1.2.4.5.2.4 Event Triggered Reporting

Reported measurements in event triggered measurement reports shall meet the requirements in section [2].

The UE shall not send any event triggered measurement reports, as long as no reporting criteria are fulfilled.

The measurement reporting delay is defined as the time between an event that will trigger a measurement report and the point when the UE starts to transmit the measurement report over the air interface. This requirement assumes that that the measurement report is not delayed by other RRC signalling on the DCCH.

The event triggered reporting delay requirement is valid when the UE for each GSM carrier in the monitored set can take the required number of samples during the measurement period $T_{Measurement Period, GSM}$ (see section 8.1.2.4.5.2.1).

When no BSIC verification is required, the event triggered measurement reporting delay for a GSM carrier measured without L3 filtering shall be less than $2*T_{Measurement Period, GSM}$, where $T_{Measurement Period, GSM}$ is defined in section 8.1.2.4.5.2.1. When L3 filtering is used an additional delay can be expected.

When BSIC verification is required, the event triggered measurement reporting delay for a GSM cell with verified BSIC, measured without L3 filtering shall be less than $2*T_{Measurement Period, GSM}$, where $T_{Measurement Period, GSM}$ is defined in

section 8.1.2.4.5.2.1. When L3 filtering is used an additional delay can be expected. For a GSM cell with non-verified BSIC an additional delay according to section 8.1.2.4.5.2.2.1 (Initial BSIC identification) can be expected.

8.1.2.4.5.2.5 Event-triggered Periodic Reporting

Reported measurements contained in event triggered periodic measurement reports shall meet the requirements in section 9.

The first report in event triggered periodic measurement reporting shall meet the requirements specified in section 8.1.2.4.5.2.4 Event Triggered Reporting.

8.1.2.4.6 E-UTRAN TDD – GSM measurements

[Editor's note: GERAN neighbour cell list requirement should be added]

The requirements in section 8.1.2.4.5 also apply for this section.

8.1.2.4.7 E-UTRAN FDD – UTRAN FDD measurements for SON

8.1.2.4.7.1 Identification of a new UTRA FDD cell for SON

No explicit neighbour list is provided to the UE for identifying a UTRA cell for SON. The UE shall identify and report only the strongest cell when requested by the network for the purpose of SON.

8.1.2.4.7.1.1 Requirements when no DRX is used

When no DRX is used the UE shall be able to identify a new cell within:

$$T_{\text{identify, UTRA_FDD}} = T_{\text{basic_identify}_UTRA_FDD} \cdot \frac{480}{\text{Tinter1}} \cdot N_{Freq} \quad ms$$

 $T_{\text{basic_identify}_UTRA_FDD} = 300 \text{ ms.}$ This is the time period used in the above equation where the maximum allowed time for the UE to identify a new UTRA FDD cell is defined.

A cell shall be considered identifiable following conditions are fulfilled:

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io ≥ -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

If the UE is unable to identify the UTRA cell for SON within 8*T_{identify, UTRA_FDD} ms, the UE may stop searching UTRA cells for SON.

8.1.2.4.7.1.2 Requirements when DRX is used

When DRX is used the UE shall be able to identify a new cell within T_{identify, UTRA_FDD} as defined in table 8.1.2.4.7.1.2-1.

Table 8.1.2.4.7.1.2-1: Requirement to identify a new UTRA FDD cell for SON

DRX cycle length (s)	Tidentify, UTRA_FDD (S) (DRX cycles)			
	Gap period = 40 ms	Gap period = 80 ms		
≤0.04	Non DRX Requirements in section 8.1.2.3.1.1 are applicable	Non DRX Requirements in section 8.1.2.3.1.1 are applicable		
0.04 <drx cycle≤0.08<="" td=""><td>3.6* N_{freq} (45* N_{freq})</td><td>7.6* N_{freq} (95* N_{freq})</td></drx>	3.6* N _{freq} (45* N _{freq})	7.6* N _{freq} (95* N _{freq})		

0.08 <drx cycle≤0.16<="" th=""><th>4.0* N_{freq} (25* N_{freq})</th><th>8.0* N_{freq} (50* N_{freq})</th></drx>	4.0* N _{freq} (25* N _{freq})	8.0* N _{freq} (50* N _{freq})			
0.16 <drx cycle≤0.32<="" td=""><td>8* N_{freq} (25* N_{freq})</td><td>8.96* N_{freq} (28* N_{freq})</td></drx>	8* N _{freq} (25* N _{freq})	8.96* N _{freq} (28* N _{freq})			
0.32 <drx cycle≤2.56<="" td=""><td>Note (25* N_{freq})</td><td>Note (25* N_{freq})</td></drx>	Note (25* N _{freq})	Note (25* N _{freq})			
Note: Time depends upon the DRX cycle in use					

A cell shall be considered identifiable provided following conditions are fulfilled:

- CPICH Ec/Io \geq -20 dB,
- SCH_Ec/Io \geq -17 dB for at least one channel tap and SCH_Ec/Ior is equally divided between primary synchronisation code and secondary synchronisation code. When L3 filtering is used an additional delay can be expected.

If the UE is unable to identify the UTRA cell for SON within $8*T_{identify, UTRA_FDD}$ seconds, the UE may stop searching UTRA cells for SON; $T_{identify, UTRA_FDD}$ is defined in table 8.1.2.4.7.1.2-1.

8.1.2.4.7.1.3 Reporting Delay

The UE shall not report the physical cell identity of an identifiable cell for SON as long as the reporting criteria are not fulfilled.

The reporting delay is defined as the time between the identification of the strongest cell for SON until the UE starts to transmit its physical cell identity over the Uu interface. This requirement assumes that the reporting of the physical cell identity is not delayed by other RRC signalling on the DCCH. This reporting delay excludes a delay uncertainty resulted when inserting the physical cell identity of the strongest cell for SON to the TTI of the uplink DCCH. The delay uncertainty is twice the TTI of the uplink DCCH. This reporting delay excludes any delay caused by unavailability of UL resources for UE sending the physical cell identity of the strongest cell for SON.

The reporting delay of the physical cell identity of the strongest cell for SON without L3 filtering shall be less than $T_{identify, UTRA_FDD}$ defined in section 8.1.2.4.7.1.1 and in section 8.1.2.4.7.1.2 for non DRX and DRX cases respectively. When L3 filtering is used an additional delay can be expected.

8.1.2.4.8 E-UTRAN TDD – UTRAN FDD measurements for SON

The requirements in section 8.1.2.4.7 also apply for this section.

8.1.2.4.9 E-UTRAN FDD – cdma2000 1xRTT measurements

UE shall perform cdma2000 1xRTT measurements according to the procedure defined in [15] on the cdma2000 1xRTT neighbor cells indicated by the serving eNode B. If measurement gaps are required, the UE shall perform cdma2000 1xRTT measurements only during the measurement gaps configured by the serving eNode B.

8.1.2.4.9.1 Periodic Reporting

Reported measurements in periodically triggered measurement reports shall meet the requirements in section 9.

The measurement reporting delay of each periodic report is defined as the time between the end of the last measurement period and the moment when the UE starts to transmit the measurement report over the Uu interface. This delay shall be less than T_{71m} defined in [15] for each periodic report. This measurement reporting delay excludes a delay which is caused by the unavailability of the uplink resources for the UE to send the measurement report.

8.1.2.4.10 E-UTRAN TDD – cdma2000 1xRTT measurements

The requirements in section 8.1.2.4.9 also apply for this section.

8.1.2.4.11 E-UTRAN FDD – HRPD measurements

UE shall perform HRPD measurements according to the procedure defined in [11] on the HRPD neighbor cells indicated by the serving eNode B. If measurement gaps are required, the UE shall perform HRPD measurements only during the measurement gaps configured by the serving eNode B.

8.1.2.4.12 E-UTRAN TDD – HRPD measurements

The requirements in section 8.1.2.4.11 also apply for this section.

8.2 Capabilities for Support of Event Triggering and Reporting Criteria

8.2.1 Introduction

This section contains requirements on UE capabilities for support of event triggering and reporting criteria. As long as the measurement configuration does not exceed the requirements stated in section 8.x.2, the UE shall meet the performance requirements defined in section 9.

The UE can be requested to make measurements under different measurement identities defined in 3GPP TS 36.331 [2]. Each measurement identity corresponds to either event based reporting, periodic reporting or no reporting. In case of event based reporting, each measurement identity is associated with one or more events, each identified with an event identity. In case of periodic reporting, a measurement identity is associated with one periodic reporting criterion. In case of no reporting, a measurement identity is associated with one no reporting criterion.

The purpose of this section is to set some limits on the number of different event, periodic and no reporting criteria the UE may be requested to track in parallel.

8.2.2 Requirements

In this section a reporting criterion corresponds to either one event (in the case of event based reporting), or one periodic reporting criterion (in case of periodic reporting), or one no reporting criterion (in case of no reporting). For event based reporting, each instance of event, with the same or different event identities, is counted as separate reporting criterion in table 8.x.2-1.

The UE shall be able to support in parallel per category up to E_{cat} reporting criteria according to table 8.x.2-1. For the measurement categories belonging to measurements on: E-UTRA intra-frequency cells, E-UTRA inter frequency cells, and inter-RAT per supported RAT, the UE need not support more than 21 reporting criteria in total.

Measurement category	E _{cat}	Note
Intra-frequency	9	E-UTRA intra-frequency cells
Inter-frequency	7	E-UTRA inter-frequency cells
Inter-RAT (E-UTRAN FDD or TDD, UTRAN FDD, UTRAN TDD, GSM, cdma2000 1 x RTT and HRPD)	5	Only applicable for UE with this (inter-RAT) capability. This requirement ($E_{cat} = 5$) is per supported RAT.

Table 8.2.2-1: Requirements for reporting criteria per measurement category

9 Measurements performance requirements for UE

One of the key services provided by the physical layer is the measurements used to trigger or perform a multitude of functions. Both the UE and the E-UTRAN are required to perform measurements. The physical layer measurement model and a complete list of measurements is specified in TBD. The physical layer measurements for are described and

defined in [4]. In this clause for each measurement the relevant requirements on the measurement period, reporting range, granularity and performance in terms of accuracy are specified.

Since the UE reference sensitivity requirements are different depending on supported band, this is noted in each case with definition of the range Io for each frequency band. Definitions of each frequency bands can be found in [5].

The accuracy requirements in this clause are applicable for AWGN radio propagation conditions and assume independent interference (noise) at each receiver antenna port.

[Editor's Note: Requirements for multiple Tx antennas are still FFS. So far only 1Tx antenna case has been considered]

9.1 E-UTRAN measurements

The requirements in this clause are applicable for a UE:

- in state RRC_CONNECTED
- performing measurements with appropriate measurement gaps as defined in Section 8.1.2.1.
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in TBD.

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the higher layer filtering disabled.

9.1.2 Intra-frequency RSRP Accuracy Requirements

9.1.2.1 Absolute RSRP Accuracy

The absolute accuracy of RSRP is defined as the RSRP measured from a cell on the same frequency as that of the serving cell.

The accuracy requirements in Table 9.1.2.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm \geq -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$ for Bands 2, 5, 7, 11, 17,

 $RSRP|_{dBm} \ge -124 \text{ dBm}$ for Bands 3, 8, 12, 13, 14.

Parameter	Unit	Accuracy [dB]		Conditions ¹			
		Normal condition	Extreme condition	Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40	Bands 2, 5, 7, 11, 17	Bands 3, 8, 12, 13, 14	Band 9
				lo	lo	lo	lo
RSRP for Ês/lot ≥	dBm	±6	<u>±9</u>	-	-	-	-
-6 dB				121dBm/15kHz	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz
				70dBm/	70dBm/	70dBm/	70dBm/
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}
RSRP for Ês/lot ≥	dBm	±8	±11	-70dBm/	-70dBm/	-70dBm/	-70dBm/
-6 dB				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}
				50dBm/	50dBm/	50dBm/	50dBm/
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}
Note 1. Io is assumed to have constant EPRE across the bandwidth.							

Table 9.1.2.1-1: RSRP Intra frequency absolute accuracy

9.1.2.2 Relative Accuracy of RSRP

The relative accuracy of RSRP is defined as the RSRP measured from one cell compared to the RSRP measured from another cell on the same frequency.

The accuracy requirements in Table 9.1.2.2-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

 $RSRP1,2|_{dBm} \ge -127 \text{ dBm}$ for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP1,2 $|_{dBm} \ge -126 \text{ dBm}$ for Bands 9,

 $RSRP1,2|_{dBm} \ge -125 dBm$ for Bands 2, 5, 7, 11, 17,

 $RSRP1,2|_{dBm} \ge -124 \text{ dBm}$ for Bands 3, 8, 12, 13, 14.

Parameter	Unit	Accuracy [dB]		Conditions ¹			
		Normal condition	Extreme condition	Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40	Bands 2, 5, 7, 11, 17	Bands 3, 8, 12, 13, 14	Band 9
				lo	lo	lo	lo
RSRP for Ês/lot > -3 dB	dBm	<u>±2</u>	±3	- 121dBm/15kHz 50dBm/ BW _{Channel}	- 119dBm/15kHz 50dBm/ BW _{Channel}	- 118dBm/15kHz 50dBm/ BW _{Channel}	- 120dBm/15kHz 50dBm/ BW _{Channel}
RSRP for Ês/lot ≥ -6 dB	dBm	±3	±3	- 121dBm/15kHz 50dBm/ BW _{Channel}	- 119dBm/15kHz 50dBm/ BW _{Channel}	- 118dBm/15kHz 50dBm/ BW _{Channel}	-

Table 9.1.2.2-1: RSRP Intra frequency relative accuracy

Note 2. The parameter Es/lot is the minimum Es/lot of the pair of cells to which the requirement applies.

9.1.3 Inter-frequency RSRP Accuracy Requirements

9.1.3.1 Absolute RSRP Accuracy

The absolute accuracy of RSRP is defined as the RSRP measured from a cell that has different carrier frequency from the serving cell.

The accuracy requirements in Table 9.1.3.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm \geq -126 dBm for Bands 9,

RSRP|dBm≥ -125 dBm for Bands 2, 5, 7, 11, 17,

RSRP|dBm≥ -124 dBm for Bands 3, 8, 12, 13, 14

Table 9.1.3.1-1: RSRP Inter frequency absolute accuracy

Parameter	Unit	Accuracy [dB]		Conditions ¹			
		Normal condition	Extreme condition	Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40 Io	Bands 2, 5, 7, 11, 17	Bands 3, 8, 12, 13, 14 Io	Band 9 Io
-6 dB				121dBm/15kHz	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz
				70dBm/	70dBm/	70dBm/	70dBm/
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW Channel
RSRP for Ês/lot ≥	dBm	±8	±11	-70dBm/	-70dBm/	-70dBm/	-70dBm/
-6 dB				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}
				50dBm/	50dBm/	50dBm/	50dBm/
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW Channel

Note 1. Io is assumed to have constant EPRE across the bandwidth.

9.1.3.2 Relative Accuracy of RSRP

The relative accuracy of RSRP in inter frequency case is defined as the RSRP measured from one cell compared to the RSRP measured from another cell on a different frequency.

The accuracy requirements in Table 9.1.3.2-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP1|_{dBm} ≥ -127 dBm if RSRP1 is on Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

 $RSRP1|_{dBm} \ge -126 dBm$ if RSRP1 is on Band 9,

 $RSRP1|_{dBm} \ge -125 dBm \text{ if } RSRP1 \text{ is on Bands } 2, 5, 7, 11, 17,$

 $RSRP1|_{dBm} \ge -124 \text{ dBm}$ if RSRP1 is on Bands 3, 8, 12, 13, 14,

 $RSRP2|_{dBm} \ge -127 \text{ dBm}$ if RSRP2 is on Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40

 $RSRP2|_{dBm} \ge -126 \text{ dBm if } RSRP2 \text{ is on Band 9},$

 $RSRP2|_{dBm} \ge -125 dBm$ if RSRP2 is on Bands 2, 5, 7, 11, 17,

 $RSRP2|_{dBm} \ge -125 dBm$ if RSRP2 is on Bands 3, 8, 12, 13, 14

 $\left| RSRP1 \right|_{dBm} - RSRP2 \right|_{dBm} \le 27 dB$

| Channel 1_Io -Channel 2_Io | \leq 20 dB

Parameter	Unit	Accura	cy [dB]	Conditions ¹				
		Normal condition	Extreme condition	RSRP is on Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39 and 40	RSRP is on Bands 2, 5, 7, 11, 17	RSRP is on Bands 3, 8, 12, 13, 14	RSRP is on Band 9	
				lo	lo	lo	lo	
RSRP for Ês/lot	dBm			-121dBm/15kHz	-119dBm/15kHz	-118dBm/15kHz	-120dBm/15kHz	
> -6dB		±6	±6	50dBm/	50dBm/	50dBm/	50dBm/	
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}	

Note 1. Io is assumed to have constant EPRE across the bandwidth.

Note 2. The parameter Ês/lot is the minimum Ês/lot of the pair of cells.to which the requirement applies.

9.1.4 RSRP Measurement Report Mapping

The reporting range of RSRP is defined from -140 dBm to -44 dBm with 1 dB resolution.

The mapping of measured quantity is defined in Table 9.1.4-1. The range in the signalling may be larger than the guaranteed accuracy range.

Table 9.1.4-1: RSRF	measurement	report mapping
---------------------	-------------	----------------

Reported value	Measured quantity value	Unit
RSRP_00	RSRP < -140	dBm
RSRP_01	-140 ≤ RSRP < -139	dBm
RSRP_02	-139 ≤ RSRP < -138	dBm
RSRP_95	-46 ≤ RSRP < -45	dBm
RSRP_96	-45 ≤ RSRP < -44	dBm
RSRP_97	-44 ≤ RSRP	dBm

9.1.5 Intra-frequency RSRQ Accuracy Requirements

9.1.5.1 Absolute RSRQ Accuracy

The absolute accuracy of RSRQ is defined as the RSRQ measured from a cell on the same frequency as that of the serving cell.

The accuracy requirements in Table 9.1.5.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm \geq -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$ for Bands 2, 5, 7, 11, 17,

 $RSRP|_{dBm} \ge -124 \text{ dBm}$ for Bands 3, 8, 12, 13, 14,

Parameter	Unit	Accuracy [dB]		Conditions ¹				
		Normal	Extreme	Bands 1, 4, 6,	Bands 2, 5, 7,	Bands 3, 8, 12,	Band 9	
		condition	condition	10, 33, 34, 35,	11, 17	13, 14		
				36, 37, 38, 39,				
				40				
				lo	lo	lo	lo	
RSRQ when RSRP	dBm	± 2.5	± 4	-	-	-	-	
Ês/lot > -3 dB				121dBm/15kHz	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz	
				50dBm/	50dBm/	50dBm/	50dBm/	
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}	
RSRQ when RSRP	dBm	± 3.5	± 4	-	-	-	-	
Ês/lot ≥ -6 dB				121dBm/15kHz	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz	
				50dBm/	50dBm/	50dBm/	50dBm/	
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}	

9.1.6 Inter-frequency RSRQ Accuracy Requirements

9.1.6.1 Absolute RSRQ Accuracy

The absolute accuracy of RSRQ is defined as the RSRQ measured from a cell that has different carrier frequency from the serving cell.

The accuracy requirements in Table 9.1.6.1-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

RSRP|dBm≥ -127 dBm for Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

RSRP|dBm \geq -126 dBm for Bands 9,

 $RSRP|_{dBm} \ge -125 dBm$ for Bands 2, 5, 7, 11, 17,

 $RSRP|_{dBm} \ge -124 \text{ dBm}$ for Bands 3, 8, 12, 13, 14.

Parameter	Unit	Accura	cy [dB]	B] Conditions ¹				
		Normal condition	Extreme condition	Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40	Bands 2, 5, 7, 11, 17	Bands 3, 8, 12, 13, 14	Bands 9	
				lo	lo	lo	lo	
RSRQ when RSRP	dBm	± 2.5	± 4	-	-	-	-	
Ês/lot > -3 dB				121dBm/15kHz	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz	
				50dBm/	50dBm/	50dBm/	50dBm/	
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}	
RSRQ when RSRP	dBm	± 3.5	± 4	-	-	-	-	
Ês/lot ≥ -6 dB				121dBm/15kHz	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz	
				50dBm/	50dBm/	50dBm/	50dBm/	
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}	
Note 1. lo is assumed	d to have	constant EF	RE across t	he bandwidth.				

Table 9.1.6.1-1: RSRQ Inter frequency absolute accuracy

9.1.6.2 Relative Accuracy of RSRQ

The relative accuracy of RSRQ in inter frequency case is defined as the RSRQ measured from one cell compared to the RSRQ measured from another cell on a different frequency.

The accuracy requirements in Table 9.1.6.2-1 are valid under the following conditions:

Cell specific reference signals are transmitted either from one, two or four antenna ports.

Conditions defined in 36.101 Section 7.3 for reference sensitivity are fulfilled.

 $RSRP1|_{dBm} \ge -127 dBm$ if RSRP1 is on Band 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,

 $RSRP1|_{dBm} \ge -126 dBm$ if RSRP1 is on Band 9,

 $RSRP1|_{dBm} \ge -125 dBm \text{ if } RSRP1 \text{ is on Bands } 2, 5, 7, 11, 17,$

 $RSRP1|_{dBm} \ge -124 \text{ dBm if } RSRP1 \text{ is on Bands } 3, 8, 12, 13, 14,$

 $RSRP2|_{dBm} \ge -127 \text{ dBm if } RSRP2 \text{ is on Bands } 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40,$

 $RSRP2|_{dBm} \ge -126 dBm$ if RSRP2 is on Band 9,

 $RSRP2|_{dBm} \ge -125 dBm$ if RSRP2 is on Bands 2, 5, 7, 11, 17,

 $RSRP2|_{dBm} \ge -125 dBm$ if RSRP2 is on Bands 3, 8, 12, 13, 14

$$\left| RSRP1 \right|_{dBm} - RSRP2 \Big|_{dBm} \right| \le 27 dB$$

| Channel 1_Io -Channel 2_Io | \leq 20 dB

Parameter	Unit	Accura	Accuracy [dB]		Conditions ¹		
		Normal condition	Extreme condition	RSRQ is on Bands 1, 4, 6, 10, 33, 34, 35, 36, 37, 38, 39, 40	RSRQ is on Bands 2, 5, 7, 11, 17	RSRQ is on Bands 3, 8, 12, 13 …	RSRQ is on Band 9
				lo	lo		
RSRQ when RSRP	dBm	± 3	± 4	-	-	-	-
Ês/lot > -3 dB				121dBm/15kH	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz
				z50dBm] /	50dBm/	50dBm/	50dBm/
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW Channel
RSRQ when RSRP	dBm	± 4	± 4	-	-	-	-
Ês/lot ≥ -6 dB				121dBm/15kH	119dBm/15kHz	118dBm/15kHz	120dBm/15kHz
				z50dBm] /	50dBm/	50dBm/	50dBm/
				BW _{Channel}	BW _{Channel}	BW _{Channel}	BW _{Channel}

Table 9.1.6.2-1: RSRQ Inter frequency relative accuracy

Note 2. The parameter Ês/lot is the minimum Ês/lot of the pair of cells.to which the requirement applies.

9.1.7 RSRQ Measurement Report Mapping

The reporting range of RSRQ is defined from -19.5 dB to -3 with 0.5 dB resolution.

The mapping of measured quantity is defined in table 9.1.7-1. The range in the signalling may be larger than the guaranteed accuracy range.

Reported value	Measured quantity value	Unit
RSRQ_00	RSRQ < -19.5	dB
RSRQ_01	-19.5 ≤ RSRQ < -19	dB
RSRQ_02	-19 ≤ RSRQ < -18.5	dB
RSRQ_32	-4 ≤ RSRQ < -3.5	dB
RSRQ_33	-3.5 ≤ RSRQ < -3	dB
RSRQ_34	-3 ≤ RSRQ	dB

Table 9.1.7-1: RSRQ measurement report mapping

9.1.8 Power Headroom

The power headroom (PH), expressed in dB, is defined as the difference between the nominal UE maximum transmit power and the estimated power for PUSCH transmission according to section 5.1.1.1 in TS 36.213.

9.1.8.1 Period

The reported power headroom shall be estimated over 1 subframe. The power headroom shall be estimated only in a subframe where PUSCH is transmitted.

9.1.8.2 Reporting Delay

The power headroom reporting delay is defined as the time between the beginning of the power headroom reference period and the time when the UE starts transmitting the power headroom over the radio interface. The reporting delay of the power headroom shall be 0 ms, which is applicable for all configured triggering mechanisms for power headroom reporting.

9.1.8.3 Void

9.1.8.4 Report Mapping

The power headroom reporting range is from -23 ...+40 dB. Table 9.1.8.4-1 defines the report mapping.

Reported value	Measured quantity value (dB)
POWER_HEADROOM_0	-23 ≤ PH < -22
POWER_HEADROOM_1	-22 ≤ PH < -21
POWER_HEADROOM_2	-21 ≤ PH < -20
POWER_HEADROOM_3	-20 ≤ PH < -19
POWER_HEADROOM_4	-19 ≤ PH < -18
POWER_HEADROOM_5	-18 ≤ PH < -17
POWER_HEADROOM_57	$34 \le PH < 35$
POWER_HEADROOM_58	$35 \le PH < 36$
POWER_HEADROOM_59	$36 \le PH < 37$
POWER_HEADROOM_60	37 ≤ PH < 38
POWER_HEADROOM_61	38 ≤ PH < 39
POWER_HEADROOM_62	$39 \le PH < 40$
POWER_HEADROOM_63	PH ≥ 40

Table 9.1.8.4-1: Power headroom report mapping

9.2 UTRAN FDD Measurements

The requirements in this clause are applicable for a UE:

- in state RRC_CONNECTED
- performing measurements according to section 8.1.2.4.1 with appropriate measurement gaps
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in 3GPP TS 25.302 [6].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

9.2.1 UTRAN FDD CPICH RSCP

NOTE: This measurement is for handover between E-UTRAN and UTRAN FDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC_CONNECTED state is specified in section 8.1.2.4.1.

In RRC_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for FDD CPICH RSCP in 3GPP TS 25.133 [cc].

If the UE, in RRC_CONNECTED state, needs measurement gaps to perform UTRAN FDD measurements, the UTRAN FDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.1 shall apply.

The reporting range and mapping specified for FDD CPICH RSCP in 3GPP TS 25.133 [cc] shall apply.

9.2.2 UTRAN FDD carrier RSSI

NOTE: This measurement is for handover between E-UTRAN and UTRAN FDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC_CONNECTED state is equal to the measurement period for FDD CPICH measurements, whose measurement period is specified in section 8.1.2.4.1.

In RRC_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for FDD carrier RSSI in 3GPP TS 25.133 [cc.

If the UE, in RRC_CONNECTED state, needs measurement gaps to perform UTRAN FDD measurements, the UTRAN FDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.1 shall apply.

The reporting range and mapping specified for FDD carrier RSSI in 3GPP TS 25.133 [cc] shall apply.

9.2.3 UTRAN FDD CPICH Ec/No

NOTE: This measurement is for handover between E-UTRAN and UTRAN FDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC_CONNECTED state is specified in section 8.1.2.4.1.

In RRC_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for FDD CPICH Ec/No in 3GPP TS 25.133 [cc].

If the UE, in RRC_CONNECTED state, needs measurement gaps to perform UTRAN FDD measurements, the UTRAN FDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.1 shall apply.

The reporting range and mapping specified for FDD CPICH Ec/No in 3GPP TS 25.133 [cc] shall apply.

9.3 UTRAN TDD Measurements

The requirements in this clause are applicable for a UE:

- in state RRC_CONNECTED
- performing measurements according to section 8.1.2.4.3 with appropriate measurement gaps
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in 3GPP TS 25.302 [6].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

9.3.1 UTRAN TDD P-CCPCH RSCP

NOTE: This measurement is for handover between E-UTRAN and UTRAN TDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC_CONNECTED state is specified in section 8.1.2.4.3.

In RRC_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for TDD P-CCPCH in 3GPP TS 25.123 [19].

If the UE, in RRC_CONNECTED state, needs measurement gaps to perform UTRAN TDD measurements, the UTRAN TDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.3 shall apply.

The reporting range and mapping specified for TDD P-CCPCH RSCP in 3GPP TS 25.123 [19] shall apply.

9.3.2 UTRAN TDD carrier RSSI

NOTE: This measurement is for handover between E-UTRAN and UTRAN TDD.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC_CONNECTED state is equal to the measurement period for TDD P-CCPCH RSCP measurement, whose measurement period is specified in section 8.1.2.4.3.

In RRC_CONNECTED state the accuracy requirements shall be the same as the inter-frequency measurement accuracy requirements for TDD carrier RSSI in 3GPP TS 25.123 [19].

If the UE, in RRC_CONNECTED state, needs measurement gaps to perform UTRAN TDD measurements, the UTRAN TDD measurement procedure and measurement gap pattern stated in section 8.1.2.4.3 shall apply.

The reporting range and mapping specified for TDD carrier RSSI in 3GPP TS 25.123 [19] shall apply.

9.3.3 Void

9.4 GSM Measurements

The requirements in this clause are applicable for a UE:

- in state RRC_CONNECTED
- performing measurements according to section 8.1.2.4.5 with appropriate measurement gaps
- that is synchronised to the cell that is measured.

The reported measurement result after layer 1 filtering shall be an estimate of the average value of the measured quantity over the measurement period. The reference point for the measurement result after layer 1 filtering is referred to as point B in the measurement model described in 3GPP TS 25.302 [6].

The accuracy requirements in this clause are valid for the reported measurement result after layer 1 filtering. The accuracy requirements are verified from the measurement report at point D in the measurement model having the layer 3 filtering disabled.

9.4.1 GSM carrier RSSI

NOTE: This measurement is for handover between E-UTRAN and GSM.

The requirements in this section are valid for terminals supporting this capability.

The measurement period for RRC_CONNECTED state is specified in section 8.1.2.4.5.

In RRC_CONNECTED state the measurement accuracy requirements for RXLEV in TS 45.008 [8] shall apply.

If the UE, in RRC_CONNECED state, needs measurement gaps to perform GSM measurements, the GSM measurement procedure and measurement gap pattern stated in section 8.1.2.4.5 shall apply.

The reporting range and mapping specified for RXLEV in TS 45.008 [8] shall apply.

9.5 CDMA2000 1x RTT Measurements

The requirements in this clause are applicable for a UE:

- in RRC_CONNECTED state.
- synchronised to the cell that is measured.

9.5.1 CDMA2000 1x RTT Pilot Strength

NOTE: This measurement is for handover between E-UTRAN and cdma2000 1 x RTT.

The requirements in this section are valid for terminals supporting this capability.

CDMA2000 1xRTT Pilot Strength defined in sub-clause 5.1.10 of [4] shall meet the performance requirement defined in sub-clause 3.2.4 of [14] on the cdma2000 1xRTT neighbour cells indicated by the serving eNode B.

The CDMA2000 1xRTT Pilot Strength measurement reporting delay corresponding to the 90% measurement success rate shall not be larger than the $T_{basic_measurement_CDMA2000_1x} = 100$ ms.

If measurement gaps are required for CDMA2000 1xRTT Pilot Strength measurement then the time value $T_{basic_measurement_CDMA2000_1x}$ shall be appropriately scaled by multiplying it with a scale factor S_{gap} , which is based on the measurement gap pattern in use as defined in Table 9.5.1-1.

Gap Pattern Id	S _{gap}
0	32/3
1	64/3

Table 9.5.1-1: Gap Pattern Specific Scale Factor

10 Measurements Performance Requirements for E-UTRAN

10.1 Received Interference Power

The measurement period shall be 100 ms.

10.1.1 Absolute accuracy requirement

Table 10.2.1-1: Received Interference Power absolute accuracy

Parameter	Unit	Accuracy	Conditions
		[dB]	lob [dBm/180 kHz]
lob	dBm/180 kHz	± 4	-11796

10.1.2 Relative accuracy requirement

The relative accuracy is defined as the Received Interference Power measured at one frequency compared to the Received Interference Power measured from the same frequency at a different time.

Table 10.2.2-1: Received Interference Power relative accuracy

Parameter	Unit	Accuracy	Conditions
		[dB]	lob [dBm/180 kHz]
lob	dBm/180 kHz	± 0.5	-11796
			AND for changes $\leq \pm 9.0 \text{ dB}$

10.1.3 Received Interference Power measurement report mapping

The reporting range for Received Interference Power (RIP) is from -126 ... -75 dBm.

In table 10.2.3-1 the mapping of measured quantity is defined. The range in the signalling may be larger than the guaranteed accuracy range.

Table 10.2.3-1: Received Interference Power measurement reporting range

Reported value	Measured quantity value	Unit
RTWP_LEV _000	RIP < -126.0	dBm
RTWP_LEV _001	-126.0 ≤ RIP < -125.9	dBm
RTWP_LEV _002	-125.9 ≤ RIP < -125.8	dBm
RTWP_LEV _509	-75.2 ≤ RIP < -75.1	dBm
RTWP_LEV _510	-75.1 ≤ RIP < -75.0	dBm
RTWP_LEV _511	-75.0 ≤ RIP	dBm

Annex A (normative): Test Cases

A.1 Purpose of annex

This Annex specifies test specific parameters for some of the functional requirements in sections 4 to 9. The tests provide additional information to how the requirements should be interpreted for the purpose of conformance testing. The tests in this Annex are described such that one functional requirement may be tested in one or several test and one test may verify several requirements. Some requirements may lack a test.

The conformance tests are specified in TS 36.521-3 [23]. Statistical interpretation of the requirements is described in Annex A.2.

A.2 Requirement classification for statistical testing

Requirements in this specification are either expressed as absolute requirements with a single value stating the requirement, or expressed as a success rate. There are no provisions for the statistical variations that will occur when the parameter is tested.

Annex A outlines the tests in more detail and lists the test parameters needed. The test will result in an outcome of a test variable value for the device under test (DUT) inside or outside the test limit. Overall, the probability of a "good" DUT being inside the test limit(s) and the probability of a "bad" DUT being outside the test limit(s) should be as high as possible. For this reason, when selecting the test variable and the test limit(s), the statistical nature of the test is accounted for.

The statistical nature depends on the type of requirement. Some have large statistical variations, while others are not statistical in nature at all. When testing a parameter with a statistical nature, a confidence level is set. This establishes the probability that a DUT passing the test actually meets the requirements and determines how many times a test has to be repeated and what the pass and fail criteria are. Those aspects are not covered by TS 36.133. The details of the tests on how many times to run it and how to establish confidence in the tests are described in TS 36.521-3 [23]. This Annex establishes the variable to be used in the test and whether it can be viewed as statistical in nature or not.

A.2.1 Types of requirements in TS 36.133

A.2.1.1 Time and delay requirements on UE higher layer actions

A very large part of the RRM requirements are delay requirements:

- In E-UTRAN RRC_IDLE state mobility (clause A.4) there is cell re-selection delay.
- In E-UTRAN RRC_CONNECTED state mobility (clauses A.5 and A.8) there is handover delay, cell search delay and measurement reporting delay.
- In RRC Connection Control (clause A.6) there is RRC re-establishment delay.

All have in common that the UE is required to perform an action observable in higher layers (e.g. camp on the correct cell) within a certain time after a specific event (e.g. when a new strong pilot or reference signal appears). The delay time is statistical in nature for several reasons, among others that several of the measurements are performed by the UE in a fading radio environment.

The variations make a strict limit unsuitable for a test. Instead there is a condition set for a correct action by the UE, e.g. that the UE shall camp on the correct cell within X seconds. Then the rate of correct events is observed during repeated

tests and a limit is set on the rate of correct events, usually 90% correct events are required. How the limit is applied in the test depends on the confidence required, further detailed are in TS 36.521-3 [23].

A.2.1.2 Measurements of power levels, relative powers and time

A very large number of requirements are on measurements that the UE performs:

- In E-UTRAN RRC_CONNECTED state mobility (clause A.5) there are measurement reports.
- In Measurement Performance Requirements (clause A.9) there are requirements for all type of measurements.

The accuracy requirements on measurements are expressed in this specification as a fixed limit (e.g. +/-X dB), but the measurement error will have a distribution that is not easily confined in fixed limits. Assuming a Gaussian distribution of the error, the limits will have to be set at +/- 3.29σ if the probability of failing a "good DUT" in a single test is to be kept at 0.1%. It is more reasonable to set the limit tighter and test the DUT by counting the rate of measurements that are within the limits, in a way similar to the requirements on delay.

A.2.1.3 Implementation requirements

A few requirements are strict actions the UE should take or capabilities the UE should have, without any allowance for deviations. These requirements are absolute and should be tested as such. Examples are:

- "Event triggered report rate" in E-UTRAN RRC_CONNECTED state mobility (clauses A.5 and A.8)
- "Correct behaviour at time-out" in RRC connection control (clause A.6)

A.2.1.4 Physical layer timing requirements

There are requirements on Timing and Signaling Characteristics (clauses A.7). There are both absolute and relative limits on timing accuracy depending upon the type of requirement. Examples are:

- Initial Transmit Timing (clause A.7.1) has an absolute limit on timing accuracy.
- Timing Advance (clause A.7.2) has a relative limit on timing accuracy.

A.3 RRM test configurations

A.3.1 Reference Measurement Channels

- A.3.1.1 PDSCH
- A.3.1.1.1 FDD

Table A.3.1.1.1-1: PDSCH Reference Measurement Channels for FDD

Parameter	Unit			Va	lue	lue					
Reference channel		[R.2 FDD]			[R.0 FDD]	[R.1 FDD]					
Channel bandwidth	MHz	1.4	3	5	10	10	20				
Number of transmitter antennas		1			1	2					
Allocated resource blocks		2			24	24					
Allocated subframes per Radio Frame		10			10	10					
Modulation		QPSK			QPSK	QPSK					
Target Coding Rate		1/3			1/3	1/3					
Information Bit Payload											
For Sub-Frames 4, 9	Bits	120			2088	2088					
For Sub-Frame 5	Bits	104			2088	1736					
For Sub-Frame 0	Bits	32			1736	1736					
For Sub-Frame 1, 2, 3, 6, 7, 8	Bits	0			0	0					
Number of Code Blocks per subframe		1			1	1					
Binary Channel Bits Per Sub-Frame											
For Sub-Frames 4, 9	Bits	456			6624	6336					
For Sub-Frame 5	Bits	360			6336	6048					
For Sub-Frame 0	Bits	176			5784	5520					
For Sub-Frame 1, 2, 3, 6, 7, 8	Bits	0			0	0					
Max. Throughput averaged over 1 frame	kbps	37.6			800	765					
Note 1: 2 symbols allocated to PDCCH for 10 MHz Note 2: 4 symbols allocated to PDCCH for 1.4 MH	z channel BW.		<i>"</i> 1' 0								

Note 3: Reference signal, synchronization signals and PBCH allocated as defined in 3GPP TS 36.211 [16].

Note 4: If necessary the information bit payload size can be adjusted to facilitate the test implementation. The payload sizes are defined in 3GPP TS 36.213 [3].

A.3.1.1.2 TDD

Parameter	Unit			Va	lue		
Reference channel		[R.2 TDD]			[R.0 TDD]	[R.1 TDD]	
Channel bandwidth	MHz	1.4	3	5	10	10	20
Number of transmitter antennas		1			1	2	
Allocated resource blocks		2			24	24	
Allocated subframes per Radio Frame		6			6	6	
Modulation		QPSK			QPSK	QPSK	
Target Coding Rate		1/3			1/3	1/3	
Information Bit Payload							
For Sub-Frames 4,9	Bits	120			2088	2088	
For Sub-Frame 5	Bits	104			2088	2088	
For Sub-Frame 0	Bits	56			2088	1736	
For Sub-Frame 1, 6 (DwPTS)	Bits	56			1064	1064	
Number of Code Blocks per subframe		1			1	1	
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	456			6624	6336	
For Sub-Frame 5	Bits	408			6480	6192	
For Sub-Frame 0	Bits	224			5928	5640	
For Sub-Frame 1, 6 (DwPTS)	Bits	272			3696	3504	
Max. Throughput averaged over 1 frame	Mbps	0.051 2			1.09	1.01	
Note 1: 2 symbols allocated to PDCCH for 10 MHz	channel BW					•	

Table A.3.1.1.2-1: PDSCH Reference Measurement Channels for TDD

Note 2: 4 symbols allocated to PDCCH for 1.4 MHz channel BW Note 3: Reference signal, synchronization signals and PBCH allocated as defined in 3GPP TS 36.211 [16].

Note 4: If necessary the information bit payload size can be adjusted to facilitate the test implementation. The payload sizes are defined in 3GPP TS 36.213 [3].

A.3.1.2 PCFICH/PDCCH/PHICH

A.3.1.2.1 FDD

Parameter	Unit			Val	ue		
Reference channel		[R.8 FDD]			[R.6 FDD]	[R.7 FDD]	
Channel bandwidth	MHz	1.4			10	10	
Number of transmitter antennas		1			1	2	
Control region OFDM symbols ^{Note1}	symbols	4			2	2	
Aggregation level	CCE	4			8	8	
DCI Format		Note 3			Note 3	Note 3	
Cell ID		Note 4			Note 4	Note 4	
Payload (without CRC)	Bits	Note 5			Note 5	Note 5	
Note 1: The control region consists of PC Note 2: DCI formats are defined in 3GPP Note 3: DCI format shall depend upon the Note 4: Cell ID shall depend upon the tes	TS 36.212. e test configu t configuratio	iration. on.	CCH.				

Note 5: Payload size shall depend upon the test configuration.

A.3.1.2.2 TDD

Table A.3.1.2.2-1: PCFICH/PDCCH/PHICH Reference Channel for TDD

Parameter	Unit			Va	ue		
Reference channel		[R.8 TDD]			[R.6 TDD]	[R.7 TDD]	
Channel bandwidth	MHz	1.4			10	10	
Number of transmitter antennas		1			1	2	
Control region OFDM symbols ^{Note1}	symbols	4			2	2	
Aggregation level	CCE	4			8	8	
DCI Format		Note 3			Note 3	Note 3	
Cell ID		Note 4			Note 4	Note 4	
Payload (without CRC)	Bits	Note 5			Note 5	Note 5	
Note 1: The control region consists of PC Note 2: DCI formats are defined in 3GPP Note 3: DCI format shall depend upon the Note 4: Cell ID shall depend upon the tes Note 5: Payload size shall depend upon t	TS 36.212. e test configu t configuratio	iration. on.	CCH.				

A.3.2 OFDMA Channel Noise Generator (OCNG)

A.3.2.1 OCNG Patterns for FDD

A.3.2.1.1 OCNG FDD pattern 1: outer resource blocks allocation in 10 MHz

Allocation	_			Re	PDSCH Data	PMCH Data									
n _{PRB}	CP length						Subf							Dala	Dala
	P le		0			5			4,9		1-	3, 6	6-8	-	
	ប				rol			=DM		bols	Note 2				
		Control region OFDM symbols 1 2 3 1 2 3 1 2													
0 – 12	N		0			0			0			N/A	L.	Note 1	N/A
37 – 49	Ν		0			0			0			N/A			
0-49	Ν	Ν	N/A			N/A			N/A	L		0		N/A	Note 3
be pa Note 2: Th sy Note 3: Ea ea mo co Re us Note 4: If two	a uncol aramet ne con mbols ach ph ach PR easure ntain o eferen ed to so o or m	rrelated er γ_{PRI} trol reg belong ysical r B shal ement. cell-spe ce Sigr scale th ore tra	d ps ^B is gion ging resc Il be The ecifi nals he p insn	used cons to th ource MBS c Ref only owen nit an	o ran to s ists bloc orrel SFN ferer in th r of f	idom scale of PC ontrol ck (Pf ated data nce S ne firs PMCh nas ar	data the p FIC RB) i with shal igna st syr H. re us	, whi bowe H, Pl on m s as data ll be ls. P mbol mbol	ch is r of F HICH ay va signe in ot QPS MCH of th	QPS PDSC I and ary be d to her F K mo I subf e firs test,	K mc PDC twee MBSF RBs dulat rame t time	CH. en si FN t ove ed. s sh s sh	Num ubfrai ransr r the PMC hall co t. The G sha	aber of OFE mes. nission. Th period of a H symbols ontain cell-s e paramete all be transi	DM e data in ny shall not specific r γ_{PRB} is
tra tra	Insmis Insmit ction 7	sion m antenr 7.1 in 3	node nas	e 2. T used	he t in tl	ransn he tes	nit po	ower	shal	l be e	quall	y sp	lit be	antenna tween all th des are spe	

Table A.3.2.1.1-1: OP.1 FDD: OCNG FDD Pattern 1

A.3.2.1.2 OCNG FDD pattern 2: full bandwidth allocation in 10 MHz

Allocatio		Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]												PDSCH Data	PMCH Data
n _{PRB}	CP length					S	Subfi	am	e					Data	Data
	P le		0			5			4, 9		1 -	- 3, 6	5 – 8		
	ប		Control region OFDM symbols ^{Note 2}												
0 – 49	N	0 0 0 N/A						L.	Note 1	N/A					
0 – 49	N	N/A N/A N/A							N/A N/A N/A O						Note 3
Note 1:		e PDS	CH p	ber vi	rtual	UE;	the d	lata	trans	mitte	d ove	er the	e OCI	er of virtua NG PDSCH The	
Note 2: Note 3:	symbol Each pl each Pl measur	ntrol re s beloi nysica RB sha ement	egion nging I reso all be t. The	cons to th ource ource MB	ists o le co bloc orrela SFN	of PC ntrol k (Pl ated data	CFICI regio RB) i with shal	H, F on n s as data l be	HICH nay va signe in ot QPS	and ary be d to l ner P K mo	PDC etwee MBS PRBs odula	en su FN t ove ted.	ubfrar ransn r the PMCI	ber of OFE nes. nission. The period of ar H subframe he first time	e data in ny es shall
Note 4:	to the v transmi	r more irtual u ssion i t anter	e tran users mode nnas	ismit a s by a e 2. T used	antei II the he tr in th	nnas tran ansn ne tes	are o smit nit po	useo anto ower	d in th ennas r shall	e tes and be e	t, the acco qual	e OC ordin ly sp	g to tl lit bet	hall be trar he antenna tween all th les are spe	ie
N: Normal N/A: Not A		e													

Table A.3.2.1.2-1: OP.2 FDD: OCNG FDD Pattern 2

A.3.2.1.3 OCNG FDD pattern 3: outer resource blocks allocation in 1.4 MHz

Allocation	ء	Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]														SCH ata	PMCH Data
n _{PRB}	CP length					S	Subf	ran	ne								
	P e		0			5			4,9	9		1-3	3, 6	-8			
	C	Control region OFDM symbols ^{Note 2}												_			
		1 2 3 1 2 3 1 2 3 1 2 3 1 2															
0 – 1	Ν		0			0			0			١	۸/A		No	ote 1	N/A
4 – 5	Ν		0			0			0			١	N/A				
0 – 5	Ν	Ν		N/A			N/A	4			0		Ν	I/A	Note 3		
p Note 2: T S Note 3: E e n	e unco aramet he con ymbols ach ph ach PR neasure	rrelated er γ_{PRE} trol reg belong ysical r B shall ement.	d pse ^B is u gion o ging resou Il be The	eudo used cons to th urce unco MBS	to so ists o bloc orrela SFN	dom cale of PC ntrol k (Pl ated data	data the p CFIC regi RB) i with sha	n, wh Dow H, F on r is as data II be	er of PHICI nay v ssigne a in o	s QI PDS H ar vary ed t the SK r	PSł SCł nd f be to N r Pf moc	<pre>< mod H. DCC tweer IBSFI RBs o fulate</pre>	dula CH. n su N tr iver	Nun Ibfra ansi the PMC	The nber of mes. missio perio H syr	of OFI on. Th d of a mbols	e data in ny shall not
F U Note 4: If to ti ti	Referent ised to a f two or the vit ransmis	ce Sigr scale th more t rtual us sion m antenr	hals o he po trans sers l hode has u	only ower smit a by a 2. T used	in th r of F anter Il the he tr in th	e firs MCI nnas tran ansr ansr	st syi H. are ismit nit po	mbo use ant	l of th d in tl enna: r sha	he f he t s ar Il be	irst test nd a e ec	time : , the (accord qually	slo OC ding	Th NG s g to t lit be	e para shall I the ar etwee	amete De trai Intenna n all th	
N: Normal N/A: Not Ap	plicable	9															

Table A.3.2.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

A.3.2.1.4 OCNG FDD pattern 4: full bandwidth allocation in 1.4 MHz

Allocation		Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]												PDSCH Data	PMCH Data
n _{PRB}	CP length					S	Subfi	ram	ne					Data	Data
	Ple		0			5			4, 9)	1 -	- 3, 6	6 – 8		
	Ū				rol r			DN		bols	Note 2				
		Control region OFDM symbols 1 2 3 1 2 3 1 2													
0 – 5	N		0			0			0			N/A	١	Note 1	N/A
0 – 5	N	N/A				N/A			N/A	L.		0		N/A	Note 3
		PDS(СН р	er vi	rtual	UE;	the d	lata	trans	mitte	d ove	er the	e OCI	er of virtua NG PDSCH The	
Note 2: Note 3:	symbols Each ph each PF measure	trol reg belon ysical RB sha ement.	gion nging resc all be . The	cons to th ource unco MBS	ists o le co bloc orrela SFN	of PC Introl k (Pl ated data	CFICI regio RB) i with shal	H, F on n s as data l be	PHICH nay va ssigne a in ot QPS	I and ary be ed to I her P K mo	PDC etwe MBS PRBs dula	en s FN t ove ted.	ubfrar ransn r the PMCI	iber of OFE nes. nission. The period of ar H subframe he first time	e data in ny es shall
Note 4:	to the vi transmis	more rtual u ssion n anten	trans isers node inas	smit a by a e 2. T used	antei II the he tr in th	nnas e tran ransn ne tes	are i Ismit nit po	use ant owe	d in th ennas r shal	e tes and be e	t, the acco qual	e OC ordin ly sp	g to ti olit be	hall be trar he antenna tween all th des are spe	ie
N: Normal N/A: Not A	pplicable	9													

Table A.3.2.1.4-1: OP.4 FDD: OCNG FDD Pattern 4

A.3.2.2 OCNG Patterns for TDD

A.3.2.2.1 OCNG TDD pattern 1: outer resource blocks allocation in 10 MHz

Table A.3.2.2.1-1: OP.1 TDD: OCNG TDD Pattern 1 for 5ms downlink-to-uplink switch-point periodicity

Allocation	ţ				Rel	ative p	ower le	vel $\gamma_{_{PR}}$	_B [dB]				PDSCH Data
n_{PRB}	CP length						Subfra						
	le		0			5	ion OFD	3,4	1, 8, 9 [№]	ote 2	1,	6	
	С												
		1	2	3	1	2	3	1	2	3	1	2	
0 – 12	Ν		0			0			0		Tal	ble	Note 4
37 – 49	N		0	Note 1									
virtua		e data	a trans	mitted	over th	e OCN	G PDSC	Hs shal	l be un	correl	ated pse		e PDSCH per dom data, which
4.2-2 Note 3: The c	in 3GPF	P TS (36.211 consis	[16]. ts of F	CFICH	, PHICI		-			-		fined in Table
N: Normal													

Table A.3.2.2.1-2: OP.1 TDD: OCNG TDD Pattern 1 for special subframe configuration with 5ms downlink-to-uplink switch-point periodicity

Allocation	ţ			R	elative po	wer level	$\gamma_{_{PRB}}$ [dB]						
n_{PRB}	length		Special subframe configuration										
		0	1	2	3	4	5	6	7	8			
	с С			С	ontrol reg	ion OFDN	l symbols						
	•	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2			
0 - 12		0	0	0	0	0	0	0	0	0			
0 - 12	Ν	0	0	0	0	0	0	0	\geq	\ge			
37 – 49		0	0	0	0	0	0	0	0	0			
37 - 49	Ν	0	0	0	0	0	0	0	\geq	\ge			
Note 1: Special su	ubframe o	configuratio	ons are defi	ned in Table	e 4.2-1 in T	FS 36.211	[16].						

A.3.2.2.2 OCNG TDD pattern 2: full bandwidth allocation in 10 MHz

	ч		Relative power level γ_{PRB} [dB]PDSCH																
n_{PRB}	CP length						Subfr						•						
	ē		0			5		3,4	4, 8, 9 [№]	te 2		1, 6	Ĩ						
	с Б				Cont	trol reg	gion OF	DM sym	bols ^{Note}	3									
	_	1	2	3	1	2	3	1	2	3	1	2							
0 - 49	N		0			0			0		-	able 2.2.2-2	Note 1						
UE	ese physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual ; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK odulated. The parameter γ_{PRB} is used to scale the power of PDSCH.																		
	bframes a 36.211 [1		e for [OL trar	nsmissio	n depe	ends on t	he Uplir	ık-Down	link co	onfigura	ation in Ta	ble 4.2-2 in 3GPP						
Note 3: Th							H and P[on consists of PCFICH, PHICH and PDCCH. Number of OFDM symbols belonging to the											
	control region may vary between subframes. If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas and according to the antenna transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.																		

Table A.3.2.2.2-1: OP.2 TDD: OCNG TDD Pattern 2 for 5ms downlink-to-uplink switch-point periodicity

Table A.3.2.2.2-2: OP.2 TDD: OCNG TDD Pattern 2 for special subframe configuration with 5ms downlink-to-uplink switch-point periodicity

Allocation	Ę		Relative power level $\gamma_{_{PRB}}$ [dB]																
n _{PRB}	length		Special subframe configuration																
		()		1	2	2		3	4	4	ţ	5	6	6		7	8	3
	С С						С	ontro	ol reg	ion (OFDN	l sym	bols						
	•	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
																()	()
0 – 49	N	()	(C	(D	()	(0	(C	()	>	\langle	>	$\overline{\langle}$
Note 1: Special su	ubframe o	config	uratio	ons ar	e defi	ined in	n Tabl	e 4.2-	1 in 3	GPP	TS 3	6.21	1 [16]						

A.3.2.2.3 OCNG TDD pattern 3: outer resource blocks allocation in 1.4 MHz

 Table A.3.2.2.3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5 ms downlink-to-uplink switch-point periodicity

Allocation	ų		Relative power level γ_{PRB} [dB]PDSCH											
n_{PRB}	CP length						Subfra							
	e		0			5		3,4	, 8, 9 ^{No}	ote 2	1,	6		
	с С		Control region OFDM symbols ^{Note 3}											
		1	2	3	1	2	3	1	2	3	1	2		
0 – 1	N		0			0			0		Tab	ole		
4 – 5	N		0			0			0		A.3.2.	2.3-2	Note 1	
A.3.2.2.3-2														

Table A.3.2.2.3-2: OP.1 TDD: OCNG TDD Pattern 1 for special subframe configuration with 5 ms downlink-to-uplink switch-point periodicity

Allocation	ę						R	elativ	ve po	wer l	evel	$\gamma_{_{PRB}}$	[dB]						
n_{PRB}	length			Special subframe configuration															
	e	()		1		2		3	4	4	ţ	5	6	3	7	7	8	3
	С						С	ontro	ol reg	jion (OFDN	l sym	nbols						
	•	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
0 – 1	N	(C	(C	(0	(C	(0	(0	())		
	IN																$\overline{)}$		
4 – 5	N	()	()		0	(0	(0	(0	()	\geq	\leq	\geq	\sim
Note 1: Special su	ibframe o	config	uratio	ns ar	e defi	ned ir	n Tabl	e 4.2-	1 in 1	FS 36	.211	[16].							

A.3.2.2.4 OCNG TDD pattern 4: full bandwidth allocation in 1.4 MHz

Allocation			Relative power l	evel $\gamma_{_{PRB}}$ [dB]		PDSCH Data						
n_{PRB}	CP length		Subfr	ame		t i i i i i i i i i i i i i i i i i i i						
	<u>e</u>	0	5	3, 4, 8, 9 ^{Note 2}	1, 6							
	С С		Control region OFDM symbols ^{Note 3}									
	-	1 2 3	1 2 3	1 2 3	1 2							
0-5	Ν	0	0	0	Table A.3.2.2.4-2	Note 1						
UE	hese physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual JE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK nodulated. The parameter γ_{PRB} is used to scale the power of PDSCH.											
Note 2: Sul		ilable for DL trans	mission depends on th		figuration in Tab	le 4.2-2 in 3GPP						
			FICH, PHICH and PD0 nes.	CCH. Number of OFD	A symbols belon	ging to the control						
region may vary between subframes. Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas and according to the antenna transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.												

Table A.3.2.2.4-1: OP.4 TDD: OCNG TDD Pattern 4 for 5 ms downlink-to-uplink switch-point periodicity

Table A.3.2.2.4-2: OP.2 TDD: OCNG TDD Pattern 2 for special subframe configuration with 5 ms downlink-to-uplink switch-point periodicity

Allocation	ڊ.		Relative power level γ_{PRB} [dB]Special subframe configuration																
n _{PRB}	length																		
		()		1		2		3	4	4	ļ	5	(6	7	7	8	}
	С Р						С	ontro	ol reg	jion (OFDN	l sym	nbols						
	-	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
																()	C)
0 – 5	N	()	()	(0	(C	(0	(0	(C	>	<	>	\langle
Note 1: Special su	bframe o	config	uratio	ons ar	e defi	ned ir	n Tabl	e 4.2-	1 in 3	I BGPP	TS 3	36.21	1 [16]	•					

A.4 E-UTRAN RRC_IDLE state

- A.4.2 Cell Re-Selection
- A.4.2.1 E-UTRAN FDD FDD Intra frequency case

A.4.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD intra frequency cell reselection requirements specified in section 4.2.2.3.

The test scenario comprises of 1 E-UTRA FDD carrier and 2 cells as given in tables A.4.2.1.1-1 and A.4.2.1.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Only Cell 1 is already identified by the UE prior to the start of the test, i.e. Cell 2 is not identified by the UE prior to the start of the test. Cell 1 and Cell 2 belong to different tracking areas. Furthermore, UE has not registered with network for the tracking area containing Cell 2.

	Parameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2	
T2 end	Active cell		Cell2	
condition	Neighbour cells		Cell1	
Final condition	Visited cell		Cell1	
E-UTRA R	F Channel Number		1	Only one FDD carrier frequency is used.
Channel B	andwidth (BW _{channel})	MHz	10	
Time offse	t between cells		3 ms	Asynchronous cells
Access Ba	rring Information	-	Not Sent	No additional delays in random access procedure.
PRACH co	onfiguration		4	As specified in table 5.7.1-2 in 3GPP TS 36.211
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	15	During T1, Cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that Cell 2 has not been detected by the UE prior to the start of period T2
T2		S	40	T2 need to be defined so that cell re- selection reaction time is taken into account.
Т3		S	15	T3 need to be defined so that cell re- selection reaction time is taken into account.

Parameter	Unit		Cell 1		Cell 2					
		T1	T2	T3	T1	T2	Т3			
E-UTRA RF Channel Number			1			1				
BW _{channel}	MHz		10			10				
OCNG Patterns defined in A.3.2.1.1 (OP.2 FDD)		C	P.2 FDD			OP.2 FDD				
PBCH_RA										
PBCH_RB										
PSS_RA										
SSS_RA										
PCFICH_RB										
PHICH_RA										
PHICH_RB	dB		0			0				
PDCCH_RA										
PDCCH_RB										
PDSCH_RA										
PDSCH_RB										
OCNG_RA ^{Note 1}										
OCNG_RB ^{Note 1}										
Qrxlevmin	dBm	-140	-140	-140	-140	-140	-140			
Pcompensation	dB	0	0	0	0	0	0			
Qhyst _s	dB	0	0	0	0	0	0			
Qoffset _{s, n}	dB	0	0	0	0	0	0			
Cell_selection_and_ reselection_quality_ measurement			RSRP			RSRP				
\hat{E}_{s}/I_{ot}	dB	11	-3.33	2.36	-infinity	2.36	-3.33			
$N_{_{oc}}$ Note2	dBm/15 kHz				-98	I				
\hat{E}_{s}/N_{oc}	dB	11	8	11	-infinity	11	8			
RSRP ^{Note3}	dBm/15 kHz	-87	-90	-87	-infinity	-87	-90			
Treselection	S	0	0	0	0	0	0			
Sintrasearch	dB		Not sent			Not sent				
Propagation Condition					AWGN					
Note 1: OCNG shall be density is achie Note 2: Interference fro	eved for all OFDM	symbols. noise source	es not spe	cified in th	ne test is assu	umed to be cor	nstant over			

Table A.4.2.1.1-2: Cell specific test parameters for FDD intra frequency cell reselection test case in AWGN

A.4.2.1.2 Test Requirements

parameters themselves.

The cell reselection delay to a newly detectable cell is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable

The cell re-selection delay to a newly detectable cell shall be less than 34 s.

The cell reselection delay to an already detected cell is defined as the time from the beginning of time period T3, to the moment when the UE camps on Cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 1.

The cell re-selection delay to an already detected cell shall be less than 8 s.

3GPP TS 36.133 version 8.6.0 Release 8

97

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to a newly detectable cell can be expressed as: $T_{detect,EUTRAN_{Intra}} + T_{SI}$, and to an already detected cell can be expressed as: $T_{evaluateFDD,intra} + T_{SI}$,

Where:

$T_{detect,EUTRAN_Intra}$	See Table 4.2.2.3-1 in section 4.2.2.3
T _{evaluateFDD,intra}	See Table 4.2.2.3-1 in section 4.2.2.3
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 33.28 s, allow 34 s for the cell re-selection delay to a newly detectable cell and 7.68 s, allow 8 s for the cell re-selection delay to an already detected cell in the test case.

A.4.2.2 E-UTRAN TDD – TDD Intra frequency case

A.4.2.2.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD intra frequency cell reselection requirements specified in section 4.2.2.3.

The test scenario comprises of 1 E-UTRA TDD carrier and 2 cells as given in tables A.4.2.2.1-1 and A.4.2.2.1-2. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas. Furthermore, UE has not registered with network for the tracking area containing cell 2.

F	Parameter	Unit	Value	Comment
Initial	Active cell		Cell1	
condition	Neighbour cells		Cell2	
Final condition	Visited cell		Cell2	
E-UTRA RI	F Channel Number		1	Only one TDD carrier frequency is used.
Channel Ba	andwidth (BW _{channel})	MHz	10	
Time offset	between cells		3 μs	Synchronous cells
Access Ba	rring Information	-	Not Sent	No additional delays in random access procedure.
Special sub	oframe configuration		6	As specified in table 4.2-1 in 3GPP TS 36.211
Uplink-dow	nlink configuration		1	As specified in table 4.2-2 in 3GPP TS 36.21
PRACH co	nfiguration index		53	As specified in table 5.7.1-3 in 3GPP TS 36.211
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re-selection
				reaction time is taken into account.
T2		S	15	T2 need to be defined so that cell re-selection
				reaction time is taken into account.

Table A.4.2.2.1-1: General test parameters for TDD intra frequency cell re-selection test case

E-UTRA RF Channel Number BW _{channel} OCNG Pattern defined in A.3.2.2.1 (OP.2 TDD) PBCH_RA PBCH_RB PSS_BA	MHz	T1 OP	T2 1 10 .2 TDD	T1 OP.	T2 1 10	
Number BW _{channel} OCNG Pattern defined in A.3.2.2.1 (OP.2 TDD) PBCH_RA PBCH_RB	MHz	OP	10	OP.	-	
BW _{channel} OCNG Pattern defined in A.3.2.2.1 (OP.2 TDD) PBCH_RA PBCH_RB	MHz	OP		OP.	10	
OCNG Pattern defined in A.3.2.2.1 (OP.2 TDD) PBCH_RA PBCH_RB	MHz	OP		OP.	10	
OCNG Pattern defined in A.3.2.2.1 (OP.2 TDD) PBCH_RA PBCH_RB		OP	.2 TDD	OP.		
(OP.2 TDD) PBCH_RA PBCH_RB		OP	.2 TDD	OP.		
PBCH_RA PBCH_RB					2 TDD	
PBCH_RB						
PSS_RA						
SSS_RA						
PCFICH_RB						
PHICH_RA						
PHICH_RB	dB		0	0		
PDCCH_RA						
PDCCH_RB						
PDSCH_RA						
PDSCH_RB						
OCNG_RA ^{Note 1}						
OCNG_RB ^{Note 1}						
Qrxlevmin	dBm	-	·140	-140		
Pcompensation	dB		0	0		
Qhyst _s	dB		0	0		
Qoffset _{s, n}	dB		0	0		
Cell_selection_and_						
reselection_quality_		R	SRP	RSRP		
measurement						
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	2.36	-3.33	-3.33	2.36	
N_{oc} Note2 dE	3m/15 kHz		-	98		
\hat{E}_s/N_{oc}	dB	11	8	8	11	
	3m/15 kHz	-87	-90	-90	-87	
Treselection	S	0	0	0	0	
Sintrasearch	dB	No	ot sent	No	t sent	
Propagation			AV	VGN		
Condition						
Note 1: OCNG shall be used su spectral density is achi	ch that both ce	lls are fully all DM symbols.	ocated and a cons	stant total transr	nitted power	
Note 2: Interference from other			specified in the tes	t is assumed to	be constant over	
			•			
subcarriers and time ar	nd shall be mo	delled as AWC	GN of appropriate	power for ¹ v _{oc}	to be fulfilled.	
Note 3: RSRP levels have been	derived from a	other parameter	ers for information	purposes. They	vare not settable	
parameters themselves	6.					

Table A.4.2.2.1-2: Cell specific test parameters for TDD intra frequency cell re-selection test case in AWGN

A.4.2.2.2 Test Requirements

The cell reselection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 2.

The cell re-selection delay shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $T_{evaluateFDD,intra} + T_{SI}$,

Where:

T_{evaluateFDD,intra} See Table 4.2.2.3-1 in section 4.2.2.3

T_{SI} Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 7.68 s, allow 8 s in the test case.

A.4.2.3 E-UTRAN FDD – FDD Inter frequency case

A.4.2.3.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD inter-frequency cell reselection requirements specified in section 4.2.2.4.

The test scenario comprises of 2 E-UTRA FDD cells on 2 different carriers as given in tables A.4.2.3.1-1 and A.4.2.3.1-2. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 2 is of higher priority than cell 1. Furthermore, UE has not registered with network for the tracking area containing cell 2.

Table A.4.2.3.1-1: General test parameters for FDD-FDD inter frequency cell re-selection test case

	Parameter	Unit	Value	Comment
Initial condition	Active cell		Cell2	UE shall be forced to cell 2 in the initialisation phase, so that reselection to cell 1 occurs during the first T1 phase
T1 end condition	Active cell Neighbour cell		Cell1 Cell2	UE shall perform reselection to cell 1 during T1
Final condition	Active cell		Cell2	UE shall perform reselection to cell 2 during T3
E-UTRA R	F Channel Number		1, 2	Two FDD carrier frequencies are used.
Time offset	t between cells		3 ms	Asynchronous cells
PRACH co	nfiguration		4	As specified in table 5.7.1-2 in TS 36.211
Access Ba	rring Information	-	Not Sent	No additional delays in random access procedure.
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re-selection reaction time is taken into account.
Τ2		S	5	During T2, cell 2 shall be powered off, and during the off time the physical cell identity shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T3.
Т3		S	75	T3 need to be defined so that cell re-selection reaction time is taken into account.

Parameter	Unit	Cell 1			Cell 2		
		T1	T2	T3	T1	T2	T3
E-UTRA RF Channel			1			2	
number							
BW _{channel}	MHz		10		10		
OCNG Patterns defined in							
A.3.2.1.1 (OP.2 FDD)		OP	.2 FDD		OP.2 FDD		
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB						
PHICH_RB	dB		0			0	
PDCCH_RA	dB						
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB]					
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
Qrxlevmin	dBm	-	·140			-140	
$N_{_{oc}}$ Note 2	dBm/15 kHz				-98		
RSRP Note 3	dBm/15 KHz	-84	-84	-84	-100	-infinity	-86
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	14	14	14	-4	-infinity	12
\hat{E}_s/N_{oc}	dB	14	14	14	-4	-infinity	12
TreselectionEUTRAN	S		0			0	
Snonintrasearch	dB		50			Not sent	
Thresh _{x, high}	dB		48			48	
Thresh _{serving, low}	dB	44 44					
Thresh _{x, low}	dB	50 50					
Propagation Condition					AWGN		
Note 1: OCNG shall be used	such that both ce	lls are fully	allocated	and a	constant to	tal transmitte	d power
spectral density is ac Note 2: Interference from oth	hieved for all OFC	M symbols					
over subcarriers and			•				
fulfilled.				- 1 · F	, F-	oc	

Table A.4.2.3.1-2: Cell specific test parameters for FDD-FDD inter-frequency cell reselection test case in AWGN

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.4.2.3.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on Cell 2.

The cell re-selection delay to higher priority shall be less than 68 s.

The cell reselection delay to lower priority is defined as the time from the beginning of time period T1, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to lower priority shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as: $T_{higher_priority_search} + T_{evaluateFDD,intra} + T_{SI}$, and to lower priority cell can be expressed as: $T_{evaluateFDD,intra} + T_{SI}$,

Where:

$T_{higher_priority_search}$	See section 4.2.2
$T_{evaluateFDD,inter}$	See Table 4.2.2.4-1 in section 4.2.2.4
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 67.68 s for higher priority cell search and 7.68 s for lower priority cell search, allow 68 s for higher priority cell and 8 s for lower priority cell in the test case.

A.4.2.4 E-UTRAN FDD – TDD Inter frequency case

A.4.2.5 E-UTRAN TDD – FDD Inter frequency case

A.4.2.6 E-UTRAN TDD – TDD: Inter frequency case

A.4.2.6.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD inter-frequency cell reselection requirements specified in section 4.2.2.4.

The test scenario comprises of 2 E-UTRA TDD cells on 2 different carriers as given in tables A.4.2.6.1-1 and A.4.2.6.1-2. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both cell 1 and cell 2 are already identified by the UE prior to the start of the test. Cell 1 and cell 2 belong to different tracking areas and cell 2 is of higher priority than cell 1. Furthermore, UE has not registered with network for the tracking area containing cell 2.

	Parameter		Value	Comment
Initial condition	Active cell		Cell2	UE shall be forced to cell 2 in the initialisation phase, so that reselection to cell 1 occurs during the first T1 phase
T1 end	Neighbour cells		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour cell		Cell2	
T2 end condition	Neighbour cell		Cell2	UE shall perform reselection to cell 2 during T2
E-UTRA R	F Channel Number		1, 2	Two TDD carrier frequencies are used.
Time offse	t between cells		3 μs	Synchronous cells
Access Ba	rring Information	-	Not Sent	No additional delays in random access procedure.
Special su	bframe configuration		6	As specified in table 4.2-1 in 3GPP TS 36.211
Uplink-dow	nlink configuration		1	As specified in table 4.2-2 in 3GPP TS 36.211
PRACH co	onfiguration index		53	As specified in table 5.7.1-3 in 3GPP TS 36.211
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	15	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	75	T2 need to be defined so that cell re-selection reaction time is taken into account.

Parameter	Unit	C	ell 1	C	ell 2
		T1	T2	T1	T2
E-UTRA RF Channel		1			2
number					
BW _{channel}	MHz	10		10	
OCNG Pattern defined in					
A.3.2.2.1 (OP.2 TDD)		OP.	2 TDD	OP	.2 TDD
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB		0		0
PHICH_RB	dB				
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
Qrxlevmin	dBm		140	-	140
N_{oc} Note 2	dBm/15 kHz			-98	
RSRP ^{Note 3}	dBm/15 KHz	-84	-84	-102	-86
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	14	14	-4	12
\hat{E}_s/N_{oc}	dB	14	14	-4	12
TreselectionEUTRAN	S		0		0
Snonintrasearch	dB		50	No	ot sent
Thresh _{x, high}	dB		48		48
Thresh _{serving, low}	dB		44		44
Thresh _{x, low}	dB	50 50			50
Propagation Condition				WGN	
Note 1: OCNG shall be used sud density is achieved for Note 2: Interference from other	all OFDM symbols.	-			
subcarriers and time ar	nd shall be modelled	as AWGN of a	ppropriate powe	er for N_{oc} to be	fulfilled.
Note 3: RSRP levels have been parameters themselves	derived from other p			00	

Table A.4.2.6.1-2: Cell specific test parameters for TDD-TDD inter-frequency cell reselection test case in AWGN

A.4.2.6.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to higher priority shall be less than 68 s.

The cell reselection delay to lower priority is defined as the time from the beginning of time period T1, to the moment when the UE camps on cell 1, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message to perform a Tracking Area Update procedure on cell 1.

The cell re-selection delay to lower priority shall be less than 8 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as: $T_{higher_priority_search} + T_{evaluateFDD,intra} + T_{SI}$, and to lower priority cell can be expressed as: $T_{evaluateFDD,intra} + T_{SI}$,

Where:

$T_{higher_priority_search}$	See section 4.2.2
$T_{evaluateFDD,inter}$	See Table 4.2.2.4-1 in section 4.2.2.4
T _{SI}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 67.68 s for higher priority cell search and 7.68 s for lower priority cell search, allow 68 s for higher priority cell and 8 s for lower priority cell in the test case.

A.4.3 E-UTRAN to UTRAN Cell Re-Selection

A.4.3.1 E-UTRAN FDD – UTRAN FDD:

A.4.3.1.1 EUTRA FDD-UTRA FDD cell reselection: UTRA FDD is of higher priority

A.4.3.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRA FDD- UTRA FDD inter-RAT cell reselection requirements specified in section 4.2.2.5 when the UTRA cell is of higher priority.

The test scenario comprises of one E-UTRA FDD and one UTRA FDD cells as given in tables A.4.3.1.1.1-1, A.4.3.1.1.1-2 and A.4.3.1.1.1-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both E-UTRA cell 1 and UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of higher priority than cell 1.

Table A.4.3.1.1.1-1: General test parameters for E-UTRA FDD- higher priority UTRA FDD inter RAT cell re-selection test case

	Parameter	Unit	Value	Comment
Initial condition	Active cell		Cell2	UE shall be forced to cell 2 in the initialisation phase, so that reselection to cell 1 occurs during the first T1 phase
T1 end condition	Active cell		Cell1 Cell2	UE shall perform reselection to cell 1 during T1
condition	Neighbour cell		Cell2	
T3 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T3
condition	Neighbour cell		Cell 1	
E-UTRA PI	RACH configuration		4	As specified in table 5.7.1-2 in TS 36.211
E_UTRA A Information	ccess Barring	-	Not Sent	No additional delays in random access procedure.
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1	-	S	25	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	5	During T2, cell 2 shall be powered off, and during the off time the primary scrambling code shall be changed, The intention is to ensure that cell 2 has not been detected by the UE prior to the start of period T3
Т3		S	85	T3 need to be defined so that cell re-selection reaction time is taken into account.

Parameter	Unit		Cell 1	1	
		T1	T2	T3	
E-UTRA RF Channel			1		
number					
BW _{channel}	MHz		10		
OCNG Patterns defined in					
A.3.2.1.1 (OP.2 FDD)		OP.2 FDD			
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB				
PHICH_RB	dB		0		
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB	1			
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB	1			
OCNG_RB ^{Note 1}	dB				
Qqualmin for UTRA	dB		-20		
neighbour cell	uВ		-20		
Qrxlevmin for UTRA	dBm	-115			
neighbour cell	dDill		-115		
Qrxlevmin	dBm	-140			
N_{oc}	dBm/15 kHz		-98		
RSRP	dBm/15 KHz	-84	-84	-84	
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	14	14	14	
\hat{E}_{s}/N_{oc}	dB	14	14	14	
TreselectionEUTRAN	S		0		
Snonintrasearch	dB	50			
Thresh _{x, high} (Note 2)	dB		40		
Propagation Condition			AWGN		
Note 1: OCNG shall be use					
and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2 : This refers to the value of Thresh _{x, high} which is included in E- UTRA system information, and is a threshold for the UTRA					
target cell					

Table A.4.3.1.1.1-2: Cell specific test parameters for cell 1(E-UTRA)

Table A.4.3.1.1.1-3: Cell specific test parameters for cell 2(UTRA)

Parameter	Unit	C	ell 2 (UT	RA)
		T1	T2	T3
UTRA RF Channel Number		Channe	el 2	
CPICH_Ec/lor	dB	-10		
PCCPCH_Ec/lor	dB	-12		
SCH_Ec/lor	dB	-12		
PICH_Ec/lor	dB	-15		
OCNS_Ec/lor	dB	-0.941		
\hat{I}_{or}/I_{oc}	dB	-5	- ∞	11
I _{oc}	dBm/3,84 MHz	-70		
CPICH_Ec/lo	dB	-16.19	-∞	-10.33
CPICH_RSCP	dBm	-85	_∞	-69
Propagation Condition		AWGN		
Qqualmin	dB	-20		
Qrxlevmin	dBm	-115		
QrxlevminEUTRA	dBm	-140		

UE_TXPWR_MAX_RACH	dBm	21			
Treselection	S	0			
Sprioritysearch1	dB	62			
Sprioritysearch2	dB	0			
Thresh _{serving, low}	dB	36			
Thresh _{x, low} (Note 1)	dB	50			
Note 1 : This refers to the value of Thresh _{x, low} which is included in UTRA system information, and is a threshold for the E-UTRA target cell					

A.4.3.1.1.2 Test Requirements

The cell reselection delay to higher priority is defined as the time from the beginning of time period T3, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to higher priority shall be less than 81 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as: $T_{higher_priority_search} + T_{evaluateUTRA_FDD} + T_{SI-UTRA}$

Where:

$T_{higher_priority_search}$	See section 4.4.2; 60s is assumed in this test case
T _{evaluateUTRA-FDD}	See Table 4.2.2.5.1-1
T _{SI-UTRA}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 80.48 s for higher priority cell search, allow 81 s for higher priority cell reselection in the test case.

A.4.3.1.2 EUTRA FDD-UTRA FDD cell reselection: UTRA FDD is of lower priority

A.4.3.1.2.1 Test Purpose and Environment

This test is to verify the requirement for the EUTRA FDD- UTRA FDD inter-RAT cell reselection requirements specified in section 4.2.2.5.1 when the UTRA cell is of lower priority.

The test scenario comprises of one UTRA FDD and one E-UTRA FDD cells as given in tables A.4.3.1.2.1-1, A.4.3.1.2.1-2 and A.4.3.1.2.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both UTRA cell 1 and E-UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of lower priority than cell 1.

Table A.4.3.1.2.1-1: General test parameters for EUTRA FDD- lower priority UTRA FDD inter RAT cell re-selection test case

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell2	UE shall be forced to cell 2 in the initialisation phase, so that reselection to cell 1 occurs during the first T1 phase
T1 end	Active cells		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour cell		Cell2	
T2 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T2
condition	Neighbour cell		Cell1	
E-UTRA PRACH configuration			4	As specified in table 5.7.1-2 in TS 36.211
E_UTRA Access Barring Information		-	Not Sent	No additional delays in random access procedure.
DRX cycle length		S	1.28	The value shall be used for all cells in the test.
T1		S	85	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	25	T2 need to be defined so that cell re-selection reaction time is taken into account.

Table A.4.3.1.2.1-2: Cell specific test parameters for cell 1 (E-UTRA)

Parameter	Unit	Cell 1		
		T1	T2	
E-UTRA RF Channel			1	
number				
BW _{channel}	MHz		10	
OCNG Patterns defined in				
A.3.2.1.1 (OP.2 FDD)		OP.2 FDD		
PBCH_RA	dB			
PBCH_RB	dB			
PSS_RA	dB			
SSS_RA	dB			
PCFICH_RB	dB			
PHICH_RA	dB			
PHICH_RB	dB	0		
PDCCH_RA	dB			
PDCCH_RB	dB			
PDSCH_RA	dB			
PDSCH_RB	dB			
OCNG_RA ^{Note 1}	dB			
OCNG_RB ^{Note 1}	dB			

Qqualmin for UTRA neighbour cell	dB		-20	
Qrxlevmin for UTRA neighbour cell	dBm	-115		
Qrxlevmin	dBm	-140		
N _{oc}	dBm/15 kHz	-98		
RSRP	dBm/15 KHz	-86 -102		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	12	-4	
\hat{E}_s/N_{oc}	dB	12	-4	
Treselection _{EUTRAN}	S	0		
Snonintrasearch	dB	Not sent		
Thresh _{serving, low}	dB	44		
Thresh _{x, low} (Note 2)	dB	42		
Propagation Condition		AWGN		
Note 1:OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.Note 2 :This refers to the value of Thresh _{x, low} which is included in E- UTRA system information, and is a threshold for the UTRA target cell.				

Table A.4.3.1.2.1-3: Cell specific test parameters for cell 2 (UTRA)

Parameter	Unit	Cell 2 (UTRA)		
		T1	T2	
UTRA RF Channel Number		Channel 2	2	
CPICH_Ec/lor	dB	-10		
PCCPCH_Ec/lor	dB	-12		
SCH_Ec/lor	dB	-12		
PICH_Ec/lor	dB	-15		
OCNS_Ec/lor	dB	-0.941		
\hat{I}_{or}/I_{oc}	dB	13	13	
I _{oc}	dBm/3,84 MHz	-70		
CPICH_Ec/lo	dB	-10.21	-10.21	
CPICH_RSCP	dBm	-67	-67	
Propagation Condition		AWGN		
Qqualmin	dB	-20		
Qrxlevmin	dBm	-115		
QrxlevminEUTRA	dBm	-140		
UE_TXPWR_MAX_RACH	dBm	21		
Treselection	S	0		
Sprioritysearch1	dB	42		
Sprioritysearch2	dB	0		
Thresh _{x, high} (Note 1)	dB	48		
Note 1 : This refers to the value of Thresh _{x, high} which is included in UTRA system information, and is a threshold for the E-UTRA target cell				

A.4.3.1.2.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

108

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as: $T_{evaluateUTRA_FDD} + T_{SI-UTRA}$ Where:

T_{evaluateUTRA-FDD} See Table 4.2.2.5.1-1

T_{SI-UTRA} Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for lower priority cell reselection, allow 21 s.

A.4.3.2 E-UTRAN FDD – UTRAN TDD:

- A.4.3.2.1 Test Purpose and Environment
- A.4.3.2.1.1 3.84Mcps TDD option
- A.4.3.2.1.2 1.28Mcps TDD option

This test is to verify the requirement for the E-UTRA FDD to UTRA TDD inter-RAT cell reselection requirements specified in section 4.2.2.5.2 when the UTRA cell is of lower priority.

This test scenario comprised of 1 E-UTRA FDD serving cell, and 1 UTRA TDD cell to be re-selected. Test parameters are given in table A.4.3.2.1.2-1, A.4.3.2.1.2-2, and A.4.3.2.1.2-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Cell 2 is of lower priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS36.304.

Table A.4.3.2.1.2-1: General test parameters for E-UTRA FDD to UTRA (1.28 Mcps TDD OPTION) Cell Re-selection

Parar	neter	Unit	Value	Comment
Initial Active cell			Cell2	UE shall be forced to cell 2 in the initialisation phase, so that
condition				reselection to cell 1 occurs during the first T1 phase
T1 end	Active cell		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour		Cell2	1.28 Mcps TDD OPTION cell
	cell			
T2 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T2
condition	Neighbour		Cell1	E-UTRA FDD cell
	cell			
CP length of c	ell 1		normal	
E-UTRA PRACH			4	As specified in table 5.7.1-2 in TS 36.211
configuration				
Time offset be	tween cells		3 ms	Asynchronous cells
Access Barrin	g Information	-	Not	No additional delays in random access procedure.
			sent	
Treselection		S	0	
DRX cycle len	gth	S	1,28	
HCS	HCS		Not	
			used	
T1		S	85	T1 need to be defined so that cell re-selection reaction time is
				taken into account.
T2		S	25	

Parameter	Unit	Ce	ell 1				
		T1	T2				
E-UTRA RF Channel			1				
Number							
BW _{channel}	MHz		10				
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RB	dB						
SSS_RB	dB						
PCFICH_PA	dB						
PHICH_PA	dB						
PHICH_PB	dB	0	0				
PDCCH_PA	dB						
PDCCH_PB	dB						
PDSCH_PA	dB						
PDSCH_PB	dB						
OCNG_RA ^{Note1}	dB						
OCNG_RB ^{Note1}	dB						
Qrxlevmin	dBm/15kHz	-140	-140				
N_{oc}	dBm/15kHz	-	98				
RSRP	dBm/15kHz	-87	-101				
\hat{E}_{s}/I_{ot}	dB	11	-3				
Snonintrasearch	dB	Not	sent				
Thresh _{serving, low}	dB	46 (-9	94dBm)				
Thresh _{x, low} (Note2)	dB	24 (-7	/9dBm)				
Propagation Condition		AV	VGN				
Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.							
Note2: This refers to the UTRA system info target cell	value of Threshx, lo prmation, and is a th						

Table A.4.3.2.1.2-2: Cell specific test parameters for cell re-selection E-UTRA FDD to UTRA TDD test case (cell 1)

Parameter	Unit		Cell 2 (
Timeslot Number	Onic	C		DwPTS			
		 T1	T2	 T1	T2		
UTRA RF Channel Number (Note1)			Channel 2				
PCCPCH_Ec/lor	dB	-3	-3				
DwPCH_Ec/lor	dB			0	0		
OCNS_Ec/lor	dB	-3	-3				
\hat{I}_{or}/I_{oc}	dB	11	11	11	11		
I _{oc}	dBm/1.28 MHz	-80					
PCCPCH RSCP	dBm	-72	-72	n.a.	n.a.		
Propagation Condition			AW	GN			
Qrxlevmin	dBm	-103					
Qoffset1 _{s,n}	dB	C1, C2: 0					
Qhyst1 _s	dB	0					
Thresh _{x, high} (Note2)	dB		46 (-94	4dBm)			
Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.							
Note2: This refers to the value of Thresh _{x, high} which is included in UTRA system information, and is a threshold for the E-UTRA target cell							

Table A.4.3.2.1.2-3: Cell specific test parameters for cell re-selection E-UTRA FDD to UTRA TDD test case (cell 2)

A.4.3.2.1.3 7.68Mcps TDD option

A.4.3.2.1 Test Requirements

A.4.3.2.1.1 3.84Mcps TDD option

A.4.3.2.1.2 1.28Mcps TDD option

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as: $T_{evaluateUTRA_TDD} + T_{SI-UTRA}$

Where:

$T_{evaluateUTRA_TDD}$	19.2s, See table 4.2.2.5.2-1
T _{SI-UTRA}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s, allow 21 s for lower priority cell reselection in the test case.

A.4.3.2.2.2.3 7.68Mcps TDD option

A.4.3.3 E-UTRAN TDD – UTRAN FDD:

A.4.3.4 E-UTRAN TDD – UTRAN TDD:

A.4.3.4.1 E-UTRA to UTRA TDD cell re-selection: UTRA is of higher priority

- A.4.3.4.1.1 Test Purpose and Environment
- A.4.3.4.1.1.1 3.84 Mcps TDD option
- A.4.3.4.1.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the E-UTRA TDD to UTRA TDD inter-RAT cell re-selection requirements specified in section 4.2.2.5 when the UTRA cell is of higher priority.

This test scenario comprised of 1 E-UTRA TDD serving cell, and 1 UTRA TDD cell to be re-selected. Test parameters are given in table A.4.3.4.1.1.2-1, A.4.3.4.1.1.2-2, and A.4.3.4.1.1.2-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Both UTRA cell 1 and E-UTRA cell 2 are already identified by the UE prior to the start of the test. Cell 2 is of higher priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS36.304.

Table A.4.3.4.1.1.2-1: General test parameters for E-UTRAN to UTRAN (1.28 Mcps TDD OPTION) Cell Re-selection

Parar	neter	Unit	Value	Comment
Initial	Active cell		Cell 2	UE shall be forced to cell 2 in the initialisation phase, so that
condition				reselection to cell 1 occurs during the first T1 phase
T1 end	Active cell		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour		Cell2	1.28 Mcps TDD OPTION cell
	cell			
T3 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T3
condition	Neighbour		Cell1	E-UTRA TDD cell
	cell			
Uplink-downli			1	As specified in table 4.2.2 in TS 36.211
configuration				
Special subfra	ame		6	As specified in table 4.2.1 in TS 36.211
configuration				
PRACH confi	guration of		53	As specified in table 4.7.1-3 in TS 36.211
cell 1	cell 1			
CP length of	cell 1		Normal	
Time offset be	etween cells		3 ms	Asynchronous cells
Access Barrir	ng	-	Not	No additional delays in random access procedure.
Information			sent	
Treselection		S	0	
DRX cycle ler	ngth	S	1,28	
HCS			Not	
			used	
T1		S	25	T1 need to be defined so that cell re-selection reaction time is
				taken into account.
T2	T2		5	During T2, cell 2 shall be powered off, and during the off time
				the scrambling code shall be changed, The intention is to
				ensure that cell 2 has not been detected by the UE prior to the
				start of period T3
Т3		S	85	T3 need to be defined so that cell re-selection reaction time is
				taken into account.

Parameter	Unit		Cell 1				
		T1	T2	T3			
E-UTRA RF Channel			1				
Number							
BW _{channel}	MHz		10				
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RB	dB						
SSS_RB	dB						
PCFICH_PA	dB						
PHICH_PA	dB						
PHICH_PB	dB	0	0	0			
PDCCH_PA	dB						
PDCCH_PB	dB						
PDSCH_PA	dB						
PDSCH_PB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
Qrxlevmin	dBm/15kHz	-140	-140	-140			
N_{oc}	dBm/15kHz		-98				
RSRP	dBm/15kHz	-87	-87	-87			
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	11	11	11			
Thresh _{x, high} (Note2)	dB		24(-79dBm)			
Propagation Condition			AWGN				
Note1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.							
Note2: This refers to the system information	value of Thresh _{x, hi} , n, and is a thresho						

Table A.4.3.4.1.1.2-2: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 1)

Parameter Unit Cell 2 (UTRA)								
Timeslot Number			0 DwP1				5	
		T1	T2	T3	T1	T2	T3	
UTRA RF Channel Number (Note1)				Chan	nel 2			
PCCPCH_Ec/lor	dB	-3	-3	-3				
DwPCH_Ec/lor	dB				0	0	0	
OCNS_Ec/lor	dB	-3	-3	-3				
\hat{I}_{or}/I_{oc}	dB	-3	-inf	11	-3	-inf	11	
I_{oc}	dBm/1.28 MHz	-80						
PCCPCH RSCP	dBm	-86	-inf	-72	n.a.			
Propagation Condition		AWGN						
Qrxlevmin	dBm	-103						
Qoffset1 _{s,n}	dB			C1, 0	C2: 0			
Qhyst1 _s	dB			()			
Snonintrasearch	dB			Not	sent			
Thresh _{serving, low}	dB			24 (-79	9dBm)			
Thresh _{x, low} (Note2)	dB			46 (-94	4dBm)			
Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.								
Note2: This refers to the value of Thresh _{x, low} which is included in UTRA system information, and is a threshold for the E-UTRA target cell								

Table A.4.3.4.1.1.2-3: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 2)

A.4.3.4.1.1.3 7.68 Mcps TDD option

A.4.3.4.1.2 Test Requirements

- A.4.3.4.1.2.1 3.84 Mpcs TDD option
- A.4.3.4.1.2.2 1.28 Mpcs TDD option

The cell reselection delay to higher priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to higher priority shall be less than 81 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to higher priority cell can be expressed as: $T_{higher_priority_search} + T_{evaluateUTRA_TDD} + T_{SI_UTRA}$,

Where:

$T_{higher_priority_search}$	60s, See section 4.2.2.5
$T_{evaluateUTRA_TDD}$	19.2s, See Table 4.2.2.5.2-1
T _{SI_UTRA}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 80.48 s, allow 81 s for higher priority cell reselection in the test case.

114

A.4.3.4.1.2.3	7.68 Mpcs TDD option
A.4.3.4.2	E-UTRA to UTRA TDD cell re-selection: UTRA is of lower priority
A.4.3.4.2.1	Test Purpose and Environment
A.4.3.4.2.1.1	3.84 Mcps TDD option

A.4.3.4.2.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the E-UTRA TDD to UTRA TDD inter-RAT cell re-selection requirements specified in section 4.2.2.5 when the UTRA cell is of lower priority.

This test scenario comprised of 1 E-UTRA TDD serving cell, and 1 UTRA TDD cell to be re-selected. Test parameters are given in table A.4.3.4.2.1.2-1, A.4.3.4.2.1.2-2, and A.4.3.4.2.1.2-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. Cell 2 is of lower priority than cell 1.

The ranking of the cells shall be made according to the cell reselection criteria specified in TS36.304.

Table A.4.3.4.2.1.2-1: General test parameters for E-UTRAN to UTRAN (1.28 Mcps TDD OPTION) Cell Re-selection

Para	meter	Unit	Value	Comment
Initial	Active cell		Cell 2	UE shall be forced to cell 2 in the initialisation phase, so that
condition				reselection to cell 1 occurs during the first T1 phase
T1 end	Active cell		Cell1	UE shall perform reselection to cell 1 during T1
condition	Neighbour cell		Cell2	1.28 Mcps TDD OPTION cell
T2 end	Active cell		Cell2	UE shall perform reselection to cell 2 during T2
condition	Neighbour cell		Cell1	E-UTRA TDD cell
Uplink-downlin of cell 1	k configuration		1	As specified in table 4.2.2 in TS 36.211
	Special subframe configuration of cell 1		6	As specified in table 4.2.1 in TS 36.211
PRACH config	uration of cell 1		53	As specified in table 4.7.1-3 in TS 36.211
CP length of ce	ell 1		Normal	
Time offset bet	ween cells		3 ms	Asynchronous cells
Access Barring	Access Barring Information		Not sent	No additional delays in random access procedure.
Treselection	lection		0	
DRX cycle length		S	1,28	
HCS			Not	
			used	
T1		S	85	
T2		S	25	

Parameter	Unit	Ce	ell 1				
		T1	T2				
E-UTRA RF Channel			1				
Number							
BW _{channel}	MHz	1	0				
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RB	dB						
SSS_RB	dB						
PCFICH_PA	dB						
PHICH_PA	dB						
PHICH_PB	dB	0	0				
PDCCH_PA	dB						
PDCCH_PB	dB						
PDSCH_PA	dB						
PDSCH_PB	dB						
OCNG_RA ^{Note1}	dB						
OCNG_RB ^{Note1}	dB						
Qrxlevmin	dBm/15kHz	-140	-140				
N_{oc}	dBm/15kHz	-9	98				
RSRP	dBm/15kHz	-87	-101				
\hat{E}_{s}/I_{ot}	dB	11	-3				
Snonintrasearch	dB	Not	sent				
Thresh _{serving, low}	dB	46 (-9	4dBm)				
Thresh _{x, low} (Note2)	dB	24 (-7	9dBm)				
Propagation Condition		AW	/GN				
Note1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.							
Note2: This refers to the value of Thresh _{x, low} which is included in E-UTRA system information, and is a threshold for the UTRA target cell							

Table A.4.3.4.2.1.2-2: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 1)

Parameter	UTRA)						
Timeslot Number		0)	Dw	PTS		
		T1	T2	T1	T2		
UTRA RF Channel Number (Note1)		Channel 2					
PCCPCH_Ec/lor	dB	-3	-3				
DwPCH_Ec/lor	dB			0	0		
OCNS_Ec/lor	dB	-3	-3				
\hat{I}_{or}/I_{oc}	dB	11	11	11	11		
I _{oc}	dBm/1.28 MHz	-80					
PCCPCH RSCP	dBm	-72	-72	n.a.	n.a.		
Propagation Condition			AW	GN			
Qrxlevmin	dBm		-1	03			
Qoffset1 _{s,n}	dB		C1, (C2: 0			
Qhyst1 _s	dB		()			
Thresh _{x, high} (Note2)	dB		46 (-94	4dBm)			
Note1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.							
Note2: This refers to the value of Thresh _{x, high} which is included in UTRA system information, and is a threshold for the E-UTRA target cell							

Table A.4.3.4.2.1.2-3: Cell specific test parameters for cell re-selection E-UTRA TDD to UTRA TDD test case (cell 2)

A.4.3.4.2.1.3 7.68 Mcps TDD option

A.4.3.4.2.2 Test Requirements

- A.4.3.4.2.2.1 3.84 Mpcs TDD option
- A.4.3.4.2.2.2 1.28 Mpcs TDD option

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2, and starts to send preambles on the PRACH for sending the RRC CONNECTION REQUEST message on cell 2.

The cell re-selection delay to lower priority shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as: $T_{evaluateUTRA_TDD} + T_{SI_UTRA}$,

Where:

$T_{evaluateUTRA_TDD}$	19.2s, See Table 4.2.2.5.2-1
T_{SI_UTRA}	Maximum repetition period of relevant system info blocks that needs to be received by the UE to camp on a cell; 1280 ms is assumed in this test case.

This gives a total of 20.48 s, allow 21 s for lower priority cell reselection in the test case.

A.4.3.4.2.2.3 7.68 Mpcs TDD option

A.4.4 E-UTRAN to GSM Cell Re-Selection

A.4.4.1 E-UTRAN FDD – GSM:

A.4.4.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to GSM cell re-selection delay reported in section 4.2.2.5.

This scenario implies the presence of 1 E-UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 E-UTRA carrier and 12 GSM cells. Test parameters are given in Table, A.4.4.1-1, A.4.4.1-2, A.4.4.1-3. E-UTRA FDD cell (Cell 1) and GSM cell (cell 2) shall belong to different Location Areas. The test comprises two successive time periods, T1 and T2. During initialization before the start of the test, the UE is camped on cell 1. By the end of T1, the UE has identified BSIC on the GSM BCCH carrier of cell 2 but the signal levels do not meet the reselection criterion during T1. At the start of T2, the signal levels change such that cell 2 satisfies reselection criterion. The GSM layer is configured at a lower priority than the serving E-UTRA FDD layer.

Table A.4.4.1-1: General test parameters for E-UTRA FDD GSM cell re-selection test case

Parameter		Unit	Value	Comment
Initial Active cell condition			Cell1	UE shall be forced to cell 1 in the initialisation phase and shall be able to detect and monitor
				the 4 strongest GSM BCCH carriers in T1 . Cell 1 is an E-UTRA FDD cell.
Final condition	Neighbour cell		Cell2	UE shall perform reselection to cell 2 during T2. Cell 2 is a GSM cell.
E-UTRA R	F Channel Number		1	1 E-UTRA FDD carrier frequency
GSM ARFO	CN		1	12 GSM BCCH carriers are used
PRACH co	nfiguration		4	As specified in table 5.7.1-2 in TS 36.211
Access Barring Information		-	Not Sent	No additional delays in random access procedure.
CP length	of cell 1		Normal	
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	35	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	35	T2 need to be defined so that the higher layer search periodicity and cell re-selection reaction time are taken into account.
Propagatio	n channel		AWGN	

 Table A.4.4.1-2: Cell-specific test parameters for Cell 1 – E-UTRA FDD cell

Parameter	Unit	Cell 1		
		T1	T2	
E-UTRA RF Channel			1	
number				
BW _{channel}	MHz		10	
OCNG Patterns defined in				
A.3.2.1.1 (OP.2 FDD)		0	P.2 FDD	
PBCH_RA	dB			
PBCH_RB	dB			
PSS_RA	dB			
SSS_RA	dB	1		
PCFICH_RB	dB			
PHICH_RA	dB			
PHICH_RB	dB		0	
PDCCH_RA	dB			
PDCCH_RB	dB			
PDSCH_RA	dB			
PDSCH_RB	dB			
OCNG_RA ^{Note 1}	dB]		
OCNG_RB ^{Note 1}	dB			

119

Qrxlevmin	dBm	-140			
N_{oc}	dBm/15 kHz	-98			
RSRP	dBm/15 KHz	-89	-102		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	9	-4		
TreselectionEUTRAN	S	0			
Snonintrasearch	dB	Not sent			
Thresh _{serving, low}	dB	44			
Thresh _{x, low} (Note 2)	dB	24			
Note 1: OCNG shall be used such that both cells are fully allocated and a constant					
total transmitted power spectral density is achieved for all OFDM symbols.					
Note 2: This refers to Thresh _{x, low} which is included in E-UTRA system information,					
and is a threshold for GSM target cell.					

Parameter	Unit	Cell 2 (GSM)		
Farameter	Onit	T1	T2	
Absolute RF Channel Number		ARFCN ²	1	
RXLEV	dBm	-90	-75	
RXLEV_ACCESS_MIN	dBm	-104		
MS_TXPWR_MAX_CCH	dBm	33		

A.4.4.1.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [8].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $4*T_{measureGSM} + T_{BCCH}$, where:

 TmeasureGSM
 See Table 4.2.2.5.3-1 in section 4.2.2.5.3.

 TBCCH
 Maximum time allowed to read BCCH data from GSM cell [8].

 According to [8], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

A.4.4.2 E-UTRAN TDD – GSM:

A.4.4.2.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN TDD to GSM cell re-selection delay reported in section 4.2.2.5.

This scenario implies the presence of 1 E-UTRAN serving cell, and 1 GSM cell to be re-selected. The UE is requested to monitor neighbouring cells on 1 E-UTRA carrier and 12 GSM cells. Test parameters are given in Table, A.4.4.2-1, A.4.4.2-2, A.4.4.2-3. E-UTRA TDD cell (Cell 1) and GSM cell (cell 2) shall belong to different Location Areas. The test comprises two successive time periods, T1 and T2. During initialization before the start of the test, the UE is camped on cell 1. By the end of T1, the UE has identified BSIC on the GSM BCCH carrier of cell 2 but the signal

120

levels do not meet the reselection criterion during T1. At the start of T2, the signal levels change such that cell 2 satisfies reselection criterion. The GSM layer is configured at a lower priority than the serving E-UTRA TDD layer.

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell1	UE shall be forced to cell 1 in the initialisation phase and shall be able to detect and monitor the 4 strongest GSM BCCH carriers in T1. Cell 1 is an E-UTRA TDD cell.
Final condition	Neighbour cell		Cell2	UE shall perform reselection to cell 2 during T2. Cell 2 is a GSM cell.
E-UTRA R	F Channel Number		1	1 E-UTRA TDD carrier frequency
GSM ARFO	CN		1	12 GSM BCCH carriers are used
Uplink-dow cell 1	nlink configuration of		1	As specified in table 4.2.2 in TS 36.211
Special subframe configuration for cell 1			6	As specified in table 4.2.1 in TS 36.211
PRACH configuration for cell 1			4	As specified in table 5.7.1-2 in TS 36.211
CP length of cell 1			Normal	
Access Barring Information		-	Not Sent	No additional delays in random access procedure.
DRX cycle	length	S	1.28	The value shall be used for all cells in the test.
T1		S	35	T1 need to be defined so that cell re-selection reaction time is taken into account.
T2		S	35	T2 need to be defined so that the higher layer search periodicity and cell re-selection reaction time are taken into account.
Propagatio	n channel		AWGN	

Table A.4.4.2-1: General test parameters for E-UTRA TDD GSM cell re-selection test case

Parameter	Unit		Cell 1	
		T1	T2	
E-UTRA RF Channel			1	
number				
BW _{channel}	MHz		10	
OCNG Patterns defined in				
A.3.2.1.1 (OP.2 TDD)		O	P.2 TDD	
PBCH_RA	dB			
PBCH_RB	dB			
PSS_RA	dB			
SSS_RA	dB			
PCFICH_RB	dB	1		
PHICH_RA	dB	1		
PHICH_RB	dB	0		
PDCCH_RA	dB			
PDCCH_RB	dB			
PDSCH_RA	dB]		
PDSCH_RB	dB]		
OCNG_RA ^{Note 1}	dB]		
OCNG_RB ^{Note 1}	dB			

Qrxlevmin	dBm	-140			
N _{oc}	dBm/15 kHz	-98			
RSRP	dBm/15 KHz	-89	-102		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	9	-4		
TreselectionEUTRAN	S	0			
Snonintrasearch	dB	Not sent			
Thresh _{serving, low}	dB	44			
Thresh _{x, low} (Note 2)					
Note 1: OCNG shall be used such that both cells are fully allocated and a					
constant total transmitted power spectral density is achieved for					
all OFDM symbols.					
Note 2: This refers to Thresh _{x, low} which is included in E-UTRA system					
information, and is a threshold for GSM target cell.					

Parameter	Unit	Cell 2 (GSM)	
Farameter	Onit	T1	T2
Absolute RF Channel Number		ARFCN ²	1
RXLEV	dBm	-90	-75
RXLEV_ACCESS_MIN	dBm	-104	
MS_TXPWR_MAX_CCH	dBm	33	

A.4.4.2.2 Test Requirements

The cell re-selection delay is defined as the time from the beginning of time period T2, to the moment when the UE camps on Cell 2, and starts to send the RR Channel Request message for location update to Cell 2.

The cell re-selection delay shall be less than $26 \text{ s} + T_{BCCH}$, where T_{BCCH} is the maximum time allowed to read BCCH data from GSM cell [8].

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay can be expressed as: $4 T_{\text{measureGSM}} + T_{\text{BCCH}}$, where:

 TmeasureGSM
 See Table 4.2.2.5.3-1 in section 4.2.2.5.3.

 TBCCH
 Maximum time allowed to read BCCH data from GSM cell [8].

 According to [8], the maximum time allowed to read the BCCH data, when being synchronized to a BCCH carrier, is 1.9 s.

This gives a total of 25.6 s + T_{BCCH} , allow 26 s + T_{BCCH} in the test case.

A.4.5 E-UTRAN to HRPD Cell Re-Selection

A.4.5.1 E-UTRAN FDD – HRPD

A.4.5.1.1 E-UTRAN FDD – HRPD Cell Reselection: HRPD is of Lower Priority

A.4.5.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD- HRPD inter-RAT cell reselection requirements specified in section 4.2.2.5.4 when the HRPD cell is of lower priority.

The test scenario comprises of one HRPD and one E-UTRAN FDD cells as given in tables A.4.5.1.1.1-1, A.4.5.1.1.1-2 and A.4.5.1.1.1-3.

The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRAN FDD cell 1 and HRPD cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell 1. Cell 1 and cell 2 shall belong to different tracking areas.

Table A.4.5.1.1.1-1: General Test Parameters for E-UTRAN FDD - lower priority HRPD Cell Reselection

	Unit	Value	Comment	
Initial condition Active cell			Cell 1	E-UTRAN FDD cell
	Neighbour cell		Cell 2	HRPD cell
Final condition	Active cell		Cell 2	HRPD cell is selecting during T2
DRX cycle length		S	1.28	
E-UTRA FDD RF	Channel Number		1	Only one FDD carrier frequency
				is used.
E-UTRA FDD Cha	nnel Bandwidth (BW _{channel})	MHz	10	
HRPD RF Channe	l Number		1	Only one HRPD carrier
				frequency is used.
E-UTRA FDD PRA	CH configuration		4	As specified in table 5.7.1-2 in
				TS 36.211
E_UTRA FDD Access Barring Information		-	Not Sent	No additional delays in random
				access procedure.
T1	T1		30	
T2		S	30	

Parameter	Unit	Cell 1			
		T1 T2			
E-UTRA RF Channel number			1		
BW _{channel}	MHz	1	0		
OCNG Patterns defined in A.3.2.1.1					
(OP.2 FDD)		OP.2	2 FDD		
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB				
PHICH_RB	dB		0		
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
N _{oc}	dBm/15 kHz	-;	98		
RSRP	dBm/15 KHz	-89	-100		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	9 -2			
Treselection _{EUTRAN}	S		0		
Snonintrasearch	dB	Not sent			
cellReselectionPriority	-		1		
Qrxlevmin	dBm	-1	40		
Qrxlevminoffset	dB		0		
Pcompensation	dB		0		
S _{Serving} Cell	dB	51	40		
Thresh _{serving, low}	dB		13		
Propagation Condition		AM	/GN		

Table A.4.5.1.1.1-2: Cell Specific Test Parameters for E-UTRAN FDD (Cell # 1)

Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Parameter	Unit	Cell	2	
		T1	T2	
HRPD RF Channel Number		1		
$\frac{\text{Control} E_{b}}{N_{t}}$ (38.4 kbps)	dB	21		
$\frac{\text{Control} \text{E}_{\text{b}}}{\text{N}_{\text{t}}} $ (76.8 kbps)	dB	18		
\hat{I}_{or}/I_{oc}	dB	0	0	
I _{oc}	dBm/ 1.2288 MHz	-55		
CDMA2000 HRPD Pilot Strength	dB	-3 -3		
Propagation Condition		AWGN		
S _{nonServingCell,x}		-6		
Treselection	S	0		
hrpd-CellReselectionPriority	-	0		
Thresh _{x, low}		-14		

Table A.4.5.1.1.1-3: Cell Specific	Test Parameters for HRPD (cell # 2))
------------------------------------	-------------------------------------	---

A.4.5.1.1.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2 and starts to send access probe preambles on the Access Channel on cell 2.

The cell re-selection delay to the lower priority cell 2 shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as: T_{evaluateHRPD} + T_{SI-HRPD}

Where:

T_evaluatHRPDSee Table 4.2.2.5.4-1T_SI-HRPDMaximum repetition period of relevant system information blocks that need to be received
by the UE to camp on cell 2; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for the lower priority cell reselection, allow 21 s in the test case.

A.4.6 E-UTRAN to cdma2000 1X Cell Re-Selection

- A.4.6.1 E-UTRAN FDD cdma2000 1X
- A.4.6.1.1 E-UTRAN FDD cdma2000 1X Cell Reselection: cdma2000 1X is of Lower Priority

A.4.6.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD- cdma2000 1X inter-RAT cell reselection requirements specified in section 4.2.2.5.5 when the cdma2000 1X cell is of lower priority.

The test scenario comprises of one cdma2000 1X and one E-UTRAN FDD cells as given in tables A.4.6.1.1.1-1, A.4.6.1.1.1-2 and A.4.6.1.1.1-3.

The test consists of two successive time periods, with time duration of T1 and T2 respectively. Both E-UTRAN FDD cell 1 and cdma2000 1X cell 2 are already identified by the UE prior to the start of the test. At T1 the UE is camped on to cell 1. Cell 2 is of lower priority than cell 1. Cell 1 and cell 2 shall belong to different tracking areas.

Table A.4.6.1.1.1-1: General Test Parameters for E-UTRAN FDD - lower priority cdma2000 1X Cell Reselection

Parameter		Unit	Value	Comment
Initial condition	Active cell		Cell 1	E-UTRAN FDD cell
	Neighbour cell		Cell 2	cdma2000 1X cell
Final condition	Active cell		Cell 2	cdma2000 1X cell is selecting during T2
DRX cycle length		S	1.28	
E-UTRA FDD RF Channel Number			1	Only one FDD carrier frequency is used.
E-UTRA FDD Cha	E-UTRA FDD Channel Bandwidth (BW channel)		10	
cdma2000 1X RF Channel Number			1	Only one cdma2000 1X carrier frequency is used.
E-UTRA FDD PRACH configuration			4	As specified in table 5.7.1-2 in TS 36.211
E_UTRA FDD Access Barring Information		-	Not Sent	No additional delays in random access procedure.
T1	T1		30	
T2		S	30	

Parameter	Unit	Cell	1
		T1	T2
E-UTRA RF Channel number		1	
BW _{channel}	MHz	10	
OCNG Patterns defined in A.3.2.1.1			
(OP.2 FDD)		OP.2	FDD
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB		
PHICH_RB	dB	0	
PDCCH_RA	dB		
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA ^{Note 1}	dB		
OCNG_RB ^{Note 1}	dB		
N _{oc} Note 2	dBm/15 kHz	-98	
RSRP ^{Note 3}	dBm/15 KHz	-89	-100
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	9	-2
\hat{E}_s/N_{oc}	dB	9	-2
TreselectionEUTRAN	S	0	
Snonintrasearch	dB	Not s	ent
cellReselectionPriority	-	1	
Qrxlevmin	dBm	-14	0
Qrxlevminoffset	dB	0	
Pcompensation	dB	0	
SservingCell	dB	51	40
Thresh _{serving, low}	dB	43	
Propagation Condition		AWC	
Note 1: OCNG shall be used such that I	ooth cells are fully		
spectral density is achieved for all OFD			
Note 2: Interference from other cells and		ot specified in the test is a	ssumed to be constan
over subcarriers and time and s	nall be modelled a	as Avv Giv or appropriate p	

Table A.4.6.1.1.1-2: Cell Specific Test Parameters for E-UTRAN FDD (Cell # 1)

fulfilled. Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Parameter	Unit	Cel	12	
		T1	T2	
cdma2000 1X RF Channel Number		1		
$\frac{\text{Pilot} \text{E}_{c}}{\text{I}_{\text{or}}}$	dB	[-7	7]	
Sync E _c I _{or}	dB	[-16]		
$\frac{\text{Paging} \text{E}_{c}}{\text{I}_{\text{or}}} \text{ (4.8 kbps)}$	dB	[-1	2]	
\hat{I}_{or}/I_{oc}	dB	[0]	[0]	
I _{oc}	dBm/ 1.2288 MHz	-5	5	
CDMA2000 1xRTT Pilot Strength	dB	[-10]	[-10]	
Propagation Condition		AWGN		
SnonServingCell,x		[-20]		
Treselection	S	0		
oneXRTT-CellReselectionPriority	-	0		
Thresh _{x, low}		[-2	8]	

Table A.4.6.1.1.1-3: Cell Specific Test Parameters for cdma2000 1X (cell # 2)

A.4.6.1.1.2 Test Requirements

The cell reselection delay to lower priority is defined as the time from the beginning of time period T2, to the moment when the UE camps on cell 2 and starts to send access probe preambles on the Access Channel on cell 2.

The cell re-selection delay to the lower priority cell 2 shall be less than 21 s.

The rate of correct cell reselections observed during repeated tests shall be at least 90%.

NOTE: The cell re-selection delay to lower priority cell can be expressed as: $T_{evaluatecdma2000 1X} + T_{SI-cdma2000 1X}$

Where:

Tevaluatcdma2000 1X	See Table 4.2.2.5.5-1
T _{SI-cdma2000 1X}	Maximum repetition period of relevant system information blocks that need to be received by the UE to camp on cell 2; 1280 ms is assumed in this test case.

This gives a total of 20.48 s for the lower priority cell reselection, allow 21 s in the test case.

A.5 E-UTRAN RRC CONNECTED Mode Mobility

A.5.1 E-UTRAN Handover

A.5.1.1 E-UTRAN FDD - FDD Intra frequency handover

A.5.1.1.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD intra frequency handover requirements specified in section 5.1.2.1.

The test scenario comprises of 1 E-UTRA FDD carrier and 2 cells as given in tables A.5.1.1.1-1 and A.5.1.1.1-2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. T3 is defined as the end of the last TTI containing the RRC message implying handover.

Parameter		Unit	Value	Comment
PDSCH parameters			DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/PHICH parameters			DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
Initial conditions	Active cell		Cell 1	
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
E-UTRA RF Chan	E-UTRA RF Channel Number		1	Only one FDD carrier frequency is used.
Channel Bandwidt	h (BW _{channel})	MHz	10	
A3-Offset		dB	0	
Hysteresis		dB	0	
Time To Trigger		S	0	
Filter coefficient			0	L3 filtering is not used
DRX				OFF
CP length			Normal	
Access Barring Inf	ormation	-	Not Sent	No additional delays in random
PRACH configuration			4	access procedure. As specified in table 5.7.1-2 in TS 36.211
Time offset betwee	Time offset between cells		3 ms	Asynchronous cells
T1		S	5	
T2		S	≤5	
Т3		S	1	

Parameter	Unit		Cell 1		Cell 2		
		T1	T2	T3	T1	T2	T3
E-UTRA RF Channel			1	•		1	
Number							
BW _{channel}	MHz		10			10	
OCNG Patterns		OP.1	OP.1	OP.2	OP.2 FDD	OP.2 FDD	OP.1 FDD
defined in A.3.2.1.1		FDD	FDD	FDD			
(OP.1 FDD) and in							
A.3.2.1.2 (OP.2 FDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB						
PHICH_RB	dB		0			0	
PDCCH_RA	dB		0			0	
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	8	-3.3	-3.3	-Infinity	2.36	2.36
$N_{_{oc}}$ Note 2	dBm/15 KHz		•		-98	·	
\hat{E}_s / N_{oc}	dB	8	8	8	- Infinity	11	11
RSRP Note 3	dBm/15 KHz	-90	-90	-90	- Infinity	-87	-87
Propagation Condition		AWGN					

Table A.5.1.1.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra frequency handover test case

for all OFDM symbols.

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for $\,N_{oc}\,$ to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves

A.5.1.1.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than [RRC procedure delay] + 35 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.2 E-UTRAN TDD - TDD Intra frequency handover

A.5.1.2.1 Test Purpose and Environment

This test is to verify the requirement for the TDD-TDD intra frequency handover requirements specified in section 5.2.2.4.

The test scenario comprises of 1 E-UTRA TDD carrier and 2 cells as given in tables A.5.1.2.1-1 and A.5.1.2.1-2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. T3 is defined as the end of the last TTI containing the RRC message implying handover.

Table A.5.1.2.1-1: General test parameters for E-UTRAN TDD-TDD Intra frequency handover test case

Parameter		Unit	Value	Comment
			DL Reference Measurement	
PDSCH parameter	rs		Channel R.0 TDD	As specified in section A.3.1.1.2
			DL Reference Measurement	
PCFICH/PDCCHP	HICH parameters		Channel R.6 TDD	As specified in section A.3.1.2.2
Initial conditions	Active cell		Cell 1	
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
E-UTRA RF Chan	nel Number		1	Only one TDD carrier frequency is used.
Channel Bandwidt	h (BW _{channel})	MHz	10	
A3-Offset		dB	0	
Hysteresis		dB	0	
Time To Trigger		S	0	
Filter coefficient			0	L3 filtering is not used
DRX				OFF
CP length			Normal	
Access Barring Inf	ormation	-	Not Sent	No additional delays in random access procedure.
Special subframe	configuration		6	As specified in table 4.2-1 in TS 36.211
Uplink-downlink configuration			1	As specified in table 4.2-2 in TS 36.211
PRACH configuration index			53	As specified in table 5.7.1-3 in TS 36.211
Time offset betwee	en cells		3 μs	Synchronous cells
T1		S	5	
T2		S	≤5	
Т3		S	1	

Parameter	Unit		Cell 1			Cell 2	
		T1	T2	T3	T1	T2	Т3
E-UTRA RF Channel			1	•		1	-
Number							
BW _{channel}	MHz		10	_		10	-
OCNG Patterns		OP.1	OP.1	OP.2	OP.2 TDD	OP.2 TDD	OP.1 TDD
defined in A.3.2.1.1		TDD	TDD	TDD			
(OP.1 TDD) and in							
A.3.2.1.2 (OP.2 TDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB						
PHICH_RB	dB						
PDCCH_RA	dB		0			0	
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
\hat{E}_{s}/I_{ot}	dB	8	-3.3	-3.3	-Infinity	2.36	2.36
$N_{_{oc}}$ Note 2	dBm/15 KHz				-98		
\hat{E}_s/N_{oc}	dB	8	8	8	-Infinity	11	11
RSRP Note 3	dBm/15 KHz	-90	-90	-90	- Infinity	-87	-87
Propagation Condition		AWGN					
Note 1: OCNG shall be use for all OFDM symb Note 2: Interference from of	ols.	-					-

Table A.5.1.2.1-2: Cell specific test parameters for E-UTRAN TDD-TDD Intra frequency handover test case

and shall be modelled as AWGN of appropriate power for $\,N_{oc}\,$ to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves

A.5.1.2.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than [RRC procedure delay] + 35 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.3 E-UTRAN FDD – FDD Inter frequency handover

A.5.1.3.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD inter-frequency handover requirements specified in section 5.1.2.1.

The test scenario comprises of two E-UTRA FDD carriers and one cell on each carrier as given in tables A.5.1.3.1-1 and A.5.1.3.1-2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of cell 2. Starting T2, cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE.

Table A.5.1.3.1-1: General test parameters for E-UTRAN FDD-FDD Inter frequency handover test case

Par	ameter	Unit	Value	Comment
PDSCH paramete	rs		DL Reference Measurement	As specified in section A.3.1.1.1
			Channel R.0 FDD	
PCFICH/PDCCH/PHICH parameters			DL Reference Measurement	As specified in section A.3.1.2.1
			Channel R.6 FDD	
Initial conditions	Active cell		Cell 1	Cell 1 is on RF channel number 1
	Neighbouring cell		Cell 2	Cell 2 is on RF channel number 2
Final condition	Active cell		Cell 2	
E-UTRA RF chanr			1, 2	Two FDD carriers are used
Channel Bandwidt	h (BW _{channel})	MHz	10	
Gap Pattern Id			1	As specified in 3GPP TS 36.133
				section 8.1.2.1.
A3-Offset		dB	-4	
Hysteresis		dB	0	
TimeToTrigger		dB	0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	Non-DRX test
PRACH configurat	tion		4	As specified in table 5.7.1-2 in
	·			3GPP TS 36.211
Access Barring Inf	ormation	-	Not sent	No additional delays in random
				access procedure
Time offset betwee			3 ms	Asynchronous cells
Gap pattern config	juration Id		0	As specified in Table 8.1.2.1-1
				started before T2 starts
T1		S	5	
T2		S	≤5	
T3		S	1	

Parameter	Unit		Cell 1			Cell 2		
		T1	T2	T3	T1	T2		Т3
E-UTRA RF Channel			1			2		
number								
BW _{channel}	MHz	10				10		
OCNG Patterns		OP.1	OP.1	OP.2 FDD	OP.2	OP.2 FDD	OF	P.1 FDD
defined in A.3.2.1.1		FDD	FDD		FDD			
(OP.1 FDD) and in								
A.3.2.1.2 (OP.2 FDD)								
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB							
SSS_RA	dB							
PCFICH_RB	dB							
PHICH_RA	dB		0			0		
PHICH_RB	dB		0			0		
PDCCH_RA	dB							
PDCCH_RB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 1}	dB							
OCNG_RB ^{Note 1}	dB							
\hat{E}_s/I_{ot}	dB	4	4	4	-Infinity	/ 7		7
$N_{oc}^{\rm Note 2}$	dBm/15 kHz				-98	<u>.</u>		
\hat{E}_s / N_{oc}	dB	4	4	4	-Infinity	/ 7		7
RSRP Note 3	dBm/15 KHz	-94	-94	-94	-Infinity	/ -91		-91
Propagation Condition					AWGN			
Note 1: OCNG shall be use all OFDM symbols Note 2: Interference from of		ources not s						

Table A.5.1.3.1-2: Cell specific test parameters for E-UTRAN FDD-FDD Inter frequency handover test case

shall be modelled as AWGN of appropriate power for N_{oc} to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.5.1.3.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than [RRC procedure delay] + 35 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.1.4 E-UTRAN TDD – TDD Inter frequency handover

A.5.1.4.1 Test Purpose and Environment

This test is to verify the requirement for the FDD-FDD intra frequency handover requirements specified in section 5.2.2.4.

The test scenario comprises of 1 E-UTRA FDD carrier and 2 cells as given in tables Table A.5.1.4.1-1 and Table A.5.1.4.1-2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

E-UTRAN shall send a RRC message implying handover to cell 2. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event A3.

Para	meter	Unit	Value	Comment
			DL Reference Measurement	
PDSCH paramete	ers		Channel R.0 TDD	As specified in section A.3.1.1.2
			DL Reference Measurement	
PCFICH/PDCCH	PHICH		Channel R.6 TDD	As specified in section A.3.1.2.2
parameters				
Gap Pattern Id			1	As specified in 3GPP TS 36.133 section 8.1.2.1.
Initial conditions	Active cell		Cell 1	
	Neighbour cell		Cell 2	
Final conditions	Active cell		Cell 2	
E-UTRA RF char	nel number		1, 2	Two TDD carriers are used
Channel Bandwic	lth (BW _{channel})	MHz	10	
A3-Offset		dB	-4	
Hysteresis		dB	0	
Time to Trigger		ms	0	
Filter coefficient			0	
DRX				OFF
CP length			Normal	
Access Barring Ir	formation	-	Not Sent	No additional delays in random access procedure.
Special subframe	configuration		6	As specified in table 4.2-1 in 3GPP TS 36.211
Uplink-downlink o	configuration		1	As specified in table 4.2-2 in 3GPP TS 36.211
PRACH configuration			53	As specified in table 5.7.1-3 in 3GPP TS 36.211
Time offset betwe	en cells		3 μs	Synchronous cells
T1		S	5	
T2		S	≤5	
Т3		S	1	

Parameter	Unit	t Cell 1				Cell 2	
		T1	T2	T3	T1	T2	Т3
E-UTRA RF Channel			1			2	
number							
BW _{channel}	MHz		10			10	
OCNG Patterns		OP.1	OP.1	OP.2 FDD	OP.2	OP.2 FDD	OP.1 FDD
defined in A.3.2.1.1		FDD	FDD		FDD		
(OP.1 FDD) and in							
A.3.2.1.2 (OP.2 FDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB		0			0	
PHICH_RB	dB		0			0	
PDCCH_RA	dB						
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{oc}}$	dB	4	4	4	-Infinity	7	7
N_{oc} Note 2	dBm/15 kHz		•		-98		
\hat{E}_s / N_{oc}	dB	4	4	4	-Infinity	7	7
RSRP Note 3	dBm/15 KHz	-94	-94	-94	-infinity	-91	-91
Propagation Condition			I	1	AWGN		
Note 1: OCNG shall be use all OFDM symbols Note 2: Interference from o		-		constant total tra	ansmitted power		-

Table A.5.1.4.1-2: Cell specific test parameters for E-UTRAN TDD-TDD Inter frequency handover test case

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for N_{ac} to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.5.1.4.2 Test Requirements

The UE shall start to transmit the PRACH to Cell 2 less than [RRC procedure delay] + 35 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.2 E-UTRAN Handover to other RATs

A.5.2.1 E-UTRAN FDD – UTRAN FDD Handover

A.5.2.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to UTRAN FDD handover requirements specified in section 5.3.1.

The test parameters are given in Tables A.5.2.1.1-1, A.5.2.1.1-2 and A.5.2.1.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.2.1.1-1: General test parameters for E-UTRAN FDD to UTRAN FDD handover test case

	Parameter		Value	Comment
PDSCH parameters	i		DL Reference Measurement	As specified in section A.3.1.1.1
			Channel R.0 FDD	
PCFICH/PDCCH/PH	PCFICH/PDCCH/PHICH parameters		DL Reference Measurement	As specified in section A.3.1.2.1
			Channel R.6 FDD	
	Active cell		Cell 1	E-UTRAN cell
	Neighbouring cell		Cell 2	UTRAN cell
Final condition	Active cell		Cell 2	UTRAN cell
Channel Bandwidth	(BW _{channel})	MHz	10	
Gap Pattern Id			0	As specified in Table 8.1.2.1-1
				started before T2 starts
E-UTRAN FDD mea	asurement quantity		RSRP	
Inter-RAT (UTRAN	FDD) measurement		CPICH Ec/N0	
quantity	,			
b2-Threshold1		dBm	-101	Absolute E-UTRAN RSRP
				threshold for event B2
b2-Threshold2-UTR	A	dB	-18	Absolute UTRAN CPICH Ec/N0
				threshold for event B2
Hysteresis		dB	0	
TimeToTrigger		dB	0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	Non-DRX test
Access Barring Info	rmation	-	Not sent	No additional delays in random access procedure
E-UTRA RF Channe	el Number		1	One E-UTRA FDD carrier
				frequency is used.
E-UTRA Channel B	andwidth	MHz	10	
(BWchannel)				
UTRA RF Channel	Number		1	One UTRA FDD carrier frequency
				is used.
Monitored UTRA FE	D cell list size		12	UTRA cells on UTRA RF channel
				1 provided in the cell before T2.
Post-verification per	iod		False	
T1		s	5	
T2		S	≤5	
Т3		S	1	

Parameter	Unit		Cell 1 (E-UT	RA)	
		T1	T2	T3	
E-UTRA RF Channel			1		
number					
BW _{channel}	MHz		10		
OCNG Patterns		OP.1	OP.1	OP.2	
defined in A.3.2.1.1		FDD	FDD	FDD	
(OP.1 FDD) and in					
A.3.2.1.2 (OP.2 FDD)					
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB]			
PHICH_RA	dB				
PHICH_RB	dB		0		
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
\hat{E}_s/I_{ot}	dB	0	0	0	
N_{oc}	dBm/15 kHz	-98			
RSRP	dBm/15 KHz	-98 -98 -98			
Propagation Condition			AWGN		
Note 1: OCNG shall be u	sed such that bot	h cells are	fully allocate	d and a	
	transmitted power				
OFDM symbo	ls.				

Table A.5.2.1.1-2: Cell specific test parameters for E-UTRAN FDD to UTRAN FDD handover test case (cell 1)

Table A.5.2.1.1-3: Cell specific test parameters for E-UTRAN FDD to UTRAN FDD handover test case (cell 2)

Parameter	Unit	Ce	I 2 (UTR	A)		
		T1	T2	T3		
CPICH_Ec/lor	dB	-10				
PCCPCH_Ec/lor	dB	-12				
SCH_Ec/lor	dB	-12				
PICH_Ec/lor	dB	-15	-15			
DCH_Ec/lor	dB	Note 1				
OCNS_Ec/lor	dB	Note 2				
\hat{I}_{or}/I_{oc}	dB	-infinity	-1.8	-1.8		
I _{oc}	dBm/3,84 MHz	-70 -70		-70		
CPICH_Ec/lo	dB	-infinity	-14	-14		
Note 1: The DPCH le	evel is controlled	d by the pov	ver contr	ol loop		
Note 2: The power of the OCNS channel that is added shall						
make the tot	al power from th	ne cell to be	equal to	l _{or} .		

A.5.2.1.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than [RRC procedure delay] + 140 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: [RRC procedure delay] + $T_{interrupt}$, where:

138

[RRC procedure delay]See section 11.2 in [2]

T_{interrupt} See section 5.3.1.1.2

This gives a total of [RRC procedure delay] + 140 ms, allow xxx s in the test case.

A.5.2.2 E-UTRAN TDD - UTRAN FDD Handover

A.5.2.2.1 Test Purpose and Environment

This test is to verify the E-UTRAN TDD - UTRAN FDD handover requirements specified in section 5.3.1.

The test scenario comprises of one E-UTRAN TDD cell and one UTRAN FDD cell as given in the tables A.5.2.2.1-1, A5.2.2.1-2 and A.5.2.2.1-3. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. At start of time duration T1, the UE does not have any timing information of cell 2. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before the start of T2 to enable the monitoring of UTRAN FDD. A neighbouring cell list, including the UTRAN cell (cell2), shall be sent to the UE before T2 starts. During the time T2 cell 2 becomes detectable and the UE is expected to detect and send the measurement report. A RRC message implying handover shall be sent to the UE during T2, after the UE has reported event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Par	rameter	Unit	Value	Comment
•	ers (E-UTRAN TDD)		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)			DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Initial conditions Active cell			Cell 1	Cell 1 is on E-UTRA RF channel number 1.
	Neighbour cell		Cell 2	Cell 2 is on UTRA RF channel number 1.
Final conditions	Active cell		Cell 2	
Special subframe	configuration		6	As specified in table 4.2-1 in 3GPP TS 36.211. Applicable to cell 1.
Uplink-downlink c	configuration		1	As specified in table 4.2-2 in 3GPP TS 36.211. Applicable to cell 1
E-UTRAN TDD m	neasurement quantity		RSRP	
	FDD) measurement		CPICH Ec/lo	
b2-Threshold1		dBm	-101	Absolute E-UTRAN RSRP threshold for event B2
b2-Threshold2-UTRA		dB	-18	UTRAN FDD CPICH Ec/lo threshold for event B2
Hysteresis		dB	0	
DRX			OFF	No DRX configured.
Time to Trigger		ms	0	
Filter coefficient			0	
CP length			Normal	Applicable to cell 1
Gap pattern confi	guration Id		0	As specified in Table 8.1.2.1-1; to start before T2 starts
E-UTRA RF Char	nnel Number		1	One E-UTRA TDD carrier frequency is used.
E-UTRA Channel (BW _{channel})	Bandwidth	MHz	10	
UTRA RF Channe	el Number		1	One UTRA FDD carrier frequency is used.
Monitored UTRA	FDD cell list size		12	UTRA cells on UTRA RF channel 1 provided in the cell list before T2.
Post-verification p	period		False	Post verification is not used.
T1		s	5	
T2		S	≤5	
T3		s	1	

Table A.5.2.2.1-1: General test parameters for E-UTRAN TDD-UTRAN FDD handover

Parameter	Unit		Cell 1 (E-UTRAN)				
		T1	T2	Т3			
E-UTRA RF Channel			1				
Number							
BW _{channel}	MHz		10				
OCNG Pattern defined			OP.1 TDD				
in A.3.2.2.1 (OP.1 TDD)							
PBCH_RA							
PBCH_RB							
PSS_RA							
SSS_RA							
PCFICH_RB							
PHICH_RA							
PHICH_RB	dB		0				
PDCCH_RA							
PDCCH_RB							
PDSCH_RA							
PDSCH_RB							
OCNG_RA ^{Note 1}							
OCNG_RB ^{Note 1}							
RSRP	dBm/15 kHz	-98	-98	-98			
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{oc}}$	dB	0	0	0			
s/ oc							
N _{oc}	dBm/15 kHz	-98					
Propagation Condition			AWGN				
Note 1: OCNG shall be us	sed such that the	cell is fully allocation	ted and a constant tota	l transmitted			
power spectral density is							

Table A.5.2.2.1-2: Cell specific test parameters for E-UTRAN TDD (cell 1) for handover to UTRAN FDD (cell # 2)

Table A.5.2.2.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for handover from E-UTRAN
TDD cell (cell #1)

Parameter	Unit	Cell 1 (UTRA)		
		T1	T2	Т3
CPICH_Ec/lor	dB	-10		
PCCPCH_Ec/lor	dB	-12		
SCH_Ec/lor	dB	-12		
PICH_Ec/lor	dB		-15	
DPCH_Ec/lor	dB	N/A	N/A	Note 1
OCNS	dB	-0.941	-0.941	Note 2
\hat{I}_{or}/I_{oc}	dB	-infinity	-1.8	-1.8
I _{oc}	dBm/3.84 MHz	-70		
CPICH_Ec/lo	dB	-infinity	-14	-14
Propagation Condition		AWGN		
Note 1: The DPCH level is controlled by the power control loop Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to I _{or}				

141

A.5.2.2.2 Test Requirements

The UE shall start to transmit the UL DPCCH to Cell 2 less than [RRC procedure delay] + 140 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: RRC procedure delay $+ T_{interrupt}$, where for:

RRC procedure delay, see section 11.2 in [2]

 $T_{interrupt}$, see section 5.3.1.1.2

This gives a total of [RRC procedure delay] + 140 ms, allow xxx s in the test case.

A.5.2.3 E-UTRAN FDD- GSM Handover

A.5.2.3.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN to GSM cell handover delay specified in section 5.3.3.

The test parameters are given in Table A.5.2.3.1 -1, A.5.2.3.1 -2 and A.5.2.3.1 -3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 shall be used. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

The RRC message implying handover to cell 2 shall be sent to the UE during period T2, after the UE has reported Event B1. The start of T3 is defined as the end of last E-UTRAN TTI containing the RRC message implying handover.

The requirements are also applicable for a UE not requiring measurement gap, in which case no measurement gap pattern should be sent for the parameters specified in Table A.5.2.3.1 -1.

Para	meter	Unit	Value	Comment
PDSCH parameters			DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/PHICH parameters			DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
Gap Pattern Id			1	As specified in TS 36.133 section8.1.2.1.
Initial conditions	Active cell		Cell 1	
	Neighbour cell		Cell 2	
Final conditions	Active cell		Cell 2	
Inter-RAT measu	rement quantity		GSM Carrier RSSI	
Threshold other s	system	dBm	-80	Absolute GSM carrier RSSI threshold for event B1.
Hysteresis		dB	0	
Time to Trigger		ms	0	
Filter coefficient			0	L3 filtering is not used
DRX				OFF
T1		S	20	
T2		S	7	
T3		S	1	

Table A.5.2.3.1 -1: General test parameters for correct reporting of GSM neighbours in AWGN propagation condition

Table A. A.5.2.3.1 - 2: Cell Specific Parameters for Handover E- UTRAN to GSM cell case (cell 1)

Parameter	Unit	Cell 1		
		T1, T2	Т3	
BW _{channel}	MHz	10		
OCNG Patterns				
defined in A.3.2.1.1				
(OP.1 FDD) and in		OP.1 FDD	OP.2 FDD	
A.3.2.1.2 (OP.2				
FDD)				
PBCH_RA	dB			
PBCH_RB	dB			
PSS_RA	dB			
SSS_RA	dB			
PCFICH_RB	dB			
PHICH_ RA	dB			
PHICH_RB	dB	0		
PDCCH_RA	dB			
PDCCH_ RB	dB			
PDSCH_RA	dB			
PDSCH_RB	dB			
OCNG_RA ^{Note1}	dB			
OCNG_RB ^{Note1}	dB			
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4		
N_{oc} Note 2	dBm/15 kHz	-98 (AWGN)		
\hat{E}_s/N_{oc}	dB	4		
RSRP ^{Note 3}	dBm/15kH z	-94		
Propagation Condition		AWGN		
L	1	1		

Note 1:	OCNG shall be used such that cell 1 is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.
Note 2:	Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as
	AWGN of appropriate power for $ N_{\scriptscriptstyle oc} $ to be fulfilled.
Note 3:	RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Table A.5.2.3.1 - 3: Cell Specific Parameters for Handover E-UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)	
Faranieter	Onit	T1	T2, T3
Absolute RF Channel Number		ARFCN 1	
RXLEV	dBm	-85	-75

A.5.2.3.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 100 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{Handover delay} = 90 \text{ ms} (Table 5.3.3.2.1-1) + T_{offset} + T_{UL}$

 T_{offset} : Equal to 4.65 ms, GSM timing uncertainty between the time from when the UE is ready to transmit until the start of the next timeslot in GSM 26 multiframe structure

T_{UL}: Equal to 4.65 ms, the time the UE has to wait in case the next timeslot is an idle frame or a SACCH frame.

This gives a total of 99.3 ms, allow 100 ms in the test case.

A.5.2.4 E-UTRAN TDD - UTRAN TDD Handover

- A.5.2.4.1 Test Purpose and Environment
- A.5.2.4.1.1 3.84 Mcps TDD option
- A.5.2.4.1.2 1.28 Mcps TDD option

This test is to verify the requirement for E-UTRAN TDD to UTRAN TDD handover requirements specified in section 5.3.2.

The test scenario comprises of 1 E-UTRA TDD cell and 1 UTRA TDD cell as given in tables Table A.5.2.4.1.2-1, Table A.5.2.4.1.2-2, and Table A.5.2.4.1.2-3. Gap pattern configuration #0 as defined in table 8.1.2.1-1 is provided.

The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively.

E-UTRAN shall send a RRC message implying handover to UE. The RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The end of the last TTI containing handover message is begin of T3 duration.

Parameter	Parameter		Value	Comment
PDSCH paramet	ters		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH parameters	I/PHICH		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Initial	Active cell		Cell 1	E-UTRA TDD cell
conditions	Neighbour cell		Cell 2	UTRA 1.28Mcps TDD Cell
Final conditions	Active cell		Cell 2	
Gap Pattern Id			0	As specified in 3GPP TS 36.133 section 8.1.2.1.
Uplink-downlink cell 1	configuration of		1	As specified in table 4.2.2 in TS 36.211
of cell 1	Special subframe configuration of cell 1		6	As specified in table 4.2.1 in TS 36.211
CP length of cell			Normal	
Time offset betw	een cells		3 ms	Asynchronous cells
Access Barring I	nformation		Not Sent	No additional delays in random access procedure.
Hysteresis		dB	0	
Time To Trigger		dB	0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	
Ofn		dB dB	0	
Hys			0	
Thresh1		dBm	-94	E-UTRA event B2 threshold
Thresh2		dBm	-79	UTRA event B2 threshold
T1		S	5	
T2		S	≤10	
T3		S	1	

Table A.5.2.4.1.2-1: General test parameters for E-UTRA TDD to UTRA(1.28 Mcps TDD OPTION) handover test case

Table A.5.2.4.1.2-2: Cell specific test parameters for E-UTRA TDD to UTRA TDD handover test case (cell 1)

Parameter	Unit		Cell 1					
		T1	T2	Т3				
E-UTRA RF Channel			1					
Number								
BW _{channel}	MHz		10					
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RB	dB							
SSS_RB	dB							
PCFICH_PA	dB							
PHICH_PA	dB							
PHICH_PB	dB	0	0	0				
PDCCH_PA	dB							
PDCCH_PB	dB							
PDSCH_PA	dB							
PDSCH_PB	dB							
OCNG_RA ^{Note 1}	dB							
OCNG_RB ^{Note 1}	dB							
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	11	-3	-3				
N _{oc}	dBm/15kHz	-98						
RSRP	dBm/15kHz	-87	-101	-101				
SCH_RP	dBm/15 kHz	-87	-101	-101				
Propagation Condition AWGN								
Note 1: OCNG shall be used such that cell is fully allocated and a constant total								
transmitted power spectral der	transmitted power spectral density is achieved for all OFDM symbols.							

Parameter		Unit	Cell 2 (UTRA)						
Timeslot Num	ber			0		DwPTS			
			T1	T2	T3	T1	T2	T3	
UTRA RF Char Number*	nnel		Channel 2						
PCCPCH_Ec/	lor	dB		-3					
DwPCH_Ec/I	or	dB					0		
OCNS_Ec/lo	or	dB	-3						
\hat{I}_{or}/I_{oc}		dB	-3	11	11	-3	11	11	
I _{oc}		dBm/1.28 MHz	-80						
PCCPCH RS0	CP	dBm	-86	-72	-72	n.a.			
Propagation Condition	1		AWGN						

Table A.5.2.4.1.2-3: Cell specific test parameters for cell search E-UTRA to UTRA case (cell 2)

A.5.2.4.1.3 7.68 Mcps TDD option

- A.5.2.4.2 Test Requirements
- A.5.2.4.2.1 3.84 Mcps TDD option
- A.5.2.4.2.2 1.28 Mcps TDD option

The UE shall start to transmit the PRACH to Cell 2 less than [RRC procedure delay] + [40] ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

A.5.2.4.2.3 7.68 Mcps TDD option

A.5.2.5 E-UTRAN FDD – UTRAN TDD Handover

- A.5.2.5.1 Test Purpose and Environment
- A.5.2.5.1.1 3.84 Mcps TDD option
- A.5.2.5.1.2 1.28 Mcps TDD option

This test is to verify the requirement for the E-UTRAN FDD to UTRAN TDD handover requirements specified in section 5.3.2.

The test scenario comprises of two cells, E-UTRA TDD cell1 and UTRA TDD cell2. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #1 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring. The test parameters are given in Tables A.5.2.5.1-1, A.5.2.5.1-2 and A.5.2.5.1-3.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.2.5.1.2-1: General test parameters for E-UTRA FDD to UTRA (1.28 Mcps TDD option) handover test case

Paran	neter	Unit	Value	Comment
PDSCH paramete	rs		DL Reference Measurement	As specified in section
			Channel R.0 FDD	A.3.1.1.1
PCFICH/PDCCH/I	PHICH		DL Reference Measurement	As specified in section
parameters			Channel R.6 FDD	A.3.1.2.1
Initial conditions	Active cell		Cell 1	E-UTRA FDD cell
	Neighbour cell		Cell 2	UTRA 1.28Mcps TDD Cell
Final conditions	Active cell		Cell 2	
Gap Pattern Id			1	As specified in 3GPP TS
				36.133 section 8.1.2.1.
E-UTRAN FDD m	easurement		RSRP	
quantity				
UTRAN TDD mea	surement		RSCP	
quantity				
CP length of cell 1			Normal	
Access Barring Inf	formation		Not Sent	No additional delays in random access procedure.
Hysteresis		dB	0	
Time To Trigger		dB	0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	
Ofn		dB	0	
Hys		dB	0	
Thresh1		dBm	-94	Absolute E-UTRAN RSRP
				threshold for event B2
Thresh2		dBm	-79	Absolute UTRAN RSCP
				threshold for event B2
T1		S	5	
T2	T2		≤ 10	
T3		S	1	

Parameter	Unit		Cell 1 (E-UTF	RA)			
		T1	T2	T3			
E-UTRA RF Channel			1				
number							
BW _{channel}	MHz		10				
OCNG Patterns		OP.1 FDD	OP.1 FDD	OP.2			
defined in A.3.2.1.1				FDD			
(OP.1 FDD) and in							
A.3.2.1.2 (OP.2 FDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB						
PHICH_RB	dB		0				
PDCCH_RA	dB						
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
\hat{E}_{s}/N_{oc}	dB	11	-3	-3			
N _{oc}	dBm/15 kHz		-98				
\hat{E}_{s}/I_{ot}	dB	11	-3	-3			
RSRP	dBm/15 KHz	-87	-101	-101			
Propagation Condition AWGN							
Note 1: OCNG shall be u							
total transmitted power spectral density is achieved for all OFDM symbols.							

Table A.5.2.5.1.2-2: Cell specific test parameters for E-UTRAN FDD to UTRAN (1.28 Mcps TDD option) handover test case (cell 1)

Table A.5.2.5.1.2-3: Cell specific test parameters for E-UTRAN FDD to UTRAN (1.28 Mcps TDD option) handover test case (cell 2)

Parameter	Unit			Cell 2 ((UTRA)	JTRA)		
Timeslot Number			0			DwPTS		
		T1	T2	T3	T1	T2	T3	
UTRA RF Channel Number*				Char	inel 2			
PCCPCH_Ec/lor	dB		-3					
DwPCH_Ec/lor	dB			0				
OCNS_Ec/lor	dB	-3						
\hat{I}_{or} / I_{oc}	dB	-3	11	11	-3	11	11	
I _{oc}	dBm/1.28 MHz	-80						
PCCPCH RSCP	dBm	-86	-72	-72	n.a.			
Propagation Condition		AWGN						
* Note: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number.								

148

A.5.2.5.1.3 7.68 Mcps TDD option

A.5.2.5.2 Test Requirements

A.5.2.5.2.1 3.84 Mcps TDD option

A.5.2.5.2.2 1.28 Mcps TDD option

The UE shall start to transmit the PRACH to Cell 2 less than [RRC procedure delay] + [40] ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay can be expressed as: [RRC procedure delay] + $T_{interrupt}$, where:

[RRC procedure delay]See section 11.2 in [2]

 $T_{interrupt}$ See section 5.3.2.2.2

This gives a total of [RRC procedure delay] + [40] ms, allow xxx s in the test case.

A.5.2.5.2.3 7.68 Mcps TDD option

A.5.2.6 E-UTRAN TDD - GSM Handover

A.5.2.6.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN to GSM cell handover delay specified in section 5.3.3.

The test parameters are given in Table A.5.2.6.1-1, A.5.2.6.1-2 and A.5.2.6.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 shall be used. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time duration T1, the UE may not have any timing information of cell 2.

The RRC message implying handover to cell 2 shall be sent to the UE during period T2, after the UE has reported Event B1. The start of T3 is defined as the end of last E-UTRAN TTI containing the RRC message implying handover.

The requirements are also applicable for a UE not requiring measurement gap, in which case no measurement gap pattern should be sent for the parameters specified in Table A.5.2.6.1-1.

Table A.5.2.6.1-1: General test parameters for E-UTRAN TDD toGSM neighbours handover test case in AWGN propagation condition

Pa	rameter	Unit	Value	Comment
PDSCH paramete	ers		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH,	PHICH parameters		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Gap Pattern Id			1	As specified in TS 36.133 section 8.1.2.1.
Initial conditions	Active cell		Cell 1	
	Neighbour cell		Cell 2	
Final conditions	Active cell		Cell 2	
Uplink-downlink o	configuration of cell 1		1	As specified in table 4.2.2 in TS 36.211
Special subframe	configuration of cell 1		6	As specified in table 4.2.1 in TS 36.211
CP length of cell	1		Normal	
Inter-RAT measu	rement quantity		GSM Carrier RSSI	
E-UTRA RF Char	nnel Number		1	E-UTRA RF Channel Number
E-UTRA Channel (BW _{channel})	Bandwidth	MHz	10	E-UTRA Channel Bandwidth (BW _{channel})
Threshold other s	system	dBm	-80	Absolute GSM carrier RSSI threshold for event B1.
Hysteresis		dB	0	
Time to Trigger	Time to Trigger		0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	
T1		S	20	
T2		S	7	
T3		S	1	

	Parameter	Unit	Се	ll 1		
			T1, T2	Т3		
E-UTRA F	RF Channel Number					
BW _{channel}		MHz	1	0		
OCNG Pa	atterns defined in					
A.3.2.2.1	(OP.1 TDD) and in		OP.1 TDD	OP.2 TDD		
A.3.2.2.2	(OP.2 TDD)					
PBCH_RA		dB				
PBCH_R		dB				
PSS_RA		dB				
SSS_RA		dB				
PCFICH_		dB				
PHICH_F		dB				
PHICH_F		dB	()		
PDCCH_		dB				
PDCCH_		dB				
PDSCH_		dB				
PDSCH_	RB	dB				
OCNG_R	RA Note1	dB				
	RB ^{Note1}	dB				
\hat{E}_{s}/N_{oc}		dB		1		
$N_{\it oc}$ Note 2		dBm/15 kHz	-98 (A	WGN)		
\hat{E}_{s}/I_{ot}		dB	4	1		
RSRP ^{Note}	3	dBm/15kHz	-9)4		
Propagati	on Condition		AW	GN		
NOTE 1:	OCNG shall be used si density is achieved for		fully allocated and a constant tot	al transmitted power spectral		
Note 2:			sources not specified in the test i	s assumed to be constant		
	over subcarriers and time and shall be modelled as AWGN of appropriate power for $N_{_{oc}}$ to be					
Note 3:	fulfilled. RSRP levels have been parameters themselves		her parameters for information p	urposes. They are not settable		

Table A.5.2.6.1-2: Cell Specific Parameters for Handover E- UTRAN TDD to GSM handover test case

Table A A.5.2.6.1-3: Cell Specific Parameters for Handover E-UTRAN to GSM cell case (cell 2)

Parameter	Unit	Cell 2 (GSM)		
Farameter	Unit	T1 T2,		
Absolute RF Channel Number		ARFCN 1		
RXLEV	dBm	-85	-75	

A.5.2.6.2 Test Requirements

The UE shall begin to send access bursts on the new DCCH of the target cell less than 100 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The test requirement in this test case is expressed as:

 $T_{Handover delay} = 90 \text{ ms} (Table 5.3.3.2.1-1) + T_{offset} + T_{UL}$

- T_{offset}: Equal to 4.65 ms, GSM timing uncertainty between the time from when the UE is ready to transmit until the start of the next timeslot in GSM 26 multiframe structure
- T_{UL} : Equal to 4.65 ms, the time the UE has to wait in case the next timeslot is an idle frame or a SACCH frame.

151

This gives a total of 99.3 ms, allow 100 ms in the test case.

A.5.3 E-UTRAN Handover to Non-3GPP RATs

A.5.3.1 E-UTRAN FDD – HRPD Handover

A.5.3.1.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to HRPD handover requirements specified in section 5.4.1.

The test parameters are given in Tables A.5.3.1.1-1, A.5.3.1.1-2 and A.5.3.1.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Parameter		Unit	Value	Comment
PDSCH parameters	3		DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/PI	HICH parameters		DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
Initial conditions	Active cell		Cell 1	E-UTRAN FDD cell
	Neighbouring cell		Cell 2	HRPD cell
Final condition	Active cell		Cell 2	HRPD cell
Channel Bandwidth	(BW _{channel})	MHz	10	
Gap Pattern Id	· · ·		0	As specified in Table 8.1.2.1-1 started before T2 starts
E-UTRAN FDD mea	asurement quantity		RSRP	
Inter-RAT (HRPD) r quantity			CDMA2000 HRPD Pilot Strength	
b2-Threshold1		dBm	-90	Absolute E-UTRAN RSRP threshold for event B2
b2-Threshold2-CDN	/A2000	dB	-7	Absolute 'CDMA2000 HRPD Pilot Strength' threshold for event B2
Hysteresis		dB	0	
TimeToTrigger		dB	0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	Non-DRX test
Access Barring Info	rmation	-	Not sent	No additional delays in random access procedure
E-UTRA RF Chann	el Number		1	One E-UTRA FDD carrier frequency is used.
E-UTRA Channel B (BWchannel)	andwidth	MHz	10	
HRPD RF Channel	Number		1	One HRPD carrier frequency is used.
HRPD neighbour cell list size			8	HRPD cells on HRPD RF channel 1 provided in the cell list before T2.
cdma2000-SearchV	VindowSize		8 (60 PN chips)	Search window size as defined in section 6.3.5 in 3GPP TS 36.331
T1		S	5	
T2		S	≤10	
T3		S	1	

Table A.5.3.1.1-1: General test parameters for E-UTRAN FDD to HRPD handover test case

Parameter	Unit	Cell 1 (E-UTRA)					
		T1	T2	T3			
E-UTRA RF Channel			1				
number							
BW _{channel}	MHz		10				
OCNG Patterns defined in			OP.1 FDD				
A.3.2.1.1 (OP.1 FDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB		-				
PHICH_RB	dB		0				
PDCCH_RA	dB						
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
	dB						
OCNG_RB ^{Note 1}	dB						
N_{oc} Note 2	dBm/15		-98				
RSRP ^{Note 3}	kHz		00				
RSRP	dBm/15	-98	-98	-98			
	KHz	0	0	0			
\hat{E}_{s}/N_{oc}	dB	0	0	0			
\hat{E}_s/I_{ot}	dB	0	0	0			
Propagation Condition			AWGN				
Note 1: OCNG shall be used	such that bo	th cells are fu	lly allocated a	and a			
constant total tran	smitted powe	r spectral der	nsity is achiev	ed for all			
OFDM symbols.							
Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be							
modelled as AWGN of appropriate power for $N_{_{ m oc}}$ to be fulfilled.							
Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.							
		1					

Table A.5.3.1.1-2: Cell specific test parameters for E-UTRAN FDD cell#1 for handover to HRPD cell # 2

Parameter	Unit		Cell 2 (HRPD)		
		T1	T2	Т3	
$\frac{\text{Control} \ \text{E}_{b}}{\text{N}_{t}} $ (38.4 kbps)	dB		21		
$\frac{\text{Control} \text{E}_{b}}{\text{N}_{t}} \text{ (76.8 kbps)}$	dB	18			
\hat{I}_{or}/I_{oc}	dB	-infinity	0	0	
I _{oc}	dBm/1.2288 MHz	-55			
CDMA2000 HRPD Pilot Strength	dB	-infinity	-3	-3	
Propagation Condition			AWGN		

Table A.5.3.1.1-3: Cell specific test parameters for HRPD (cell # 2) for handover from E-UTRAN FDD cell (cell #1)

A.5.3.1.2 Test Requirements

The UE shall start transmission of the reverse control channel in HRPD to Cell 2 less than [RRC procedure delay] + 76.66 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay is expressed as: [RRC procedure delay] + T_{interrupt}, where:

T_{interrupt} See section 5.4.1.1.2

This gives a total of [RRC procedure delay] + 76.66 ms.

A.5.3.2 E-UTRAN FDD – cdma2000 1X Handover

A.5.3.2.1 Test Purpose and Environment

This test is to verify the requirement for the E-UTRAN FDD to cdma2000 1X handover requirements specified in section 5.4.1.

The test parameters are given in Tables A.5.3.2.1-1, A.5.3.2.1-2 and A.5.3.2.1-3. The test consists of three successive time periods, with time durations of T1, T2 and T3 respectively. At the start of time duration T1, the UE does not have any timing information of Cell 2. Starting T2, Cell 2 becomes detectable and the UE is expected to detect and send a measurement report. Gap pattern configuration with id #0 as specified in Table 8.1.2.1-1 is configured before T2 begins to enable inter-RAT frequency monitoring.

A RRC message implying handover shall be sent to the UE during period T2, after the UE has reported Event B2. The start of T3 is the instant when the last TTI containing the RRC message implying handover is sent to the UE. The handover message shall contain cell 2 as the target cell.

Table A.5.3.2.1-1: General test parameters for E-UTRAN FDD to cdma2000 1X handover test case

Parameter		Unit	Value	Comment
PDSCH parameters	6			As specified in section A.3.1.1.1
			Channel R.0 FDD	
PCFICH/PDCCH/P	HICH parameters			As specified in section A.3.1.2.1
			Channel R.6 FDD	
Initial conditions	tial conditions Active cell Neighbouring cell		Cell 1	E-UTRAN FDD cell
			Cell 2	cdma2000 1X cell
Final condition	Active cell		Cell 2	cdma2000 1X cell
Channel Bandwidth	(BW _{channel})	MHz	10	
Gap Pattern Id			0	As specified in Table 8.1.2.1-1
				started before T2 starts
E-UTRAN FDD mea	asurement quantity		RSRP	
Inter-RAT (cdma20	00 1X) measurement		CDMA2000 1xRTT Pilot	
quantity			Strength	
b2-Threshold1		dBm	-90	Absolute E-UTRAN RSRP
				threshold for event B2
b2-Threshold2-CDM	/A2000	dB	-14	Absolute 'CDMA2000 1xRTT Pilot
				Strength' threshold for event B2
Hysteresis		dB	0	
TimeToTrigger		dB	0	
Filter coefficient			0	L3 filtering is not used
DRX			OFF	Non-DRX test
Access Barring Info	rmation	-	Not sent	No additional delays in random
-				access procedure
E-UTRA RF Chann	el Number		1	One E-UTRA FDD carrier
				frequency is used.
E-UTRA Channel B	andwidth	MHz	10	
(BWchannel)				
cdma2000 1X RF C	hannel Number		1	One HRPD carrier frequency is
				used.
cdma2000 1X neigh	bour cell list size		8	cdma2000 1X cells on cdma2000
				1X RF channel 1 provided in the
				cell list before T2.
cdma2000-SearchWindowSize			8 (60 PN chips)	Search window size as defined in
				section 6.3.5 in 3GPP TS 36.331
T1		S	5	
T2		S	≤10	
T3		s	1	

Parameter	Unit	C	ell 1 (E-UTR	A)					
		T1	T2	T3					
E-UTRA RF Channel			1						
number									
BW _{channel}	MHz		10						
OCNG Patterns defined in			OP.1 FDD						
A.3.2.1.1 (OP.1 FDD)									
PBCH_RA	dB								
PBCH_RB	dB								
PSS_RA	dB								
SSS_RA	dB								
PCFICH_RB	dB								
PHICH_RA	dB								
PHICH_RB	dB		0						
PDCCH_RA	dB								
PDCCH_RB	dB								
PDSCH_RA	dB								
PDSCH_RB	dB								
OCNG_RA ^{Note 1}	dB								
OCNG_RB ^{Note 1}	dB								
$N_{oc}^{ m Note 2}$	dBm/15		-98						
	kHz								
RSRP ^{Note 3}	dBm/15	-98	-98	-98					
	KHz								
\hat{E}_s/N_{oc}	dB	0	0	0					
\hat{E}_s/I_{ot}	dB	0	0	0					
Propagation Condition			AWGN						
Note 1: OCNG shall be used	such that bo	th cells are fu	lly allocated	and a					
constant total tran									
OFDM symbols.									
Note 2: Interference from oth									
is assumed to be cor	nstant over su	bcarriers and	I time and sh	all be					
modelled as AWGN	modelled as AWGN of appropriate power for N_{oc} to be fulfilled.								
Note 3: RSRP levels have be	een derived fr	om other par	ameters for i	nformation					
purposes. They a									

Table A.5.3.2.1-2: Cell specific test parameters for E-UTRAN FDD cell#1 for handover to cdma2000 1X cell # 2

Parameter	Unit	Cell 2 (cdma2000 1X)				
		T1	Т3			
$\frac{\text{Pilot } E_{c}}{I_{\text{or}}}$	dB		[-7]			
Sync E _c I _{or}	dB	[-16]				
$\frac{Paging E_{c}}{I_{or}}$ (4.8 kbps)	dB		[-12]			
\hat{I}_{or}/I_{oc}	dB	-infinity	0	0		
I _{oc}	dBm/1.2288 MHz		-55			
CDMA2000 1xRTT Pilot Strength	dB	-infinity	-10	-10		
Propagation Condition			AWGN			

Table A.5.3.2.1-3: Cell specific test parameters for cdma2000 1X (cell # 2) for handover from E-UTRAN FDD cell (cell #1)

A.5.3.2.2 Test Requirements

The UE shall start transmission of the reverse control channel in cdma2000 1X to Cell 2 less than [RRC procedure delay] + 70 ms from the beginning of time period T3.

The rate of correct handovers observed during repeated tests shall be at least 90%.

NOTE: The handover delay is expressed as: [RRC procedure delay] + T_{interrupt}, where:

T_{interrupt} See section 5.4.2.1.2

This gives a total of [RRC procedure delay] + 70 ms.

A.6 RRC Connection Control

A.6.1 RRC Re-establishment

A.6.1.1 E-UTRAN FDD Intra-frequency RRC Re-establishment

A.6.1.1.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA FDD intra-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.1.1-1 and table A.6.1.1.1-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of the radio link failure.

Parameter		Unit	Value	Comment
PDSCH parameters			DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/I	PHICH parameters		DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
Initial conditions	Active cell		Cell 1	
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
E-UTRA RF Chan	nel Number		1	Only one FDD carrier frequency is used.
Channel Bandwidt	h (BW _{channel})	MHz	10	
N310	N310		1	Maximum consecutive out-of-sync indications from lower layers
N311		-	1	Minimum consecutive in-sync indications from lower layers
T310		ms	0	Radio link failure timer; T310 is disabled
T311		ms	3000	RRC re-establishment timer
DRX			OFF	
CP length			Normal	
Access Barring Inf	formation	-	Not Sent	No additional delays in random access procedure.
PRACH configuration index			4	As specified in table 5.7.1-2 in TS 36.211
Time offset between cells			3 ms	Asynchronous cells
T1		s	5	
T2		s	200 ms	
Т3		S	3	

Table A.6.1.1.1-1: General test parameters for E-UTRAN FDD intra-frequency RRC Re-establishment test case

Table A.6.1.1.1-2: Cell specific test parameters for E-UTRAN FDD intra-frequency RRC Reestablishment test case

Parameter	Unit	Cell 1			Cell 2		
		T1	T2	Т3	T1	T2	T3
E-UTRA RF Channel			1			1	
Number							
BW _{channel}	MHz		10			10	
OCNG Patterns		OP.1	OP.1	OP.2	OP.2 FDD	OP.2 FDD	OP.1 FDD
defined in A.3.2.1.1		FDD	FDD	FDD			
(OP.1 FDD) and in							
A.3.2.1.2 (OP.2 FDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB						
PHICH_RB	dB		0			0	
PDCCH_RA	dB		0			0	
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						

159

$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	1.54	-Infinity	-Infinity	-3.79	4	4
N _{oc} Note 2	dBm/15 KHz		·		-98		
\hat{E}_s/N_{oc}	dB	7	-Infinity	-Infinity	4	4	4
RSRP Note 3	dBm/15 KHz	-91	-Infinity	-Infinity	-94	-94	-94
Propagation Condition			- -		AWGN		
Note 1: OCNG shall be u density is achieve Note 2: Interference from	ed for all OFDM s	symbols.					
subcarriers and time and shall be modelled as AWGN of appropriate power for $N_{_{oc}}$ to be fulfilled.							
Note 3: RSRP levels hav parameters ther		rom other pa	arameters for	[·] information	purposes. They a	re not settable	9

A.6.1.1.2 Test Requirements

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the *RRCConnectionReestablishmentRequest* message to cell 2.

The RRC re-establishment delay to a known E-UTRA FDD intra frequency cell shall be less than 1.5 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

$$T_{re-establish_delay} = T_{UL_grant} + T_{UE_re-establish_delay}$$
.

Where:

 $T_{UL_{grant}} = It$ is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence $T_{UL_{grant}}$ is not used.

 $T_{UE_re-establish_delay} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$

 $N_{\text{freq}} = 1$

 $T_{search} = 100 \text{ ms}$

 $T_{SI} = 1280$ ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN FDD cell.

 $T_{PRACH} = 15$ ms; it is the additional delay caused by the random access procedure.

This gives a total of 1445 ms, allow 1.5 s in the test case.

A.6.1.2 E-UTRAN FDD Inter-frequency RRC Re-establishment

A.6.1.2.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA FDD inter-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.1.2-1 and table A.6.1.1.2-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of radio link failure. At the start of time period T3, cell 2, which is the neighbour cell, is activated.

Table A.6.1.2.1-1: General test parameters for E-UTRAN FDD inter-frequency RRC Re-establishment test case

Parameter		Unit	Value	Comment
PDSCH paramete	rs		Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/F	PHICH parameters		DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
Initial conditions	Active cell		Cell 1	
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
E-UTRA RF Chan	nel Number (cell 1)		1	
E-UTRA RF Chan	nel Number (cell 2)		2	
E-UTRA FDD inter size	r-frequency carrier list		1	2 E-UTRA FDD carrier frequencies in total: 1 intra- frequency and 1 inter-frequency
Channel Bandwidt	h (BW _{channel})	MHz	10	
N310		-	1	Maximum consecutive out-of-sync indications from lower layers
N311		-	1	Minimum consecutive in-sync indications from lower layers
T310		ms	0	Radio link failure timer; T310 is disabled
T311		ms	5000	RRC re-establishment timer
DRX			OFF	
CP length			Normal	
Access Barring Inf	ormation	-	Not Sent	No additional delays in random access procedure.
PRACH configuration index			4	As specified in table 5.7.1-2 in TS 36.211
Time offset betwee	en cells		3 ms	Asynchronous cells
T1		s	5	
T2		s	200 ms	
Т3		s	5	

Parameter	Unit		Cell 1		Cell 2			
		T1	T2	Т3	T1	T2	Т3	
E-UTRA RF Channel			1			2		
Number								
BW _{channel}	MHz		10			10		
OCNG Patterns		OP.1	OP.1	OP.2	OP.2 FDD	OP.2 FDD	OP.1 FDD	
defined in A.3.2.1.1		FDD	FDD	FDD				
(OP.1 FDD) and in								
A.3.2.1.2 (OP.2 FDD)								
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB							
SSS_RA	dB							
PCFICH_RB	dB							
PHICH_RA	dB							
PHICH_RB	dB		0			0		
PDCCH_RA	dB		0			0		
PDCCH_RB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 1}	dB							
OCNG_RB ^{Note 1}	dB		•					
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	-Infinity	-Infinity	-Infinity	-Infinity	7	
N_{oc} Note 2	dBm/15 KHz				-98		-	
\hat{E}_s/N_{oc}	dB	4	-Infinity	-Infinity	- Infinity	- Infinity	7	
RSRP Note 3	dBm/15 KHz	-94	-Infinity	-Infinity	- Infinity	-Infinity	-91	
Propagation Condition					AWGN			
Note 1: OCNG shall be u density is achie Note 2: Interference from	ved for all OFDM	symbols.	-				-	

Table A.6.1.2.1-2: Cell specific test parameters for E-UTRAN FDD inter-frequency RRC Reestablishment test case

subcarriers and time and shall be modelled as AWGN of appropriate power for N_{ac} to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.6.1.2.2 Test Requirements

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the *RRCConnectionReestablishmentRequest* message to cell 2.

The RRC re-establishment delay to an unknown E-UTRA FDD inter frequency cell shall be less than 3 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

 $T_{re-establish_delay} = T_{UL_grant} + T_{UE_re-establish_delay}.$

Where:

 T_{UL_grant} = It is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence T_{UL_grant} is not used.

 $T_{UE_re-establish_delay} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$

$$N_{\text{freq}} = 2$$

 $T_{search} = 800 \text{ ms}$

 $T_{SI} = 1280$ ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN FDD cell.

 $T_{PRACH} = 15$ ms; it is the additional delay caused by the random access procedure.

This gives a total of 2945 ms, allow 3 s in the test case.

A.6.1.3 E-UTRAN TDD Intra-frequency RRC Re-establishment

A.6.1.3.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA TDD intra-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.3.1-1 and table A.6.1.3.1-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of the radio link failure.

Table A.6.1.3.1-1: General test parameters for E-UTRAN TDD intra-frequency RRC Re-establishment test case

Parameter		Unit	Value	Comment
PDSCH parameter	S		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH/P	HICH parameters		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Initial conditions	Active cell		Cell 1	
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
E-UTRA RF Chann	el Number		1	Only one TDD carrier frequency is used.
Channel Bandwidth	ו (BW _{channel})	MHz	10	
N310		-	1	Maximum consecutive out-of-sync indications from lower layers
N311		ms	0	Minimum consecutive in-sync indications from lower layers
T310		-	1	Radio link failure timer; T310 is disabled
T311		ms	3000	RRC re-establishment timer
DRX			OFF	
CP length			Normal	
Access Barring Info	ormation	-	Not Sent	No additional delays in random access procedure.
Special subframe of	onfiguration		6	As specified in table 4.2-1 in TS 36.211
Uplink-downlink co	nfiguration		1	As specified in table 4.2-2 in TS 36.211
PRACH configuration index			53	As specified in table 5.7.1-3 in TS 36.211
Time offset betwee	n cells		3 μs	Synchronous cells
T1		s	5	-
T2		S	200 ms	
Т3		S	3	

Parameter	Unit		Cell 1			Cell 2	
		T1	T2	T3	T1	T2	Т3
E-UTRA RF Channel			1	•		1	
Number							
BW _{channel}	MHz		10	-		10	
OCNG Patterns		OP.1	OP.1	OP.2	OP.2 TDD	OP.2 TDD	OP.1 TDD
defined in A.3.2.2.1		TDD	TDD	TDD			
(OP.1 TDD) and in							
A.3.2.2.2 (OP.2 TDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB						
PHICH_RB	dB		0			0	
PDCCH_RA	dB		0			0	
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	1.54	-Infinity	-Infinity	-3.79	4	4
$N_{_{oc}}$ Note 2	dBm/15 KHz				-98		
\hat{E}_s/N_{oc}	dB	7	-Infinity	-Infinity	4	4	4
RSRP Note 3	dBm/15 KHz	-91	-Infinity	-Infinity	-94	-94	-94
Propagation Condition		AWGN					
Note 1: OCNG shall be u density is achieve	ed for all OFDM s	ymbols.					

Table A.6.1.3.1-2: Cell specific test parameters for E-UTRAN TDD intra-frequency RRC Reestablishment test case

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over

subcarriers and time and shall be modelled as AWGN of appropriate power for $N_{\it ac}$ to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.6.1.3.2 **Test Requirements**

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the RRCConnectionReestablishmentRequest message to cell 2.

The RRC re-establishment delay to a known E-UTRA TDD intra frequency cell shall be less than 1.5 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

 $T_{re-establish_delay} = T_{UL_grant} + T_{UE_re-establish_delay}$.

Where:

T_{UL_grant} = It is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence T_{UL grant} is not used.

 $T_{UE_re-establish_delay} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$

 $N_{\text{freg}} = 1$

 $T_{search} = 100 \text{ ms}$

 $T_{SI} = 1280$ ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN TDD cell.

 $T_{PRACH} = 15$ ms; it is the additional delay caused by the random access procedure.

This gives a total of 1445 ms, allow 1.5 s in the test case.

A.6.1.4 E-UTRAN TDD Inter-frequency RRC Re-establishment

A.6.1.4.1 Test Purpose and Environment

The purpose is to verify that the E-UTRA TDD inter-frequency RRC re-establishment delay is within the specified limits. These tests will verify the requirements in section 6.1.2.

The test parameters are given in table A.6.1.4.1-1 and table A.6.1.4.1-2 below. The test consists of 3 successive time periods, with time duration of T1, T2 and T3 respectively. At the start of time period T2, cell 1, which is the active cell, is deactivated. The time period T3 starts after the occurrence of radio link failure. At the start of time period T3, cell 2, which is the neighbour cell, is activated.

Table A.6.1.4.1-1: General test parameters for E-UTRAN TDD inter-frequency RRC Re-establishment test case

Par	ameter	Unit	Value	Comment
PDSCH paramete	rs		DL Reference Measurement	As specified in section A.3.1.1.2
			Channel R.0 TDD	
PCFICH/PDCCH/I	PHICH parameters		DL Reference Measurement	As specified in section A.3.1.2.2
			Channel R.6 TDD	
Initial conditions	Active cell		Cell 1	
	Neighbouring cell		Cell 2	
Final condition	Active cell		Cell 2	
E-UTRA RF Chan	nel Number (cell 1)		1	
E-UTRA RF Chan	nel Number (cell 2)		2	
E-UTRA TDD inte	r-frequency carrier list		1	2 E-UTRA TDD carrier
size				frequencies in total: 1 intra-
				frequency and 1 inter-frequency
Channel Bandwidt	h (BW _{channel})	MHz	10	
N310		-	1	Maximum consecutive out-of-sync
				indications from lower layers
N311		-	1	Minimum consecutive in-sync
				indications from lower layers
T310		ms	0	Radio link failure timer; T310 is
				disabled
T311		ms	5000	RRC re-establishment timer
DRX			OFF	
CP length			Normal	
Access Barring Inf	formation	-	Not Sent	No additional delays in random
_				access procedure.
Special subframe	configuration		6	As specified in table 4.2-1 in TS
	-			36.211
Uplink-downlink co	onfiguration		1	As specified in table 4.2-2 in TS
•	·			36.211
PRACH configuration	tion index		53	As specified in table 5.7.1-3 in TS
				36.211
Time offset betwee	en cells		3 μs	Synchronous cells
T1		s	5	
T2		s	200 ms	
Т3		s	5	
		+		

Parameter	Unit		Cell 1		Cell 2			
		T1	T2	T3	T1	T2	Т3	
E-UTRA RF Channel			1			2		
Number								
BW _{channel}	MHz		10			10		
OCNG Patterns		OP.1	OP.1	OP.2	OP.2 TDD	OP.2 TDD	OP.1 TDD	
defined in A.3.2.2.1		TDD	TDD	TDD				
(OP.1 TDD) and in								
A.3.2.2.2 (OP.2 TDD)								
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB							
SSS_RA	dB							
PCFICH_RB	dB							
PHICH_RA	dB							
PHICH_RB	dB							
PDCCH_RA	dB		0			0		
PDCCH_RB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 1}	dB							
OCNG_RB ^{Note 1}	dB							
\hat{E}_{s}/I_{ot}	dB	4	-Infinity	-Infinity	-Infinity	-Infinity	7	
$N_{oc}^{\rm Note 2}$	dBm/15 KHz				-98	·		
\hat{E}_s/N_{oc}	dB	4	-Infinity	-Infinity	- Infinity	- Infinity	7	
RSRP Note 3	dBm/15 KHz	-94	-Infinity	-Infinity	- Infinity	-Infinity	-91	
Propagation Condition			1		AWGN	1		
Note 1: OCNG shall be u density is achieve	ed for all OFDM s	ymbols.						

Table A.6.1.4.1-2: Cell specific test parameters for E-UTRAN TDD inter-frequency RRC Reestablishment test case

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over

subcarriers and time and shall be modelled as AWGN of appropriate power for $N_{\it ac}$ to be fulfilled.

Note 3: RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.6.1.4.2 **Test Requirements**

The RRC re-establishment delay is defined as the time from the start of time period T3, to the moment when the UE starts to send PRACH preambles to cell 2 for sending the RRCConnectionReestablishmentRequest message to cell 2.

The RRC re-establishment delay to an unknown E-UTRA TDD inter frequency cell shall be less than 3 s.

The rate of correct RRC re-establishments observed during repeated tests shall be at least 90%.

NOTE: The RRC re-establishment delay in the test is derived from the following expression:

 $T_{re-establish_delay} = T_{UL_grant} + T_{UE_re-establish_delay}$.

Where:

 $T_{UL_{grant}} = It$ is the time required to acquire and process uplink grant from the target cell. The PRACH reception at the system simulator is used as a trigger for the completion of the test; hence T_{UL grant} is not used.

 $T_{UE_re-establish_delay} = 50 \text{ ms} + N_{freq} * T_{search} + T_{SI} + T_{PRACH}$

$$N_{\text{freq}} = 2$$

 $T_{search} = 800 \text{ ms}$

 $T_{SI} = 1280$ ms; it is the time required for receiving all the relevant system information as defined in 3GPP TS 36.331 for the target E-UTRAN TDD cell.

 $T_{PRACH} = 15$ ms; it is the additional delay caused by the random access procedure.

This gives a total of 2945 ms, allow 3 s in the test case.

A.6.2 Random Access

A.6.2.1 E-UTRAN FDD – Contention Based Random Access Test

A.6.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.1.1-1 and A.6.2.1.1-2.

Parameter	Unit	Value	Comments
E-UTRA RF Channel Number	N 41 1-	1	
BW _{channel} OCNG Pattern	MHz	10 OP.1 FDD	As defined in A.3.2.1.1.
PDSCH parameters		DL Reference Measurement	As defined in A.3.1.1.1.
		Channel R.0 FDD	
PCFICH/PDCCH/PHICH		DL Reference Measurement	As defined in A.3.1.2.1.
parameters		Channel R.6 FDD	
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB dB		
PCFICH_RB PHICH RA	dB		
PHICH_RB	dB	0	
PDCCH_RA	dB	Ū.	
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA Note 1	dB		
OCNG_RB Note 1	dB dB	3	
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	uБ	3	
N_{oc}	dBm/15 KHz	-98	
\hat{E}_s / N_{oc}	dB	3	
lo ^{Note 2}	dBm/9 MHz	-65.5	
RSRP ^{Note 3}	dBm/15 KHz	-95	
	dBm/15 KHz	-5	As defined in clause 6.3.2
referenceSignalPower			in 3GPP TS 36.331.
Configured UE transmitted	dBm	23	As defined in clause 6.2.5
power ($P_{ m CMAX}$)			in 3GPP TS 36.101.
PRACH Configuration Index	_	4	As defined in table 5.7.1-2
To the too ingulation index	_	7	in 3GPP TS 36.211.
Backoff Parameter Index	-	2	As defined in table 7.2-1
			in 3GPP TS 36.321.
Dropogation Condition			

Table A 6 2 1 1-1: General test	parameters for FDD contention based random access test
Table A.U.Z. I. IT. General lesi	parameters for FDD contention based random access test

Propagation Condition

AWGN

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Field	Value	Comment		
powerRampingStep	dB2			
preambleInitialReceivedTargetPower	dBm-120			
preambleTransMax	n6			
ra-ResponseWindowSize	sf10	10 sub-frames		
mac-ContentionResolutionTimer	sf48	48 sub-frames		
maxHARQ-Msg3Tx	4			
Note: For further information see Section 6.3.2 in 3GPP TS 36.331.				

Table A.6.2.1.1-2: RACH-Configuration parameters for FDD contention based random access test

A.6.2.1.2 Test Requirements

Contention based random access is triggered by *not* explicitly assigning a random access preamble via dedicated signalling in the downlink.

A.6.2.1.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.1.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) and shall transmit the msg3 if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.1.2.2 No Random Access Response Reception

To test the UE behavior specified in subclause 6.2.2.1.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if no Random Access Response is received within the TTI window [RA_WINDOW_BEGIN - RA_WINDOW_END].

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.1.2.3 Receiving a NACK on msg3

To test the UE behavior specified in subclause 6.2.2.1.3 the System Simulator shall NACK *all* UE msg3 following a successful Random Access Response.

The UE shall re-transmit the msg3 upon the reception of a NACK on msg3 until the maximum number of HARQ re-transmissions is reached.

A.6.2.1.2.4 Reception of an Incorrect Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element *not* matching the CCCH SDU transmitted in msg3 uplink message.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires unless the received message includes a UE Contention Resolution Identity MAC control element and the UE Contention Resolution Identity included in the MAC control element matches the CCCH SDU transmitted in the uplink message.

A.6.2.1.2.5 Reception of a Correct Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element matching the CCCH SDU transmitted in the msg3 uplink message.

The UE shall send ACK if the Contention Resolution is successful.

A.6.2.1.2.6 Contention Resolution Timer expiry

To test the UE behavior specified in Subclause 6.2.2.1.6 the System Simulator shall not send a response to a msg3.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if the Contention Resolution Timer expires.

A.6.2.2 E-UTRAN FDD – Non-Contention Based Random Access Test

A.6.2.2.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.2.1-1 and A.6.2.2.1-2.

Parameter	Unit	Value	Comments
E-UTRA RF Channel Number		1	
BW _{channel} OCNG Pattern	MHz	10 OP.1 FDD	As defined in A.3.2.1.1.
		DL Reference Measurement	As defined in A.3.2.1.1. As defined in A.3.1.1.1.
PDSCH parameters		Channel R.0 FDD	
PCFICH/PDCCH/PHICH		DL Reference Measurement	As defined in A.3.1.2.1.
parameters		Channel R.6 FDD	
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB	2	
PHICH_RB	dB	0	
PDCCH_RA	dB		
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB OCNG_RA Note 1	dB dB		
OCNG_RA OCNG_RB Note 1	dВ		
	dB	3	
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	uБ	5	
N_{oc}	dBm/15 KHz	-98	
\hat{E}_{s}/N_{oc}	dB	3	
lo Note 2	dBm/9 MHz	-65.5	
RSRP ^{Note 3}	dBm/15 KHz	-95	
referenceSignalPower	dBm/15 KHz	-5	As defined in clause 6.3.2 in 3GPP TS 36.331.
Configured UE transmitted	dBm	23	As defined in clause 6.2.5
power ($P_{ m CMAX}$)			in 3GPP TS 36.101.
PRACH Configuration Index	-	4	As defined in table 5.7.1-2 in 3GPP TS 36.211.
Backoff Parameter Index	-	2	As defined in table 7.2-1 in 3GPP TS 36.321.
Propagation Condition	-	AWGN	

Table A.6.2.2.1-1: General test parameters for FDD non-contention based random access test

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Table A.6.2.2.1-2: RACH-Configuration parameters for FDD non-contention based random access test

Field	Value	Comment		
powerRampingStep	dB2			
preambleInitialReceivedTargetPower	dBm-120			
preambleTransMax	n6			
ra-ResponseWindowSize	sf10	10 sub-frames		
Note: For further information see Section 6.3.2 in 3GPP TS 36.331.				

A.6.2.2.2 **Test Requirements**

Non-Contention based random access is triggered by explicitly assigning a random access preamble via dedicated signalling in the downlink.

A.6.2.2.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.2.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-transmit the preamble with the calculated PRACH transmission power if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.2.2.2 No Random Access Response Reception

To test the UE behavior specified in subclause 6.2.2.2.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-transmit the preamble with the calculated PRACH transmission power.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.3 E-UTRAN TDD – Contention Based Random Access Test

A.6.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.3.1-1 and A.6.2.3.1-2.

	•		
Parameter	Unit	Value	Comments
E-UTRA RF Channel Number	- MHz	1 10	
BW _{channel} OCNG Pattern	MHZ	OP.1 TDD	As defined in A 2 2 2 1
	-		As defined in A.3.2.2.1.
PDSCH parameters	-	DL Reference Measurement Channel R.0 TDD	As defined in A.3.1.1.2.
PCFICH/PDCCH/PHICH parameters	-	DL Reference Measurement Channel R.6 TDD	As defined in A.3.1.2.2.
Special subframe	-	6	As specified in table 4.2-1
configuration			in 3GPP TS 36.211.
Uplink-downlink configuration	-	1	As specified in table 4.2-2 in 3GPP TS 36.211.
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB		
PHICH_RB	dB	0	
PDCCH_RA	dB		
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA Note 1	dB		
OCNG_RB Note 1	dB		
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	3	
N_{oc}	dBm/15 KHz	-98	
\hat{E}_{s}/N_{oc}	dB	3	
lo Note 2	dBm/9 MHz	-65.5	
RSRP Note 3	dBm/15 KHz	-95	
	dBm/15 KHz	-5	As defined in clause 6.3.2
referenceSignalPower		-0	in 3GPP TS 36.331.
Configured UE transmitted	dBm	23	As defined in clause 6.2.5
power ($P_{ m CMAX}$)			in 3GPP TS 36.101.
PRACH Configuration Index	-	53	As defined in table 5.7.1-3
			in 3GPP TS 36.211.
Backoff Parameter Index	-	2	As defined in table 7.2-1
Propagation Condition	_	AWGN	in 3GPP TS 36.321.
	-		

Table A.6.2.3.1-1: General test parameters for TDD contention based random access test

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Field	Value	Comment		
numberOfRA-Preambles	n52			
sizeOfRA-PreamblesGroupA	n52	No group B.		
powerRampingStep	dB2			
preambleInitialReceivedTargetPower	dBm-120			
preambleTransMax	n6			
ra-ResponseWindowSize	sf10	10 sub-frames		
mac-ContentionResolutionTimer	sf48	48 sub-frames		
maxHARQ-Msg3Tx	4			
Note: For further information see Section 6.3.2 in 3GPP TS 36.331.				

Table A.6.2.3.1-2: RACH-Configuration parameters for TDD contention based random access test

A.6.2.3.2 Test Requirements

Contention based random access is triggered by *not* explicitly assigning a random access preamble via dedicated signalling in the downlink.

A.6.2.3.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.1.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) and shall transmit the msg3 if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.3.2.2 No Random Access Response reception

To test the UE behavior specified in Subclause 6.2.2.1.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if no Random Access Response is received within the TTI window [RA_WINDOW_BEGIN - RA_WINDOW_END].

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.3.2.3 Receiving a NACK on msg3

To test the UE behavior specified in Subclause 6.2.2.1.3 the System Simulator shall NACK *all* UE msg3 following a successful Random Access Response.

The UE shall re-transmit the msg3 upon the reception of a NACK on msg3 until the maximum number of HARQ re-transmissions is reached.

A.6.2.3.2.4 Reception of an Incorrect Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element *not* matching the CCCH SDU transmitted in msg3 uplink message.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires unless the received message includes a UE Contention Resolution Identity MAC control element and the UE Contention Resolution Identity included in the MAC control element matches the CCCH SDU transmitted in the uplink message.

A.6.2.3.2.5 Reception of a Correct Message over Temporary C-RNTI

To test the UE behavior specified in Subclause 6.2.2.1.5 the System Simulator shall send a message addressed to the temporary C-RNTI with a UE Contention Resolution Identity included in the MAC control element matching the CCCH SDU transmitted in the msg3 uplink message.

The UE shall send ACK if the Contention Resolution is successful.

A.6.2.3.2.6 Contention Resolution Timer expiry

To test the UE behavior specified in Subclause 6.2.2.1.6 the System Simulator shall not send a response to a msg3.

The UE shall re-select a preamble and transmit with the calculated PRACH transmission power when the backoff time expires if the Contention Resolution Timer expires.

A.6.2.4 E-UTRAN TDD – Non-Contention Based Random Access Test

A.6.2.4.1 Test Purpose and Environment

The purpose of this test is to verify that the behavior of the random access procedure is according to the requirements and that the PRACH power settings and timing are within specified limits. This test will verify the requirements in Section 6.2.2 and Section 7.1.2 in an AWGN model.

For this test a single cell is used. The test parameters are given in tables A.6.2.4.1-1 and A.6.2.4.1-2.

Parameter	Unit	Value	Comments
E-UTRA RF Channel Number BW _{channel}	- MHz	1 10	
OCNG Pattern	-	OP.1 TDD	As defined in A.3.2.2.1.
PDSCH parameters	-	DL Reference Measurement Channel R.0 TDD	As defined in A.3.1.1.2.
PCFICH/PDCCH/PHICH parameters	-	DL Reference Measurement Channel R.6 TDD	As defined in A.3.1.2.2.
Special subframe	-	6	As specified in table 4.2-1
configuration			in 3GPP TS 36.211.
Uplink-downlink configuration	-	1	As specified in table 4.2-2 in 3GPP TS 36.211.
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA PCFICH_RB	dB dB		
PHICH_RA	dB		
PHICH_RB	dB	0	
PDCCH_RA	dB	-	
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA Note 1 OCNG_RB Note 1	dB		
	dB dB	3	
$\mathbf{\hat{E}}_{s}/\mathbf{I}_{ot}$		-	
N_{oc}	dBm/15 KHz	-98	
\hat{E}_{s}/N_{oc}	dB	3	
lo Note 2	dBm/9 MHz	-65.5	
RSRP ^{Note 3}	dBm/15 KHz	-95	
referenceSignalPower	dBm/15 KHz	-5	As defined in clause 6.3.2 in 3GPP TS 36.331.
Configured UE transmitted	dBm	23	As defined in clause 6.2.5
power ($P_{ m CMAX}$)			in 3GPP TS 36.101.
PRACH Configuration Index	-	53	As defined in table 5.7.1-3 in 3GPP TS 36.211.
Backoff Parameter Index	-	2	As defined in table 7.2-1 in 3GPP TS 36.321.
Propagation Condition	-	AWGN	

Table A.6.2.4.1-1: General test parameters for TDD non-contention based random access test

Note 1: OCNG shall be used such that the cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.

Note 2: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 3: RSRP level has been derived from other parameters for information purposes. It is not a settable parameter.

Table A.6.2.4.1-2: RACH-Configuration parameters for TDD non-contention based random access test

Field	Value	Comment		
powerRampingStep	dB2			
preambleInitialReceivedTargetPower	dBm-120			
preambleTransMax	n6			
ra-ResponseWindowSize	sf10	10 sub-frames		
Note: For further information see Section 6.3.2 in 3GPP TS 36.331.				

A.6.2.4.2 Test Requirements

Non-Contention based random access is triggered by explicitly assigning a random access preamble via dedicated signalling in the downlink.

A.6.2.4.2.1 Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.2.1 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. In response to the first 4 preambles, the System Simulator shall transmit a Random Access Preamble.

The UE may stop monitoring for Random Access Response(s) if the Random Access Response contains a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble.

The UE shall re-transmit the preamble with the calculated PRACH transmission power if all received Random Access Responses contain Random Access Preamble identifiers that do not match the transmitted Random Access Preamble.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.6.2.4.2.2 No Random Access Response Reception

To test the UE behavior specified in Subclause 6.2.2.2 the System Simulator shall transmit a Random Access Response containing a Random Access Preamble identifier corresponding to the transmitted Random Access Preamble after 5 preambles have been received by the System Simulator. The System Simulator shall *not* respond to the first 4 preambles.

The UE shall re-transmit the preamble with the calculated PRACH transmission power.

In addition, the power applied to all preambles shall be in accordance with what is specified in Subclause 6.2.2. The power of the first preamble shall be -30 dBm with an accuracy specified in section 6.3.5.1.1 of 3GPP TS 36.101 [5]. The relative power applied to additional preambles shall have an accuracy specified in section 6.3.5.2.1 of 3GPP TS 36.101 [5].

The transmit timing of all PRACH transmissions shall be within the accuracy specified in Subclause 7.1.2.

A.7 Timing and Signalling Characteristics

A.7.1 UE Transmit Timing

A.7.1.1 E-UTRAN FDD – UE Transmit Timing Accuracy Tests

A.7.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE is capable of following the frame timing change of the connected eNode B and that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the specified limits. This test will verify the requirements in section 7.1.2.

For this test a single cell is used. Table A.7.1.1.1-1 defines the strength of the transmitted signals and the propagation condition. The transmit timing is verified by the UE transmitting sounding reference symbols using the configuration defined in Table A.7.1.1.1-2.

Denemation		Value		
Parameter	Unit	Test 1	Test 2	Test 3
E-UTRA RF Channel Number		1	1	1
Channel Bandwidth (BW _{channel})	MHz	10	10	1.4
DRX cycle	ms	OFF	80 ^{Note5}	OFF
PDCCH/PCFICH/PHICH				
Reference measurement channel ^{Note1}		R.6 FDD	R.6 FDD	R.8 FDD
OCNG Pattern ^{Note2}		OP.2 FDD	OP.2 FDD	OP.4 FDD
PBCH_RA				
PBCH_RB				
PSS_RA				
SSS_RA				
PCFICH_RB				
PHICH_RA	dB	0	0	0
PHICH_RB				
PDCCH_RA				
PDCCH_RB				
OCNG_RA ^{Note3}				
OCNG_RB ^{Note3}				
N _{oc}	dBm/15 kHz	-98	-98	-98
${ m \hat{E}_s}/{ m I_{ot}}$	dB	3	3	3
\hat{E}_s/N_{oc}	dB	3	3	3
lo ^{Note4}	dBm/9 MHz	-65.5	-65.5	N/A
ΙΟ	dBm/1.08 MHz	N/A	N/A	-74.7
Propagation condition	-	AWGN	AWGN	AWGN
Note 1: For the reference measure	ment channels	s, see section A.		
Note 2: For the OCNG pattern, see section A.3.2.				
Note 3: OCNG shall be used such			ed and a consta	nt total
transmitted power spectral density	is achieved fo	r all OFDM sym	bols.	

Table A.7.1.1.1-1: Test Parameters for UE Transmit Timing Accuracy Tests for E-UTRAN FDD

Note 4: lo level has been derived from other parameters for information purpose. It is not a settable parameter. Note 5: DRX related parameters are defined in Table A.7.1.1.1-3.

ETSI

Table A.7.1.1.1-2: Sounding Reference Symbol Configuration to be used in UE Transmit Timing Accuracy Tests for E-UTRAN FDD

Field	Test 1	Test 2	Test 3	Comment	
Field		Value			
srsBandwidthConfiguration	bw5	bw5	bw7		
srsSubframeConfiguration	sc1	sc3	sc1		
ackNackSrsSimultaneousTransmission	FALSE	FALSE	FALSE		
srsMaxUpPTS	N/A	N/A	N/A	Not applicable for FDD	
srsBandwidth	0	0	0	No hopping	
srsHoppingBandwidth	hbw0	hbw0	hbw0		
frequencyDomainPosition	0	0	0		
duration	TRUE	TRUE	TRUE	Indefinite duration	
Srs-ConfigurationIndex	0	77	0	SRS periodicity of 2ms and 80 ms for Test 1 and 2, respectively.	
transmissionComb	0	0	0		
cyclicShift	cs0	cs0	cs0	No cyclic shift	
Note: For further information see section 6.3.2 in 3GPP TS 36.331.					

Table A.7.1.1.1-3: drx-Configuration to be used in UE Transmit Timing Accuracy Test 2 for E-UTRANFDD

Field	Test2	Comment	
Field	Value		
onDurationTimer	[psf1]		
drx-InactivityTimer	[psf1]		
drx-RetransmissionTimer	[sf1]		
longDRX-CycleStartOffset	[sf80]		
shortDRX	disable		
Note: For further information see se	ection 6.3.2 in 3GPP TS	36.331.	

A.7.1.1.2 Test Requirements

For parameters specified in Tables A.7.1.1.1-1 and A.7.1.1.1-2, the initial transmit timing accuracy, the maximum amount of timing change in one adjustment, the minimum and the maximum adjustment rate shall be within the limits defined in section 7.1.2.

The following sequence of events shall be used to verify that the requirements are met.

For the 10MHz channel bandwith, the test sequence shall be carried out in RRC_CONNECTED for both non-DRX and DRX with a cycle length of 80 ms (Tests 1 and 2, respectively):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within $N_{TA} \times T_S \pm 12 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by $+64 \times T_s$ (approximately $+2\mu s$) compared to that in (a).
- c) The test system shall verify that for Test 1 the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within $N_{TA} \times T_S \pm 12 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- d) The test system shall verify that the UE transmit timing offset stays within $N_{TA} \times T_S \pm 12 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.

For the 1.4MHz channel bandwith, the test sequence shall be carried out in RRC_CONNECTED for non-DRX (Tests 3):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within $N_{TA} \times T_S \pm 24 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by $+128 \times T_s$ (approximately $+4\mu s$) compared to that in (a).
- c) The test system shall verify that for Test 1 the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within $N_{TA} \times T_S \pm 24 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- d) The test system shall verify that the UE transmit timing offset stays within $N_{TA} \times T_S \pm 24 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.

A.7.1.2 E-UTRAN TDD - UE Transmit Timing Accuracy Tests

A.7.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE is capable of following the frame timing change of the connected eNode B and that the UE initial transmit timing accuracy, maximum amount of timing change in one adjustment, minimum and maximum adjustment rate are within the specified limits. This test will verify the requirements in section 7.1.2.

For this test a single cell is used. Table A.7.1.2.1-1 defines the strength of the transmitted signals and the propagation condition. The transmit timing is verified by the UE transmitting sounding reference symbols using the configuration defined in Table A.7.1.2.1-2.

Parameter	Unit		Value	
		Test 1	Test 2	Test 3
E-UTRA RF Channel Number		1	1	1
Channel Bandwidth (BW _{channel})	MHz	10	10	1.4
Special subframe		6	6	6
configuration ^{Note1}				
Uplink-downlink configuration ^{Note2}		1	1	1
DRX cycle	ms	OFF	80 ^{Note7}	OFF
PDCCH/PCFICH/PHICH				
Reference measurement		R.6 TDD	R.6 TDD	R.8 TDD
channel ^{Note3}				
OCNG Pattern ^{Note4}		OP.2 TDD	OP.2 TDD	OP.4 TDD
PBCH_RA	dB	0	0	0
PBCH_RB				
PSS_RA				
SSS_RA				
PCFICH_RB				
PHICH_RA		0	0	0
PHICH_RB		0	0	0
PDCCH_RA				
PDCCH_RB				
OCNG_RA ^{Note5}				
OCNG_RB ^{Note5}				
N _{oc}	dBm/1 5 kHz	-98	-98	-98
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	3	3	3
\hat{E}_s/N_{oc}	dB	3	3	3
	dBm/9 MHz	-65.5	-65.5	N/A
Io ^{Note6}	dBm/1 .08 MHz	N/A	N/A	-74.7
Propagation condition	-	AWGN	AWGN	AWGN
Note 1: For the special subframe of Note 2: For the uplink-downlink cor Note 3: For the reference measure Note 4: For the OCNG pattern, see Note 5: OCNG shall be used such	figuration s ment chan section A. that both ce	see table 4.2-2 in nels, see section 3.2. ells are fully allo	n 3GPP TS 36.2 n A.3.1. cated and a con:	211.
transmitted power spectral density Note 6: lo level has been derived fr				sa Itis nota

Table A.7.1.2.1-1: Test Parameters for UE Transmit Timing Accuracy Tests for E-UTRAN TDD

Note 6: lo level has been derived from other parameters for information purpose. It is not a settable parameter.

Note 7: DRX related parameters are defined in Table A.7.1.2.1-3.

Field	Test 1	Test 2	Tset3	Commont	
Field		Value		Comment	
srsBandwidthConfiguration	bw5	bw5	bw7		
srsSubframeConfiguration	sc3	sc3	sc3	Once every 5 subframes	
ackNackSrsSimultaneousTra nsmission	FALSE	FALSE	FALSE		
srsMaxUpPTS	FALSE	FALSE	FALSE		
srsBandwidth	0	0	0	No hopping	
srsHoppingBandwidth	hbw0	hbw0	hbw0		
frequencyDomainPosition	0	0	0		
duration	TRUE	TRUE	TRUE	Indefinite duration	
Srs-ConfigurationIndex	7	77	7	SRS periodicity of 10 and 80 ms for Test 1 and 2, respectively.	
transmissionComb	0	0	0		
cyclicShift	cs0	cs0	cs0	No cyclic shift	

Table A.7.1.2.1-2: Sounding Reference Symbol Configuration to be used in UE Transmit Timing Accuracy Tests for E-UTRAN TDD

Table A.7.1.2.1-3: DRX Configuration to be used in UE Transmit Timing Accuracy Test 2 for E-UTRANTDD

Field	Test2	Comment
Field	Value	
onDurationTimer	[psf1]	
drx-InactivityTimer	[psf1]	
drx-RetransmissionTimer	[sf1]	
longDRX-CycleStartOffset	[sf80]	
shortDRX	disable	
Note: For further information see section	n 6.3.2 in 3GF	P TS 36.331.

A.7.1.2.2 Test Requirements

For parameters specified in Tables A.7.1.2.1-1 and A.7.1.2.1-2, the initial transmit timing accuracy, the maximum amount of timing change in one adjustment, the minimum and the maximum adjustment rate shall be within the limits defined in section 7.1.2.

The following sequence of events shall be used to verify that the requirements are met.

For the 10MHz channel bandwith, the test sequence shall be carried out in RRC_CONNECTED for both non-DRX and DRX with a cycle length of 80 ms (Tests 1 and 2, respectively):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within $(N_{TA} + 624) \times T_S \pm 12 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by $+64 \times T_s$ (approximately $+2\mu s$) compared to that in (a).
- c) The test system shall verify that for test 1 the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within $(N_{TA} + 624) \times T_S \pm 12 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- d) The test system shall verify that the UE transmit timing offset stays within $(N_{TA} + 624) \times T_S \pm 12 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.

For the 1.4MHz channel bandwith, the test sequence shall be carried out in RRC_CONNECTED for non-DRX (Tests 3):

- a) After a connection is set up with the cell, the test system shall verify that the UE transmit timing offset is within $(N_{TA} + 624) \times T_S \pm 24 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- b) The test system adjusts the downlink transmit timing for the cell by $+128 \times T_s$ (approximately $+4\mu s$) compared to that in (a).
- c) The test system shall verify that for test 1 the adjustment step size and the adjustment rate shall be according to the requirements in section 7.1.2 until the UE transmit timing offset is within $(N_{TA}+624)\times T_S \pm 24\times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.
- d) The test system shall verify that the UE transmit timing offset stays within $(N_{TA} + 624) \times T_S \pm 24 \times T_S$ with respect to the first detected path (in time) of the corresponding downlink frame of cell 1.

A.7.2 UE Timing Advance

A.7.2.1 E-UTRAN FDD – UE Timing Advance Adjustment Accuracy Test

A.7.2.1.1 Test Purpose and Environment

The purpose of the test is to verify E-UTRAN FDD Timing Advance adjustment accuracy requirements, defined in section 7.3.2.2, in an AWGN model.

The test parameters are given in tables A.7.2.1.1-1, A.7.2.1.1-2, and A.7.2.1.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. In each time period, timing advance commands are sent to the UE and Sounding Reference Signals (SRS), as specified in table A.7.2.1.1-3, are sent from the UE and received by the test equipment. By measuring the reception of the SRS, the transmit timing, and hence the timing advance adjustment accuracy, can be measured.

During time period T1, the test equipment shall send one message with a Timing Advance Command MAC Control Element, as specified in Section 6.1.3.5 in TS 36.321. The Timing Advance Command value shall be set to 31, which according to Section 4.2.3 in TS 36.213 results in zero adjustment of the Timing Advance. In this way, a reference value for the timing advance used by the UE is established.

During time period T2, the test equipment shall send a sequence of messages with Timing Advance Command MAC Control Elements, with Timing Advance Command value specified in table A.7.2.1.1-2. This value shall result in changes of the timing advance used by the UE, and the accuracy of the change shall then be measured, using the SRS sent from the UE.

As specified in Section 7.3.2.1, the UE adjusts its uplink timing at sub-frame n+6 for a timing advance command received in sub-frame n. This delay must be taken into account when measuring the timing advance adjustment accuracy, via the SRS sent from the UE.

The UE Time Alignment Timer, described in Section 5.2 in TS 36.321, shall be configured so that it does not expire in the duration of the test.

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
Timing Advance Command (<i>T_A</i>) value during T1		31	$N_{TA} = 0$ for the purpose of establishing a reference value from which the timing advance adjustment accuracy can be measured during T2
Timing Advance Command (T_A) value during T2		[39]	$N_{TA} = [128]$
DRX		OFF	
T1	S	5	
T2	S	5	

Table A.7.2.1.1-1: General Test Parameters for E-UTRAN FDD Timing Advance Accuracy Test

Parameter	Unit		Value
		T1	T2
E-UTRA RF Channel Number			1
BW _{channel}	MHz		10
OCNG Patterns defined in A.3.2.1.1			OP.1 FDD
(OP.1 FDD)			
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB		
PHICH_RB	dB		0
PDCCH_RA	dB		0
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA ^{Note1}	dB		
OCNG_RB ^{Note1}	dB		
Timing Advance Command (T _A)		31	35
\hat{E}_{s}/I_{ot}	dB		3
N _{oc}	dBm/15 KHz		-98
\hat{E}_s/N_{oc}	dB		3
Io ^{Note2}	dBm/9 MHz		-65.5
Propagation Condition			AWGN
Note 1: OCNG shall be used such that spectral density is achieved for Note 2: lo level has been deri parameter.	or all OFDM sym	bols.	stant total transmitted power on purpose. It is not a settable

Table A.7.2.1.1-2: Cell specific Test Parameters for E-UTRAN FDD Timing Advance Accuracy Test

Table A.7.2.1.1-3: Sounding Reference Symbol Configuration for E-UTRAN FDD Transmit Timing Accuracy Test

Field	Value	Comment
srsBandwidthConfiguration	bw5	
srsSubframeConfiguration	sc3	Once every 5 subframes
ackNackSrsSimultaneousTransmission	FALSE	
srsMaxUpPTS	N/A	Not applicable for E-UTRAN FDD
srsBandwidth	0	No hopping
srsHoppingBandwidth	hbw0	
frequencyDomainPosition	0	
Duration	TRUE	Indefinite duration
Srs-ConfigurationIndex	7	SRS periodicity of 10.
transmissionComb	0	
cyclicShift	cs0	No cyclic shift
Note: For further information see section	6.3.2 in 3GPP T	S 36.331.

A.7.2.1.2 Test Requirements

The UE shall apply the signalled Timing Advance value to the transmission timing at the designated activation time i.e. 6 sub frames after the reception of the timing advance command.

The Timing Advance adjustment accuracy shall be within the limits specified in section 7.3.2.2.

The rate of correct Timing Advance adjustments observed during repeated tests shall be at least 90%.

A.7.2.2 E-UTRAN TDD – UE Timing Advance Adjustment Accuracy Test

A.7.2.2.1 Test Purpose and Environment

The purpose of the test is to verify E-UTRAN TDD Timing Advance adjustment accuracy requirements, defined in section 7.3.2.2, in an AWGN model.

The test parameters are given in tables A.7.2.2.1-1, A.7.2.2.1-2, and A.7.2.2.1-3. The test consists of two successive time periods, with time duration of T1 and T2 respectively. In each time period, timing advance commands are sent to the UE and Sounding Reference Signals (SRS), as specified in table A.7.2.2.1-3, are sent from the UE and received by the test equipment. By measuring the reception of the SRS, the transmit timing, and hence the timing advance adjustment accuracy, can be measured.

During time period T1, the test equipment shall send one message with a Timing Advance Command MAC Control Element, as specified in Section 6.1.3.5 in TS 36.321. The Timing Advance Command value shall be set to 31, which according to Section 4.2.3 in TS 36.213 results in zero adjustment of the Timing Advance. In this way, a reference value for the timing advance used by the UE is established.

During time period T2, the test equipment shall send a sequence of messages with Timing Advance Command MAC Control Elements, with Timing Advance Command value specified in table A.7.2.1.1-2. This value shall result in changes of the timing advance used by the UE, and the accuracy of the change shall then be measured, using the SRS sent from the UE.

As specified in Section 7.3.2.1, the UE adjusts its uplink timing at sub-frame n+6 for a timing advance command received in sub-frame n. This delay must be taken into account when measuring the timing advance adjustment accuracy, via the SRS sent from the UE.

The UE Time Alignment Timer, described in Section 5.2 in TS 36.321, shall be configured so that it does not expire in the duration of the test.

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Timing Advance Command (T_A) value during T1		31	$N_{TA} = 0$ for the purpose of establishing a reference value from which the timing advance adjustment accuracy can be measured during T2
Timing Advance Command (T_A) value during T2		[39]	N _{TA} = [128]
DRX		OFF	
T1	S	5	
T2	S	5	

Table A.7.2.2.1-1: General Test Parameters for E-UTRAN TDD Timing Advance Accuracy Test

Parameter	Unit		Value
		T1	T2
E-UTRA RF Channel Number			1
BW _{channel}	MHz		10
Special subframe configuration ^{Note1}			6
Uplink-downlink configuration ^{Note2}			1
OCNG Patterns defined in A.3.2.2.1			OP.1 TDD
(OP.1 TDD)			
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB		
PHICH_RB	dB		2
PDCCH_RA	dB		0
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA ^{Note3}	dB		
OCNG_RB ^{Note3}	dB		
Timing Advance Command (T _A)		31	35
\hat{E}_{s}/I_{ot}	dB		3
N _{oc}	dBm/15 KHz		-98
\hat{E}_s/N_{oc}	dB		3
Io ^{Note4}	dBm/9 MHz		-65.5
Propagation Condition			AWGN
Note 1: For the special subframe con-	figuration see table	4.2-1 in 3GPP TS 36	
Note 2: For the uplink-downlink config			
Note 3: OCNG shall be used such that			
spectral density is achieved for			
			on purpose. It is not a settable

Table A.7.2.2.1-2: Cell specific Test Parameters for E-UTRAN TDD Timing Advance Accuracy Test

 Table A.7.2.2.1-3: Sounding Reference Symbol Configuration for E-UTRAN TDD Transmit Timing

 Accuracy Test

Field	Value	Comment
srsBandwidthConfiguration	bw5	
srsSubframeConfiguration	sc3	Once every 5 subframes
ackNackSrsSimultaneousTransmission	FALSE	
srsMaxUpPTS	N/A	
srsBandwidth	bw0	No hopping
srsHoppingBandwidth	hbw0	
frequencyDomainPosition	0	
Duration	TRUE	Indefinite duration
Srs-ConfigurationIndex	7	SRS periodicity of 10.
transmissionComb	0	
cyclicShift	cs0	No cyclic shift
Note: For further information see section	6.3.2 in 3GPP T	S 36.331.

A.7.2.2.2 Test Requirements

The UE shall apply the signalled Timing Advance value to the transmission timing at the designated activation time i.e. 6 sub frames after the reception of the timing advance command.

The Timing Advance adjustment accuracy shall be within the limits specified in section 7.3.2.2.

A.7.3 Radio Link Monitoring

A.7.3.1 E-UTRAN FDD Radio Link Monitoring Test for Out-of-sync

A.7.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN FDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.1.1-1, A.7.3.1.1-2 and A.7.3.1.1-3 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Figure A.7.3.1.1-4 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 2 ms.

Parameter		Unit		Va	alue		Comment	
			Test 1	Test 2	Test 2 Test 3			
PDSCH param	neters	ters		R.1 FDD	R.0 FDD	R.1 FDD	As specified in section A.3.1.1.1.	
PCFICH/PDC0 parameters	CH/PHICH		R.6 FDD	R.7 FDD	R.6 FDD	R.7 FDD	As specified in section A.3.1.2.1.	
Active cell			Cell 1	Cell 1	Cell 1	Cell 1	Cell 1 is on E-UTRA RF channel number 1	
CP length			Normal	Normal	Normal	Normal		
E-UTRĂ RF C	hannel Number		1	1	1	1	One E-UTRA FDD carrier frequency is used.	
E-UTRA Chan (BW _{channel})	nel Bandwidth	MHz	10	10	10	10		
Transmit anter	nnas		1	2	1	2		
	DCI format		1C	1C	1C	1C	As defined in section 5.3.3.1.4 in TS 36.212	
In sync transmission	Number of Control OFDM symbols		2	2	2	2	In sync threshold Q _{in} and the corresponding	
parameters	Aggregation level	CCE	4	4	4	4	hypothetical	
	ρ _A , ρ _B		0	-3	0	-3	PDCCH/PCFICH	
	Ratio of PDCCH to RS EPRE		0	-3	0	-3	transmission parameters are as specified in	
	Ratio of PCFICH to RS EPRE		4	1	4	1	section and Table 7.6.1- 2 respectively.	
	DCI format		1A	1A	1A	1A	As defined in section 5.3.3.1.3 in TS 36.212	
Out of sync transmission	Number of Control OFDM symbols		2	2	2	2	Out of sync threshold Q _{out} and the	
parameters	Aggregation level	CCE	8	8	8	8	corresponding	
	ρ _A , ρ _B		0	-3	0	-3	hypothetical	
	Ratio of PDCCH to RS EPRE	dB	4	1	4	1	PDCCH/PCFICH transmission parameters	
	Ratio of PCFICH to RS EPRE	dB	4	1	4	1	are as specified in section 7.6.1 and Table 7.6.1-1 respectively.	
DRX			OFF	OFF	OFF	OFF		
Layer 3 filtering			Enabled	Enabled	Enabled	Enabled	Counters: N310 = 1; N311 = 1	
T310 timer		ms	0	0	0	0	T310 is disabled	
T311 timer		ms	1000	1000	1000	1000	T311 is enabled	
Periodic CQI reporting mode			PUCCH 1-0	PUCCH 1-0	PUCCH 1-0	PUCCH 1-0	As defined in table 7.2.2-1 in TS 36.213.	
CQI reporting periodicity		ms	2	2	2	2	Minimum CQI reporting periodicity	
Propagation cl	hannel		AWGN	AWGN	ETU 70 Hz	ETU 70 Hz		
T1		S	[1]	[1]	[1]	[1]		
T2		S	[0.4]	[0.4]	[0.4]	[0.4]		
Т3		S	[0.5]	[0.5]	[0.5]	[0.5]		

Table A.7.3.1.1-1: General test parameters for E-UTRAN FDD out-of-sync testing

Parameter	Unit		Test 1					
		T1	T2	T3	T1	T2	T3	
E-UTRA RF Channel			1					
Number								
BW _{channel}	MHz		10			10		
Transmit antennas			1			2		
OCNG Pattern								
defined in A.3.2.1			OP.1 FDD			OP.1 FDD		
(FDD)								
ρ _A , ρ _B			0			-3		
PCFICH_RB	dB		4			1		
PDCCH_RA	dB		0			-3		
PDCCH_RB	dB		0			-3		
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB							
SSS_RA	dB							
PHICH_RA	dB		0		-3			
PHICH_RB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 1}	dB							
OCNG_RB ^{Note 1}	dB							
SNR1	dB		[-4.7]		[-4.9]			
SNR2	dB		[-9.5]			[-9.5]		
SNR3	dB		[-13.5]			[-13.5]		
N _{oc}	dBm/15		-98			-98		
	kHz							
Propagation condition			AWGN			AWGN		
	be used such t						constant	
	tted power spe							
	esources for CO	QI reportin	ig are assig	ned to the	UE prior to	o the start o	f time	
period T1.								
period T1.								
Note 4: The signal cor	tains PDCCH	tor UEs o	ther than the	e device ur	nder test a	s part of OC	NG.	
Note 5: SNR levels co	rrespond to the	e signal to	noise ratio	over the c	ell-specific	reference s	signal	
REs.								

Table A.7.3.1.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for out-of-sync radio link monitoring tests # 1 and # 2

Parameter	Unit		Test 3			Test 4		
		T1	T2	Т3	T1	T2	T3	
E-UTRA RF Channel			1			1		
Number								
BW _{channel}	MHz		10			10		
Transmit antennas			1			2		
OCNG Pattern								
defined in A.3.2.1			OP.1 FDD			OP.1 FDD		
(FDD)								
ρ _A , ρ _B			0			-3		
PCFICH_RB	dB		4			1		
PDCCH_RA	dB		0			-3		
PDCCH_RB	dB		0			-3		
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB							
SSS_RA	dB		0		-3			
PHICH_RA	dB		0					
PHICH_RB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 1} OCNG_RB ^{Note 1}	dB							
SNR1	dB dB		[4 4]		[2 2]			
SNR2	dB dB		[-1.4] [-5.5]		[-2.3]			
SNR3	dB dB		[-5.5]			[-6.2] [-12.2]		
	dBm/15		-98			- <u>98</u>		
N _{oc}	kHz							
Propagation condition			ETU 70 Hz			ETU 70 Hz		
	be used such t						constant	
total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1.								
	Note 3: The timers and layer 3 filtering related parameters are configured prior to the start of time							
	ontains PDCCI	H for UEs	other than th	ne device I	under test	as part of C	CNG.	
	orrespond to t							

Table A.7.3.1.1-3: Cell specific test parameters for E-UTRAN FDD (cell # 1) for out-of-sync radio link monitoring tests # 3 and # 4

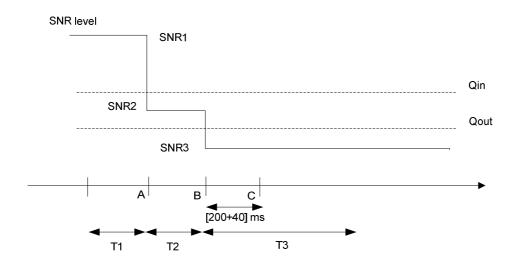


Figure A.7.3.1.1-4 SNR variation for out-of-sync testing

(Editor's note: Behaviours of continuing the transmissions of PUCHH when T310 timer is running could be verified in the tests for in-sync.)

A.7.3.1.2 Test Requirements

The UE behaviour in each test during time durations T1, T2 and T3 shall be as follows:

During time duration T1 and T2 the UE shall continuously report CQI according to the configured CQI mode (PUCCH 1-0) with a periodicity of 2 ms.

The UE shall stop reporting the CQI within [200 + 40] ms from the start of the time duration T3.

The rate of correct events observed during repeated tests shall be at least 90%.

A.7.3.2 E-UTRAN FDD Radio Link Monitoring Test for In-sync

A.7.3.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN FDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.2.1-1 and A.7.3.2.1-2 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of five successive time periods, with time duration of T1, T2, T3, T4 and T5 respectively. Figure A.7.3.2.1-3 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 2 ms.

Pa	arameter	Unit	Va	lue	Comment
-			Test 1	Test 2	
PDSCH param	neters		R.0 FDD	R.1 FDD	As specified in section A.3.1.1.1.
PCFICH/PDC0 parameters	CH/PHICH		R.6 FDD	R.7 FDD	As specified in section A.3.1.2.1.
Active cell			Cell 1	Cell 1	Cell 1 is on E-UTRA RF channel number 1
CP length			Normal	Normal	
E-UTRA RF C	hannel Number		1	1	One E-UTRA FDD carrier frequency is used.
E-UTRA Chan (BW _{channel})	nel Bandwidth	MHz	10	10	
Transmit anter			1	2	
	DCI format		1C	1C	As defined in section 5.3.3.1.4 in TS 36.212
In sync transmission	Number of Control OFDM symbols		2	2	In sync threshold Q _{in} and the corresponding
parameters	Aggregation level	CCE	4	4	hypothetical
(Not	ρ _A , ρ _B		0	-3	PDCCH/PCFICH
transmitted)	Ratio of PDCCH to RS EPRE		0	-3	transmission parameters are as specified in section
	Ratio of PCFICH to RS EPRE		4	1	and Table 7.6.1-2 respectively.
	DCI format		1A	1A	As defined in section 5.3.3.1.3 in TS 36.212
Out of sync transmission	Number of Control OFDM symbols		2	2	Out of sync threshold Q _{out} and the corresponding
parameters	Aggregation level	CCE	8	8	hypothetical
(Not transmitted)	ρ _A , ρ _B		0	-3	PDCCH/PCFICH transmission parameters
	Ratio of PDCCH to RS EPRE	dB	4	1	are as specified in section 7.6.1 and Table 7.6.1-1 respectively.
	Ratio of PCFICH to RS EPRE	dB	4	1	respectively.
DRX			OFF	OFF	
Layer 3 filterin	g		Enabled	Enabled	Counters: N310 = 1; N311 = 1
T310 timer		ms	[2000]	[2000]	T310 is enabled
T311 timer		ms	1000	1000	T311 is enabled
Periodic CQI r			PUCCH 1-0	PUCCH 1-0	As defined in table 7.2.2-1 in TS 36.213.
CQI reporting periodicity		ms	2	2	Minimum CQI reporting periodicity
Propagation cl	nannel		ETU 70 Hz	ETU 70 Hz	
T1		S	[0.5]	[0.5]	
T2		S	[0.4]	[0.4]	
Т3		S	[1.46]	[1.46]	
T4		S	[0.4]	[0.4]	
T5		S	[1]	[1]	

Table A.7.3.2.1-1: General test parameters for E-UTRAN FDD in-sync testing

Parameter	Unit			Test 1					Test 2		
		T1	T2	T3	T4	T5	T1	T2	Т3	T4	T5
E-UTRA RF Channel				1					1		
Number											
BW _{channel}	MHz			10					10		
Transmit antennas				1					2		
OCNG Pattern											
defined in A.3.2.1			0	P.1 FC	D			C	P.1 FD	D	
(FDD)											
ρ _A , ρ _B				0					-3		
PCFICH_RB	dB			4					1		
PDCCH_RA	dB			0					-3		
PDCCH_RB	dB			0					-3		
PBCH_RA	dB			``							
PBCH_RB	dB										
PSS_RA	dB										
SSS_RA	dB			0			-3				
PHICH_RA	dB			0							
PHICH_RB	dB										
PDSCH_RA	dB										
PDSCH_RB	dB										
OCNG_RA ^{Note 1}	dB										
OCNG_RB ^{Note 1}	dB										
SNR1	dB	[-1.4] [-2		[-1.4]		[-2.3]					
SNR2	dB			[-5.5]					[-6.2]		
SNR3	dB			[-11.5]					[-12.2]		
SNR4	dB	[-6.4]			[-7.3]						
SNR5	dB			[-1.4]					[-2.3]		
N _{oc}	dBm/15			-98					-98		
1 V oc	kHz										
Propagation condition			E	TU 70	Ηz			ETU 70 Hz			
 Note 1: OCNG shall be used such that the resources in cell # 1 are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The uplink resources for CQI reporting are assigned to the UE prior to the start of time period T1. Note 3: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1. Note 4: The signal contains PDCCH for UEs other than the device under test as part of OCNG. Note 5: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs. 											

Table A.7.3.2.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for in-sync radio link monitoring tests # 1 and # 2

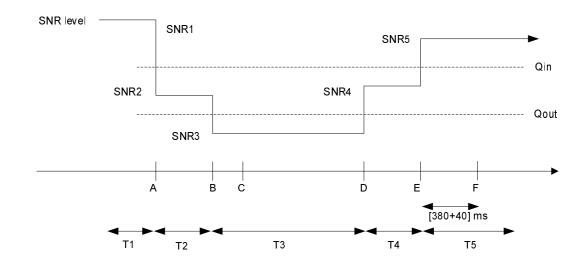


Figure A.7.3.2.1-3 SNR variation for in-sync testing

(Editor's note 1: T310 timer, which starts at Point B (the best scenario), would expire 100 + 40 ms after Point E. "100 + 40 ms" would correspond the safety margin for in-sync detection for in-sync detection at Point E.)

(Editor's note 2: T310 timer, which starts 200 + 40 ms after Point B (the worst scenario), would expire 380 ms after Point E. Therefore, the verification should be conducted at Point F (380 + [40] ms after Point E).)

(Editor's note 3: Behaviours of starting T310 timer could be verified in the tests for out-of-sync.)

A.7.3.2.2 Test Requirements

The UE behaviour in each test during time durations T1, T2, T3, T4 and T5 shall be as follows:

During time duration T1, T2, T3, T4 and T5 the UE shall continuously report CQI according to the configured CQI mode (PUCCH 1-0) with a periodicity of 2 ms.

If the UE stops reporting the CQI before Point F ([420] ms after the start of the time duration T5), the UE fails the tests.

The rate of correct events observed during repeated tests shall be at least 90%.

A.7.3.3 E-UTRAN TDD Radio Link Monitoring Test for Out-of-sync

A.7.3.3.1 Test Purpose and Environment

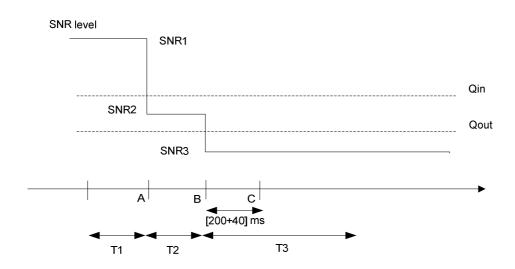
The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN TDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.3.1-1, A.7.3.3.1-2 and A.7.3.3.1-3 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of three successive time periods, with time duration of T1, T2 and T3 respectively. Figure A.7.3.3.1-4 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 1 ms.

Pa	arameter	Unit		Va	lue		Comment
			Test 1	Test 2	Test 3	Test 4	
PDSCH param	neters		R.0 TDD	R.1 TDD	R.0 TDD	R.1 TDD	As specified in section A.3.1.1.1.
PCFICH/PDC0 parameters	CH/PHICH		R.6 TDD	R.7 TDD	R.6 TDD	R.7 TDD	As specified in section A.3.1.2.1.
Active cell			Cell 1	Cell 1	Cell 1	Cell 1	Cell 1 is on E-UTRA RF channel number 1
CP length			Normal	Normal	Normal	Normal	
E-UTRĂ RF C	hannel Number		1	1	1	1	One E-UTRA TDD carrier frequency is used.
E-UTRA Chan (BW _{channel})	nel Bandwidth	MHz	10	10	10	10	
Transmit anter	nas		1	2	1	2	
	DCI format		1C	1C	1C	1C	As defined in section 5.3.3.1.4 in TS 36.212
In sync transmission	Number of Control OFDM symbols		2	2	2	2	In sync threshold Q _{in} and the corresponding
parameters	Aggregation level	CCE	4	4	4	4	hypothetical
	ρ _A , ρ _B		0	-3	0	-3	PDCCH/PCFICH
	Ratio of PDCCH to RS EPRE		0	-3	0	-3	transmission parameters are as specified in section
	Ratio of PCFICH to RS EPRE		4	1	4	1	and Table 7.6.1-2 respectively.
	DCI format		1A	1A	1A	1A	As defined in section 5.3.3.1.3 in TS 36.212
Out of sync transmission	Number of Control OFDM symbols		2	2	2	2	Out of sync threshold Q _{out} and the corresponding
parameters	Aggregation level	CCE	8	8	8	8	hypothetical
	ρ _A , ρ _B		0	-3	0	-3	PDCCH/PCFICH
	Ratio of PDCCH to RS EPRE	dB	4	1	4	1	transmission parameters are as specified in section
	Ratio of PCFICH to RS EPRE	dB	4	1	4	1	7.6.1 and Table 7.6.1-1 respectively.
DRX			OFF	OFF	OFF	OFF	
Layer 3 filterin	g		Enabled	Enabled	Enabled	Enabled	Counters: N310 = 1; N311 = 1
T310 timer		ms	0	0	0	0	T310 is disabled
T311 timer		ms	1000	1000	1000	1000	T311 is enabled
Periodic CQI r			PUCCH 1-0	PUCCH 1-0	PUCCH 1-0	PUCCH 1-0	As defined in table 7.2.2-1 in TS 36.213.
CQI reporting periodicity		ms	1	1	1	1	Minimum CQI reporting periodicity
Propagation cl	nannel		AWGN	AWGN	ETU 70 Hz	ETU 70 Hz	
T1		S	[1]	[1]	[1]	[1]	
T2		S	[0.4]	[0.4]	[0.4]	[0.4]	
T3		S	[0.5]	[0.5]	[0.5]	[0.5]	

Table A.7.3.3.1-1: General test parameters for E-UTRAN TDD out-of-sync testing

Parameter	Unit	Test 1			Test 2			
		T1	T2	T3	T1	T2	Т3	
E-UTRA RF Channel			1			1		
Number								
BW _{channel}	MHz		10			10		
Transmit antennas			1			2		
Special subframe			6			6		
configuration ^{Note1}								
Uplink-downlink			1			1		
configuration ^{Note2}								
OCNG Pattern								
defined in A.3.2.2			OP.1 TDD			OP.1 TDD		
(TDD)								
ρ _Α , ρ _Β			0			-3		
PCFICH_RB	dB		4			1		
PDCCH_RA	dB	0		-3				
PDCCH_RB	dB		0		-3			
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB				-3			
SSS_RA	dB		_					
PHICH_RA	dB		0					
PHICH_RB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 3}	dB							
OCNG_RB ^{Note 3}	dB							
SNR1	dB		[-5.1]			[-5.2]		
SNR2	dB		[-9.1]			[-9.2]		
SNR3	dB		[-13.1]			[-13.2]		
N _{oc}	dBm/15		-98			-98		
- · <i>OC</i>	kHz							
Propagation condition			AWGN			AWGN		
Note 1: For the special sul Note 2: For the uplink-dow Note 3: OCNG shall be us transmitted powe Note 4: The uplink resour	nlink configurations of the sed such that the r spectral density	on see table e resources y is achieve	e 4.2-2 in 3Gl in cell # 1 are d for all OFD	PP TS 36.2 e fully alloca M symbols.	11. ated and a c		Г1.	
Note 5: The timers and la	•	•	•			•		


Table A.7.6.3.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for out-of-sync radio link monitoring tests # 1 and # 2

Note 5: The timers and layer 3 filtering related parameters are configured prior to the start of time period T1. Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG. Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.

Parameter	Unit		Test 3			Test 4	
		T1	T2	T3	T1	T2	Т3
E-UTRA RF Channel			1			1	
Number							
BW _{channel}	MHz		10			10	
Transmit antennas			1			2	
Special subframe			6			6	
configuration ^{Note1}							
Uplink-downlink			1			1	
configuration ^{Note2}							
OCNG Pattern							
defined in A.3.2.2			OP.1 TDD			OP.1 TDD	
(TDD)							
ρ _Α , ρ _Β			0			-3	
PCFICH_RB	dB		4			1	
PDCCH_RA	dB		0			-3	
PDCCH_RB	dB	0		-3			
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB				-3		
PHICH_RA	dB		0				
PHICH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 3}	dB						
OCNG_RB ^{Note 3}	dB						
SNR1	dB		[-1.4]			[-2.3]	
SNR2	dB		[-5.3]			[-5.9]	
SNR3	dB		[-11.3]			[-11.9]	
N _{oc}	dBm/15		-98			-98	
1 ° 0C	kHz						
Propagation condition			ETU 70 Hz			ETU 70 Hz	
Note 1: For the special sul							
Note 2: For the uplink-dow							
Note 3: OCNG shall be us transmitted power					ated and a c	onstant total	
Note 4: The uplink resour					the start of	time period -	Г1
Note 5: The timers and la							
Note 6: The signal contai							

Table A.7.3.3.1-3: Cell specific test parameters for E-UTRAN TDD (cell # 1) for out-of-sync radio link monitoring tests # 3 and # 4

Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG. Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.

(Editor's note: Behaviours of continuing the transmissions of PUCHH when T310 timer is running could be verified in the tests for in-sync.)

A.7.3.3.2 Test Requirements

The UE behaviour in each test during time durations T1, T2 and T3 shall be as follows:

During time duration T1 and T2 the UE shall continuously report CQI according to the configured CQI mode (PUCCH 1-0) with a periodicity of 1 ms.

The UE shall stop reporting the CQI within [200 + 40] ms from the start of the time duration T3.

The rate of correct events observed during repeated tests shall be at least 90%.

A.7.3.4 E-UTRAN TDD Radio Link Monitoring Test for In-sync

A.7.3.4.1 Test Purpose and Environment

The purpose of this test is to verify that the UE properly detects the out of sync and in sync for the purpose of monitoring downlink radio link quality of the serving cell. This test will partly verify the E-UTRAN TDD radio link monitoring requirements in section 7.6.

The test parameters are given in Tables A.7.3.4.1-1 and A.7.3.4.1-2 below. There is one cell (cell 1), which is the active cell, in the test. The test consists of five successive time periods, with time duration of T1, T2, T3, T4 and T5 respectively. Figure A.7.3.4.1-3 shows the variation of the downlink SNR in the active cell to emulate out-of-sync and in-sync states. Prior to the start of the time duration T1, the UE shall be fully synchronized to cell 1. The UE shall be configured for periodic CQI reporting in PUCCH 1-0 mode with a reporting periodicity of 1 ms.

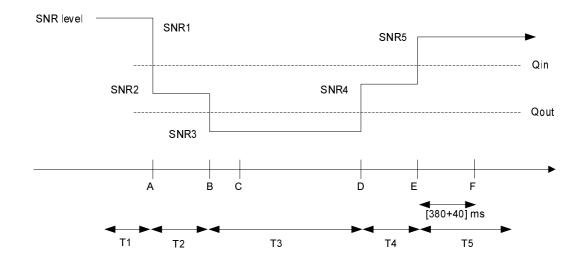

Pa	arameter	Unit	Va	lue	Comment
			Test 1	Test 2	1
PDSCH param	neters		R.0 TDD	R.1 TDD	As specified in section A.3.1.1.1.
PCFICH/PDC0 parameters	CH/PHICH		R.6 TDD	R.7 TDD	As specified in section A.3.1.2.1.
Active cell			Cell 1	Cell 1	Cell 1 is on E-UTRA RF channel number 1
CP length			Normal	Normal	
E-UTRĂ RF C	hannel Number		1	1	One E-UTRA FDD carrier frequency is used.
E-UTRA Chan (BW _{channel})		MHz	10	10	
Transmit anter	nas		1	2	
	DCI format		1C	1C	As defined in section 5.3.3.1.4 in TS 36.212
In sync transmission	Number of Control OFDM symbols		2	2	In sync threshold Q _{in} and the corresponding
parameters	Aggregation level	CCE	4	4	hypothetical
(Not	ρ _A , ρ _B		0	-3	PDCCH/PCFICH
transmitted)	Ratio of PDCCH to RS EPRE		0	-3	transmission parameters are as specified in section
	Ratio of PCFICH to RS EPRE		4	1	and Table 7.6.1-2 respectively.
	DCI format		1A	1A	As defined in section 5.3.3.1.3 in TS 36.212
Out of sync transmission	Number of Control OFDM symbols		2	2	Out of sync threshold Q _{out} and the corresponding
parameters	Aggregation level	CCE	8	8	hypothetical
(Not transmitted)	ρ _Α , ρ _Β		0	-3	PDCCH/PCFICH transmission parameters
	Ratio of PDCCH to RS EPRE	dB	4	1	are as specified in section 7.6.1 and Table 7.6.1-1
	Ratio of PCFICH to RS EPRE	dB	4	1	respectively.
DRX			OFF	OFF	
Layer 3 filterin	g		Enabled	Enabled	Counters: N310 = 1; N311 = 1
T310 timer		ms	[2000]	[2000]	T310 is enabled
T311 timer		ms	1000	1000	T311 is enabled
Periodic CQI r	eporting mode		PUCCH 1-0	PUCCH 1-0	As defined in table 7.2.2-1 in TS 36.213.
CQI reporting periodicity		ms	1	1	Minimum CQI reporting periodicity
Propagation cl	nannel		ETU 70 Hz	ETU 70 Hz	
T1		S	[0.5]	[0.5]	
T2		S	[0.4]	[0.4]	
Т3		S	[1.46]	[1.46]	
T4		S	[0.4]	[0.4]	
T5		S	[1]	[1]	

Table A.7.3.4.1-1: General test parameters for E-UTRAN TDD in-sync testing

MHz	T1	T2	T3 1 10 1 6	Τ4	Τ5	T1	T2	T3 1	Τ4	Т5
MHz			10 1					1		
MHz			1							
MHz			1							
								10		
			6					2		
								6		
			1					1		
		0	P.1 TDD)			0	P.1 TD	D	
-			-							
-			0					-3		
dB			``							
dB										
			-					-		
dB			0					-3		
dB										
dB										
dB										
dB										
dB										
dB			[-1.4]					[-2.3]		
dB			[-5.3]					[-5.9]		
dB			[-11.3]					[-11.9]		
dB			[-6.4]					[-7.3]		
dB			[-1.4]					[-2.3]		
dBm/15			-98					-98		
kHz										
							E	TU 70 H	Ηz	
nlink configurati sed such that the nsity is achieved ces for CQI repo	on see to e resource d for all (prting are	able 4.2 ces in c OFDM s e assigr	2-2 in 3Gl ell # 1 arc symbols. ned to the	PP TS e fully a e UE pr	36.211. allocate rior to th	d and a e start o	of time p	period T	1.	ted
	dB dB dB dB dB dB dB dB dB dB dB dB dB d	dB dB <td>dB dB cef sort CQI reporting are assigr <</td> <td>0 dB 4 dB 0 dB 0</td> <td>dB 4 dB 0 dB 0 0 0</td> <td>0 dB 4 dB 0 dB 0</td> <td>0 dB 4 dB 0 dB [-1.4] dB [-11.3] dB [-1.4] <t< td=""><td>0 dB 4 dB 0 dB 1 dB [-1.4] dB [-1.4]</td><td>0 -3 dB 4 1 dB 0 -3 dB 1 -3 dB [-1.4] [-2.3] dB [-5.3] [-5.9] dB [-1.4] [-7.3] dB [-1.4] [-2.3] dBm/15 -98 -98 kHz ETU 70 Hz ETU 70 Hz ETU 70 Hz ETU 70 F 56.211. nlink configuration see table 4.2-1 in 3GPP TS 36.211. nsity is achieved for all OFDM symbols. zes for CQI reporting are assigned to the UE prior to the start of time period T ise</td><td>0 -3 dB 4 1 dB 0 -3 dB 1 1 dB [-1.4] [-2.3] dB [-1.4] <</td></t<></td>	dB cef sort CQI reporting are assigr <	0 dB 4 dB 0 dB 0	dB 4 dB 0 dB 0 0 0	0 dB 4 dB 0 dB 0	0 dB 4 dB 0 dB [-1.4] dB [-11.3] dB [-1.4] dB [-1.4] <t< td=""><td>0 dB 4 dB 0 dB 1 dB [-1.4] dB [-1.4]</td><td>0 -3 dB 4 1 dB 0 -3 dB 1 -3 dB [-1.4] [-2.3] dB [-5.3] [-5.9] dB [-1.4] [-7.3] dB [-1.4] [-2.3] dBm/15 -98 -98 kHz ETU 70 Hz ETU 70 Hz ETU 70 Hz ETU 70 F 56.211. nlink configuration see table 4.2-1 in 3GPP TS 36.211. nsity is achieved for all OFDM symbols. zes for CQI reporting are assigned to the UE prior to the start of time period T ise</td><td>0 -3 dB 4 1 dB 0 -3 dB 1 1 dB [-1.4] [-2.3] dB [-1.4] <</td></t<>	0 dB 4 dB 0 dB 1 dB [-1.4] dB [-1.4]	0 -3 dB 4 1 dB 0 -3 dB 1 -3 dB [-1.4] [-2.3] dB [-5.3] [-5.9] dB [-1.4] [-7.3] dB [-1.4] [-2.3] dBm/15 -98 -98 kHz ETU 70 Hz ETU 70 Hz ETU 70 Hz ETU 70 F 56.211. nlink configuration see table 4.2-1 in 3GPP TS 36.211. nsity is achieved for all OFDM symbols. zes for CQI reporting are assigned to the UE prior to the start of time period T ise	0 -3 dB 4 1 dB 0 -3 dB 1 1 dB [-1.4] [-2.3] dB [-1.4] <

Table A.7.3.4.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for in-sync radio link monitoring tests # 1 and # 2

Note 6: The signal contains PDCCH for UEs other than the device under test as part of OCNG. Note 7: SNR levels correspond to the signal to noise ratio over the cell-specific reference signal REs.

201

Figure A.7.3.4.1-3. SNR variation for in-sync testing

(Editor's note 1: T310 timer, which starts at Point B (the best scenario), would expire 100 + 40 ms after Point E. "100 + 40 ms" would correspond the safety margin for in-sync detection for in-sync detection at Point E.)

(Editor's note 2: T310 timer, which starts 200 + 40 ms after Point B (the worst scenario), would expire 380 ms after Point E. Therefore, the verification should be conducted at Point F (380 + [40] ms after Point E).)

(Editor's note 3: Behaviours of starting T310 timer could be verified in the tests for out-of-sync.)

A.7.3.4.2 Test Requirements

The UE behaviour in each test during time durations T1, T2, T3, T4 and T5 shall be as follows:

During time duration T1, T2, T3, T4 and T5 the UE shall continuously report CQI according to the configured CQI mode (PUCCH 1-0) with a periodicity of 1 ms.

If the UE stops reporting the CQI before Point F ([520] ms after the start of the time duration T5), the UE fails the tests.

The rate of correct events observed during repeated tests shall be at least 90%.

A.8 UE Measurements Procedures

A.8.1 E-UTRAN FDD Intra-frequency Measurements

A.8.1.1 E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in asynchronous cells

A.8.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD intra-frequency cell search requirements in section 8.1.2.2.1.1.

The test parameters are given in Table A.8.1.1.1-1 and A.8.1.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.1.1.1-1: General test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in asynchronous cells

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement	As specified in section A.3.1.1.1
		Channel R.0 FDD	
PCFICH/PDCCH/PHICH		DL Reference Measurement	As specified in section A.3.1.2.1
parameters		Channel R.6 FDD	
Active cell		Cell 1	
Neighbour cell		Cell 2	Cell to be identified.
E-UTRA RF Channel		1	One FDD carrier frequency is used.
Number			
Channel Bandwidth	MHz	10	
(BW _{channel})			
A3-Offset	dB	-3	
CP length		Normal	
Hysteresis	dB	0	
Time To Trigger	S	0	
Filter coefficient		0	L3 filtering is not used
DRX			OFF
Time offset between cells		3 ms	Asynchronous cells
T1	S	5	
T2	S	5	

Parameter	Unit	Ce	1	(Cell 2			
		T1	T2	T1	T2			
E-UTRA RF Channel			1		1			
Number								
BW _{channel}	MHz	1	0		10			
OCNG Patterns								
defined in A.3.2.1.1		OP.1	FDD	OF	2.2 FDD			
(OP.1 FDD) and in								
A.3.2.1.2 (OP.2 FDD)								
PBCH_RA	dB							
PBCH_RB	dB							
PSS_RA	dB							
SSS_RA	dB							
PCFICH_RB	dB				0			
PHICH_RA	dB	()		0			
PHICH_PB	dB							
PDCCH_RA	dB							
PDCCH_PB	dB							
PDSCH_RA	dB							
PDSCH_RB	dB							
OCNG_RA ^{Note 1}	dB							
OCNG_RB ^{Note 1}	dB							
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	-3.79	-Infinity	1.54			
$N_{oc}^{}$ Note 3	dBm/15 KHz			-98				
\hat{E}_s/N_{oc}	dB	4	4	-Infinity	7			
RSRP Note 4	dBm/15 KHz	-94	-94	-Infinity	-91			
SCH_RP Note 4	dBm/15 KHz	-94	-94	-Infinity	-91			
Propagation Condition			E	TU70				
Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.								
Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over								
subcarriers and time and shall be modelled as AWGN of appropriate power for $N_{_{oc}}$ to be fulfilled.								
Note 4: RSRP and SCH_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.								

Table A.8.1.1.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in asynchronous cells

A.8.1.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.1.2 E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

A.8.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD intra-frequency cell search requirements in section 8.1.2.2.1.1

3GPP TS 36.133 version 8.6.0 Release 8

204

The test parameters are given in Table A.8.1.2.1-1 and A.8.1.2.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.1.2.1-1: General test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/PHICH		DL Reference Measurement	As specified in section A.3.1.2.1
parameters		Channel R.6 FDD	
Active cell		Cell 1	
Neighbour cell		Cell 2	Cell to be identified.
E-UTRA RF Channel		1	One FDD carrier frequency is used.
Number			
Channel Bandwidth	MHz	10	
(BW _{channel})			
A3-Offset	dB	-3	
CP length		Normal	
Hysteresis	dB	0	
Time To Trigger	dB	0	
Filter coefficient		0	L3 filtering is not used
DRX			OFF
Time offset between cells		3 μs	Synchronous cells
T1	S	5	
T2	S	5	

Table A.8.1.2.1-2:	Cell specific test parameters for E-UTRAN FDD-FDD intra-frequency event triggered
r	eporting under fading propagation conditions in synchronous cells

Parameter	Unit	Ce	ll 1	0	cell 2		
		T1	T2	T1	T2		
E-UTRA RF Channel					1		
Number							
BW _{channel}	MHz	1	0		10		
OCNG Patterns							
defined in A.3.2.1.1		OP.1	FDD	OP	.2 FDD		
(OP.1 FDD) and in							
A.3.2.1.2 (OP.2 FDD)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB				-		
PHICH_RA	dB	0 0					
PHICH_RB	dB						
PDCCH_RA	dB						
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	-3.79	-Infinity	1.54		
$N_{oc}^{ m Note 3}$	dBm/15 KHz			-98			
\hat{E}_{s}/N_{oc}	dB	4	4	-Infinity	7		
RSRP Note 4	dBm/15 KHz	-94	-94	-Infinity	-91		
SCH_RP Note 4	dBm/15 KHz	-94	-94	-Infinity	-91		
Propagation Condition				ETU70			
Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers							
and time and shall be modelled as $M(O)$ of expression respect to M to be fulfilled							

and time and shall be modelled as AWGN of appropriate power for $N_{
m ac}$ to be fulfilled.

Note 4: RSRP and SCH_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.8.1.2.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.1.3 E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells with DRX

A.8.1.3.1 Test Purpose and Environment

The purpose of the two tests is to verify that the UE makes correct reporting of an event in DRX. The tests will partly verify the FDD-FDD intra-frequency cell search in DRX requirements in section 8.1.2.2.1.2.

206

The test parameters are given in Tables A.8.1.3.1-1, A.8.1.3.1-2, A.8.1.3.1-3 and A.8.1.3.1-4. In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle.

In Test 2 the uplink time alignent is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

Parameter	Parameter Unit Value		Comment	
		Test 1	Test 2	
PDSCH parameters		DL Reference Me Channel R.0 FDD		As specified in section A.3.1.1.1
PCFICH/PDCCH/PHICH parameters		DL Reference Me Channel R.6 FDD		As specified in section A.3.1.2.1
Active cell		Cell 1		
Neighbour cell		Cell 2		Cell to be identified.
E-UTRA RF Channel Number		1		One FDD carrier frequency is used.
Channel Bandwidth (BW _{channel})	MHz	10		
A3-Offset	dB	-3		
CP length		Normal		
Hysteresis	dB	0		
Time To Trigger	dB	0		
Filter coefficient		0		L3 filtering is not used
DRX		ON		DRX related parameters are defined in Table A.8.1.3.1-3
Time offset between cells		3 μs		Synchronous cells
T1	S	5		
T2	S	5	30	

Table A.8.1.3.1-1: General test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

Table A.8.1.3.1-2: Cell specific test parameters for E-UTRAN FDD-FDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

Parameter	Unit	Ce	ll 1	(Cell 2	
		T1	T2	T1	T2	
E-UTRA RF Channel			1	1		
Number						
BW _{channel}	MHz	1	0		10	
OCNG Patterns						
defined in A.3.2.1.1		OP.1	FDD	OF	.2 FDD	
(OP.1 FDD) and in						
A.3.2.1.2 (OP.2 FDD)						
PBCH_RA	dB					
PBCH_RB	dB					
PSS_RA	dB					
SSS_RA	dB					
PCFICH_RB	dB					
PHICH_RA	dB	()		0	
PHICH_RB	dB					
PDCCH_RA	dB					
PDCCH_RB	dB					
PDSCH_RA	dB					
PDSCH_RB	dB					
OCNG_RA ^{Note 1}	dB					
OCNG_RB ^{Note 1}	dB					
\hat{E}_{s}/I_{ot}	dB	4	-3.79	-Infinity	1.54	
$N_{oc}^{ m Note 2}$	dBm/15 KHz			-98		
\hat{E}_{s}/N_{oc}	dB	4	4	-Infinity	7	
RSRP Note 3	dBm/15 KHz	-94	-94	-Infinity	-91	
SCH_RP ^{Note 3}	dBm/15 KHz	-94	-94	-Infinity	-91	
Propagation Condition			Ē	ETU70	•	
Note 1: OCNG shall be used achieved for all OF	DM symbols.	-				
Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for N_{oc} to be fulfilled.						
			00			
Note 3: RSRP and SCH_RF		rived from other pa	rameters for info	rmation purposes.	They are not settable	
parameters themselves.						

Table A.8.1.3.1-3: DRX-Configuration for E-UTRAN FDD-FDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

Field	Test1	Test2	Comment
	Value	Value	
onDurationTimer	[psf1]	[psf1]	As specified in section 6.3.2 in
drx-InactivityTimer	[psf1]	[psf1]	3GPP TS 36.331
drx-RetransmissionTimer	[sf1]	[sf1]	
longDRX-CycleStartOffset	[sf40]	[sf1280]	
shortDRX	disable	disable	

Table A.8.1.3.1-4: *TimeAlignmentTimer* -Configuration for E-UTRAN FDD-FDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

Field	Test1 Value	Test2 Value	Comment	
TimeAlignmentTimer	[sf500] [sf500] As specified		As specified in section 6.3.2 in 3GPP TS 36.331	
sr-ConfigIndex	[0]	[0]	For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213.	

A.8.1.3.2 Test Requirements

In Test 1, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE send the measurement report on PUSCH.

In Test 2, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 25600 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report.

A.8.2 E-UTRAN TDD Intra-frequency Measurements

A.8.2.1 E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

A.8.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the TDD intra-frequency cell search requirements in section 8.1.2.2.2.1.

The test parameters are given in Table A.8.2.1.1-1 and A.8.2.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.2.1.1-1: General test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Active cell		Cell 1	
Neighbour cell		Cell 2	Cell to be identified.
E-UTRA RF Channel Number		1	One TDD carrier frequency is used.
Channel Bandwidth (BW _{channel})	MHz	10	
A3-Offset	dB	-3	
CP length		Normal	
Special subframe configuration		6	As specified in table 4.2-1 in TS 36.211. The same configuration in both cells
Uplink-downlink configuration		1	As specified in table 4.2-2 in TS 36.211. The same configuration in both cells
Hysteresis	dB	0	
Time To Trigger	S	0	
Filter coefficient		0	L3 filtering is not used
DRX			OFF
Time offset between cells		3 μs	Synchronous cells
T1	S	5	
T2	S	5	

Table A.8.2.1.1-2: Cell specific test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells

Parameter	Unit	Ce	ell 1		Cell 2		
		T1	T2	T1	T2		
E-UTRA RF Channel			1		1		
Number							
BW _{channel}	MHz		10		10		
OCNG Pattern defined							
in A.3.2.2.1 (OP.1		OP.	1 TDD	OF	P.2 TDD		
TDD) and in A.3.2.2.2							
(OP.2)							
PBCH_RA	dB						
PBCH_RB	dB						
PSS_RA	dB						
SSS_RA	dB						
PCFICH_RB	dB						
PHICH_RA	dB		-		-		
PHICH_RB	dB		0		0		
PDCCH_RA	dB						
PDCCH_RB	dB						
PDSCH_RA	dB						
PDSCH_RB	dB						
OCNG_RA ^{Note 1}	dB						
OCNG_RB ^{Note 1}	dB						
$N_{_{oc}}$ Note 3	dBm/15 kHz			-98			
RSRP Note 4	dBm/15 kHz	-94	-94	-Infinity	-91		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	-3.79	-Infinity	1.54		
SCH_RP Note 4	dBm/15 kHz	-94	-94	-Infinity	-91		
\hat{E}_s / N_{oc}	dB	4	4	-Infinity	7		
Propagation Condition				ETU70			
Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.							
Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and time and shall be modelled as AWGN of appropriate power for N_{oc} to be fulfilled.							

Note 4: RSRP and SCH_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.8.2.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.2.2 E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells with DRX

A.8.2.2.1 Test Purpose and Environment

The purpose of the two tests is to verify that the UE makes correct reporting of an event in DRX. The tests will partly verify the TDD-TDD intra-frequency cell search in DRX requirements in section 8.1.2.2.1.2.

The test parameters are given in Tables A.8.1.3.1-1, A.8.1.3.1-2, A.8.1.3.1-3 and A.8.1.3.1-4. In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle.

In Test 2 the uplink time alignent is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

Table A.8.2.2.1-1: General test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

Parameter	Unit	Unit Value		Comment
		Test 1	Test 2	
PDSCH parameters		DL Reference Measurement Channel R.0 TDD		As specified in section A.3.1.1.2
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement Channel R.6 TDD		As specified in section A.3.1.2.2
Active cell		Cell 1		
Neighbour cell		Cell 2		Cell to be identified.
E-UTRA RF Channel Number		1		One TDD carrier frequency is used.
Channel Bandwidth (BW _{channel})	MHz	10		
A3-Offset	dB	-3		
CP length		Normal		
Special subframe configuration		6		As specified in table 4.2-1 in TS 36.211. The same configuration in both cells
Uplink-downlink configuration		1		As specified in table 4.2-2 in TS 36.211. The same configuration in both cells
Hysteresis	dB	0		
Time To Trigger	S	0		
Filter coefficient		0		L3 filtering is not used
DRX		ON		DRX related parameters are defined in Table A.8.2.2.1-3
Time offset between cells		3 μs		Synchronous cells
T1	S	5		
T2	S	5	30	

Table A.8.2.2.1-2: Cell specific test parameters for E-UTRAN TDD-TDD intra-frequency event triggered reporting under fading propagation conditions in synchronous cells when DRX is used

Parameter	Unit	Ce	ll 1	C	ell 2	
		T1	T2	T1	T2	
E-UTRA RF Channel			1		1	
Number						
BW _{channel}	MHz	1	0		10	
OCNG Pattern defined						
in A.3.2.2.1 (OP.1		OP.1	TDD	OP.	.2 TDD	
TDD) and in A.3.2.2.2						
(OP.2)						
PBCH_RA	dB	-				
PBCH_RB	dB	-				
PSS_RA	dB					
SSS_RA	dB					
PCFICH_RB	dB					
PHICH_RA	dB		-		•	
PHICH_RB	dB		0		0	
PDCCH_RA	dB					
PDCCH_RB	dB					
PDSCH_RA	dB					
PDSCH_RB	dB					
OCNG_RA ^{Note 1}	dB					
OCNG_RB ^{Note 1}	dB					
$N_{_{oc}}$ Note 2	dBm/15 kHz			-98		
RSRP Note 3	dBm/15 kHz	-94	-94	-Infinity	-91	
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	-3.79	-Infinity	1.54	
SCH_RP Note 3	dBm/15 kHz	-94	-94	-Infinity	-91	
\hat{E}_s/N_{oc}	dB	4	4	-Infinity	7	
Propagation Condition		ETU70				
Note 1: OCNG shall be used achieved for all OF Note 2: Interference from ot	DM symbols.		and a constant to	tal transmitted powe		
and time and shall	be modelled as AWG	N of appropriate p	ower for $N_{\rm c}$ to	be fulfilled.		
Note 3: RSRP and SCH_RF parameters themse	Plevels have been der		00		hey are not settable	

 Table A.8.2.2.1-3: DRX-Configuration for E-UTRAN TDD-TDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

Field	Test1	Test2	Comment
Field	Value	Value]
onDurationTimer	[psf1]	[psf1]	As specified in section 6.3.2 in
drx-InactivityTimer	[psf1]	[psf1]	3GPP TS 36.331
drx-RetransmissionTimer	[sf1]	[sf1]	
longDRX-CycleStartOffset	[sf40]	[sf1280]	
shortDRX	disable	disable	

Field	Test1 Value	Test2 Value	Comment
TimeAlignmentTimer	[sf500]	[sf500]	As specified in section 6.3.2 in 3GPP TS 36.331
sr-ConfigIndex	[0]	[0]	For further information see section 6.3.2 in 3GPP TS 36.331 and section 10.1 in 3GPP TS 36.213.

Table A.8.2.2.1-4: TimeAlignmentTimer -Configuration for E-UTRAN TDD-TDD intra-frequency event triggered reporting in DRX under fading propagation conditions in synchronous cells

A.8.2.2.2 Test Requirements

In Test 1, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 800 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE send the measurement report on PUSCH.

In Test 2, the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 25600 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2 to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.

NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report.

A.8.3 E-UTRAN FDD - FDD Inter-frequency Measurements

A.8.3.1 E-UTRAN FDD-FDD Inter-frequency event triggered reporting under fading propagation conditions in asynchronous cells

A.8.3.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the FDD-FDD inter-frequency cell search requirements in section 8.1.2.3.

The test parameters are given in Tables A.8.3.1.1-1 and A.8.3.1.1-2. In this test, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.3.1.1-1: General test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting in fading propagation conditions

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1
E-UTRA RF Channel Number		1, 2	Two TDD carrier frequencies are used.
Channel Bandwidth (BW _{channel})	MHz	10	
Active cell		Cell 1	Cell 1 is on RF channel number 1
Neighbour cell		Cell 2	Cell 2 is on RF channel number 2
Gap Pattern Id		0	As specified in 3GPP TS 36.133 section 8.1.2.1.
A3-Offset	dB	-6	
Hysteresis	dB	0	
CP length		Normal	
TimeToTrigger	S	0	
Filter coefficient		0	L3 filtering is not used
DRX		OFF	OFF
Time offset between cells		3 ms	Asynchronous cells
T1	S	5	
T2	S	5	

Parameter	Unit	Ce	1	(Cell 2	
		T1	T2	T1	T2	
E-UTRA RF Channel			1		2	
Number						
BW _{channel}	MHz	10 10			10	
OCNG Patterns						
defined in A.3.2.1.1		OP.1	FDD	OP	.2 FDD	
(OP.1 FDD) and in						
A.3.2.1.2 (OP.2 FDD)						
PBCH_RA	dB					
PBCH_RB	dB					
PSS_RA	dB					
SSS_RA	dB					
PCFICH_RB	dB					
PHICH_RA	dB					
PHICH_RB	dB	0			0	
PDCCH_RA	dB					
PDCCH_RB	dB					
PDSCH_RA	dB					
PDSCH_RB	dB					
OCNG_RA ^{Note 1}	dB					
OCNG_RB ^{Note 1}	dB					
$N_{oc}^{}$ Note 3	dBm/15 kHz			-98		
RSRP Note 4	dBm/15 kHz	-94	-94	-Infinity	-91	
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	4	-Infinity	7	
SCH_RP Note 4	dBm/15 kHz	-94	-94	-Infinity	-91	
\hat{E}_{s}/N_{oc}	dB	4	4	-Infinity	7	
Propagation Condition				ETU70		
Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers						
and time and shall be modelled as AWGN of appropriate power for $N_{_{oc}}$ to be fulfilled.						

Table A.8.3.1.1-2: Cell specific test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

Note 4: RSRP and SCH_RP levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

A.8.3.1.2 Test Requirements

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.3.2 E-UTRAN FDD-FDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in asynchronous cells

A.8.3.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These test will partly verify the FDD-FDD inter-frequency cell search requirements when DRX is used in section 8.1.2.3.

The common test parameters are given in Tables A.8.3.2.1-1 and A.8.3.2.1-2. DRX configuration for Test1 and Test2 are given in Table A.8.3.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.3.2.1-4. In this tests, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignment timer to keep UE uplink time alignment. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignment is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The tests consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Parameter	Unit	Test 1	Test 2	Comment
		Va	lue	
PDSCH parameters		DL Reference Measurement		As specified in section A.3.1.1.1 Note that
		Channel R.0 FDD)	UE may only be allocated at On Duration
PCFICH/PDCCH/PHICH		DL Reference Me	asurement	As specified in section A.3.1.2.1.
parameters		Channel R.6 FDD)	
E-UTRA RF Channel		1,	2	Two FDD carrier frequencies are used.
Number				
Channel Bandwidth	MHz	1	0	
(BW _{channel})				
Active cell		Ce	1	Cell 1 is on RF channel number 1
Neighbour cell		Ce	2	Cell 2 is on RF channel number 2
Gap Pattern Id		()	As specified in 3GPP TS 36.133 section
				8.1.2.1.
A3-Offset	dB	-	6	
Hysteresis	dB	()	
CP length		Nor	mal	
TimeToTrigger	S	()	
Filter coefficient		()	L3 filtering is not used
PRACH configuration		4	1	As specified in table 5.7.1-2 in TS 36.211
Access Barring Information	-	Not	Sent	No additional delays in random access
, i i i i i i i i i i i i i i i i i i i				procedure.
DRX		ON		DRX related parameters are defined in
				Table A.8.3.2.1-3
Time offset between cells		3 ms		Asynchronous cells
T1	S	5		
T2	S	5	30	

Table A.8.3.2.1-1: General test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

Table A.8.3.2.1-2: Cell specific test parameters for E-UTRAN FDD-FDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

Parameter	Unit	Ce	ll 1	C	cell 2
		T1	T2	T1	T2
E-UTRA RF Channel			1		2
Number					
BW _{channel}	MHz	1	0		10
OCNG Patterns					
defined in A.3.2.1.1		OP.1	FDD	OP	.2 FDD
(OP.1 FDD) and in					
A.3.2.1.2 (OP.2 FDD)					
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB		-		•
PHICH_RB	dB)		0
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
$N_{oc}^{\rm Note \; 2}$	dBm/15 kHz			-98	
RSRP Note 3	dBm/15 kHz	-94	-94	-Infinity	-91
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	4	4	-Infinity	7
SCH_RP Note 3	dBm/15 kHz	-94	-94	-Infinity	-91
\hat{E}_{s}/N_{oc}	dB	4	4	-Infinity	7
Propagation Condition	ETU70				
Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers					
and time and shall be modelled as AWGN of appropriate power for $N_{lpha\!c}$ to be fulfilled.					
Note 3: RSRP and SCH_RF parameters themse	Plevels have been de		00		They are not settable

Table A.8.3.2.1-3: drx-Configuration to be used in E-UTRAN FDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

Field	Test1	Test2	Comment
Field	Value	Value	
onDurationTimer	[psf1]	[psf1]	
drx-InactivityTimer	[psf1]	[psf1]	
drx-RetransmissionTimer	[sf1]	[sf1]	
longDRX-CycleStartOffset	[sf40]	[sf1280]	
shortDRX	disable	disable	
Note: For further information see s	ection 6.3.2 in 3GF	P TS 36.331.	

Table A.8.3.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN FDD-FDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

Field	Test1 Value	Test2 Value	Comment
TimeAlignmentTimer	[sf500]	[sf500]	For further information see section 6.3.2 in 3GPP TS 36.331.
sr-ConfigIndex	[0]	[0]	For further information see section 6.3.2 in 3GPP TS 36.331 and section10.1 in 3GPP TS 36.213

A.8.3.2.2 Test Requirements

In Test1 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 20*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

A.8.4 E-UTRAN TDD - TDD Inter-frequency Measurements

A.8.4.1 E-UTRAN TDD-TDD Inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

A.8.4.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the TDD-TDD inter-frequency cell search requirements in section 8.1.2.3.4.

The test parameters are given in Table A.8.4.1.1-1 and A.8.4.1.1-2 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event A3 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.4.1.1-1: General test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting in fading propagation conditions

Parameter	Unit	Value	Comment
		DL Reference Measurement	
PDSCH parameters		Channel R.0 TDD	As specified in section A.3.1.1.2
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2
Gap Pattern Id		1	As specified in 3GPP TS 36.133 section 8.1.2.1.
Special subframe configuration		6	As specified in table 4.2-1 in TS 36.211. The same configuration in both cells
Uplink-downlink configuration		1	As specified in 3GPP TS 36.211 section 4.2 Table 4.2-2
CP length		Normal	
E-UTRA RF Channel Number		1, 2	Two TDD carrier frequencies are used.
Channel Bandwidth (BW _{channel})	MHz	10	
Active cell		Cell 1	Cell 1 is on RF channel number 1
Neighbour cell		Cell 2	Cell 2 is on RF channel number 2
A3-Offset	dB	-6	
Hysteresis	dB	0	
TimeToTrigger	dB	0	
Filter coefficient		0	L3 filtering is not used
DRX		OFF	
Time offset between cells		3 μs	Synchronous cells
T1	S	5	
T2	S	10	

Table A.8.4.1.1-2: Cell specific test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

Parameter	Unit	Ce	ll 1	Ce	2
		T1	T2	T1	T2
E-UTRA RF Channel		1		2	2
Number					
BW _{channel}	MHz	1	0	1	0
OCNG Pattern defined					
in A.3.2.2.1 (OP.1		OP.1	TDD	OP.2	TDD
TDD) and in A.3.2.2.2					
(OP.2)					
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB				
PHICH_RB	dB	()	()
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	4	-Infinity	7
$N_{_{oc}}$ Note 3	dBm/15 kHz			-98	
RSRP Note 4	dBm/15 kHz	-94	-94	-Infinity	-91
SCH_RP Note 4	dBm/15 kHz	-94	-94	-infinity	-91
\hat{E}_{s}/N_{oc}	dB	4	4	-Infinity	7
Propagation Condition	ETU70				
 Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The resources for uplink transmission are assigned to the UE priori to the start of time period T2. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers 					
	be modelled as AWG				
Note 4: RSRP and SCH_RF	Plevels have been der		00		ey are not settable

A.8.4.1.2 Test Requirements

parameters themselves.

The UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 7680 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.4.2 E-UTRAN TDD-TDD Inter-frequency event triggered reporting when DRX is used under fading propagation conditions in synchronous cells

A.8.4.2.1 Test Purpose and Environment

The purpose of these tests is to verify that the UE makes correct reporting of an event in DRX. These test will partly verify the TDD-TDD inter-frequency cell search requirements when DRX is used in section 8.1.2.3.

The common test parameters are given in Tables A.8.4.2.1-1 and A.8.4.2.1-2. DRX configuration for Test1 and Test2 are given in Table A.8.4.2.1-3 and time alignment timer and scheduling request related parameters in Table A.8.4.2.1-4. In these tests, there are two cells on different carrier frequencies and gap pattern configuration # 0 as defined in Table 8.1.2.1-1 is provided.

In Test 1 UE needs to be provided at least once every 500ms with new Timing Advance Command MAC control element to restart the Time alignent timer to keep UE uplink time alignend. Furthermore UE is allocated with PUSCH resource at every DRX cycle. In Test 2 the uplink time alignent is not maintained and UE needs to use RACH to obtain UL allocation for measurement reporting.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event A3 is used. The tests consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Parameter	Unit	Test 1	Test 2	Comment
		Value		
PDSCH parameters		DL Reference Measurement		As specified in section A.3.1.1.2. Note that
		Channel R.0 TDD)	UE may only be allocated at On Duration
PCFICH/PDCCH/PHICH		DL Reference Me	asurement	As specified in section A.3.1.2.2.
parameters		Channel R.6 TDD		
E-UTRA RF Channel		1,	2	Two TDD carrier frequencies are used.
Number				
Channel Bandwidth	MHz	1	0	
(BW _{channel})				
Active cell		Ce	1	Cell 1 is on RF channel number 1
Neighbour cell		Ce	2	Cell 2 is on RF channel number 2
Gap Pattern Id		()	As specified in 3GPP TS 36.133 section
-				8.1.2.1.
Uplink-downlink		1		As specified in 3GPP TS 36.211 section
configuration				4.2 Table 4.2-2
Special subframe		6	6	As specified in table 4.2-1 in TS 36.211.
configuration				The same configuration in both cells
A3-Offset	dB	-(6	
Hysteresis	dB	()	
CP length		Nor	mal	
TimeToTrigger	S	()	
Filter coefficient		()	L3 filtering is not used
PRACH configuration		4	1	As specified in table 5.7.1-3 in TS 36.211
Access Barring Information	-	Not Sent		No additional delays in random access
				procedure.
DRX		ON		DRX related parameters are defined in
				Table A.8.4.2.1-3
Time offset between cells		3 μs		Synchronous cells
T1	S	Ę		·
T2	S	5	30	

Table A.8.4.2.1-1: General test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

Table A.8.4.2.1-2: Cell specific test parameters for E-UTRAN TDD-TDD inter-frequency event triggered reporting under fading propagation conditions in synchronous cells

Parameter	Unit	Ce	ll 1	C	ell 2
		T1	T2	T1	T2
E-UTRA RF Channel			1		2
Number					
BW _{channel}	MHz	1	0		10
OCNG Patterns					
defined in A.3.2.1.1		OP.1	TDD	OP	.2 TDD
(OP.1 TDD) and in					
A.3.2.1.2 (OP.2 TDD)					
PBCH_RA	dB				
PBCH_RB	dB	_			
PSS_RA	dB	_			
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB		-		•
PHICH_RB	dB	()		0
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
$N_{oc}^{\rm Note 2}$	dBm/15 kHz			-98	
RSRP Note 3	dBm/15 kHz	-94	-94	-Infinity	-91
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	4	4	-Infinity	7
SCH_RP Note 3	dBm/15 kHz	-94	-94	-Infinity	-91
\hat{E}_{s}/N_{oc}	dB	4	4	-Infinity	7
Propagation Condition	ETU70				
Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers					
and time and shall be modelled as AWGN of appropriate power for $N_{lpha c}$ to be fulfilled.					
Note 3: RSRP and SCH_RF parameters themse	Plevels have been der		00		hey are not settable

Table A.8.4.2.1-3: drx-Configuration to be used in E-UTRAN TDD-TDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

Field	Test1 Value	Test2 Value	Comment
onDurationTimer	[psf1]	[psf1]	
drx-InactivityTimer	[psf1]	[psf1]	
drx-RetransmissionTimer	[sf1]	[sf1]	
longDRX-CycleStartOffset	[sf40]	[sf1280]	
shortDRX	disable	disable	

Table A.8.4.2.1-4: *TimeAlignmentTimer* and *sr-ConfigIndex* -Configuration to be used in E-UTRAN TDD-TDD inter-frequency event triggered reporting when DRX is used in fading propagation conditions

Field	Test1 Value	Test2 Value	Comment
TimeAlignmentTimer	[sf500]	[sf500]	For further information see section 6.3.2 in 3GPP TS 36.331.
sr-ConfigIndex	[0]	[0]	For further information see section 6.3.2 in 3GPP TS 36.331 and 10.1 in 3GPP TS 36.213.

A.8.4.2.2 Test Requirements

In Test1 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 3840 ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE send the measurement report on PUSCH.

In Test2 the UE shall send one Event A3 triggered measurement report, with a measurement reporting delay less than 20*1280ms from the beginning of time period T2. The measurement reporting delay is defined as the time from the beginning of time period T2, to the moment when the UE starts to send preambles on the PRACH for scheduling request (SR) to obtain allocation to send the measurement report on PUSCH.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

- NOTE 1: The actual overall delays measured in the test may be up to one DRX cycle higher than the measurement reporting delays above because UE is allowed to delay the initiation of the measurement reporting procedure to the next until the Active Time.
- NOTE 2: In order to calculate the rate of correct events the system simulator shall verify that it has received correct Event A3 measurement report

A.8.5 E-UTRAN FDD - UTRAN FDD Measurements

A.8.5.1 E-UTRAN FDD - UTRAN FDD event triggered reporting under fading propagation conditions

A.8.5.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRAN FDD- UTRAN FDD cell search requirements in section 8.1.2.4.1.

The test parameters are given in Tables A.8.5.1.1-1, A.8.5.1.1-2 and A.8.5.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.5.1.1-1: General test parameters for E-UTRAN FDD-UTRAN FDD event triggered reporting in fading propagation conditions

Parameter	Unit	Value	Comment
PDSCH parameters (E-UTRAN FDD)		DL Reference Measurement	As specified in section A.3.1.1.1.
		Channel R.0 FDD	
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement	As specified in section A.3.1.2.1.
(E-UTRAN FDD)		Channel R.6 FDD	
Gap Pattern Id		1	As specified in 3GPP TS 36.133 section
			8.1.2.1.
Active cell		Cell 1	Cell 1 is on E-UTRA RF channel number 1.
Neighbour cell		Cell 2	Cell 2 is on UTRA RF channel number 1.
CP length		Normal	Applicable to cell 1
E-UTRA RF Channel Number		1	One E-UTRA FDD carrier frequency is used.
E-UTRA Channel Bandwidth	MHz	10	
(BW _{channel})			
UTRA RF Channel Number		1	One UTRA FDD carrier frequency is used.
Inter-RAT (UTRA FDD)		CPICH Ec/lo	
measurement quantity			
b1-Threshold-UTRA	dB	-18	CPICH Ec/lo threshold for event B1.
Hysteresis	dB	0	
Time To Trigger	ms	0	
Filter coefficient		0	L3 filtering is not used.
DRX		OFF	
Monitored UTRA FDD cell list size		12	UTRA cells on UTRA RF channel 1 provided
			in the cell list.
T1	S	5	
T2	S	6	

Parameter	Unit	Cell 1				
		T1	T2			
E-UTRA RF Channel Number		1				
BW _{channel}	MHz	10				
OCNG Pattern defined in						
A.3.2.1.1 (OP.1 FDD)		OP.1 I	FDD			
PBCH_RA	dB					
PBCH_RB	dB					
PSS_RA	dB					
SSS_RA	dB					
PCFICH_RB	dB					
PHICH_RA	dB					
PHICH_RB	dB	0				
PDCCH_RA	dB					
PDCCH_RB	dB					
PDSCH_RA	dB					
PDSCH_RB	dB					
OCNG_RA ^{Note 1}	dB					
OCNG_RB ^{Note 1}	dB					
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	4	4			
N_{oc}	dBm/15 kHz	-98				
RSRP	dBm/15 kHz	-94 -94				
SCH_RP	dBm/15 kHz	-94 -94				
Propagation Condition		ETU70				
		ells are fully allocated and a cons	stant total transmitted power			
spectral density is achieved for all OFDM symbols.						
Note 2: The resources for upl	ink transmission	are assigned to the UE prior to t	he start of time period T2.			

Table A.8.5.1.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

Table A.8.5.1.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for event triggered reporting
of UTRAN FDD cell under fading propagation conditions

Parameter	Unit	Cell 2				
		T1	T2			
UTRA RF Channel Number		1				
CPICH_Ec/lor	dB	-10				
PCCPCH_Ec/lor	dB	-12				
SCH_Ec/lor	dB	-12				
PICH_Ec/lor	dB	-15				
DPCH_Ec/lor	dB	N/A				
OCNS		-0.941				
\hat{I}_{or}/I_{oc}	dB	-Infinity	-1.8			
I _{oc}	dBm/3.84 MHz	-/()				
CPICH_Ec/lo	dB	-Infinity	-14			
Propagation Condition		Case 5 (N	ote 3)			
Note 1: The DPCH level is co	ontrolled by the p	power control loop.				
Note 2: The power of the OC	Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal					
to I _{or} .						
Note 3: Case 5 propagation conditions are defined in Annex A of 3GPP TS 25.101.						

A.8.5.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.5.2 E-UTRAN FDD - UTRAN FDD SON ANR cell search reporting under AWGN propagation conditions

A.8.5.2.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of the strongest UTRAN cell for SON automatic neighbour relations. This test will partly verify the E-UTRAN FDD - UTRAN FDD cell search requirements for identification of a new UTRA FDD cell for SON given in section 8.1.2.4.7.1.

The test parameters are given in Tables A.8.5.2.1-1, A.8.5.2.1-2 and A.8.5.2.1-3 below. In the measurement control information it is indicated to the UE that periodical reporting with the purpose 'reportStrongestCellsForSON' is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. Prior to the start of time period T1, an interRATperiodic measurement reporting configuration with purpose reportStrongestCellsForSON is configured, and linked to a UTRA measurement object corresponding to channel UARFCN 1. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.5.2.1-1: General test parameters for E-UTRAN FDD-UTRAN FDD cell search reporting for SON ANR in AWGN propagation conditions

Parameter	Unit	Value	Comment
PDSCH parameters (E-UTRAN FDD)		DL Reference Measurement	As specified in section A.3.1.1.1.
		Channel R.0 FDD	
PCFICH/PDCCH/PHICH parameters		DL Reference Measurement	As specified in section A.3.1.2.1.
(E-UTRAN FDD)		Channel R.6 FDD	
Gap Pattern Id		1	As specified in 3GPP TS 36.133 section
			8.1.2.1.
Active cell		Cell 1	Cell 1 is on E-UTRA RF channel number 1.
Neighbour cell		Cell 2	Cell 2 is on UTRA RF channel number 1.
CP length		Normal	Applicable to cell 1
E-UTRA RF Channel Number		1	One E-UTRA FDD carrier frequency is used.
E-UTRA Channel Bandwidth	MHz	10	
(BW _{channel})			
UTRA RF Channel Number		1	One UTRA FDD carrier frequency is used.
Inter-RAT (UTRA FDD)		CPICH Ec/lo	
measurement quantity			
Filter coefficient		0	L3 filtering is not used.
DRX		OFF	
Monitored UTRA FDD cell list size		None	No explicit neighbour list is provided to the UE
T1	S	5	During T1, cell 2 shall be powered off, and
			during the off time the primary scrambling
			code shall be changed, The intention is to
			ensure that cell 2 has not been detected by
			the UE prior to the start of period T2.
T2	S	6	

Parameter	Unit	Cell	1			
		T1	T2			
E-UTRA RF Channel Number		1				
BW _{channel}	MHz	10				
OCNG Pattern defined in						
A.3.2.1.1 (OP.1 FDD)		OP.1 F	DD			
PBCH_RA	dB					
PBCH_RB	dB					
PSS_RA	dB					
SSS_RA	dB					
PCFICH_RB	dB					
PHICH_RA	dB					
PHICH_RB	dB	0				
PDCCH_RA	dB					
PDCCH_RB	dB					
PDSCH_RA	dB					
PDSCH_RB	dB					
OCNG_RA ^{Note 1}	dB					
OCNG_RB ^{Note 1}	dB					
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	4			
N _{oc} Note 3	dBm/15 kHz	-98				
\hat{E}_{s}/N_{oc}	dB	4	4			
RSRP ^{Note 4}	dBm/15 kHz	-94	-94			
SCH_RP	dBm/15 kHz	-94	-94			
Propagation Condition		AWG	N			
Note 1: OCNG shall be used such that both cells are fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols. Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant						
	ver subcarriers and time and shall be modelled as AWGN of appropriate power for N_{ac} to be					
Note 4: RSRP levels have been	 fulfilled. RSRP levels have been derived from other parameters for information purposes. They are not settable parameters themselves. 					

Table A.8.5.2.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for UTRAN FDD cell search for SON ANR under AWGN propagation conditions

Table A.8.5.2.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for UTRAN FDD cell search for SON ANR under AWGN propagation conditions

Parameter	Unit	Cell 2	2				
		T1	T2				
UTRA RF Channel Number		1					
CPICH_Ec/lor	dB	-10					
PCCPCH_Ec/lor	dB	-12	-12				
SCH_Ec/lor	dB	-12					
PICH_Ec/lor	dB	-15					
DPCH_Ec/lor	dB	N/A					
OCNS		-0.941					
\hat{I}_{or}/I_{oc}	dB	-Infinity	-3.35				
I _{oc}	dBm/3.84 MHz	-70					
CPICH_Ec/lo	dB	-Infinity	-15				
Propagation Condition		AWGN	N				
Note 1: The DPCH level is co							
Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal							
to I _{or} .							

A.8.5.2.2 Test Requirements

The UE shall send the first measurement report containing the primary scrambling code of cell 2, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The rate of correct measurement reports observed with this delay during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.6 E-UTRAN TDD - UTRAN FDD Measurements

A.8.6.1 E-UTRAN TDD - UTRAN FDD event triggered reporting under fading propagation conditions

A.8.6.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRAN TDD- UTRAN FDD cell search requirements in section 8.1.2.4.2.

The test parameters are given in Tables A.8.6.1.1-1, A.8.6.1.1-2 and A.8.6.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.6.1.1-1: General test parameters for E-UTRAN TDD-UTRAN FDD event triggered reporting in fading propagation conditions

Parameter	Unit	Value	Comment
PDSCH parameters (E-UTRAN TDD)		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2.
PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2.
Gap Pattern Id		1	As specified in 3GPP TS 36.133 section 8.1.2.1.
Active cell		Cell 1	Cell 1 is on E-UTRA RF channel number 1.
Neighbour cell		Cell 2	Cell 2 is on UTRA RF channel number 1.
Special subframe configuration		6	As specified in table 4.2-1 in 3GPP TS 36.211. Applicable to cell 1.
Uplink-downlink configuration		1	As specified in table 4.2-2 in 3GPP TS 36.211. Applicable to cell 1.
CP length		Normal	Applicable to cell 1.
E-UTRA RF Channel Number		1	One E-UTRA TDD carrier frequency is used.
E-UTRA Channel Bandwidth (BW _{channel})	MHz	10	
UTRA RF Channel Number		1	One UTRA FDD carrier frequency is used.
Inter-RAT (UTRA FDD) measurement quantity		CPICH Ec/lo	
b1-Threshold-UTRA	dB	-18	CPICH Ec/lo threshold for event B1.
Hysteresis	dB	0	
Time To Trigger	ms	0	
Filter coefficient		0	L3 filtering is not used.
DRX		OFF	
Monitored UTRA cell list size		12	UTRA cells on UTRA RF channel 1 provided in the cell list.
T1	S	5	
T2	S	6	

Parameter	Unit	Cell 1				
		T1	T2			
E-UTRA RF Channel Number		1				
BW _{channel}	MHz	10				
OCNG Pattern defined in						
A.3.2.2.1 (OP.1 TDD)		OP.1	TDD			
PBCH_RA	dB					
PBCH_RB	dB					
PSS_RA	dB					
SSS_RA	dB					
PCFICH_RB	dB					
PHICH_RA	dB					
PHICH_RB	dB	0				
PDCCH_RA	dB					
PDCCH_RB	dB					
PDSCH_RA	dB					
PDSCH_RB	dB					
OCNG_RA ^{Note 1}	dB					
OCNG_RB ^{Note 1}	dB					
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	4			
N_{oc}	dBm/15 kHz	-98	3			
RSRP	dBm/15 kHz	-94	-94			
SCH_RP	dBm/15 kHz	-94	-94			
Propagation Condition ETU70						
		ells are fully allocated and a cons	stant total transmitted power			
spectral density is achieved for all OFDM symbols.						
Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.						

Table A.8.6.1.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for event triggered reporting of UTRAN FDD cell under fading propagation conditions

Table A.8.6.1.1-3: Cell specific test parameters for UTRAN FDD (cell # 2) for event triggered reporting
of UTRAN FDD cell under fading propagation conditions

Parameter	Unit	Cell 2	2			
		T1	T2			
UTRA RF Channel Number		1				
CPICH_Ec/lor	dB	-10				
PCCPCH_Ec/lor	dB	-12				
SCH_Ec/lor	dB	-12				
PICH_Ec/lor	dB	-15				
DPCH_Ec/lor	dB	N/A				
OCNS		-0.941				
\hat{I}_{or}/I_{oc}	dB	-Infinity	-1.8			
I _{oc}	dBm/3.84 MHz	-/()				
CPICH_Ec/lo	dB	-Infinity	-14			
Propagation Condition		Case 5 (N	ote 3)			
Note 1: The DPCH level is co						
Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal						
to I _{or} .						
Note 3: Case 5 propagation conditions are defined in Annex A of 3GPP TS 25.101.						

A.8.6.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 4800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.7 E-UTRAN TDD – UTRAN TDD Measurements

A.8.7.1 E-UTRAN TDD to UTRAN TDD cell search under fading propagation conditions

- A.8.7.1.1 Test Purpose and Environment
- A.8.7.1.1.1 3.84 Mcps TDD option

A.8.7.1.1.2 1.28 Mcps TDD option

The purpose of this test is to verify that the UE makes correct reporting of an event. This test will partly verify the E-UTRA TDD to UTRA TDD cell search requirements in section 8.1.2.4.3 under fading propagation conditions.

This test scenario comprised of 1 E-UTRA TDD serving cell, and 1 UTRA TDD cell to be searched. Test parameters are given in Table A.8.7.1.1.2-1, A.8.7.1.1.2-2, and A.8.7.1.1.2-3. Gap pattern configuration #0 as defined in table 8.1.2.1-1 is provided.

In the measurement control information, it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1 and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement	As specified in section A.3.1.1.2
		Channel R.0 TDD	
PCFICH/PDCCH/PHICH		DL Reference Measurement	As specified in section A.3.1.2.2
parameters		Channel R.6 TDD	
Active cell		Cell 1	E-UTRA TDD cell
Neighbour cell		Cell 2	UTRA 1.28Mcps TDD Cell
Gap Pattern Id		0	As specified in 3GPP TS 36.133
			section 8.1.2.1.
Uplink-downlink configuration of		1	As specified in table 4.2.2 in TS
cell 1			36.211
Special subframe configuration		6	As specified in table 4.2.1 in TS
of cell 1			36.211
CP length of cell 1		normal	
Hysteresis	dB	0	
TimeToTrigger	dB	0	
Filter coefficient		0	L3 filtering is not used
DRX		OFF	
Time offset between cells		3 ms	Asynchronous cells
Ofn	dB	0	
Hys	dB	0	
Thresh	dBm	-87	
T1	S	5	
T2	S	10	

Table A.8.7.1.1.2-1: General test parameters for E-UTRA TDD to UTRA(1.28 Mcps TDD OPTION) cell search in fading propagation conditions

Table A.8.7.1.1.2-2: Cell specific test parameters for cell search E-UTRA TDD to UTRA TDD test case (cell 1)

Parameter	Unit	Ce	II 1		
		T1	T2		
E-UTRA RF Channel			1		
Number					
BW _{channel}	MHz	1	0		
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RB	dB	-			
SSS_RB	dB				
PCFICH_PA	dB	-			
PHICH_PA	dB				
PHICH_PB	dB	0	0		
PDCCH_PA	dB				
PDCCH_PB	dB				
PDSCH_PA	dB				
PDSCH_PB	dB				
OCNG_RA ^{Note1}	dB	-			
OCNG_RB ^{Note1}	dB				
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	9	9		
N _{oc}	dBm/15kHz	-9	98		
RSRP	dBm/15kHz	-89	-89		
SCH_RP	dBm/15kHz	-89	-89		
Propagation Condition		ET	U70		
Note 1: OCNG shall be used such that cell is fully allocated and a constant total transmitted power spectral density is achieved for all OFDM symbols.					
Note 2: The resources for uplink transmission are assigned to the UE prior to the start of time period T2.					

Parameter	Unit	Cell 2 (UTRA)				
Timeslot Number		0		Dwl	PTS	
		T1	T2	T1	T2	
UTRA RF Channel Number ^{NOTE1}		Channel 2				
PCCPCH_Ec/lor	dB	-3	-3			
DwPCH_Ec/lor	dB			0	0	
OCNS_Ec/lor ^{NOTE2}	dB	-3	-3			
\hat{I}_{or}/I_{oc}	dB	-inf	5	-inf	5	
I _{oc}	dBm/1.28 MHz	-80				
PCCPCH RSCP	dBm	-inf -78 n.a. n.a.				
Propagation Case 3 ^{NOTE3}						
 Note 1: In the case of multi-frequency cell, the UTRA RF Channel Number is the primary frequency's channel number. Note 2: The power of the OCNS channel that is added shall make the total power from the cell to be equal to l_{or}. Note 3: Case 3 propagation conditions are defined in Annex B of 3GPP TS 25.102 						

Table A.8.7.1.1.2-3: Cell specific test parameters for cell search E-UTRA TDD to UTRA TDD test case (cell 2)

- A.8.7.1.1.3 7.68 Mcps TDD option
- A.8.7.1.2 Test Requirements
- A.8.7.1.2.1 3.84 Mcps TDD option
- A.8.7.1.2.2 1.28 Mcps TDD option

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 6400 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.7.1.2.3 7.68 Mcps TDD option

A.8.8 E-UTRAN FDD – GSM Measurements

A.8.8.1 E-UTRAN FDD – GSM event triggered reporting in AWGN

A.8.8.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter-RAT (GSM) measurements. This test will partly verify the E-UTRAN FDD - GSM cell search requirements in section 8.1.2.4.5.

3GPP TS 36.133 version 8.6.0 Release 8

233

The test parameters are given in Tables A.8.8.1.1-1, A.8.8.1.1-2 and A.8.8.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.8.1.1-1: General test parameters for E-UTRAN FDD-GSM event triggered reporting in AWGN

Parameter	Unit	Value	Comment
PDSCH parameters (E-UTRAN FDD)		DL Reference Measurement Channel R.0 FDD	As specified in section A.3.1.1.1.
PCFICH/PDCCH/PHICH parameters (E-UTRAN FDD)		DL Reference Measurement Channel R.6 FDD	As specified in section A.3.1.2.1.
Gap Pattern Id		0	As specified in 3GPP TS 36.133 section 8.1.2.1.
Active cell		Cell 1	Cell 1 is on E-UTRA RF channel number 1.
Neighbour cell		Cell 2	Cell 2 is on Absolute RF Channel Number 1 (GSM cell)
CP length		Normal	Applicable to cell 1
E-UTRA RF Channel Number		1	One E-UTRA FDD carrier frequency is used.
E-UTRA Channel Bandwidth (BW _{channel})	MHz	10	
Inter-RAT (GSM) measurement quantity		GSM Carrier RSSI	
b1-Threshold-GERAN	dBm	-80	GSM Carrier RSSI threshold for event B1.
Hysteresis	dB	0	
Time To Trigger	ms	0	
Filter coefficient		0	L3 filtering is not used.
DRX		OFF	
Monitored GSM cell list size		6 GSM neighbours including ARFCN 1	List of GSM cells provided before T2 starts.
T1	S	5	
T2	S	5	

Parameter	Unit	Cell	1
		T1	T2
E-UTRA RF Channel Number		1	
BW _{channel}	MHz	10	
OCNG Pattern defined in			
A.3.2.1.1 (OP.1 FDD)		OP.1 I	FDD
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB		
PHICH_RB	dB	0	
PDCCH_RA	dB		
PDCCH_RB	dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA ^{Note 1}	dB		
OCNG_RB ^{Note 1}	dB		
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	dB	4	4
N _{oc}	dBm/15 kHz	-98	3
RSRP	dBm/15 kHz	-94	-94
SCH_RP	dBm/15 kHz	-94	-94
Propagation Condition		AWC	GN
spectral density is ac	hieved for all OF	ells are fully allocated and a cons DM symbols. are assigned to the UE prior to t	

Table A.8.8.1.1-2: Cell specific test parameters for E-UTRAN FDD (cell # 1) for event triggered reporting of GSM cell in AWGN

Table A.8.8.1.1-3: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell in AWGN

Parameter	Unit	Cel	12
		T1	T2
Absolute RF Channel Number		ARF	NC 1
RXLEV	dBm	-Infinity	-75
GSM BSIC		N/A	Valid
Propagation Condition		AW	GN

A.8.8.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report including BSIC of cell # 2, with a measurement reporting delay less than 3120 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to $2xTTI_{DCCH}$ higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to 3120 ms, which is the sum of the event triggered measurement reporting delay and the initial BSIC identification delay.

The event triggered measurement reporting delay = $2*T_{\text{Measurement Period, GSM}} = 2*480\text{ms} = 960\text{ms}$.

Initial BSIC identification delay = 2160 ms.

A.8.9 E-UTRAN FDD - UTRAN TDD measurements

A.8.9.1 E-UTRAN FDD - UTRAN TDD event triggered reporting in fading propagation conditions

A.8.9.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event. The test will partly verify the E-UTRAN FDD - UTRAN TDD cell search requirements in section 8.1.2.4.4 in fading environment.

The test parameters are given in Table A.8.9.1.1-1, A.8.9.1.1-2 and A.8.9.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.9.1.1-1: General test parameters for Event triggered reporting in fading propagation conditions

Parameter	Unit	Value	Comment
PDSCH parameters		DL Reference Measurement Channel TBD	As specified in TS 36.101 section TBD
PCFICH/PDCCH/PHICH		DL Reference Measurement	As specified in section A.3.1.2.1
parameters		Channel R.6 FDD	
Active cell		Cell 1	E-UTRA FDD Cell 1
Neighbour cell		Cell 2	UTRA TDD Cell 2 is to be identified.
Gap Pattern Id		1	As specified in TS 36.133 section8.1.2.1. Transmission Gap Repetition Period = 80ms
Inter-RAT measurement quantity		UTRA TDD PCCPCH RSCP	
Threshold other system	dBm	-71	UTRA TDD PCCPCH RSCP threshold for event B1.
Hysteresis	dB	0	
CP length		Normal	
TimeToTrigger	dB	0	
Filter coefficient		0	L3 filtering is not used
DRX			OFF
T1	S	5	
T2	S	15	

Parameter	Unit	Cel	11		
		T1	T2		
E-UTRA RF Channel		1			
Number					
BW _{channel}	MHz	10			
OCNG Patterns defined		OP.1	FDD		
in A.3.2.1.1 (OP.1 FDD)					
PBCH_RA	dB				
PBCH_RB	dB				
PSS_RA	dB				
SSS_RA	dB				
PCFICH_RB	dB				
PHICH_RA	dB	0			
PHICH_RB	dB	0			
PDCCH_RA	dB				
PDCCH_RB	dB				
PDSCH_RA	dB				
PDSCH_RB	dB				
OCNG_RA ^{Note 1}	dB				
OCNG_RB ^{Note 1}	dB				
N_{oc}	dBm/15KH	-9	8		
	Z				
RSRP	dBm	-94	-94		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	4		
P-SCH_RP	dBm	-9	4		
S-SCH_RP	dBm	-9	4		
Propagation Condition		ETU	-		
Note 1: OCNG shall be use					
constant total transmitted p	power spectral	density is achieved	d for all OFDM		
symbols.					
Note 2: The resources for		ssion are assigned	to the UE prior		
to the start of time period 1	2.				

Table A.8.9.1.1-2: Cell specific test parameters for Event triggered reporting of UTRA TDD neighbours in fading propagation conditions (cell1)

Table A.8.9.1.1-3: Cell specific test parameters for Event triggered reporting of UTRA TDD neighbours in fading propagation conditions (cell2)

Parameter	Unit	Cell 2				
		Т	1		Г2	
Timeslot Number		0 DwPTS		0	DwPTS	
UTRA RF Channel			Cha	nnel1		
Number (NOTE1)						
PCCPCH_Ec/lor	dB	-Inf	inity	-3		
DwPCH_Ec/lor	dB	-Inf	inity		0	
OCNS_Ec/lor		-Infinity		-3		
\hat{I}_{or}/I_{oc}	dB	-Infinity		9		
I _{oc}	dBm/		-	70		
00	1.28					
	MHz					
PCCPCH_RSCP	dB	-Inf	inity	-64		
Propagation		Case 3 (NOTE2)				
Condition						
NOTE1: The DPCH o	f the cell i	is located in	n a timeslot	other than	0.	
NOTE2: Case 3 propa	agation co	onditions ar	e specified	in TS25.10	2 Annex B	

A.8.9.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report, with a measurement reporting delay less than 12800 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE: The actual overall delays measured in the test may be up to [2] x TTI_{DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

A.8.10 E-UTRAN TDD – GSM Measurements

A.8.10.1 E-UTRAN TDD – GSM event triggered reporting in AWGN

A.8.10.1.1 Test Purpose and Environment

The purpose of this test is to verify that the UE makes correct reporting of an event when doing inter-RAT (GSM) measurements. This test will partly verify the E-UTRAN TDD - GSM cell search requirements in section 8.1.2.4.6.

The test parameters are given in Tables A.8.10.1.1-1, A.8.8.1.1-2 and A.8.10.1.1-3 below. In the measurement control information it is indicated to the UE that event-triggered reporting with Event B1 is used. The test consists of two successive time periods, with time duration of T1, and T2 respectively. During time duration T1, the UE shall not have any timing information of cell 2.

Table A.8.10.1.1-1: General test parameters for E-UTRAN TDD-GSM event triggered reporting in AWGN

Parameter	Unit	Value	Comment
PDSCH parameters (E-UTRAN TDD)		DL Reference Measurement Channel R.0 TDD	As specified in section A.3.1.1.2.
PCFICH/PDCCH/PHICH parameters (E-UTRAN TDD)		DL Reference Measurement Channel R.6 TDD	As specified in section A.3.1.2.2.
Gap Pattern Id		0	As specified in 3GPP TS 36.133 section 8.1.2.1.
Active cell		Cell 1	Cell 1 is on E-UTRA RF channel number 1.
Neighbour cell		Cell 2	Cell 2 is on Absolute RF Channel Number 1 (GSM cell)
Special subframe configuration		6	As specified in table 4.2-1 in 3GPP TS 36.211
Uplink-downlink configuration		<mark>1</mark>	As specified in table 4.2-2 in 3GPP TS 36.211
CP length		Normal	Applicable to cell 1
E-UTRA RF Channel Number		<mark>1</mark>	One E-UTRA TDD carrier frequency is used.
E-UTRA Channel Bandwidth (BW _{channel})	MHz	10 10	
Inter-RAT (GSM) measurement quantity		GSM Carrier RSSI	
b1-Threshold-GERAN	dBm	-80	GSM Carrier RSSI threshold for event B1.
Hysteresis	dB	0	
Time To Trigger	ms	Ö	
Filter coefficient		0	L3 filtering is not used.
DRX		OFF	
Monitored GSM cell list size		6 GSM neighbours including ARFCN 1	List of GSM cells provided before T2 starts.
T1	s	5	
T2	s	5	

Parameter	Unit	Cell	1
		T1	T2
E-UTRA RF Channel Number		1	
BW _{channel}	MHz	<mark>10</mark>	
OCNG Pattern defined in			
A.3.2.2.1 (OP.1 TDD)		OP.1	<u>rdd</u>
PBCH_RA	dB		
PBCH_RB	dB		
PSS_RA	dB		
SSS_RA	dB		
PCFICH_RB	dB		
PHICH_RA	dB	0	
PHICH_RB	dB		
PDCCH_RA PDCCH_RB	dB dB		
PDSCH_RA	dB		
PDSCH_RB	dB		
OCNG_RA ^{Note 1}	dB		
OCNG_RB ^{Note 1}	dB		
$\hat{\mathbf{E}}_{s}/\mathbf{I}_{ot}$	dB	4	4
N_{oc} Note 3	dBm/15 kHz	<mark>-98</mark>	3
\hat{E}_s/N_{oc}	dB	<mark>4</mark>	<mark>4</mark>
RSRP Note 4	dBm/15 kHz	<mark>-94</mark>	<mark>-94</mark>
SCH_RP	dBm/15 kHz	<mark>-94</mark>	<mark>-94</mark>
Propagation Condition		AWO	
		s are fully allocated and a cons	stant total transmitted power
spectral density is ac			
		re assigned to the UE prior to t	
		sources not specified in the tes	
over subcarriers and	time and shall be r	modelled as AWGN of appropri	ate power for $N_{_{oc}}$ to be
fulfilled.			
Note 4: RSRP levels have be	en derived from ot	her parameters for information	purposes. They are not
settable parameters t	hemselves.		

Table A.8.10.1.1-2: Cell specific test parameters for E-UTRAN TDD (cell # 1) for event triggered reporting of GSM cell in AWGN

Table A.8.10.1.1-3: Cell specific test parameters for GSM (cell # 2) for event triggered reporting of GSM cell in AWGN

Parameter	Unit	Cel	<mark> 2</mark>
		T1	T2
Absolute RF Channel Number			
RXLEV	<mark>dBm</mark>	-Infinity	<mark>-75</mark>
GSM BSIC		N/A	Valid
Propagation Condition		AW	<mark>GN</mark>

A.8.10.1.2 Test Requirements

The UE shall send one Event B1 triggered measurement report including the valid BSIC of cell # 2, with a measurement reporting delay less than 3120 ms from the beginning of time period T2.

The UE shall not send event triggered measurement reports, as long as the reporting criteria are not fulfilled.

The rate of correct events observed during repeated tests shall be at least 90%.

NOTE 1: The actual overall delays measured in the test may be up to 2xTTI_{DCCH} higher than the measurement reporting delays above because of TTI insertion uncertainty of the measurement report in DCCH.

NOTE 2: The delay for GSM cell identification with BSIC verified is equal to 3120 ms, which is the sum of the event triggered measurement reporting delay and the initial BSIC identification delay.

The event triggered measurement reporting delay = $2*T_{\text{Measurement Period, GSM}} = 2*480 \text{ms} = 960 \text{ms}$.

Initial BSIC identification delay = 2160 ms.

A.9 Measurement Performance Requirements

Unless explicitly stated otherwise:

- Reported measurements shall be within defined range of accuracy limits defined in Section 9 for 90 % of the reported cases.
- Cell 1 is the serving cell.
- Measurements are performed in RRC_CONNECTED state.

A.9.1 RSRP

A.9.1.1 FDD Intra frequency case

A.9.1.1.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.2 for FDD intra frequency measurements.

A.9.1.1.2 Test parameters

In this set of test cases all cells are on the same carrier frequency. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.1.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

D	arameter	Unit	Tes			st 2	Test 3	
		Onic	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
	hannel Number							1
BW _{channel}		MHz	1			0		0
Measurement		n _{PRB}	22–	–27	22-	-27	22-	-27
PDSCH Reference measurement channel defined in A.3.1.1.1			R.0 FDD	-	R.0 FDD	-	R.0 FDD	-
PDSCH alloca	tion	n _{PRB}	13—36	-	13—36	-	13—36	-
	CH/PHICH Reference channel defined in		R.6	FDD	R.6	FDD	R.6	FDD
(OP.1 FDD) ar FDD)	ns defined in A.3.2.1.1 nd A.3.2.1.2 (OP.2		OP.1 FDD	OP.2 FDD	OP.1 FDD	OP.2 FDD	OP.1 FDD	OP.2 FDD
PBCH_RA PBCH_RB PSS_RA SSS_RA PCFICH_RB								
PHICH_RA PHICH_RB PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RB		dB	0	0	0	0	0	0
OCNG_RA ^{Note}	1 1 Bands 1, 4, 6 and							10
$N_{\scriptscriptstyle oc}$ Note2	10 Bands 2, 5, 7 and 11 Bands 3, 8, 13,	dBm/15 kHz	-106	-106	-88	-88	-1	16 14 13
Ê /I	Band 9	dB	2.5	-6	2.5	-6	0.46	15 -5.76
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	Bands 1, 4, 6 and 10		2.0	-0	2.5	-0	-113	-117
RSRP ^{Note3}	Bands 2, 5, 7 and 11 Bands 3, 8, 13,	dBm/15 kHz	-100	-105	-82	-87	-111 -110	-115 -114
	Band 9 Bands 1, 4, 6 and 10.						-112 -82	<u>-116</u> 2.43
lo ^{Note3}	Bands 2, 5, 7 and 11 Bands 3, 8, 13,	dBm/9 MHz	-70	-70	-52	-52).43).43
	Band 9							.43
\hat{E}_s / N_{oc}		dB	6	1	6	1	3	-1
Propagation co	ondition	-	AW	GN	Δ\٨/	'GN	Δ۱۸	/GN
Note 1: OCNG s achieve Note 2: Interfere	shall be used such that bot ed for all OFDM symbols. Ince from other cells and n d shall be modelled as AW	oise sources not s	ocated and a pecified in the second s	a constant t ne test is as	otal transmit	ted power s	pectral dens	sity is

time and shall be modelled as AWGN of appropriate power for $\,N_{oc}\,$ to be fulfilled.

Note 3: RSRP and Io levels have been derived from other parameters for information purposes. They are not settable parameters themselves.

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

A.9.1.1.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.2.

A.9.1.2 TDD Intra frequency case

A.9.1.2.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.2 for TDD intra frequency measurements.

A.9.1.2.2 Test parameters

In this set of test cases all cells are on the same carrier frequency. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.2.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

Da	rameter	Unit	Tes	st 1	Tes	st 2		st 3
Fa	lameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
	hannel Number		1	1	1			1
BW _{channel}		MHz	10		10		1	0
Special subframe configuration Note1			6	6		6	(6
Uplink/downlin	k configuration ^{Note1}		1	1		1		1
Measurement		n _{PRB}	22–	-27	22-	-27	22-	-27
PDSCH Refer	ence measurement ed in A.3.1.1.2		R.0 TDD	-	R.0 TDD	-	R.0 TDD	-
PDSCH alloca	tion	n_{PRB}	13—36	-	13—36	-	13—36	-
defined in A.3.	asurement channel 1.2.2		R.6	TDD	R.6	TDD	R.6	TDD
OCNG Patterr A.3.2.2.1 (OP. A.3.2.2.2 (OP.	1 TDD) and		OP.1 TDD	OP.2 TDD	OP.1 TDD	OP.2 TDD	OP.1 TDD	OP.2 TDD
PBCH_RA PBCH_RB PSS_RA PCFICH_RB PHICH_RA PHICH_RB PDCCH_RA PDCCH_RA PDCCH_RB PDSCH_RA PDSCH_RB OCNG_RA ^{Note}	2	dB	0	0	0	0	0	0
$N_{\scriptscriptstyle oc}$ Note3	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dBm/15 kHz	-106	-106	-88	-88	-1	16
\hat{E}_{s}/I_{ot}		dB	2.5	-6	2.5	-6	0.5	-5.76
RSRP ^{Note4}	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dBm/15 kHz	-100	-105	-82	-87	-113	-117
Bands 33, 34, 35, 36, 37, 38, 39 and 40		dBm/9 MHz	-70	-70	-52	-52	-82	2.43
\hat{E}_{s}/N_{oc}		dB	6	1	4	1	3	-1
Propagation condition		-	AWGN		AWGN		AWGN	

Table A.9.1.2.2-1: RSRP TDD Intra frequency test parameters

achieved for all OFDM symbols. Note 3: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and

time and shall be modelled as AWGN of appropriate power for N_{oc} to be fulfilled. Note 4: RSRP and Io levels have been derived from other parameters for information purposes. They are not settable parameters themselves. Note 5: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

A.9.1.2.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.2.

A.9.1.3 FDD—FDD Inter frequency case

A.9.1.3.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.3 for FDD—FDD inter frequency measurements.

A.9.1.3.2 Test parameters

In this set of test cases the cells are on different carrier frequencies. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.3.2-1 In all test cases, Cell 1 is the serving cell and Cell 2 the target cell. The inter frequency measurements are supported by a measurement gap.

			Te	st 1	Te	st 2
P	arameter	Unit	Cell 1	Cell 2	Cell 1	Cell 2
E-UTRA RF Ch	annel Number		1	2		2
BW _{channel}		MHz	10	10	10	10
	ap configuration	1011 12	0		0	10
			-		-	
Measurement b		n _{PRB}		27		-27
PDSCH Refere channel defined	nce measurement d in A.3.1.1.1		R.0 FDD	-	R.0 FDD	-
PDSCH allocati		n_{PRB}	13—36	-	13—36	-
	H/PHICH Reference channel defined in		R.6	FDD	R.6	FDD
	s defined in A.3.2.1.1		OP.1	OP.2	OP.1	OP.2
	d A.3.2.1.2 (OP.2 FDD)		FDD	FDD	FDD	FDD
PBCH_RA						
PBCH_RB						
PSS_RA]				
SSS_RA						
PCFICH_RB						
PHICH_RA						0
PHICH_RB		dB	0	0	0	
PDCCH_RA						
PDCCH_RB						
PDSCH_RA						
PDSCH_RB						
OCNG_RANote	e1					
OCNG_RBNote	Э					
	Bands 1, 4, 6 and 10.				-109	-116
N_{oc} Note2	Bands 2, 5, 7 and 11	dBm/15 kHz	-88.65	-88.65	-107	-114
	Bands 3, 8, 13,	ł			-106	-113
	Band 9	ł				-115
\hat{E}_{s}/I_{ot}		dB	10	10	14	-5
	Bands 1, 4, 6 and 10.				-95	-121
RSRP ^{Note3}	Bands 2, 5, 7 and 11	dBm/15 kHz	-78.65	-78.65	-93	-119
	Bands 3, 8, 13,	1			-107 -106 -108 14 -95 -93 -93 -92 -94 -67.05 -65.05	-118
	Band 9	T			-94	-120
	Bands 1, 4, 6 and 10.				-67.05	-87.03
Io ^{Note3}	Bands 2, 5, 7 and 11	dBm/9 MHz	-49.5	-49.5	-65.05	-85.03
	Bands 3, 8, 13,	t			-64.05	-84.03
	Band 9				-66.05	-86.03
\hat{E}_{s}/N_{oc}		dB	10	10	14	-5
Propagation co	ndition	-	AW	/GN	AW	GN
Note 1: OCNG spectra	shall be used such that b al density is achieved for	all OFDM symbols.	located and	a constant to		
	ence from other cells and					
	ubcarriers and time and s	hall be modelled as	AWGN of a	ppropriate p	ower for N	$_{oc}$ to be
	and lo levels have been d		arameters fo	r informatio	n purposes.	They are
	table parameters themse minimum requirements ar		ng independe	ent interfere	nce and nois	se at each

Table A.9.1.3.2-1: RSRP FDD—FDD Inter frequency test parameters

Note 4: RSRP minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

A.9.1.3.3 Test Requirements

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.3.

A.9.1.4 TDD—TDD Inter frequency case

A.9.1.4.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRP measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.3 for TDD—TDD inter frequency measurements.

A.9.1.4.2 Test parameters

In this set of test cases the cells are on different carrier frequencies. Both absolute and relative accuracy of RSRP intra frequency measurements are tested by using the parameters in Table A.9.1.4.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell. The inter frequency measurements are supported by a measurement gap.

			-	- (4	-	
Pa	arameter	Unit		st 1	Test 2	
E-UTRA RF Cha	annel Number		Cell 1	Cell 2 2	Cell 1	Cell 2 2
BW _{channel}		MHz	10	10	10	10
Special subfram	e configuration ^{Note1}	IVII 12		6		6
Uplink-downlink	configuration ^{Note1}		1	1		1
Measurement g			0	-	0	-
Measurement ba		10	22	-27	22	27
		n _{PRB}		-21		-21
	nce measurement		R.0	-	R.0	-
channel defined	in A.3.1.1.2		TDD		TDD	
PDSCH allocation		n _{PRB}	13—36	-	13—36	-
	H/PHICH Reference					
	hannel defined in		R.6	TDD	R.6	TDD
A.3.1.2.2	defined in A.O.O.O.4		00.4			
	defined in A.3.2.2.1		OP.1 TDD	OP.2 TDD	OP.1 TDD	OP.2 TDD
PBCH RA	A.3.2.2.2 (OP.2 TDD)			100		100
PBCH_RB		-				
PSS_RA						
SSS_RA						
PCFICH_RB						
PHICH_RA						
PHICH_RB		dB	0	0	0	0
PDCCH_RA				_	-	
PDCCH_RB						
PDSCH_RA						
PDSCH_RB						
OCNG_RA ^{Note2}						
OCNG_RB ^{Note2}						
$N_{\scriptscriptstyle oc}$ Note3	Bands 33, 34, 35, 36, 37, 38, 39 and	dBm/15 kHz	-88.65	-88.65	-109	-116
	40		00.00			
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$		dB	10	10	14	-5
	Bands 33, 34, 35,				İ	
RSRP ^{Note4}	36, 37, 38, 39 and 40.	dBm/15 kHz	-78.65	-78.65	-95	-121
	Bands 33, 34, 35,		1	1		1
lo ^{Note4}	36, 37, 38, 39 and 40	dBm/9 MHz	-49.5	-49.5	-67.05	-87.03
\hat{E}_{s}/N_{oc}		dB	10	10	14	-5
Propagation cor	ndition	-	AW	'GN	AW	'GN
	cial subframe and uplink	-downlink configurat			nd 4.2-2 in 3	GPP TS
Note 2: OCNG s spectra	shall be used such that b I density is achieved for	all OFDM symbols.				
	ence from other cells and		•			
over su	bcarriers and time and s	hall be modelled as	AWGN of a	ppropriate p	ower for N	oc to be
fulfilled						
	nd lo levels have been on the been of the		arameters fo	r informatio	n purposes.	They are
Note 5: RSRP n	ninimum requirements a		g independe	ent interfere	nce and nois	se at each

Table A.9.1.4.2-1: RSRP TDD—TDD Inter frequency test parameters

A.9.1.4.3 Test Requirements

receiver antenna port.

The RSRP measurement accuracy shall fulfil the requirements in section 9.1.3.

A.9.2 RSRQ

A.9.2.1 FDD Intra frequency case

A.9.2.1.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.5.

A.9.2.1.2 Test parameters

In this test case all cells are on the same carrier frequency. The absolute accuracy of RSRQ intra frequency measurement is tested by using the parameters in Table A.9.2.1.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

De	arameter	Unit		Test 1		st 2	Test 3		
		Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
E-UTRA RF Cha	annel Number								
BW _{channel}		MHz	1	0	1	0	1	0	
Measurement ba	andwidth	n_{PRB}	22-	-27	22—27		22—27		
PDSCH Referer channel defined	ice measurement in A.3.1.1.1		R.0 FDD	-	R.0 FDD	-	R.0 FDD	-	
PDSCH allocation	on	n_{PRB}	13—36	-	13—36	-	13—36	-	
measurement ch A.3.1.2.1	H/PHICH Reference nannel defined in			FDD		FDD		FDD	
	defined in A.3.2.1.1 A.3.2.1.2 (OP.2 FDD)		OP.1 FDD	OP.2 FDD	OP.1 FDD	OP.2 FDD	OP.1 FDD	OP.2 FDD	
PBCH RA									
PBCH_RB									
PSS_RA									
SSS_RA									
PCFICH_RB									
PHICH_RA									
PHICH_RB		dB	0	0	0	0	0	0	
PDCCH_RA									
PDCCH_RB									
PDSCH_RA									
PDSCH_RB									
CNG_RA ^{Note1}									
OCNG RB ^{Note1}									
	Bands 1, 4, 6 and 10.						-1	16	
$N_{\scriptscriptstyle oc}$ Note2	Bands 2, 5, 7 and 11	dBm/15 kHz	-84.76	-84.76	-103.85	-103.85	-114 -113		
	Bands 3, 8, 13,								
	Band 9						-1		
τ /ı	Lando		·		· -				
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$		dB	-1.76	-1.76	-4.7	-4.7	-5.4	-5.4	
	Bands 1, 4, 6 and 10.						-120	-120	
RSRP ^{Note3}	Bands 2, 5, 7 and 11	dBm/15 kHz	-81.76	-81.76	-106.75	-106.75	-118	-118	
	Bands 3, 8, 13,						-117	-117	
	Band 9						-119	-119	
	Bands 1, 4, 6 and 10.								
RSRQ ^{Note3}	Bands 2, 5, 7 and	dP	1/ 77	1/ 77	-16.76	16 76	17.00	17.0	
KOKU	11	dB	-14.77	-14.77	-10.70	-16.76	-17.33	-17.3	
	Bands 3, 8, 13,								
	Band 9								
	Bands 1, 4, 6 and 10.						-85	.67	
0 ^{Note3}	Bands 2, 5, 7 and 11	dBm/9 MHz	-50	-50	-73	-73	-83	.67	
	Bands 3, 8, 13,						-82	.67	
	Band 9							.67	
\hat{E}_s / N_{oc}		dB	3	3	-2.9	-2.9	-4	-4	
Propagation con	dition	-	AW	GN	Δ\//	'GN	AW	GN	
		-						0.1	

Table A.9.2.1.2-1: RSRQ	FDD Intra	frequency	test parameters
-------------------------	-----------	-----------	-----------------

Note 2: Interference from other cells and noise sources not specified in the test is assumed to be constant over subcarriers and

time and shall be modelled as AWGN of appropriate power for $\,N_{\scriptscriptstyle oc}\,$ to be fulfilled.

Note 3: RSRQ, RSRP and Io levels have been derived from other parameters for information purposes. They are not settable parameters themselves. Note 4: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver

antenna port.

A.9.2.1.3 Test Requirements

The RSRQ measurement accuracy shall fulfil the requirements in Section 9.1.5.

A.9.2.2 TDD Intra frequency case

A.9.2.2.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.5.

A.9.2.2.2 Test parameters

In this test case all cells are on the same carrier frequency. The absolute accuracy of RSRQ intra frequency measurement is tested by using the parameters in Table A.9.2.2.2-1. In all test cases, Cell 1 is the serving cell and Cell 2 the target cell.

Pa	arameter	Unit	-	st 1		st 2	Test 3		
		Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
E-UTRA RF Cha	annel Number			1		1		1	
BW _{channel}	Noto1	MHz		0		0		0	
Special subfram	e configuration ^{Note1}			6		6		6	
Uplink-downlink	configuration ^{Note1}			1		1		1	
Measurement ba	andwidth	n _{PRB}	22—27		22-	27	22-	-27	
	nce measurement		R.0	_	R.0	-	R.0	-	
channel defined	in A.3.1.1.2		TDD		TDD		TDD		
PDSCH allocation	DSCH allocation		13—36	-	13—36	-	13—36	-	
	H/PHICH Reference nannel defined in		R.6	TDD	R.6	TDD	R.6	TDD	
	defined in A.3.2.2.1		OP.1	OP.2	OP.1	OP.2	OP.1	OP.2	
	A.3.2.2.2 (OP.2 TDD)		TDD	TDD	TDD	TDD	TDD	TDD	
PBCH_RA									
PBCH_RB									
PSS_RA									
SSS_RA	SS_RA								
PCFICH_RB	CFICH_RB								
PHICH_RA									
PHICH_RB		dB	0	0	0	0	0	0	
PDCCH_RA									
PDCCH_RB									
PDSCH_RA									
PDSCH_RB									
OCNG_RA ^{Note2}									
OCNG_RB ^{Note2}									
$N_{\scriptscriptstyle oc}$ Note3	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dBm/15 kHz	-84.76	-84.76	-103.85	-103.85	-1	16	
$\hat{\mathrm{E}}_{\mathrm{s}}/\mathrm{I}_{\mathrm{ot}}$	·	dB	-1.76	-1.76	-4.7	-4.7	-5.4	-5.4	
57 51	Bands 33, 34, 35,								
RSRP ^{Note4}	36, 37, 38, 39 and 40	dBm/15 kHz	-81.76	-81.76	-106.75	-106.75	-120	-120	
RSRQ ^{Note4}	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dB	-14.77	-14.77	-16.76	-16.76	-17.33	-17.3	
Io ^{Note4} Bands 33, 34, 35, 36, 37, 38, 39 and 40		dBm/9 MHz	-50	-50	-73	-73	-85	5.67	
\hat{E}_{s}/N_{oc}		dB	3	3	-2.9	-2.9	-4	-4	
Propagation con	dition	-	AM	/GN	AW	/GN	AW	/GN	
Note 1: For spec	cial subframe and uplink-		tions see Tal	oles 4.2-1 a	nd 4.2-2 in 3	BGPP TS 36	.211.		
achieve	hall be used such that be d for all OFDM symbols. nce from other cells and					·	•		

Table A.9.2.2.2-1: RSRQ TDD Intra frequency test parameters

time and shall be modelled as AWGN of appropriate power for $\,N_{oc}\,$ to be fulfilled.

Note 4: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves. Note 5: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver

antenna port.

A.9.2.2.3 **Test Requirements**

The RSRQ measurement accuracy shall fulfil the requirements in Sections 9.1.5.

A.9.2.3 FDD—FDD Inter frequency case

A.9.2.3.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.6.

A.9.2.3.2 Test parameters

In this test case the two cells are on different carrier frequencies and measurement gaps are provided. Both RSRQ inter frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.2.3.2-1. In all tests, Cell 1 is the serving cell and Cell 2 the target cell.

I	Parameter	Unit		st 1	_	st 2	Test	1
			Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2
	hannel Number		1	2	1	2	1	2
BW _{channel}		MHz	10	10	10	10	10	10
Measurement	gap configuration		0	-	0	-	0	-
Measurement	bandwidth	n _{PRB}	22-	-27	22-	27	22—	27
PDSCH Reference measurement channel defined in A.3.1.1.1			R.0 FDD	-	R.0 FDD	-	R.0 FDD	-
PDSCH alloca	tion	n _{PRB}	13—36	-	13—36	-	13—36	-
	CH/PHICH Reference channel defined in		R.6 FDD		R.6	FDD	R.6 FDD	
	is defined in A.3.2.1.1 nd A.3.2.1.2 (OP.2 FDD)		OP.1 FDD	OP.2 FDD	OP.1 FDD	OP.2 FDD	OP.1 FDD	OP.2 FDD
PBCH_RA								
PBCH_RB								
PSS_RA								
SSS_RA								
PCFICH_RB								
PHICH_RA								
PHICH_RB		dB	0	0	0	0	0	0
PDCCH_RA								
PDCCH_RB								
PDSCH_RA	DSCH_RA DSCH_RB							
PDSCH_RB								
OCNG_RA ^{Note1}	1							
00110_112	Bands 1, 4, 6 and 10.						-119	-119
	Bands 2, 5, 7 and	dBm/15 kHz	-80	-80	-104	-104	-117	-117
	Bands 3, 8, 13,	-	dBm/15 kHz -80				-116	-116
Ê /I	Band 9		4.75	4 75	47	47		-118
\hat{E}_{s}/I_{ot}	Danda 4, 4, 0 and	dB	-1.75	-1.75	-4.7	-4.7	-4.0	-4.5
	Bands 1, 4, 6 and 10.						-123.50	-123.5
RSRP ^{Note3}	Bands 2, 5, 7 and 11	dBm/15 kHz	-81.75	-81.75	-108.70	-108.70	-121.50	-121.5
	Bands 3, 8, 13,						-117 -116 -118 -4.5 -123.50	-120.5
	Band 9	1						-122.5
	Bands 1, 4, 6 and 10.							
RSRQ ^{Note3}	Bands 2, 5, 7 and	dB	-14.76	-14.76	-16.76	-16.76	-16.61	-16.61
	11 Bands 3, 8, 13, …	4						
	Bands 3, 8, 13, Band 9	4						
	Band 9 Bands 1, 4, 6 and							
	10.						-89.90	-89.90
Io ^{Note3}	Bands 2, 5, 7 and	dBm/9 MHz	-50	-50	-74.95	-74.95	-87.90	-87.90
	11 Bands 3, 8, 13,						-86.90	-86.90
	Band 9						-88.90	-88.90
\hat{E}_s / N_{oc}		dB	-1.75	-1.75	-4.7	-4.7	-4.5	-4.5
Propagation co	ondition	-	AW	'GN	AM	/GN	AWO	GN
	shall be used such that b	oth cells are fully						
	ved for all OFDM symbols							ony io
	rence from other cells and		not specified	in the test is	s assumed to	o be consta	nt over subcarr	iers and
	and shall be modelled as A	www.uv or approp	nate power		be fulfilled.			
			a second a file a second as					

Note 3: RSRQ, RSRP and lo levels have been derived from other parameters for information purposes. They are not settable parameters themselves. Note 4: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver

antenna port.

A.9.2.3.3 Test Requirements

The RSRQ measurement accuracy shall fulfil the requirements in Section 9.1.6.

A.9.2.4 TDD—TDD Inter frequency case

A.9.2.4.1 Test Purpose and Environment

The purpose of this test is to verify that the RSRQ measurement accuracy is within the specified limits. This test will verify the requirements in Section 9.1.6.

A.9.2.4.2 Test parameters

In this test case the two cells are on different carrier frequencies and measurement gaps are provided. Both RSRQ inter frequency absolute and relative accuracy requirements are tested by using test parameters in Table A.9.2.4.2-1. In all tests, Cell 1 is the serving cell and Cell 2 the target cell.

P	arameter	Unit	Tes		Tes	1	Test 3		
		Unit	Cell 1	Cell 2	Cell 1	Cell 2	Cell 1	Cell 2	
E-UTRA RF Ch	annel Number		1	2	1	2	1	2	
BW _{channel}		MHz	10	10	10	10	10	10	
Measurement g	ap configuration		6	-	6	-		-	
Special subfram	ne configuration Note1		()	0		(0	
Uplink-downlink	configuration Note1		1		1			1	
Measurement b	andwidth	n _{PRB}	<i>n</i> _{<i>PRB</i>} 22—27		22—	-27	22-	27	
PDSCH Referent channel defined	nce measurement I in A.3.1.1.2		R.0 TDD	-	R.0 TDD	-	R.0 TDD	-	
PDSCH allocati	on	n _{PRB}	13—36	-	13—36	-	13—36	-	
	H/PHICH Reference hannel defined in		R.6	TDD	R.6 1	DD	R.6	TDD	
	defined in A.3.2.2.1		OP.1	OP.2	OP.1	OP.2	OP.1	OP.2	
	d A.3.2.2.2 (OP.2 TDD)		TDD	TDD	TDD	TDD	TDD	TDD	
PBCH RA	1 7.J.Z.Z.Z (UF.Z IDD)			עטי		עטי	טטי		
PBCH_RA			1						
PSS RA			1						
			1						
SSS_RA			1						
PCFICH_RB			1						
PHICH_RA									
PHICH_RB		dB	0	0	0	0	0	0	
PDCCH_RA									
PDCCH_RB									
PDSCH_RA									
PDSCH RB									
OCNG_RA ^{Note2}									
OCNG RB ^{Note2}									
OCNG_RB									
$N_{\scriptscriptstyle oc}$ Note3	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dBm/15 kHz	-80	-80	-104	-104	-119	-119	
\hat{E}_{s}/I_{ot}		dB	-1.75	-1.75	-4.7	-4.7	-4.5	-4.5	
RSRP ^{Note4}	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dBm/15 kHz	-81.75	-81.75	-108.70	_ 108.70	-123.50	-123.5	
	40								
RSRQ ^{Note4}	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dB	-14.76	-14.76	-16.76	-16.76	-16.61	-16.61	
Io ^{Note4}	Bands 33, 34, 35, 36, 37, 38, 39 and 40	dBm/9 MHz	-50	-50	-74.95	-74.95	-89.90	-89.90	
\hat{E}_{s}/N_{oc}		dB	-1.75	-1.75	-4.7	-4.7	-4.5	-4.5	
Propagation cor	ndition	-	AW	GN	AW	GN	Δ١٨	/GN	
Note 1: For spe	cial subframe and uplink-		ions see Tab	les 4.2-1 ar	nd 4.2-2 in 30	GPP TS 36	5.211.		
achieve	shall be used such that be ed for all OFDM symbols. ence from other cells and	-						-	
time an	nd shall be modelled as A	WGN of appropriat	e power for \hat{I}	N_{oc} to be f	ulfilled.				
Note 4: RSRQ,	RSRP and lo levels have	been derived from	other parame	eters for info	ormation pur	poses. The	ey are not se	ettable	

Table A 9.2.4.2-1: RSRQ TDD—TDD Inter frequency test parameters

parameters themselves. Note 5: RSRP and RSRQ minimum requirements are specified assuming independent interference and noise at each receiver antenna port.

A.9.2.4.3 Test Requirements

The RSRQ measurement accuracy shall fulfil the requirements in Section 9.1.6.

Annex B (informative): Change history:

Change H		TEC Dec	CD	Bay	Subject		Now
Date 2007-12	TSG# RP#38	TSG Doc. RP-071037	CR	Rev	Subject	Old	New
			0		Approved version in TSG RAN#38 Updates of TS36.133	-	8.0.0
2008-03	RP#39	RP-080123		-		8.0.0	8.1.0
2008-05	RP#40	RP-080325		-	Updates of TS36.133	8.1.0	8.2.0
2008-09	RP#41	RP-080644		1	E-UTRAN TDD intra frequency measurements when DRX is used	8.2.0	8.3.0
2008-09	RP#41	RP-080644		1	E-UTRAN TDD - UTRAN TDD measurements	8.2.0	8.3.0
2008-09	RP#41	RP-080644			RSRQ reporting Range	8.2.0	8.3.0
2008-09	RP#41	RP-080644	018	1	Interfrequency and UTRA interRAT DRX peformance requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080644	020	1	Additions to UE transmit timing requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080644			Received interference power measurement performance requirement	8.2.0	8.3.0
2008-09	RP#41	RP-080644	044		Cell Synchronization requirement for E-UTRA TDD	8.2.0	8.3.0
2008-09	RP#41	RP-080644			Power Headroom Requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080644			Event Triggering and Reporting Criteria Capability Requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080642			Correction of E-UTRAN to UTRAN TDD handover	8.2.0	8.3.0
2008-09	RP#41	RP-080642		1	Definition of Symbols	8.2.0	8.3.0
2008-09	RP#41	RP-080642		1	Idle mode requirements updates	8.2.0	8.3.0
2008-09	RP#41	RP-080642		1	General updates to 36.133	8.2.0	8.3.0
2008-09	RP#41	RP-080642		1	Handover requirements for E-UTRAN to cdma200 HRPD/1x	8.2.0	8.3.0
2008-09	RP#41	RP-080642			Inter-frequency and inter-RAT measurement requirements for multiple layer monitoring	8.2.0	8.3.0
2008-09	RP#41	RP-080642	025		Side conditions for UE measurement procedures and measurement performance requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080642	026		Correction to cell reselection Requirement from E-UTRAN to HRPD/cdma200 1x	8.2.0	8.3.0
2008-09	RP#41	RP-080642	027		IRAT Measurement requirements in TS 36.133	8.2.0	8.3.0
2008-09	RP#41	RP-080713		1	Corrections to Handover requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080713			Measurement reporting requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080713		2	RRC re-establishment requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080713		2	Correction to UE measurement requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080713			Correction for the definition of interruption time	8.2.0	8.3.0
2008-09	RP#41	RP-080713		1	Correction to idle mode higher priority search requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080713		, 	E-UTRAN TDD inter frequency measurement requirements	8.2.0	8.3.0
2008-09	RP#41	RP-080713			Updates of the Measurement procedures in RRC_Connected state from RAN 4#47bis and RAN 4#48	8.2.0	8.3.0
2008-12	RP#42	RP-080919	52		Introduction of 700MHz Bands 12, 14 and 17	8.3.0	8.4.0
2008-12	RP#42	RP-080928		1	CR to 36.133 on Radio Link Failure Monitoring	8.3.0	8.4.0
2008-12	RP#42	RP-080929			Correction to idle mode requirements	8.3.0	8.4.0
2008-12	RP#42	RP-080929			Definition of out of service area	8.3.0	8.4.0
2008-12	RP#42	RP-080929			Measurement requirements for UTRAN TDD cells in idle state	8.3.0	8.4.0
2008-12	RP#42	RP-080929		2	Correction of Inter-RAT UTRA cell reselection requirement	8.3.0	8.4.0
2008-12	RP#42	RP-080929		2	Correction of E_UTRAN cell measurement requirements in idle	8.3.0	8.4.0
0000 40	DD// 40		70		state	0.0.0	0.4.0
2008-12		RP-080930			Correction to HO Requirements	8.3.0	8.4.0
2008-12	RP#42	RP-080931			Random access requirements	8.3.0	8.4.0
2008-12 2008-12	RP#42 RP#42	RP-080932 RP-080932		4	Cell phase synchronization error for large cell Synchronization Requirements for E-UTRAN to 1xRTT and	8.3.0 8.3.0	8.4.0 8.4.0
2008-12	RP#42	RP-080933	49		HRPD Handovers E-UTRAN TDD-TDD intra/inter frequency measurement reporting requirements	8.3.0	8.4.0
2008-12	RP#42	RP-080933	50		E-UTRAN FDD – UTRAN FDD Measurement reporting	8.3.0	8.4.0
2008-12	RP#42	RP-080933	58		requirements Measurement requirement for E-UTRAN TDD to UTRAN TDD/FDD when DRX is used	8.3.0	8.4.0
2008-12	RP#42	RP-080933	60		Interfrequency and GSM measurement performance requirements in large DRX	8.3.0	8.4.0
2008-12	RP#42	RP-080933	62	<u> </u>	Correction of implementation margin for transmission gap.	8.3.0	8.4.0
2008-12	RP#42	RP-080933			Alignement of DRX cycle dependent requirements	8.3.0	8.4.0
2008-12	RP#42	RP-080933		1	Alignement of side conditions for mobility measurements	8.3.0	8.4.0
2008-12	RP#42	RP-080933		1	Measurement models in RRC_CONNECTED	8.3.0	8.4.0
2008-12	RP#42	RP-080933		1	Limitation of maximum number of layers for multiple monitoring	8.3.0	8.4.0
2008-12	RP#42	RP-080933		1	GSM Cell identification requirements for parallel monitoring	8.3.0	8.4.0
2008-12	RP#42	RP-080933		t'	UE transmit timing requirement	8.3.0	8.4.0
				1		0.0.0	0.1.0

2008-12	RP#42	RP-080934	77		Correction to RSRQ Report Mapping	8.3.0	8.4.0
2008-12	RP#42		86		Missing side conditions for RSRP and RSRQ	8.3.0	8.4.0
2008-12	RP#42	RP-080935		1	Phase I RRM Test Cases	8.3.0	8.4.0
2008-12	RP#42		80	1	Test Configuration for RRM Tests: Measurement Reference Channels and OCNG	8.3.0	8.4.0
2008-12	RP#42	RP-080936	-		Cdma200 1xRTT Measurement Requirements	8.3.0	8.4.0
2008-12	RP#42	RP-080937		1	E-UTRA to UTRA cell search requirements for SON	8.3.0	8.4.0
2009-03	RP#43	RP-090182		1	Correction of A3-offset parameter in RRM test case	8.4.0	8.5.0
2009-03	RP#43	RP-090182			Some Editorial Corrections	8.4.0	8.5.0
2009-03	RP#43	RP-090182			Clarifications for the DRX state	8.4.0	8.5.0
2009-03	RP#43	RP-090183			Modification on measurements of UTRAN TDD cells	8.4.0	8.5.0
2009-03	RP#43	RP-090183			Clarification of the correct behavior when Treselection is not a multiple of idle mode reselection evaluation period	8.4.0	8.5.0
2009-03	RP#43	RP-090183			Clarification of 'Out of Service Area' Concept and Definition	8.4.0	8.5.0
2009-03	RP#43	RP-090183	118		Radio link monitoring	8.4.0	8.5.0
2009-03	RP#43	RP-090183	142	1	Update of RRC_IDLE state mobility side conditions	8.4.0	8.5.0
2009-03	RP#43	RP-090183	150		UE measurement capability in Idle mode	8.4.0	8.5.0
2009-03	RP#43	RP-090184	133		Removal of RRC re-establishment procedure delay	8.4.0	8.5.0
2009-03	RP#43	RP-090184	138	1	Correction for the UE Re-establishment delay requirement	8.4.0	8.5.0
2009-03	RP#43	RP-090185	92	2	Cell phase synchronization accuracy	8.4.0	8.5.0
2009-03	RP#43	RP-090185	97		Radio link monitoring in DRX	8.4.0	8.5.0
2009-03	RP#43	RP-090185	120		UE Transmit Timing	8.4.0	8.5.0
2009-03	RP#43	RP-090185	137	1	Clarification of the reference point for the UE initial transmission timing control requirement	8.4.0	8.5.0
2009-03	RP#43	RP-090186	90		Correction of section 8.1.2.2.2.2 in TS36.133	8.4.0	8.5.0
2009-03	RP#43	RP-090186	93	1	cdma2000 1xRTT and HRPD Measurement Requirements	8.4.0	8.5.0
2009-03	RP#43	RP-090186	94		Event Triggered Periodic Reporting Requirements for IRAT Measurements	8.4.0	8.5.0
2009-03	RP#43	RP-090186	95		Measurement Reporting Requirements for E-UTRAN TDD – UTRAN TDD Measurements	8.4.0	8.5.0
2009-03	RP#43	RP-090186	99	1	Clarification of UE behavior when measurement gap is used	8.4.0	8.5.0
2009-03	RP#43	RP-090186	100		E-UTRA to UTRA cell search requirements in DRX for SON	8.4.0	8.5.0
2009-03	RP#43	RP-090186	110	1	Correction to GSM BSIC Requirements for Parallel Monitoring	8.4.0	8.5.0
2009-03	RP#43	RP-090186	117		Alignment of terminology for GAP	8.4.0	8.5.0
2009-03	RP#43	RP-090186	134		Inter frequency and Inter RAT cell search requirement when DRX is used	8.4.0	8.5.0
2009-03	RP#43	RP-090186	139		Correction of E-UTRAN FDD – UTRAN FDD measurements when no DRX	8.4.0	8.5.0
2009-03	RP#43	RP-090186	146		Addition of the definition of "when DRX is used"	8.4.0	8.5.0
2009-03	RP#43	RP-090186	147	1	Corrections to E-UTRAN inter-frequency side conditions	8.4.0	8.5.0
2009-03	RP#43	RP-090187	96		Correction to Intra-frequency RSRP Accuracy Requirements	8.4.0	8.5.0
2009-03	RP#43	RP-090187	136	1	Power Headroom reporting delay	8.4.0	8.5.0
2009-03	RP#43	RP-090370	103	1	E-UTRAN -GSM Handover Test Case	8.4.0	8.5.0
2009-03	RP#43	RP-090370	104	1	E-UTRAN FDD - UTRAN TDD Cell Search Test Cases in Fading	8.4.0	8.5.0
2009-03	RP#43	RP-090370		1	E-UTRA FDD to UTRA FDD Handover Test Case	8.4.0	8.5.0
2009-03	RP#43	RP-090370	107	1	Correction of E-UTRA FDD-FDD Intra-frequency cell reselection test case	8.4.0	8.5.0
2009-03	RP#43	RP-090370	108	1	Correction of E-UTRA FDD-FDD priority based Inter-frequency cell reselection test case	8.4.0	8.5.0
2009-03	RP#43	RP-090370	111	1	E-UTRAN TDD - UTRAN FDD Handover Test Case	8.4.0	8.5.0
2009-03	RP#43	RP-090370		1	E-UTRAN FDD - GSM Cell Search Test Case in AWGN	8.4.0	8.5.0
2009-03	RP#43	RP-090370		1	E-UTRAN - UTRAN FDD Cell Search Test Cases in Fading	8.4.0	8.5.0
2009-03	RP#43	RP-090370		1	E-UTRAN UE Timing Accuracy Related Test Cases	8.4.0	8.5.0
2009-03	RP#43	RP-090370	115	1	Inclusion of MBSFN Configurations for RRM Test Cases	8.4.0	8.5.0
2009-03	RP#43	RP-090370		1	E-UTRAN FDD HRPD Cell Reselection Test Case; HRPD of	8.4.0	8.5.0
					Low Priority		

2009-03	RP#43	RP-090370	122	1	Clarification on Annex A.9: Measurement performance requirements	8.4.0	8.5.0
2009-03	RP#43	RP-090370	125		E-UTRA TDD – UTRA TDD cell reselection: UTRA is of higher priority	8.4.0	8.5.0
2009-03	RP#43	RP-090370	126		E-UTRA TDD – UTRA TDD cell reselection: UTRA is of lower priority	8.4.0	8.5.0
2009-03	RP#43	RP-090370	127		E-UTRA FDD – UTRA TDD cell reselection	8.4.0	8.5.0
009-03	RP#43	RP-090370		1	E-UTRA TDD-UTRA TDD cell search (fading)	8.4.0	8.5.0
009-03	RP#43	RP-090370		1	E-UTRA TDD-UTRA TDD handover	8.4.0	8.5.0
009-03	RP#43	RP-090370		1	Addition of E-UTRA FDD to UTRA FDD reselection test cases	8.4.0	8.5.0
2009-03	RP#43	RP-090370		1	Correction and introduction of some test related parameters	8.4.0	8.5.0
009-03	RP#43	RP-090370			Description of Annex A in TS 36.133	8.4.0	8.5.0
2009-03	RP#43	RP-090370			Reselection from E-UTRA to GSM cell test case	8.4.0	8.5.0
2009-03	RP#43	RP-090370			Radio Link Monitoring Test Cases	8.4.0	8.5.0
2009-05	RP#44	RP-090546			E-UTRA FDD UTRA TDD HO delay test case	8.5.0	8.6.0
2009-05	RP#44						
		RP-090546			Correction of CQI reporting periodicity for TDD RLM test cases	8.5.0	8.6.0
2009-05	RP#44	RP-090546	157		Correction to inter RAT reselection requirements to exclude equal priority. (Technically Endorsed CR in R4-50bis - R4- 091092)	8.5.0	8.6.0
2009-05	RP#44	RP-090546	167		Clarification of the number of monitoring carriers in idle mode. (Technically Endorsed CR in R4-50bis - R4-091394)	8.5.0	8.6.0
2009-05	RP#44	RP-090546	180		Correction of Core spec references in A.9 Measurements performance test cases	8.5.0	8.6.0
2009-05	RP#44	RP-090546	984		UTRA FDD-E-UTRA FDD/ TDD handover test cases	8.5.0	8.6.0
2009-05	RP#44	RP-090546			SON ANR UTRAN FDD Cell Search Test Case	8.5.0	8.6.0
2009-05	RP#44	RP-090546			E-UTRAN FDD cdma2000 1x RTT Cell Reselection Test Case; Cdma2000 1X of Low Priority	8.5.0	8.6.0
2009-05	RP#44	RP-090546	188	1	E-UTRAN FDD cdma2000 HO Test cases	8.5.0	8.6.0
009-05	RP#44	RP-090546		1	E-UTRAN Random Access Test Cases	8.5.0	8.6.0
2009-05	RP#44	RP-090546		1	E-UTRAN RRC Re-establishment Test Cases	8.5.0	8.6.0
009-05	RP#44	RP-090546		-	E-UTRAN TDD - GSM Cell Search Test Cases in AWGN	8.5.0	8.6.0
009-05	RP#44	RP-090546		+	Correction to E-UTRAN FDD - GSM Handover Test case	8.5.0	8.6.0
009-05	RP#44 RP#44			1			
		RP-090546		1	Correction of cell reselection test cases	8.5.0	8.6.0
2009-05	RP#44	RP-090546		1	Test cases of E-UTRA TDD intra-frequency cell search in fading environment when DRX is used	8.5.0	8.6.0
2009-05	RP#44	RP-090546		1	E-UTRA TDD GSM handover test case	8.5.0	8.6.0
2009-05	RP#44	RP-090546	-	1	Test cases of E-UTRA FDD intra-frequency cell search in fading environment when DRX is used	8.5.0	8.6.0
2009-05	RP#44	RP-090546		1	Test case for E-UTRA FDD E-UTRA FDD inter frequency cell search when DRX is used in fading conditions	8.5.0	8.6.0
2009-05	RP#44	RP-090546		1	Correction to Radio Link Monitoring Tests	8.5.0	8.6.0
2009-05	RP#44	RP-090546			Correction to E-UTRAN FDD to HRPD Cell Reselection Test Case	8.5.0	8.6.0
2009-05	RP#44	RP-090546		1	Introduction of New Reference Channels and OCNG Patterns for 1.4MHz Bandwidth		8.6.0
2009-05	RP#44	RP-090546	200	2	Test case for E-UTRA TDD E-UTRA TDD inter frequency cell search when DRX is used in fading conditions	8.5.0	8.6.0
2009-05	RP#44	RP-090547	158		Alignment of inter frequency and inter RAT RRM reselection testcases with core requirements. (Technically Endorsed CR in R4-50bis - R4-091094)	8.5.0	8.6.0
2009-05	RP#44	RP-090547			Correction relating E-UTRAN TDD - UE Transmit Timing Accuracy Tests. (Technically Endorsed CR in R4-50bis - R4- 091198)	8.5.0	8.6.0
2009-05	RP#44	RP-090547	165		Modifications of T3 and the verification point for in-sync test cases. (Technically Endorsed CR in R4-50bis - R4-091386)	8.5.0	8.6.0
2009-05	RP#44	RP-090547	172		E-UTRAN UE Timing Accuracy Related Test Cases. (Technically Endorsed CR in R4-50bis - R4-091517)	8.5.0	8.6.0
2009-05	RP#44	RP-090547	171	1	Reference measurement Channels for Radio Link Monitoring Tests with 2 Antennas. (Technically Endorsed CR in R4-50bis - R4-091508)	8.5.0	8.6.0
2009-05	RP#44	RP-090548	170		Misalignment between TS36.133 and TS36.321. (Technically Endorsed CR in R4-50bis - R4-091457)	8.5.0	8.6.0
2009-05	RP#44	RP-090548			Correction to Inter-RAT HO Interruption Time Definition	8.5.0	8.6.0
009-05	RP#44	RP-090548			CR c2k RRC delay	8.5.0	8.6.0
009-05	RP#44	RP-090548	196		CR c2k interruption time	8.5.0	8.6.0
009-05	RP#44	RP-090548	162		Clarifications to UE UL timing requirements. (Technically Endorsed CR in R4-50bis - R4-091357)	8.5.0	8.6.0
2009-05	RP#44	RP-090548		1	Corrections of Random Access Requirements	8.5.0	8.6.0
2009-05	RP#44	RP-090548		+	Correction of TGRP in clause 8.1.2.1.1	8.5.0	8.6.0
2009-05	RP#44	RP-090548	104	-	Clarifications for the Relative RSRP and RSRQ measurement	8.5.0	8.6.0
-009-00	111 #44	111-030040	168		requirements. (Technically Endorsed CR in R4-50bis - R4- 091407)	0.0.0	0.0.0
2009-05	RP#44	RP-090549	161		E-UTRAN UTRAN HO Command Processing Delay. (Technically Endorsed CR in R4-50bis - R4-091291)	8.5.0	8.6.0

2009-05	RP#44	RP-090549	181	2	Removal of [] from ranking criteria in Idle mode cell reselection	8.5.0	8.6.0
2009-05	RP#44	RP-090550	156		Correction on the TDD-TDD inter frequency measurements. (Technically Endorsed CR in R4-50bis - R4-091071)	8.5.0	8.6.0
2009-05	RP#44	RP-090550	159		Correction to the Referenced Section Number for Tinter1. (Technically Endorsed CR in R4-50bis - R4-091153)	8.5.0	8.6.0
2009-05	RP#44	RP-090551	166		Further clarification of DRX/Non-DRX state. (Technically Endorsed CR in R4-50bis - R4-091389)	8.5.0	8.6.0
2009-05	RP#44	RP-090551	202		Correction on reference to 3GPP2 specification	8.5.0	8.6.0
2009-05	RP#44	RP-090551	169		OCNG simplification. (Technically Endorsed CR in R4-50bis - R4-091410)	8.5.0	8.6.0

History

Document history							
V8.2.0	November 2008	Publication					
V8.3.0	November 2008	Publication					
V8.4.0	January 2009	Publication					
V8.5.0	April 2009	Publication					
V8.6.0	July 2009	Publication					