# ETSI TS 136 104 V14.6.0 (2018-01)



LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 14.6.0 Release 14)



Reference RTS/TSGR-0436104ve60

Keywords

LTE

#### ETSI

#### 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

#### **Copyright Notification**

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media.

> © ETSI 2018. All rights reserved.

DECT<sup>™</sup>, PLUGTESTS<sup>™</sup>, UMTS<sup>™</sup> and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**<sup>™</sup> and LTE<sup>™</sup> are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M** logo is protected for the benefit of its Members.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

# Intellectual Property Rights

#### **Essential patents**

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

#### Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

# Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

## Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

# Contents

| Intelle          | Intellectual Property Rights                                                  |    |
|------------------|-------------------------------------------------------------------------------|----|
| Forew            | vord                                                                          | 2  |
| Moda             | l verbs terminology                                                           | 2  |
| Forew            | vord                                                                          | 8  |
| 1                | Scope                                                                         | 9  |
| 2                | References                                                                    | 9  |
| 3                | Definitions, symbols and abbreviations                                        | 10 |
| 3.1              | Definitions                                                                   | 10 |
| 3.2              | Symbols                                                                       | 13 |
| 3.3              | Abbreviations                                                                 | 14 |
| 4                | Conorol                                                                       | 16 |
| 4                | General                                                                       |    |
| 4.1              | Relationship between minimum requirements and test requirements               |    |
| 4.2              | Base station classes                                                          |    |
| 4.3              | Regional requirements                                                         |    |
| 4.4              | Applicability of requirements                                                 |    |
| 4.5              | Requirements for BS capable of multi-band operation                           | 18 |
| 5                | Operating bands and channel arrangement.                                      | 19 |
| 5.1              | General                                                                       |    |
| 5.2              | Void                                                                          |    |
| 5.3              | Void                                                                          |    |
| 5.5<br>5.4       | Void                                                                          |    |
|                  |                                                                               |    |
| 5.5              | Operating bands                                                               |    |
| 5.6              | Channel bandwidth                                                             |    |
| 5.7              | Channel arrangement                                                           |    |
| 5.7.1            | Channel spacing                                                               |    |
| 5.7.1A           |                                                                               |    |
| 5.7.2            | Channel raster                                                                |    |
| 5.7.3            | Carrier frequency and EARFCN                                                  |    |
| 5.7.4            | EARFCN sets for uplink transmissions on multiple Scells configured in Band 46 |    |
| 5.8              | Requirements for contiguous and non-contiguous spectrum                       |    |
| 6                | Transmitter characteristics                                                   |    |
| 6.1              | General                                                                       |    |
| 6.2              | Base station output power                                                     | 51 |
| 6.2.1            | Minimum requirement                                                           | 52 |
| 6.2.2            | Additional requirement (regional)                                             | 52 |
| 6.2.3            | Home BS output power for adjacent UTRA channel protection                     | 53 |
| 6.2.4            | Home BS output power for adjacent E-UTRA channel protection                   | 53 |
| 6.2.5            | Home BS Output Power for co-channel E-UTRA protection                         |    |
| 6.3              | Output power dynamics                                                         |    |
| 6.3.1            | RE Power control dynamic range                                                |    |
| 6.3.1.1          |                                                                               |    |
| 6.3.2            | Total power dynamic range                                                     |    |
| 6.3.2.1          |                                                                               |    |
| 6.3.3            | NB-IoT RB power dynamic range for in-band or guard band operation             |    |
| 6.3.3.1          |                                                                               |    |
| 6.4              | Transmit ON/OFF power                                                         |    |
| 6.4.1            | Transmitter OFF power                                                         |    |
| 6.4.1.1          |                                                                               |    |
| 6.4.1.1<br>6.4.2 |                                                                               |    |
| 6.4.2.1          | Transmitter transient period                                                  |    |
|                  | 1                                                                             |    |
| 6.5              | Transmitted signal quality                                                    |    |
| 6.5.1            | Frequency error                                                               |    |

| 6.5.1.1            | Minimum requirement                                         | 58   |
|--------------------|-------------------------------------------------------------|------|
| 6.5.2              | Error Vector Magnitude                                      |      |
| 6.5.3              | Time alignment error                                        |      |
| 6.5.3.             |                                                             |      |
| 6.5.4              | DL RS power                                                 |      |
| 6.5.4.             | 1                                                           |      |
| 6.6                | Unwanted emissions                                          |      |
| 6.6.1              | Occupied bandwidth                                          |      |
| 6.6.1.1            | 1                                                           |      |
| 6.6.2              | Adjacent Channel Leakage power Ratio (ACLR)                 |      |
| 6.6.2.1            |                                                             |      |
| 6.6.2.2            | •                                                           |      |
| 6.6.3              | Operating band unwanted emissions                           |      |
| 6.6.3.             |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.2            |                                                             |      |
| 6.6.3.3            |                                                             |      |
| 6.6.4              | Transmitter spurious emissions                              |      |
| 6.6.4.1            |                                                             |      |
| 6.6.4.             |                                                             |      |
|                    |                                                             |      |
| 6.6.4.1<br>6.6.4.2 |                                                             |      |
|                    |                                                             |      |
| 6.6.4.2            | 1                                                           |      |
| 6.6.4.3            | 1 1                                                         |      |
| 6.6.4.3            |                                                             |      |
| 6.6.4.4            |                                                             |      |
| 6.6.4.4            | 1                                                           |      |
| 6.7                | Transmitter intermodulation                                 |      |
| 6.7.1              | Minimum requirement                                         |      |
| 6.7.2              | Additional requirement for Band 41                          | .111 |
| 7                  | Receiver characteristics                                    | .111 |
| 7.1                | General                                                     |      |
| 7.2                | Reference sensitivity level                                 |      |
| 7.2.1              | Minimum requirement                                         |      |
| 7.3                | Dynamic range                                               |      |
| 7.3.1              | Minimum requirement                                         |      |
| 7.4                | In-channel selectivity                                      |      |
| 7.4.1              | Minimum requirement                                         |      |
| 7.5                | Adjacent Channel Selectivity (ACS) and narrow-band blocking |      |
| 7.5.1              | Minimum requirement                                         |      |
| 7.6                | Blocking                                                    |      |
| 7.6.1              | General blocking requirement                                |      |
| 7.6.1.             |                                                             |      |
| 7.6.2              | Co-location with other base stations                        |      |
| 7.6.2.1            |                                                             |      |
| 7.6.3              | Additional requirement (regional)                           |      |
| 7.0.5              | Receiver spurious emissions                                 |      |
| 7.7.1              | Minimum requirement                                         |      |
| 7.7.1              | Receiver intermodulation                                    |      |
| 7.8.1              | Minimum requirement                                         |      |
| 1.0.1              |                                                             | .140 |
| 8                  | Performance requirement                                     | .154 |
| 8.1                | General                                                     |      |
| 8.2                | Performance requirements for PUSCH                          |      |
| 8.2.1              | Requirements in multipath fading propagation conditions     |      |

| 8.2.1.1          | Minimum requirements                                                                    | 155 |
|------------------|-----------------------------------------------------------------------------------------|-----|
| 8.2.2            | Requirements for UL timing adjustment                                                   |     |
| 8.2.2.1          | Minimum requirements                                                                    |     |
| 8.2.3            | Requirements for high speed train                                                       |     |
| 8.2.3.1          | Minimum requirements                                                                    |     |
| 8.2.3.1          | Requirements for HARQ-ACK multiplexed on PUSCH                                          |     |
| 8.2.4<br>8.2.4.1 |                                                                                         |     |
| 0.111.111        | Minimum requirement                                                                     |     |
| 8.2.5            | Requirements for PUSCH with TTI bundling and enhanced HARQ pattern                      | 1// |
| 8.2.5.1          | Minimum requirements                                                                    | 1/8 |
| 8.2.6            | Enhanced performance requirement type A in multipath fading propagation conditions with |     |
|                  | synchronous interference                                                                |     |
| 8.2.6.1          | Minimum requirements                                                                    | 179 |
| 8.2.6A           | Enhanced performance requirement type A in multipath fading propagation conditions with |     |
|                  | asynchronous interference                                                               |     |
| 8.2.6A.1         | Minimum requirements                                                                    |     |
| 8.2.7            | Requirements for PUSCH supporting coverage enhancement                                  | 184 |
| 8.2.8            | Requirements for PUSCH of Frame structure type 3                                        | 185 |
| 8.3              | Performance requirements for PUCCH                                                      | 186 |
| 8.3.1            | DTX to ACK performance                                                                  | 186 |
| 8.3.1.1          | Minimum requirement                                                                     | 186 |
| 8.3.2            | ACK missed detection requirements for single user PUCCH format 1a                       |     |
| 8.3.2.1          | Minimum requirements                                                                    |     |
| 8.3.3            | CQI performance requirements for PUCCH format 2                                         |     |
| 8.3.3.1          | Minimum requirements                                                                    |     |
| 8.3.4            | ACK missed detection requirements for multi user PUCCH format 1a                        |     |
| 8.3.4.1          | Minimum requirement                                                                     |     |
| 8.3.5            | ACK missed detection requirements for PUCCH format 1b with Channel Selection            |     |
| 8.3.5.1          | Minimum requirements                                                                    |     |
| 8.3.6            | ACK missed detection requirements for PUCCH format 3                                    |     |
| 8.3.6.1          | Minimum requirements                                                                    |     |
| 8.3.7            | NACK to ACK requirements for PUCCH format 3                                             |     |
|                  |                                                                                         |     |
| 8.3.7.1          | Minimum requirement                                                                     |     |
| 8.3.8            | CQI performance requirements for PUCCH format 2 with DTX detection                      |     |
| 8.3.8.1          | Minimum requirements                                                                    |     |
| 8.3.9            | PUCCH performance requirements for coverage enhancement                                 |     |
| 8.3.9.1          | DTX to ACK performance                                                                  |     |
| 8.3.9.1.1        | Minimum requirement                                                                     |     |
| 8.3.9.2          | ACK missed detection requirements for single user PUCCH format 1a                       |     |
| 8.3.9.2.1        | Minimum requirements                                                                    |     |
| 8.3.9.3          | CQI performance requirements for PUCCH format 2                                         |     |
| 8.3.9.3.1        | Minimum requirements                                                                    |     |
| 8.3.10           | ACK missed detection requirements for PUCCH format 4                                    |     |
| 8.3.10.1         | Minimum requirements                                                                    |     |
| 8.3.11           | ACK missed detection requirements for PUCCH format 5                                    |     |
| 8.3.11.1         | Minimum requirements                                                                    |     |
| 8.4              | Performance requirements for PRACH                                                      | 194 |
| 8.4.1            | PRACH False alarm probability                                                           | 194 |
| 8.4.1.1          | Minimum requirement                                                                     | 194 |
| 8.4.2            | PRACH detection requirements                                                            | 194 |
| 8.4.2.1          | Minimum requirements                                                                    | 194 |
| 8.5              | Performance requirements for Narrowband IoT                                             |     |
| 8.5.1            | Requirements for NPUSCH format 1                                                        |     |
| 8.5.1.1          | Requirements                                                                            |     |
| 8.5.1.1.1        | Minimum requirements                                                                    |     |
| 8.5.2            | Performance requirements for NPUSCH format 2                                            |     |
| 8.5.2.1          | DTX to ACK performance                                                                  |     |
| 8.5.2.1.1        | Minimum requirement                                                                     |     |
| 8.5.2.2          | ACK missed detection requirements                                                       |     |
| 8.5.2.2.1        | Minimum requirements                                                                    |     |
| 8.5.3            | Performance requirements for NPRACH                                                     |     |
| 8.5.3.1          | NPRACH False alarm probability                                                          |     |
| 8.5.3.1.1        | Minimum requirement                                                                     |     |
| 0.0.0.1.1        |                                                                                         |     |

| 8.5.3.2<br>8.5.3.2         | 1                                                                                                                                  |            |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|
| 9<br>9.1<br>9.1.1<br>9.1.2 | Channel access procedures<br>Downlink channel access procedure<br>Channel access parameters<br>Minimum requirement                 | 200<br>200 |
|                            | x A (normative): Reference measurement channels                                                                                    |            |
| A.1                        | Fixed Reference Channels for reference sensitivity and in-channel selectivity (QPSK, R=1/3)                                        |            |
| A.2                        | Fixed Reference Channels for dynamic range (16QAM, R=2/3)                                                                          |            |
| A.3                        | Fixed Reference Channels for performance requirements (QPSK 1/3)                                                                   |            |
| A.4                        | Fixed Reference Channels for performance requirements (16QAM 3/4)                                                                  |            |
| A.5                        | Fixed Reference Channels for performance requirements (64QAM 5/6)                                                                  | 204        |
| A.6                        | PRACH Test preambles                                                                                                               | 204        |
| A.7                        | Fixed Reference Channels for UL timing adjustment (Scenario 1)                                                                     | 205        |
| A.8                        | Fixed Reference Channels for UL timing adjustment (Scenario 2)                                                                     | 206        |
| A.9                        | Multi user PUCCH test                                                                                                              | 206        |
| A.10                       | PUCCH transmission on two antenna ports test                                                                                       | 206        |
| A.11                       | Fixed Reference Channel for PUSCH with TTI bundling and enhanced HARQ pattern                                                      | 207        |
| A.12                       | Fixed Reference Channels for performance requirements (QPSK 0.36)                                                                  | 207        |
| A.13                       | Fixed Reference Channels for performance requirements (16QAM 1/2)                                                                  | 208        |
| A.14                       | Fixed Reference Channels for NB-IOT reference sensitivity ( $\pi/2$ BPSK, R=1/3)                                                   | 208        |
| A.15                       | Fixed Reference Channels for NB-IoT dynamic range ( $\pi/4$ QPSK, R=2/3)                                                           | 208        |
| A.16<br>A.16.1             | Fixed Reference Channels for NB-IoT NPUSCH format 1<br>One PRB                                                                     |            |
| A.17                       | Fixed Reference Channels for performance requirements (256QAM 5/6)                                                                 | 210        |
| A.18                       | Fixed Reference Channels for PUSCH transmission in UpPTS (16QAM 0.65)                                                              | 210        |
| A.19                       | Fixed Reference Channels for PUSCH transmission in UpPTS (256QAM 0.69)                                                             | 211        |
| A.20                       | Fixed Reference Channels for PUSCH of Frame structure type 3                                                                       | 211        |
| Anne                       | <b>x B (normative):</b> Propagation conditions                                                                                     |            |
| <b>B</b> .1                | Static propagation condition                                                                                                       |            |
| B.2                        | Multi-path fading propagation conditions                                                                                           |            |
| B.3                        | High speed train condition                                                                                                         |            |
| B.4                        | Moving propagation conditions                                                                                                      |            |
| B.5<br>B.5.1<br>B.5.2      | Multi-Antenna channel models<br>Definition of MIMO Correlation Matrices<br>MIMO Correlation Matrices at High, Medium and Low Level | 216        |
| B.5A                       | Multi-Antenna channel models using cross polarized antennas                                                                        | 219        |
| B.5A.<br>B.5A.             | 1 Definition of MIMO Correlation Matrices using cross polarized antennas                                                           | 220        |
| B.5A.                      | 2.1 Spatial Correlation Matrices at UE side                                                                                        | 220        |
| B.5A.<br>B.5A.             | 1                                                                                                                                  |            |

| B.6   | Interference model fo                                    | r enhanced performance requirements type A                                          | 221 |
|-------|----------------------------------------------------------|-------------------------------------------------------------------------------------|-----|
| B.6.1 |                                                          |                                                                                     |     |
| B.6.2 |                                                          |                                                                                     |     |
| B.6.3 | Interference model f                                     | or asynchronous scenario                                                            | 222 |
| Anne  | x C (normative):                                         | Characteristics of the interfering signals                                          | 223 |
| Anne  | x D (normative):                                         | Environmental requirements for the BS equipment                                     | 224 |
| Anne  | x E (normative):                                         | Error Vector Magnitude                                                              | 225 |
| E.1   | Reference point for m                                    | easurement                                                                          | 225 |
| E.2   | Basic unit of measure                                    | ment                                                                                | 225 |
| E.3   | Modified signal under                                    | r test                                                                              | 226 |
| E.4   | Estimation of frequen                                    | cy offset                                                                           | 226 |
| E.5   |                                                          | fset                                                                                |     |
| E.5.1 | Window length                                            |                                                                                     | 227 |
| E.6   | Estimation of TX cha                                     | in amplitude and frequency response parameters                                      | 228 |
| E.7   | Averaged EVM                                             |                                                                                     | 229 |
| Anne  | x F (Informative):                                       | Unwanted emission requirements for multi-carrier BS                                 | 231 |
| F.1   | General                                                  |                                                                                     | 231 |
| F.2   | Multi-carrier BS of different E-UTRA channel bandwidths2 |                                                                                     | 231 |
| F.3   | Multi-carrier BS of E-UTRA and UTRA                      |                                                                                     |     |
| Anne  | x G (Informative):                                       | Regional requirement for protection of DTT                                          | 232 |
| G.1   | Regional requirement                                     | for protection of DTT                                                               | 232 |
| G.2   | Regional requirement                                     | for Public Safety LTE BS in Korea                                                   | 232 |
| Anne  | x H (Informative):                                       | Calculation of EIRP based on manufacturer declarations and site specific conditions | 235 |
| H.1   | Calculation of EIRP b                                    | based on manufacturer declarations and site specific conditions                     | 235 |
| Anne  | x I (Informative):                                       | Change history                                                                      | 236 |
| Histo | ry                                                       |                                                                                     | 248 |

# Foreword

This Technical Specification has been produced by the 3<sup>rd</sup> Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
  - 1 presented to TSG for information;
  - 2 presented to TSG for approval;
  - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

## 1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements of E-UTRA, E-UTRA with NB-IoT or NB-IoT Base Station (BS).

## 2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329: "Unwanted emissions in the spurious domain".
- [3] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 36.141: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing".
- [5] ITU-R recommendation SM.328: "Spectra and bandwidth of emissions".
- [6] 3GPP TS 25.104: "Base Station (BS) radio transmission and reception (FDD)".
- [7] 3GPP TS 25.105: "Base Station (BS) radio transmission and reception (TDD)".
- [8] 3GPP TR 25.942: "RF system scenarios".
- [9] 3GPP TR 36.942: "E-UTRA RF system scenarios".
- [10] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation".
- [11] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".
- [12] ECC/DEC/(09)03 "Harmonised conditions for MFCN in the band 790-862 MHz", 30 Oct. 2009
- [13] IEC 60721-3-3 (2002): "Classification of environmental conditions Part 3: Classification of groups of environmental parameters and their severities - Section 3: Stationary use at weather protected locations".
- [14] IEC 60721-3-4 (1995): "Classification of environmental conditions Part 3: Classification of groups of environmental parameters and their severities - Section 4: Stationary use at non-weather protected locations".
- [15] 3GPP TS 37.104: "E-UTRA, UTRA and GSM/EDGE; Multi-Standard Radio (MSR) Base Station (BS) radio transmission and reception ".
- [16] CEPT ECC Decision (13)03, "The harmonised use of the frequency band 1452-1492 MHz for Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)".
- [17] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation".

[18]

3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".

## 3 Definitions, symbols and abbreviations

#### 3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: RF bandwidth in which a base station transmits and/or receives multiple contiguously aggregated carriers.

NOTE: The Aggregated Channel Bandwidth is measured in MHz.

Base station receive period: time during which the base station is receiving data subframes or UpPTS.

**Base Station RF Bandwidth:** RF bandwidth in which a base station transmits and/or receives single or multiple carrier(s) within a supported operating band.

NOTE: In single carrier operation, the Base Station RF Bandwidth is equal to the channel bandwidth.

Base Station RF Bandwidth edge: frequency of one of the edges of the Base Station RF Bandwidth.

Carrier: modulated waveform conveying the E-UTRA or UTRA physical channels

**Carrier aggregation:** aggregation of two or more component carriers in order to support wider transmission bandwidths

**Carrier aggregation band:** a set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

NOTE: Carrier aggregation band(s) for an E-UTRA BS is declared by the manufacturer according to the designations in Tables 5.5-2 to 5.5-4.

**Channel bandwidth:** RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell.

NOTE: The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Channel edge: lowest or highest frequency of the E-UTRA carrier, separated by the channel bandwidth.

**Contiguous carriers:** set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous spectrum: spectrum consisting of a contiguous block of spectrum with no sub-block gap(s).

DL RS power: resource element power of Downlink Reference Symbol.

DL NRS power: resource element power of Downlink Narrowband Reference Signal.

Downlink operating band: part of the operating band designated for downlink.

**Enhanced performance requirements type A**: This defines performance requirements assuming baseline receiver as demodulation reference signal based linear minimum mean square error interference rejection combining.

Highest carrier: carrier with the highest carrier centre frequency transmitted/received in a specified operating band.

**Inter RF Bandwidth gap:** frequency gap between two consecutive Base Station RF Bandwidths that are placed within two supported operating bands.

Inter-band carrier aggregation: carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Inter-band gap: The frequency gap between two supported consecutive operating bands.

Intra-band contiguous carrier aggregation: contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: non-contiguous carriers aggregated in the same operating band.

Lower sub-block edge: frequency at the lower edge of one sub-block.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

Lowest carrier: carrier with the lowest carrier centre frequency transmitted/received in a specified operating band.

**Maximum output power:** mean power level per carrier of the base station measured at the antenna connector in a specified reference condition.

Maximum throughput: maximum achievable throughput for a reference measurement channel.

Mean power: power measured in the channel bandwidth of the carrier.

NOTE: The period of measurement shall be at least one subframe (1ms), unless otherwise stated.

Measurement bandwidth: RF bandwidth in which an emission level is specified.

**Multi-band base station:** base station characterized by the ability of its transmitter and/or receiver to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band (which is not a sub-band or superseding-band of another supported operating band) than the other carrier(s).

**Multi-band transmitter:** transmitter characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band (which is not a sub-band or superseding-band of another supported operating band) than the other carrier(s).

**Multi-band receiver:** receiver characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band (which is not a sub-band or superseding-band of another supported operating band) than the other carrier(s).

**Multi-carrier transmission configuration:** set of one or more contiguous or non-contiguous carriers that a BS is able to transmit simultaneously according to the manufacturer's specification.

**NB-IoT In-band operation:** NB-IoT is operating in-band when it utilizes the resource block(s) within a normal E-UTRA carrier

**NB-IoT guard band operation:** NB-IoT is operating in guard band when it utilizes the unused resource block(s) within a E-UTRA carrier's guard-band.

**NB-IoT standalone operation:** NB-IoT is operating standalone when it utilizes its own spectrum, for example the spectrum currently being used by GERAN systems as a replacement of one or more GSM carriers, as well as scattered spectrum for potential IoT deployment.

Non-contiguous spectrum: spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

**Occupied bandwidth:** width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage  $\beta/2$  of the total mean power of a given emission.

**Operating band:** frequency range in which E-UTRA operates (paired or unpaired), that is defined with a specific set of technical requirements.

NOTE: The operating band(s) for an E-UTRA BS is declared by the manufacturer according to the designations in table 5.5-1.

**Output power:** mean power of one carrier of the base station, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

**Radio Bandwidth:** frequency difference between the upper edge of the highest used carrier and the lower edge of the lowest used carrier.

**Rated output power:** mean power level per carrier that the manufacturer has declared to be available at the antenna connector during the transmitter ON period.

**RE power control dynamic range:** difference between the power of a RE and the average RE power for a BS at maximum output power for a specified reference condition.

**RRC filtered mean power:** mean power of an UTRA carrier as measured through a root raised cosine filter with rolloff factor  $\alpha$  and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated UTRA signal is 0.246 dB lower than the mean power of the same signal.

**Sub-band**: A sub-band of an operating band contains a part of the uplink and downlink frequency range of the operating band.

Sub-block: one contiguous allocated block of spectrum for transmission and reception by the same base station.

NOTE: There may be multiple instances of sub-blocks within aBase Station RF Bandwidth.

Sub-block bandwidth: bandwidth of one sub-block.

**Sub-block gap:** frequency gap between two consecutive sub-blocks within a Bae Station RF Bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

**Superseding-band**: A superseding-band of an operating band includes the whole of the uplink and downlink frequency range of the operating band.

**Synchronized operation:** operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

**Throughput:** number of payload bits successfully received per second for a reference measurement channel in a specified reference condition.

**Total power dynamic range:** difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

**Transmission bandwidth:** RF Bandwidth of an instantaneous transmission from a UE or BS, measured in resource block units.

**Transmission bandwidth configuration:** highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in resource block units.

**Transmitter ON period:** time period during which the BS transmitter is transmitting data and/or reference symbols, i.e. data subframes or DwPTS.

Transmitter OFF period: time period during which the BS transmitter is not allowed to transmit.

**Transmitter transient period:** time period during which the transmitter is changing from the OFF period to the ON period or vice versa.

**Unsynchronized operation:** operation of TDD in two different systems, where the conditions for synchronized operation are not met.

Uplink operating band: part of the operating band designated for uplink.

Upper sub-block edge: frequency at the upper edge of one sub-block.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

# 3.2 Symbols

For the purposes of the present document, the following symbols apply:

| a                                 | Roll-off factor                                                                                                                   |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| α<br>β                            | Percentage of the mean transmitted power emitted outside the occupied bandwidth on the assigned                                   |
| þ                                 | channel                                                                                                                           |
| BW                                | Bandwidth                                                                                                                         |
| $BW_{Channel}$                    | Channel bandwidth                                                                                                                 |
| $BW_{Channel_CA}$                 | Aggregated Channel Bandwidth, expressed in MHz. $BW_{Channel_CA} = F_{edge_high} - F_{edge_low}$ .                                |
| BWChannel,block                   | Sub-block bandwidth, expressed in MHz. BW <sub>Channel,block</sub> = F <sub>edge,block,high</sub> - F <sub>edge,block,low</sub> . |
| BW <sub>Config</sub>              | Transmission bandwidth configuration, expressed in MHz, where $BW_{Config} = N_{RB} \times 180$ kHz in the                        |
| D W Conlig                        | uplink and BW <sub>Config</sub> = 15 kHz + $N_{\text{RB}}$ x 180 kHz in the downlink.                                             |
| CA_X                              | Intra-band contiguous CA of component carriers in one sub-block within band X where X is the                                      |
| en_n                              | applicable E-UTRA operating band                                                                                                  |
| CA_X-X                            | Intra-band non-contiguous CA of component carriers in two sub-blocks within band X where X is                                     |
|                                   | the applicable E-UTRA operating band                                                                                              |
| CA_X-Y                            | Inter-band CA of component carrier(s) in one sub-block within band X and component carrier(s)                                     |
|                                   | in one sub-block within Band Y where X and Y are the applicable E-UTRA operating bands                                            |
| CA_X-X-Y                          | CA of component carriers in two sub-blocks within Band X and component carrier(s) in one sub-                                     |
| 0.1_11 11 1                       | block within Band Y where X and Y are the applicable E-UTRA operating bands                                                       |
| f                                 | Frequency                                                                                                                         |
| $\Delta \mathbf{f}$               | Separation between the channel edge frequency and the nominal -3dB point of the measuring filter                                  |
|                                   | closest to the carrier frequency                                                                                                  |
| $\Delta f_{max}$                  | The largest value of $\Delta f$ used for defining the requirement                                                                 |
| F <sub>C</sub>                    | Carrier centre frequency                                                                                                          |
| F <sub>C,block, high</sub>        | Centre frequency of the highest transmitted/received carrier in a sub-block.                                                      |
| F <sub>C,block, low</sub>         | Centre frequency of the lowest transmitted/received carrier in a sub-block.                                                       |
| F <sub>C_low</sub>                | The carrier centre frequency of the lowest carrier, expressed in MHz.                                                             |
| $F_{C_{high}}$                    | The carrier centre frequency of the highest carrier, expressed in MHz.                                                            |
| $F_{edge_low}$                    | The lower edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge_low} = F_{C_low} - F_{offset}$ .                       |
| $F_{edge_high}$                   | The upper edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge_high} = F_{C_high} + F_{offset}$ .                     |
| Fedge, block, low                 | The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset}$ .                                             |
| Fedge, block, high                | The upper sub-block edge, where $F_{edge,block,high} = F_{C,block,high} + F_{offset}$ .                                           |
| Foffset                           | Frequency offset from F <sub>C_high</sub> to the upper Base Station RF Bandwidth edge, or from F <sub>C,block, high</sub> to      |
|                                   | the upper sub-block edge, or F <sub>C_low</sub> to the lower Base Station RF Bandwidth edge, or from F <sub>C,block</sub> ,       |
|                                   | low to the lower sub-block edge.                                                                                                  |
| F <sub>filter</sub>               | Filter centre frequency                                                                                                           |
| f_offset                          | Separation between the channel edge frequency and the centre of the measuring filter                                              |
| f_offset <sub>max</sub>           | The maximum value of f_offset used for defining the requirement                                                                   |
| $F_{DL_{low}}$                    | The lowest frequency of the downlink operating band                                                                               |
| $F_{DL_{high}}$                   | The highest frequency of the downlink operating band                                                                              |
| $F_{UL_{low}}$                    | The lowest frequency of the uplink operating band                                                                                 |
| $F_{UL_{high}}$                   | The highest frequency of the uplink operating band                                                                                |
| G <sub>ant</sub>                  | Net antenna gain<br>Offset of NB IoT Deumlink shorned number to Deumlink EABECN                                                   |
| ${ m M}_{ m DL}$ ${ m M}_{ m UL}$ | Offset of NB-IoT Downlink channel number to Downlink EARFCN                                                                       |
| $N_{ant}$                         | Offset of NB-IoT Uplink channel number to Uplink EARFCN<br>Number of transmitter antennas                                         |
| N <sub>ant</sub>                  | Downlink EARFCN                                                                                                                   |
| N <sub>Offs-DL</sub>              | Offset used for calculating downlink EARFCN                                                                                       |
| Noffs-UL                          | Offset used for calculating uplink EARFCN                                                                                         |
| $N_{CS}$                          | Number of Cyclic shifts for preamble generation in PRACH                                                                          |
| N <sub>RB</sub>                   | Transmission bandwidth configuration, expressed in units of resource blocks                                                       |
| N <sub>UL</sub>                   | Uplink EARFCN                                                                                                                     |
| P <sub>10MHz</sub>                | Maximum output Power within 10 MHz                                                                                                |
| $P_{EIRP,N}$                      | EIRP level for channel N                                                                                                          |
| $P_{EIRP,N,MAX}$                  | Maximum EIRP level for channel N                                                                                                  |
| $P_{EM,N}$                        | Declared emission level for channel N                                                                                             |
| P <sub>EM,B32,ind</sub>           | Declared emission level in Band 32, ind=a, b, c, d, e                                                                             |
| P <sub>max,c</sub>                | Maximum carrier output power                                                                                                      |
| Pout                              | Output power (per carrier)                                                                                                        |
|                                   |                                                                                                                                   |

| Rated output power (per carrier)             |
|----------------------------------------------|
| Reference Sensitivity power level            |
| Timing advance command, as defined in [11]   |
| Basic time unit, as defined in [10]          |
| Sub-block gap or Inter RF Bandwidth gap size |
|                                              |

# 3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

| ACLR      | Adjacent Channel Leakage Ratio                            |
|-----------|-----------------------------------------------------------|
| ACK       | Acknowledgement (in HARQ protocols)                       |
| ACS       | Adjacent Channel Selectivity                              |
| AWGN      | Additive White Gaussian Noise                             |
| BS        | Base Station                                              |
| CA        | Carrier Aggregation                                       |
| CACLR     | Cumulative ACLR                                           |
| СР        | Cyclic prefix                                             |
| CRC       | Cyclic Redundancy Check                                   |
| CW        | Continuous Wave                                           |
| DC        | Direct Current                                            |
| DFT       | Discrete Fourier Transformation                           |
| DIP       | Dominant Interferer Proportion                            |
| DTT       | Digital Terrestrial Television                            |
| DTX       | Discontinuous Transmission                                |
| DwPTS     | Downlink part of the special subframe (for TDD operation) |
| EARFCN    | E-UTRA Absolute Radio Frequency Channel Number            |
| EIRP      | Effective Isotropic Radiated Power                        |
| EPA       | Extended Pedestrian A model                               |
| ETU       | Extended Typical Urban model                              |
| E-UTRA    | Evolved UTRA                                              |
| EVA       | Extended Vehicular A model                                |
| EVA       | Error Vector Magnitude                                    |
| FDD       | Frequency Division Duplex                                 |
| FFT       | Fast Fourier Transformation                               |
| FRC       | Fixed Reference Channel                                   |
| GP        | Guard Period (for TDD operation)                          |
| GSM       | Global System for Mobile communications                   |
| HARQ      | Hybrid Automatic Repeat Request                           |
| ICS       | In-Channel Selectivity                                    |
| ITU-R     | Radiocommunication Sector of the ITU                      |
| LA        | Local Area                                                |
| LA<br>LNA |                                                           |
|           | Low Noise Amplifier                                       |
| MCS       | Modulation and Coding Scheme                              |
| MR        | Medium Range                                              |
| NB-IoT    | Narrowband – Internet of Things                           |
| NPDSCH    | Narrowband Physical Downlink Shared Channel               |
| NPUSCH    | Narrowband Physical Uplink Shared Channel                 |
| NRS       | Narrowband Reference Signal                               |
| OFDM      | Orthogonal Frequency Division Multiplex                   |
| OOB       | Out-of-band                                               |
| PA        | Power Amplifier                                           |
| PBCH      | Physical Broadcast Channel                                |
| PDCCH     | Physical Downlink Control Channel                         |
| PDSCH     | Physical Downlink Shared Channel                          |
| PUSCH     | Physical Uplink Shared Channel                            |
| PUCCH     | Physical Uplink Control Channel                           |
| PRACH     | Physical Random Access Channel                            |

| QAM  | Quadrature Amplitude Modulation        |
|------|----------------------------------------|
| QPSK | Quadrature Phase-Shift Keying          |
| RAT  | Radio Access Technology                |
| RB   | Resource Block                         |
| RE   | Resource Element                       |
| RF   | Radio Frequency                        |
| RMS  | Root Mean Square (value)               |
| RS   | Reference Symbol                       |
| RX   | Receiver                               |
| RRC  | Root Raised Cosine                     |
| SINR | Signal-to-Interference-and-Noise Ratio |
| SNR  | Signal-to-Noise Ratio                  |
| ТА   | Timing Advance                         |
| TDD  | Time Division Duplex                   |
| ТХ   | Transmitter                            |
| UE   | User Equipment                         |
| WA   | Wide Area                              |
|      |                                        |

## 4 General

# 4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.141 [4] Annex G defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

### 4.2 Base station classes

The requirements in this specification apply to Wide Area Base Stations, Medium Range Base Stations, Local Area Base Stations and Home Base Stations unless otherwise stated.

Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum coupling loss equal to 70 dB. The Wide Area Base Station class has the same requirements as the base station for General Purpose application in Release 8.

Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum coupling loss equal to 53 dB.

Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum coupling loss equal to 45 dB.

Home Base Stations are characterised by requirements derived from Femto Cell scenarios.

### 4.3 Regional requirements

Some requirements in the present document may only apply in certain regions either as optional requirements or set by local and regional regulation as mandatory requirements. It is normally not stated in the 3GPP specifications under what exact circumstances that the requirements apply, since this is defined by local or regional regulation.

Table 4.3-1 lists all requirements that may be applied differently in different regions.

| Clause<br>number | Requirement                                          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5.5              | Operating bands                                      | Some bands may be applied regionally.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 5.6              | Channel bandwidth                                    | Some channel bandwidths may be applied regionally.                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5.7              | Channel arrangement                                  | The requirement is applied according to what operating bands in clause 5.5 that are supported by the BS.                                                                                                                                                                                                                                                                                                                                                      |  |
| 6.2              | Base station maximum<br>output power                 | In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.                                                                                                                                                                                                                                                                                                       |  |
| 6.2.2            | Additional requirement<br>(regional)                 | For Band 34 and Band 41 operation in certain regions, the rated output<br>power declared by the manufacturer shall be less than or equal to the values<br>specified in Table 6.2.2-1 and 6.2.2-2, respectively.<br>In addition for Band 46 operation, the BS may have to comply with the<br>applicable BS power limits established regionally, when deployed in regions<br>where those limits apply and under the conditions declared by the<br>manufacturer. |  |
| 6.6.1.1          | Occupied bandwidth                                   | For Band 46 operation in certain regions, the occupied bandwidth for each 20MHz channel bandwidth E-UTRA carrier shall be less than or equal to 19MHz or 19.7MHz.                                                                                                                                                                                                                                                                                             |  |
| 6.6.3.1          | Operating band<br>unwanted emissions<br>(Category A) | This requirement is mandatory for regions where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2] apply.                                                                                                                                                                                                                                                                                                                |  |
| 6.6.3.2          | Operating band<br>unwanted emissions<br>(Category B) | This requirement is mandatory for regions where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2], apply.                                                                                                                                                                                                                                                                                                               |  |
| 6.6.3.3          | Additional requirements                              | band unwanted emission limits.<br>In addition for Band 46 operation, the BS may have to comply with the<br>applicable operating band unwanted emission limits established regionally,<br>when deployed in regions where those limits apply and under the conditions<br>declared by the manufacturer.                                                                                                                                                          |  |
| 6.6.4.1.1        | Spurious emissions<br>(Category A)                   | This requirement is mandatory for regions where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2] apply.                                                                                                                                                                                                                                                                                                                |  |
| 6.6.4.1.2        | Spurious emissions<br>(Category B)                   | This requirement is mandatory for regions where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [2], apply.                                                                                                                                                                                                                                                                                                               |  |
| 6.6.4.3          | Additional spurious<br>emission requirements         | These requirements may be applied for the protection of system operating in frequency ranges other than the E-UTRA BS operating band.<br>In addition for Band 46 operation, the BS may have to comply with the applicable spurious emission limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer.                                                                           |  |
| 6.6.4.4          | Co-location with other base stations                 | These requirements may be applied for the protection of other BS receivers<br>when a BS operating in another frequency band is co-located with an E-<br>UTRA BS.                                                                                                                                                                                                                                                                                              |  |
| 6.7.2            | Additional requirements                              | These requirements may apply in certain regions.                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 7.6.2            | Co-location with other base stations                 | These requirements may be applied for the protection of the BS receiver when a BS operating in another frequency band is co-located with an E-UTRA BS.                                                                                                                                                                                                                                                                                                        |  |

## 4.4 Applicability of requirements

For BS that is E-UTRA (single-RAT), E-UTRA with NB-IoT (in band and/or guard band) or standalone NB-IoT capable only, MBMS (including 15 kHz, 7.5 kHz and 1.25 kHz subcarrier spacing), the requirements in the present document are applicable and additional conformance to TS 37.104 [15] is optional. For a BS additionally conforming to TS 37.104 [15], conformance to some of the RF requirements in the present document can be demonstrated through the corresponding requirements in TS 37.104 [15] as listed in Table 4.4-1.

| RF requirement                                                                                                                                                                          | Clause in the present<br>document | Alternative clause in TS<br>37.104 [15] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|
| Base station output power                                                                                                                                                               | 6.2.1                             | 6.2.1                                   |
|                                                                                                                                                                                         | 6.2.2                             | 6.2.2                                   |
| Transmit ON/OFF power                                                                                                                                                                   | 6.4                               | 6.4                                     |
| Unwanted emissions                                                                                                                                                                      |                                   |                                         |
| Transmitter spurious emissions                                                                                                                                                          | 6.6.4                             | 6.6.1 (except for 6.6.1.1.3)            |
| Operating band unwanted                                                                                                                                                                 | 6.6.3.1, 6.6.3.2                  | 6.6.2 (except for 6.6.2.3               |
| emissions                                                                                                                                                                               | (NOTE 1)                          | and 6.6.2.4)                            |
| Transmitter intermodulation                                                                                                                                                             | 6.7                               | 6.7.1                                   |
| Narrowband blocking                                                                                                                                                                     | 7.5.1                             | 7.4.2                                   |
| Blocking                                                                                                                                                                                | 7.6.1.1                           | 7.4.1                                   |
| Out-of-band blocking                                                                                                                                                                    | 7.6.1.1                           | 7.5.1                                   |
| Co-location with other base stations                                                                                                                                                    | 7.6.2.1                           | 7.5.2                                   |
| Receiver spurious emissions                                                                                                                                                             | 7.7.1                             | 7.6.1                                   |
| Intermodulation                                                                                                                                                                         | 7.8.1                             | 7.7.1                                   |
| Narrowband intermodulation                                                                                                                                                              | 7.8.1                             | 7.7.2                                   |
| NOTE 1: This does not apply when the lowest or highest carrier frequency is configured as 1.4 or<br>3 MHz carrier in bands of Band Category 1 or 3 according to clause 4.5 in TS 37.104 |                                   |                                         |
| [15].                                                                                                                                                                                   |                                   |                                         |

#### Table 4.4-1: Alternative RF minimum requirements for a BS additionally conforming to TS 37.104 [15]

## 4.5 Requirements for BS capable of multi-band operation

For BS capable of multi-band operation, the RF requirements in clause 6 and 7 apply for each supported operating band unless otherwise stated. For some requirements it is explicitly stated that specific additions or exclusions to the requirement apply for BS capable of multi-band operation.

For BS capable of multi-band operation, various structures in terms of combinations of different transmitter and receiver implementations (multi-band or single band) with mapping of transceivers to one or more antenna port(s) in different ways are possible. In the case where multiple bands are mapped on an antenna connector, the exclusions or provisions for multi-band capable BS are applicable to this antenna connector. In the case where a single band is mapped on an antenna connector, the following applies:

- Single-band ACLR, operating band unwanted emissions, transmitter spurious emissions, transmitter intermodulation and receiver spurious emissions requirements apply to this antenna connector that is mapped to single-band.
- If the BS is configured for single-band operation, single-band requirements shall apply to this antenna connector configured for single-band operation and no exclusions or provisions for multi-band capable BS are applicable. Single-band requirements are tested separately at the antenna connector configured for single-band operation, with all other antenna connectors terminated.

For a band supported by a Base Station where the transmitted carriers are not processed in active RF components together with carriers in any other band, single-band transmitter requirements shall apply. For a band supported by a Base Station where the received carriers are not processed in active RF components together with carriers in any other band, single-band receiver requirements shall apply.

For a BS capable of multi-band operation supporting bands for TDD, the RF requirements in the present specification assume synchronized operation, where no simultaneous uplink and downlink occur between the supported operating bands.

The RF requirements in the present specification are FFS for multi-band operation supporting bands for both FDD and TDD.

# 5 Operating bands and channel arrangement

#### 5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

- 5.2 Void
- 5.3 Void
- 5.4 Void

### 5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1. Unless stated otherwise, requirements specified for the TDD duplex mode apply for downlink and uplink operations in Frame Structure Type 2 [4].

NB-IoT is designed to operate in the E-UTRA operating bands 1, 2, 3, 5, 8, 11, 12, 13, 17, 18, 19, 20, 21, 25, 26, 28, 31, 66, 70 which are defined in Table 5.5-1.

#### Table 5.5-1 E-UTRA frequency bands

| E-UTRA<br>Operatin<br>g Band | Uplink (UL) operating band<br>BS receive<br>UE transmit | Downlink (DL) operating<br>band<br>BS transmit | Duplex<br>Mode  |
|------------------------------|---------------------------------------------------------|------------------------------------------------|-----------------|
| y Danu                       |                                                         | UE receive                                     |                 |
| ſ                            | $F_{UL_{low}} - F_{UL_{high}}$                          | $F_{DL_{low}} - F_{DL_{high}}$                 | ĺ               |
| 1                            | 1920 MHz – 1980 MHz                                     | 2110 MHz – 2170 MHz                            | FDD             |
| 2                            | 1850 MHz – 1910 MHz                                     | 1930 MHz – 1990 MHz                            | FDD             |
| 3                            | 1710 MHz – 1785 MHz                                     | 1805 MHz – 1880 MHz                            | FDD             |
| 4                            | 1710 MHz – 1755 MHz                                     | 2110 MHz – 2155 MHz                            | FDD             |
| 5                            | 824 MHz – 849 MHz                                       | 869 MHz – 894MHz                               | FDD             |
| 6<br>(NOTE 1)                | 830 MHz <sup>—</sup> 840 MHz                            | 875 MHz <sup>–</sup> 885 MHz                   | FDD             |
| 7                            | 2500 MHz – 2570 MHz                                     | 2620 MHz – 2690 MHz                            | FDD             |
| 8                            | 880 MHz – 915 MHz                                       | 925 MHz – 960 MHz                              | FDD             |
| 9                            | 1749.9 <sup>—</sup> 1784.9 MHz<br>MHz                   | 1844.9 – 1879.9<br>MHz MHz                     | FDD             |
| 10                           | 1710 MHz – 1770 MHz                                     | 2110 MHz – 2170 MHz                            | FDD             |
| 11                           | 1427.9 – 1447.9 MHz                                     | 1475.9 – 1495.9                                | FDD             |
|                              | MHz                                                     | MHz MHz                                        |                 |
| 12                           | 699 MHz – 716 MHz                                       | 729 MHz – 746 MHz                              | FDD             |
| 13                           | 777 MHz – 787 MHz                                       | 746 MHz – 756 MHz                              | FDD             |
| 14                           | 788 MHz – 798 MHz                                       | 758 MHz – 768 MHz                              | FDD             |
| 15                           | Reserved                                                | Reserved                                       | FDD             |
| <u>16</u><br>17              | Reserved<br>704 MHz – 716 MHz                           | Reserved<br>734 MHz – 746 MHz                  | FDD<br>FDD      |
|                              |                                                         |                                                | FDD             |
| <u>18</u><br>19              | 815 MHz – 830 MHz<br>830 MHz – 845 MHz                  | 860 MHz – 875 MHz<br>875 MHz – 890 MHz         | FDD             |
| 20                           | 832 MHz – 862 MHz                                       | 791 MHz – 821 MHz                              | FUU             |
| 20                           | 1447.9 MH – 1462.9 MHz                                  | 1495.9 MH – 1510.9                             | FDD             |
| 21                           | Z                                                       | z MHz                                          | 100             |
| 22                           | 3410 MHz – 3490 MHz                                     | 3510 MHz – 3590 MHz                            | FDD             |
| 23 <sup>1</sup>              | 2000 MHz – 2020 MHz                                     | 2180 MHz – 2200 MHz                            | FDD             |
| 24                           | 1626.5 MH – 1660.5 MHz<br>z                             | 1525 MHz – 1559 MHz                            | FDD             |
| 25                           | 1850 MHz – 1915 MHz                                     | 1930 MHz – 1995 MHz                            | FDD             |
| 26                           | 814 MHz – 849 MHz                                       | 859 MHz – 894 MHz                              | FDD             |
| 27                           | 807 MHz – 824 MHz                                       | 852 MHz – 869 MHz                              | FDD             |
| 28                           | 703 MHz – 748 MHz                                       | 758 MHz – 803 MHz                              | FDD             |
| 29                           | N/A                                                     | 717 MHz – 728 MHz                              | FDD             |
|                              | -                                                       |                                                | (NOTE 2)        |
| 30                           | 2305 MHz – 2315 MHz                                     | 2350 MHz - 2360 MHz                            | FDD             |
| 31                           | 452.5 MHz – 457.5 MHz                                   | 462.5 MHz – 467.5 MHz                          |                 |
| 32                           | N/A                                                     | 1452 MHz – 1496 MHz                            | FDD<br>(NOTE 2) |
| 33                           | 1900 MHz – 1920 MHz                                     | 1900 MHz – 1920 MHz                            | TDD             |
| 34                           | 2010 MHz – 2025 MHz                                     | 2010 MHz – 2025 MHz                            | TDD             |
| 35                           | 1850 MHz – 1910 MHz                                     | 1850 MHz – 1910 MHz                            | TDD             |
| 36                           | 1930 MHz – 1990 MHz                                     | 1930 MHz – 1990 MHz                            | TDD             |
| 37                           | 1910 MHz – 1930 MHz                                     | 1910 MHz – 1930 MHz                            | TDD             |
| 38                           | 2570 MHz – 2620 MHz                                     | 2570 MHz – 2620 MHz                            | TDD             |
| 39                           | 1880 MHz – 1920 MHz                                     | 1880 MHz – 1920 MHz                            | TDD             |
| 40                           | 2300 MHz – 2400 MHz                                     | 2300 MHz – 2400 MHz                            | TDD             |
| 41                           | 2496 MHz – 2690 MHz                                     | 2496 MHz – 2690 MHz                            | TDD             |
| 42                           | 3400 MHz – 3600 MHz                                     | 3400 MHz – 3600 MHz                            | TDD             |
| 43                           | 3600 MHz – 3800 MHz                                     | 3600 MHz – 3800 MHz                            | TDD             |
| 44                           | 703 MHz – 803 MHz                                       | 703 MHz – 803 MHz                              | TDD             |
| 45                           | 1447 MHz – 1467 MHz                                     | 1447 MHz – 1467 MHz                            | TDD             |
| 46                           | 5150 MHz – 5925 MHz                                     | 5150 MHz – 5925 MHz                            | TDD             |
|                              |                                                         |                                                | (NOTE 3,        |
|                              |                                                         |                                                | NOTE 4)         |
| 47                           | 5855 MHz – 5925 MHz                                     | 5855 MHz – 5925 MHz                            | TDD             |
| 48                           | 3550 MHz – 3700 MHz                                     | 3550 MHz – 3700 MHz                            | TDD             |
| 65                           | 1920 MHz – 2010 MHz                                     | 2110 MHz – 2200 MHz                            | FDD             |
| 66                           | 1710 MHz – 1780 MHz                                     | 2110 MHz – 2200 MHz                            |                 |
|                              |                                                         | l                                              | (NOTE 5)        |

| 67                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 738 MHz – 758 MHz                  | FDD              |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | (NOTE 2)         |
| 68                                                | 698 MHz – 728 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 753 MHz – 783 MHz                  | FDD              |
| 69                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2570 MHz – 2620 MHz                | FDD              |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | (NOTE 2)         |
| 70                                                | 1695 MHz – 1710 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1995 MHz – 2020 MHz                | FDD <sup>6</sup> |
|                                                   | Band 6, 23 are not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                  |
| NOTE 2: I                                         | Restricted to E-UTRA operation whether the second | nen carrier aggregation is configu | ured. The        |
| 0                                                 | downlink operating band is paired with the uplink operating band (external) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                  |
| t                                                 | the carrier aggregation configuration that is supporting the configured Pcell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                  |
| NOTE 3:                                           | his band is an unlicensed band restricted to licensed-assisted operation using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                  |
| F                                                 | Frame Structure Type 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                  |
| NOTE 4: E                                         | Band 46 is divided into four sub-bands as in Table 5.5-1A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                  |
|                                                   | The range 2180 – 2200 MHz of the DL operating band is restricted to E-UTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                  |
| operation when carrier aggregation is configured. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                  |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                  |
|                                                   | operation when carrier aggregation is configured and TX-RX separation is 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |
|                                                   | MHz. The range 2005-2020 MHz of the DL operating band is restricted to E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                  |
| U                                                 | JTRA operation when carrier aggregation is configured and TX-RX separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                  |
| i                                                 | is 295 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                  |
| NOTE 7: \                                         | Void                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                  |

Table 5.5-1A Sub-bands for Band 46

| E-UTRA<br>Operatin<br>g Band | Uplink (UL) operating band<br>BS receive<br>UE transmit | Downlink (DL) operating<br>band<br>BS transmit<br>UE receive |
|------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
|                              | $F_{UL_{low}} - F_{UL_{high}}$                          | $F_{DL_{low}} - F_{DL_{high}}$                               |
| 46a                          | 5150 MHz – 5250 MHz                                     | 5150 MHz – 5250 MHz                                          |
| 46b                          | 5250 MHz – 5350 MHz                                     | 5250 MHz – 5350 MHz                                          |
| 46c                          | 5470 MHz – 5725 MHz                                     | 5470 MHz – 5725 MHz                                          |
| 46d                          | 5725 MHz – 5925 MHz                                     | 5725 MHz – 5925 MHz                                          |

E-UTRA is designed to operate for the carrier aggregation bands defined in Tables 5.5-2 to 5.5-4.

| Table 5.5-2 Intra-band | contiguous carrie | r aggregation bands |
|------------------------|-------------------|---------------------|
|                        | ooningaoao oanno. | aggioganon sanao    |

| CA Band | E-UTRA operating band |
|---------|-----------------------|
| CA_1    | 1                     |
| CA_2    | 2                     |
| CA_3    | 3                     |
| CA_5    | 5                     |
| CA_7    | 7                     |
| CA_8    | 8                     |
| CA_12   | 12                    |
| CA_23   | 23                    |
| CA_27   | 27                    |
| CA_38   | 38                    |
| CA_39   | 39                    |
| CA_40   | 40                    |
| CA_41   | 41                    |
| CA_42   | 42                    |
| CA_43   | 43                    |
| CA_48   | 48                    |
| CA_66   | 66                    |
| CA_70   | 70                    |

Table 5.5-3. Inter-band carrier aggregation bands (two bands)

| CA Band                                        | E-UTRA operating bands |
|------------------------------------------------|------------------------|
| CA_1-3                                         | 1                      |
|                                                | 3                      |
| CA_1-1-3                                       | 1                      |
| CA_1-3-3                                       | 3                      |
| CA_1-3-3                                       | 1 3                    |
| CA_1-5                                         | 1                      |
| 0A_1-5                                         | 5                      |
| CA_1-1-5                                       | 1                      |
|                                                | 5                      |
| CA_1-7                                         | 1                      |
| CA_1-7-7                                       | 7 1                    |
| 0A_1-7-7                                       | 7                      |
| CA_1-8                                         | 1                      |
|                                                | 8                      |
| CA_1-11                                        | 1                      |
|                                                | 11                     |
| CA_1-18                                        | 1                      |
| CA_1-19                                        | 18                     |
| CA_1-19                                        | 19                     |
| CA_1-20                                        | 1                      |
|                                                | 20                     |
| CA_1-21                                        | 1                      |
|                                                | 21                     |
| CA_1-26                                        | 1                      |
| CA_1-28                                        | 26                     |
| CA_1-20                                        | 1 28                   |
| CA_1-1-28                                      | 1                      |
|                                                | 28                     |
| CA_1-38                                        | 1                      |
| <b>0</b> , , , , , , , , , , , , , , , , , , , | 38                     |
| CA_1-40                                        | 1                      |
| CA_1-41                                        | 40                     |
| 0/_1-41                                        | 41                     |
| CA_1-42                                        | 1                      |
|                                                | 42                     |
| CA_1-46                                        | 1                      |
| <u></u>                                        | 46                     |
| CA_2-4                                         | 2 4                    |
| CA_2-2-4                                       | 2                      |
| <u> </u>                                       | 4                      |
| CA_2-2-4-4                                     | 2                      |
|                                                | 4                      |
| CA_2-4-4                                       | 2                      |
| CA_2-5                                         | 4 2                    |
| UA_2-0                                         | 5                      |
| CA_2-2-5                                       | 2                      |
|                                                | 5                      |
| CA_2-7                                         | 2                      |
| <b>•••</b>                                     | 7                      |
| CA_2-7-7                                       | 2                      |
| CA_2-12                                        | 7 2                    |
| 0A_2-12                                        | 12                     |
|                                                |                        |
| CA 2-2-12                                      |                        |
| CA_2-2-12                                      | 2 12                   |

|                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA_2-12-12                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-13                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_2-13                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-2-13                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-17                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-28                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA_2-28                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-29                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-2-29                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0/(_2 2 23                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-30                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-2-30                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0,(_2 2 00                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 04.0.40                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-46                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-46-46                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-48                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UA_2-48                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-48-48                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-66                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_2-00                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-2-66                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                             | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-2-66-66                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_2-2-00-00                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                             | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-66-66                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 011_2-00-00                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0,1_2-00-00                                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                             | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_2-00-00                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                             | 3<br>5<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>8<br>3<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5 CA_3-7 CA_3-3-7 CA_3-3-7 CA_3-3-7 CA_3-7-7 CA_3-8 CA_3-8 CA_3-11 CA_3-19 CA_3-20 CA_3-20 CA_3-20                                                                                                                     | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5 CA_3-7 CA_3-3-7 CA_3-3-7 CA_3-3-7 CA_3-7-7 CA_3-8 CA_3-8 CA_3-11 CA_3-19 CA_3-20 CA_3-20 CA_3-20                                                                                                                     | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5                                                                                                                                                                                                                      | 3<br>5<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>7<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8<br>3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_3-5 CA_3-7 CA_3-3-7 CA_3-3-7 CA_3-3-7 CA_3-7-7 CA_3-7-7 CA_3-8 CA_3-3-8 CA_3-11 CA_3-19 CA_3-19 CA_3-20 CA_3-20 CA_3-20 CA_3-20 CA_3-21                                                                                  | 3         5         3         7         3         7         3         7         3         7         3         7         3         7         3         7         3         7         3         8         3         11         3         19         3         20         3         20         3         20         3         20         3         20         3         20         3         20         3         20         3         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CA_3-5 CA_3-7 CA_3-3-7 CA_3-3-7 CA_3-3-7 CA_3-7-7 CA_3-8 CA_3-8 CA_3-11 CA_3-19 CA_3-20 CA_3-20 CA_3-20                                                                                                                     | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       8 \\       3 \\       8 \\       3 \\       11 \\       3 \\       8 \\       3 \\       12 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       21 \\       3 \\       3 \\       21 \\       3 \\       3       3       3       3       3       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-5         CA_3-7         CA_3-3-7         CA_3-3-7         CA_3-3-7-7         CA_3-7-7         CA_3-8         CA_3-3-8         CA_3-11         CA_3-19         CA_3-20         CA_3-21         CA_3-26                 | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       8 \\       3 \\       8 \\       3 \\       8 \\       3 \\       11 \\       3 \\       8 \\       3 \\       12 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       21 \\       3 \\       26 \\       5 \\       5 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       3 \\       20 \\       3 \\       21 \\       3 \\       26 \\       5 \\       7 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       3 \\       20 \\       3 \\       21 \\       3 \\       26 \\       5 \\       7 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       7 \\       3 \\       7 \\       3 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       7 \\       3 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\ $ |
| CA_3-5 CA_3-7 CA_3-3-7 CA_3-3-7 CA_3-3-7 CA_3-7-7 CA_3-7-7 CA_3-8 CA_3-3-8 CA_3-11 CA_3-19 CA_3-19 CA_3-20 CA_3-20 CA_3-20 CA_3-20 CA_3-21                                                                                  | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       8 \\       3 \\       8 \\       3 \\       11 \\       3 \\       8 \\       3 \\       12 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       21 \\       3 \\       3 \\       21 \\       3 \\       3       3       3       3       3       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-5         CA_3-7         CA_3-3-7         CA_3-3-7         CA_3-3-7-7         CA_3-7-7         CA_3-8         CA_3-3-8         CA_3-11         CA_3-19         CA_3-20         CA_3-21         CA_3-26                 | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       8 \\       3 \\       8 \\       3 \\       8 \\       3 \\       10 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       3 \\       20 \\       3 \\       3 \\       20 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\   $       |
| CA_3-5         CA_3-7         CA_3-3-7         CA_3-3-7         CA_3-3-7-7         CA_3-7-7         CA_3-8         CA_3-3-8         CA_3-11         CA_3-19         CA_3-20         CA_3-21         CA_3-26         CA_3-27 | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       3 \\       8 \\       3 \\       3 \\       8 \\       3 \\       3 \\       11 \\       3 \\       8 \\       3 \\       12 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       21 \\       3 \\       26 \\       3 \\       27 \\       5 \\       7 \\       5 \\       7 \\       7 \\       7 \\       5 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\      7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 $  |
| CA_3-5         CA_3-7         CA_3-3-7         CA_3-3-7         CA_3-3-7-7         CA_3-7-7         CA_3-8         CA_3-3-8         CA_3-11         CA_3-19         CA_3-20         CA_3-21         CA_3-26                 | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       3 \\       11 \\       3 \\       8 \\       3 \\       3 \\       11 \\       3 \\       8 \\       3 \\       11 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       21 \\       3 \\       26 \\       3 \\       27 \\       3 \\       3 \\       27 \\       3 \\       3 \\       3       3       3       3       3       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_3-5         CA_3-7         CA_3-3-7         CA_3-3-7         CA_3-3-7-7         CA_3-7-7         CA_3-8         CA_3-3-8         CA_3-11         CA_3-19         CA_3-20         CA_3-21         CA_3-26         CA_3-27 | $     \begin{array}{r}       3 \\       5 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       7 \\       3 \\       8 \\       3 \\       3 \\       8 \\       3 \\       3 \\       8 \\       3 \\       3 \\       11 \\       3 \\       8 \\       3 \\       12 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       20 \\       3 \\       21 \\       3 \\       26 \\       3 \\       27 \\       5 \\       7 \\       5 \\       7 \\       7 \\       7 \\       5 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\      7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 $  |

| CA_3-31      | 3    |
|--------------|------|
| _            | 31   |
| CA_3-32      | 3    |
|              | 32   |
| CA_3-38      | 3    |
| CA_3-30      |      |
| 04.0.40      | 38   |
| CA_3-40      | 3    |
|              | 40   |
| CA_3-40-40   | 3    |
|              | 40   |
| CA_3-41      | 3    |
|              | 41   |
| CA_3-3-41    | 3    |
| UA_3-3-41    |      |
| 04.0.40      | 41   |
| CA_3-42      | 3    |
|              | 42   |
| CA_3-46      | 3    |
|              | 46   |
| CA_3-69      | 3    |
|              | 69   |
| CA_4-5       |      |
| UA_4-0       | 4    |
|              | 5    |
| CA_4-4-5     | 4    |
|              | 5    |
| CA_4-7       | 4    |
|              | 7    |
| CA_4-4-7     | 4    |
| 0/(_++/      | 7    |
|              |      |
| CA_4-7-7     | 4    |
|              | 7    |
| CA_4-12      | 4    |
|              | 12   |
| CA_4-4-12    | 4    |
| 0.12         | 12   |
| CA_4-4-12-12 |      |
| CA_4-4-12-12 | 4    |
|              | 12   |
| CA_4-12-12   | 4    |
|              | 12   |
| CA_4-13      | 4    |
|              | 13   |
| CA_4-4-13    | 4    |
|              | 13   |
| CA_4-17      | 4    |
| UA_4-17      |      |
|              | 17   |
| CA_4-27      | 4    |
|              | 27   |
| CA_4-28      | 4    |
| _            | 28   |
| CA_4-29      | 4    |
|              |      |
| CA 4 4 00    | 29   |
| CA_4-4-29    | 4    |
|              | 29   |
| CA_4-30      | 4    |
|              | 30   |
| CA_4-4-30    | 4    |
|              | 30   |
| CA_4-46      | 4    |
| 07_4-40      | 4 46 |
|              |      |
| CA_4-46-46   | 4    |
|              | 46   |
| CA_5-7       | 5    |
|              | 7    |
| CA_5-7-7     | 5    |
|              |      |
|              | /    |
| CA_5-12      | 7 5  |

|                                                                                           | 12                                                                                                                              |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| CA_5-12-12                                                                                | 5                                                                                                                               |
|                                                                                           | 12                                                                                                                              |
| CA_5-13                                                                                   | 5                                                                                                                               |
|                                                                                           | 13                                                                                                                              |
| CA_5-17                                                                                   | 5                                                                                                                               |
|                                                                                           | 17                                                                                                                              |
| CA_5-25                                                                                   | 5                                                                                                                               |
| CA_5-25                                                                                   |                                                                                                                                 |
| 04.5.00                                                                                   | 25                                                                                                                              |
| CA_5-29                                                                                   | 5                                                                                                                               |
|                                                                                           | 29                                                                                                                              |
| CA_5-30                                                                                   | 5                                                                                                                               |
|                                                                                           | 30                                                                                                                              |
| CA_5-38                                                                                   | 5                                                                                                                               |
|                                                                                           | 38                                                                                                                              |
| CA_5-40                                                                                   |                                                                                                                                 |
| CA_5-40                                                                                   | 5                                                                                                                               |
|                                                                                           | 40                                                                                                                              |
| CA_5-5-40                                                                                 | 5                                                                                                                               |
|                                                                                           | 40                                                                                                                              |
| CA_5-40-40                                                                                | 5                                                                                                                               |
|                                                                                           | 40                                                                                                                              |
| CA_5-41                                                                                   | 5                                                                                                                               |
| UA_0-41                                                                                   |                                                                                                                                 |
|                                                                                           | 41                                                                                                                              |
| CA_5-46                                                                                   | 5                                                                                                                               |
|                                                                                           | 46                                                                                                                              |
| CA_5-48                                                                                   | 5                                                                                                                               |
| _                                                                                         | 48                                                                                                                              |
| CA_5-66                                                                                   | 5                                                                                                                               |
| 07_5-00                                                                                   |                                                                                                                                 |
| 0.4 5 5 00                                                                                | 66                                                                                                                              |
| CA_5-5-66                                                                                 | 5                                                                                                                               |
|                                                                                           | 66                                                                                                                              |
| CA_5-5-66-66                                                                              | 5                                                                                                                               |
|                                                                                           | 66                                                                                                                              |
| CA_5-66-66                                                                                | 5                                                                                                                               |
| 6, (_0 00 00                                                                              | 66                                                                                                                              |
| CA_7-8                                                                                    |                                                                                                                                 |
| CA_7-8                                                                                    | 7                                                                                                                               |
|                                                                                           | 8                                                                                                                               |
| CA_7-7-8                                                                                  | 7                                                                                                                               |
|                                                                                           | 8                                                                                                                               |
| CA_7-12                                                                                   | 7                                                                                                                               |
| _                                                                                         | 12                                                                                                                              |
| CA_7-20                                                                                   | 7                                                                                                                               |
|                                                                                           |                                                                                                                                 |
| <u> </u>                                                                                  | 20                                                                                                                              |
| CA_7-22                                                                                   | 7                                                                                                                               |
|                                                                                           | 22                                                                                                                              |
|                                                                                           |                                                                                                                                 |
| CA_7-26                                                                                   | 7                                                                                                                               |
|                                                                                           | 7<br>26                                                                                                                         |
|                                                                                           | 26                                                                                                                              |
| CA_7-26<br>CA_7-7-26                                                                      | 26<br>7                                                                                                                         |
| CA_7-7-26                                                                                 | 26<br>7<br>26                                                                                                                   |
|                                                                                           | 26<br>7<br>26<br>7                                                                                                              |
| CA_7-7-26<br>CA_7-28                                                                      | 26<br>7<br>26<br>7<br>28                                                                                                        |
| CA_7-7-26                                                                                 | 26<br>7<br>26<br>7<br>28<br>7                                                                                                   |
| CA_7-7-26<br>CA_7-28<br>CA_7-32                                                           | 26<br>7<br>26<br>7<br>28                                                                                                        |
| CA_7-7-26<br>CA_7-28                                                                      | 26<br>7<br>26<br>7<br>28<br>7                                                                                                   |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40                                                | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7                                                                                        |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40                                                | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40                                                                                  |
| CA_7-7-26<br>CA_7-28<br>CA_7-32                                                           | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7                                                                             |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42                                     | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42                                                            |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40                                                | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7                                                       |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42<br>CA_7-42                          | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7<br>42                                                 |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42                                     | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7                                                       |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42<br>CA_7-42<br>CA_7-42-42<br>CA_7-46 | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7<br>42                                                 |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42<br>CA_7-42<br>CA_7-42               | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7<br>42<br>7<br>42<br>7                                 |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42<br>CA_7-42                          | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7<br>42<br>7<br>42<br>7<br>42<br>7<br>46<br>7           |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42<br>CA_7-42<br>CA_7-46<br>CA_7-66    | $ \begin{array}{r} 26\\ 7\\ 26\\ 7\\ 28\\ 7\\ 32\\ 7\\ 40\\ 7\\ 40\\ 7\\ 42\\ 7\\ 42\\ 7\\ 42\\ 7\\ 46\\ 7\\ 66\\ \end{array} $ |
| CA_7-7-26<br>CA_7-28<br>CA_7-32<br>CA_7-40<br>CA_7-42<br>CA_7-42<br>CA_7-42               | 26<br>7<br>26<br>7<br>28<br>7<br>32<br>7<br>40<br>7<br>40<br>7<br>42<br>7<br>42<br>7<br>42<br>7<br>42<br>7<br>46<br>7           |

| CA_8-20         | 8  |
|-----------------|----|
|                 | 20 |
| CA_8-28         | 8  |
|                 | 28 |
| CA_8-39         | 8  |
|                 | 39 |
| CA_8-40         | 8  |
|                 | 40 |
| CA_8-41         | 8  |
|                 | 41 |
| CA_8-42         | 8  |
|                 | 42 |
| CA_8-46         | 8  |
| 0/(_0 40        | 46 |
| CA_11-18        | 11 |
| CA_11-18        |    |
| CA 11 28        | 18 |
| CA_11-28        | 11 |
|                 | 28 |
| CA_11-41        | 11 |
|                 | 41 |
| CA_11-42        | 11 |
|                 | 42 |
| CA_11-46        | 11 |
|                 | 46 |
| CA_12-25        | 12 |
|                 | 25 |
| CA_12-30        | 12 |
| _               | 30 |
| CA_12-66        | 12 |
| 0.1_12.00       | 66 |
| CA_12-66-66     | 12 |
| 0/(_12 00 00    | 66 |
| CA_13-46        | 13 |
| CA_13-40        |    |
| CA_13-48        | 46 |
| CA_13-46        | 13 |
| 0.4, 40, 00     | 48 |
| CA_13-66        | 13 |
| 0.4, 40, 00, 00 | 66 |
| CA_13-66-66     | 13 |
|                 | 66 |
| CA_18-28        | 18 |
|                 | 28 |
| CA_19-21        | 19 |
|                 | 21 |
| CA_19-28        | 19 |
|                 | 28 |
| CA_19-42        | 19 |
|                 | 42 |
| CA_19-46        | 19 |
|                 | 46 |
| CA_20-28        | 20 |
|                 | 28 |
| CA_20-31        | 20 |
| 0/_20 01        | 31 |
| CA_20-32        | 20 |
| 07_20-32        | 32 |
| CA_20-38        | 20 |
| UA_20-30        |    |
| CA 00.40        | 38 |
| CA_20-40        | 20 |
|                 | 40 |
| CA_20-42        | 20 |
|                 | 42 |
| CA_20-42-42     | 20 |
|                 | 42 |
| CA_20-67        | 20 |
|                 |    |

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r                |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
| $\begin{tabular}{ c c c c c c } \hline & 28 \\ \hline & 42 \\ \hline & 44 \\ \hline & 6A \ 23-29 \\ \hline & 29 \\ \hline & CA \ 25-26 \\ \hline & 26 \\ \hline & CA \ 25-26 \\ \hline & 26 \\ \hline & 41 \\ \hline & 26 \\ \hline & 41 \\ \hline & CA \ 26-41 \\ \hline & 41 \\ \hline & CA \ 26-46 \\ \hline & 46 \\ \hline & CA \ 28-40 \\ \hline & 40 \\ \hline & CA \ 28-41 \\ \hline & 28 \\ \hline & 40 \\ \hline & 40 \\ \hline & CA \ 28-42 \\ \hline & 42 \\ \hline & CA \ 28-42 \\ \hline & 42 \\ \hline & CA \ 28-46 \\ \hline & 28 \\ \hline & 46 \\ \hline & CA \ 29-30 \\ \hline & 30 \\ \hline & CA \ 29-66 \\ \hline & 29 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 29 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 29-66 \\ \hline & 66 \\ \hline & CA \ 30 \ - 0 \\ \hline & 0 \\ \hline & CA \ 30-66 \\ \hline & 66 \\ \hline & CA \ 30 \ - 0 \\ \hline & 0 \\ \hline & CA \ 30-66 \\ \hline & 66 \\ \hline & CA \ 30 \ - 0 \\ \hline & 0 \\ \hline & CA \ 39-40 \\ \hline & 40 \\ \hline & CA \ 39-41 \\ \hline & 39 \\ \hline & - 0 \\ \hline & CA \ 39-41 \\ \hline & 39 \\ \hline & - 0 \\ \hline & CA \ 39-41 \\ \hline & 41 \\ \hline & CA \ 39-41 \\ \hline & 41 \\ \hline & CA \ 39-41 \\ \hline & 41 \\ \hline & CA \ 39-41 \\ \hline & 41 \\ \hline & CA \ 40 \\ \hline & CA \ 41-41 \\ \hline & CA \ 42 \\ \hline & CA \ 40 \\ \hline & CA \ 41-41 \\ \hline & CA \ 44 \\ \hline & CA \ $ |                  |    |
| CA_21-42         21           CA_21-46         42           CA_23-29         23           CA_25-26         25           CA_25-41         26           CA_26-41         26           CA_26-46         46           CA_28-40         28           CA_28-40         28           CA_28-41         28           CA_28-42         28           CA_28-43         41           CA_28-44         28           CA_28-45         28           CA_28-46         28           CA_28-47         28           CA_28-48         42           CA_28-49         29           CA_28-40         28           CA_28-41         28           CA_28-42         28           CA_28-43         28           CA_29-30         29           CA_29-30         29           CA_29-30         29           CA_29-66         29           CA_29-70         29           CA_30-66         66           CA_30-66         66           CA_30-66         66           CA_38-40         38           CA_39-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CA_21-28         | 21 |
| 42           CA_21-46         21           46         46           CA_23-29         23           29         26           CA_25-26         25           41         26           CA_26-41         26           CA_26-41         26           CA_26-41         26           CA_28-40         28           CA_28-41         28           41         CA_28-42         28           CA_28-42         28           42         27         28           CA_28-42         28         42           CA_28-42         28         42           CA_28-46         28         46           CA_29-30         29         30           CA_29-66         29         66           CA_29-66         29         66           CA_29-70         29         70           CA_30-66         30         66           CA_30-66         30         66           CA_30-66         66         66           CA_38-40         38         40           CA_38-40         38         40           CA_39-41         39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 28 |
| CA_21-46         21           CA_23-29         23           29         23           CA_25-26         25           CA_25-41         25           CA_26-41         26           CA_26-41         26           CA_28-40         28           CA_28-41         28           CA_28-42         28           CA_28-42         28           CA_28-42         28           CA_28-42         28           CA_28-42         28           CA_28-43         41           CA_28-44         28           CA_28-45         28           CA_28-46         28           CA_28-47         28           CA_28-48         28           CA_29-30         29           CA_29-30         29           CA_29-66         29           CA_30-66         30           CA_30-66         30           CA_30-66         66           CA_30-66         66           CA_39-40         38           CA_39-41         39           CA_39-42         39           CA_39-44         39           CA_39-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA_21-42         | 21 |
| CA_21-46         21           CA_23-29         23           29         23           CA_25-26         25           CA_25-41         25           CA_26-41         26           CA_26-41         26           CA_28-40         28           CA_28-41         28           CA_28-42         28           CA_28-42         28           CA_28-42         28           CA_28-42         28           CA_28-42         28           CA_28-43         41           CA_28-44         28           CA_28-45         28           CA_28-46         28           CA_28-47         28           CA_28-48         28           CA_29-30         29           CA_29-30         29           CA_29-66         29           CA_30-66         30           CA_30-66         30           CA_30-66         66           CA_30-66         66           CA_39-40         38           CA_39-41         39           CA_39-42         39           CA_39-44         39           CA_39-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 42 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CA 21-46         |    |
| $\begin{array}{c cccccc} {\sf CA}_{23}-29 & 23 & 29 & 29 & 26 & 26 & 26 & 26 & 26 & 26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CA 23-29         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UA_23-29         |    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4. 05. 00      | -  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_25-26         |    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_25-41         | 25 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 41 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 26-41         | 26 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | —                | 41 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 26-46         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/(_20 +0        |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4. 00. 10      |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_28-40         |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_28-41         | 28 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 41 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 28-42         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 28-46         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07_20-40         |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1.00.00        | -  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_29-30         |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 30 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_29-66         | 29 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 66 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 29-66-66      |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, (_20 00 00    |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 20 70         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_29-70         |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_30-66         | 30 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 66 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0.00.00        | 30 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_30-66-66      | 66 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 38-40         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 28 40 40      |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_30-40-40      |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_39-40         |    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 40 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_39-41         | 39 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 39-42         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 20.46         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UA_39-40         |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>.</b>         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_40-41         |    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 41 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA_40-42         | 40 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 42 |
| CA_40-46       46         CA_41-42       41         42       42         CA_41-46       41         CA_42-46       42         CA_42-46       42         CA_46-66       46         CA_46-66       46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |    |
| CA_41-42     41       42     41       CA_41-46     41       46     46       CA_42-46     42       46     46       CA_46-66     46       66     66       CA_46-66     46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CA_40-46         |    |
| 42           CA_41-46         41           46         46           CA_42-46         42           46         46           CA_46-66         46           66         66           CA_46-66         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |    |
| CA_41-46 41<br>46<br>CA_42-46 42<br>46<br>CA_46-66 46<br>CA_46-66 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UA_41-42         |    |
| 46           CA_42-46         42           46         46           CA_46-66         46           66         46           CA_46-66         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>~</b> • • • • |    |
| CA_42-46 42<br>46<br>CA_46-66 46<br>66<br>CA_46-46-66 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CA_41-46         |    |
| 46           CA_46-66         46           66         46           CA_46-46-66         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 46 |
| 46           CA_46-66         46           66         46           CA_46-46-66         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CA 42-46         | 42 |
| CA_46-66 46<br>66<br>CA_46-46-66 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                |    |
| 66<br>CA 46-46-66 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA 46-66         |    |
| CA 46-46-66 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UA_40-00         |    |
| (.A 4h-4h-hh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |    |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CA 46-46-66      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 66 |

| 46 |
|----|
| 66 |
| 46 |
| 70 |
| 48 |
| 66 |
| 48 |
| 66 |
|    |

Table 5.5-3A. Inter-band carrier aggregation bands (three bands)

| CA Band    | E-UTRA operating bands |
|------------|------------------------|
| CA_1-3-5   | 1                      |
|            | 3                      |
|            | 5                      |
| CA_1-1-3-5 | 1                      |
|            | 3                      |
|            | 5                      |
| CA_1-3-7   | 1                      |
|            | 3                      |
|            | 7                      |
| CA_1-3-7-7 | 1                      |
|            | 3                      |
|            | 7                      |
| CA_1-3-8   | 1                      |
|            | 3                      |
|            | 8                      |
| CA_1-3-3-8 | 1                      |
|            | 3                      |
|            | 8                      |

| CA_1-3-11                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-19                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-20                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-21                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0A_1-5-21                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-26                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-28                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-1-3-28                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-38                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u></u>                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-40                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 07_1-5-40                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0.4.0.44                                                                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-41                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-3-42                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CA_1-5-7                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CA_1-5-7                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CA_1-5-7                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CA_1-5-7<br>CA_1-5-7-7                                                                  | 5<br>7<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                         | 5<br>7<br>1<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA_1-5-7-7                                                                              | 5<br>7<br>1<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                         | 5<br>7<br>1<br>5<br>7<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_1-5-7-7                                                                              | 5<br>7<br>1<br>5<br>7<br>1<br>1<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CA_1-5-7-7<br>CA_1-5-40                                                                 | 5<br>7<br>1<br>5<br>7<br>1<br>5<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CA_1-5-7-7                                                                              | 5<br>7<br>1<br>5<br>7<br>1<br>5<br>40<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_1-5-7-7<br>CA_1-5-40                                                                 | 5<br>7<br>1<br>5<br>7<br>1<br>5<br>40<br>1<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41                                                    | 5     7     1     5     7     1     5     40     1     5     41     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CA_1-5-7-7<br>CA_1-5-40                                                                 | $     \begin{array}{r}       5 \\       7 \\       1 \\       5 \\       7 \\       1 \\       5 \\       40 \\       1 \\       5 \\       41 \\       1 \\       1     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41                                                    | $     \begin{array}{r}       5 \\       7 \\       1 \\       5 \\       7 \\       1 \\       5 \\       40 \\       1 \\       5 \\       41 \\       1 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\   $ |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46                                       | $     \begin{array}{r}       5 \\       7 \\       1 \\       5 \\       7 \\       1 \\       5 \\       40 \\       1 \\       5 \\       41 \\       1 \\       5 \\       446 \\       46 \\       46 \\       5       5 \\       46 \\       5       5 \\       46 \\       5       5 \\       46 \\       5       5       5       5       5       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41                                                    | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46                                       | $     \begin{array}{r}       5 \\       7 \\       1 \\       5 \\       7 \\       1 \\       5 \\       40 \\       1 \\       5 \\       41 \\       1 \\       5 \\       44 \\       1 \\       5 \\       46 \\       1 \\       7 \\       7   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8                           | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46                                       | $     \begin{array}{r}       5 \\       7 \\       1 \\       5 \\       7 \\       1 \\       5 \\       40 \\       1 \\       5 \\       40 \\       1 \\       5 \\       41 \\       1 \\       5 \\       46 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       7 \\       8 \\       1 \\       7 \\       7 \\       8 \\       1 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\ $ |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8                           | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8                           | $     \begin{array}{r}       5 \\       7 \\       1 \\       5 \\       7 \\       1 \\       5 \\       40 \\       1 \\       5 \\       40 \\       1 \\       5 \\       41 \\       1 \\       5 \\       46 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       8 \\       1 \\       7 \\       7 \\       8 \\       1 \\       7 \\       7 \\       8 \\       1 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\       7 \\ $ |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8<br>CA_1-7-20              | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ 1 \\ 7 \\ 20 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8                           | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 46 \\ 1 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ 1 \\ 7 \\ 8 \\ 1 \\ 7 \\ 20 \\ 1 \\ 1 \\ 1 \\ 1 \\ 7 \\ 20 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8<br>CA_1-7-20              | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 20 \\ 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8<br>CA_1-7-20<br>CA_1-7-26 | $ \begin{array}{c} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 26 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8<br>CA_1-7-20              | $ \begin{array}{r} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 46 \\ 1 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 26 \\ 1 \\ 1 \\ 7 \\ 26 \\ 1 \\ 1 \\ 7 \\ 26 \\ 1 \\ 1 \\ 1 \\ 7 \\ 26 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_1-5-7-7<br>CA_1-5-40<br>CA_1-5-41<br>CA_1-5-46<br>CA_1-7-8<br>CA_1-7-20<br>CA_1-7-26 | $ \begin{array}{c} 5 \\ 7 \\ 1 \\ 5 \\ 7 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 40 \\ 1 \\ 5 \\ 41 \\ 1 \\ 5 \\ 46 \\ 1 \\ 7 \\ 8 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 20 \\ 1 \\ 7 \\ 26 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| CA_1-7-28         1           7         28           CA_1-7-40         1           7         40           CA_1-7-42         1           7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| CA_1-7-40  CA_1-7-42  CA_1-7-42 CA_1-7-42 CA_1-7-42 CA_1-7 |   |
| CA_1-7-40  CA_1-7-40  CA_1-7-42  CA_1-7-42 CA_1-7-42 CA_1-7-42 CA_1-7 |   |
| CA_1-7-40 1<br>7<br>40<br>CA_1-7-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| CA_1-7-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| CA_1-7-42 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| CA_1-7-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ |
| CA_1-7-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-7-46 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-8-11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| CA_1-8-20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| CA_1-8-28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-8-40 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-11-18 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-11-28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-18-28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-19-21 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-19-28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-19-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-20-28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| CA_1-20-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-21-28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-21-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| CA_1-28-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| CA_1-41-42 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ |
| CA 2-4-5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| CA_2-4-5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| CA_2-4-5 2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ |
| 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |

|                          | 5            |
|--------------------------|--------------|
| CA_2-4-4-5               | 2 4          |
|                          | 5            |
| <br>CA_2-4-7             | 2            |
| CA_2-4-7                 |              |
|                          | 4 7          |
| CA_2-4-7-7               |              |
| CA_2-4-7-7               | 2 4          |
|                          |              |
| CA_2-4-12                | 7 2          |
| CA_2-4-12                | 4            |
|                          | 12           |
| CA_2-2-4-12              |              |
| CA_2-2-4-12              | 2            |
|                          | 4            |
| 04 0 4 4 40              | 12           |
| CA_2-4-4-12              | 2            |
|                          | 4            |
|                          | 12           |
| CA_2-4-12-12             | 2            |
|                          | 4            |
|                          | 12           |
| CA_2-4-13                | 2            |
|                          | 4            |
|                          | 13           |
| CA_2-4-29                | 2            |
|                          | 4            |
|                          | 29           |
| CA_2-4-30                | 2            |
|                          | 4            |
|                          | 30           |
| CA_2-5-12                | 2            |
|                          | 5            |
|                          | 12           |
| CA_2-2-5-12              | 2            |
|                          | 5            |
|                          | 12           |
| CA_2-5-12-12             | 2            |
| —                        | 2 5          |
|                          | 12           |
| CA_2-2-5-30              | 2            |
|                          | 5            |
|                          | 30           |
| CA_2-2-12-30             | 2            |
|                          | 12           |
|                          | 30           |
| CA_2-2-12-66             | 2            |
|                          | 12           |
|                          | 66           |
| CA_2-2-30-66             | 2            |
|                          | 30           |
|                          | 66           |
| CA_2-5-13                | 2            |
|                          | 5            |
|                          | 13           |
| CA_2-5-29                | 2            |
|                          | 5            |
|                          | 29           |
| 04.05.00                 |              |
|                          | 2            |
| CA_2-5-30                | E            |
| CA_2-5-30                | 5            |
|                          | 30           |
| CA_2-5-30<br>CA_2-2-5-66 | 30<br>2      |
|                          | 30<br>2<br>5 |
|                          | 30<br>2      |

|                | 5  |
|----------------|----|
|                | 66 |
| CA_2-5-66      | 2  |
|                | 5  |
|                | 66 |
| CA_2-5-66-66   | 2  |
|                | 5  |
|                | 66 |
| CA_2-7-12      | 2  |
| _              | 7  |
|                | 12 |
| CA_2-7-66      | 2  |
|                | 7  |
|                | 66 |
| CA_2-12-30     | 2  |
| 07_2-12-30     | 12 |
|                |    |
| 04.040.00      | 30 |
| CA_2-12-66     | 2  |
|                | 12 |
|                | 66 |
| CA_2-12-66-66  | 2  |
|                | 12 |
|                | 66 |
| CA_2-2-13-66   | 2  |
|                | 13 |
|                | 66 |
| CA_2-13-66     | 2  |
| —              | 13 |
|                | 66 |
| CA_2-13-66-66  | 2  |
| 0/(_2 10 00 00 | 13 |
|                | 66 |
| CA_2-2-29-30   | 2  |
| 0A_2-2-29-30   | 29 |
|                |    |
| CA_2-29-30     | 30 |
| CA_2-29-30     | 2  |
|                | 29 |
|                | 30 |
| CA_2-29-66     | 2  |
|                | 29 |
|                | 66 |
| CA_2-30-66     | 2  |
|                | 30 |
|                | 66 |
| CA_2-30-66-66  | 2  |
| -              | 30 |
|                | 66 |
| CA_2-46-66     | 2  |
|                | 46 |
|                | 66 |
| CA_2-46-46-66  | 2  |
| 07_2-40-40-00  |    |
|                | 46 |
|                | 66 |
|                | 2  |
| CA_2-48-66     | 48 |
|                | 66 |
| CA_2-48-48-66  | 2  |
|                | 48 |
|                | 66 |
|                |    |

| CA_3-5-7     | 2                     |
|--------------|-----------------------|
| CA_3-5-7     | 3<br>5<br>7           |
|              | 5                     |
| 04.0577      |                       |
| CA_3-5-7-7   | 3                     |
|              | 5                     |
|              | 7                     |
| CA_3-5-40    | 3<br>5<br>7<br>3<br>5 |
|              | 5                     |
|              | 40                    |
| CA_3-5-40-40 | 3                     |
|              | 3 5                   |
|              | 40                    |
| CA_3-5-41    |                       |
|              | 3 5                   |
|              | 41                    |
| CA_3-3-7-8   |                       |
| 0/1_0 0 / 0  | 3 7                   |
|              | 8                     |
| CA_3-7-7-8   | 3                     |
| 04_9-1-1-0   | 7                     |
|              | 8                     |
| CA_3-7-8     | 3                     |
| CA_3-7-6     | 7                     |
|              | 8                     |
| 04 0 0 7 7 0 |                       |
| CA_3-3-7-7-8 | 3                     |
|              | 7                     |
|              | 8<br>3<br>7           |
| CA_3-7-20    | 3                     |
|              |                       |
|              | 20                    |
| CA_3-7-26    | 3                     |
|              | 7                     |
|              | 26                    |
| CA_3-7-7-26  | 3                     |
|              | 3 7                   |
|              | 26                    |
|              |                       |

| CA_3-7-28                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0, (_0, 7, 20                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-7-32                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 01 0 7 00                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CA_3-7-38                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-7-40                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CA_3-7-40                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-7-42                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0/(_0 / 42                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-8-11                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-8-20                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-8-28                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CA_3-8-40                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-11-28                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CA_3-11-20                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-19-21                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0/(_0 10 21                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-19-42                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •• ·• ·=                                                                                                     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-20-28                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u>                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-20-32                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u></u> <u></u>                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-20-42                                                                                                   | 32<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                              | 32<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CA_3-20-42                                                                                                   | 32<br>3<br>20<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              | 32<br>3<br>20<br>42<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA_3-20-42                                                                                                   | 32<br>3<br>20<br>42<br>3<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CA_3-20-42                                                                                                   | 32<br>3<br>20<br>42<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA_3-20-42<br>CA_3-21-28                                                                                     | 32<br>3<br>20<br>42<br>3<br>21<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-20-42                                                                                                   | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CA_3-20-42<br>CA_3-21-28                                                                                     | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42                                                                       | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42                                                                       | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CA_3-20-42<br>CA_3-21-28                                                                                     | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>42<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42                                                                       | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>42<br>3<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40                                                         | 32         3         20         42         3         21         28         3         21         42         3         21         42         3         21         42         3         21         42         3         28         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42                                                                       | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>42<br>3<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40                                                         | 32         3         20         42         3         21         28         3         21         42         3         21         42         3         21         42         3         28         40         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40                                                         | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>42<br>3<br>21<br>42<br>3<br>28<br>40<br>3<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41                                           | 32         3         20         42         3         21         28         3         21         42         3         21         42         3         21         42         3         28         40         3         28         40         3         28         41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40                                                         | 32<br>3<br>20<br>42<br>3<br>21<br>28<br>3<br>21<br>42<br>3<br>21<br>42<br>3<br>28<br>40<br>3<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41                                           | 32         3         20         42         3         21         28         3         21         42         3         21         3         21         42         3         28         40         3         28         41         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41                                           | 32         3         20         42         3         21         28         3         21         3         21         3         21         3         21         3         28         40         3         28         41         3         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41<br>CA_3-28-41<br>CA_3-28-42               | 32         3         20         42         3         21         28         3         21         42         3         21         3         21         42         3         28         40         3         28         41         3         28         41         3         28         41         3         28         42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41                                           | $ \begin{array}{r} 32 \\ 3 \\ 20 \\ 42 \\ 3 \\ 21 \\ 28 \\ 3 \\ 21 \\ 42 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 3 \\ 28 \\ 42 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41<br>CA_3-28-41<br>CA_3-28-42               | 32         3         20         42         3         21         28         3         21         42         3         21         3         21         42         3         28         40         3         28         41         3         28         41         3         28         41         3         28         42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41<br>CA_3-28-41<br>CA_3-28-42               | $     \begin{array}{r}         32 \\         3 \\         20 \\         42 \\         3 \\         21 \\         28 \\         3 \\         21 \\         42 \\         3 \\         28 \\         40 \\         3 \\         28 \\         40 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         28 \\         41 \\         3 \\         41 \\         3 \\         41 \\         3 \\         41 \\         3 \\         41 \\         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         41 \\         32 \\         3         3         41 \\         41 \\         32 \\         3         3         41 \\         32 \\         3         3         3         $ |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41<br>CA_3-28-41<br>CA_3-28-42<br>CA_3-41-42 | $\begin{array}{r} 32 \\ 3 \\ 20 \\ 42 \\ 3 \\ 21 \\ 28 \\ 3 \\ 21 \\ 42 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 42 \\ 3 \\ 41 \\ 42 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41<br>CA_3-28-41                             | $\begin{array}{r} 32 \\ 3 \\ 20 \\ 42 \\ 3 \\ 21 \\ 28 \\ 3 \\ 21 \\ 42 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 42 \\ 3 \\ 41 \\ 42 \\ 4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CA_3-20-42<br>CA_3-21-28<br>CA_3-21-42<br>CA_3-28-40<br>CA_3-28-41<br>CA_3-28-41<br>CA_3-28-42<br>CA_3-41-42 | $\begin{array}{r} 32 \\ 3 \\ 20 \\ 42 \\ 3 \\ 21 \\ 28 \\ 3 \\ 21 \\ 42 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 40 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 3 \\ 28 \\ 41 \\ 42 \\ 3 \\ 41 \\ 42 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|               | · · · · · · · · · · · · · · · · · · · |
|---------------|---------------------------------------|
|               | 12                                    |
| CA_4-4-5-12   | 4                                     |
|               | 5                                     |
|               | 12                                    |
| CA_4-5-12-12  | 4                                     |
|               | 5                                     |
|               | 12                                    |
| CA_4-5-13     | 4                                     |
|               | 5                                     |
|               | 13                                    |
| CA_4-5-29     | 4                                     |
| 0/(_4 8 28    | 5                                     |
|               | 29                                    |
| CA_4-5-30     |                                       |
| CA_4-5-30     | 4                                     |
|               | 5                                     |
|               | 30                                    |
| CA_4-4-5-30   | 4                                     |
|               | 5                                     |
|               | 30                                    |
| CA_4-7-12     | 4                                     |
|               | 7                                     |
|               | 12                                    |
| CA_4-12-30    | 4                                     |
|               | 12                                    |
|               | 30                                    |
| CA_4-4-12-30  | 4                                     |
| 07_+-+-12-50  | 12                                    |
|               |                                       |
| 0.0. 1.00.00  | 30                                    |
| CA_4-29-30    | 4                                     |
|               | 29                                    |
|               | 30                                    |
| CA_4-4-29-30  | 4                                     |
|               | 29                                    |
|               | 30                                    |
| CA_5-7-46     | 5                                     |
| _             | 7                                     |
|               | 46                                    |
| CA_5-12-66    | 5                                     |
|               | 12                                    |
|               | 66                                    |
| CA_5-30-66    | 5                                     |
| CA_5-50-00    |                                       |
|               | 30                                    |
|               | 66                                    |
| CA_5-30-66-66 | 5                                     |
|               | 30                                    |
| -             | 66                                    |
| CA_5-40-41    | 5                                     |
|               | 40                                    |
|               | 41                                    |
| CA_7-8-20     | 7                                     |
|               | 8                                     |
|               | 20                                    |
| CA_7-20-28    | 7                                     |
|               | 20                                    |
|               | 28                                    |
| CA_7-20-32    | 7                                     |
|               |                                       |
|               | 20                                    |
|               | 32                                    |
| CA_7-20-38    | 7                                     |
|               | 20                                    |
|               | 38                                    |
| CA_7-20-42    | 7                                     |
|               | 20                                    |
|               | 42                                    |
| CA_8-11-28    | 8                                     |
|               | -                                     |

|                | 11 |
|----------------|----|
|                | 28 |
| CA_8-28-41     | 8  |
|                | 28 |
|                | 41 |
| CA_12-30-66    | 12 |
|                | 30 |
|                | 66 |
| CA_12-30-66-66 | 12 |
|                | 30 |
|                | 66 |
| CA_19-21-42    | 19 |
|                | 21 |
|                | 42 |
| CA_21-28-42    | 21 |
|                | 28 |
|                | 42 |
| CA_28-41-42    | 28 |
|                | 41 |
|                | 42 |
| CA_29-30-66    | 29 |
|                | 30 |
|                | 66 |
| CA_29-46-66    | 29 |
|                | 46 |
|                | 66 |

#### Table 5.5-3B. Inter-band carrier aggregation bands (four bands)

| CA Band      | E-UTRA operating bands |
|--------------|------------------------|
| CA_1-3-5-7   | 1                      |
|              | 3                      |
|              | 5                      |
|              | 7                      |
| CA_1-3-5-7-7 | 1                      |
|              | 3                      |
|              | 5                      |
|              | 7                      |

| CA_1-3-5-40   | 1                  |
|---------------|--------------------|
|               | 3                  |
|               | 5                  |
|               | 40                 |
| CA_1-3-5-41   | 1                  |
| 0.1210011     | 3                  |
|               |                    |
|               | 5                  |
|               | 41                 |
| CA_1-3-7-8    | 1                  |
|               | 3                  |
|               | 7                  |
|               | 8                  |
| CA_1-3-7-20   | 1                  |
| 0.1 0 1 20    | 3                  |
|               | 7                  |
|               |                    |
|               | 20                 |
|               | 1                  |
|               | 3                  |
| CA_1-3-7-7-26 | 7                  |
|               | 26                 |
| CA_1-3-7-26   | 1                  |
| CA_1-3-7-20   |                    |
|               | 3                  |
|               | 7                  |
|               | 26                 |
| CA_1-3-7-28   | 1                  |
|               | 3                  |
|               | 7                  |
|               | 28                 |
| CA_1-3-7-40   | 1                  |
| CA_1-3-7-40   |                    |
|               | 3                  |
|               | 7                  |
|               | 40                 |
| CA_1-3-7-42   | 1                  |
|               | 3                  |
|               | 7                  |
|               | 42                 |
| CA_1-3-8-11   | 1                  |
| CA_1-3-6-11   | -                  |
|               | 3                  |
|               | 8                  |
|               | 11                 |
| CA_1-3-8-40   | 1                  |
|               | 3                  |
|               | 8                  |
|               | 40                 |
| CA_1-3-19-21  | 1                  |
| UA_1-3-18-21  |                    |
|               | 3                  |
|               | 19                 |
| [             | 21                 |
| CA_1-3-19-42  | 1                  |
|               | 3                  |
| l l           | 19                 |
|               | 42                 |
| CA 1 2 20 22  |                    |
| CA_1-3-20-28  | 1                  |
| H             | 2                  |
|               | 3                  |
|               | 20                 |
|               |                    |
| CA 1-3-20-42  | 20                 |
| CA_1-3-20-42  | 20<br>28<br>1      |
| CA_1-3-20-42  | 20<br>28<br>1<br>3 |
| CA_1-3-20-42  | 20<br>28<br>1      |

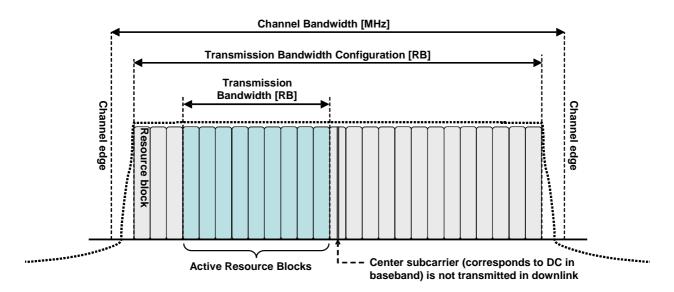
| CA_1-3-21-28      | 1  |
|-------------------|----|
|                   | 3  |
|                   | 21 |
|                   | 28 |
| CA_1-3-21-42      | 1  |
|                   | 3  |
|                   | 21 |
|                   | 42 |
| 0.4, 4, 0, 00, 40 |    |
| CA_1-3-28-42      | 1  |
|                   | 3  |
|                   | 28 |
|                   | 42 |
| CA_1-5-7-46       | 1  |
|                   | 5  |
|                   | 7  |
|                   | 46 |
| CA_1-7-20-28      | 1  |
| 0.1.1.1.20.20     | 7  |
|                   | 20 |
|                   |    |
|                   | 28 |
| CA_1-7-20-42      | 1  |
|                   | 7  |
|                   | 20 |
|                   | 42 |
| CA_1-19-21-42     | 1  |
|                   | 19 |
|                   | 21 |
|                   | 42 |
| CA_1-21-28-42     | 1  |
| CA_1-21-20-42     |    |
|                   | 21 |
|                   | 28 |
|                   | 42 |
| CA_2-4-5-12       | 2  |
|                   | 4  |
|                   | 5  |
|                   | 12 |
| CA_2-4-5-29       | 2  |
|                   | 4  |
|                   | 5  |
|                   |    |
| 04.0.45.00        | 29 |
| CA_2-4-5-30       | 2  |
|                   | 4  |
|                   | 5  |
| 04 0 1 7 10       | 30 |
| CA_2-4-7-12       | 2  |
|                   | 4  |
|                   | 7  |
|                   | 12 |
| CA_2-4-12-30      | 2  |
|                   | 4  |
|                   | 12 |
|                   | 30 |
| CA_2-4-29-30      | 2  |
|                   | 4  |
|                   | 29 |
|                   | 30 |
| CA_2-2-5-12-66    | 2  |
|                   | 5  |
|                   | 12 |
|                   | 66 |
| CA_2-2-5-30-66    | 2  |
| 1                 | 5  |

|                 | 20  |
|-----------------|-----|
|                 | 30  |
| CA 2 2 12 20 60 | 66  |
| CA_2-2-12-30-66 | 2   |
|                 | 12  |
|                 | 30  |
| 04 0 5 40 00    | 66  |
| CA_2-5-12-66    | 2 5 |
|                 |     |
|                 | 12  |
| 04.05.00.00     | 66  |
| CA_2-5-30-66    | 2   |
|                 | 5   |
|                 | 30  |
|                 | 66  |
| CA_2-5-30-66-66 | 2   |
|                 | 5   |
|                 | 30  |
|                 | 66  |
| CA_2-12-30-66   | 2   |
|                 | 12  |
|                 | 30  |
|                 | 66  |
| CA_3-7-20-28    | 3   |
|                 | 7   |
|                 | 20  |
|                 | 28  |
| CA_3-7-20-32    | 3   |
|                 | 7   |
|                 | 20  |
|                 | 32  |
| CA_3-7-20-42    | 3   |
|                 | 7   |
|                 | 20  |
|                 | 42  |
| CA_3-19-21-42   | 3   |
|                 | 19  |
|                 | 21  |
|                 | 42  |
| CA_3-28-41-42   | 3   |
|                 | 28  |
|                 | 41  |
|                 | 42  |

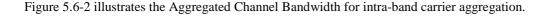
| CA Band        | E-UTRA operating bands |
|----------------|------------------------|
| CA_1-3-7-20-28 | 1                      |
|                | 3                      |
|                | 7                      |
|                | 20                     |
|                | 28                     |
| CA_1-3-7-20-42 | 1                      |
|                | 3                      |
|                | 7                      |
|                | 20                     |
|                | 42                     |

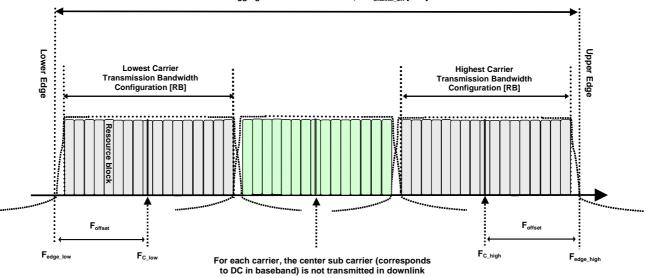
| CA Band  | E-UTRA operating band |
|----------|-----------------------|
|          |                       |
| CA_1-1   | 1                     |
| CA_2-2   | 2                     |
| CA_3-3   | 3                     |
| CA_4-4   | 4                     |
| CA_5-5   | 5                     |
| CA_7-7   | 7                     |
| CA_12-12 | 12                    |
| CA_23-23 | 23                    |
| CA_25-25 | 25                    |
| CA_40-40 | 40                    |
| CA_41-41 | 41                    |
| CA_42-42 | 42                    |
| CA_48-48 | 48                    |
| CA_66-66 | 66                    |

Table 5.5-4. Intra-band non-contiguous carrier aggregation bands (with two sub-blocks)


## 5.6 Channel bandwidth

For E-UTRA, requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.


Table 5.6-1 Transmission bandwidth configuration N<sub>RB</sub> in E-UTRA channel bandwidths


| Channel bandwidth<br>BW <sub>Channel</sub> [MHz]            | 1.4 | 3  | 5  | 10 | 15 | 20  |
|-------------------------------------------------------------|-----|----|----|----|----|-----|
| Transmission bandwidth configuration <i>N</i> <sub>RB</sub> | 6   | 15 | 25 | 50 | 75 | 100 |

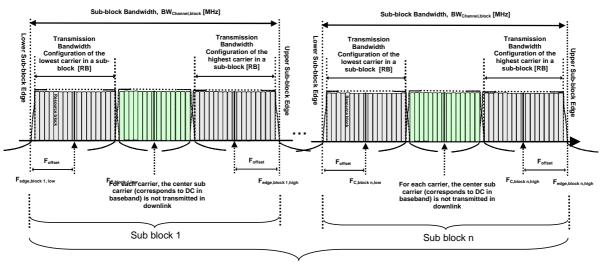
For E-UTRA, figure 5.6-1 shows the relation between the channel bandwidth (BW<sub>Channel</sub>) and the transmission bandwidth configuration (N<sub>RB</sub>). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at  $F_C$  +/- BW<sub>Channel</sub>/2.



#### Figure 5.6-1 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier






Aggregated Channel Bandwidth, BW<sub>channel\_CA</sub> [MHz]

#### Figure 5.6-2 Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The lower edge of the Aggregated Channel Bandwidth ( $BW_{Channel\_CA}$ ) is defined as  $F_{edge\_low} = F_{C\_low} - F_{offset}$ . The upper edge of the Aggregated Channel Bandwidth is defined as  $F_{edge\_high} = F_{C\_high} + F_{offset}$ . The Aggregated Channel Bandwidth,  $BW_{Channel\_CA}$ , is defined as follows:

 $BW_{Channel_{CA}} = F_{edge_{high}} - F_{edge_{low}} [MHz]$ 

Figure 5.6-3 illustrates the sub-block bandwidth for a BS operating in non-contiguous spectrum



Base Station RF Bandwidth

#### Figure 5.6-3 Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the sub-block bandwidth (BW<sub>Channel,block</sub>) is defined as  $F_{edge,block,low} = F_{C,block,low} - F_{offset}$ . The upper sub-block edge of the sub-block bandwidth is defined as  $F_{edge,block,high} = F_{C,block,high} + F_{offset}$ . The sub-block bandwidth, BW<sub>Channel,block</sub>, is defined as follows:

BW<sub>Channel,block</sub> = F<sub>edge,block,high</sub> - F<sub>edge,block,low</sub> [MHz]

Foffset is defined in Table 5.6-2 below where BW<sub>Channel</sub> is defined in Table 5.6-1.

Table 5.6-2: Definition of Foffset

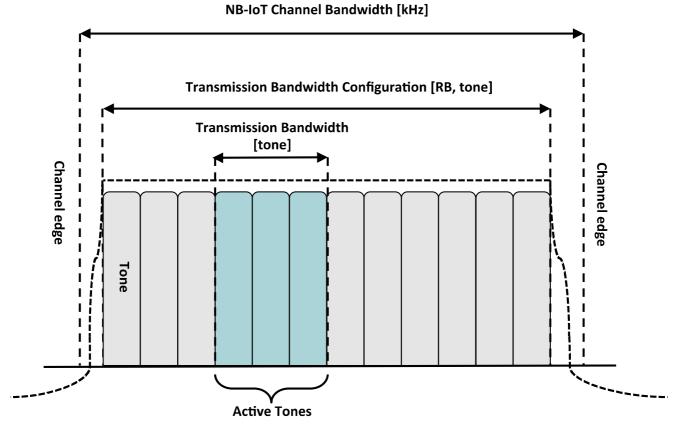
| Channel Bandwidth of the Lowest or<br>Highest Carrier: BW <sub>Channel</sub> [MHz] | F <sub>offset</sub> [MHz] |
|------------------------------------------------------------------------------------|---------------------------|
| 5, 10, 15, 20                                                                      | BW <sub>Channel</sub> /2  |

NOTE 1: Foffset is calculated separately for each Base Station RF Bandwidth edge / sub-block edge.

NOTE 2: The values of BW<sub>Channel\_CA</sub>/BW<sub>Channel,block</sub> for UE and BS are the same if the channel bandwidths of lowest and the highest component carriers are identical.

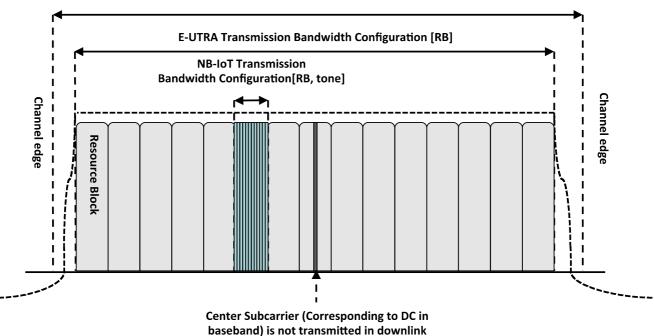
For NB-IoT, requirements in present document are specified for the channel bandwidths listed in Table 5.6-3.

## Table 5.6-3: Transmission bandwidth configuration NRB, Ntone 15kHz and Ntone 3.75kHz in NB-IoT channel bandwidth


| NB-loT                                                      | Standalone | In-band                                                                            | Guard Band                                                                       |
|-------------------------------------------------------------|------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Channel bandwidth<br>BW <sub>Channel</sub> [kHz]            | 200        | E-UTRA channel<br>bandwidth in Table<br>5.6-1 for<br>BW <sub>Channel</sub> >1.4MHz | E-UTRA channel<br>bandwidth in Table<br>5.6-1 for BW <sub>Channel</sub><br>>3MHz |
| Transmission bandwidth configuration <i>N</i> <sub>RB</sub> | 1          | 1                                                                                  | 1                                                                                |
| Transmission bandwidth configuration <i>N</i> tone 15kHz    | 12         | 12                                                                                 | 12                                                                               |
| Transmission bandwidth configuration <i>N</i> tone 3.75kHz  | 48         | 48                                                                                 | 48                                                                               |

For NB-IoT standalone operation, figure 5.6-4 shows the relation between the channel bandwidth (BW<sub>Channel</sub>) and the transmission bandwidth configuration ( $N_{\text{RB}}$ ,  $N_{\text{tone 15kHz}}$  and  $N_{\text{tone 3.75kHz}}$ ) for NB-IoT standalone operation. The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F<sub>C</sub> +/-BW<sub>Channel</sub>/2.

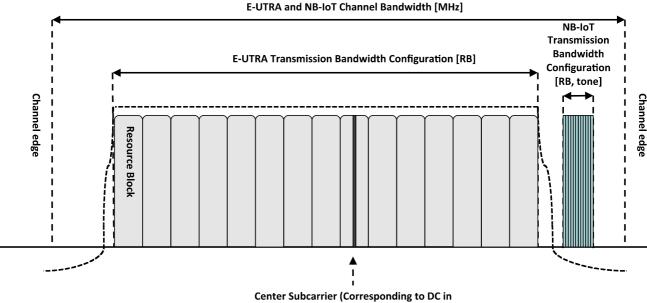
For NB-IoT standalone operation, NB-IoT requirements for receiver and transmitter shall apply with a frequency offset  $F_{offset}$  as defined in Table 5.6-3A.


Table 5.6-3A: Foffset for NB-IoT standalone operation

| Lowest or Highest Carrier | Foffset |
|---------------------------|---------|
| Standalone NB-IoT         | 200 kHz |



## Figure 5.6-4 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for NB-IoT standalone operation


For NB-IoT in-band operation, figure 5.6-5 shows the relation between the channel bandwidth (BW<sub>Channel</sub>) and the transmission bandwidth configuration ( $N_{\text{RB}}$ ,  $N_{\text{tone 15kHz}}$  and  $N_{\text{tone 3.75kHz}}$ ). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F<sub>C</sub> +/- BW<sub>Channel</sub>/2.



#### E-UTRA and NB-IoT Channel Bandwidth [MHz]

Figure 5.6-5 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for NB-IoT in-band operation

For NB-IoT guard band operation, figure 5.6-6 shows the relation between the channel bandwidth (BW<sub>Channel</sub>) and the transmission bandwidth configuration ( $N_{\text{RB}}$ ,  $N_{\text{tone 15kHz}}$  and  $N_{\text{tone 3.75kHz}}$ ). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F<sub>C</sub> +/- BW<sub>Channel</sub>/2.



baseband) is not transmitted in Downlink

## Figure 5.6-6 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for NB-IoT guard band operation

## 5.7 Channel arrangement

### 5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing =  $(BW_{Channel(1)} + BW_{Channel(2)})/2$ 

where  $BW_{Channel(1)}$  and  $BW_{Channel(2)}$  are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

For 20MHz carriers in Band 46, the requirements apply for both 19.8 MHz and 20.1 MHz nominal carrier spacing.

### 5.7.1A CA Channel spacing

For intra-band contiguously aggregated carriers the channel spacing between adjacent component carriers shall be multiple of 300 kHz.

The nominal channel spacing between two adjacent aggregated E-UTRA carriers is defined as follows:

Nominal channel spacing =  $\frac{BW_{Channel(1)} + BW_{Channel(2)} - 0.1 |BW_{Channel(1)} - BW_{Channel(2)}|}{0.6} |0.3|$ 

where  $BW_{Channel(1)}$  and  $BW_{Channel(2)}$  are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band contiguous carrier aggregation with two or more component carriers in Band 46, the requirements apply for both 19.8 MHz and 20.1 MHz nominal carrier spacing between two 20 MHz component carriers, and for 15.0 MHz nominal carrier spacing between 10 MHz and 20 MHz component carriers.

### 5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

### 5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 262143. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where  $F_{DL_{low}}$  and  $N_{Offs-DL}$  are given in table 5.7.3-1 and  $N_{DL}$  is the downlink EARFCN.

$$F_{DL} = F_{DL\_low} + 0.1(N_{DL} - N_{Offs-DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where  $F_{UL\_low}$  and  $N_{Offs-UL}$  are given in table 5.7.3-1 and  $N_{UL}$  is the uplink EARFCN.

$$F_{UL} = F_{UL\_low} + 0.1(N_{UL} - N_{Offs-UL})$$

The carrier frequency of NB-IoT in the downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 262143 and the Offset of NB-IoT Channel Number to EARFCN in the range  $\{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, -0.5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . The relation between EARFCN, Offset of NB-IoT Channel Number to EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where  $F_{DL}$  is the downlink carrier frequency of NB-IoT,  $F_{DL_{low}}$  and  $N_{Offs-DL}$  are given in table 5.7.3-1,  $N_{DL}$  is the downlink EARFCN,  $M_{DL}$  is the Offset of NB-IoT Channel Number to downlink EARFCN.

$$F_{DL} = F_{DL\_low} + 0.1(N_{DL} - N_{Offs-DL}) + 0.0025*(2M_{DL}+1)$$

The carrier frequency of NB-IoT in the uplink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0-262143 and the Offset of NB-IoT Channel Number to EARFCN in the range  $\{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . The relation between EARFCN, Offset of NB-IoT Channel Number to EARFCN and the carrier frequency in MHz for the uplink is given by the following equation, where  $F_{UL}$  is the uplink carrier frequency of NB-IoT,  $F_{UL_{low}}$  and  $N_{Offs-UL}$  are given in table 5.7.3-1,  $N_{UL}$  is the uplink EARFCN,  $M_{UL}$  is the Offset of NB-IoT Channel Number to uplink EARFCN.

$$F_{UL} = F_{UL\_low} + 0.1(N_{UL} - N_{Offs-UL}) + 0.0025*(2M_{UL})$$

- NOTE 1: For NB-IoT, N<sub>DL</sub> or N<sub>UL</sub> is different than the value of EARFCN that corresponds to E-UTRA downlink or uplink carrier frequency for in-band and guard band operation.
- NOTE 2:  $M_{DL} = -0.5$  is not applicable for in-band and guard band operation.
- NOTE 3: For the carrier including NPSS/NSSS for in-band and guard band operation, MDL is selected from {-2,-1,0,1}.
- NOTE 4: For the carrier including NPSS/NSSS for stand-alone operation, MDL = -0.5.

#### Table 5.7.3-1: E-UTRA channel numbers

| E-UTRA            |               | Downlink |                          |               | Uplink   |                                |
|-------------------|---------------|----------|--------------------------|---------------|----------|--------------------------------|
| Operating<br>Band | Fdl_low [MHz] | Noffs-DL | Range of N <sub>DL</sub> | Ful_low [MHz] | Noffs-UL | Range of Nu∟                   |
| 1                 | 2110          | 0        | 0 - 599                  | 1920          | 18000    | 18000 - 18599                  |
| 2                 | 1930          | 600      | 600 – 1199               | 1850          | 18600    | 18600 - 19199                  |
| 3                 | 1805          | 1200     | 1200 – 1949              | 1710          | 19200    | 19200 - 19949                  |
| 4                 | 2110          | 1950     | 1950 – 2399              | 1710          | 19950    | 19950 – 20399                  |
| 5                 | 869           | 2400     | 2400 – 2649              | 824           | 20400    | 20400 - 20649                  |
| 6                 | 875           | 2650     | 2650 – 2749              | 830           | 20650    | 20650 - 20749                  |
| 7                 | 2620          | 2750     | 2750 – 3449              | 2500          | 20750    | 20750 - 21449                  |
| 8                 | 925           | 3450     | 3450 - 3799              | 880           | 21450    | 21450 - 21799                  |
| 9                 | 1844.9        | 3800     | 3800 - 4149              | 1749.9        | 21800    | 21800 - 22149                  |
| 10                | 2110          | 4150     | 4150 - 4749              | 1710          | 22150    | 22150 - 22749                  |
| 11                | 1475.9        | 4750     | 4750 - 4949              | 1427.9        | 22750    | 22750 - 22949                  |
| 12                | 729           | 5010     | 5010 - 5179              | 699           | 23010    | 23010 - 23179                  |
| 13<br>14          | 746<br>758    | 5180     | 5180 - 5279              | 777           | 23180    | 23180 - 23279<br>23280 - 23379 |
|                   | /58           | 5280     | 5280 – 5379              | 788           | 23280    | 23280 - 23379                  |
| 17                | 734           | 5730     | 5730 – 5849              | 704           | 23730    | 23730 - 23849                  |
| 18                | 860           | 5850     | 5850 - 5999              | 815           | 23850    | 23850 - 23999                  |
| 19                | 875           | 6000     | 6000 – 6149              | 830           | 24000    | 24000 - 24149                  |
| 20                | 791           | 6150     | 6150 - 6449              | 832           | 24150    | 24150 - 24449                  |
| 21                | 1495.9        | 6450     | 6450 – 6599              | 1447.9        | 24450    | 24450 - 24599                  |
| 22                | 3510          | 6600     | 6600-7399                | 3410          | 24600    | 24600-25399                    |
| 23                | 2180          | 7500     | 7500 – 7699              | 2000          | 25500    | 25500 - 25699                  |
| 24                | 1525          | 7700     | 7700 – 8039              | 1626.5        | 25700    | 25700 - 26039                  |
| 25                | 1930          | 8040     | 8040 - 8689              | 1850          | 26040    | 26040 - 26689                  |
| 26                | 859           | 8690     | 8690 - 9039              | 814           | 26690    | 26690 - 27039                  |
| 27                | 852           | 9040     | 9040 - 9209              | 807           | 27040    | 27040 - 27209                  |
| 28                | 758           | 9210     | 9210 - 9659              | 703           | 27210    | 27210 - 27659                  |
| 29<br>(NOTE 2)    | 717           | 9660     | 9660 – 9769              |               | N/A      |                                |
| 30                | 2350          | 9770     | 9770 – 9869              | 2305          | 27660    | 27660 - 27759                  |
| 31                | 462.5         | 9870     | 9870 – 9919              | 452.5         | 27760    | 27760 - 27809                  |
| 32<br>(NOTE 2)    | 1452          | 9920     | 9920 – 10359             |               | N/A      |                                |
| 33                | 1900          | 36000    | 36000 - 36199            | 1900          | 36000    | 36000 - 36199                  |
| 34                | 2010          | 36200    | 36200 - 36349            | 2010          | 36200    | 36200 - 36349                  |
| 35                | 1850          | 36350    | 36350 - 36949            | 1850          | 36350    | 36350 - 36949                  |
| 36                | 1930          | 36950    | 36950 - 37549            | 1930          | 36950    | 36950 - 37549                  |
| 37                | 1910          | 37550    | 37550 - 37749            | 1910          | 37550    | 37550 - 37749                  |
| 38                | 2570          | 37750    | 37750 - 38249            | 2570          | 37750    | 37750 - 38249                  |
| 39                | 1880          | 38250    | 38250 - 38649            | 1880          | 38250    | 38250 - 38649                  |
| 40                | 2300          | 38650    | 38650 - 39649            | 2300          | 38650    | 38650 - 39649                  |
| 41                | 2496          | 39650    | 39650 - 41589            | 2496          | 39650    | 39650 - 41589                  |
| 42                | 3400          | 41590    | 41590 – 43589            | 3400          | 41590    | 41590 - 43589                  |
| 43                | 3600          | 43590    | 43590 – 45589            | 3600          | 43590    | 43590 - 45589                  |
| 44                | 703           | 45590    | 45590 – 46589            | 703           | 45590    | 45590 - 46589                  |
| 45                | 1447          | 46590    | 46590 – 46789            | 1447          | 46590    | 46590 - 46789                  |
| 46<br>(NOTE 3)    | 5150          | 46790    | 46790 – 54539            | 5150          | 46790    | 46790 – 54539                  |
| 47                | 5855          | 54540    | 54540 - 55239            | 5855          | 54540    | 54540 - 55239                  |
| 48                | 3550          | 55240    | 55240 - 56739            | 3550          | 55240    | 55240 - 56739                  |
| 65                | 2110          | 65536    | 65536 - 66435            | 1920          | 131072   | 131072 –<br>131971             |
| 66<br>(NOTE 4)    | 2110          | 66436    | 66436 - 67335            | 1710          | 131972   | 131971<br>131972 –<br>132671   |
| 67                | 738           | 67336    | 67336 - 67535            | I.            | N/A      | 102071                         |
| (NOTE 2)<br>68    | 753           | 67536    | 67536 - 67835            | 698           | 132672   | 132672 -                       |
| 69                | 2570          | 67836    | 67836 - 68335            |               | N/A      | 132971                         |
| (NOTE 2)          |               |          |                          | 1605          |          | 122072                         |
| 70<br>(NOTE 5)    | 1995          | 68336    | 68336 - 68585            | 1695          | 132972   | 132972 -<br>133121             |

NOTE 1: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.

NOTE 2: Restricted to E-UTRA operation when carrier aggregation is configured.

NOTE 3: The following NDL and NUL are allowed for operation in Band 46 assuming 20MHz channel bandwidth: NDL =NUL = {n-2, n-1, n, n+1, n+2 | n = 46890 (5160 MHz), 47090 (5180 MHz), 47290 (5200 MHz), 47490 (5220 MHz), 47690 (5240 MHz), 47890 (5260 MHz), 48090 (5280 MHz), 48290 (5300 MHz), 48490 (5320 MHz), 48690 (5340 MHz), 50090 (5480 MHz), 50290 (5500 MHz), 50490 (5520 MHz), 50690 (5540 MHz), 50890 (5560 MHz), 51090 (5580 MHz), 51290 (5600 MHz), 51490 (5620 MHz), 51690 (5640 MHz), 51890 (5660 MHz), 52090 (5680 MHz), 52290 (5700 MHz), 52490 (5720 MHz), 52740 (5745 MHz), 52940 (5765 MHz), 53140 (5785 MHz), 53340 (5805 MHz), 53540 (5825 MHz), 53740 (5845 MHz), 53940 (5865 MHz), 54140 (5885 MHz), 54340 (5905 MHz)}. And the following N<sub>DL</sub> and N<sub>UL</sub> are allowed for operation in Band 46 assuming 10MHz channel bandwidth: N<sub>DL</sub> =N<sub>UL</sub> = {n-2, n-1, n, n+1, n+2 | n = 52590 (5730 MHz), 53590 (5830 MHz)}. 10 MHz channel bandwidth shall only apply in certain regions where the absence of non 3GPP technologies can be guaranteed on a long term basis in this version of specification. NOTE 4: Downlink frequency range 2180 – 2200 MHz is restricted to E-UTRA operation when carrier aggregation is configured. NOTE 5: The range 2010-2020 MHz of the DL operating band is restricted to E-UTRA operation when carrier

aggregation is configured and TX-RX separation is 300 MHz. The range 2005-2020 MHz of the DL operating band is restricted to E-UTRA operation when carrier aggregation is configured and TX-RX separation is 295 MHz.

#### 5.7.4 EARFCN sets for uplink transmissions on multiple Scells configured in Band 46

On a configured set of carriers with carrier frequencies that are a subset of any of the following sets of EARFCN, if the eNB schedules a UE to transmit in a subframe on the configured set of carriers, and if the UL grants scheduling PUSCH transmissions on any of the said set of carriers indicate Type 1 channel access procedure, and if the same '*PUSCH starting position*' is indicated for all carriers, transmissions in accordance with the conditions for Type 2 channel access specified in clause 15.2.1 of [11] are allowed:

- for sets of two Scells: {47090, 47290}, {47490, 47690}, {47890, 48090}, {48290, 48490}, {50290, 50490}, {50690, 50890}, {51090, 51290}, {51490, 51690}, {51890, 52090}
- for sets of four Scells: {47090, 47290, 47490, 47690}, {47890, 48090, 48290, 48490}, {50290, 50490, 50690, 50890}, {51090, 51290, 51490, 51690}
- [for sets of eight Scells: {47090, 47290, 47490, 47690, 47890, 48090, 48290, 48490}, {50290, 50490, 50690, 50890, 51090, 51290, 51490, 51690}]

## 5.8 Requirements for contiguous and non-contiguous spectrum

A spectrum allocation where the BS operates can either be contiguous or non-contiguous. Unless otherwise stated, the requirements in the present specification apply for BS configured for both contiguous spectrum operation and non-contiguous spectrum operation.

For BS operation in non-contiguous spectrum, some requirements apply also inside the sub-block gaps. For each such requirement, it is stated how the limits apply relative to the sub-block edges.

## 6 Transmitter characteristics

### 6.1 General

Unless otherwise stated, the requirements in clause 6 are expressed for a single transmitter antenna connector. In case of multi-carrier transmission with one or multiple transmitter antenna connectors, transmit diversity or MIMO transmission, the requirements apply for each transmitter antenna connector.

Unless otherwise stated, the transmitter characteristics are specified at the BS antenna connector (test port A) with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as a TX amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (port B).

Unless otherwise stated the requirements in clause 6 applies at all times, i.e. during the Transmitter ON period, the Transmitter OFF period and the Transmitter transient period.

Unless otherwise stated the requirements for NB-IoT in clause 6 applies for all operation modes (In-band operation, Guard-band operation).

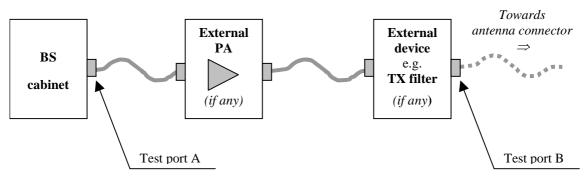



Figure 6.1-1: Transmitter test ports

### 6.2 Base station output power

Output power, Pout, of the base station is the mean power of one carrier delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Rated total output power of the base station is the mean power for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the antenna connector during the transmitter ON period.

Maximum output power ( $P_{max,c}$ ) of the base station is the mean power level per carrier measured at the antenna connector during the transmitter ON period in a specified reference condition.

Rated output power,  $P_{rated,c}$ , of the base station is the mean power level per carrier for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the antenna connector during the transmitter ON period.

- NOTE: Different P<sub>rated,c</sub> may be declared for different configurations.
- NOTE: For NB-IoT in-band and guard band operation, the LTE carrier and NB-IoT carrier shall be seen as a single carrier occupied LTE channel bandwidth, the output power over this carrier is shared between LTE and NB-IoT. This note is applied for Pout, Rated total output power, Pmax,c and Prated,c.

The rated output power, Prated,c, of the BS shall be as specified in Table 6.2-1.

| BS class                          | P <sub>rated,c</sub>                     |
|-----------------------------------|------------------------------------------|
| Wide Area BS                      | - (note)                                 |
|                                   |                                          |
| Medium Range BS                   | <u>&lt;</u> + 38 dBm                     |
| Local Area BS                     | <u>&lt;</u> + 24 dBm                     |
| Home BS                           | <u> &lt; + 20 dBm (for one transmit </u> |
|                                   | antenna port)                            |
|                                   | < + 17 dBm (for two transmit             |
|                                   | antenna ports)                           |
|                                   | < + 14dBm (for four transmit             |
|                                   | antenna ports)                           |
|                                   | < + 11dBm (for eight transmit            |
|                                   | antenna ports)                           |
| NOTE: There is no upper limit for | the rated output power of the Wide Area  |
| Base Station.                     |                                          |

#### Table 6.2-1: Base Station rated output power

In addition for Band 46 operation, the BS may have to comply with the applicable BS power limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer. The regional requirements may be in the form of conducted power, power spectral density, EIRP and other types of limits. In case of regulatory limits based on EIRP, assessment of the EIRP level is described in Annex H.

### 6.2.1 Minimum requirement

In normal conditions, the base station maximum output power,  $P_{max,c}$ , shall remain within +2 dB and -2 dB of the rated output power,  $P_{rated,c}$ , declared by the manufacturer.

In extreme conditions, the base station maximum output power,  $P_{max,c}$ , shall remain within +2.5 dB and -2.5 dB of the rated output power,  $P_{rated,c}$ , declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

### 6.2.2 Additional requirement (regional)

For Band 34 operation in Japan, the rated output power,  $P_{rated,c}$ , declared by the manufacturer shall be less than or equal to the values specified in Table 6.2.2-1.

## Table 6.2.2-1: Regional requirements for Band 34 for rated output power declared by the manufacturer.

| Channel bandwidth<br>BW <sub>Channel</sub> [MHz] | 1.4 | 3   | 5  | 10 | 15 | 20  |
|--------------------------------------------------|-----|-----|----|----|----|-----|
| Maximum output power<br>P <sub>max,c</sub> [W]   | N/A | N/A | 20 | 40 | 60 | N/A |

For Band 41 operation in Japan, the rated output power,  $P_{rated,c}$ , per BS declared by the manufacturer shall be less than or equal to the values specified in Table 6.2.2-2.

## Table 6.2.2-2: Regional requirements for Band 41 for rated output power declared by the manufacturer.

| Channel bandwidth<br>BW <sub>Channel</sub> [MHz] | 1.4 | 3   | 5   | 10 | 15  | 20 |
|--------------------------------------------------|-----|-----|-----|----|-----|----|
| Maximum output power<br>P <sub>max,c</sub> [W]   | N/A | N/A | N/A | 20 | N/A | 40 |

### 6.2.3 Home BS output power for adjacent UTRA channel protection

The Home BS shall be capable of adjusting the transmitter output power to minimize the interference level on the adjacent channels licensed to other operators in the same geographical area while optimize the Home BS coverage. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions.

The output power, Pout, of the Home BS shall be as specified in Table 6.2.3-1 under the following input conditions:

- CPICH Êc, measured in dBm, is the code power of the Primary CPICH on one of the adjacent channels present at the Home BS antenna connector for the CPICH received on the adjacent channels. If Tx diversity is applied on the Primary CPICH, CPICH Êc shall be the sum in [W] of the code powers of the Primary CPICH transmitted from each antenna.
- Ioh, measured in dBm, is the total received power density, including signals and interference but excluding the own Home BS signal, present at the Home BS antenna connector on the Home BS operating channel.

In case that both adjacent channels are licensed to other operators, the most stringent limit shall apply for Pout. In the case when one of the adjacent channels is licensed to an E-UTRA operator while the other adjacent channel is licensed to an UTRA operator, the more stringent limit of this subclause and subclause 6.2.4 shall apply for Pout. In case the Home BS's operating channel and both adjacent channels are licensed to the same operator, the requirements of this clause do not apply.

The input conditions defined for the requirements in this section are specified at the antenna connector of the Home BS. For Home BS receivers with diversity, the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. The requirements are otherwise unchanged. For Home BS(s) without measurement capability, a reference antenna with a gain of 0 dBi is assumed for converting these power levels into field strength requirements.

#### Table 6.2.3-1: Home BS output power for adjacent operator UTRA channel protection

| Input Conditions                           | Output power, Pout       |
|--------------------------------------------|--------------------------|
| loh > CPICH Êc + 43 dB<br>And CPICH Êc ≥ - | ≤ 10 dBm                 |
| 105dBm                                     |                          |
| loh ≤ CPICH Êc + 43 dB                     | ≤ max(8 dBm, min(20 dBm, |
| and CPICH Êc ≥ -                           | CPICH Êc + 100           |
| 105dBm                                     | dB))                     |

- Note 1: The Home BS transmitter output power specified in Table 6.2.3-1 assumes a Home BS reference antenna gain of 0 dBi, an target outage zone of 47dB around the Home BS for an UE on the adjacent channel, with an allowance of 2 dB for measurement errors, an ACIR of 33 dB, an adjacent channel UE CPICH Ec/Io target of -18 dB and the same CPICH Êc value at the adjacent channel UE as for the Home BS.
- Note 2: For CPICH  $\hat{E}c < -105$  dBm, the requirements in subclauses 6.2.1 and 6.2.2 apply.
- Note 3: The output power Pout is the sum transmit power across all the antennas of the Home BS, with each transmit power measured at the respective antenna connectors.

#### 6.2.4 Home BS output power for adjacent E-UTRA channel protection

The Home BS shall be capable of adjusting the transmitter output power to minimize the interference level on the adjacent channels licensed to other operators in the same geographical area while optimize the Home BS coverage. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions.

The output power, Pout, of the Home BS shall be as specified in Table 6.2. 4-1 under the following input conditions:

CRS Ês, measured in dBm, is the Reference Signal Received Power per resource element on one of the adjacent channels present at the Home BS antenna connector for the Reference Signal received on the adjacent channels. For CRS Ês determination, the cell-specific reference signal R0 according TS 36.211 [3] shall be used. If the Home BS can reliably detect that multiple TX antennas are used for transmission on the adjacent channel, it may use the average in [W] of the CRS Ês on all detected antennas.

- Ioh, measured in dBm, is the total received power density, including signals and interference but excluding the own Home BS signal, present at the Home BS antenna connector on the Home BS operating channel.

In case that both adjacent channels are licensed to other operators, the most stringent limit shall apply for Pout. In the case when one of the adjacent channels is licensed to an E-UTRA operator while the other adjacent channel is licensed to an UTRA operator, the more stringent limit of this subclause and subclause 6.2.3 shall apply for Pout. In case the Home BS's operating channel and both adjacent channels are licensed to the same operator, the requirements of this clause do not apply.

The input conditions defined for the requirements in this section are specified at the antenna connector of the Home BS. For Home BS receivers with diversity, the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. The requirements are otherwise unchanged. For Home BS(s) without measurement capability, a reference antenna with a gain of 0 dBi is assumed for converting these power levels into field strength requirements.

Table 6.2. 4-1: Home BS output power for adjacent operator E-UTRA channel protection

| Input Conditions                                                                               | Output power, Pout                                                                                                                |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| loh > CRS Ês +<br>$10 \cdot \log_{10} \left( N_{RB}^{DL} \cdot N_{sc}^{RB} \right)$<br>+ 30 dB | ≤ 10 dBm                                                                                                                          |
| and CRS Ês ≥ -127dBm<br>loh ≤ CRS Ês +                                                         |                                                                                                                                   |
| $10 \cdot \log_{10} \left( N_{RB}^{DL} \cdot N_{sc}^{RB} \right) + 30 \text{ dB}$              | $\leq \max(8 \text{ dBm, min}(20 \text{ dBm, CRS}) \\ \hat{E}s + 10 \cdot \log_{10} \left( N_{RB}^{DL} \cdot N_{sc}^{RB} \right)$ |
| and CRS Ês ≥ -127dBm                                                                           | + 85 dB))                                                                                                                         |

- Note 1: The Home BS transmitter output power specified in Table 6.2. 4-1 assumes a Home BS reference antenna gain of 0 dBi, an target outage zone of 47dB around the Home BS for an UE on the adjacent channel, with an allowance of 2 dB for measurement errors, an ACIR of 30 dB, an adjacent channel UE £s/Iot target of 6 dB and the same CRS £s value at the adjacent channel UE as for the Home BS.
- Note 2: For CRS  $\hat{E}s < -127$ dBm, the requirements in subclauses 6.2.1 and 6.2.2 apply.
- Note 3: The output power Pout is the sum transmit power across all the antennas of the Home BS, with each transmit power measured at the respective antenna connectors.
- Note 4:  $N_{RB}^{DL}$  is the number of downlink resource blocks in the own Home BS channel.

Note 5:  $N_{sc}^{RB}$  is the number of subcarriers in a resource block,  $N_{sc}^{RB} = 12$ .

### 6.2.5 Home BS Output Power for co-channel E-UTRA protection

To minimize the co-channel DL interference to non-CSG macro UEs operating in close proximity while optimizing the CSG Home BS coverage, Home BS may adjust its output power according to the requirements set out in this clause. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions.

For Home BS that supports the requirements in this clause, the output power, Pout, of the Home BS shall be as specified in Table 6.2.5-1 under the following input conditions:

- CRS Ês, measured in dBm, is the Reference Signal Received Power per resource element present at the Home BS antenna connector received from the co-channel Wide Area BS. For CRS Ês determination, the cell-specific reference signal R0 according TS 36.211 [10] shall be used. If the Home BS can reliably detect that multiple TX antenna ports are used for transmission by the co-channel Wide Area Base Station, it may use the average in [W] of the CRS Ês on all detected TX antenna ports, including R0.
- Ioh, measured in dBm, is the total received DL power, including all interference but excluding the own Home BS signal, present at the Home BS antenna connector on the Home BS operating channel.

- Iob, measured in dBm, is the uplink received interference power, including thermal noise, within one physical resource block's bandwidth of  $N_{sc}^{RB}$  resource elements as defined in TS 36.214, present at the Home BS antenna connector on the Home BS operating channel.

The input conditions defined for the requirements in this section are specified at the antenna connector of the Home BS. For Home BS receivers with diversity, the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. The requirements are otherwise unchanged. For Home BS(s) without measurement capability, a reference antenna with a gain of 0 dBi is assumed for converting these power levels into field strength requirements.

Table 6.2.5-1: Home BS output power for co-channel E-UTRA channel protection

| Input Conditions                                                              | Output power, Pout                                                     |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------|
| loh (DL) > CRS Ês + 10log <sub>10</sub> ( $N_{RB}^{DL} N_{sc}^{RB}$ ) + 30 dB | ≤ 10 dBm                                                               |
| and                                                                           |                                                                        |
| Option 1: CRS Ês ≥ -127 dBm or                                                |                                                                        |
| Option 2: CRS Ês ≥ -127 dBm and lob > -103 dBm                                |                                                                        |
| loh (DL) ≤ CRS Ês + 10log <sub>10</sub> ( $N_{RB}^{DL} N_{sc}^{RB}$ ) + 30 dB | ≤ max (Pmin, min (P <sub>max,c</sub> CRS Ês +                          |
|                                                                               | 10log <sub>10</sub> ( $N_{ m RB}^{ m DL}$ $N_{ m sc}^{ m RB}$ ) + X )) |
| and                                                                           |                                                                        |
| Option 1: CRS Ês ≥ -127 dBm or                                                | $30 \text{ dB} \le X \le 70 \text{ dB}$<br>Pmin = - 10 dBm             |
|                                                                               |                                                                        |
| Option 2. CRS Ês ≥ -127 dBm and lob > -103 dBm                                |                                                                        |
|                                                                               |                                                                        |

- Note 1: Only the option supported by the Home BS shall be tested.
- Note 2: For CRS  $\hat{E}s < -127$ dBm, or Iob  $\leq -103$  dBm when Option 2 is supported, the requirements in sub-clauses 6.2.1 and 6.2.2 apply.
- Note 3: The output power, Pout, is the sum of transmits power across all the antennas of the Home BS, with each transmit power measured at the respective antenna connectors.
- Note 4:  $N_{RB}^{DL}$  is the number of downlink resource blocks in the own Home BS channel.

Note 5:  $N_{sc}^{RB}$  is the number of subcarriers in a resource block,  $N_{sc}^{RB} = 12$ .

- Note 6: X is a network configurable parameter.
- Note 7: Pmin can be lower dependent on the Home BS total dynamic range.
- Note 8: Other input conditions and output power to be applied for network scenarios other than co-channel E-UTRA macro channel protection shall not be precluded.

## 6.3 Output power dynamics

The requirements in subclause 6.3 apply during the transmitter ON period. Transmit signal quality (as specified in subclause 6.5) shall be maintained for the output power dynamics requirements of this Clause.

Power control is used to limit the interference level.

### 6.3.1 RE Power control dynamic range

The RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power for a specified reference condition.

#### 6.3.1.1 Minimum requirements

RE power control dynamic range:

| Modulation scheme<br>used on the RE                                                                                 | RE power control dynamic rang<br>(dB) |      |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|--|
|                                                                                                                     | (down)                                | (up) |  |
| QPSK (PDCCH)                                                                                                        | -6                                    | +4   |  |
| QPSK (PDSCH)                                                                                                        | -6                                    | +3   |  |
| 16QAM (PDSCH)                                                                                                       | -3                                    | +3   |  |
| 64QAM (PDSCH)                                                                                                       | 0                                     | 0    |  |
| 256QAM (PDSCH)                                                                                                      | 0                                     | 0    |  |
| NOTE 1: The output power per carrier shall always be less or equal to the maximum output power of the base station. |                                       |      |  |

### 6.3.2 Total power dynamic range

The total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

- NOTE 1: The upper limit of the dynamic range is the OFDM symbol power for a BS at maximum output power. The lower limit of the dynamic range is the OFDM symbol power for a BS when one resource block is transmitted. The OFDM symbol shall carry PDSCH and not contain RS, PBCH or synchronisation signals.
- NOTE 2: The requirement does not apply to Band 46.

#### 6.3.2.1 Minimum requirements

The downlink (DL) total power dynamic range for each E-UTRA carrier shall be larger than or equal to the level in Table 6.3.2.1-1.

| E-UTRA<br>channel bandwidth (MHz) | Total power dynamic<br>range (dB) |
|-----------------------------------|-----------------------------------|
| 1.4                               | 7.7                               |
| 3                                 | 11.7                              |
| 5                                 | 13.9                              |
| 10                                | 16.9                              |
| 15                                | 18.7                              |
| 20                                | 20                                |

| Table 6.3.2.1-1 E-UTRA BS total | power dynamic range |
|---------------------------------|---------------------|
|---------------------------------|---------------------|

# 6.3.3 NB-IoT RB power dynamic range for in-band or guard band operation

The NB-IoT RB power dynamic range (or NB-IoT power boosting) for guard-band operation is the difference between the power of NB-IoT carrier (which occupies 180kHz in guard band) and the average power over all carriers (both E-UTRA and NB-IoT).

The NB-IoT RB power dynamic range (or NB-IoT power boosting) for in-band operation is the difference between the average power of NB-IoT REs (which occupies certain REs in a PRB of E-UTRA carrier) and the average power over all REs (both E-UTRA and NB-IoT).

#### 6.3.3.1 Minimum Requirement

NB-IoT power dynamic range shall be larger than or equal to +6dB, except for guard band operation with E-UTRA 5 MHz channel bandwidth signal where BS manufacturer shall declare the NB-IoT dynamic range power it could support. (in this version of the specification).

The +6 dB power dynamic range is only required for one NB-IoT PRB for both in-band and guard band operation modes.

For guard band operation, this NB-IoT PRB should be placed adjacent to the LTE PRB edge as close as possible (i.e., away from edge of channel bandwidth).

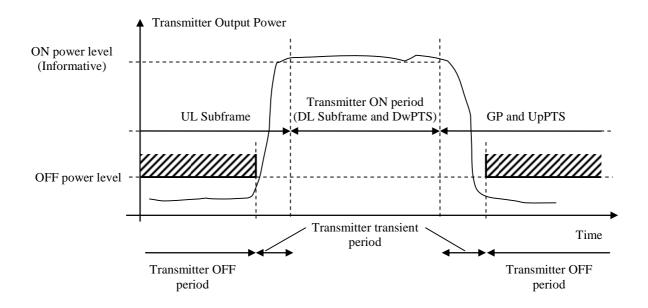
## 6.4 Transmit ON/OFF power

The requirements in subclause 6.4 are only applied for E-UTRA TDD BS.

## 6.4.1 Transmitter OFF power

Transmitter OFF power is defined as the mean power measured over 70 us filtered with a square filter of bandwidth equal to the transmission bandwidth configuration of the BS ( $BW_{Config}$ ) centred on the assigned channel frequency during the transmitter OFF period.

For BS supporting intra-band contiguous CA, the transmitter OFF power is defined as the mean power measured over 70 us filtered with a square filter of bandwidth equal to the Aggregated Channel Bandwidth  $BW_{Channel\_CA}$  centred on  $(F_{edge\_high}+F_{edge\_low})/2$  during the transmitter OFF period.


#### 6.4.1.1 Minimum Requirement

The transmitter OFF power spectral density shall be less than -85dBm/MHz.

For BS capable of multi-band operation, the requirement is only applicable during the transmitter OFF period in all supported operating bands.

### 6.4.2 Transmitter transient period

The transmitter transient period is the time period during which the transmitter is changing from the OFF period to the ON period or vice versa. The transmitter transient period is illustrated in Figure 6.4.2-1.



## Figure 6.4.2-1 Illustration of the relations of transmitter ON period, transmitter OFF period and transmitter transient period.

#### 6.4.2.1 Minimum requirements

The transmitter transient period shall be shorter than the values listed in Table 6.4.2.1-1.

Table 6.4.2.1-1 Minimum requirements for the transmitter transient period

| Transition | Transient period length [us] |
|------------|------------------------------|
| OFF to ON  | 17                           |
| ON to OFF  | 17                           |

## 6.5 Transmitted signal quality

The requirements in subclause 6.5 apply to the transmitter ON period.

### 6.5.1 Frequency error

Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

#### 6.5.1.1 Minimum requirement

For E-UTRA, the modulated carrier frequency of each E-UTRA carrier configured by the BS shall be accurate to within the accuracy range given in Table 6.5.1-1 observed over a period of one subframe (1ms).

For NB-IoT, the modulated carrier frequency of each NB-IoT carrier configured by the BS shall be accurate to within the accuracy range given in Table 6.5.1-1 observed over a period of one subframe (1ms).

| BS class        | Accuracy  |
|-----------------|-----------|
| Wide Area BS    | ±0.05 ppm |
| Medium Range BS | ±0.1 ppm  |
| Local Area BS   | ±0.1 ppm  |
| Home BS         | ±0.25 ppm |

Table 6.5.1-1: Frequency error minimum requirement

#### 6.5.2 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. The equaliser parameters are estimated as defined in Annex E. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed in percent.

For E-UTRA, for all bandwidths, the EVM measurement shall be performed for each E-UTRA carrier over all allocated resource blocks and downlink subframes within 10ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries. The EVM value is then calculated as the mean square root of the measured values. The EVM of each E-UTRA carrier for different modulation schemes on PDSCH shall be better than the limits in table 6.5.2-1:

Table 6.5.2-1: EVM requirements for E-UTRA carrier

| Modulation scheme for PDSCH | Required EVM [%] |
|-----------------------------|------------------|
| QPSK                        | 17.5 %           |
| 16QAM                       | 12.5 %           |
| 64QAM                       | 8 %              |
| 256QAM                      | 3.5 %            |

For NB-IoT, for all bandwidths, the EVM measurement shall be performed for each NB-IoT carrier over all allocated resource and downlink subframes within 10ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries. The EVM value is then calculated as the mean square root of the measured values. The EVM of each NB-IoT carrier on NB-PDSCH shall be better than the limits in Table 6.5.2-2:

| Modulation scheme for NB-PDSCH | Required EVM [%] |
|--------------------------------|------------------|
| QPSK                           | 17.5 %           |

#### 6.5.3 Time alignment error

This requirement applies to frame timing in TX diversity, MIMO transmission, carrier aggregation and their combinations.

Frames of the LTE signals present at the BS transmitter antenna port(s) are not perfectly aligned in time. In relation to each other, the RF signals present at the BS transmitter antenna port(s) experience certain timing differences.

For a specific set of signals/transmitter configuration/transmission mode, time alignment error (TAE) is defined as the largest timing difference between any two signals.

#### 6.5.3.1 Minimum Requirement

#### For E-UTRA:

- For MIMO or TX diversity transmissions, at each carrier frequency, TAE shall not exceed 65 ns.

- For intra-band contiguous carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 130 ns.
- For intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 260 ns.
- For inter-band carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 260ns.

For NB-IoT:

- For TX diversity transmissions, at each carrier frequency, TAE shall not exceed 65 ns.

#### 6.5.4 DL RS power

For E-UTRA, DL RS power is the resource element power of the Downlink Reference Symbol.

The absolute DL RS power is indicated on the DL-SCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the DL-SCH and the DL RS power of each E-UTRA carrier at the BS antenna connector.

For NB-IoT, DL NRS power is the resource element power of the Downlink Narrow-band Reference Signal.

The absolute DL NRS power is indicated on the DL-SCH. The absolute accuracy is defined as the maximum deviation between the DL NRS power indicated on the DL-SCH and the DL NRS power of each NB-IoT carrier at the BS antenna connector.

#### 6.5.4.1 Minimum requirements

For E-UTRA, DL RS power of each E-UTRA carrier shall be within  $\pm$  2.1 dB of the DL RS power indicated on the DL-SCH.

For NB-IoT, DL NRS power of each NB-IoT carrier shall be within  $\pm$  2.1 dB of the DL NRS power indicated on the DL-SCH.

### 6.6 Unwanted emissions

Unwanted emissions consist of out-of-band emissions and spurious emissions [2]. Out of band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The out-of-band emissions requirement for the BS transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and Operating band unwanted emissions. The Operating band unwanted emissions define all unwanted emissions in each supported downlink operating band plus the frequency ranges 10 MHz above and 10 MHz below each band. Unwanted emissions outside of this frequency range are limited by a spurious emissions requirement.

For a BS supporting multi-carrier or intra-band contiguous CA, the unwanted emissions requirements apply to channel bandwidths of the outermost carrier larger than or equal to 5 MHz.

There is in addition a requirement for occupied bandwidth.

#### 6.6.1 Occupied bandwidth

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage  $\beta/2$  of the total mean transmitted power. See also ITU-R Recommendation SM.328 [5].

The value of  $\beta/2$  shall be taken as 0.5%.

The requirement applies during the transmitter ON period.

#### 6.6.1.1 Minimum requirement

For E-UTRA, the occupied bandwidth for each E-UTRA carrier shall be less than the channel bandwidth as defined in Table 5.6-1. For intra-band contiguous CA, the occupied bandwidth shall be less than or equal to the Aggregated Channel Bandwidth as defined in subclause 5.6. For Band 46 operation in Japan, the occupied bandwidth for each 20MHz channel bandwidth E-UTRA carrier assigned within 5150-5350 MHz and 5470-5725 MHz shall be less than or equal to 19 MHz and 19.7MHz respectively.

For NB-IoT in-band operation, the occupied bandwidth for each E-UTRA carrier with NB-IoT shall be less than the channel bandwidth as defined in Table 5.6-1.

For NB-IoT guard band operation, the occupied bandwidth for each E-UTRA carrier with NB-IoT shall be less than the channel bandwidth as defined in Table 5.6-1 for channel bandwidth larger than or equal to 5 MHz.

For NB-IoT standalone operation, the occupied bandwidth for each NB-IoT carrier shall be less than the channel bandwidth as defined in Table 5.6-3.

### 6.6.2 Adjacent Channel Leakage power Ratio (ACLR)

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

The requirements shall apply outside the Base Station RF Bandwidth or Radio Bandwidth whatever the type of transmitter considered (single carrier or multi-carrier) and for all transmission modes foreseen by the manufacturer's specification.

For a E-UTRA or E-UTRA with NB-IoT (in-band and/or guard band) BS operating in non-contiguous spectrum, the ACLR also applies for the first adjacent channel inside any sub-block gap with a gap size  $W_{gap} \ge 15$ MHz or  $W_{gap} \ge 60$ MHz for Band 46. The ACLR requirement for the second adjacent channel applies inside any sub-block gap with a gap size  $W_{gap} \ge 20$  MHz or  $W_{gap} \ge 80$ MHz for Band 46. The CACLR requirement in subclause 6.6.2.2 applies in sub block gaps for the frequency ranges defined in Table 6.6.2.2-1/2/2a.

For a E-UTRA or E-UTRA with NB-IoT (in-band and/or guard band) BS operating in multiple bands, where multiple bands are mapped onto the same antenna connector, the ACLR also applies for the first adjacent channel inside any Inter RF Bandwidth gap with a gap size  $W_{gap} \ge 15$ MHz. The ACLR requirement for the second adjacent channel applies inside any Inter RF Bandwidth gap with a gap size  $W_{gap} \ge 20$  MHz. The CACLR requirement in subclause 6.6.2.2 applies in Inter RF Bandwidth gaps for the frequency ranges defined in Table 6.6.2.2-1/2.

The requirement applies during the transmitter ON period.

#### 6.6.2.1 Minimum requirement

The ACLR is defined with a square filter of bandwidth equal to the transmission bandwidth configuration of the transmitted signal ( $BW_{Config}$ ) centred on the assigned channel frequency and a filter centred on the adjacent channel frequency according to the tables below.

For Category A Wide Area BS, either the ACLR limits in the tables below or the absolute limit of -13dBm/MHz shall apply, whichever is less stringent.

For Category B Wide Area BS, either the ACLR limits in the tables below or the absolute limit of -15dBm/MHz shall apply, whichever is less stringent.

For Medium Range BS, either the ACLR limits in the tables below or the absolute limit of -25 dBm/MHz shall apply, whichever is less stringent.

For Local Area BS, either the ACLR limits in the tables below or the absolute limit of -32dBm/MHz shall apply, whichever is less stringent.

For Home BS, either the ACLR limits in the tables below or the absolute limit of -50dBm/MHz shall apply, whichever is less stringent.

The ACLR requirements in Tables 6.6.2.1-1 to 6.6.2.1-4 (except Table 6.6.2.1-2b) apply to BS that supports E-UTRA or E-UTRA with NB-IoT (in-band and/or guard band), in any operating band except for Band 46. The ACLR

requirements for Band 46 are in Table 6.6.2.1-2a and 6.6.2.1-5. The ACLR requirements in Table 6.6.2.1-2b and 6.6.2.1-6 apply to BS that supports standalone NB-IoT.

For operation in paired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2.1-1.

| Channel bandwidth of<br>E-UTRA lowest/highest<br>carrier transmitted<br>BW <sub>Channel</sub> [MHz]                                 | BS adjacent channel<br>centre frequency<br>offset below the<br>lowest or above the<br>highest carrier centre<br>frequency transmitted | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| 1.4, 3.0, 5, 10, 15, 20                                                                                                             | BWChannel                                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
|                                                                                                                                     | 2 x BW <sub>Channel</sub>                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
|                                                                                                                                     | BW <sub>Channel</sub> /2 + 2.5 MHz                                                                                                    | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB         |
|                                                                                                                                     | BW <sub>Channel</sub> /2 + 7.5 MHz                                                                                                    | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB         |
| NOTE 1: BW <sub>Channel</sub> and BW <sub>Config</sub> are the channel bandwidth and transmission bandwidth configuration of the E- |                                                                                                                                       |                                                      |                                                                                      |               |
| UTRA lowest/highest carrier transmitted on the assigned channel frequency.                                                          |                                                                                                                                       |                                                      |                                                                                      |               |
| NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [6], with a chip                 |                                                                                                                                       |                                                      |                                                                                      |               |
| rate as defined in this table.                                                                                                      |                                                                                                                                       |                                                      |                                                                                      |               |

| Table 6.6.2.1-1: Base \$ | Station ACLR ir | n paired spectrum |
|--------------------------|-----------------|-------------------|
|--------------------------|-----------------|-------------------|

For operation in unpaired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2.1-2.

| Channel bandwidth of<br>E-UTRA lowest/highest<br>carrier transmitted<br>BW <sub>Channel</sub> [MHz]                                                                                                               | BS adjacent channel<br>centre frequency<br>offset below the<br>lowest or above the<br>highest carrier centre<br>frequency transmitted | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| 1.4, 3                                                                                                                                                                                                            | BW <sub>Channel</sub>                                                                                                                 | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
|                                                                                                                                                                                                                   | 2 x BW <sub>Channel</sub>                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 0.8 MHz                                                                                                    | 1.28 Mcps UTRA                                       | RRC (1.28 Mcps)                                                                      | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 2.4 MHz                                                                                                    | 1.28 Mcps UTRA                                       | RRC (1.28 Mcps)                                                                      | 45 dB         |
| 5, 10, 15, 20                                                                                                                                                                                                     | BWChannel                                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
|                                                                                                                                                                                                                   | 2 x BW <sub>Channel</sub>                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 0.8 MHz                                                                                                    | 1.28 Mcps UTRA                                       | RRC (1.28 Mcps)                                                                      | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 2.4 MHz                                                                                                    | 1.28 Mcps UTRA                                       | RRC (1.28 Mcps)                                                                      | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 2.5 MHz                                                                                                    | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 7.5 MHz                                                                                                    | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 5 MHz                                                                                                      | 7.68 Mcps UTRA                                       | RRC (7.68 Mcps)                                                                      | 45 dB         |
|                                                                                                                                                                                                                   | BW <sub>Channel</sub> /2 + 15 MHz                                                                                                     | 7.68 Mcps UTRA                                       | RRC (7.68 Mcps)                                                                      | 45 dB         |
| NOTE 1: BW <sub>Channel</sub> and BW <sub>Config</sub> are the channel bandwidth and transmission bandwidth configuration of the E-<br>UTRA lowest/highest carrier transmitted on the assigned channel frequency. |                                                                                                                                       |                                                      |                                                                                      |               |
| NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.105 [7], with a chip rate as defined in this table.                                                                |                                                                                                                                       |                                                      |                                                                                      |               |

For operation in Band 46, the ACLR shall be higher than the value specified in Table 6.6.2.1-2a.

| Channel bandwidth of<br>E-UTRA lowest/highest<br>carrier transmitted<br>BW <sub>Channel</sub> [MHz]                                                                                                               | BS adjacent channel<br>centre frequency<br>offset below the<br>lowest or above the<br>highest carrier centre<br>frequency transmitted | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| 10, 20                                                                                                                                                                                                            | BWChannel                                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 35 dB         |
|                                                                                                                                                                                                                   | 2 x BW <sub>Channel</sub>                                                                                                             | E-UTRA of same BW                                    | Square (BW <sub>Config</sub> )                                                       | 40 dB         |
| NOTE 1: BW <sub>Channel</sub> and BW <sub>Config</sub> are the channel bandwidth and transmission bandwidth configuration of the E-<br>UTRA lowest/highest carrier transmitted on the assigned channel frequency. |                                                                                                                                       |                                                      |                                                                                      |               |

#### Table 6.6.2.1-2a: Base Station ACLR in Band 46

For standalone NB-IoT operation in paired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2.1-2b.

| Channel bandwidth of<br>NB-IoT lowest/highest<br>carrier transmitted<br>BW <sub>Channel</sub> [kHz] | BS adjacent channel<br>centre frequency<br>offset below the<br>lowest or above the<br>highest carrier centre<br>frequency transmitted | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| 200                                                                                                 | 300 kHz                                                                                                                               | Standalone NB-IoT                                    | Square (180 kHz)                                                                     | 40 dB         |
|                                                                                                     | 500 kHz                                                                                                                               | Standalone NB-IoT                                    | Square (180 kHz)                                                                     | 50 dB         |

For operation in non-contiguous paired spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.2.1-3.

| Sub-block or<br>Inter RF<br>Bandwidth gap<br>size (W <sub>gap</sub> )<br>where the limit<br>applies                                              | BS adjacent channel<br>centre frequency<br>offset below or above<br>the sub-block edge or<br>the Base Station RF<br>Bandwidth edge<br>(inside the gap) | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|--|
| W <sub>gap</sub> ≥ 15 MHz                                                                                                                        | 2.5 MHz                                                                                                                                                | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB         |  |
| W <sub>gap</sub> ≥ 20 MHz                                                                                                                        | 7.5 MHz                                                                                                                                                | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB         |  |
| NOTE: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [6], with a chip rate as defined in this table. |                                                                                                                                                        |                                                      |                                                                                      |               |  |

For operation in non-contiguous unpaired spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.2.1-4.

| Sub-block or<br>Inter RF<br>Bandwidth gap<br>size (W <sub>gap</sub> )<br>where the limit<br>applies | BS adjacent channel<br>centre frequency<br>offset below or above<br>the sub-block edge or<br>the Base Station RF<br>Bandwidth edge<br>(inside the gap) | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| W <sub>gap</sub> ≥ 15 MHz                                                                           | 2.5 MHz                                                                                                                                                | 5MHz E-UTRA<br>carrier                               | Square (BW <sub>Config</sub> )                                                       | 45 dB         |
| W <sub>gap</sub> ≥ 20 MHz                                                                           | 7.5 MHz                                                                                                                                                | 5MHz E-UTRA<br>carrier                               | Square (BW <sub>Config</sub> )                                                       | 45 dB         |

For operation in non-contiguous spectrum in Band 46, the ACLR shall be higher than the value specified in Table 6.6.2.1-5.

| Sub-block gap<br>size (W <sub>gap</sub> )<br>where the limit<br>applies | BS adjacent channel<br>centre frequency<br>offset below or above<br>the sub-block edge<br>(inside the gap) | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | ACLR<br>limit |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| W <sub>gap</sub> ≥ 60 MHz                                               | 10 MHz                                                                                                     | 20MHz E-UTRA<br>carrier                              | Square (BW <sub>Config</sub> )                                                       | 35 dB         |
| W <sub>gap</sub> ≥ 80 MHz                                               | 30 MHz                                                                                                     | 20MHz E-UTRA<br>carrier                              | Square (BW <sub>Config</sub> )                                                       | 40 dB         |

#### 6.6.2.2 Cumulative ACLR requirement in non-contiguous spectrum

The following requirement applies for the sub-block or Inter RF Bandwidth gap sizes listed in Table 6.6.2.2-1/2/2a,

- Inside a sub-block gap within an operating band for a BS operating in non-contiguous spectrum.
- Inside an Inter RF Bandwidth gap for a BS operating in multiple bands, where multiple bands are mapped on the same antenna connector.

The Cumulative Adjacent Channel Leakage power Ratio (CACLR) in a sub-block gap or the Inter RF Bandwidth gap is the ratio of:

- a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap or the Inter RF Bandwidth gap, and
- b) the filtered mean power centred on a frequency channel adjacent to one of the respective sub-block edges or Base Station RF Bandwidth edges.

The assumed filter for the adjacent channel frequency is defined in Table 6.6.2.2-1/2/2a and the filters on the assigned channels are defined in Table 6.6.2.2-3.

For Wide Area Category A BS, either the CACLR limits in Table 6.6.2.2-1/2 or the absolute limit of -13dBm/MHz shall apply, whichever is less stringent.

For Wide Area Category B BS, either the CACLR limits in Table 6.6.2.2-1/2 or the absolute limit of -15dBm/MHz shall apply, whichever is less stringent.

For Medium Range BS, either the CACLR limits in Table 6.6.2.2-1/2/2a or the absolute limit of -25 dBm/MHz shall apply, whichever is less stringent.

For Local Area BS, either the CACLR limits in Table 6.6.2.2-1/2/2a or the absolute limit of -32 dBm/MHz shall apply, whichever is less stringent.

The ACLR requirements in Tables 6.6.2.2-1 and 6.6.2.2-2 apply to BS that supports E-UTRA, in any operating band except for Band 46. The ACLR requirements for Band 46 are in Table 6.6.2.2-2a.

For operation in non-contiguous spectrum or multiple bands, the CACLR for E-UTRA carriers located on either side of the sub-block gap or the Inter RF Bandwidth gap shall be higher than the value specified in Table 6.6.2.2-1/2.

| Sub-block or<br>Inter RF<br>Bandwidth gap<br>size (W <sub>gap</sub> )<br>where the limit<br>applies                                              | BS adjacent channel<br>centre frequency<br>offset below or above<br>the sub-block edge or<br>the Base Station RF<br>Bandwidth edge<br>(inside the gap) | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | CACLR<br>limit |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
| 5 MHz ≤ W <sub>gap</sub> <<br>15 MHz                                                                                                             | 2.5 MHz                                                                                                                                                | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB          |
| 10 MHz < W <sub>gap</sub><br>< 20 MHz                                                                                                            | 7.5 MHz                                                                                                                                                | 3.84 Mcps UTRA                                       | RRC (3.84 Mcps)                                                                      | 45 dB          |
| NOTE: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [6], with a chip rate as defined in this table. |                                                                                                                                                        |                                                      |                                                                                      |                |

| Table 6.6.2.2-1: Base Station CACLR in non-contiguous paired spectrum or multiple bands |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

Table 6.6.2.2-2: Base Station CACLR in non-contiguous unpaired spectrum or multiple bands

| Sub-block or<br>Inter RF<br>Bandwidth gap<br>size (W <sub>gap</sub> )<br>where the limit<br>applies | BS adjacent channel<br>centre frequency<br>offset below or above<br>the sub-block edge or<br>the Base Station RF<br>Bandwidth edge<br>(inside the gap) | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | CACLR<br>limit |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
| 5 MHz ≤ W <sub>gap</sub> <<br>15 MHz                                                                | 2.5 MHz                                                                                                                                                | 5MHz E-UTRA<br>carrier                               | Square (BW <sub>Config</sub> )                                                       | 45 dB          |
| 10 MHz < W <sub>gap</sub><br>< 20 MHz                                                               | 7.5 MHz                                                                                                                                                | 5MHz E-UTRA<br>carrier                               | Square (BW <sub>Config</sub> )                                                       | 45 dB          |

For operation in non-contiguous spectrum in Band 46, the CACLR for E-UTRA carriers located on either side of the sub-block gap shall be higher than the value specified in Table 6.6.2.2-2a.

| Sub-block gap<br>size (W <sub>gap</sub> )<br>where the limit<br>applies | BS adjacent channel<br>centre frequency<br>offset below or above<br>the sub-block edge<br>(inside the gap) | Assumed adjacent<br>channel carrier<br>(informative) | Filter on the adjacent<br>channel frequency and<br>corresponding filter<br>bandwidth | CACLR<br>limit |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|
| 20 MHz ≤ W <sub>gap</sub><br>< 60 MHz                                   | 10 MHz                                                                                                     | 20MHz E-UTRA<br>carrier                              | Square (BW <sub>Config</sub> )                                                       | 35 dB          |
| 40 MHz < W <sub>gap</sub><br>< 80 MHz                                   | 30 MHz                                                                                                     | 20MHz E-UTRA<br>carrier                              | Square (BW <sub>Config</sub> )                                                       | 35 dB          |

| Table 6.6.2.2-3: Filter | parameters for | the assigned channel |
|-------------------------|----------------|----------------------|
|                         | parameters for | the assigned onamier |

| RAT of the carrier adjacent<br>to the sub-block or Inter RF<br>Bandwidth gap | Filter on the assigned channel frequency<br>and corresponding filter bandwidth |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| E-UTRA                                                                       | E-UTRA of same bandwidth                                                       |

### 6.6.3 Operating band unwanted emissions

Unless otherwise stated, the Operating band unwanted emission limits are defined from 10 MHz below the lowest frequency of each supported downlink operating band up to 10 MHz above the highest frequency of each supported downlink operating band.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier) and for all transmission modes foreseen by the manufacturer's specification. In addition, for a BS operating in non-contiguous

spectrum, the requirements apply inside any sub-block gap. In addition, for a BS operating in multiple bands, the requirements apply inside any Inter RF Bandwidth gap.

For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the singleband requirements apply and the cumulative evaluation of the emission limit in the Inter RF Bandwidth gap are not applicable.

For a BS supporting E-UTRA with NB-IoT guard band operation, the Operating band unwanted emissions requirements apply to E-UTRA carrier with channel bandwidth larger than or equal to 5 MHz.

The unwanted emission limits in the part of the downlink operating band that falls in the spurious domain are consistent with ITU-R Recommendation SM.329 [2].

Emissions shall not exceed the maximum levels specified in the tables below, where:

- $\Delta f$  is the separation between the channel edge frequency and the nominal -3dB point of the measuring filter closest to the carrier frequency.
- f\_offset is the separation between the channel edge frequency and the centre of the measuring filter.
- f\_offset<sub>max</sub> is the offset to the frequency 10 MHz outside the downlink operating band.
- $\Delta f_{max}$  is equal to f\_offset<sub>max</sub> minus half of the bandwidth of the measuring filter.

For E-UTRA or E-UTRA with NB-IoT (in-band and/or guard band) BS operating in multiple bands, inside any Inter RF Bandwidth gaps with  $W_{gap} < 20$  MHz, emissions shall not exceed the cumulative sum of the minimum requirements specified at the Base Station RF Bandwidth edges on each side of the Inter RF Bandwidth gap. The minimum requirement for Base Station RF Bandwidth edge is specified in Tables 6.6.3.1-1 to 6.6.3.3-3 below, where in this case:

- Δf is the separation between the Base Station RF Bandwidth edge frequency and the nominal -3 dB point of the measuring filter closest to the Base Station RF Bandwidth edge.
- f\_offset is the separation between the Base Station RF Bandwidth edge frequency and the centre of the measuring filter.
- f\_offset<sub>max</sub> is equal to the Inter RF Bandwidth gap minus half of the bandwidth of the measuring filter.
- $\Delta f_{max}$  is equal to f\_offset<sub>max</sub> minus half of the bandwidth of the measuring filter.

For BS capable of multi-band operation where multiple bands are mapped on the same antenna connector, the operating band unwanted emission limits apply also in a supported operating band without any carrier transmitted, in the case where there are carrier(s) transmitted in other supported operating band(s). In this case where there is no carrier transmitted in an operating band, the operating band unwanted emission limit, as defined in the tables of the present subclause for the largest frequency offset ( $\Delta f_{max}$ ), of a band where there is no carrier transmitted shall apply from 10 MHz below the lowest frequency, up to 10 MHz above the highest frequency of the supported downlink operating band without any carrier transmitted. And no cumulative limit is applied in the inter-band gap between a supported downlink operating band without any carrier transmitted.

For a multicarrier E-UTRA BS or BS configured for intra-band contiguous or non-contiguous carrier aggregation the definitions above apply to the lower edge of the carrier transmitted at the lowest carrier frequency and the upper edge of the carrier transmitted at the highest carrier frequency within a specified frequency band.

In addition inside any sub-block gap for a BS operating in non-contiguous spectrum, emissions shall not exceed the cumulative sum of the minimum requirements specified for the adjacent sub blocks on each side of the sub block gap. The minimum requirement for each sub block is specified in Tables 6.6.3.1-1 to 6.6.3.3-3 below, where in this case:

- $\Delta f$  is the separation between the sub block edge frequency and the nominal -3 dB point of the measuring filter closest to the sub block edge.
- f\_offset is the separation between the sub block edge frequency and the centre of the measuring filter.
- f\_offset<sub>max</sub> is equal to the sub block gap bandwidth minus half of the bandwidth of the measuring filter.
- $\Delta f_{max}$  is equal to f\_offset<sub>max</sub> minus half of the bandwidth of the measuring filter.

For Wide Area BS, the requirements of either subclause 6.6.3.1 (Category A limits) or subclause 6.6.3.2 (Category B limits) shall apply.

For Local Area BS, the requirements of subclause 6.6.3.2A shall apply (Category A and B).

For Home BS, the requirements of subclause 6.6.3.2B shall apply (Category A and B).

For Medium Range BS, the requirements in subclause 6.6.3.2C shall apply (Category A and B).

The application of either Category A or Category B limits shall be the same as for Transmitter spurious emissions (Mandatory Requirements) in subclause 6.6.4.1.

The requirements of subclauses 6.6.3.1 and 6.6.3.2 apply to BS that supports E-UTRA or E-UTRA with NB-IoT (inband and/or guard band). The requirements for BS that supports NB-IoT standalone are in subclause 6.6.3.2E.

#### 6.6.3.1 Minimum requirements for Wide Area BS (Category A)

For E-UTRA BS operating in Bands 5, 6, 8, 12, 13, 14, 17, 18, 19, 26, 27, 28, 29, 31, 44, 68 emissions shall not exceed the maximum levels specified in Tables 6.6.3.1-1 to 6.6.3.1-3.

## Table 6.6.3.1-1: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A</th>

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                              | Measurement<br>bandwidth<br>(Note 8) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                    | $0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$                    | $-1dBm - \frac{10}{1.4} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                  | 1.45 MHz $\leq$ f_offset < 2.85 MHz                                     | -11 dBm                                                                      | 100 kHz                              |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                          | 2.85 MHz ≤ f_offset < f_offset <sub>max</sub>                           | -13 dBm                                                                      | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -13dBm/100kHz. |                                                                         |                                                                              |                                      |
| NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-<br>blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.                                                                                                                                  |                                                                         |                                                                              |                                      |

## Table 6.6.3.1-2: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A</th>

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                          | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                            | Measurement<br>bandwidth<br>(Note 8) |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| $0 \text{ MHz} \le \Delta f < 3 \text{ MHz}$                                                                         | $0.05 \text{ MHz} \le f_{offset} < 3.05 \text{ MHz}$                    | $-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 3 MHz ≤ ∆f < 6 MHz                                                                                                   | 3.05 MHz ≤ f_offset < 6.05 MHz                                          | -15 dBm                                                                    | 100 kHz                              |
| $6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                    | 6.05 MHz ≤ f_offset < f_offset <sub>max</sub>                           | -13 dBm                                                                    | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement     |                                                                         |                                                                            |                                      |
| within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each            |                                                                         |                                                                            |                                      |
| side of the sub block gap. Exception is $\Delta f \ge 10 MHz$ from both adjacent sub blocks on each side of the sub- |                                                                         |                                                                            |                                      |
| block gap, where the minimum requirement within sub-block gaps shall be -13dBm/100kHz.                               |                                                                         |                                                                            |                                      |
| NOTE 2: For BS supp                                                                                                  | orting multi-band operation with Inter                                  | RF Bandwidth gap < 20MHz the minimum r                                     | requirement                          |

within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent subblocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.

## Table 6.6.3.1-3: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                | Frequency offset of<br>measurement filter centre<br>frequency, f_offset              | Minimum requirement (Note 1, 2)                                           | Measurement<br>bandwidth<br>(Note 8) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05 MHz $\leq$ f_offset < 5.05 MHz                                                  | $-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 5 MHz ≤ Δf <<br>min(10 MHz, Δf <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                            | $5.05 \text{ MHz} \le f_\text{offset} < min(10.05 \text{ MHz}, f_\text{offset}_max)$ | -14 dBm                                                                   | 100 kHz                              |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                 | 10.05 MHz $\leq$ f_offset < f_offset <sub>max</sub>                                  | -13 dBm (Note 10)                                                         | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -13dBm/100kHz. |                                                                                      |                                                                           |                                      |
| NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-<br>blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.                                                                                                                                  |                                                                                      |                                                                           |                                      |

For E-UTRA BS operating in Bands 1, 2, 3, 4, 7, 9, 10, 11, 21, 22, 23, 24, 25, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 65, 66, 69, 70, emissions shall not exceed the maximum levels specified in Tables 6.6.3.1-4 to 6.6.3.1-6:

## Table 6.6.3.1-4: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >1GHz) for Category A

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                  | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum requirement (Note 1, 2)                                              | Measurement<br>bandwidth<br>(Note 8) |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                                                                      | 0.05 MHz $\leq$ f_offset < 1.45 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-1dBm - \frac{10}{1.4} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                                                                    | $1.45 \text{ MHz} \le f_{offset} < 2.85 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -11 dBm                                                                      | 100 kHz                              |
| $2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                          | $3.3 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -13 dBm                                                                      | 1MHz                                 |
| within sub-b<br>side of the s<br>measureme<br>on each sid<br>13dBm/1MH<br>NOTE 2: For BS sup<br>within the Ir<br>blocks or R | 2.8 MHz ≤ Δf ≤ Δfmax       3.3 MHz ≤ f_offset < f_offset max       -13 dBm       1MHz         NOTE 1:       For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be - 13dBm/1MHz.         NOTE 2:       For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-blocks or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the |                                                                              |                                      |

## Table 6.6.3.1-5: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >1GHz) for Category A

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum requirement (Note 1, 2)                                            | Measurement<br>bandwidth<br>(Note 8) |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 3 MHz                                                                                                              | $0.05 \text{ MHz} \le f_{offset} < 3.05 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |  |
| 3 MHz ≤ ∆f < 6 MHz                                                                                                              | 3.05 MHz ≤ f_offset < 6.05 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -15 dBm                                                                    | 100 kHz                              |  |
| $6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                               | $6.5 \text{ MHz} \le f_{offset} < f_{offset_{max}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13 dBm                                                                    | 1MHz                                 |  |
| within sub-b<br>side of the s<br>measureme<br>on each side<br>13dBm/1MF<br>NOTE 2: For BS supp<br>within the In<br>blocks or Rf | 6 MHz ≤ Δf ≤ Δf <sub>max</sub> 6.5 MHz ≤ f_offset < f_offset max       -13 dBm       1MHz         NOTE 1:       For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be - 13dBm/1MHz.         NOTE 2:       For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-blocks or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the |                                                                            |                                      |  |

## Table 6.6.3.1-6: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >1GHz) for Category A

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                            | Measurement<br>bandwidth<br>(Note 8) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05 MHz ≤ f_offset < 5.05 MHz                                          | $-7dBm - \frac{7}{5} \cdot \left(\frac{f \_ offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.05 MHz ≤ f_offset <<br>min(10.05 MHz, f_offset <sub>max</sub> )       | -14 dBm                                                                    | 100 kHz                              |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.5 MHz $\leq$ f_offset < f_offset <sub>max</sub>                      | -13 dBm (Note 10)                                                          | 1MHz                                 |
| <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be - 13dBm/1MHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth.</li> </ul> |                                                                         |                                                                            |                                      |

#### 6.6.3.2 Minimum requirements for Wide Area BS (Category B)

For Category B Operating band unwanted emissions, there are two options for the limits that may be applied regionally. Either the limits in subclause 6.6.3.2.1 or subclause 6.6.3.2.2 shall be applied.

#### 6.6.3.2.1 Category B requirements (Option 1)

For E-UTRA BS operating in Bands 5, 8, 12, 13, 14, 17, 20, 26, 27, 28, 29, 31, 44, 68, 67 emissions shall not exceed the maximum levels specified in Tables 6.6.3.2.1-1 to 6.6.3.2.1-3:

## Table 6.6.3.2.1-1: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B</th>

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                              | Measurement<br>bandwidth<br>(Note 8) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05 MHz $\leq$ f_offset < 1.45 MHz                                     | $-1dBm - \frac{10}{1.4} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                  | 1.45 MHz ≤ f_offset < 2.85 MHz                                          | -11 dBm                                                                      | 100 kHz                              |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                          | 2.85 MHz ≤ f_offset < f_offset <sub>max</sub>                           | -16 dBm                                                                      | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -16dBm/100kHz. |                                                                         |                                                                              |                                      |
| NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-<br>blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.                                                                                                                                  |                                                                         |                                                                              |                                      |

## Table 6.6.3.2.1-2: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                            | Measurement<br>bandwidth<br>(Note 8) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| $0 \text{ MHz} \le \Delta f < 3 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                               | 0.05 MHz $\leq$ f_offset < 3.05 MHz                                     | $-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| $3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                               | 3.05 MHz ≤ f_offset < 6.05 MHz                                          | -15 dBm                                                                    | 100 kHz                              |
| $6 \text{ MHz} \le \Delta f \le \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                            | $6.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$         | -16 dBm                                                                    | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -16dBm/100kHz. |                                                                         |                                                                            |                                      |
| NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-<br>blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.                                                                                                                                  |                                                                         |                                                                            |                                      |

## Table 6.6.3.2.1-3: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                           | Measurement<br>bandwidth<br>(Note 8) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05 MHz $\leq$ f_offset < 5.05 MHz                                     | $-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 5 MHz ≤ Δf <<br>min(10 MHz, Δf <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                            | 5.05 MHz ≤ f_offset <<br>min(10.05 MHz, f_offset <sub>max</sub> )       | -14 dBm                                                                   | 100 kHz                              |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                 | 10.05 MHz $\leq$ f_offset < f_offset <sub>max</sub>                     | -16 dBm (Note 10)                                                         | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -16dBm/100kHz. |                                                                         |                                                                           |                                      |
| NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-<br>blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.                                                                                                                                  |                                                                         |                                                                           |                                      |

For E-UTRA BS operating in Bands 1, 2, 3, 4, 7, 10, 22, 25, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48, 65, 66, 69, 70, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2.1-4 to 6.6.3.2.1-6:

## Table 6.6.3.2.1-4: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >1GHz) for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum requirement (Note 1, 2)                                              | Measurement<br>bandwidth<br>(Note 8) |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                                                                         | $0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-1dBm - \frac{10}{1.4} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                                                                       | $1.45 \text{ MHz} \le f_{offset} < 2.85 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -11 dBm                                                                      | 100 kHz                              |
| 2.8 MHz $\leq \Delta f \leq \Delta f_{max}$                                                                                     | $3.3 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{\text{max}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -15 dBm                                                                      | 1MHz                                 |
| within sub-b<br>side of the s<br>measureme<br>on each side<br>15dBm/1MH<br>NOTE 2: For BS supp<br>within the In<br>blocks or Rf | <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be - 15dBm/1MHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block sor RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block sor Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near</li></ul> |                                                                              |                                      |

## Table 6.6.3.2.1-5: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >1GHz) for Category B

| Frequency off<br>measureme<br>filter -3dB poi                               | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                            | Measurement<br>bandwidth<br>(Note 8) |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 3                                                              | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05 MHz $\leq$ f_offset < 3.05 MHz                                     | $-5dBm - \frac{10}{3} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |  |
| 3 MHz ≤ ∆f < 6                                                              | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.05 MHz ≤ f_offset < 6.05 MHz                                          | -15 dBm                                                                    | 100 kHz                              |  |
| $6 \text{ MHz} \le \Delta f \le \Delta f$                                   | ∆f <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6.5 \text{ MHz} \leq f_{offset} < f_{offset_{max}}$                    | -15 dBm                                                                    | 1MHz                                 |  |
| within<br>side<br>meas<br>on ea<br>15dE<br>NOTE 2: For E<br>within<br>block | <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be - 15dBm/1MHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block the measurement bandwidth of the near-end sub-block as a cumulative sum of the contribution from the far-end sub-blocks or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth shall be scaled according to the measureme</li></ul> |                                                                         |                                                                            |                                      |  |

## Table 6.6.3.2.1-6: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >1GHz) for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                            | Measurement<br>bandwidth<br>(Note 8) |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--|--|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                              | 0.05 MHz ≤ f_offset < 5.05 MHz                                          | $-7dBm - \frac{7}{5} \cdot \left(\frac{f \_ offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |  |  |
| 5 MHz ≤ ∆f <                                                                                                                    | 5.05 MHz $\leq$ f_offset <                                              | -14 dBm                                                                    | 100 kHz                              |  |  |
| min(10 MHz, ∆f <sub>max</sub> )                                                                                                 | min(10.05 MHz, f_offset <sub>max</sub> )                                |                                                                            |                                      |  |  |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                                                                                      | 10.5 MHz $\leq$ f_offset < f_offset <sub>max</sub>                      | -15 dBm (Note 10)                                                          | 1MHz                                 |  |  |
| within sub-b<br>side of the s<br>measureme<br>on each side<br>15dBm/1MH<br>NOTE 2: For BS supp<br>within the In<br>blocks or RF | 10 MHz ≤ Δf ≤ Δf <sub>max</sub> 10.5 MHz ≤ f_offset < f_offset max      |                                                                            |                                      |  |  |

## 6.6.3.2.2 Category B (Option 2)

The limits in this subclause are intended for Europe and may be applied regionally for BS operating in band 1, 3, 8, 32, 33, 34 or 65.

For a BS operating in band 1, 3, 8, 32, 33, 34 or 65 emissions shall not exceed the maximum levels specified in Table 6.6.3.2.2-1 below for 5, 10, 15 and 20 MHz channel bandwidth:

## Table 6.6.3.2.2-1: Regional Wide Area BS operating band unwanted emission limits in band 1, 3, 8, 32,33, 34 or 65 for 5, 10, 15 and 20 MHz channel bandwidth for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                        | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                     | Measurement<br>bandwidth<br>(Note 8) |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--|
| $0 \text{ MHz} \le \Delta f < 0.2 \text{ MHz}$                                     | 0.015MHz ≤ f_offset < 0.215MHz                                          | -14 dBm                                                             | 30 kHz                               |  |
| 0.2 MHz ≤ ∆f < 1 MHz                                                               | 0.215MHz ≤ f_offset < 1.015MHz                                          | $-14dBm - 15 \cdot \left(\frac{f \_ offset}{MHz} - 0.215\right) dB$ | 30 kHz                               |  |
| (Note 9)                                                                           | 1.015MHz ≤ f_offset < 1.5 MHz                                           | -26 dBm                                                             | 30 kHz                               |  |
| 1 MHz $\leq \Delta f \leq$                                                         | 1.5 MHz ≤ f_offset <                                                    | -13 dBm                                                             | 1 MHz                                |  |
| min( 10 MHz, ∆f <sub>max</sub> )                                                   | min(10.5 MHz, f_offset <sub>max</sub> )                                 |                                                                     |                                      |  |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                                         | 10.5 MHz $\leq$ f_offset < f_offset <sub>max</sub>                      | -15 dBm (Note 10)                                                   | 1 MHz                                |  |
| 10 MHz ≤ Δt ≤ Δt ≤ Δt ≤ Δt max       10.5 MHz ≤ t_otfset < t_otfset < t_otfset max |                                                                         |                                                                     |                                      |  |

For a BS operating in band 3, 8 or 65, emissions shall not exceed the maximum levels specified in Table 6.6.3.2.2-2 below for 3 MHz channel bandwidth:

## Table 6.6.3.2.2-2: Regional Wide Area BS operating band unwanted emission limits in band 3, 8 or 65for 3 MHz channel bandwidth for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                  | Frequency offset of measurement<br>filter centre frequency, f_offset                                                                                                                                                                                                                                                                                                                                          | Minimum requirement (Note 1,<br>2)                                                                                                                                                                                                                                                                     | Measurement<br>bandwidth<br>(Note 8)                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 0 MHz ≤ ∆f < 0.05 MHz                                                                                                                                        | 0.015 MHz ≤ f_offset < 0.065 MHz                                                                                                                                                                                                                                                                                                                                                                              | $5dBm - 60 \cdot \left(\frac{f_{offset}}{MHz} - 0.015\right) dB$                                                                                                                                                                                                                                       | 30 kHz                                                                                                        |
| 0.05 MHz ≤ ∆f < 0.15<br>MHz                                                                                                                                  | 0. 065 MHz ≤ f_offset < 0.165 MHz                                                                                                                                                                                                                                                                                                                                                                             | $2dBm - 160 \cdot \left(\frac{f_{offset}}{MHz} - 0.065\right) dB$                                                                                                                                                                                                                                      | 30 kHz                                                                                                        |
| 0.15 MHz ≤ ∆f < 0.2 MHz                                                                                                                                      | 0.165MHz ≤ f_offset < 0.215MHz                                                                                                                                                                                                                                                                                                                                                                                | -14 dBm                                                                                                                                                                                                                                                                                                | 30 kHz                                                                                                        |
| 0.2 MHz ≤ ∆f < 1 MHz                                                                                                                                         | 0.215MHz ≤ f_offset < 1.015MHz                                                                                                                                                                                                                                                                                                                                                                                | $-14dBm - 15 \cdot \left(\frac{f \_ offset}{MHz} - 0.215\right)$                                                                                                                                                                                                                                       | 30 kHz                                                                                                        |
| (Note 9)                                                                                                                                                     | 1.015MHz ≤ f_offset < 1.5 MHz                                                                                                                                                                                                                                                                                                                                                                                 | -26 dBm                                                                                                                                                                                                                                                                                                | 30 kHz                                                                                                        |
| 1 MHz ≤ ∆f ≤<br>6 MHz                                                                                                                                        | 1.5 MHz ≤ f_offset <<br>6.5 MHz                                                                                                                                                                                                                                                                                                                                                                               | -13 dBm                                                                                                                                                                                                                                                                                                | 1 MHz                                                                                                         |
| $6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                                                            | 6.5 MHz ≤ f_offset < f_offset <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                  | -15 dBm                                                                                                                                                                                                                                                                                                | 1 MHz                                                                                                         |
| within sub-block<br>side of the sub b<br>measurement b<br>on each side of<br>15dBm/1MHz.<br>NOTE 2: For BS supporti<br>within the Inter F<br>blocks or RF Ba | rting non-contiguous spectrum operation of<br>gaps is calculated as a cumulative sum of<br>block gap, where the contribution from the<br>andwidth of the near-end sub-block. Exce<br>the sub-block gap, where the minimum re<br>ng multi-band operation with Inter RF Bar<br>RF Bandwidth gaps is calculated as a cun<br>ndwidth on each side of the Inter RF Ban<br>Bandwidth shall be scaled according to t | of contributions from adjacent sub block<br>a far-end sub-block shall be scaled ad<br>ption is $\Delta f \ge 10$ MHz from both adjace<br>equirement within sub-block gaps sha<br>adwidth gap < 20MHz the minimum re-<br>nulative sum of contributions from ad<br>dwidth gap, where the contribution fr | ocks on each<br>ccording to the<br>ent sub blocks<br>all be -<br>equirement<br>ljacent sub-<br>om the far-end |

For a BS operating in band 3, 8 or 65, emissions shall not exceed the maximum levels specified in Table 6.6.3.2.2-3 below for 1.4 MHz channel bandwidth:

## Table 6.6.3.2.2-3: Regional Wide Area BS operating band unwanted emission limits in band 3, 8 or 65for 1.4 MHz channel bandwidth for Category B

| Frequency offset of<br>measurement<br>filter -3dB point, Δf | Frequency offset of measurement<br>filter centre frequency, f_offset | Minimum requirement (Note 1,<br>2)                                | Measurement<br>bandwidth<br>(Note 8) |
|-------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 0.05 MHz                                       | 0.015 MHz ≤ f_offset < 0.065 MHz                                     | $5dBm - 60 \cdot \left(\frac{f_{offset}}{MHz} - 0.015\right) dB$  | 30 kHz                               |
| 0.05 MHz ≤ ∆f < 0.15<br>MHz                                 | 0. 065 MHz ≤ f_offset < 0.165 MHz                                    | $2dBm - 160 \cdot \left(\frac{f_{offset}}{MHz} - 0.065\right) dB$ | 30 kHz                               |
| 0.15 MHz ≤ ∆f < 0.2 MHz                                     | 0.165MHz ≤ f_offset < 0.215MHz                                       | -14 dBm                                                           | 30 kHz                               |
| 0.2 MHz ≤ ∆f < 1 MHz                                        | 0.215MHz ≤ f_offset < 1.015MHz                                       | $-14dBm - 15 \cdot \left(\frac{f \_ offset}{MHz} - 0.215\right)$  | 30 kHz                               |
| (Note 9)                                                    | 1.015MHz ≤ f_offset < 1.5 MHz                                        | -26 dBm                                                           | 30 kHz                               |
| $1 \text{ MHz} \le \Delta f \le 2.8 \text{ MHz}$            | 1.5 MHz ≤ f_offset < 3.3 MHz                                         | -13 dBm                                                           | 1 MHz                                |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$           | $3.3 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{\text{max}}$ | -15 dBm                                                           | 1 MHz                                |

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be - 15dBm/1MHz.

NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent subblocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end subblock or RF Bandwidth.

### 6.6.3.2A Minimum requirements for Local Area BS (Category A and B)

For Local Area BS, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2A-1 to 6.6.3.2A-3.

# Table 6.6.3.2A-1: Local Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, Δf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                         | Measurement<br>bandwidth<br>(Note 8) |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05 MHz ≤ f_offset < 1.45 MHz                                          | $-21dBm - \frac{10}{1.4} \left(\frac{f - offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |  |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45 MHz ≤ f_offset < 2.85 MHz                                          | -31 dBm                                                                 | 100 kHz                              |  |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.85 MHz ≤ f_offset < f_offset <sub>max</sub>                           | -31 dBm                                                                 | 100 kHz                              |  |
| NOTE 1:       For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -31dBm/100kHz.         NOTE 2:       For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap. |                                                                         |                                                                         |                                      |  |

# Table 6.6.3.2A-2: Local Area BS operating band unwanted emission limits for 3 MHz channel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                          | Measurement<br>bandwidth<br>(Note 8) |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05 MHz $\leq$ f_offset < 3.05 MHz                                     | $-25dBm - \frac{10}{3} \left( \frac{f \_ offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |  |
| $3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.05 MHz ≤ f_offset < 6.05 MHz                                          | -35 dBm                                                                  | 100 kHz                              |  |
| $6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $6.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$         | -35 dBm                                                                  | 100 kHz                              |  |
| <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -35dBm/100kHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-</li> </ul> |                                                                         |                                                                          |                                      |  |
| blocks or RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bandwidth on each side of the Inter I                                   | RF Bandwidth gap.                                                        | -                                    |  |

# Table 6.6.3.2A-3: Local Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHzchannel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2))                                     | Measurement<br>bandwidth<br>(Note 8) |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.05 \text{ MHz} \le f_{offset} < 5.05 \text{ MHz}$                    | $-30dBm - \frac{7}{5} \left(\frac{f \_offset}{MHz} - 0.05\right) dB$ | 100 kHz                              |  |
| 5 MHz $\leq \Delta f < min(10)$<br>MHz, $\Delta f_{max}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.05 MHz ≤ f_offset < min(10.05<br>MHz, f_offset <sub>max</sub> )       | -37 dBm                                                              | 100 kHz                              |  |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.05 MHz $\leq$ f_offset < f_offset <sub>max</sub>                     | -37 dBm (Note 10)                                                    | 100 kHz                              |  |
| <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -37dBm/100kHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.</li> </ul> |                                                                         |                                                                      |                                      |  |

### 6.6.3.2B Minimum requirements for Home BS (Category A and B)

For Home BS, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2B-1 to 6.6.3.2B-3.

### Table 6.6.3.2B-1: Home BS operating band unwanted emission limits for 1.4 MHz channel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement                                                                             | Measurement<br>bandwidth<br>(Note 8) |
|-------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 1.4 MHz                                        | $0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$                    | $-30dBm - \frac{6}{1.4} \left(\frac{f \_ offset}{MHz} - 0.05\right) dB$                         | 100 kHz                              |
| 1.4 MHz ≤ Δf < 2.8 MHz                                      | 1.45 MHz ≤ f_offset < 2.85 MHz                                          | -36 dBm                                                                                         | 100 kHz                              |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$           | 3.3 MHz $\leq$ f_offset < f_offset <sub>max</sub>                       | $\begin{cases} P-52dB, \ 2dBm \le P \le 20dBm \\ -50dBm, \ P < 2dBm \\ (Note \ 11) \end{cases}$ | 1MHz                                 |

### Table 6.6.3.2B-2: Home BS operating band unwanted emission limits for 3 MHz channel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement                                                                                                       | Measurement<br>bandwidth<br>(Note 8) |
|-------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 3 MHz                                          | 0.05 MHz $\leq$ f_offset < 3.05 MHz                                     | $-34dBm - 2\left(\frac{f \_ offset}{MHz} - 0.05\right)dB$                                                                 | 100 kHz                              |
| $3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$                | 3.05 MHz ≤ f_offset < 6.05 MHz                                          | -40 dBm                                                                                                                   | 100 kHz                              |
| $6 \text{ MHz} \le \Delta f \le \Delta f_{max}$             | $6.5 \text{ MHz} \leq f_{offset} < f_{offset_{max}}$                    | $\begin{cases} P-52dB, \ 2\text{dBm} \le P \le 20\text{dBm} \\ -50dBm, \ P < 2\text{dBm} \\ \text{(Note 11)} \end{cases}$ | 1MHz                                 |

# Table 6.6.3.2B-3: Home BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channelbandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement                                                                                          | Measurement<br>bandwidth<br>(Note 8) |
|-------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 5 MHz                                          | 0.05 MHz ≤ f_offset < 5.05 MHz                                          | $-36dBm - \frac{6}{5} \left( \frac{f \_ offset}{MHz} - 0.05 \right) dB$                                      | 100 kHz                              |
| 5 MHz ≤ ∆f < min(10<br>MHz, ∆f <sub>max</sub> )             | 5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset <sub>max</sub> )          | -42 dBm                                                                                                      | 100 kHz                              |
| $10 \text{ MHz} \le \Delta f \le \Delta f_{max}$            | 10.5 MHz $\leq$ f_offset < f_offset <sub>max</sub>                      | $\begin{cases} P-52dB, \ 2dBm \le P \le 20dBm \\ -50dBm, \ P < 2dBm \\ (Note \ 10, \ Note \ 11) \end{cases}$ | 1MHz                                 |

### 6.6.3.2C Minimum requirements for Medium Range BS (Category A and B)

For Medium Range BS, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2C-1 to 6.6.3.2C-6.

# Table 6.6.3.2C-1: Medium Range BS operating band unwanted emission limits for 1.4 MHz channel bandwidth, 31 < P<sub>max,c</sub> ≤ 38 dBm

| Frequency offset of<br>measurement<br>filter -3dB point, Δf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                                 | Measurement<br>bandwidth<br>(Note 8) |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05 MHz ≤ f_offset < 1.45 MHz                                          | $Pmaxc - 45dB - \frac{10}{1.4} \left( \frac{f \_offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |  |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.45 \text{ MHz} \le f_\text{offset} < 2.85 \text{ MHz}$               | P <sub>max,c</sub> -55dB                                                        | 100 kHz                              |  |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.85 MHz $\leq$ f_offset < f_offset <sub>max</sub>                      | -25dBm                                                                          | 100 kHz                              |  |
| <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -25dBm/100kHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.</li> </ul> |                                                                         |                                                                                 |                                      |  |

# Table 6.6.3.2C-2: Medium Range BS operating band unwanted emission limits for 1.4 MHz channel bandwidth, $P_{max,c} \le 31$ dBm

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f              | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                                   | Measurement<br>bandwidth<br>(Note 8) |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 1.4<br>MHz                                                  | 0.05 MHz ≤ f_offset < 1.45 MHz                                          | $-14 \text{dBm} - \frac{10}{1.4} \left( \frac{f \_offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |
| 1.4 MHz ≤ ∆f < 2.8<br>MHz                                                | $1.45 \text{ MHz} \le f_{offset} < 2.85 \text{ MHz}$                    | -24 dBm                                                                           | 100 kHz                              |
| $2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$                        | 2.85 MHz ≤ f_offset < f_offset <sub>max</sub>                           | -25dBm                                                                            | 100 kHz                              |
| 2.8 MHz ≤ Δt ≤ Δtmax       2.85 MHz ≤ 1_ottset < 1_ottset < 1_ottset max |                                                                         |                                                                                   |                                      |

# Table 6.6.3.2C-3: Medium Range BS operating band unwanted emission limits for 3 MHz channel bandwidth, $31 < P_{max,c} \le 38 \text{ dBm}$

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                                                                                                                | Minimum requirement (Note 1, 2)                                                 | Measurement<br>bandwidth<br>(Note 8) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05 MHz $\leq$ f_offset < 3.05 MHz                                                                                                                                                                    | Pmax, c - 49dB - $\frac{10}{3} \left( \frac{f - offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |
| $3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3.05 \text{ MHz} \le f_\text{offset} < 6.05 \text{ MHz}$                                                                                                                                              | P <sub>max,c</sub> -59dB                                                        | 100 kHz                              |
| $6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $6 \text{ MHz} \le \Delta f \le \Delta f_{\text{max}} \qquad 6.05 \text{ MHz} \le f_{\text{offset}} < f_{\text{offset}_{\text{max}}} \qquad \text{Min}(P_{\text{max,c}}-59 \text{dB}, -25 \text{dBm})$ |                                                                                 | 100 kHz                              |
| <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be Min(P<sub>max,c</sub>-59dB, -25dBm)/100kHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.</li> </ul> |                                                                                                                                                                                                        |                                                                                 |                                      |

# Table 6.6.3.2C-4: Medium Range BS operating band unwanted emission limits for 3 MHz channel bandwidth, P<sub>max,c</sub> ≤ 31 dBm

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                        | Minimum requirement (Note 1, 2)                                                 | Measurement<br>bandwidth<br>(Note 8) |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|--|
| $0 \text{ MHz} \le \Delta f < 3 \text{ MHz}$                                                                    | 0.05 MHz ≤ f_offset < 3.05 MHz                                                                                 | $-18 \text{dBm} - \frac{10}{3} \left( \frac{f - offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |  |
| 3 MHz ≤ ∆f < 6 MHz                                                                                              | 3.05 MHz ≤ f_offset < 6.05 MHz                                                                                 | -28 dBm                                                                         | 100 kHz                              |  |
| $6 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$                                                        | 6.05 MHz ≤ f_offset < f_offset <sub>max</sub>                                                                  | -28 dBm                                                                         | 100 kHz                              |  |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement |                                                                                                                |                                                                                 |                                      |  |
| within sub-bloo                                                                                                 | within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side |                                                                                 |                                      |  |

of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -28dBm/100kHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within

the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.

# Table 6.6.3.2C-5: Medium Range BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth, $31 < P_{max,c} \le 38$ dBm

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                                 | Measurement<br>bandwidth<br>(Note 8) |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|--|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05 MHz ≤ f_offset < 5.05 MHz                                          | Pmax, c - 53dB - $\frac{7}{5} \left( \frac{f \_ offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |  |
| 5 MHz $\leq \Delta f < min(10)$<br>MHz, $\Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset <sub>max</sub> )          | P <sub>max,c</sub> -60dB                                                        | 100 kHz                              |  |
| $10 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.05 MHz $\leq$ f_offset < f_offset <sub>max</sub>                     | Min(P <sub>max,c</sub> -60dB, -25dBm) (Note 9)                                  | 100 kHz                              |  |
| <ul> <li>NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be Min(P<sub>max,c</sub>-60dB, -25dBm)/100kHz.</li> <li>NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap &lt; 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.</li> </ul> |                                                                         |                                                                                 |                                      |  |

# Table 6.6.3.2C-6: Medium Range BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth, $P_{max,c} \le 31 \text{ dBm}$

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                               | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum requirement (Note 1, 2)                                                  | Measurement<br>bandwidth<br>(Note 8) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|
| 0 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 MHz ≤ f_offset < 5.05 MHz                                          | $-22 \mathrm{dBm} - \frac{7}{5} \left( \frac{f \_offset}{MHz} - 0.05 \right) dB$ | 100 kHz                              |
| 5 MHz ≤ ∆f < min(10<br>MHz, Δf <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                           | 5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset <sub>max</sub> )          | -29 dBm                                                                          | 100 kHz                              |
| $10 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                        | 10.05 MHz $\leq$ f_offset < f_offset <sub>max</sub>                     | -29 dBm (Note 9)                                                                 | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -29dBm/100kHz. |                                                                         |                                                                                  |                                      |

NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.

# 6.6.3.2D Minimum requirements for Local Area and Medium Range BS in Band 46 (Category A and B)

For Local Area and Medium Range BS operating in Band 46, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2D-1 and Tables 6.6.3.2D-2.

# Table 6.6.3.2D-1: Local Area and Medium Range BS operating band unwanted emission limits in Band 46 for 20MHz channel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                                                                                                                                                                                                        | Minimum requirement (Note 1)                                                                                                                                                                           | Measurement<br>bandwidth<br>(Note 8) |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| 0 MHz ≤ ∆f < 1 MHz                                          | 0.05 MHz ≤ f_offset < 1.05 MHz                                                                                                                                                                                                                                                                 | $Pmax, c-32.6dB-10\left(\frac{f_offset}{MHz}-0.05\right)dB$                                                                                                                                            | 100 kHz                              |  |  |
| 1 MHz ≤ ∆f < min(10<br>MHz, ∆f <sub>max</sub> )             | $\begin{array}{l} 1.05 \; \text{MHz} \leq f\_offset < \min(10.05 \\ \text{MHz}, \; f\_offset_{\text{max}}) \end{array}$                                                                                                                                                                        | $Pmax, c - 42.6 dB - \frac{8}{9} \left( \frac{f \_ offset}{MHz} - 1.05 \right) dB$                                                                                                                     | 100 kHz                              |  |  |
| 10 MHz ≤ ∆f < min(20<br>MHz, ∆f <sub>max</sub> )            | $\begin{array}{l} 10.05 \mbox{ MHz} \leq f\_offset < min(20.05 \\ \mbox{ MHz},  f\_offset_{max}) \end{array}$                                                                                                                                                                                  | $Pmax, c-50.6dB - \frac{12}{10} \left( \frac{f \_ offset}{MHz} - 10.05 \right) dB$                                                                                                                     | 100 kHz                              |  |  |
| 20 MHz ≤ Δf < min(170<br>MHz, Δf <sub>max</sub> )           | 20.05 MHz ≤ f_offset < Max(P <sub>max,c</sub> - 62.6dB, -40dBm)<br>min(170.05 MHz, f_offset <sub>max</sub> )                                                                                                                                                                                   |                                                                                                                                                                                                        | 100 kHz                              |  |  |
| 170 MHz ≤ ∆f <<br>min(206 MHz, ∆f <sub>max</sub> )          | 170.05 MHz ≤ f_offset <<br>min(206.05 MHz, f_offset <sub>max</sub> )                                                                                                                                                                                                                           | Max(P <sub>max,c</sub> - 64.6dB, -40dBm)                                                                                                                                                               | 100 kHz                              |  |  |
| $206 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$  | $\begin{array}{c c} 206 \mbox{ MHz} \leq \Delta f \leq \Delta f_{max} \\ f_{\rm offset_{max}} \end{array} \end{array} \begin{array}{c} 206.05 \mbox{ MHz} \leq f_{\rm offset} < & Max(P_{max,c} - 69.6dB, -40dBm) \\ 100 \mbox{ kHz} \end{array} \begin{array}{c} 100 \mbox{ kHz} \end{array}$ |                                                                                                                                                                                                        |                                      |  |  |
| within sub-bloc<br>of the sub bloc                          | k gaps is calculated as a cumulative<br>k gap. Exception is ∆f ≥ 20 MHz from                                                                                                                                                                                                                   | ation within any operating band, the minimus<br>sum of contributions from adjacent sub bloc<br>both adjacent sub blocks on each side of th<br>ck gaps shall be Max(P <sub>max,c</sub> - 62.6dB, -40 dl | ks on each side<br>ne sub-block      |  |  |

# Table 6.6.3.2D-2: Local Area and Medium Range BS operating band unwanted emission limits in Band 46 for 10MHz channel bandwidth

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                                     | Minimum requirement (Note 1)                                         | Measurement<br>bandwidth<br>(Note 8) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|
| $0 \text{ MHz} \le \Delta f < 0.5 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 MHz ≤ f_offset < 0.55 MHz                                                                              | $Pmaxc-29.5dB-20\left(\frac{f\_offset}{MHz}-0.05\right)dB$           | 100 kHz                              |
| 0.5 MHz ≤ ∆f < 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.55 \text{ MHz} \le f_offset < min(5.05 \text{ MHz}, f_offset_{max})$                                     | $Pmaxc-39.5dB-\frac{16}{9}\left(\frac{f\_offset}{MHz}-0.55\right)dB$ | 100 kHz                              |
| 5 MHz ≤ Δf < min(10<br>MHz, Δf <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.05 MHz $\leq$ f_offset < min(10.05 MHz, f_offset <sub>max</sub> )                                         | $Pmaxc-47.5dB-\frac{12}{5}\left(\frac{f\_offset}{MHz}-5.05\right)dB$ | 100 kHz                              |
| 10 MHz ≤ Δf < min(85<br>MHz, Δf <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} 10.05 \text{ MHz} \leq f\_offset < min(85.05 \\ \text{MHz}, f\_offset_{max}) \end{array}$ | Max(P <sub>max,c</sub> -59.5dB, -40dBm)                              | 100 kHz                              |
| 85 MHz ≤ ∆f < min(103<br>MHz, ∆f <sub>max</sub> )                                                                                                                                                                                                                                                                                                                                                                                                               | 85.05 MHz ≤ f_offset <<br>min(103.05 MHz, f_offset <sub>max</sub> )                                         | Max(P <sub>max,c</sub> -61.5dB, -40dBm)                              | 100 kHz                              |
| $103 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$                                                                                                                                                                                                                                                                                                                                                                                                             | $103.05 \text{ MHz} \le f_offset < f_offset_max$                                                            | Max(P <sub>max,c</sub> -66.5dB, -40dBm)                              | 100 kHz                              |
| NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10 MHz from both adjacent sub blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be Max (P <sub>max,c</sub> – 59.5dB, -40 dBm)/100kHz. |                                                                                                             |                                                                      |                                      |

### 6.6.3.2E Minimum requirements for standalone NB-IoT Wide Area BS

For standalone NB-IoT BS, emissions shall not exceed the maximum levels specified in Tables 6.6.3.2E-1.

| Frequency offset of<br>measurement<br>filter -3dB point, ∆f           | Frequency offset of<br>measurement filter centre<br>frequency, f_offset                               | Minimum requirement (Note 1, 2, 3, 4, 5)                                                                                                                                                               | Measuremen<br>t bandwidth<br>(Note 8) |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 0 MHz ≤ Δf < 0.05 0.015 MHz ≤ f_offset <<br>MHz 0.065 MHz             |                                                                                                       | $Max(5dBm - 60 \cdot \left(\frac{f_{offset}}{MHz} - 0.015\right) dB + XdB, -14dBm)$                                                                                                                    | 30 kHz                                |
| 0.05 MHz ≤ ∆f < 0.15<br>MHz                                           | 0.065 MHz ≤ f_offset <<br>0.165 MHz                                                                   | $Max(2dBm-160 \cdot \left(\frac{f_{offset}}{MHz} - 0.065\right) dB + XdB, -14dBm)$                                                                                                                     | 30 kHz                                |
| 0.15 MHz ≤ ∆f < 0.2<br>MHz                                            | 0.165 MHz ≤ f_offset <<br>0.215 MHz                                                                   | -14 dBm                                                                                                                                                                                                | 30 kHz                                |
| 0.2 MHz ≤ ∆f < 1<br>MHz                                               | 0.215 MHz ≤ f_offset <<br>1.015 MHz                                                                   | $-14dBm - 15 \cdot \left(\frac{f - offset}{MHz} - 0.215\right) dB$                                                                                                                                     | 30 kHz                                |
| (Note 9)                                                              | 1.015 MHz ≤ f_offset < 1.5<br>MHz                                                                     | -26 dBm                                                                                                                                                                                                | 30 kHz                                |
| $1 \text{ MHz} \le \Delta f \le \min(\Delta f_{max}, 10 \text{ MHz})$ | 1.5 MHz ≤ f_offset <<br>min(f_offset <sub>max</sub> , 10.5 MHz)                                       | -13 dBm                                                                                                                                                                                                | 1 MHz                                 |
| 10 MHz $\leq \Delta f \leq \Delta f_{max}$                            | 10.5 MHz ≤ f_offset <<br>f_offset <sub>max</sub>                                                      | -15 dBm (Note 10)                                                                                                                                                                                      | 1 MHz                                 |
| Bandwidth<br>NOTE 2: For a BS si<br>within sub-<br>side of the        | edge.<br>upporting non-contiguous spectrum<br>block gaps is calculated as a cumu<br>sub block gap.    | with a NB-IoT carrier adjacent to the Base Stati<br>n operation within any operating band the minimulative sum of contributions from adjacent sub blo                                                  | im requirement<br>ocks on each        |
| within the l                                                          |                                                                                                       | <ul> <li>Inter RF Bandwidth gap &lt; 20MHz the minimum<br/>ed as a cumulative sum of contributions from ad<br/>nter RF Bandwidth gap.]</li> </ul>                                                      |                                       |
| NOTE 4: In case the                                                   | carrier adjacent to the RF bandwid<br>PNB-IoTcarrier is the power level o                             | dth edge is a NB-IoT carrier, the value of X = PN<br>f the NB-IoT carrier adjacent to the RF bandwidt                                                                                                  |                                       |
| NOTE 5: For BS that<br>apply to an<br>operation,                      | only support E-UTRA and NB-IoT<br>E-UTRA BS from Release 8, whic<br>where the upgrade does not affect | multi-carrier operation, the requirements in this<br>h is upgraded to support E-UTRA and NB-IoT m<br>existing RF parts of the radio unit related to the r<br>bclauses 6.6.3.1 and 6.6.3.2 shall apply. | ulti-carrier                          |

Table 6.6.3.2E-1: Standalone NB-IoT BS operating band unwanted emission limits

### 6.6.3.3 Additional requirements

These requirements may be applied for the protection of other systems operating inside or near each supported E-UTRA BS downlink operating band. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the E-UTRA BS, or they may be set by local or regional regulation as a mandatory requirement for an E-UTRA operating band. It is in some cases not stated in the present document whether a

requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in subclause 4.3.

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 5, 26, 27 or 28, emissions shall not exceed the maximum levels specified in Tables 6.6.3.3-1.

| Channel<br>bandwidth | Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum<br>requirement | Measurement<br>bandwidth<br>(Note 8) |
|----------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------------------|
| 200 kHz              | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.005 MHz ≤ f_offset < 0.995 MHz                                        | -6 dBm                 | 10 kHz                               |
| 1.4 MHz              | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.005 MHz ≤ f_offset < 0.995 MHz                                        | -14 dBm                | 10 kHz                               |
| 3 MHz                | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.015 MHz ≤ f_offset < 0.985 MHz                                        | -13 dBm                | 30 kHz                               |
| 5 MHz                | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.015 MHz ≤ f_offset < 0.985 MHz                                        | -15 dBm                | 30 kHz                               |
| 10 MHz               | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | $0.05 \text{ MHz} \le f_{offset} < 0.95 \text{ MHz}$                    | -13 dBm                | 100 kHz                              |
| 15 MHz               | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | $0.05 \text{ MHz} \le f_{\text{offset}} < 0.95 \text{ MHz}$             | -13 dBm                | 100 kHz                              |
| 20 MHz               | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | $0.05 \text{ MHz} \le f_{offset} < 0.95 \text{ MHz}$                    | -13 dBm                | 100 kHz                              |
| All                  | 1 MHz $\leq \Delta f < \Delta f_{max}$                      | $1.05 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$          | -13 dBm                | 100 kHz                              |

Table 6.6.3.3-1: Additional operating band unwanted emission limits for E-UTRA bands <1GHz

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 2, 4, 10, 23, 25, 30, 35, 36, 41, 66, 70, emissions shall not exceed the maximum levels specified in Table 6.6.3.3-2.

| Channel<br>bandwidth | Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum<br>requirement | Measurement<br>bandwidth<br>(Note 8) |
|----------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------------------|
| 200 kHz              | 0 MHz ≤ ∆f < 1 MHz                                          | 0.005 MHz ≤ f_offset < 0.995 MHz                                        | -6 dBm                 | 10 kHz                               |
| 1.4 MHz              | 0 MHz ≤ ∆f < 1 MHz                                          | 0.005 MHz ≤ f_offset < 0.995 MHz                                        | -14 dBm                | 10 kHz                               |
| 3 MHz                | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.015 MHz ≤ f_offset < 0.985 MHz                                        | -13 dBm                | 30 kHz                               |
| 5 MHz                | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.015 MHz ≤ f_offset < 0.985 MHz                                        | -15 dBm                | 30 kHz                               |
| 10 MHz               | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.05 MHz ≤ f_offset < 0.95 MHz                                          | -13 dBm                | 100 kHz                              |
| 15 MHz               | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.05 MHz ≤ f_offset < 0.95 MHz                                          | -15 dBm                | 100 kHz                              |
| 20 MHz               | $0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$                | 0.05 MHz ≤ f_offset < 0.95 MHz                                          | -16 dBm                | 100 kHz                              |
| All                  | $1 \text{ MHz} \le \Delta f < \Delta f_{max}$               | $1.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$           | -13 dBm                | 1 MHz                                |

Table 6.6.3.3-2: Additional operating band unwanted emission limits for E-UTRA bands>1GHz

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 12, 13, 14, 17, 29 emissions shall not exceed the maximum levels specified in Table 6.6.3.3-3.

Table 6.6.3.3-3: Additional operating band unwanted emission limits for E-UTRA (bands 12, 13, 14, 17and 29)

| Channel<br>bandwidth | Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum<br>requirement | Measurement<br>bandwidth<br>(Note 8) |
|----------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------------------|
| All                  | 0 MHz ≤ ∆f < 100 kHz                                        | 0.015 MHz ≤ f_offset < 0.085 MHz                                        | -13 dBm                | 30 kHz                               |
| All                  | 100 kHz $\leq \Delta f < \Delta f_{max}$                    | 150 kHz $\leq$ f_offset < f_offset <sub>max</sub>                       | -13 dBm                | 100 kHz                              |

In certain regions, the following requirements may apply to an E-UTRA TDD BS operating in the same geographic area and in the same operating band as another E-UTRA TDD system without synchronisation. For this case the emissions shall not exceed -52 dBm/MHz in each supported downlink operating band except in:

- The frequency range from 10 MHz below the lower channel edge to the frequency 10 MHz above the upper channel edge of each supported band.

In certain regions the following requirement may apply for protection of DTT. For E-UTRA BS operating in Band 20, the level of emissions in the band 470-790 MHz, measured in an 8MHz filter bandwidth on centre frequencies  $F_{filter}$  according to Table 6.6.3.3-4, shall not exceed the maximum emission level  $P_{EM,N}$  declared by the manufacturer. This requirement applies in the frequency range 470-790 MHz even though part of the range falls in the spurious domain.

| Filter centre frequency,                        | Measurement | Declared emission level |
|-------------------------------------------------|-------------|-------------------------|
| F <sub>filter</sub>                             | bandwidth   | [dBm]                   |
| $F_{filter} = 8^*N + 306 (MHz);$<br>21 ≤ N ≤ 60 | 8 MHz       | Рем, м                  |

Note: The regional requirement is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. Compliance with the regional requirement can be determined using the method outlined in Annex G.

In certain regions the following requirement may apply for the protection of systems operating in frequency bands adjacent to band 1 as defined in clause 5.5, in geographic areas in which both an adjacent band service E-UTRA are deployed.

The power of any spurious emission shall not exceed:

| Operating<br>Band | Frequency range | Maximum Level                  | Measurement<br>Bandwidth |
|-------------------|-----------------|--------------------------------|--------------------------|
| 1                 | 2100-2105 MHz   | -30 + 3.4 · (f - 2100 MHz) dBm | 1 MHz                    |
|                   | 2175-2180 MHz   | -30 + 3.4 · (2180 MHz - f) dBm | 1 MHz                    |

 Table 6.6.3.3-5: Emissions limits for protection of adjacent band services

In regions where FCC regulation applies, requirements for protection of GPS according to FCC Order DA 10-534 applies for operation in Band 24. The following normative requirement covers the base station, to be used together with other information about the site installation to verify compliance with the requirement in FCC Order DA 10-534. The requirement applies to BS operating in Band 24 to ensure that appropriate interference protection is provided to the 1559 – 1610 MHz band. This requirement applies to the frequency range 1559-1610 MHz, even though part of this range falls within the spurious domain.

The level of emissions in the 1559 – 1610 MHz band, measured in measurement bandwidth according to Table 6.6.3.3-6 shall not exceed the maximum emission levels  $P_{E_{\perp}1MHz}$  and  $P_{E_{\perp}1kHz}$  declared by the manufacturer.

| Table 6.6.3.3-6: Declared emissions levels fo | r protection of the 1559-1610 MHz band |
|-----------------------------------------------|----------------------------------------|
|-----------------------------------------------|----------------------------------------|

| Operating Band | Frequency range | Declared emission<br>level [dBW]<br>(Measurement<br>bandwidth = 1 MHz) | Declared emission<br>level [dBW] of<br>discrete emissions<br>of less than 700 Hz<br>bandwidth<br>(Measurement<br>bandwidth = 1 kHz) |
|----------------|-----------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 24             | 1559 - 1610 MHz | Pe 1MHz                                                                | P <sub>E_1kHz</sub>                                                                                                                 |

Note: The regional requirement in FCC Order DA 10-534 is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The EIRP level is calculated using:  $P_{EIRP} = P_E + G_{ant}$  where  $P_E$  denotes the BS unwanted emission level at the antenna connector,  $G_{ant}$  equals the BS antenna gain minus feeder loss. The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement.

The following requirement may apply to E-UTRA BS operating in Band 41 in certain regions. Emissions shall not exceed the maximum levels specified in Table 6.6.3.3-7.

| Channel<br>bandwidth                                                                       | Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum<br>requirement | Measurement<br>bandwidth<br>(Note 8) |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------------------|
| 10 MHz                                                                                     | 10 MHz ≤ ∆f < 20 MHz                                        | 10.5 MHz ≤ f_offset < 19.5 MHz                                          | -22 dBm                | 1 MHz                                |
| 20 MHz                                                                                     | 20 MHz ≤ ∆f < 40 MHz                                        | 20.5 MHz ≤ f_offset < 39.5 MHz                                          | -22 dBm                | 1 MHz                                |
| NOTE: This requirement applies for carriers allocated within 2545-2575MHz or 2595-2645MHz. |                                                             |                                                                         |                        |                                      |

 Table 6.6.3.3-7: Additional operating band unwanted emission limits for Band 41

In certain regions, the following requirements may apply to E-UTRA BS operating in Band 32 within 1452-1492 MHz. The level of operating band unwanted emissions, measured on centre frequencies  $f_{offset}$  with filter bandwidth, according to Table 6.6.3.3-8, shall neither exceed the maximum emission level  $P_{EM,B32,a}$ ,  $P_{EM,B32,b}$  nor  $P_{EM,B32,c}$  declared by the manufacturer.

Table 6.6.3.3-8: Declared operating band 32 unwanted emission within 1452-1492 MHz

| Frequency offset of measurement<br>filter centre frequency, f_offset                                                                                                                                                       | Declared emission<br>level [dBm] | Measurement<br>bandwidth |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--|
| 2.5 MHz                                                                                                                                                                                                                    | P <sub>EM,B32,a</sub>            | 5 MHz                    |  |
| 7.5 MHz                                                                                                                                                                                                                    | P <sub>EM,B32,b</sub>            | 5 MHz                    |  |
| 12.5 MHz $\leq$ f_offset $\leq$ f_offset <sub>max,B32</sub>                                                                                                                                                                | Pem,B32,c                        | 5 MHz                    |  |
| NOTE: f_offset <sub>max,B32</sub> denotes the frequency difference between the lower channel edge and 1454.5 MHz, and the frequency difference between the upper channel edge and 1489.5 MHz for the set channel position. |                                  |                          |  |

NOTE: The regional requirement, included in [16], is defined in terms of EIRP per antenna, which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex H.

In certain regions, the following requirement may apply to E-UTRA BS operating in Band 32 within 1452-1492 MHz for the protection of services in spectrum adjacent to the frequency range 1452-1492 MHz. The level of emissions, measured on centre frequencies  $F_{filter}$  with filter bandwidth according to Table 6.6.3.3-9, shall neither exceed the maximum emission level  $P_{EM,B32,d}$  nor  $P_{EM,B32,e}$  declared by the manufacturer. This requirement applies in the frequency range 1429-1518MHz even though part of the range falls in the spurious domain.

Table 6.6.3.3-9: Operating band 32 declared emission outside 1452-1492 MHz

| Filter centre frequency, F <sub>filter</sub>  | Declared emission<br>level [dBm] | Measurement<br>bandwidth |
|-----------------------------------------------|----------------------------------|--------------------------|
| 1429.5 MHz ≤ F <sub>filter</sub> ≤ 1448.5 MHz | P <sub>EM,B32,d</sub>            | 1 MHz                    |
| F <sub>filter</sub> = 1450.5 MHz              | P <sub>EM,B32,e</sub>            | 3 MHz                    |
| F <sub>filter</sub> = 1493.5 MHz              | P <sub>EM,B32,e</sub>            | 3 MHz                    |
| 1495.5 MHz ≤ F <sub>filter</sub> ≤ 1517.5 MHz | P <sub>EM,B32,d</sub>            | 1 MHz                    |

NOTE: The regional requirement, included in [16], is defined in terms of EIRP, which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex H.

In addition for Band 46 operation, the BS may have to comply with the applicable operating band unwanted emission limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer. The regional requirements may be in the form of conducted power, power spectral density, EIRP and other types of limits. In case of regulatory limits based on EIRP, assessment of the EIRP level is described in Annex H.

In certain regions the following requirement may apply to E-UTRA BS operating in Band 45. Emissions shall not exceed the maximum levels specified in Table 6.6.3.3-10.

| Operating<br>Band | Filter centre frequency, F <sub>filter</sub>  | Maximum Level<br>[dBm] | Measurement<br>Bandwidth |
|-------------------|-----------------------------------------------|------------------------|--------------------------|
| 45                | F <sub>filter</sub> = 1467.5                  | -20                    | 1 MHz                    |
|                   | F <sub>filter</sub> = 1468.5                  | -23                    | 1 MHz                    |
|                   | F <sub>filter</sub> = 1469.5                  | -26                    | 1 MHz                    |
|                   | F <sub>filter</sub> = 1470.5                  | -33                    | 1 MHz                    |
|                   | F <sub>filter</sub> = 1471.5                  | -40                    | 1 MHz                    |
|                   | 1472.5 MHz ≤ F <sub>filter</sub> ≤ 1491.5 MHz | -47                    | 1 MHz                    |

Table 6.6.3.3-10: Emissions limits for protection of adjacent band services

The following requirement may apply to E-UTRA BS operating in Band 48 in certain regions. Emissions shall not exceed the maximum levels specified in Table 6.6.3.3-11.

Table 6.6.3.3-11: Additional operating band unwanted emission limits for Band 48

| Channel<br>bandwidth | Frequency offset of<br>measurement<br>filter -3dB point, ∆f | Frequency offset of<br>measurement filter centre<br>frequency, f_offset | Minimum<br>requirement | Measurement<br>bandwidth<br>(Note 8) |
|----------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|--------------------------------------|
| All                  | 0 MHz ≤ ∆f < 10 MHz                                         | $0.5 \text{ MHz} \le f_{offset} < 9.5 \text{ MHz}$                      | -13 dBm                | 1 MHz                                |

The following notes are common to all subclauses in 6.6.3:

- NOTE 6: Local or regional regulations may specify another excluded frequency range, which may include frequencies where synchronised E-UTRA TDD systems operate.
- NOTE 7: E-UTRA TDD base stations that are synchronized can transmit without these additional co-existence requirements.
- NOTE 8: As a general rule for the requirements in subclause 6.6.3, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.
- NOTE 9: This frequency range ensures that the range of values of f\_offset is continuous.
- NOTE 10: The requirement is not applicable when  $\Delta f_{max} < 10$  MHz.
- NOTE 11: For Home BS, the parameter P is defined as the aggregated maximum output power of all transmit antenna connectors of Home BS.

### 6.6.4 Transmitter spurious emissions

The transmitter spurious emission limits apply from 9 kHz to 12.75 GHz, excluding the frequency range from 10 MHz below the lowest frequency of the downlink operating band up to 10 MHz above the highest frequency of the downlink operating band. For BS capable of multi-band operation where multiple bands are mapped on the same antenna connector, this exclusion applies for each supported operating band. For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the single-band requirements apply and the multi-band exclusions and provisions are not applicable. Exceptions are the requirements in Table 6.6.4.3.1-2, Table 6.6.4.3.1-3, and specifically stated exceptions in Table 6.6.4.3.1-1 that apply also closer than 10 MHz from the downlink operating band and Table 6.6.4.3.1-1a that applies inside the downlink operating band. For some operating bands the upper frequency limit is higher than 12.75 GHz.

The requirements shall apply to BS that supports E-UTRA or E-UTRA with NB-IoT in-band/guard band operation or NB-IoT standalone operation.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification. Unless otherwise stated, all requirements are measured as mean power (RMS).

### 6.6.4.1 Mandatory Requirements

The requirements of either subclause 6.6.4.1.1 (Category A limits) or subclause 6.6.4.1.2 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for Operating band unwanted emissions in subclause 6.6.3.

### 6.6.4.1.1 Spurious emissions (Category A)

#### 6.6.4.1.1.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits in Table 6.6.4.1.1.1-1

| Table 6.6.4.1.1.1-1: BS Spurious emission | on limits, Category A |
|-------------------------------------------|-----------------------|
|-------------------------------------------|-----------------------|

| Frequency range                                                                                                                                | Maximum level | Measurement<br>Bandwidth | Note           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|----------------|--|
| 9kHz - 150kHz                                                                                                                                  |               | 1 kHz                    | Note 1         |  |
| 150kHz - 30MHz                                                                                                                                 |               | 10 kHz                   | Note 1         |  |
| 30MHz - 1GHz                                                                                                                                   |               | 100 kHz                  | Note 1         |  |
| 1GHz - 12.75 GHz                                                                                                                               | 7             | 1 MHz                    | Note 2         |  |
| 12.75 GHz - 5 <sup>th</sup> harmonic                                                                                                           | -13 dBm       | 1 MHz                    | Note 2, Note 3 |  |
| of the upper frequency                                                                                                                         |               |                          |                |  |
| edge of the DL operating<br>band in GHz                                                                                                        |               |                          |                |  |
| 12.75 GHz - 26 GHz                                                                                                                             | 7             | 1 MHz                    | Note 2, Note 4 |  |
| NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1<br>NOTE 2: Bandwidth as in ITU-R SM.329 [2], s4.1. Upper frequency as in ITU-R SM.329 [2], s2.5 |               |                          |                |  |
| table 1                                                                                                                                        |               |                          |                |  |
| NOTE 3: Applies only for Bands 22, 42, 43 and 48.<br>NOTE 4: Applies only for Band 46.                                                         |               |                          |                |  |

### 6.6.4.1.2 Spurious emissions (Category B)

### 6.6.4.1.2.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits in Table 6.6.4.1.2.1-1

| Table 6.6.4.1.2.1-1: BS Spurious | s emissions limits, | Category B |
|----------------------------------|---------------------|------------|
|----------------------------------|---------------------|------------|

| Frequency range                                                                                                                                                                                                                                                                        | Maximum<br>Level | Measurement<br>Bandwidth | Note           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|----------------|--|--|
| $9 \text{ kHz} \leftrightarrow 150 \text{ kHz}$                                                                                                                                                                                                                                        | -36 dBm          | 1 kHz                    | Note 1         |  |  |
| 150 kHz $\leftrightarrow$ 30 MHz                                                                                                                                                                                                                                                       | -36 dBm          | 10 kHz                   | Note 1         |  |  |
| $30 \text{ MHz} \leftrightarrow 1 \text{ GHz}$                                                                                                                                                                                                                                         | -36 dBm          | 100 kHz                  | Note 1         |  |  |
| $1 \text{ GHz} \leftrightarrow 12.75 \text{ GHz}$                                                                                                                                                                                                                                      | -30 dBm          | 1 MHz                    | Note 2         |  |  |
| 12.75 GHz ↔ 5 <sup>th</sup> harmonic of the<br>upper frequency edge of the DL<br>operating band in GHz                                                                                                                                                                                 | -30 dBm          | 1 MHz                    | Note 2, Note 3 |  |  |
| 12.75 GHz ↔ 26 GHz -30 dBm 1 MHz Note 2, Note 4                                                                                                                                                                                                                                        |                  |                          |                |  |  |
| <ul> <li>NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1</li> <li>NOTE 2: Bandwidth as in ITU-R SM.329 [2], s4.1. Upper frequency as in ITU-R SM.329 [2], s2.5 table 1</li> <li>NOTE 3: Applies only for Bands 22, 42, 43 and 48.</li> <li>NOTE 4: Applies only for Band 46.</li> </ul> |                  |                          |                |  |  |

### 6.6.4.2 Protection of the BS receiver of own or different BS

This requirement shall be applied for E-UTRA FDD operation in order to prevent the receivers of the BSs being desensitised by emissions from a BS transmitter. It is measured at the transmit antenna port for any type of BS which has common or separate Tx/Rx antenna ports.

### 6.6.4.2.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits in Table 6.6.4.2-1.

|                                                                                              | Frequency<br>range             |         |         |  |  |
|----------------------------------------------------------------------------------------------|--------------------------------|---------|---------|--|--|
| Wide Area BS                                                                                 | $F_{UL_{low}} - F_{UL_{high}}$ | -96 dBm | 100 kHz |  |  |
| Medium Range BS FUL_low – FUL_high -91 dBm 100 kHz                                           |                                |         |         |  |  |
| Local Area BS F <sub>UL_low</sub> – F <sub>UL_high</sub> -88 dBm 100 kHz                     |                                |         |         |  |  |
| Home BS FUL_low – FUL_high -88 dBm 100 kHz                                                   |                                |         |         |  |  |
| Note 1: For E-UTRA Band 28 BS operating in regions where Band 28 is only partially allocated |                                |         |         |  |  |
| for E-UTRA operations, this requirement only apllies in the UL frequency range of the        |                                |         |         |  |  |
| partial alloc                                                                                | cation.                        |         |         |  |  |

### 6.6.4.3 Additional spurious emissions requirements

These requirements may be applied for the protection of system operating in frequency ranges other than the E-UTRA BS downlink operating band. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the E-UTRA BS, or they may be set by local or regional regulation as a mandatory requirement for an E-UTRA operating band. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in subclause 4.3.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, etc.) as listed below.

### 6.6.4.3.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits of Table 6.6.4.3.1-1 for a BS where requirements for coexistence with the system listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.3.1-1 apply for each supported operating band. For BS capable of multiband operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.3.1-1 apply for the operating band supported at that antenna connector.

# Table 6.6.4.3.1-1: BS Spurious emissions limits for E-UTRA BS for co-existence with systems operating in other frequency bands

| System type<br>for E-UTRA to<br>co-exist with | Frequency range<br>for co-existence<br>requirement | Maximu<br>m Level | Measurement<br>Bandwidth | Note                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------|----------------------------------------------------|-------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSM900                                        | 921 - 960 MHz                                      | -57 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS operating in band 8                                                                                                                                                                                                                                             |
|                                               | 876 - 915 MHz                                      | -61 dBm           | 100 kHz                  | For the frequency range 880-915 MHz, this requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                 |
| DCS1800                                       | 1805 - 1880 MHz                                    | -47 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS operating in band 3.                                                                                                                                                                                                                                            |
|                                               | 1710 - 1785 MHz                                    | -61 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS operating in band 3, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                                                      |
| PCS1900                                       | 1930 - 1990 MHz                                    | -47 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS operating in band 2, band 25, band 36 or band 70.                                                                                                                                                                                                               |
|                                               | 1850 - 1910 MHz                                    | -61 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS<br>operating in band 2 or 25, since it is already covered<br>by the requirement in sub-clause 6.6.4.2. This<br>requirement does not apply to E-UTRA BS operating<br>in band 35.                                                                                 |
| GSM850 or<br>CDMA850                          | 869 - 894 MHz                                      | -57 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS operating in band 5 or 26. This requirement applies to E-UTRA BS operating in Band 27 for the frequency range 879-894 MHz.                                                                                                                                      |
|                                               | 824 - 849 MHz                                      | -61 dBm           | 100 kHz                  | This requirement does not apply to E-UTRA BS operating in band 5 or 26, since it is already covered by the requirement in sub-clause 6.6.4.2. For E-UTRA BS operating in Band 27, it applies 3 MHz below the Band 27 downlink operating band.                                                                |
| UTRA FDD<br>Band I or                         | 2110 - 2170 MHz                                    | -52 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 1 or 65                                                                                                                                                                                                                                       |
| E-UTRA Band<br>1                              | 1920 - 1980 MHz                                    | -49 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 1 or 65, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                                                |
| UTRA FDD<br>Band II or                        | 1930 - 1990 MHz                                    | -52 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 2, 25 or 70.                                                                                                                                                                                                                                  |
| E-UTRA Band<br>2                              | 1850 - 1910 MHz                                    | -49 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS<br>operating in band 2 or 25, since it is already covered<br>by the requirement in sub-clause 6.6.4.2                                                                                                                                                           |
| UTRA FDD<br>Band III or<br>E-UTRA Band        | 1805 - 1880 MHz                                    | -52 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 3 or 9.                                                                                                                                                                                                                                       |
| 3                                             | 1710 - 1785 MHz                                    | -49 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS<br>operating in band 3, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in band 9, it applies for<br>1710 MHz to 1749.9 MHz and 1784.9 MHz to 1785<br>MHz, while the rest is covered in sub-clause 6.6.4.2. |
| UTRA FDD<br>Band IV or                        | 2110 - 2155 MHz                                    | -52 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66                                                                                                                                                                                                                                   |
| E-UTRA Band<br>4                              | 1710 - 1755 MHz                                    | -49 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                                            |
| UTRA FDD<br>Band V or<br>E-UTRA Band<br>5     | 869 - 894 MHz                                      | -52 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS<br>operating in band 5 or 26. This requirement applies to<br>E-UTRA BS operating in Band 27 for the frequency<br>range 879-894 MHz.                                                                                                                             |
|                                               | 824 - 849 MHz                                      | -49 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS<br>operating in band 5 or 26, since it is already covered<br>by the requirement in sub-clause 6.6.4.2. For E-UTRA<br>BS operating in Band 27, it applies 3 MHz below the<br>Band 27 downlink operating band.                                                    |
|                                               | 860 - 890 MHz                                      | -52 dBm           | 1 MHz                    | This requirement does not apply to E-UTRA BS operating in band 6, 18, 19.                                                                                                                                                                                                                                    |

| UTRA FDD<br>Band VI, XIX or           | 815 - 830 MHz          | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 18, since it is already covered by the                                                                                                                                                                    |
|---------------------------------------|------------------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-UTRA Band<br>6, 18, 19              | 830 - 845 MHz          | -49 dBm | 1 MHz | requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to E-UTRA BS<br>operating in band 6, 19, since it is already covered by                                                                                                                            |
| UTRA FDD                              | 2620 - 2690 MHz        | -52 dBm | 1 MHz | the requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to E-UTRA BS                                                                                                                                                                                   |
| Band VII or<br>E-UTRA Band<br>7       | 2500 - 2570 MHz        | -49 dBm | 1 MHz | operating in band 7.<br>This requirement does not apply to E-UTRA BS<br>operating in band 7, since it is already covered by the                                                                                                                                          |
| UTRA FDD                              | 925 - 960 MHz          | 50 dDm  | 1 MHz | requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to E-UTRA BS                                                                                                                                                                                       |
| Band VIII or                          |                        | -52 dBm |       | operating in band 8.                                                                                                                                                                                                                                                     |
| E-UTRA Band<br>8                      | 880 - 915 MHz          | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                  |
| UTRA FDD<br>Band IX or<br>E-UTRA Band | 1844.9 - 1879.9<br>MHz | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 3 or 9.                                                                                                                                                                                                   |
| 9                                     | 1749.9 - 1784.9<br>MHz | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by                                                                                                                                                                    |
| UTRA FDD                              | 2110 - 2170 MHz        | -52 dBm | 1 MHz | the requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to E-UTRA BS                                                                                                                                                                                   |
| Band X or<br>E-UTRA Band              | 1710 - 1770 MHz        | -49 dBm | 1 MHz | operating in band 4, 10 or 66<br>This requirement does not apply to E-UTRA BS                                                                                                                                                                                            |
| 10                                    |                        |         |       | operating in band 10 or 66, since it is already covered<br>by the requirement in sub-clause 6.6.4.2. For E-UTRA<br>BS operating in Band 4, it applies for 1755 MHz to<br>1770 MHz, while the rest is covered in sub-clause<br>6.6.4.2.                                   |
| UTRA FDD<br>Band XI or XXI            | 1475.9 - 1510.9<br>MHz | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32,                                                                                                                                                                                             |
| or<br>E-UTRA Band<br>11 or 21         | 1427.9 - 1447.9<br>MHz | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS<br>operating in band 11, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 32, this requirement applies for<br>carriers allocated within 1475.9MHz and 1495.9MHz. |
|                                       | 1447.9 - 1462.9<br>MHz | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS<br>operating in band 21, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 32, this requirement applies for<br>carriers allocated within 1475.9MHz and 1495.9MHz. |
| UTRA FDD<br>Band XII or               | 729 - 746 MHz          | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 12.                                                                                                                                                                                                       |
| E-UTRA Band<br>12                     | 699 - 716 MHz          | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS<br>operating in band 12, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 29, it applies 1 MHz below the Band<br>29 downlink operating band (Note 6).            |
| UTRA FDD<br>Band XIII or              | 746 - 756 MHz          | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 13.                                                                                                                                                                                                       |
| E-UTRA Band<br>13                     | 777 - 787 MHz          | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                 |
| UTRA FDD<br>Band XIV or               | 758 - 768 MHz          | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 14.                                                                                                                                                                                                       |
| E-UTRA Band<br>14                     | 788 - 798 MHz          | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in sub-clause 6.6.4.2.                                                                                                                                 |
| E-UTRA Band<br>17                     | 734 - 746 MHz          | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 17.                                                                                                                                                                                                       |
|                                       | 704 - 716 MHz          | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS<br>operating in band 17, since it is already covered by the<br>requirement in subclause 6.6.4.2. For E-UTRA BS<br>operating in Band 29, it applies 1 MHz below the Band<br>29 downlink operating band (Note 6).             |
|                                       | 791 - 821 MHz          | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 20 or 28.                                                                                                                                                                                                 |

|                             | 000 000 MU-      | 40 dDm    | 4 1411-   | This requirement does not each to F LITRA DC                                                            |
|-----------------------------|------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|
| UTRA FDD<br>Band XX or E-   | 832 - 862 MHz    | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS operating in band 20, since it is already covered by the   |
| UTRA Band 20                |                  |           |           | requirement in subclause 6.6.4.2.                                                                       |
| UTRA FDD                    | 3510 – 3590 MHz  | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| Band XXII or                |                  | 02 0.2    |           | operating in band 22, 42 or 48.                                                                         |
| E-UTRA Band                 | 3410 – 3490 MHz  | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 22                          |                  |           |           | operating in band 22, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2. This requirement                                                      |
|                             |                  |           |           | does not apply to E-UTRA BS operating in Band 42                                                        |
| E-UTRA Band                 | 1525 – 1559 MHz  | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 24                          |                  |           |           | operating in band 24.                                                                                   |
|                             | 1626.5 - 1660.5  | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
|                             | MHz              |           |           | operating in band 24, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2.                                                                       |
| UTRA FDD                    | 1930 – 1995 MHz  | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| Band XXV or                 |                  |           |           | operating in band 2, 25 or 70.                                                                          |
| E-UTRA Band                 | 1850 – 1915 MHz  | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 25                          |                  |           |           | operating in band 25, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2. For E-UTRA BS                                                         |
|                             |                  |           |           | operating in Band 2, it applies for 1910 MHz to                                                         |
|                             |                  |           |           | 1915 MHz, while the rest is covered in sub-clause                                                       |
|                             | 050 004 MIL      | 50 15     | 4 8 40 1  | 6.6.4.2                                                                                                 |
| UTRA FDD                    | 859 – 894 MHz    | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| Band XXVI or<br>E-UTRA Band |                  |           |           | operating in band 5 or 26. This requirement applies to                                                  |
| 26                          |                  |           |           | E-UTRA BS operating in Band 27 for the frequency range 879-894 MHz.                                     |
| 20                          | 814 – 849 MHz    | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
|                             | 014 - 049 WI 12  | -49 UDIII | 1 1011 12 | operating in band 26, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2. For E-UTRA BS                                                         |
|                             |                  |           |           | operating in Band 5, it applies for 814 MHz to                                                          |
|                             |                  |           |           | 824 MHz, while the rest is covered in sub-clause                                                        |
|                             |                  |           |           | 6.6.4.2. For E-UTRA BS operating in Band 27, it                                                         |
|                             |                  |           |           | applies 3 MHz below the Band 27 downlink operating                                                      |
|                             |                  |           |           | band.                                                                                                   |
| E-UTRA Band                 | 852 – 869 MHz    | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 27                          |                  |           |           | operating in Band 5, 26 or 27.                                                                          |
|                             | 807 – 824 MHz    | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
|                             |                  |           |           | operating in Band 27, since it is already covered by                                                    |
|                             |                  |           |           | the requirement in subclause 6.6.4.2. For E-UTRA BS                                                     |
|                             |                  |           |           | operating in Band 26, it applies for 807 MHz to                                                         |
|                             |                  |           |           | 814 MHz, while the rest is covered in sub-clause                                                        |
|                             |                  |           |           | 6.6.4.2. This requirement also applies to E-UTRA BS operating in Band 28, starting 4 MHz above the Band |
|                             |                  |           |           | 28 downlink operating band (Note 5).                                                                    |
| E-UTRA Band                 | 758 - 803 MHz    | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 28                          |                  |           | 1 111112  | operating in band 20, 28, 44, 67 or 68.                                                                 |
| 20                          | 703 - 748 MHz    | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
|                             |                  | 10 0011   | 1 101112  | operating in band 28, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2. This requirement                                                      |
|                             |                  |           |           | does not apply to E-UTRA BS operating in Band 44.                                                       |
|                             |                  |           |           | For E-UTRA BS operating in Band 67, it applies for                                                      |
|                             |                  |           |           | 703 MHz to 736 MHz. For E-UTRA BS operating in                                                          |
|                             |                  |           |           | Band 68, it applies for 728MHz to 733MHz.                                                               |
| E-UTRA Band                 | 717 – 728 MHz    | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 29                          |                  |           |           | operating in Band 29.                                                                                   |
| E-UTRA Band                 | 2350 – 2360 MHz  | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 30                          |                  |           |           | operating in band 30 or 40.                                                                             |
|                             | 2305 – 2315 MHz  | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
|                             |                  |           |           | operating in band 30, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2. This requirement                                                      |
|                             | 100 E 10         | =         |           | does not apply to E-UTRA BS operating in Band 40.                                                       |
| E-UTRA Band                 | 462.5 -467.5 MHz | -52 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
| 31                          |                  | 40 dD     | 4 1411-   | operating in band 31.                                                                                   |
|                             | 452.5 -457.5 MHz | -49 dBm   | 1 MHz     | This requirement does not apply to E-UTRA BS                                                            |
|                             |                  |           |           | operating in band 31, since it is already covered by the                                                |
|                             |                  |           |           | requirement in subclause 6.6.4.2.                                                                       |

| UTRA FDD         1452 - 1496 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32.           UTRA TDD         1900 - 1920 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 33.           UTRA TDD         2010 - 2025 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 33.           UTRA Band 34         UTRA TDD         1850 - 1910 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 34.           UTRA Band 34         UTRA TDD         1930 - 1990 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 35.           UTRA band 34         UTRA TDD         1930 - 1990 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 36.           UTRA band 37         UTRA DD         1910 - 1930 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 36.           UTRA DD         1870 - 1820 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 36.           UTRA DD         230 - 2400MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 38.           UTRA DD         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                       |           |             |                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-----------|-------------|----------------------------------------------------------|
| E-UTRA band<br>32       1900 - 1920 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 33.         UTRA TDD<br>Band a) or E-<br>UTRA Band 34       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 34.         UTRA TDD<br>Band a) or E-<br>UTRA Band 34       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 34.         UTRA TDD<br>Band b) or E-<br>UTRA Band 35       1 930 - 1900 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.         UTRA TDD<br>Band b) or E-<br>UTRA Band 36       1 910 - 1930 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>37. This uppared band is defined in ITU-R M 1036,<br>but is pending any future deployment.         UTRA TDD<br>Band 0) or E-<br>UTRA Band 36       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         UTRA DD<br>Band 0) or E-<br>UTRA Band 36       -1920 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         UTRA Band 34       2400 - 2400 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>32.         UTRA Band 40       -1920 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.       -24 do r48.         E-UTRA Band<br>41       3600 - 3800 MHz       -52 dBm <td></td> <td>1452 – 1496 MHz</td> <td>-52 dBm</td> <td>1 MHz</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 1452 – 1496 MHz       | -52 dBm   | 1 MHz       |                                                          |
| 32         1900 - 1920 MHz         52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 33.           UTRA TDD<br>Band a) or E-<br>UTRA Band 33         2010 - 2025 MHz         52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 34.           UTRA DD<br>Band b) or E-<br>UTRA Band 35         1850 - 1910 MHz         52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 35.           UTRA DD<br>Band b) or E-<br>UTRA Band 36         1930 - 1990 MHz         52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.           UTRA DD<br>Band b) or E-<br>UTRA Band 37         1910 - 1930 MHz         52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band is defined in TU-RN 1036.           Band () or E-<br>UTRA Band 37         1920 - 1920 MHz         52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band 38 of 69.           UTRA DD<br>Band () or E-<br>UTRA Band 39         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>38.         30 or 40.           UTRA DD<br>Band 4) or E-<br>UTRA Band 40         2200 - 2400 MHz         52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>43.         30 or 40.           UTRA DD<br>Band 40         2496 - 2690 MHz         52 dBm         1 MHz         This is not applicable to E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                       |           |             | operating in band 11, 21 or 32.                          |
| UTRA TDD<br>Band a) or E-<br>UTRA Band 3)         1900 - 1920 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 33.           UTRA DBD<br>Band a) or E-<br>UTRA Band 34         2010 - 2025 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 34.           UTRA DDD<br>Band b) or E-<br>UTRA Band 36         1850 - 1910 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 34.           UTRA DDD<br>Band b) or E-<br>UTRA Band 36         1930 - 1990 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 36.           UTRA DDD<br>Band d) or E-<br>UTRA Band 36         1910 - 1930 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 36.           UTRA DDD<br>Band d) or E-<br>UTRA Band 38         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.           UTRA DDD<br>Band d) or E-<br>UTRA Band 39         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>30.           UTRA DDD<br>Band 40         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>41.           UTRA Band 39         2496 - 2690 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>42. 42. 43 or 48.               E-UTRA Band 49         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E-UTRA band   |                       |           |             |                                                          |
| Band a) or E-<br>UTRA Band 3       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 33.         UTRA TDD<br>Band b) or E-<br>UTRA Band 34.       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 34.         UTRA DDD<br>Band b) or E-<br>UTRA Band 35.       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 35.         UTRA DDD<br>Band b) or E-<br>UTRA Band 36       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.         UTRA DDD<br>Band b) or E-<br>UTRA Band 37       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 37.         UTRA DDD<br>Band b) or E-<br>UTRA Band 37       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.         UTRA DDD<br>Band d) or E-<br>UTRA Band 39       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         UTRA DDD<br>Band d) or E-<br>UTRA Band 40       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         Band d) or E-<br>UTRA Band 42       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         CUTRA DDD<br>Band 4) or E-<br>UTRA Band 42       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>43.         E-UTRA Band 44       -s2 dBm       1 MHz       This is not applicabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32            |                       |           |             |                                                          |
| Band a) or E-<br>UTRA Band 3       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 33.         UTRA TDD<br>Band b) or E-<br>UTRA Band 34.       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 34.         UTRA DDD<br>Band b) or E-<br>UTRA Band 35.       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 35.         UTRA DDD<br>Band b) or E-<br>UTRA Band 36       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.         UTRA DDD<br>Band b) or E-<br>UTRA Band 37       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 37.         UTRA DDD<br>Band b) or E-<br>UTRA Band 37       -s2 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.         UTRA DDD<br>Band d) or E-<br>UTRA Band 39       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         UTRA DDD<br>Band d) or E-<br>UTRA Band 40       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         Band d) or E-<br>UTRA Band 42       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         CUTRA DDD<br>Band 4) or E-<br>UTRA Band 42       -s2 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>43.         E-UTRA Band 44       -s2 dBm       1 MHz       This is not applicabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UTRA TDD      | 1900 - 1920 MHz       | -52 dBm   | 1 MHz       | This requirement does not apply to E-UTRA BS             |
| UTRA Band 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                       |           |             |                                                          |
| UTRA TDD<br>Band a) or E-<br>UTRA Band 34         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 34.           UTRA DD<br>Band b) or F-<br>UTRA Band 35         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 35.           UTRA DD<br>Band b) or F-<br>UTRA Band 35         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 25.           UTRA DD<br>Band b) or F-<br>UTRA Band 35         1910 - 1930 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.           UTRA DD<br>Band 0) or F-<br>UTRA Band 37         1910 - 1930 MHz         -52 dBm         1 MHz         This unpaired band is defined in ITU-R M.1036,<br>but is pending any future deployment.           UTRA DD<br>Band 0) or E-<br>UTRA Band 36         1910 - 1920 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>30 or 69.           UTRA DD<br>Band 0) or E-<br>UTRA Band 36         1280 - 1920 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>30 or 40.           UTRA Band 36         2300 - 2400 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>41           E-UTRA Band<br>41         3400 - 3600 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band<br>42. 42 or 48.           E-UTRA Band<br>43         3600 - 3800 MHz         -52 dBm         1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                       |           |             | oporating in Bana oo.                                    |
| Band a) or E-<br>UTRA Band 34       operating in Band 34.         UTRA TDD       1550 - 1910 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 35.         UTRA TDD       1300 - 1990 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.         UTRA TDD       1910 - 1930 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band is defined in ITU-R M 1036.<br>but is pending any tuture deployment.         UTRA DD       2870 - 2620 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 69.         UTRA DD       1880 - 1920MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         UTRA DD       1880 - 1920MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         UTRA DD       2300 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         UTRA Band 30       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         E-UTRA Band       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band       3600 - 3800 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2040 2025 MUL         |           | 4 MIL       | This requirement does not each to EUTRA BO               |
| UTRA Band 34         C         This requirement does not apply to E-UTRA BS operating in Band 35.           UTRA DD         1830 - 1990 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 35.           UTRA DD         1930 - 1990 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 35.           UTRA DD         1930 - 1930 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 36.           UTRA DD         2570 - 2620 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 38 or 69.           UTRA DD         2570 - 2620 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 38 or 69.           UTRA DD         1880 - 1920 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 38 or 69.           UTRA DD         2300 - 2400 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 30 or 40.           UTRA Band 40         2496 - 2690 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 30 or 40.           UTRA Band 41         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 40 at 42.         42.4 or 48.           E-UTRA Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 2010 - 2025 MHZ       | -52 aBm   | 1 MHZ       |                                                          |
| UTRA TDD<br>Band b) or E-<br>UTRA Band 351850 - 1910 MHz<br>-52 dBm-52 dBm1 MHz<br>1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 35.UTRA DD<br>Band b) or E-<br>UTRA Band 361910 - 1930 MHz<br>-52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.UTRA DD<br>Band 4) or E-<br>UTRA Band 371910 - 1930 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band is defined in ITU-R M.1036,<br>but is perding any future deployment.UTRA TDD<br>Band 4) or E-<br>UTRA Band 382570 - 2620 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>39.UTRA TDD<br>Band 1) or E-<br>UTRA Band 381880 - 1920MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.UTRA TDD<br>Band 1) or E-<br>UTRA Band 402300 - 2400MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.UTRA Band 40<br>412496 - 2690 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.UTRA Band<br>423600 - 3800 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>451447 - 1467 MHz<br>-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>451447 - 1467 MHz<br>-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>65 <td></td> <td></td> <td></td> <td></td> <td>operating in Band 34.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |           |             | operating in Band 34.                                    |
| Band b) or E.<br>UTRA Dand 35operating in Band 35.UTRA Dand 351930 - 1990 MHz<br>Parating in Band 35.UTRA DD<br>Band 361910 - 1930 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band is defined in ITU-R M. 1036,<br>but is pending any future deployment.UTRA Band 3711910 - 1930 MHz<br>-52 dBm-52 dBm1 MHzUTRA DD<br>Band 4) or E.<br>UTRA Band 382570 - 2620 MHz<br>-52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.UTRA DD<br>Band 3) or E.<br>UTRA Band 382500 - 2400MHz-52 dBm1 MHzUTRA DD<br>Band 4) or E.<br>UTRA Band 401 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.UTRA DD<br>LAB Band 402300 - 2400MHz<br>-52 dBm-52 dBm1 MHzE-UTRA Band 402300 - 2400MHz<br>-52 dBm-52 dBm1 MHzE-UTRA Band 40-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 42, 43 or 48.E-UTRA Band 2496 - 2690 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>-653600 - 3800 MHz<br>-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>-651447 - 1467 MHz<br>-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>-653550 -3700 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                       |           |             |                                                          |
| Band b) or E-<br>UTRA Dada 35       operating in Band 35.         UTRA DD<br>Band b) or E-<br>UTRA DD<br>Band b) or E-<br>UTRA DD<br>UTRA TDD<br>Band c) or E-<br>UTRA DD<br>D       1930 - 1990 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.         UTRA TDD<br>Band c) or E-<br>UTRA Band 37       1910 - 1930 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.         UTRA Band 38       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.         UTRA Band 38       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>39.         UTRA DD<br>Band i) or E-<br>UTRA Band 30       -1820 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         UTRA Band 40       -       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         E-UTRA Band 40       -       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band 3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 43 or 48.         E-UTRA Band 40       -       -       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 43 or 48.         E-UTRA Band 5150 - 5925 MHz       -52 dBm       1 MHz       This is n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UTRA TDD      | 1850 - 1910 MHz       | -52 dBm   | 1 MHz       | This requirement does not apply to E-UTRA BS             |
| UTRA band 35         C         C         C         C           UTRA DD         1330 - 1930 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 2 and 36.           UTRA DD         Band a) or E-         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 36.           UTRA DD         Estore         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 36.           UTRA DD         Estore         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 36.           UTRA DD         Estore         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 36.           UTRA DD         1880 - 1920MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 30.           UTRA Band 39         -         -         -         -         -           UTRA DD         8300 - 3600 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 36.           UTRA Band 40         -         -         -         -         -           UTRA Band 40         -         -         -         -         -           UTRA Band 360         -         - <td>Band b) or E-</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Band b) or E- |                       |           |             |                                                          |
| UTRA TDD<br>Band b) or E-<br>UTRA Band 21930 - 1990 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 2 and 36.UTRA Band 21910 - 1930 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band is defined in ITU-R M.1036,<br>but is pending any future deployment.UTRA Band 302570 - 2620 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.UTRA Band 33100 - E-<br>UTRA Band 39-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>39.UTRA TDD<br>Band 40 or E-<br>UTRA Band 402300 - 2400MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.UTRA Band 40-<br>2406 - 2690 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>41.E-UTRA Band<br>423600 - 3600 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>433600 - 3600 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>443600 - 3800 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>451447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.401447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.411447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br><td></td> <td></td> <td></td> <td></td> <td>-p</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                       |           |             | -p                                                       |
| Band b) or E-<br>UTRA band 36       operating in Band 2 and 36.         UTRA TDD<br>Band c) or E-<br>UTRA band 37       1910 - 1930 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>37. This unpaired band is defined in ITU-R M.1036,<br>but is pending any future deployment.         UTRA TDD<br>Band d) or E-<br>UTRA Band 38       2570 - 2620 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.         UTRA TDD<br>Band 1) or E-<br>UTRA Band 39       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         UTRA TDD<br>Band 0) or E-<br>UTRA Band 40       2300 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         UTRA ABand 40       2300 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30.         E-UTRA Band 40       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>44.         E-UTRA Band<br>43       3400 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 43. or 48.         E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 43. or 48.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 1030 - 1000 MHz       | -52 dBm   | 1 MH7       | This requirement does not apply to E-LITRA BS            |
| UTRA Band 36         Image: Construct of the second se |               | 1300 - 1330 10112     | -52 ubm   | 1 1011 12   |                                                          |
| UTRA TDD<br>Band () or E-<br>UTRA Band 37       1910 - 1930 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>37. This uppared band is defined in TUR M 1036,<br>but is pending any future deployment.         UTRA TDD<br>Band () or E-<br>UTRA Band 39       2570 - 2620 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 30 or 69.         UTRA TDD<br>Band () or E-<br>UTRA Band 39       1880 - 1920MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>39.         UTRA TDD<br>Band () or E-<br>UTRA Band 40       1280 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         E-UTRA Band<br>40       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         E-UTRA Band<br>42       3400 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band<br>44       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band<br>44       6150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       3550 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>66       1920 - 2010 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                       |           |             | operating in Danu 2 and 30.                              |
| Band c) or E-<br>UTRA Band 37       37. This unpaired band is defined in TU-R M.1036,<br>but is pending any future deployment.         UTRA TDD<br>Band d) or E-<br>UTRA Band 38       2570 - 2620 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.         UTRA TDD<br>Band d) or E-<br>UTRA Band 39       1880 - 1920MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         UTRA TBD<br>Band e) or E-<br>UTRA Band<br>41       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band<br>42       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band<br>43       3400 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band<br>43       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band<br>44       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>45.       150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46.       3650 - 3700 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                       |           |             |                                                          |
| UTRA Band 37         but is pending any future deployment.           UTRA DD         2570 - 2620 MHz         -52 dBm         1 MHz         This requirement does not apply to E-UTRA BS operating in Band 38 or 69.           UTRA Band 38         1 MHz         1 MHz         This is not applicable to E-UTRA BS operating in Band 39.           UTRA TDD         1 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 39.           UTRA A TDD         2300 - 2400MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 30 or 40.           E-UTRA Band 40         2496 - 2690 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 42.           E-UTRA Band         3600 - 3800 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 42. 43 or 48.           E-UTRA Band         3600 - 3800 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 42. 43 or 48.           E-UTRA Band         1447 - 1467 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 45.           E-UTRA Band         1447 - 1467 MHz         -52 dBm         1 MHz         This is not applicable to E-UTRA BS operating in Band 45.           E-UTRA Band         1447 - 1467 MHz         -52 dBm         1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 1910 - 1930 MHz       | -52 dBm   | 1 MHz       |                                                          |
| UTRA TDD<br>Band d) or E-<br>UTRA Band 382570 - 2620 MHz<br>coperating in Band 38 or 69.1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.UTRA TDD<br>Band 19 or E-<br>UTRA Band 391880 - 1920MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.UTRA Band 402300 - 2400MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>40 or 40.E-UTRA Band<br>412496 - 2690 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>41.E-UTRA Band<br>423600 - 3600 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.42249.4 3 or 48.22.42, 43 or 48.E-UTRA Band<br>433600 - 3800 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42. 43 or 48.E-UTRA Band<br>441447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>461447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>465855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>465855 - 5925 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.E-UTRA Band<br>661920 - 2010 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4 1 or 23.F-UTRA Band<br>661710 - 1780 MHz-52 dBm1 MHz <td>Band c) or E-</td> <td></td> <td></td> <td></td> <td>37. This unpaired band is defined in ITU-R M.1036,</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Band c) or E- |                       |           |             | 37. This unpaired band is defined in ITU-R M.1036,       |
| UTRA TDD<br>Band d) or E-<br>UTRA Band 382570 - 2620 MHz<br>coperating in Band 38 or 69.1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 38 or 69.UTRA TDD<br>Band 19 or E-<br>UTRA Band 391880 - 1920MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.UTRA Band 402300 - 2400MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>40 or 40.E-UTRA Band<br>412496 - 2690 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>41.E-UTRA Band<br>423600 - 3600 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.42249.4 3 or 48.22.42, 43 or 48.E-UTRA Band<br>433600 - 3800 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42. 43 or 48.E-UTRA Band<br>441447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>461447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>465855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>465855 - 5925 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.E-UTRA Band<br>661920 - 2010 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4 1 or 23.F-UTRA Band<br>661710 - 1780 MHz-52 dBm1 MHz <td>UTRA Band 37</td> <td></td> <td></td> <td></td> <td>but is pending any future deployment.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UTRA Band 37  |                       |           |             | but is pending any future deployment.                    |
| Band d) or E-<br>UTRA Band 38       operating in Band 38 or 69.         UTRA A DD<br>Band 1) or E-<br>UTRA Band 39       1880 - 1920MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>39.         UTRA TDD<br>Band e) or E-<br>UTRA Band 40       2300 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band<br>42       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band<br>43       3600 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band<br>43       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>22. 42. 43 or 48.         E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       1000 - 2010 MHz       -52 dBm       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 2570 - 2620 MHz       | -52 dBm   | 1 MH7       |                                                          |
| UTRA Band 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                       |           | · · · · · · |                                                          |
| UTRA TDD<br>Band f) or E-<br>UTRA Band 39       1880 - 1920MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>39.         UTRA Band 39       2300 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         E-UTRA Band 40       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band       3400 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42.         E-UTRA Band       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 43 or 48.         E-UTRA Band       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 43. 43 or 48.         E-UTRA Band       2110 - 2200 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42. 46.       For E-UTRA BS <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |           |             |                                                          |
| Band 1) or E-<br>UTRA Band 39       39.       39.       39.         UTRA DD<br>Band e) or E-<br>UTRA Band 40       2300 - 2400MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>30 or 40.         E-UTRA Band<br>41       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band<br>42       3600 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>43       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>43       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>45       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>47       520 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>66       1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.         1920 - 2010 MHz       -52 dBm       1 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1000 1000000          | E0 40     | 4 1411-     | This is not applicable to ELITRA DO exerciting in Dearth |
| UTRA Band       39       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         UTRA Band       40       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         E-UTRA Band       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         41       This is not applicable to E-UTRA BS operating in Band       22, 42, 43 or 48.       -52 dBm       1 MHz         E-UTRA Band       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         42       300 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         43       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         44       E-UTRA Band       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         45       -570 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band       45         E-UTRA Band       5450 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band         65       1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS         66 </td <td></td> <td>1000 - 1920IVIHZ</td> <td>-ാ∠ aвm</td> <td>TIVIHZ</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 1000 - 1920IVIHZ      | -ാ∠ aвm   | TIVIHZ      |                                                          |
| UTRA TDD<br>Band e) or E-<br>UTRA Band2300 - 2400MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>30 or 40.E-UTRA Band<br>422496 - 2690 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>41.E-UTRA Band<br>433400 - 3600 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>443600 - 3800 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>44703 - 803 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>45703 - 803 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>46703 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>45.E-UTRA Band<br>465550 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>475855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>653550 - 3700 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.IP20 - 2010 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzE-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4. <td></td> <td></td> <td></td> <td></td> <td>39.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |           |             | 39.                                                      |
| Band e) or E-<br>UTRA Band 40       30 or 40.       30 or 40.         E-UTRA Band 41       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 41.         E-UTRA Band 42       3600 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42, 43 or 48.         E-UTRA Band 42       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42, 43 or 48.         E-UTRA Band 44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42, 43 or 48.         E-UTRA Band 46       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 45.         E-UTRA Band 46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 46.         E-UTRA Band 46       550 - 3700 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 22, 42, 43 or 48.         E-UTRA Band 65       1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 1, it applies for 1980 MHz to 2010 MHz, while the rest is covered in sub-clause 6.6.4.2.         FUTRA Band 66       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 1, it applies for 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                       |           |             |                                                          |
| Band e) or E-<br>UTRA Band 40       30 or 40.       30 or 40.         E-UTRA Band 41       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 41.         E-UTRA Band 42       3600 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42, 43 or 48.         E-UTRA Band 42       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42, 43 or 48.         E-UTRA Band 44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42, 43 or 48.         E-UTRA Band 46       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 45.         E-UTRA Band 46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 46.         E-UTRA Band 46       550 - 3700 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 22, 42, 43 or 48.         E-UTRA Band 65       1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 22, 42, 43 or 48.         E-UTRA Band 66       1920 - 2010 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 1, it applies for 1930 MHz to 2010 MHz, while the rest is covered in 1940 MHz to 2010 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UTRA TDD      | 2300 - 2400MHz        | -52 dBm   | 1 MHz       | This is not applicable to E-UTRA BS operating in Band    |
| UTRA Band       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 41.         E-UTRA Band       3400 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42; 42, 43 or 48.         E-UTRA Band       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 42; 43 or 48.         E-UTRA Band       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 28 or 44.         E-UTRA Band       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 46.         E-UTRA Band       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 46.         E-UTRA Band       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 46.         E-UTRA Band       5850 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 22, 42, 43 or 48.         E-UTRA Band       5850 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band 22, 42, 43 or 48.         E-UTRA Band       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 1, it applies for 1980 MHz to 2010 MHz, to 2010 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Band e) or E- |                       |           |             |                                                          |
| E-UTRA Band<br>41       2496 - 2690 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>41.         E-UTRA Band<br>42       3400 - 3600 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.         E-UTRA Band<br>43       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>45       150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>48       3550 - 3700 MHz       -52 dBm       1 MHz       This rout applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.         E-UTRA Band<br>66       2110 - 2200 MHz       -52 dBm       1 MHz       This rout applicable to E-UTRA BS<br>operating in band 10 or 65,<br>1920 - 2010 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.       102 or 60.         E-UTRA Band<br>66 </td <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                       |           |             |                                                          |
| 4141E-UTRA Band<br>423400 - 3600 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>433600 - 3800 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>44703 - 803 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>28 or 44.E-UTRA Band<br>451447 - 1467 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>45.E-UTRA Band<br>465150 - 5925 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>475855 - 5925 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>48.E-UTRA Band<br>653550 - 3700 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>652110 - 2200 MHz<br>-52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz<br>66-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66,<br>04 Hz to 2010 MHz, while the rest is covered by the<br>requirement in sub-clause 6, 6, 4, 2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in sub-<br>clause 6, 6, 4, 2.<br>For E-UTRA BS<br>operating in band 4, 10, 23 or 66,<br>04, 210 PC -UTRA BS<br>operating in band 4, 10, 23 or 66,<br>04, 210 PC -UTRA BS<br>operating in band 4, 10, 23 or 66,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 2406 2600 MH-         | 52 dBm    | 1 MU-7      | This is not applicable to ELITRA BS operating in Band    |
| E-UTRA Band<br>423400 - 3600 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>433600 - 3800 MHz<br>+380 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>44703 - 803 MHz<br>+4-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.E-UTRA Band<br>451447 - 1467 MHz<br>+52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>45.E-UTRA Band<br>465150 - 5925 MHz<br>+52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>45.E-UTRA Band<br>47555 - 5925 MHz<br>+7-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>653550 - 3700 MHz<br>+7-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>42.E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,<br>1920 - 2010 MHz-49 dBm1 MHzE-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.E-UTRA Band<br>661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, it applies for 1750 MHz<br>operating in band 4, it applies for 1750 MHz<br>operating in band 4, it applies for 1750 MHzE-UTRA Band<br>66738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 2490 - 2090 1011 12   | -52 ubm   |             |                                                          |
| 42       22, 42, 43 or 48.         E-UTRA Band<br>43       3600 - 3800 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>28 or 44.         E-UTRA Band<br>45       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>47       550 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.         E-UTRA Band<br>65       3550 - 3700 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.         1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered by the<br>requirement in sub-clause 6.6.4.2.         E-UTRA Band<br>66       1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, it applies for 1980 MHz to 10, 23 or 66.         E-UTRA Band<br>66       1710 - 1780 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, it applies for 1755 MHz t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0.400 0000 MU         | 50 15     |             |                                                          |
| E-UTRA Band<br>43       3600 - 3800 MHz<br>43       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>42, 43 or 48.         E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>28 or 44.         E-UTRA Band<br>45       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>46       3550 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>65       3550 - 3700 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.         FUTRA Band<br>65       1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65.         I 1920 - 2010 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.         E-UTRA Band<br>66       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.         E-UTRA Band<br>66       7170 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 3400 - 3600 MHz       | -52 dBm   | 1 MHz       |                                                          |
| 43       42, 43 or 48.         E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>28 or 44.         E-UTRA Band<br>45       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>48       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>48.         E-UTRA Band<br>65       3550 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.         E-UTRA Band<br>65       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,<br>1920 - 2010 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 6, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         E-UTRA Band<br>66       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.         1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 46, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         E-UTRA Band<br>66       1710 - 1780 MHz <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                       |           |             |                                                          |
| 4342, 43 or 48.E-UTRA Band<br>44703 - 803 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>28 or 44.E-UTRA Band<br>451447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>45.E-UTRA Band<br>465855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>475855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>48.E-UTRA Band<br>653550 - 3700 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,IP20 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzFUTRA Band<br>661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2.E-UTRA Band<br>66738 - 758 MHz-52 dBm1 MHzF-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzTis requirement does not apply to E-UTRA BS<br>operating in Band 20, it<br>app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E-UTRA Band   | 3600 - 3800 MHz       | -52 dBm   | 1 MHz       | This is not applicable to E-UTRA BS operating in Band    |
| E-UTRA Band<br>44       703 - 803 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>28 or 44.         E-UTRA Band<br>45       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>47       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>48       3550 - 3700 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.         E-UTRA Band<br>65       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1880 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.         E-UTRA Band<br>66       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 6, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         For E-UTRA Band<br>66       1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in band 10, it<br>applies for 1770 MHz to 1780 MHz, w                                                                                                                                                                                                                                                                                                                                                                                                           | 43            |                       |           |             |                                                          |
| 4428 or 44.E-UTRA Band<br>451447 - 1467 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>45.E-UTRA Band<br>465150 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>475855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>483550 - 3700 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,FUTRA Band<br>482110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,FUTRA Band<br>662110 - 2200 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,FUTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.FUTRA Band<br>661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.FUTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, tapplies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2.1 MHzF-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 703 - 803 MHz         | -52 dBm   | 1 MHz       |                                                          |
| E-UTRA Band<br>45       1447 - 1467 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>45.         E-UTRA Band<br>46       5150 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>47       5855 - 5925 MHz       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>65       3550 - 3700 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,<br>1920 - 2010 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         E-UTRA Band<br>66       2110 - 2200 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4.0, 23 or 66.         E-UTRA Band<br>66       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4.0, 23 or 66.         E-UTRA Band<br>66       1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4.0, 23 or 66.         1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2.       For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-cla                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 100 000 11112         | 02 0011   | 1 101112    |                                                          |
| 4545.E-UTRA Band<br>465150 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>46.E-UTRA Band<br>475855 - 5925 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>483550 - 3700 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzFor E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz-49 dBmImage: Comparison operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.For E-UTRA BS<br>operating in band 4, 10, 23 or 66.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.F-UTRA Band<br>661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered by the<br>requirement in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |           | 4 MIL       |                                                          |
| E-UTRA Band<br>46       5150 - 5925 MHz<br>47       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>47       5855 - 5925 MHz<br>47       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>46.         E-UTRA Band<br>48       3550 - 3700 MHz<br>48       -52 dBm       1 MHz       This is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.         E-UTRA Band<br>65       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,         1920 - 2010 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         F-UTRA Band<br>66       2110 - 2200 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.         E-UTRA Band<br>66       1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         FUTRA Band<br>66       1710 - 1780 MHz       -49 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.         FUTRA Band<br>67       738 - 758 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS<br>operating in Band 4, it app                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1447 - 1467 MHZ       | -97 apu   | TIMHZ       |                                                          |
| 4646.E-UTRA Band<br>475855 - 5925 MHz-52 dBm1 MHzE-UTRA Band<br>483550 - 3700 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 46, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.For This requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67. <td></td> <td></td> <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                      |               |                       |           |             | -                                                        |
| E-UTRA Band<br>475855 - 5925 MHz<br>47-52 dBm1 MHzE-UTRA Band<br>483550 - 3700 MHz-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.For E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.T170 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, 10, 23 or 66.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement for sub-clause 6.6.4.2.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E-UTRA Band   | 5150 - 5925 MHz       | -52 dBm   | 1 MHz       | This is not applicable to E-UTRA BS operating in Band    |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46            |                       |           |             | 46.                                                      |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E-UTRA Band   | 5855 - 5925 MHz       | -52 dBm   | 1 MHz       |                                                          |
| E-UTRA Band<br>483550 - 3700 MHz<br>-52 dBm-52 dBm1 MHzThis is not applicable to E-UTRA BS operating in Band<br>22, 42, 43 or 48.E-UTRA Band<br>652110 - 2200 MHz<br>-1920 - 2010 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz<br>-1010 HHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.E-UTRA Band<br>661710 - 1780 MHz<br>-49 dBm-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.This requirement and 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |           |             |                                                          |
| 4822, 42, 43 or 48.E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.I710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 2550 2700 MHz         | 52 dBm    | 1 MU-7      | This is not applicable to E LITPA BS operating in Band   |
| E-UTRA Band<br>652110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 1 or 65,1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.F-UTRA Band<br>661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.T1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 5550 - 57 00 IVIFIZ   | -52 UDIII |             |                                                          |
| 65operating in band 1 or 65,1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.I710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.E-UTRA Band<br>661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |           |             |                                                          |
| 1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.IT10 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1750 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 2110 - 2200 MHz       | -52 dBm   | 1 MHz       |                                                          |
| 1920 - 2010 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 65, since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For E-UTRA BS operating in Band 1, it applies for<br>1980 MHz to 2010 MHz, while the rest is covered in<br>sub-clause 6.6.4.2.E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.IT10 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1750 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65            |                       |           |             |                                                          |
| E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 1920 - 2010 MHz       | -49 dBm   | 1 MHz       | This requirement does not apply to E-UTRA BS             |
| E-UTRA Band<br>662110 - 2200 MHz<br>-52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz<br>66-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz<br>66-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz<br>753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                       |           |             |                                                          |
| E-UTRA Band<br>662110 - 2200 MHz<br>- 52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |           |             |                                                          |
| E-UTRA Band<br>662110 - 2200 MHz<br>-52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz<br>1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz<br>1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                       |           |             |                                                          |
| E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.661710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                       |           |             |                                                          |
| E-UTRA Band<br>662110 - 2200 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |           |             |                                                          |
| 66operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l             |                       |           |             |                                                          |
| 66operating in band 4, 10, 23 or 66.1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E-UTRA Band   | 2110 - 2200 MHz       | -52 dBm   | 1 MHz       | This requirement does not apply to E-UTRA BS             |
| 1710 - 1780 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 - 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66            |                       |           |             |                                                          |
| endoperating in band 66, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 4, it applies for 1755 MHz to<br>1780 MHz, while the rest is covered in sub-clause<br>6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -             | 1710 - 1780 MHz       | -49 dBm   | 1 MH7       |                                                          |
| Feutral Band738 – 758 MHz-52 dBm1 MHz1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |           | 1           |                                                          |
| e-UTRA Band<br>67738 – 758 MHz-52 dBm1 MHznoperating in Band 28 or 67.E-UTRA Band<br>67753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                       |           |             |                                                          |
| E-UTRA Band738 – 758 MHz-52 dBm1 MHz1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                       |           |             |                                                          |
| E-UTRA Band738 – 758 MHz-52 dBm1 MHz6.6.4.2. For E-UTRA BS operating in Band 10, it<br>applies for 1770 MHz to 1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.E-UTRA Band738 – 758 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS<br>operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                       |           |             |                                                          |
| applies for 1770 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.2.         E-UTRA Band       738 – 758 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 28 or 67.         E-UTRA Band       753 -783 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                       |           |             |                                                          |
| applies for 1770 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.2.         E-UTRA Band       738 – 758 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 28 or 67.         E-UTRA Band       753 -783 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                       |           |             | 6.6.4.2. For E-UTRA BS operating in Band 10, it          |
| E-UTRA Band     738 – 758 MHz     -52 dBm     1 MHz     This requirement does not apply to E-UTRA BS operating in Band 28 or 67.       E-UTRA Band     753 -783 MHz     -52 dBm     1 MHz     This requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                       |           |             |                                                          |
| E-UTRA Band       738 – 758 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS operating in Band 28 or 67.         E-UTRA Band       753 -783 MHz       -52 dBm       1 MHz       This requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                       |           |             |                                                          |
| 67operating in Band 28 or 67.E-UTRA Band753 -783 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E-LITRA Band  | 738 <u>- 758 MH</u> z | -52 dBm   | 1 MH-7      |                                                          |
| E-UTRA Band 753 -783 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |           | 1 1011 12   |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |           | 4 NALI-     |                                                          |
| ەە operating in band 28, or 68.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 103 -183 MHZ          | -⊃⊂ aBM   | 1 MHZ       |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68            |                       |           |             | operating in band 28, or 68.                             |

|                   | 698-728 MHz             | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS<br>operating in band 68, since it is already covered by the<br>requirement in sub-clause 6.6.4.2. For E-UTRA BS<br>operating in Band 28, it applies between 698 MHz and<br>703 MHz, while the rest is covered in sub-clause<br>6.6.4.2. |
|-------------------|-------------------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-UTRA Band<br>69 | 2570 - 2620 MHz         | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in Band 38 or 69.                                                                                                                                                                                                             |
| E-UTRA Band<br>70 | <u> 1995 - 2020 MHz</u> | -52 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 2, 25 or 70                                                                                                                                                                                                           |
|                   | <u> 1695 – 1710 MHz</u> | -49 dBm | 1 MHz | This requirement does not apply to E-UTRA BS operating in band 70, since it is already covered by the requirement in sub-clause 6.6.4.2                                                                                                                                              |
| NOTE 4: Void      |                         |         |       |                                                                                                                                                                                                                                                                                      |

Additional co-existence requirements in Table 6.6.4.3.1-1a may apply for some regions.

## Table 6.6.4.3.1-1a: BS Spurious emissions limits for E-UTRA BS for co-existence with systems operating in Band 46

| System type<br>for E-UTRA to<br>co-exist with                                                                | Frequency range<br>for co-existence<br>requirement | Maximu<br>m Level | Measurement<br>Bandwidth | Note                                                               |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|--------------------------|--------------------------------------------------------------------|--|
| E-UTRA Band<br>46a                                                                                           | 5150 - 5250 MHz                                    | -40 dBm           | 1 MHz                    | This is only applicable to E-UTRA BS operating in Band 46c or 46d. |  |
| E-UTRA Band<br>46b                                                                                           | 5250 - 5350 MHz                                    | -40 dBm           | 1 MHz                    | This is only applicable to E-UTRA BS operating in Band 46c or 46d. |  |
| E-UTRA Band 5470 - 5725 MHz -40 dBm 1 MHz This is only applicable to E-UTRA BS operating in Band 46a or 46b. |                                                    |                   |                          |                                                                    |  |
| E-UTRA Band 5725 - 5925 MHz -40 dBm 1 MHz This is only applicable to E-UTRA BS operating in Band 46a or 46b. |                                                    |                   |                          |                                                                    |  |
| NOTE 1: This red                                                                                             | quirement may apply                                | to E-UTRA         | BS operating in          | certain regions.                                                   |  |

- NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band 25, Band 27, Band 28 or Band 29, the co-existence requirements in Table 6.6.4.3.1-1 do not apply for the 10 MHz frequency range immediately outside the downlink operating band (see Table 5.5-1). Emission limits for this excluded frequency range may be covered by local or regional requirements.
- NOTE 2: Table 6.6.4.3.1-1 assumes that two operating bands, where the frequency ranges in Table 5.5-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent operating bands can transmit without additional co-existence requirements. For unsynchronized base stations (except in Band 46), special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 5: For E-UTRA Band 28 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with E-UTRA Band 27 UL operating band.
- NOTE 6: For E-UTRA Band 29 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with UTRA Band XII or E-UTRA Band 12 UL operating band or E-UTRA Band 17 UL operating band.

The power of any spurious emission shall not exceed the limits of Table 6.6.4.3.1-1A for a Home BS where requirements for co-existence with a Home BS type listed in the first column apply.

# Table 6.6.4.3.1-1A: Home BS Spurious emissions limits for co-existence with Home BS operating in other frequency bands

| Type of coexistence BS                               | Frequency range<br>for co-location<br>requirement | Maximum<br>Level | Measurement<br>Bandwidth | Note                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------|---------------------------------------------------|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTRA FDD Band I or E-<br>UTRA Band 1                 | 1920 - 1980 MHz                                   | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 1 or<br>65, since it is already covered by<br>the requirement in sub-clause<br>6.6.4.2.                                                                                                                                                           |
| UTRA FDD Band II or E-<br>UTRA Band 2                | 1850 - 1910 MHz                                   | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 2 or<br>25, since it is already covered by<br>the requirement in sub-clause<br>6.6.4.2.                                                                                                                                                           |
| UTRA FDD Band III or E-<br>UTRA Band 3               | 1710 - 1785 MHz                                   | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 3,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in band 9,<br>it applies for 1710 MHz to<br>1749.9 MHz and 1784.9 MHz to<br>1785 MHz, while the rest is<br>covered in sub-clause 6.6.4.2. |
| UTRA FDD Band IV or E-<br>UTRA Band 4                | 1710 - 1755 MHz                                   | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 4, 10<br>or 66, since it is already covered<br>by the requirement in sub-clause<br>6.6.4.2.                                                                                                                                                       |
| UTRA FDD Band V or E-<br>UTRA Band 5                 | 824 - 849 MHz                                     | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 5 or<br>26, since it is already covered by<br>the requirement in sub-clause<br>6.6.4.2. For E-UTRA BS operating<br>in Band 27, it applies 3 MHz below<br>the Band 27 downlink operating<br>band.                                                  |
| UTRA FDD Band VI, XIX<br>or E-UTRA Band 6, 18,<br>19 | 815 - 830 MHz                                     | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 18,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                                                                   |
|                                                      | 830 - 845 MHz                                     | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 6, 19,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                                                                |
| UTRA FDD Band VII or<br>E-UTRA Band 7                | 2500 - 2570 MHz                                   | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 7,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                                                                    |
| UTRA FDD Band VIII or<br>E-UTRA Band 8               | 880 - 915 MHz                                     | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 8,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                                                                    |
| UTRA FDD Band IX or E-<br>UTRA Band 9                | 1749.9 - 1784.9<br>MHz                            | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 3 or 9,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                                                               |
| UTRA FDD Band X or E-<br>UTRA Band 10                | 1710 - 1770 MHz                                   | -71 dBm          | 100 kHz                  | This requirement does not apply to<br>Home BS operating in band 10 or<br>66, since it is already covered by<br>the requirement in sub-clause<br>6.6.4.2. For Home BS operating in<br>Band 4, it applies for 1755 MHz to<br>1770 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.                          |

|                                                |                        |         |         | 1                                                                                                                                                                                                                                                                             |
|------------------------------------------------|------------------------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTRA FDD Band XI, XXI<br>or E-UTRA Band 11, 21 | 1427.9 - 1447.9<br>MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 11,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in band<br>32, this requirement applies for<br>carriers allocated within<br>1475.9MHz and 1495.9MHz. |
|                                                | 1447.9 - 1462.9<br>MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 21,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in band<br>32, this requirement applies for<br>carriers allocated within<br>1475.9MHz and 1495.9MHz. |
| UTRA FDD Band XII or<br>E-UTRA Band 12         | 699 - 716 MHz          | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 12,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in Band<br>29, it applies 1 MHz below the<br>Band 29 downlink operating band<br>(Note 5)             |
| UTRA FDD Band XIII or<br>E-UTRA Band 13        | 777 - 787 MHz          | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 13,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                               |
| UTRA FDD Band XIV or<br>E-UTRA Band 14         | 788 - 798 MHz          | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 14,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                               |
| E-UTRA Band 17                                 | 704 - 716 MHz          | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 17,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in Band<br>29, it applies 1 MHz below the<br>Band 29 downlink operating band<br>(Note 5)             |
| UTRA FDD Band XX or<br>E-UTRA Band 20          | 832 - 862 MHz          | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 20,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                               |
| UTRA FDD Band XXII or<br>E-UTRA Band 22        | 3410 - 3490 MHz        | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 22,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to<br>Home BS operating in Band 42                                                         |
| E-UTRA Band 24                                 | 1626.5 – 1660.5<br>MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 24,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                               |
| UTRA FDD Band XXV or<br>E-UTRA Band 25         | 1850 - 1915 MHz        | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 25,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2                                                                                                                                |

|                                          | 1               |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------|-----------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTRA FDD Band XXVI or<br>E-UTRA Band 26  | 814 - 849 MHz   | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 26,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in Band 5,<br>it applies for 814 MHz to 824 MHz,<br>while the rest is covered in sub-<br>clause 6.6.4.2. For E-UTRA BS<br>operating in Band 27, it applies<br>3 MHz below the Band 27<br>downlink operating band.                                            |
| E-UTRA Band 27                           | 807 - 824 MHz   | -71 dBm | 100 kHz | This requirement does not apply to<br>E-UTRA BS operating in Band 27,<br>since it is already covered by the<br>requirement in subclause 6.6.4.2.<br>For E-UTRA BS operating in Band<br>26, it applies for 807 MHz to<br>814 MHz, while the rest is covered<br>in sub-clause 6.6.4.2. This<br>requirement also applies to E-<br>UTRA BS operating in Band 28,<br>starting 4 MHz above the Band 28<br>downlink operating band (Note 4). |
| E-UTRA Band 28                           | 703 – 748 MHz   | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 28,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to<br>Home BS operating in Band 44.<br>For E-UTRA BS operating in Band<br>67, it applies for 703 MHz to 736<br>MHz. For E-UTRA BS operating in<br>Band 68, it applies for 728MHz to<br>733MHz.                                                     |
| E-UTRA Band 30 2                         | 305 – 2315 MHz  | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 30,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>This requirement does not apply to<br>Home BS operating in Band 40.                                                                                                                                                                                                                |
| UTRA TDD Band a) or E- 1<br>UTRA Band 33 | 900 - 1920 MHz  | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in Band 33                                                                                                                                                                                                                                                                                                                                                                    |
| UTRA Band 34                             | 2010 - 2025 MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in Band 34                                                                                                                                                                                                                                                                                                                                                                    |
| UTRA Band 35                             | 850 – 1910 MHz  | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in Band 35                                                                                                                                                                                                                                                                                                                                                                    |
| UTRA Band 36                             | 930 - 1990 MHz  | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in Band 2 and<br>36                                                                                                                                                                                                                                                                                                                                                           |
| UTRA Band 37                             | 910 - 1930 MHz  | -71 dBm | 100 kHz | This is not applicable to Home BS<br>operating in Band 37. This<br>unpaired band is defined in ITU-R<br>M.1036, but is pending any future<br>deployment.                                                                                                                                                                                                                                                                              |
| UTRA TDD Band d) or E- 2<br>UTRA Band 38 | 2570 - 2620 MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in Band 38.                                                                                                                                                                                                                                                                                                                                                                   |
| UTRA Band 39                             | 1880 - 1920MHz  | -71 dBm | 100 kHz | This is not applicable to Home BS operating in Band 39                                                                                                                                                                                                                                                                                                                                                                                |
| UTRA TDD Band e) or E-<br>UTRA Band 40   | 2300 - 2400MHz  | -71 dBm | 100 kHz | This is not applicable to Home BS operating in Band 30 or 40                                                                                                                                                                                                                                                                                                                                                                          |
| E-UTRA Band 41 2                         | 496 – 2690 MHz  | -71 dBm | 100 kHz | This is not applicable to Home BS operating in Band 41                                                                                                                                                                                                                                                                                                                                                                                |
| E-UTRA Band 42 3                         | 3400 - 3600 MHz | -71 dBm | 100 kHz | This is not applicable to Home BS operating in Band 22, 42, 43 or 48.                                                                                                                                                                                                                                                                                                                                                                 |
| E-UTRA Band 43 3                         | 8600 - 3800 MHz | -71 dBm | 100 kHz | This is not applicable to Home BS                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                 |         |         | operating in Band 42, 43 or 48.                                                                                                                                                                                                                                                                                                                                                                                                       |

| E-UTRA Band 48 | 3550 - 3700 MHz | -71 dBm | 100 kHz | This is not applicable to Home BS operating in Band 22, 42, 43 or 48.                                                                                                                                                                                                                                                                                                                                                  |
|----------------|-----------------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-UTRA Band 65 | 1920 - 2010 MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 65,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in Band 1,<br>it applies for 1980 MHz to<br>2010 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.                                                                                                                                     |
| E-UTRA Band 66 | 1710 - 1780 MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 66,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in Band 4,<br>it applies for 1755 MHz to<br>1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2. For<br>Home BS operating in Band 10, it<br>applies for 1770 MHz to<br>1780 MHz, while the rest is<br>covered in sub-clause 6.6.4.2. |
| E-UTRA Band 68 | 698-728 MHz     | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 68,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.<br>For Home BS operating in Band<br>28, it applies between 698 MHz<br>and 703 MHz, while the rest is<br>covered in sub-clause 6.6.4.2.                                                                                                                                 |
| E-UTRA Band 70 | 1695 - 1710 MHz | -71 dBm | 100 kHz | This requirement does not apply to<br>Home BS operating in band 70,<br>since it is already covered by the<br>requirement in sub-clause 6.6.4.2.                                                                                                                                                                                                                                                                        |

- NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band 27, Band 28 or Band 29, the coexistence requirements in Table 6.6.4.3.1-1A do not apply for the 10 MHz frequency range immediately outside the Home BS transmit frequency range of a downlink operating band (see Table 5.5-1). Emission limits for this excluded frequency range may be covered by local or regional requirements.
- NOTE 2: Table 6.6.4.3.1-1A assumes that two operating bands, where the frequency ranges in Table 5.5-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent operating bands can transmit without additional co-existence requirements. For unsynchronized base stations, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 4: For E-UTRA Band 28 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with E-UTRA Band 27 UL operating band.
- NOTE 5: For E-UTRA Band 29 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with UTRA Band XII or E-UTRA Band 12 UL operating band or E-UTRA Band 17 UL operating band.

The following requirement may be applied for the protection of PHS. This requirement is also applicable at specified frequencies falling between 10 MHz below the lowest BS transmitter frequency of the downlink operating band and 10 MHz above the highest BS transmitter frequency of the downlink operating band.

The power of any spurious emission shall not exceed:

| Frequency range     | Maximum<br>Level | Measurement<br>Bandwidth | Note                                                                       |
|---------------------|------------------|--------------------------|----------------------------------------------------------------------------|
| 1884.5 - 1915.7 MHz | -41 dBm          | 300 kHz                  | Applicable when co-existence with PHS system operating in 1884.5-1915.7MHz |

The following requirement shall be applied to BS operating in Bands 13 and 14 to ensure that appropriate interference protection is provided to 700 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

#### Table 6.6.4.3.1-3: BS Spurious emissions limits for protection of 700 MHz public safety operations

| Operating Band | Frequency range | Maximum<br>Level | Measurement<br>Bandwidth | Note |
|----------------|-----------------|------------------|--------------------------|------|
| 13             | 763 - 775 MHz   | -46 dBm          | 6.25 kHz                 |      |
| 13             | 793 - 805 MHz   | -46 dBm          | 6.25 kHz                 |      |
| 14             | 769 - 775 MHz   | -46 dBm          | 6.25 kHz                 |      |
| 14             | 799 - 805 MHz   | -46 dBm          | 6.25 kHz                 |      |

### Table 6.6.4.3.1-4: Void

The following requirement shall be applied to BS operating in Band 26 to ensure that appropriate interference protection is provided to 800 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

#### Table 6.6.4.3.1-5: BS Spurious emissions limits for protection of 800 MHz public safety operations

| Operating Band | Frequency range | Maximum<br>Level | Measurement<br>Bandwidth | Note                                                         |
|----------------|-----------------|------------------|--------------------------|--------------------------------------------------------------|
| 26             | 851 - 859 MHz   | -13 dBm          | 100 kHz                  | Applicable for offsets<br>> 37.5kHz from the<br>channel edge |

The following requirement may apply to E-UTRA BS operating in Band 41 in certain regions. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

### Table 6.6.4.3.1-6: Additional E-UTRA BS Spurious emissions limits for Band 41

| Frequency range                                                                                                | Maximum<br>Level | Measurement<br>Bandwidth | Note                                                                               |  |
|----------------------------------------------------------------------------------------------------------------|------------------|--------------------------|------------------------------------------------------------------------------------|--|
| 2505MHz – 2535MHz                                                                                              | -42dBm           | 1 MHz                    |                                                                                    |  |
| 2535MHz – 2655MHz                                                                                              | -22dBm           | 1 MHz                    | Applicable at offsets<br>≥ 250% of channel<br>bandwidth from<br>carrier frequency. |  |
| NOTE: This requirement applies for 10 or 20 MHz E-UTRA carriers allocated within 2545-2575MHz or 2595-2645MHz. |                  |                          |                                                                                    |  |

The following requirement may apply to E-UTRA BS operating in Band 30 in certain regions. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

| Frequency range     | Maximum<br>Level | Measurement<br>Bandwidth | Note |
|---------------------|------------------|--------------------------|------|
| 2200MHz – 2345MHz   | -45dBm           | 1 MHz                    |      |
| 2362.5MHz – 2365MHz | -25dBm           | 1 MHz                    |      |
| 2365MHz – 2367.5MHz | -40dBm           | 1 MHz                    |      |
| 2367.5MHz – 2370MHz | -42dBm           | 1 MHz                    |      |
| 2370MHz – 2395MHz   | -45dBm           | 1 MHz                    |      |

Table 6.6.4.3.1-7: Additional E-UTRA BS Spurious emissions limits for Band 30

In addition for Band 46 operation, the BS may have to comply with the applicable spurious emission limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer. The regional requirements may be in the form of conducted power, power spectral density, EIRP and other types of limits. In case of regulatory limits based on EIRP, assessment of the EIRP level is described in Annex H.

The following requirement may apply to E-UTRA BS operating in Band 48 in certain regions. The power of any spurious emission shall not exceed:

Table 6.6.4.3.1-8: Additional E-UTRA BS Spurious emissions limits for Band 48

| Frequency range                        | Maximum<br>Level | Measurement<br>Bandwidth | Note                                                  |
|----------------------------------------|------------------|--------------------------|-------------------------------------------------------|
| 3530MHz – 3720MHz                      | -25dBm           | 1 MHz                    | Applicable 10MHz<br>from the assigned<br>channel edge |
| 3100MHz – 3530MHz<br>3720MHz – 4200MHz | -40dBm           | 1 MHz                    |                                                       |

### 6.6.4.4 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD and/or E-UTRA BS are co-located with an E-UTRA BS.

The requirements assume a 30 dB coupling loss between transmitter and receiver and are based on co-location with base stations of the same class.

### 6.6.4.4.1 Minimum Requirement

The power of any spurious emission shall not exceed the limits of Table 6.6.4.4.1-1 for a Wide Area BS where requirements for co-location with a BS type listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.4.1-1 apply for each supported operating band. For BS

capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.4.1-1 apply for the operating band supported at that antenna connector.

### Table 6.6.4.4.1-1: BS Spurious emissions limits for Wide Area BS co-located with another BS

| Type of co-located BS                               | Frequency range for co-<br>location requirement | Maximum<br>Level | Measurement<br>Bandwidth | Note                                                               |
|-----------------------------------------------------|-------------------------------------------------|------------------|--------------------------|--------------------------------------------------------------------|
| Macro GSM900                                        | 876-915 MHz                                     | -98 dBm          | 100 kHz                  |                                                                    |
| Macro DCS1800                                       | 1710 - 1785 MHz                                 | -98 dBm          | 100 kHz                  |                                                                    |
| Macro PCS1900                                       | 1850 - 1910 MHz                                 | -98 dBm          | 100 kHz                  |                                                                    |
| Macro GSM850 or<br>CDMA850                          | 824 - 849 MHz                                   | -98 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band I or<br>E-UTRA Band 1              | 1920 - 1980 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band II<br>or E-UTRA Band 2             | 1850 - 1910 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band III<br>or E-UTRA Band 3            | 1710 - 1785 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band IV<br>or E-UTRA Band 4             | 1710 - 1755 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band V<br>or E-UTRA Band 5              | 824 - 849 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band VI,<br>XIX or E-UTRA Band 6,<br>19 | 830 - 845 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band VII<br>or E-UTRA Band 7            | 2500 - 2570 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band VIII<br>or E-UTRA Band 8           | 880 - 915 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band IX<br>or E-UTRA Band 9             | 1749.9 - 1784.9 MHz                             | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band X<br>or E-UTRA Band 10             | 1710 - 1770 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band XI<br>or E-UTRA Band 11            | 1427.9 –1447.9 MHz                              | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band XII<br>or                          | 699 - 716 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| E-UTRA Band 12<br>WA UTRA FDD Band XIII<br>or       | 777 - 787 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| E-UTRA Band 13                                      | 700 700 141                                     | 00 15            | 400.111                  |                                                                    |
| WA UTRA FDD Band XIV<br>or<br>E-UTRA Band 14        | 788 - 798 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA E-UTRA Band 17                                   | 704 - 716 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA E-UTRA Band 17<br>WA E-UTRA Band 18              | 815 - 830 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
|                                                     | 832 - 862 MHz                                   |                  |                          |                                                                    |
| WA UTRA FDD Band XX<br>or E-UTRA Band 20            |                                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band XXI<br>or E-UTRA Band 21           | 1447.9 – 1462.9 MHz                             | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band<br>XXII or E-UTRA Band 22          | 3410 <i>–</i> 3490 MHz                          | -96 dBm          | 100 kHz                  | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 42 |
| WA E-UTRA Band 23                                   | 2000 - 2020 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA E-UTRA Band 24                                   | 1626.5 – 1660.5 MHz                             | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band<br>XXV or<br>E-UTRA Band 25        | 1850 – 1915 MHz                                 | -96 dBm          | 100 kHz                  |                                                                    |
| WA UTRA FDD Band<br>XXVI or<br>E-UTRA Band 26       | 814 – 849 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA E-UTRA Band 27                                   | 807 - 824 MHz                                   | -96 dBm          | 100 kHz                  |                                                                    |
| WA E-UTRA Band 28                                   | 703 – 748 MHz                                   | -96 dBm          | 100 kHz                  | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 44 |
| WA E-UTRA Band 30                                   | 2305 – 2315 MHz                                 | -96 dBm          | 100 kHz                  | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 40 |
| WA E-UTRA Band 31                                   | 452.5 -457.5 MHz                                | -96 dBm          | 100 kHz                  |                                                                    |

|                                          |                                           |                    |                    | 1                                     |
|------------------------------------------|-------------------------------------------|--------------------|--------------------|---------------------------------------|
| WA UTRA TDD Band a)                      | 1900 - 1920 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 33                        |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating<br>in Band 33       |
| WA UTRA TDD Band a)                      | 2010 - 2025 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 34                        | 2010 - 2023 MHZ                           | -90 UDIII          |                    | applicable to E-                      |
| or E offici Band of                      |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 34                            |
| WA UTRA TDD Band b)                      | 1850 – 1910 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 35                        |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 35                            |
| WA UTRA TDD Band b)                      | 1930 - 1990 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 36                        |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating<br>in Band 2 and 36 |
| WA UTRA TDD Band c)                      | 1910 - 1930 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 37                        | 1910 - 1950 Miliz                         | -30 abiii          |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 37. This                      |
|                                          |                                           |                    |                    | unpaired band is                      |
|                                          |                                           |                    |                    | defined in ITU-R                      |
|                                          |                                           |                    |                    | M.1036, but is                        |
|                                          |                                           |                    |                    | pending any future                    |
| WA UTRA TDD Band d)                      | 2570 – 2620 MHz                           | -96 dBm            | 100 kHz            | deployment.<br>This is not            |
| or E-UTRA Band 38                        | 2070 - 2020 10112                         | -30 dBill          |                    | applicable to E-                      |
| or E offict Band oo                      |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 38.                           |
| WA UTRA TDD Band f)                      | 1880 – 1920MHz                            | -96 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 39                        |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
|                                          | 0000 04000411-                            |                    | 400 111-           | in Band 33 and 39                     |
| WA UTRA TDD Band e)<br>or E-UTRA Band 40 | 2300 – 2400MHz                            | -96 dBm            | 100 kHz            | This is not<br>applicable to E-       |
| OI E-OTRA Ballu 40                       |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 30 or 40                      |
| WA E-UTRA Band 41                        | 2496 – 2690 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
|                                          |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 41                            |
| WA E-UTRA Band 42                        | 3400 – 3600 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
|                                          |                                           |                    |                    | applicable to E-<br>UTRA BS operating |
|                                          |                                           |                    |                    | in Band 22, 42, 43                    |
|                                          |                                           |                    |                    | or 48                                 |
| WA E-UTRA Band 43                        | 3600 – 3800 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
|                                          |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 42, 43 or 48                  |
| WA E-UTRA Band 44                        | 703 – 803 MHz                             | -96 dBm            | 100 kHz            | This is not                           |
|                                          |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating<br>in Band 28 or 44 |
| WA E-UTRA Band 45                        | 1447 – 1467 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
|                                          |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
|                                          |                                           |                    |                    | in Band 45                            |
| WA E-UTRA Band 48                        | 3550 – 3700 MHz                           | -96 dBm            | 100 kHz            | This is not                           |
|                                          |                                           |                    |                    | applicable to E-                      |
|                                          |                                           |                    |                    | UTRA BS operating                     |
| MAELITRA Bood 65                         | 1020 2010 MU-                             |                    | 100 64-            | in Band 42, 43 or 48                  |
| WA E-UTRA Band 65<br>WA E-UTRA Band 66   | <u>1920 - 2010 MHz</u><br>1710 - 1780 MHz | -96 dBm<br>-96 dBm | 100 kHz<br>100 kHz |                                       |
|                                          | 698 - 728 MHz                             | -96 dBm            | 100 kHz            |                                       |
|                                          |                                           |                    |                    |                                       |
| WA E-UTRA Band 68<br>WA E-UTRA Band 70   | <u>1695 - 1710 MHz</u>                    | -96 dBm            | <u>100 kHz</u>     |                                       |

The power of any spurious emission shall not exceed the limits of Table 6.6.4.4.1-2 for a Local Area BS where requirements for co-location with a BS type listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.4.1-2 apply for each supported operating band. For BS

capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.1-2 apply for the operating band supported at that antenna connector.

### Table 6.6.4.4.1-2: BS Spurious emissions limits for Local Area BS co-located with another BS

| Type of co-located BS                               | Frequency range for co- | Maximum | Measurement | Note                                                               |
|-----------------------------------------------------|-------------------------|---------|-------------|--------------------------------------------------------------------|
| Type of co-located Bo                               | location requirement    | Level   | Bandwidth   | Note                                                               |
| Pico GSM900                                         | 876-915 MHz             | -70 dBm | 100 kHz     |                                                                    |
| Pico DCS1800                                        | 1710 - 1785 MHz         | -80 dBm | 100 kHz     |                                                                    |
| Pico PCS1900                                        | 1850 - 1910 MHz         | -80 dBm | 100 kHz     |                                                                    |
| Pico GSM850                                         | 824 - 849 MHz           | -70 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band I or<br>E-UTRA Band 1              | 1920 - 1980 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band II or<br>E-UTRA Band 2             | 1850 - 1910 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band III or<br>E-UTRA Band 3            | 1710 - 1785 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band IV<br>or E-UTRA Band 4             | 1710 - 1755 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band V or<br>E-UTRA Band 5              | 824 - 849 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band VI,<br>XIX or E-UTRA Band 6,<br>19 | 830 - 845 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band VII<br>or E-UTRA Band 7            | 2500 - 2570 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band VIII<br>or E-UTRA Band 8           | 880 - 915 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band IX<br>or E-UTRA Band 9             | 1749.9 - 1784.9 MHz     | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band X or<br>E-UTRA Band 10             | 1710 - 1770 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XI<br>or E-UTRA Band 11            | 1427.9 - 1447.9 MHz     | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XII<br>or E-UTRA Band 12           | 699 - 716 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XIII<br>or E-UTRA Band 13          | 777 - 787 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XIV<br>or E-UTRA Band 14           | 788 - 798 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA E-UTRA Band 17                                   | 704 - 716 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA E-UTRA Band 18                                   | 815 - 830 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XX<br>or E-UTRA Band 20            | 832 - 862 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XXI<br>or E-UTRA Band 21           | 1447.9 - 1462.9 MHz     | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band XXII<br>or E-UTRA Band 22          | 3410 <i>–</i> 3490 MHz  | -88 dBm | 100 kHz     | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 42 |
| LA E-UTRA Band 23                                   | 2000 - 2020 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA E-UTRA Band 24                                   | 1626.5 – 1660.5 MHz     | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band<br>XXV or E-UTRA Band 25           | 1850 – 1915 MHz         | -88 dBm | 100 kHz     |                                                                    |
| LA UTRA FDD Band<br>XXVI or<br>E-UTRA Band 26       | 814 – 849 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA E-UTRA Band 27                                   | 807 - 824 MHz           | -88 dBm | 100 kHz     |                                                                    |
| LA E-UTRA Band 28                                   | 703 – 748 MHz           | -88 dBm | 100 KHz     | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 44 |
| LA E-UTRA Band 30                                   | 2305 – 2315 MHz         | -88 dBm | 100 kHz     | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 40 |
| LA E-UTRA Band 31                                   | 452.5 – 457.5 MHz       | -88 dBm | 100 KHz     |                                                                    |
| LA UTRA TDD Band a) or<br>E-UTRA Band 33            | 1900 - 1920 MHz         | -88 dBm | 100 kHz     | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 33 |

| LA UTRA TDD Band a) or                 | 2010 - 2025 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
|----------------------------------------|------------------------------------------------|--------------------|--------------------|---------------------------------------|
| E-UTRA Band 34                         |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 34                            |
| LA UTRA TDD Band b) or                 | 1850 – 1910 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
| E-UTRA Band 35                         |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        | 4000 4000 MIL                                  | 00 ID              | 400.111            | in Band 35                            |
| LA UTRA TDD Band b) or                 | 1930 - 1990 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
| E-UTRA Band 36                         |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        | 1010 1020 MH-                                  | 00 dDm             | 100 kHz            | in Band 2 and 36                      |
| LA UTRA TDD Band c) or                 | 1910 - 1930 MHz                                | -88 dBm            | 100 KHZ            | This is not                           |
| E-UTRA Band 37                         |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating<br>in Band 37. This |
|                                        |                                                |                    |                    | unpaired band is                      |
|                                        |                                                |                    |                    | defined in ITU-R                      |
|                                        |                                                |                    |                    | M.1036, but is                        |
|                                        |                                                |                    |                    | pending any future                    |
|                                        |                                                |                    |                    | deployment.                           |
| LA UTRA TDD Band d) or                 | 2570 – 2620 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
| E-UTRA Band 38                         |                                                | 00 42              |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 38.                           |
| LA LUTRA TDD Band f)                   | 1880 – 1920MHz                                 | -88 dBm            | 100 kHz            | This is not                           |
| or E-UTRA Band 39                      |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 33 and 39                     |
| LA UTRA TDD Band e) or                 | 2300 – 2400MHz                                 | -88 dBm            | 100 kHz            | This is not                           |
| E-UTRA Band 40                         |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 30 or 40                      |
| LA E-UTRA Band 41                      | 2496 – 2690 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
|                                        |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        | 3400 – 3600 MHz                                | -88 dBm            | 100 kHz            | in Band 41                            |
| LA E-UTRA Band 42                      | 3400 – 3600 MHZ                                | -88 aBm            | 100 KHZ            | This is not<br>applicable to E-       |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 22, 42, 43                    |
|                                        |                                                |                    |                    | or 48                                 |
| LA E-UTRA Band 43                      | 3600 – 3800 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
|                                        |                                                | 00 02              |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 42, 43 or 48                  |
| LA E-UTRA Band 44                      | 703 – 803 MHz                                  | -88 dBm            | 100 kHz            | This is not                           |
|                                        |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 28 or 44                      |
| LA E-UTRA Band 45                      | 1447 – 1467 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
|                                        |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                |                    |                    | in Band 45                            |
| LA E-UTRA Band 46                      | 5150 – 5925 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
|                                        |                                                |                    |                    | applicable to E-                      |
|                                        |                                                |                    |                    | UTRA BS operating                     |
|                                        |                                                | 00 -10             | 400 515            | in Band 46                            |
| LA E-UTRA Band 48                      | 3550 – 3700 MHz                                | -88 dBm            | 100 kHz            | This is not                           |
|                                        |                                                |                    |                    | applicable to E-<br>UTRA BS operating |
|                                        |                                                |                    |                    | in Band 42, 43 or 48                  |
| LA E-UTRA Band 65                      | 1920 - 2010 MHz                                | -88 dBm            | 100 kHz            | 11 Danu 42, 43 UI 40                  |
| LA E-UTRA Band 66                      | 1710 - 1780 MHz                                | -88 dBm            | 100 kHz            |                                       |
|                                        |                                                |                    |                    |                                       |
| A F-LITRA Rand 68                      | 698 - 728 MH7                                  | -88 dRm            | 100 kHz            |                                       |
| LA E-UTRA Band 68<br>LA E-UTRA Band 70 | <u>698 - 728 MHz</u><br><u>1695 - 1710 MHz</u> | -88 dBm<br>-88 dBm | 100 kHz<br>100 kHz |                                       |

The power of any spurious emission shall not exceed the limits of Table 6.6.4.4.1-3 for a Medium Range BS where requirements for co-location with a BS type listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.4.1-3 apply for each supported operating band. For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.1-3 apply for the operating band supported at that antenna connector.

| Table 6.6.4.4.1-3: BS Spurious emissions limits for M | Medium range BS co-located with another BS |
|-------------------------------------------------------|--------------------------------------------|
|-------------------------------------------------------|--------------------------------------------|

| Type of co-located BS                     | Frequency range for co- | Maximum | Measurement | Note                                                               |
|-------------------------------------------|-------------------------|---------|-------------|--------------------------------------------------------------------|
|                                           | location requirement    | Level   | Bandwidth   |                                                                    |
| Micro/MR GSM900                           | 876-915 MHz             | -91 dBm | 100 kHz     |                                                                    |
| Micro/MR DCS1800                          | 1710 - 1785 MHz         | -91 dBm | 100 kHz     |                                                                    |
| Micro/MR PCS1900                          | 1850 - 1910 MHz         | -91 dBm | 100 kHz     |                                                                    |
| Micro/MR GSM850                           | 824 - 849 MHz           | -91 dBm | 100 kHz     |                                                                    |
| MR UTRA FDD Band I or                     | 1920 - 1980 MHz         | -91 dBm | 100 kHz     |                                                                    |
| E-UTRA Band 1                             |                         |         |             |                                                                    |
| MR UTRA FDD Band II or<br>E-UTRA Band 2   | 1850 - 1910 MHz         | -91 dBm | 100 kHz     |                                                                    |
| MR UTRA FDD Band III                      | 1710 - 1785 MHz         | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 3                          |                         |         |             |                                                                    |
| MR UTRA FDD Band IV                       | 1710 - 1755 MHz         | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 4                          |                         |         |             |                                                                    |
| MR UTRA FDD Band V                        | 824 - 849 MHz           | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 5                          |                         |         |             |                                                                    |
| MR UTRA FDD Band VI,                      | 830 - 850 MHz           | -91 dBm | 100 kHz     |                                                                    |
| XIX or E-UTRA Band 6,                     |                         |         |             |                                                                    |
| 19                                        |                         |         |             |                                                                    |
| MR UTRA FDD Band VII                      | 2500 - 2570 MHz         | -91 dBm | 100 KHz     |                                                                    |
| or E-UTRA Band 7                          |                         |         |             |                                                                    |
| MR UTRA FDD Band VIII                     | 880 - 915 MHz           | -91 dBm | 100 KHz     |                                                                    |
| or E-UTRA Band 8                          |                         |         |             |                                                                    |
| MR UTRA FDD Band IX                       | 1749.9 - 1784.9 MHz     | -91 dBm | 100 KHz     |                                                                    |
| or E-UTRA Band 9                          |                         |         |             |                                                                    |
| MR UTRA FDD Band X                        | 1710 - 1770 MHz         | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 10                         |                         |         |             |                                                                    |
| MR UTRA FDD Band XI                       | 1427.9 - 1447.9 MHz     | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 11                         |                         |         |             |                                                                    |
| MR UTRA FDD Band XII<br>or E-UTRA Band 12 | 699 - 716 MHz           | -91 dBm | 100 kHz     |                                                                    |
| MR UTRA FDD Band XIII                     | 777 - 787 MHz           | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 13                         |                         |         |             |                                                                    |
| MR UTRA FDD Band XIV                      | 788 - 798 MHz           | -91 dBm | 100 kHz     |                                                                    |
| or E-UTRA Band 14                         |                         |         |             |                                                                    |
| MR E-UTRA Band 17                         | 704 - 716 MHz           | -91 dBm | 100 kHz     |                                                                    |
| MR E-UTRA Band 18                         | 815 - 830 MHz           | -91 dBm | 100 KHz     |                                                                    |
| MR UTRA FDD Band XX                       | 832 - 862 MHz           | -91 dBm | 100 KHz     |                                                                    |
| or E-UTRA Band 20                         |                         |         |             |                                                                    |
| MR UTRA FDD Band XXI                      | 1447.9 - 1462.9 MHz     | -91 dBm | 100 KHz     |                                                                    |
| or E-UTRA Band 21                         |                         |         |             |                                                                    |
| MR UTRA FDD Band                          | 3410 – 3490 MHz         | -91 dBm | 100 kHz     | This is not                                                        |
| XXII or E-UTRA Band 22                    |                         |         |             | applicable to E-                                                   |
|                                           |                         |         |             | UTRA BS operating                                                  |
|                                           |                         |         |             | in Band 42                                                         |
| MR E-UTRA Band 23                         | 2000 - 2020 MHz         | -91 dBm | 100 kHz     |                                                                    |
| MR E-UTRA Band 24                         | 1626.5 – 1660.5 MHz     | -91 dBm | 100 KHz     |                                                                    |
| MR UTRA FDD Band                          | 1850 – 1915 MHz         | -91 dBm | 100 kHz     |                                                                    |
| XXV or E-UTRA Band 25                     |                         |         |             |                                                                    |
| MR UTRA FDD Band                          | 814 – 849 MHz           | -91 dBm | 100 kHz     |                                                                    |
| XXVI or                                   |                         |         |             |                                                                    |
| E-UTRA Band 26                            |                         |         |             |                                                                    |
| MR E-UTRA Band 27                         | 807 - 824 MHz           | -91 dBm | 100 kHz     |                                                                    |
| MR E-UTRA Band 28                         | 703 – 748 MHz           | -91 dBm | 100 KHz     | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 44 |

|                   |                   | · · · · · · · · · · · · · · · · · · · |         |                                                                                                                                                                                    |
|-------------------|-------------------|---------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MR E-UTRA Band 30 | 2305 – 2315 MHz   | -91 dBm                               | 100 kHz | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 40                                                                                                                 |
| MR E-UTRA Band 31 | 452.5 – 457.5 MHz | -91 dBm                               | 100 KHz |                                                                                                                                                                                    |
| MR E-UTRA Band 33 | 1900 - 1920 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 33                                                                                                                                                                         |
| MR E-UTRA Band 34 | 2010 - 2025 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 34                                                                                                                                                                         |
| MR E-UTRA Band 35 | 1850 – 1910 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 35                                                                                                                                                                         |
| MR E-UTRA Band 36 | 1930 - 1990 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   | 0.1 0.2                               |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 2 and 36                                                                                                                                                                   |
| MR E-UTRA Band 37 | 1910 - 1930 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   | or abiii                              |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 37. This                                                                                                                                                                   |
|                   |                   |                                       |         | unpaired band is                                                                                                                                                                   |
|                   |                   |                                       |         | defined in ITU-R                                                                                                                                                                   |
|                   |                   |                                       |         | M.1036, but is                                                                                                                                                                     |
|                   |                   |                                       |         | pending any future                                                                                                                                                                 |
|                   |                   |                                       |         | deployment.                                                                                                                                                                        |
| MR E-UTRA Band 38 | 2570 – 2620 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 38.                                                                                                                                                                        |
| MR E-UTRA Band 39 | 1880 – 1920MHz    | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 33 and 39                                                                                                                                                                  |
| MR E-UTRA Band 40 | 2300 – 2400MHz    | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 30 or 40                                                                                                                                                                   |
| MR E-UTRA Band 41 | 2496 – 2690 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 41                                                                                                                                                                         |
| MR E-UTRA Band 42 | 3400 – 3600 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 22, 42, 43                                                                                                                                                                 |
|                   |                   |                                       |         | or 48                                                                                                                                                                              |
| MR E-UTRA Band 43 | 3600 – 3800 MHz   | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 42, 43 or 48                                                                                                                                                               |
| MR E-UTRA Band 44 | 703 – 803 MHz     | -91 dBm                               | 100 kHz | This is not                                                                                                                                                                        |
|                   |                   |                                       |         | applicable to E-                                                                                                                                                                   |
|                   |                   |                                       |         | UTRA BS operating                                                                                                                                                                  |
|                   |                   |                                       |         | in Band 28 or 44                                                                                                                                                                   |
| MR E-UTRA Band 43 | 3600 – 3800 MHz   | -91 dBm                               | 100 kHz | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 22, 42, 43<br>or 48<br>This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 42, 43 or 48<br>This is not |

| MR E-UTRA Band 45 | 1447 – 1467 MHz | -91 dBm | 100 kHz | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 45           |
|-------------------|-----------------|---------|---------|------------------------------------------------------------------------------|
| MR E-UTRA Band 46 | 5150 – 5925 MHz | -91 dBm | 100 kHz | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 46           |
| MR E-UTRA Band 48 | 3550 – 3700 MHz | -91 dBm | 100 kHz | This is not<br>applicable to E-<br>UTRA BS operating<br>in Band 42, 43 or 48 |
| MR E-UTRA Band 65 | 1920 - 2010 MHz | -91 dBm | 100 kHz |                                                                              |
| MR E-UTRA Band 66 | 1710 - 1780 MHz | -91 dBm | 100 kHz |                                                                              |
| MR E-UTRA Band 68 | 698 - 728 MHz   | -91 dBm | 100 kHz |                                                                              |
| MR E-UTRA Band 70 | 1695 - 1710 MHz | -91 dBm | 100 kHz |                                                                              |

- NOTE 1: As defined in the scope for spurious emissions in this clause, the co-location requirements in Table 6.6.4.4.1-1 to Table 6.6.4.4.1-3 do not apply for the 10 MHz frequency range immediately outside the BS transmit frequency range of a downlink operating band (see Table 5.5-1). The current state-of-the-art technology does not allow a single generic solution for co-location with other system on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [8].
- NOTE 2: Table 6.6.4.4.1-1 to Table 6.6.4.4.1-3 assume that two operating bands, where the corresponding BS transmit and receive frequency ranges in Table 5.5-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-location requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: Co-located TDD base stations that are synchronized and using the same or adjacent operating band can transmit without special co-locations requirements. For unsynchronized base stations (except in Band 46), special co-location requirements may apply that are not covered by the 3GPP specifications.

# 6.7 Transmitter intermodulation

The transmit intermodulation requirement is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna. The requirement applies during the transmitter ON period and the transmitter transient period.

For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the singleband requirements apply regardless of the interfering signals position relative to the Inter RF Bandwidth gap.

## 6.7.1 Minimum requirement

The transmitter intermodulation level is the power of the intermodulation products when an E-UTRA signal of channel bandwidth 5 MHz as an interfering signal is injected into the antenna connector.

The transmitter intermodulation level shall not exceed the unwanted emission limits in subclauses 6.6.2, 6.6.3 and 6.6.4 in the presence of an E-UTRA interfering signal according to Table 6.7.1-1, Table 6.7.1-2 and Table 6.7.1-3.

The requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum, the requirement is also applicable inside a sub-block gap for interfering signal offsets where the interfering signal falls completely within the sub-block gap. The interfering signal offset is defined relative to the sub-block edges.

For a BS capable of multi-band operation, the requirement applies relative to the Base Station RF Bandwidth edges of each supported operating band. In case the Inter RF Bandwidth gap is less than 15 MHz, the requirement in the gap

applies only for interfering signal offsets where the interfering signal falls completely within the Inter RF Bandwidth gap.

For E-UTRA, the wanted signal and interfering signal centre frequency offset shall be as in Table 6.7.1-1.

#### Table 6.7.1-1 Interfering and wanted signals for the Transmitter intermodulation requirement for E-UTRA

| Parameter                                                                                  | Value                                                               |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Wanted signal                                                                              | E-UTRA single carrier, or multi-carrier, or multiple intra-band     |  |
|                                                                                            | contiguously or non-contiguously aggregated carriers                |  |
| Interfering signal type                                                                    | E-UTRA signal of channel bandwidth 5 MHz                            |  |
| Interfering signal level                                                                   | Rated total output power in the operating band – 30 dB              |  |
| Interfering signal centre frequency offset from                                            | ± 2.5 MHz                                                           |  |
| the lower/upper edge of the wanted signal or                                               | ± 7.5 MHz                                                           |  |
| edge of sub-block inside a sub-block gap                                                   | ± 12.5 MHz                                                          |  |
|                                                                                            | partially or completely outside of any downlink operating band of   |  |
|                                                                                            | he requirement, unless the interfering signal positions fall within |  |
|                                                                                            | vnlink operating bands in the same geographical area. In case       |  |
|                                                                                            | sitions fall completely within the frequency range of the downlink  |  |
| operating band, TS 36.141 [4] provides further guidance regarding appropriate test require |                                                                     |  |
|                                                                                            | blied in Band 1, 3, 8, 9, 11, 18, 19, 21, 28, 32 operating within   |  |
| 1475.9-1495.9MHz, 34.                                                                      |                                                                     |  |

For NB-IoT in-band and guard band operation, the wanted signal and interfering signal centre frequency offset shall be as in Table 6.7.1-2.

#### Table 6.7.1-2 Interfering and wanted signals for the Transmitter intermodulation requirement for NB-IoT in-band and guard band operations

| Parameter                                                                                                   | Value                                                             |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Wanted signal                                                                                               | E-UTRA single carrier, or multi-carrier, or multiple intra-band   |
|                                                                                                             | contiguously or non-contiguously aggregated carriers with NB-     |
|                                                                                                             | IoT in-band and/or guard band operation                           |
| Interfering signal type                                                                                     | E-UTRA signal of channel bandwidth 5 MHz                          |
| Interfering signal level                                                                                    | Rated total output power in the operating band – 30 dB            |
| Interfering signal centre frequency offset from                                                             | ± 2.5 MHz                                                         |
| the lower/upper edge of the wanted signal or                                                                | ± 7.5 MHz                                                         |
| edge of sub-block inside a sub-block gap                                                                    | ± 12.5 MHz                                                        |
|                                                                                                             | partially or completely outside of any downlink operating band of |
| the base station are excluded from the requirement, unless the interfering signal positions fal             |                                                                   |
| the frequency range of adjacent downlink operating bands in the same geographical area. In ca               |                                                                   |
| that none of the interfering signal positions fall completely within the frequency range of the dow         |                                                                   |
| operating band, TS 36.141 [4] provides further guidance regarding appropriate test requirements             |                                                                   |
| NOTE2: In certain regions, NOTE1 is not applied in Band 1, 3, 8, 9, 11, 18, 19, 21, 28, 32 operating within |                                                                   |
| 1475.9-1495.9MHz, 34.                                                                                       |                                                                   |

For NB-IoT standalone operation, the wanted signal and interfering signal centre frequency offset shall be as in Table 6.7.1-3.

#### Table 6.7.1-3 Interfering and wanted signals for the Transmitter intermodulation requirement for standalone NB-IoT

| Parameter                                                                                                                                                                                        | Value                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Wanted signal                                                                                                                                                                                    | Standalone NB-IoT carrier                              |
| Interfering signal type                                                                                                                                                                          | E-UTRA signal of channel bandwidth 5 MHz               |
| Interfering signal level                                                                                                                                                                         | Rated total output power in the operating band – 30 dB |
| Interfering signal centre frequency of                                                                                                                                                           | fset from ± 2.5 MHz                                    |
| the lower/upper edge of the wanted s                                                                                                                                                             |                                                        |
| edge of sub-block inside a sub-block                                                                                                                                                             | gap ± 12.5 MHz                                         |
| NOTE1: Interfering signal positions that are partially or completely outside of any downlink operating ba                                                                                        |                                                        |
| the base station are excluded from the requirement, unless the interfering signal positions fall<br>the frequency range of adjacent downlink operating bands in the same geographical area. In c |                                                        |
| that none of the interfering signal positions fall completely within the frequency range of the dow                                                                                              |                                                        |
| operating band, TS 36.141 [4] provides further guidance regarding appropriate test requirement                                                                                                   |                                                        |
| NOTE2: In certain regions, NOTE1 is not applied in Band 1, 3, 8, 9, 11, 18, 19, 21, 28, 32 operating with                                                                                        |                                                        |
| 1475.9-1495.9MHz, 34.                                                                                                                                                                            |                                                        |

# 6.7.2 Additional requirement for Band 41

In certain regions the following requirement may apply. For E-UTRA BS operating in Band 41, the transmitter intermodulation level shall not exceed the maximum levels specified in Table 6.6.2.1-2 with a square filter in the first adjacent channel, Table 6.6.3.3-7 and Table 6.6.4.3.1-6 in the presence of an interfering signal according to Table 6.7.2-1.

#### Table 6.7.2-1 Interfering and wanted signals for the additional transmitter intermodulation requirement for Band 41

| Parameter                                                                                            | Value                                                     |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Wanted signal                                                                                        | E-UTRA single carrier (NOTE)                              |
| Interfering signal type                                                                              | E-UTRA signal of the same channel bandwidth as the wanted |
|                                                                                                      | signal                                                    |
| Interfering signal level                                                                             | Rated total output power in the operating band – 30 dB    |
| Interfering signal centre frequency offset from                                                      | ± BW <sub>Channel</sub>                                   |
| the lower/upper carrier centre frequency of                                                          | ± 2 x BW <sub>Channel</sub>                               |
| the wanted signal                                                                                    |                                                           |
| NOTE: This requirement applies for 10 or 20 MHz E-UTRA carriers allocated within 2545-2575MHz or 259 |                                                           |
| 2645MHz.                                                                                             |                                                           |

# 7 Receiver characteristics

# 7.1 General

The requirements in clause 7 are expressed for a single receiver antenna connector. For receivers with antenna diversity, the requirements apply for each receiver antenna connector.

Unless otherwise stated, the receiver characteristics are specified at the BS antenna connector (test port A) with a full complement of transceivers for the configuration in normal operating conditions. For FDD operation the requirements in clause 7 shall be met with the transmitter(s) on. If any external apparatus such as a RX amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (port B).

NOTE: In normal operating conditions the BS in FDD operation is configured to transmit and receive at the same time. The transmitter may be off for some of the tests as specified in 36.141 [4].

Unless otherwise stated the requirements in clause 7 apply during the base station receive period.

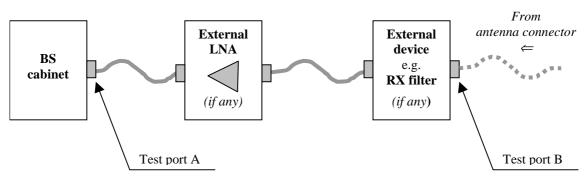



Figure 7.1: Receiver test ports

The throughput requirements defined for the receiver characteristics in this clause do not assume HARQ retransmissions.

When the BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier. For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower Base Station RF Bandwidth edge and positive offsets of the interfering signal apply relative to the upper Base Station RF Bandwidth edge.

- NOTE: Requirements may only be supported for certain frequency ranges within the operating band(s). These frequency ranges could be different for NB.-IoT comparing to E-UTRA.
- NOTE: For E-UTRA BS with NB-IoT (in band and/or guard band) or standalone NB-IoT BS, requirements are defined for 15 kHz sub-carrier spacing and 3.75 kHz sub-carrier spacing. A NB-IoT Base Station supports 15 kHz sub-carrier spacing, 3.75 kHz sub-carrier spacing, or both.

# 7.2 Reference sensitivity level

The reference sensitivity power level  $P_{REFSENS}$  is the minimum mean power received at the antenna connector at which a throughput requirement shall be met for a specified reference measurement channel.

#### 7.2.1 Minimum requirement

For E-UTRA, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.2.1-1 for Wide Area BS, in Table 7.2.1-2 for Local Area BS, in Table 7.2.1-3 for Home BS and in Table 7.2.1-4 for Medium Range BS.

| channe                                                                                      | -UTRA<br>el bandwidth<br>[MHz]                                                                                                                                                                                                                                                                                                                                                            | Reference measurement channel                                                                                                                                 | Reference sensitivity power<br>level, PREFSENS<br>[dBm] |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                                             | 1.4                                                                                                                                                                                                                                                                                                                                                                                       | FRC A1-1 in Annex A.1                                                                                                                                         | -106.8                                                  |
|                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                         | FRC A1-2 in Annex A.1                                                                                                                                         | -103.0                                                  |
|                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                         | FRC A1-6 in Annex A.1 for E-UTRA with NB-IoT in-<br>band operation (Note 3)                                                                                   | -103.0 (Note 2)                                         |
|                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                         | FRC A1-3 in Annex A.1                                                                                                                                         | -101.5                                                  |
|                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                         | FRC A1-7 in Annex A.1 for E-UTRA with NB-IoT in-<br>band operation                                                                                            | -101.5 (Note 2)                                         |
|                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                        | FRC A1-3 in Annex A.1 (Note 1)                                                                                                                                | -101.5                                                  |
|                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                        | FRC A1-7 in Annex A.1 for E-UTRA with NB-IoT in-<br>band operation (Note 4)                                                                                   | -101.5 (Note 2)                                         |
|                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                        | FRC A1-3 in Annex A.1 (Note 1)                                                                                                                                | -101.5                                                  |
|                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                        | FRC A1-7 in Annex A.1 for E-UTRA with NB-IoT in-<br>band operation (Note 4)                                                                                   | -101.5 (Note 2)                                         |
|                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                        | FRC A1-3 in Annex A.1 (Note 1)                                                                                                                                | -101.5                                                  |
| 20 FRC A1-7 in Annex A.1 for E-UTRA with NB-IoT in-<br>band operation (Note 4) -101.5 (Note |                                                                                                                                                                                                                                                                                                                                                                                           | -101.5 (Note 2)                                                                                                                                               |                                                         |
| Note 1:<br>Note 2:                                                                          | shall be met fo<br>frequency rang                                                                                                                                                                                                                                                                                                                                                         | power level of a single instance of the reference measure ach consecutive application of a single instance of Fl ges with a width of 25 resource blocks each. | RC A1-3 mapped to disjoint                              |
| Note 3:                                                                                     | The requirements apply to BS that supports E-UTRA with NB-IoT in-band operation.<br>P <sub>REFSENS</sub> is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of FRC A1-6 mapped to the 12 E-UTRA resource blocks adjacent to the NB-IoT PRB.                                                                |                                                                                                                                                               |                                                         |
| Note 4:                                                                                     | P <sub>REFSENS</sub> is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of FRC A1-7 mapped to the 24 E-UTRA resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each. |                                                                                                                                                               |                                                         |

#### Table 7.2.1-1: E-UTRA Wide Area BS reference sensitivity levels

| channe                                                                                                                                                                                                                                                                                                                                     | E-UTRA<br>I bandwidth [MHz] | Reference measurement channel                                    | Reference sensitivity power level,<br>PREFSENS<br>[dBm]                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                            | 1.4                         | FRC A1-1 in Annex A.1                                            | -98.8                                                                                     |
|                                                                                                                                                                                                                                                                                                                                            | 3                           | FRC A1-2 in Annex A.1                                            | -95.0                                                                                     |
|                                                                                                                                                                                                                                                                                                                                            | 5                           | FRC A1-3 in Annex A.1                                            | -93.5                                                                                     |
|                                                                                                                                                                                                                                                                                                                                            | 10                          | FRC A1-3 in Annex A.1 (Note 1)<br>FRC A1-8 in Annex A.1 (Note 2) | -93.5<br>-96.2                                                                            |
|                                                                                                                                                                                                                                                                                                                                            | 15                          | FRC A1-3 in Annex A.1 (Note 1)                                   | -93.5                                                                                     |
|                                                                                                                                                                                                                                                                                                                                            | 20                          | FRC A1-3 in Annex A.1(Note 1)<br>FRC A1-9 in Annex A.1 (Note 2)  | -93.5<br>-96.2                                                                            |
| Note 1: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each. This reference measurement channel is not applied for Band 46. |                             |                                                                  |                                                                                           |
| Note 2:<br>shall be r<br>Band 46.                                                                                                                                                                                                                                                                                                          | net for each single in      |                                                                  | ce measurement channel. This requirement<br>rence measurement channel is only applied for |

| E-UTRA<br>channel bandwidth [MHz]                                                                                                                                                                                                                                                    | Reference measurement channel | Reference sensitivity power level,<br>PREFSENS<br>[dBm] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------|
| 1.4                                                                                                                                                                                                                                                                                  | FRC A1-1 in Annex A.1         | -98.8                                                   |
| 3                                                                                                                                                                                                                                                                                    | FRC A1-2 in Annex A.1         | -95.0                                                   |
| 5                                                                                                                                                                                                                                                                                    | FRC A1-3 in Annex A.1         | -93.5                                                   |
| 10                                                                                                                                                                                                                                                                                   | FRC A1-3 in Annex A.1 (Note)  | -93.5                                                   |
| 15                                                                                                                                                                                                                                                                                   | FRC A1-3 in Annex A.1 (Note)  | -93.5                                                   |
| 20                                                                                                                                                                                                                                                                                   | FRC A1-3 in Annex A.1 (Note)  | -93.5                                                   |
| Note: P <sub>REFSENS</sub> is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each |                               |                                                         |

Table 7.2.1-3: E-UTRA Home BS reference sensitivity levels

| channe                                                                                                                                                                                                                                                                                                                                     | E-UTRA<br>I bandwidth [MHz]                                                                                                                                                                                                                      | Reference measurement channel                                    | Reference sensitivity power level,<br>PREFSENS<br>[dBm] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                            | 1.4                                                                                                                                                                                                                                              | FRC A1-1 in Annex A.1                                            | -101.8                                                  |
|                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                | FRC A1-2 in Annex A.1                                            | -98.0                                                   |
|                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                | FRC A1-3 in Annex A.1                                            | -96.5                                                   |
|                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                               | FRC A1-3 in Annex A.1 (Note 1)<br>FRC A1-8 in Annex A.1 (Note 2) | -96.5<br>-99.2                                          |
|                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                               | FRC A1-3 in Annex A.1 (Note 1)                                   | -96.5                                                   |
|                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                               | FRC A1-3 in Annex A.1 (Note 1)<br>FRC A1-9 in Annex A.1 (Note 2) | -96.5<br>-99.2                                          |
| Note 1: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each. This reference measurement channel is not applied for Band 46. |                                                                                                                                                                                                                                                  |                                                                  |                                                         |
| Note 2:                                                                                                                                                                                                                                                                                                                                    | P <sub>REFSENS</sub> is the power level of a single instance of the reference measurement channel. This requirement shall be met for each single interlace of FRC A1-8 and A1-9. This reference measurement channel is only applied for Band 46. |                                                                  |                                                         |

For NB-IoT standalone BS or E-UTRA BS with NB-IoT (in-band and/or guard band), NB-IoT throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.2.1-5 for Wide Area BS.

| NB-IoT<br>channel bandwidth<br>[kHz] | NB-IoT<br>Sub-carrier spacing<br>[kHz] | Reference measurement<br>channel | Reference sensitivity power<br>level, PREFSENS<br>[dBm] |
|--------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------------------|
| 200                                  | 15                                     | FRC A14-1 in Annex A.14          | -127.3                                                  |
| 200                                  | 3.75                                   | FRC A14-2 in Annex A.14          | -133.3                                                  |

#### Table 7.2.1-6: Void

# 7.3 Dynamic range

The dynamic range is specified as a measure of the capability of the receiver to receive a wanted signal in the presence of an interfering signal inside the received channel bandwidth. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal for the dynamic range requirement is an AWGN signal.

# 7.3.1 Minimum requirement

For E-UTRA, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3.1-1 for Wide Area BS, in Table 7.3.1-2 for Local Area BS, in Table 7.3.1-3 for Home BS and in Table 7.3.1-4 for Medium Range BS.

| E-UTRA<br>channel<br>bandwidth<br>[MHz]                                        | Reference<br>measurement<br>channel                                | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] /<br>BW <sub>Config</sub> | Type of<br>interfering<br>signal |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|----------------------------------|--|
| 1.4                                                                            | FRC A2-1 in<br>Annex A.2                                           | -76.3                                | -88.7                                                               | AWGN                             |  |
| 3                                                                              | FRC A2-2 in<br>Annex A.2                                           | -72.4                                | -84.7                                                               | AWGN                             |  |
| 5                                                                              | FRC A2-3 in<br>Annex A.2                                           | -70.2                                | -82.5                                                               | AWGN                             |  |
| 10                                                                             | FRC A2-3 in<br>Annex A.2*                                          | -70.2                                | -79.5                                                               | AWGN                             |  |
| 15                                                                             | FRC A2-3 in<br>Annex A.2*                                          | -70.2                                | -77.7                                                               | AWGN                             |  |
| 20                                                                             | FRC A2-3 in<br>Annex A.2*                                          | -70.2                                | -76.4                                                               | AWGN                             |  |
| Note*: The wanted signal mean power is the power level of a single instance of |                                                                    |                                      |                                                                     |                                  |  |
| the reference measurement channel. This requirement shall be met for           |                                                                    |                                      |                                                                     |                                  |  |
| each consecutive application of a single instance of FRC A2-3 mapped to        |                                                                    |                                      |                                                                     |                                  |  |
| di                                                                             | disjoint frequency ranges with a width of 25 resource blocks each. |                                      |                                                                     |                                  |  |

Table 7.3.1-1: Wide Area BS dynamic range for E-UTRA carrier

| E-UTRA<br>channel<br>bandwidth<br>[MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | channel                                                                                                                                              | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] /<br>BW <sub>Config</sub> | Type of<br>interfering<br>signal |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|----------------------------------|--|
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FRC A2-1 in<br>Annex A.2                                                                                                                             | -68.3                                | -80.7                                                               | AWGN                             |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FRC A2-2 in<br>Annex A.2                                                                                                                             | -64.4                                | -76.7                                                               | AWGN                             |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FRC A2-3 in<br>Annex A.2                                                                                                                             | -62.2                                | -74.5                                                               | AWGN                             |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRC A2-3 in<br>Annex A.2<br>(Note 1)<br>FRC A2-4 in<br>Annex A.2<br>(Note 2)                                                                         | -62.2<br>-65.3                       | -71.5                                                               | AWGN                             |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRC A2-3 in<br>Annex A.2<br>(Note 1)                                                                                                                 | -62.2                                | -69.7                                                               | AWGN                             |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FRC A2-3 in<br>Annex A.2<br>(Note 1)<br>FRC A2-5 in<br>Annex A.2<br>(Note 2)                                                                         | -62.2<br>-65.3                       | -68.4                                                               | AWGN                             |  |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note 1: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for |                                      |                                                                     |                                  |  |
| <ul> <li>each consecutive application of a single instance of FRC A2-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each. This reference measurement channel is not applied for Band 46.</li> <li>Note 2: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for each single interlace of FRC A2-4 and A2-5. This reference measurement channel is only applied for Band 46.</li> </ul> |                                                                                                                                                      |                                      |                                                                     |                                  |  |

Table 7.3.1-2: Local Area BS dynamic range for E-UTRA carrier

Table 7.3.1-3: Home BS dynamic range for E-UTRA carrier

| E-UTRA<br>channel<br>bandwidth<br>[MHz]                                                                                                                                                                                                                                                                 | Reference<br>measurement<br>channel | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] /<br>BW <sub>Config</sub> | Type of<br>interfering<br>signal |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------------|----------------------------------|
| 1.4                                                                                                                                                                                                                                                                                                     | FRC A2-1 in<br>Annex A.2            | -31.8                                | -44.2                                                               | AWGN                             |
| 3                                                                                                                                                                                                                                                                                                       | FRC A2-2 in<br>Annex A.2            | -27.9                                | -40.2                                                               | AWGN                             |
| 5                                                                                                                                                                                                                                                                                                       | FRC A2-3 in<br>Annex A.2            | -25.7                                | -38                                                                 | AWGN                             |
| 10                                                                                                                                                                                                                                                                                                      | FRC A2-3 in<br>Annex A.2*           | -25.7                                | -35                                                                 | AWGN                             |
| 15                                                                                                                                                                                                                                                                                                      | FRC A2-3 in<br>Annex A.2*           | -25.7                                | -33.2                                                               | AWGN                             |
| 20                                                                                                                                                                                                                                                                                                      | FRC A2-3 in<br>Annex A.2*           | -25.7                                | -31.9                                                               | AWGN                             |
| Note*: The wanted signal mean power is the power level of a single instance of<br>the reference measurement channel. This requirement shall be met for<br>each consecutive application of a single instance of FRC A2-3 mapped to<br>disjoint frequency ranges with a width of 25 resource blocks each. |                                     |                                      |                                                                     |                                  |

| E-UTRA<br>channel<br>bandwidth<br>[MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference<br>measurement<br>channel                                          | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] /<br>BWConfig | Type of<br>interfering<br>signal |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|----------------------------------|
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FRC A2-1 in<br>Annex A.2                                                     | -71.3                                | -83.7                                                   | AWGN                             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRC A2-2 in<br>Annex A.2                                                     | -67.4                                | -79.7                                                   | AWGN                             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRC A2-3 in<br>Annex A.2                                                     | -65.2                                | -77.5                                                   | AWGN                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FRC A2-3 in<br>Annex A.2<br>(Note 1)<br>FRC A2-4 in<br>Annex A.2<br>(Note 2) | -65.2<br>-68.3                       | -74.5                                                   | AWGN                             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FRC A2-3 in<br>Annex A.2<br>(Note 1)                                         | -65.2                                | -72.7                                                   | AWGN                             |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FRC A2-3 in<br>Annex A.2<br>(Note 1)<br>FRC A2-5 in<br>Annex A.2<br>(Note 2) | -65.2<br>-68.3                       | -71.4                                                   | AWGN                             |
| <ul> <li>Note 1: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A2-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each. This reference measurement channel is not applied for Band 46.</li> <li>Note 2: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for each single interlace of FRC A2-4 and A2-5. This reference measurement channel is only applied for Band 46.</li> </ul> |                                                                              |                                      |                                                         |                                  |

Table 7.3.1-4: Medium Range BS dynamic range for E-UTRA carrier

For NB-IoT standalone operation, the throughput shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3.1-5 for Wide Area BS.

Table 7.3.1-5: Wide Area BS dynamic range for NB-IoT standalone operation

| NB-IoT<br>channel<br>bandwidth<br>[kHz] | Reference<br>measurement<br>channel | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] /<br>BW <sub>Channel</sub> | Type of<br>interfering<br>signal |
|-----------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------------------------------------|----------------------------------|
| 200                                     | FRC A15-1 in<br>Annex A.15          | -99.7                                | -96                                                                  | AWGN                             |
| 200                                     | FRC A15-2 in<br>Annex A.15          | -105.6                               | -96                                                                  | AWGN                             |

For NB-IoT in-band or guard band operation, the throughput shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3.1-6 for Wide Area BS.

| NB-IoT<br>channel<br>bandwidth<br>[MHz] | Reference<br>measurement<br>channel | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] /<br>BW <sub>Channel</sub> | Type of<br>interfering<br>signal |  |
|-----------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------------------------------------|----------------------------------|--|
| 3⁺                                      | FRC A15-1 in<br>Annex A.15          | -99.7                                | -84.2                                                                | AWGN                             |  |
| 3                                       | FRC A15-2 in<br>Annex A.15          | -105.6                               | -04.2                                                                | AWGN                             |  |
| 5                                       | FRC A15-1 in<br>Annex A.15          | -99.7                                | -82.0                                                                | AWGN                             |  |
| 5                                       | FRC A15-2 in<br>Annex A.15          | -105.6                               | -82.0                                                                |                                  |  |
| 10                                      | FRC A15-1 in<br>Annex A.15          | -99.7                                | 70.0                                                                 | AWGN                             |  |
| 10                                      | FRC A15-2 in<br>Annex A.15          | -105.6                               | -79.0                                                                |                                  |  |
| 45                                      | FRC A15-1 in<br>Annex A.15          | -99.7                                | 77.0                                                                 |                                  |  |
| 15                                      | FRC A15-2 in<br>Annex A.15          | -105.6                               | -77.2                                                                | AWGN                             |  |
| 20                                      | FRC A15-1 in<br>Annex A.15          | -99.7                                |                                                                      | AWGN                             |  |
|                                         | FRC A15-2 in<br>Annex A.15          | -105.6                               | -76.0                                                                |                                  |  |
| Note*: 3                                |                                     |                                      |                                                                      |                                  |  |

Table 7.3.1-6: Wide Area BS dynamic range for NB-IoT in-band or guard band operation

# 7.4 In-channel selectivity

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an E-UTRA signal as specified in Annex C and shall be time aligned with the wanted signal.

## 7.4.1 Minimum requirement

For E-UTRA, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.4.1-1 for Wide Area BS, in Table 7.4.1-2 for Local Area BS, in Table 7.4.1-3 for Home BS and in Table 7.4.1-4 for Medium Range BS.

| E-UTRA<br>channel<br>bandwidth<br>(MHz) | Reference<br>measurement<br>channel | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] | Type of interfering signal                |  |
|-----------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--|
| 1.4                                     | A1-4 in Annex<br>A.1                | -106.9                               | -87                                       | 1.4 MHz E-UTRA<br>signal, 3 RBs           |  |
| 3                                       | A1-5 in Annex<br>A.1                | -102.1                               | -84                                       | 3 MHz E-UTRA<br>signal, 6 RBs             |  |
| 5                                       | A1-2 in Annex<br>A.1                | -100.0                               | -81                                       | 5 MHz E-UTRA<br>signal, 10 RBs            |  |
| 10                                      | A1-3 in Annex<br>A.1                | -98.5                                | -77                                       | 10 MHz E-UTRA<br>signal, 25 RBs           |  |
| 15                                      | A1-3 in Annex<br>A.1 (Note)         | -98.5                                | -77                                       | 15 MHz E-UTRA<br>signal, 25 RBs<br>(Note) |  |
| 20                                      | A1-3 in Annex<br>A.1 (Note)         | -98.5                                | -77                                       | 20 MHz E-UTRA<br>signal, 25 RBs<br>(Note) |  |
| Note: W                                 |                                     |                                      |                                           |                                           |  |

Table 7.4.1-1 Wide Area BS in-channel selectivity for E-UTRA

| E-UTRA<br>channel<br>bandwidth<br>(MHz)                                                                                                                                                                                                                             | Reference<br>measurement<br>channel                            | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] | Type of interfering<br>signal                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| 1.4                                                                                                                                                                                                                                                                 | A1-4 in Annex<br>A.1                                           | -98.9                                | -79                                       | 1.4 MHz E-UTRA<br>signal, 3 RBs                                                                      |  |  |
| 3                                                                                                                                                                                                                                                                   | A1-5 in Annex<br>A.1                                           | -94.1                                | -76                                       | 3 MHz E-UTRA<br>signal, 6 RBs                                                                        |  |  |
| 5                                                                                                                                                                                                                                                                   | A1-2 in Annex<br>A.1                                           | -92.0                                | -73                                       | 5 MHz E-UTRA<br>signal, 10 RBs                                                                       |  |  |
| 10                                                                                                                                                                                                                                                                  | A1-3 in Annex<br>A.1 (Note 3)<br>A1-8 in Annex<br>A.1 (Note 2) | -90.5<br>-93.2                       | -69<br>-71.8                              | 10 MHz E-UTRA<br>signal, 25 RBs (Note<br>3)<br>10 MHz E-UTRA<br>interlace signal, 10<br>RBs (Note 2) |  |  |
| 15                                                                                                                                                                                                                                                                  | A1-3 in Annex<br>A.1 (Note 1)                                  | -90.5                                | -69                                       | 15 MHz E-UTRA<br>signal, 25 RBs (Note<br>1)                                                          |  |  |
| 20                                                                                                                                                                                                                                                                  | A1-3 in Annex<br>A.1 (Note 1)<br>A1-9 in Annex<br>A.1 (Note 2) | -90.5<br>-93.2                       | -69<br>-71.8                              | 20 MHz E-UTRA<br>signal, 25 RBs (Note<br>1)<br>20 MHz E-UTRA<br>interlace signal, 10<br>RBs (Note 2) |  |  |
|                                                                                                                                                                                                                                                                     |                                                                |                                      |                                           |                                                                                                      |  |  |
| measurement channel and interfering signal are not applied for Band 46.         Note 2:       Wanted and interfering signal interlaces are mirrored around F <sub>c</sub> , this reference measurement channel and interfering signal are only applied for Band 46. |                                                                |                                      |                                           |                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                     | nis reference mea<br>and 46.                                   | surement channel a                   | and interfering signa                     | al are not applied for                                                                               |  |  |

Table 7.4.1-2 Local Area BS in-channel selectivity for E-UTRA

Table 7.4.1-3 Home BS in-channel selectivity for E-UTRA

| E-UTRA<br>channel<br>bandwidth<br>(MHz) | Reference<br>measurement<br>channel | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] | Type of interfering signal                |  |
|-----------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|--|
| 1.4                                     | A1-4 in Annex<br>A.1                | -98.9                                | -79                                       | 1.4 MHz E-UTRA<br>signal, 3 RBs           |  |
| 3                                       | A1-5 in Annex<br>A.1                | -94.1                                | -76                                       | 3 MHz E-UTRA<br>signal, 6 RBs             |  |
| 5                                       | A1-2 in Annex<br>A.1                | -92.0                                | -73                                       | 5 MHz E-UTRA<br>signal, 10 RBs            |  |
| 10                                      | A1-3 in Annex<br>A.1                | -90.5                                | -69                                       | 10 MHz E-UTRA<br>signal, 25 RBs           |  |
| 15                                      | A1-3 in Annex<br>A.1 (Note)         | -90.5                                | -69                                       | 15 MHz E-UTRA<br>signal, 25 RBs<br>(Note) |  |
| 20                                      | A1-3 in Annex<br>A.1 (Note)         | -90.5                                | -69                                       | 20 MHz E-ÚTRA<br>signal, 25 RBs<br>(Note) |  |
| Note: W                                 |                                     |                                      |                                           |                                           |  |

| E-UTRA<br>channel<br>bandwidth<br>(MHz) | Reference<br>measurement<br>channel                                                                                                                                                                                                                         | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] | Type of interfering signal                                                                           |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| 1.4                                     | A1-4 in Annex<br>A.1                                                                                                                                                                                                                                        | -101.9                               | -82                                       | 1.4 MHz E-UTRA<br>signal, 3 RBs                                                                      |  |
| 3                                       | A1-5 in Annex<br>A.1                                                                                                                                                                                                                                        | -97.1                                | -79                                       | 3 MHz E-UTRA<br>signal, 6 RBs                                                                        |  |
| 5                                       | A1-2 in Annex<br>A.1                                                                                                                                                                                                                                        | -95.0                                | -76                                       | 5 MHz E-UTRA<br>signal, 10 RBs                                                                       |  |
| 10                                      | A1-3 in Annex<br>A.1 (Note 3)<br>A1-8 in Annex<br>A.1 (Note 2)                                                                                                                                                                                              | -93.5<br>-96.2                       | -72<br>-74.8                              | 10 MHz E-UTRA<br>signal, 25 RBs (Note<br>3)<br>10 MHz E-UTRA<br>interlace signal, 10<br>RBs (Note 2) |  |
| 15                                      | A1-3 in Annex<br>A.1 (Note 1)                                                                                                                                                                                                                               | -93.5                                | -72                                       | 15 MHz E-UTRA<br>signal, 25 RBs (Note<br>1)                                                          |  |
| 20                                      | A1-3 in Annex<br>A.1 (Note 1)<br>A1-9 in Annex<br>A.1 (Note 2)                                                                                                                                                                                              | -93.5<br>-96.2                       | -72<br>-74.8                              | 20 MHz E-UTRA<br>signal, 25 RBs (Note<br>1)<br>20 MHz E-UTRA<br>interlace signal, 10<br>RBs (Note 2) |  |
|                                         |                                                                                                                                                                                                                                                             |                                      |                                           |                                                                                                      |  |
| Note 2: W                               | measurement channel and interfering signal are not applied for Band 46.<br>Note 2: Wanted and interfering signal interlaces are mirrored around F <sub>c</sub> , this reference<br>measurement channel and interfering signal are only applied for Band 46. |                                      |                                           |                                                                                                      |  |
| Note 3: T                               |                                                                                                                                                                                                                                                             |                                      |                                           | al are not applied for                                                                               |  |

| Table 7.4.1-4 Medium Range BS in-channel selectivit | y for E-UTRA |
|-----------------------------------------------------|--------------|

For NB-IoT in-band operation, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.4.1-5 and Table 7.4.1-6 for Wide Area BS.

| E-UTRA<br>channel<br>bandwidth<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference<br>measurement<br>channel         | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm]  | Type of interfering<br>signal               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------------------|--|--|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FRC A14-1 in<br>Annex A.14                  | -127.3+[3]                           | -84                                        | 3 MHz E-UTRA<br>signal, 6 RBs (Note<br>2)   |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 FRC A14-1 in<br>Annex A.14 -127.3+[3] -81 |                                      | 5 MHz É-UTRA<br>signal, 10 RBs (Note<br>1) |                                             |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FRC A14-1 in<br>Annex A.14                  | -127.3+[3]                           | -77                                        | 10 MHz E-UTRA<br>signal, 25 RBs (Note<br>1) |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FRC A14-1 in<br>Annex A.14                  | -127.3+[3]                           | -77                                        | 15 MHz E-UTRA<br>signal, 25 RBs (Note<br>1) |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FRC A14-1 in<br>Annex A.14                  |                                      |                                            | 20 MHz E-UTRA<br>signal, 25 RBs (Note<br>1) |  |  |
| Note 1:       Interfering signal is placed in one side of the F <sub>c</sub> , while the NB-IoT PRB is placed on the other side. Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.         Note 2:       Interfering signal is placed from the edge of BW <sub>Config</sub> , while the NB-IoT PRB is placed at the middle of the remaining PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB. |                                             |                                      |                                            |                                             |  |  |

# Table 7.4.1-5 Wide Area BS in-channel selectivity for NB-IoT in-band operation with 15kHz channel spacing

# Table 7.4.1-6 Wide Area BS in-channel selectivity for NB-IoT in-band operation with 3.75kHz channel spacing

| E-UTRA<br>channel<br>bandwidth<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference<br>measurement<br>channel | Wanted signal<br>mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] | Type of interfering<br>signal               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------|--|--|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FRC A14-2 in<br>Annex A.14          | -133.2+[3]                           | -84                                       | 3 MHz E-UTRA<br>signal, 6 RBs (Note<br>2)   |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FRC A14-2 in<br>Annex A.14          | -133.2+[3]                           | -81                                       | 5 MHz E-UTRA<br>signal, 10 RBs (Note<br>1)  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRC A14-2 in<br>Annex A.14          | -133.2+[3]                           | -77                                       | 10 MHz E-UTRA<br>signal, 25 RBs (Note<br>1) |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRC A14-2 in<br>Annex A.14          | -133.2+[3]                           | -77                                       | 15 MHz E-UTRA<br>signal, 25 RBs (Note<br>1) |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRC A14-2 in<br>Annex A.14          | -133 2+131 -77                       |                                           | 20 MHz E-UTRA<br>signal, 25 RBs (Note<br>1) |  |  |
| Note 1:       Interfering signal is placed in one side of the Fc, while the NB-IoT PRB is placed on the other side. Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.         Note 2:       Interfering signal is placed from the edge of BW <sub>Config</sub> , while the NB-IoT PRB is placed at the middle of the remaining PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB. |                                     |                                      |                                           |                                             |  |  |

# 7.5 Adjacent Channel Selectivity (ACS) and narrow-band blocking

Adjacent channel selectivity (ACS) is a measure of the receiver ability to receive a wanted signal at its assigned channel frequency in the presence of an adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system. For E-UTRA or E-UTRA with NB-IoT (in-band and/or guard band operation) BS, the interfering signal shall be an E-UTRA signal as specified in Annex C. For NB-IoT standalone BS, the interfering signal shall be a NB-IoT signal as specified in Annex C.

## 7.5.1 Minimum requirement

The throughput shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channel.

For E-UTRA Wide Area BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1 and 7.5.1-2 for narrowband blocking and in Table 7.5.1-3 for ACS. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1 for each channel bandwidth and further specified in Annex A.

For E-UTRA Medium Range BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1 and 7.5.1-2 for narrowband blocking and in Table 7.5.1-6 for ACS. Narrowband blocking requirements are not applied for Band 46. The reference measurement channel for the wanted signal is identified in Table 7.2.1-4 for each channel bandwidth and further specified in Annex A.

For E-UTRA Local Area BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1 and 7.5.1-2 for narrowband blocking and in Table 7.5.1-4 for ACS. Narrowband blocking requirements are not applied for Band 46. The reference measurement channel for the wanted signal is identified in Table 7.2.1-2 for each channel bandwidth and further specified in Annex A.

For E-UTRA Home BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1 and 7.5.1-2 for narrowband blocking and in Table 7.5.1-5 for ACS. The reference measurement channel for the wanted signal is identified in Table 7.2.1-3 for each channel bandwidth and further specified in Annex A.

For NB-IoT in-band operation Wide Area BS, the wanted signal and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1a and 7.5.1-2 for narrowband blocking and in Table 7.5.1-3a for ACS. The reference measurement channel for the NB-IoT wanted signal is identified in Table 7.2.1-5 for each sub-carrier spacing and further specified in Annex A.

For NB-IoT guard band operation Wide Area BS, the wanted signal and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1b and 7.5.1-2 for narrowband blocking and in Table 7.5.1-3b for ACS. The reference measurement channel for the NB-IoT wanted signal is identified in Table 7.2.1-5 for each sub-carrier spacing and further specified in Annex A.

For NB-IoT standalone operation Wide Area BS, the wanted signal and the interfering signal coupled to the BS antenna input are specified in Tables 7.5.1-1c and 7.5.1-2a for narrowband blocking and in Table 7.5.1-3c for ACS. The reference measurement channel for the NB-IoT wanted signal is identified in Table 7.2.1-5 for each sub-carrier spacing and further specified in Annex A.

The ACS and narrowband blocking requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base station RF Bandwidth edges or Radio Bandwidth edges.

For a E-UTRA BS operating in non-contiguous spectrum within any operating band, the ACS requirement applies in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the E-UTRA interfering signal in Table 7.5.1-3, 7.5.1-4 and 7.5.1-6. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a E-UTRA BS capable of multi-band operation, the ACS requirement applies in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the E-UTRA interfering signal in Tables 7.5.1-3, 7.5.1-4 and 7.5.1-6. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

For a E-UTRA BS operating in non-contiguous spectrum within any operating band, the narrowband blocking requirement applies in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the

channel bandwidth of the E-UTRA interfering signal in Table 7.5.1-2. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a E-UTRA BS capable of multi-band operation, the narrowband blocking requirement applies in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the E-UTRA interfering signal in Table 7.5.1-2. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

|                                                                                                                                                                                                                                                                                                                                                                                    |    | Wanted signal<br>mean power [dBm]       | Interfering signal<br>mean power<br>[dBm] | Type of interfering signal |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------|-------------------------------------------|----------------------------|--|
| Wide Area B                                                                                                                                                                                                                                                                                                                                                                        | S  | P <sub>REFSENS</sub> + 6dB<br>(Note 1)  | -49                                       | See Table 7.5.1-2          |  |
| Medium Ran<br>BS                                                                                                                                                                                                                                                                                                                                                                   | ge | P <sub>REFSENS</sub> + 6dB<br>(Note 4)  | -44                                       | See Table 7.5.1-2          |  |
| Local Area BS                                                                                                                                                                                                                                                                                                                                                                      |    | P <sub>REFSENS</sub> + 6dB<br>(Note 2)  | -41                                       | See Table 7.5.1-2          |  |
| Home BS PRE                                                                                                                                                                                                                                                                                                                                                                        |    | P <sub>REFSENS</sub> + 14dB<br>(Note 3) | -33                                       | See Table 7.5.1-2          |  |
| Note 1:       PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-1.         Note 2:       PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-2         Note 3:       PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-3.         Note 4:       PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-4. |    |                                         |                                           |                            |  |

 Table 7.5.1-1: Narrowband blocking requirement for E-UTRA BS

|                   | E-UTRA channel<br>BW of the<br>lowest/highest<br>carrier received<br>[MHz] | NB-IoT Wanted<br>signal mean<br>power [dBm] | Interfering<br>signal mean<br>power [dBm] |
|-------------------|----------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|
|                   | 3                                                                          | P <sub>REFSENS</sub> + 11 dB<br>(Note)      | -49                                       |
|                   | 5                                                                          | P <sub>REFSENS</sub> + 8 dB<br>(Note)       | -49                                       |
| Wide Area BS      | 10                                                                         | P <sub>REFSENS</sub> + 6 dB<br>(Note)       | -49                                       |
|                   | 15                                                                         | P <sub>REFSENS</sub> + 6 dB<br>(Note)       | -49                                       |
|                   | 20                                                                         | P <sub>REFSENS</sub> + 6 dB<br>(Note)       | -49                                       |
| in Table 7.2.1-5. |                                                                            |                                             |                                           |

depends on the sub-carrier spacing as specified in Table 7.2.1-5.

|                                                                                                                                                                                                                  | E-UTRA channel<br>BW of the<br>lowest/highest<br>carrier received<br>[MHz] | NB-loT Wanted<br>signal mean power<br>[dBm] | Interfering<br>signal mean<br>power [dBm] | Type of<br>interfering signal |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------|--|--|
|                                                                                                                                                                                                                  | 5                                                                          | P <sub>REFSENS</sub> + 11 dB<br>(Note 1)    | -49                                       | See Table 7.5.1-2             |  |  |
| Wide Area DC                                                                                                                                                                                                     | 10                                                                         | P <sub>REFSENS</sub> + 6 dB<br>(Note 1)     | -49                                       | See Table 7.5.1-2             |  |  |
| Wide Area BS                                                                                                                                                                                                     | 15                                                                         | P <sub>REFSENS</sub> + 6 dB<br>(Note 1)     | -49                                       | See Table 7.5.1-2             |  |  |
|                                                                                                                                                                                                                  | 20                                                                         | P <sub>REFSENS</sub> + 6 dB<br>(Note 1)     | -49                                       | See Table 7.5.1-2             |  |  |
| Note: The mentioned desens values consider only one NB-IoT <u>PRB</u> in the guard band, which is<br>placed adjacent to the E-UTRA PRB edge as close as possible (i.e., away from edge of<br>channel bandwidth). |                                                                            |                                             |                                           |                               |  |  |
|                                                                                                                                                                                                                  | 4                                                                          | e sub-carrier spacing a                     | s specified in Table                      | 7.2.1-5.                      |  |  |

#### Table 7.5.1-1b: Narrowband blocking requirement for NB-IoT guard band operation BS

#### Table 7.5.1-1c: Narrowband blocking requirement for NB-IoT standalone

|                                                              |                 | NB-IoT<br>channel<br>bandwidth of the<br>lowest/highest<br>carrier received<br>[kHz] | Wanted<br>signal<br>mean<br>power<br>[dBm] | Interfering<br>signal<br>mean<br>power<br>[dBm] | Type of<br>interfering<br>signal |
|--------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------|
|                                                              | Wide<br>Area BS | 200                                                                                  | P <sub>REFSENS</sub> +<br>12 dB<br>(Note)  | -49                                             | See Table<br>7.5.1-2a            |
| PREFSENS depends on the sub<br>spacing as specified in Table |                 |                                                                                      |                                            |                                                 |                                  |

Note: spacing as specified in Table 7.2.1-5.

#### Table 7.5.1-2: Interfering signal for Narrowband blocking requirement for E-UTRA BS

| E-UTRA channel<br>BW of the<br>lowest/highest<br>carrier received<br>[MHz] |                                                                                                                                                                                                                             | Interfering RB<br>centre frequency<br>offset to the<br>lower/upper Base<br>Station RF<br>Bandwdith edge or<br>sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering signal   |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| 1.4                                                                        |                                                                                                                                                                                                                             | ±(252.5+m*180),<br>m=0, 1, 2, 3, 4, 5                                                                                                                           | 1.4 MHz E-UTRA signal, 1 RB* |  |  |
| 3                                                                          |                                                                                                                                                                                                                             | ±(247.5+m*180),<br>m=0, 1, 2, 3, 4, 7, 10,<br>13                                                                                                                | 3 MHz E-UTRA signal, 1 RB*   |  |  |
| 5                                                                          |                                                                                                                                                                                                                             | ±(342.5+m*180),<br>m=0, 1, 2, 3, 4, 9, 14,<br>19, 24                                                                                                            | 5 MHz E-UTRA signal, 1 RB*   |  |  |
| 10                                                                         | 10 ±(347.5+m*180),<br>m=0, 1, 2, 3, 4, 9, 14,<br>19, 24                                                                                                                                                                     |                                                                                                                                                                 | 5 MHz E-UTRA signal, 1 RB*   |  |  |
| 15                                                                         |                                                                                                                                                                                                                             | ±(352.5+m*180),<br>m=0, 1, 2, 3, 4, 9, 14,<br>19, 24                                                                                                            | 5 MHz E-UTRA signal, 1 RB*   |  |  |
| 20                                                                         |                                                                                                                                                                                                                             | ±(342.5+m*180),<br>m=0, 1, 2, 3, 4, 9, 14,<br>19, 24                                                                                                            | 5 MHz E-UTRA signal, 1 RB*   |  |  |
|                                                                            | Note*: Interfering signal consisting of one resource block is positioned at th<br>stated offset, the channel bandwidth of the interfering signal is locate<br>adjacently to the lower/upper Base Station RF Bandwidth edge. |                                                                                                                                                                 |                              |  |  |

# Table 7.5.1-2a: Interfering signal for Narrowband blocking requirement for NB-IoT standalone operation BS

| NB-IoT<br>channel bandwidth<br>of the<br>lowest/highest<br>carrier received<br>[kHz] |                                                                                                                                                                                                         | Interfering RB<br>centre frequency<br>offset to the<br>lower/upper Base<br>Station RF<br>Bandwdith edge or<br>sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering signal |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 200                                                                                  |                                                                                                                                                                                                         | ±(240 +m*180),<br>m=0, 1, 2, 3, 4, 9, 14                                                                                                                        | 3 MHz E-UTRA signal, 1 RB* |  |
|                                                                                      | Note*: Interfering signal consisting of one resource block is positioned stated offset, the channel bandwidth of the interfering signal is adjacently to the lower/upper Base Station RF Bandwidth edge |                                                                                                                                                                 |                            |  |

#### Table 7.5.1-3: Adjacent channel selectivity for E-UTRA Wide Area BS

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowesthighest<br>carrier<br>received<br>[MHz] | Wanted signal<br>mean power [dBm]     | Interfering<br>signal mean<br>power [dBm] | Interfering signal centre<br>frequency offset from<br>the lower/upper Base<br>Station RF Bandwidth<br>edge or sub-block edge<br>inside a sub-block gap<br>[MHz] | Type of interfering signal |  |
|-------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 1.4                                                                                       | P <sub>REFSENS</sub> + 11dB<br>(Note) | -52                                       | ±0.7025                                                                                                                                                         | 1.4MHz E-UTRA signal       |  |
| 3                                                                                         | P <sub>REFSENS</sub> + 8dB<br>(Note)  | -52                                       | ±1.5075                                                                                                                                                         | 3MHz E-UTRA signal         |  |
| 5                                                                                         | P <sub>REFSENS</sub> + 6dB<br>(Note)  | -52                                       | ±2.5025                                                                                                                                                         | 5MHz E-UTRA signal         |  |
| 10                                                                                        | P <sub>REFSENS</sub> + 6dB<br>(Note)  | -52                                       | ±2.5075                                                                                                                                                         | 5MHz E-UTRA signal         |  |
| 15                                                                                        | P <sub>REFSENS</sub> + 6dB<br>(Note)  | -52                                       | ±2.5125                                                                                                                                                         | 5MHz E-UTRA signal         |  |
| 20                                                                                        | P <sub>REFSENS</sub> + 6dB<br>(Note)  | -52                                       | ±2.5025                                                                                                                                                         | 5MHz E-UTRA signal         |  |
| Note: PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-1.            |                                       |                                           |                                                                                                                                                                 |                            |  |

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowesthighest<br>carrier<br>received<br>[MHz] | NB-IoT wanted<br>signal mean power<br>[dBm] | Interfering<br>signal<br>mean<br>power<br>[dBm] | Interfering signal<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF Bandwidth<br>edge or sub-block<br>edge inside a sub-<br>block gap [MHz] | Type of interfering<br>signal |
|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3                                                                                         | P <sub>REFSENS</sub> + 8dB<br>(Note)        | -52                                             | ±1.5075                                                                                                                                                             | 3MHz E-UTRA signal            |
| 5                                                                                         | P <sub>REFSENS</sub> + 6dB<br>(Note)        | -52                                             | ±2.5025                                                                                                                                                             | 5MHz E-UTRA signal            |
| 10                                                                                        | P <sub>REFSENS</sub> + 6dB<br>(Note)        | -52                                             | ±2.5075                                                                                                                                                             | 5MHz E-UTRA signal            |
| 15                                                                                        | P <sub>REFSENS</sub> + 6dB<br>(Note)        | -52                                             | ±2.5125                                                                                                                                                             | 5MHz E-UTRA signal            |
| 20                                                                                        | P <sub>REFSENS</sub> + 6dB<br>(Note)        | -52                                             | ±2.5025                                                                                                                                                             | 5MHz E-UTRA signal            |
| Note: P <sub>REFS</sub>                                                                   | ENS depends on the sub                      | -carrier spacir                                 | ng as specified in Table 7.2                                                                                                                                        | .1-5.                         |

#### Table 7.5.1-3b: Adjacent channel selectivity NB-IoT guard band operation Wide Area BS

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowesthighest<br>carrier<br>received<br>[MHz] | NB-IoT wanted<br>signal mean power<br>[dBm] | Interfering<br>signal<br>mean<br>power<br>[dBm] | Interfering signal<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF Bandwidth<br>edge or sub-block<br>edge inside a sub-<br>block gap [MHz] | Type of interfering<br>signal |
|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5                                                                                         | P <sub>REFSENS</sub> + 10 dB<br>(Note)      | -52                                             | ±2.5025                                                                                                                                                             | 5MHz E-UTRA signal            |
| 10                                                                                        | P <sub>REFSENS</sub> + 8 dB<br>(Note)       | -52                                             | ±2.5075                                                                                                                                                             | 5MHz E-UTRA signal            |
| 15                                                                                        | P <sub>REFSENS</sub> + 6 dB<br>(Note)       | -52                                             | ±2.5125                                                                                                                                                             | 5MHz E-UTRA signal            |
| 20                                                                                        | P <sub>REFSENS</sub> + 6 dB<br>(Note)       | -52                                             | ±2.5025                                                                                                                                                             | 5MHz E-UTRA signal            |
| Note: PREES                                                                               |                                             | -carrier spacir                                 | ng as specified in Table 7.2                                                                                                                                        | .1-5.                         |

Note: PREFSENS depends on the sub-carrier spacing as specified in Table 7.2.1-5.

#### Table 7.5.1-3c: Adjacent channel selectivity for NB-IoT standalone Wide Area BS

| NB-IoT<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received [kHz] | Wanted signal<br>mean power [dBm]                                                | Interfering<br>signal mean<br>power [dBm] | Interfering signal centre<br>frequency offset to the<br>lower/upper Base<br>Station RF Bandwidth<br>edge or sub-block edge<br>inside a sub-block gap<br>[kHz] | Type of interfering signal |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| 200                                                                                     | P <sub>REFSENS</sub> + 19.5dB<br>(Note)                                          | -52                                       | ±100                                                                                                                                                          | 180 kHz NB-IoT signal      |  |  |  |
| Note: PREFSE                                                                            | Note: PREFSENS depends on the sub-carrier spacing as specified in Table 7.2.1-5. |                                           |                                                                                                                                                               |                            |  |  |  |

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz]                                                                                                                           | Wanted signal<br>mean power [dBm]       | Interfering<br>signal mean<br>power [dBm] | Interfering signal centre<br>frequency offset from<br>the lower/upper Base<br>Station RF Bandwidth<br>edge or sub-block edge<br>inside a sub-block gap<br>[MHz] | Type of interfering signal                                         |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| 1.4                                                                                                                                                                                                                  | P <sub>REFSENS</sub> + 11dB<br>(Note 1) | -44                                       | ±0.7025                                                                                                                                                         | 1.4MHz E-UTRA signal                                               |  |  |
| 3                                                                                                                                                                                                                    | P <sub>REFSENS</sub> + 8dB (Note<br>1)  | -44                                       | ±1.5075                                                                                                                                                         | 3MHz E-UTRA signal                                                 |  |  |
| 5                                                                                                                                                                                                                    | P <sub>REFSENS</sub> + 6dB (Note<br>1)  | -44                                       | ±2.5025                                                                                                                                                         | 5MHz E-UTRA signal                                                 |  |  |
| 10                                                                                                                                                                                                                   | P <sub>REFSENS</sub> + 6dB (Note<br>1)  | -44                                       | ±2.5075<br>±10.0175                                                                                                                                             | 5MHz E-UTRA signal (Note<br>2)<br>20 MHz E-UTRA signal<br>(Note 3) |  |  |
| 15                                                                                                                                                                                                                   | P <sub>REFSENS</sub> + 6dB (Note<br>1)  | -44                                       | ±2.5125                                                                                                                                                         | 5MHz E-UTRA signal                                                 |  |  |
| 20                                                                                                                                                                                                                   | 1)                                      |                                           | -44 ±2.5025 5MHz E-UTRA signal (No<br>±10.0175 20 MHz E-UTRA signal<br>(Note 3)                                                                                 |                                                                    |  |  |
| Note 1:PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-2.Note 2:This type of interfering signal is not applied for Band 46.Note 3:This type of interfering signal is only applied for Band 46. |                                         |                                           |                                                                                                                                                                 |                                                                    |  |  |

 Table 7.5.1-4: Adjacent channel selectivity for E-UTRA Local Area BS

## Table 7.5.1-5: Adjacent channel selectivity for E-UTRA Home BS

| E-UTRA<br>channel<br>bandwidth<br>[MHz] | Wanted signal mean<br>power [dBm]     | Interfering<br>signal mean<br>power [dBm] | Interfering signal centre<br>frequency offset from<br>the channel edge of the<br>wanted signal [MHz] | Type of interfering signal |
|-----------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|
| 1.4                                     | P <sub>REFSENS</sub> + 27dB<br>(Note) | -28                                       | 0.7025                                                                                               | 1.4MHz E-UTRA signal       |
| 3                                       | P <sub>REFSENS</sub> + 24dB<br>(Note) | -28                                       | 1.5075                                                                                               | 3MHz E-UTRA signal         |
| 5                                       | P <sub>REFSENS</sub> + 22dB<br>(Note) | -28                                       | 2.5025                                                                                               | 5MHz E-UTRA signal         |
| 10                                      | P <sub>REFSENS</sub> + 22dB<br>(Note) | -28                                       | 2.5075                                                                                               | 5MHz E-UTRA signal         |
| 15                                      | P <sub>REFSENS</sub> + 22dB<br>(Note) | -28                                       | 2.5125                                                                                               | 5MHz E-UTRA signal         |
| 20                                      | P <sub>REFSENS</sub> + 22dB<br>(Note) | -28                                       | 2.5025                                                                                               | 5MHz E-UTRA signal         |
| Note: P                                 | REFSENS depends on the c              | hannel bandwidth                          | as specified in Table 7.2.1-3.                                                                       |                            |

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz]                                                                                                                                                                              | Wanted signal<br>mean power [dBm]       | Interfering<br>signal mean<br>power [dBm] | Interfering signal centre<br>frequency offset to the<br>lower/upper Base<br>Station RF Bandwidth<br>edge or sub-block edge<br>inside a sub-block gap<br>[MHz] | Type of interfering signal                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| 1.4                                                                                                                                                                                                                                                                     | P <sub>REFSENS</sub> + 11dB<br>(Note 1) | -47                                       | ±0.7025                                                                                                                                                       | 1.4MHz E-UTRA signal                                               |  |  |
| 3                                                                                                                                                                                                                                                                       | P <sub>REFSENS</sub> + 8dB (Note<br>1)  | -47                                       | ±1.5075                                                                                                                                                       | 3MHz E-UTRA signal                                                 |  |  |
| 5                                                                                                                                                                                                                                                                       | P <sub>REFSENS</sub> + 6dB (Note<br>1)  | -47                                       | ±2.5025                                                                                                                                                       | 5MHz E-UTRA signal                                                 |  |  |
| 10                                                                                                                                                                                                                                                                      | PREFSENS + 6dB (Note<br>1)              | -47                                       | ±2.5075<br>±10.0175                                                                                                                                           | 5MHz E-UTRA signal (Note<br>2)<br>20 MHz E-UTRA signal<br>(Note 3) |  |  |
| 15                                                                                                                                                                                                                                                                      | P <sub>REFSENS</sub> + 6dB (Note<br>1)  | -47                                       | ±2.5125                                                                                                                                                       | 5MHz E-UTRA signal                                                 |  |  |
| 20                                                                                                                                                                                                                                                                      | 1)                                      |                                           | ±2.5025<br>±10.0175                                                                                                                                           | 5MHz E-UTRA signal (Note<br>2)<br>20 MHz E-UTRA signa<br>(Note 3)  |  |  |
| Note 1:       P <sub>REFSENS</sub> depends on the channel bandwidth as specified in Table 7.2.1-4.         Note 2:       This type of interfering signal is not applied for Band 46.         Note 3:       This type of interfering signal is only applied for Band 46. |                                         |                                           |                                                                                                                                                               |                                                                    |  |  |

Table 7.5.1-6: Adjacent channel selectivity for E-UTRA Medium Range BS

# 7.6 Blocking

## 7.6.1 General blocking requirement

The blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel in the presence of an unwanted interferer, which are either a 1.4MHz, 3MHz or 5MHz E-UTRA signal for in-band blocking or a CW signal for out-of-band blocking. The interfering signal shall be an E-UTRA signal as specified in Annex C.

#### 7.6.1.1 Minimum requirement

For E-UTRA, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Tables 7.6.1.1-1, 7.6.1.1-1a, 7.6.1.1-1b, 7.6.1.1-1c and 7.6.1.1-2. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1, 7.2.1-2, 7.2.1-3 and 7.2.1-4 for each channel bandwidth and further specified in Annex A.

The blocking requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the blocking requirement applies in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum

offset in Table 7.6.1.1-2. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a BS capable of multi-band operation, the requirement in the in-band blocking frequency ranges applies for each supported operating band. The requirement applies in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in Table 7.6.1.1-2.

For a BS capable of multi-band operation, the requirement in the out-of-band blocking frequency ranges apply for each operating band, with the exception that the in-band blocking frequency ranges of all supported operating bands according to Tables 7.6.1.1-1, 7.6.1.1-1a and 7.6.1.1-1c shall be excluded from the out-of-band blocking requirement.

Table 7.6.1.1-1: Blocking performance requirement for Wide Area BS for E-UTRA

| Operating<br>Band                                                |                                    | ency<br>nal [N | of Interfering<br>/IHz]            | Interfering<br>Signal<br>mean power<br>[dBm] | Wanted Signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>minimum<br>frequency offset<br>from the<br>lower/upper<br>Base Station RF<br>Bandwidth edge<br>or sub-block<br>edge inside a<br>sub-block gap<br>[MHz] | Type of<br>Interfering<br>Signal |
|------------------------------------------------------------------|------------------------------------|----------------|------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1-7, 9-11,<br>13, 14,                                            | (F <sub>UL_low</sub> -20)          | to             | $(F_{UL_high} + 20)$               | -43                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
| 18,19, 21-<br>23, 24, 27,<br>30, 33-45,<br>48, 65, 66,<br>68, 70 | 1<br>(F <sub>UL_high</sub> +20)    | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +6dB*                       | _                                                                                                                                                                                                | CW carrier                       |
| 8, 26, 28                                                        | (F <sub>UL_low</sub> -20)          | to             | (F <sub>UL_high</sub> +10)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>∪L_high</sub> +10)    | to<br>to       | (F <sub>∪L_low</sub> -20)<br>12750 | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 12                                                               | (F <sub>UL_low</sub> -20)          | to             | (F <sub>UL_high</sub> +13)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +13)    | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 17                                                               | (F <sub>UL_low</sub> -20)          | to             | $(F_{UL_high} + 18)$               | -43                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>∪L_high</sub> +18)    | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 20                                                               | (F <sub>UL_low</sub> -11)          | to             | $(F_{UL_high} + 20)$               | -43                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F∪L_high +20)                | to<br>to       | (F <sub>UL_low</sub> -11)<br>12750 | -15                                          | PREFSENS +6dB*                       | —                                                                                                                                                                                                | CW carrier                       |
| 25                                                               | (F <sub>UL_low</sub> -20)          | to             | (F <sub>UL_high</sub> +15)         | -43                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +15)    | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +6dB*                       | —                                                                                                                                                                                                | CW carrier                       |
| 31                                                               | (F <sub>UL_low</sub> -20)          | to             | (F <sub>UL_high</sub> +5)          | -43                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F∪L_high +5)                 | to<br>to       | (F <sub>∪L_low</sub> -20)<br>12750 | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| Note**: Fo                                                       | or a BS capable<br>equency range o | of mu<br>f the | ultiband operatio                  | n, in case of inte where the wante           |                                      | not in the in-band blo<br>and not in an adjacer<br>dB.                                                                                                                                           |                                  |

NOTE: Table 7.6.1.1-1 assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

| Operating<br>Band                                                | Sig                                                          | ency<br>nal [N  |                                                             | Interfering<br>Signal<br>mean power<br>[dBm] | Wanted Signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>minimum<br>frequency offset<br>from the<br>lower/upper<br>Base Station RF<br>Bandwidth edge<br>or sub-block<br>edge inside a<br>sub-block gap<br>[MHz] | Type of<br>Interfering<br>Signal |
|------------------------------------------------------------------|--------------------------------------------------------------|-----------------|-------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1-7, 9-11,<br>13-14,                                             | (F <sub>UL_low</sub> -20)                                    | to              | (F <sub>UL_high</sub> +20)                                  | -35                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table 7.6.1.1-2              |
| 18,19, 21-<br>23, 24, 27,<br>30, 33-45,<br>48, 65, 66,<br>68, 70 | 1<br>(F <sub>UL_high</sub> +20)                              | to<br>to        | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | Prefsens +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 8, 26, 28                                                        | (Ful_low -20)                                                | to              | (F <sub>UL_high</sub> +10)                                  | -35                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +10)                              | to<br>to        | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                  | CW carrier                       |
| 12                                                               | (Ful_low -20)                                                | to              | (F <sub>UL_high</sub> +13)                                  | -35                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +13)                              | to<br>to        | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                  | CW carrier                       |
| 17                                                               | (Ful_low -20)                                                | to              | (F <sub>UL_high</sub> +18)                                  | -35                                          | PREFSENS +6dB*                       | See table 7.6.1. 1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +18)                              | to<br>to        | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 20                                                               | (Ful_low -11)                                                | to              | (F <sub>UL_high</sub> +20)                                  | -35                                          | PREFSENS +6dB*                       | See table 7.6.1. 1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +20)                              | to<br>to        | (F <sub>UL_low</sub> -11)<br>12750                          | -15                                          | PREFSENS +6dB*                       | _                                                                                                                                                                                                | CW carrier                       |
| 25                                                               | (F <sub>UL_low</sub> -20)                                    | to              | $(F_{UL_high} + 15)$                                        | -35                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1. 1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>UL_high</sub> +15)                              | to<br>to        | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 31                                                               | (F <sub>UL_low</sub> -20)                                    | to              | (F <sub>UL_high</sub> +5)                                   | -35                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | 1<br>(F <sub>∪L_high</sub> +5)                               | to<br>to        | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | PREFSENS +6dB*                       | —                                                                                                                                                                                                | CW carrier                       |
| 46                                                               | (F <sub>UL_low</sub> -20)                                    | to              | (F <sub>UL_high</sub> +20)                                  | -35                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>2                                                                                                                                                                          | See table<br>7.6.1.1-2           |
|                                                                  | (F <sub>UL_low</sub> -<br>500)<br>(F <sub>UL_high</sub> +20) | to<br>to        | (F <sub>UL_low</sub> -20)<br>(F <sub>UL_high</sub><br>+500) | -35                                          | Prefsens +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
|                                                                  | 1<br>(F <sub>UL_high</sub><br>+500)                          | to<br>to        | (F <sub>UL_low</sub> -500)<br>12750                         | -15                                          | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                  | CW carrier                       |
| Note**: Fo                                                       | or a BS capable<br>equency range c                           | of mu<br>of the | ultiband operatio                                           | n, in case of inte<br>where the wante        |                                      | anot in the in-band blo<br>and not in an adjacen<br>dB.                                                                                                                                          |                                  |

#### Table 7.6.1.1-1a: Blocking performance requirement for Local Area BS for E-UTRA

NOTE: Table 7.6.1.1-1a assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

| Operating<br>Band                                            | Sig                             | ency<br>nal [N | -                                  | Interfering<br>Signal<br>mean power<br>[dBm] | Wanted Signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>minimum<br>frequency offset<br>from the<br>channel edge of<br>the wanted<br>signal [MHz] | Type of<br>Interfering<br>Signal |
|--------------------------------------------------------------|---------------------------------|----------------|------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1-7, 9-11,<br>13, 14, 18,                                    | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +20)         | -27                                          | PREFSENS +14dB*                      | See table 7.6.1.1-<br>2                                                                                                            | See table 7.6.1.1-2              |
| 19, 21-23,<br>24, 27, 30,<br>33-44, 48,<br>65, 66, 68,<br>70 | 1<br>(F <sub>UL_high</sub> +20) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +14dB*                      |                                                                                                                                    | CW carrier                       |
| 8, 26, 28                                                    | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +10)         | -27                                          | PREFSENS +14dB*                      | See table 7.6.1.1-<br>2                                                                                                            | See table<br>7.6.1.1-2           |
|                                                              | 1<br>(F <sub>UL_high</sub> +10) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +14dB*                      | _                                                                                                                                  | CW carrier                       |
| 12                                                           | (F <sub>UL_low</sub> -20)       | to             | $(F_{UL_high} + 13)$               | -27                                          | P <sub>REFSENS</sub> +14dB*          | See table 7.6.1.1-<br>2                                                                                                            | See table<br>7.6.1.1-2           |
|                                                              | 1<br>(F <sub>UL_high</sub> +13) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +14dB*                      |                                                                                                                                    | CW carrier                       |
| 17                                                           | (F <sub>UL_low</sub> -20)       | to             | $(F_{UL_high} + 18)$               | -27                                          | P <sub>REFSENS</sub> +14dB*          | See table 7.6.1.1-<br>2                                                                                                            | See table<br>7.6.1.1-2           |
|                                                              | 1<br>(F <sub>UL_high</sub> +18) | to<br>to       | (F⊔L_low -20)<br>12750             | -15                                          | PREFSENS +14dB*                      | _                                                                                                                                  | CW carrier                       |
| 20                                                           | (F <sub>UL_low</sub> -11)       | to             | $(F_{UL_high} + 20)$               | -27                                          | P <sub>REFSENS</sub> +14dB*          | See table 7.6.1.1-<br>2                                                                                                            | See table<br>7.6.1.1-2           |
|                                                              | 1<br>(F <sub>UL_high</sub> +20) | to<br>to       | (F <sub>UL_low</sub> -11)<br>12750 | -15                                          | PREFSENS +14dB*                      | _                                                                                                                                  | CW carrier                       |
| 25                                                           | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +15)         | -27                                          | PREFSENS +14dB*                      | See table 7.6.1.1-<br>2                                                                                                            | See table<br>7.6.1.1-2           |
|                                                              | 1<br>(F <sub>UL high</sub> +15) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15                                          | PREFSENS +14dB*                      | —                                                                                                                                  | CW carrier                       |
| Note*: Pr                                                    |                                 | on th          | e channel band                     | width as specifie                            | d in Table 7.2.1-3.                  |                                                                                                                                    | •                                |

NOTE: Table 7.6.1.1-1b assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

| Operating<br>Band                                                | Sig                                                                             | ency<br>nal [N | of Interfering<br>/IHz]                                     | Interfering<br>Signal<br>mean power<br>[dBm] | Wanted Signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>minimum<br>frequency offset<br>to the<br>lower/higher<br>Base Station RF<br>Bandwidth edge<br>or sub-block<br>edge inside a<br>sub-block gap<br>[MHz] | Type of<br>Interfering<br>Signal |  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|-------------------------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| 1-7, 9-11,<br>13, 14,                                            | (F <sub>UL_low</sub> -20)                                                       | to             | (F <sub>UL_high</sub> +20)                                  | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
| 18,19, 21-<br>23, 24, 27,<br>30, 33-45,<br>48, 65, 66,<br>68, 70 | 1<br>(F <sub>UL_high</sub> +20)                                                 | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | Prefsens +6dB*                       | _                                                                                                                                                                                               | CW carrier                       |  |
| 8, 26, 28                                                        | (F <sub>UL_low</sub> -20)                                                       | to             | (F <sub>UL_high</sub> +10)                                  | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
|                                                                  | 1<br>(F∪L_high +10)                                                             | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                 | CW carrier                       |  |
| 12                                                               | (F <sub>UL_low</sub> -20)                                                       | to             | (F <sub>UL_high</sub> +13)                                  | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table 7.6.1.1-2              |  |
|                                                                  | 1<br>(F∪L_high +13)                                                             | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                 | CW carrier                       |  |
| 17                                                               | (F <sub>UL_low</sub> -20)                                                       | to             | $(F_{UL_high} + 18)$                                        | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
|                                                                  | 1<br>(F∪L_high +18)                                                             | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                 | CW carrier                       |  |
| 20                                                               | (F <sub>UL_low</sub> -11)                                                       | to             | (F <sub>UL_high</sub> +20)                                  | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
|                                                                  | 1<br>(F∪L_high +20)                                                             | to<br>to       | (F <sub>UL_low</sub> -11)<br>12750                          | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                 | CW carrier                       |  |
| 25                                                               | (F <sub>UL_low</sub> -20)                                                       | to             | (F <sub>UL_high</sub> +15)                                  | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
|                                                                  | 1<br>(F∪L_high +15)                                                             | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                 | CW carrier                       |  |
| 31                                                               | (F <sub>UL_low</sub> -20)                                                       | to             | $(F_{UL_high} + 5)$                                         | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
|                                                                  | 1<br>(F <sub>∪L_high</sub> +5)                                                  | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750                          | -15                                          | PREFSENS +6dB*                       | _                                                                                                                                                                                               | CW carrier                       |  |
| 46                                                               | (F <sub>UL_low</sub> -20)                                                       | to             | (F <sub>UL_high</sub> +20)                                  | -38                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>2                                                                                                                                                                         | See table<br>7.6.1.1-2           |  |
|                                                                  | (F <sub>UL_low</sub> -<br>500)<br>(F <sub>UL_high</sub> +20)                    | to<br>to       | (F <sub>UL_low</sub> -20)<br>(F <sub>UL_high</sub><br>+500) | -35                                          | PREFSENS +6dB*                       | —                                                                                                                                                                                               | CW carrier                       |  |
|                                                                  | 1<br>(F <sub>UL_high</sub><br>+500)                                             | to<br>to       | (F <sub>UL_low</sub> -500)<br>12750                         | -15                                          | PREFSENS +6dB*                       |                                                                                                                                                                                                 | CW carrier                       |  |
| Note**: Fo                                                       | Note*: PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-4. |                |                                                             |                                              |                                      |                                                                                                                                                                                                 |                                  |  |

#### Table 7.6.1.1-1c: Blocking performance requirement for Medium Range BS for E-UTRA

NOTE: Table 7.6.1.1-1c assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

| E-UTRA<br>channel BW of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Interfering signal<br>centre frequency<br>minimum offset to<br>the lower/upper<br>Base Station RF<br>Bandwidth edge or<br>sub-block edge<br>inside a sub-block<br>gap [MHz] | Type of interfering signal       |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| 1.4                                                                              | ±2.1                                                                                                                                                                        | 1.4 MHz E-UTRA signal            |  |  |  |  |
| 3                                                                                | ±4.5                                                                                                                                                                        | 3 MHz E-UTRA signal              |  |  |  |  |
| 5                                                                                | ±7.5                                                                                                                                                                        | 5 MHz E-UTRA signal              |  |  |  |  |
| 10                                                                               | ±7.5                                                                                                                                                                        | 5 MHz E-UTRA signal              |  |  |  |  |
| 15                                                                               | ±7.5                                                                                                                                                                        | 5 MHz E-UTRA signal              |  |  |  |  |
| 20                                                                               | ±7.5                                                                                                                                                                        | 5 MHz E-UTRA signal (Note<br>1)  |  |  |  |  |
| 20                                                                               | ±30                                                                                                                                                                         | 20 MHz E-UTRA signal<br>(Note 2) |  |  |  |  |
|                                                                                  | 5-5-5                                                                                                                                                                       |                                  |  |  |  |  |

| Table 7.6.1.1-2: Interfering | signals for | blocking perfo | mance requirement |
|------------------------------|-------------|----------------|-------------------|
|                              |             |                |                   |

For NB-IoT standalone operation, the throughput shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in

Tables 7.6.1.1-3 and 7.6.1.1-4. The reference measurement channel for the wanted signal is identified in Table 7.2.1-5 and further specified in Annex A.

The blocking requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

#### Table 7.6.1.1-3: Blocking performance requirement for Wide Area BS for NB-IoT standalone operation

| Operating<br>Band         |                                        | nal (MH:                                       | z]                                                 | Interfering<br>Signal<br>mean power<br>[dBm] | Wanted Signal<br>mean power<br>[dBm]      | Interfering signal<br>centre frequency<br>minimum<br>frequency offset<br>from the<br>lower/upper<br>Base Station RF<br>Bandwidth edge<br>or sub-block<br>edge inside a<br>sub-block gap<br>[MHz] | Type of<br>Interfering<br>Signal |
|---------------------------|----------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1-3, 5, 11,<br>13,18,19,  | (F <sub>UL_low</sub> -20)              | -                                              | F <sub>UL_high</sub> +20)                          | -43                                          | PREFSENS +6dB*                            | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table<br>7.6.1.1-4           |
| 21, 66, 70                | 1<br>(F <sub>UL_high</sub> +20)        | to 1                                           | F <sub>UL_low</sub> -20)<br>2750                   | -15**                                        | P <sub>REFSENS</sub> +6dB*                | —                                                                                                                                                                                                | CW carrier                       |
| 8, 26, 28                 | (F <sub>UL_low</sub> -20)              | to (I                                          | F <sub>UL_high</sub> +10)                          | -43                                          | PREFSENS +6dB*                            | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table<br>7.6.1.1-4           |
|                           | 1<br>(F∪∟_high +10)                    |                                                | F <sub>UL_low</sub> -20)<br>2750                   | -15**                                        | Prefsens +6dB*                            |                                                                                                                                                                                                  | CW carrier                       |
| 12                        | (Ful_low -20)                          | to (I                                          | F <sub>UL_high</sub> +13)                          | -43                                          | Prefsens +6dB*                            | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table<br>7.6.1.1-4           |
|                           | 1<br>(F <sub>UL_high</sub> +13)        |                                                | F <sub>UL_low</sub> -20)<br>2750                   | -15**                                        | Prefsens +6dB*                            |                                                                                                                                                                                                  | CW carrier                       |
| 17                        | (F <sub>UL_low</sub> -20)              | to (I                                          | F <sub>UL_high</sub> +18)                          | -43                                          | PREFSENS +6dB*                            | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table 7.6.1.1-4              |
|                           | 1<br>(F <sub>UL_high</sub> +18)        |                                                | F <sub>UL_low</sub> -20)<br>2750                   | -15**                                        | Prefsens +6dB*                            |                                                                                                                                                                                                  | CW carrier                       |
| 20                        | (F <sub>UL_low</sub> -11)              | to (I                                          | F <sub>UL_high</sub> +20)                          | -43                                          | PREFSENS +6dB*                            | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table<br>7.6.1.1-4           |
|                           | 1<br>(F <sub>UL_high</sub> +20)        |                                                | F <sub>UL_low</sub> -11)<br>2750                   | -15**                                        | Prefsens +6dB*                            | —                                                                                                                                                                                                | CW carrier                       |
| 25                        | (Ful_low -20)                          |                                                | F <sub>UL_high</sub> +15)                          | -43                                          | PREFSENS +6dB*                            | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table<br>7.6.1.1-4           |
|                           | 1<br>(F <sub>UL_high</sub> +15)        | to 1                                           | F <sub>UL_low</sub> -20)<br>2750                   | -15**                                        | PREFSENS +6dB*                            |                                                                                                                                                                                                  | CW carrier                       |
| 31                        | (F <sub>UL_low</sub> -20)              | to (I                                          | F <sub>UL_high</sub> +5)                           | -43                                          | P <sub>REFSENS</sub> +6dB*                | See table 7.6.1.1-<br>4                                                                                                                                                                          | See table<br>7.6.1.1-4           |
|                           | 1<br>(F <sub>UL_high</sub> +5)         | to 1                                           | Ful_low -20)<br>2750                               | -15**                                        | PREFSENS +6dB*                            |                                                                                                                                                                                                  | CW carrier                       |
| Note**: U<br>m<br>th<br>s | neasured using a<br>ne blocking signal | ns are al<br>1MHz s<br>l is set to<br>. In add | lowed for spu<br>tep size. For to<br>a level of -4 | these exceptions<br>0 dBm for 15 kH          | the above through<br>z subcarrier spacing | wanted signal freque<br>put requirement shall<br>g and -46 dBm for 3.7<br>hree contiguous meas                                                                                                   | be met when<br>5 kHz             |

NOTE: Table 7.6.1.1-3 assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

# Table 7.6.1.1-4: Interfering signals for blocking performance requirement for NB-IoT standalone operation

| NB-IoT<br>channel BW of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Interfering signal<br>centre frequency<br>minimum offset to<br>the lower/upper<br>Base Station RF<br>Bandwidth edge or<br>sub-block edge<br>inside a sub-block<br>gap [MHz] | Type of interfering signal |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 0.2                                                                              | ±7.5                                                                                                                                                                        | 5MHz E-UTRA signal         |

For E-UTRA with NB-IoT in-band/guard band operation, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Tables 7.6.1.1-5 and 7.6.1.1-6. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1, 7.2.1-2, 7.2.1-3 and 7.2.1-4 for each channel bandwidth for E-UTRA, Table 7.2.1-5 for NB-IoT and further specified in Annex A.

The blocking requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

| Table 7.6.1.1-5: Blocking performance requirement for Wide Area BS for E-UTRA with NB-IoT in- |
|-----------------------------------------------------------------------------------------------|
| band/guard band operation                                                                     |

| Operating<br>Band        |                                 | ency<br>nal [N | of Interfering<br>IHz]             | Interfering<br>Signal<br>mean power<br>[dBm] | Wanted Signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>minimum<br>frequency offset<br>from the<br>lower/upper<br>Base Station RF<br>Bandwidth edge<br>or sub-block<br>edge inside a<br>sub-block gap<br>[MHz] | Type of<br>Interfering<br>Signal |
|--------------------------|---------------------------------|----------------|------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1-3, 5, 11,<br>13,18,19, | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +20)         | -43                                          | P <sub>REFSENS</sub> +6dB*           | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table 7.6.1.1-6              |
| 21, 66, 70               | 1<br>(F <sub>UL_high</sub> +20) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15***                                       | PREFSENS +6dB*                       | _                                                                                                                                                                                                | CW carrier                       |
| 8, 26, 28                | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +10)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table<br>7.6.1.1-6           |
|                          | 1<br>(F <sub>UL_high</sub> +10) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15***                                       | PREFSENS +6dB*                       |                                                                                                                                                                                                  | CW carrier                       |
| 12                       | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +13)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table<br>7.6.1.1-6           |
|                          | 1<br>(F <sub>UL_high</sub> +13) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15***                                       | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                  | CW carrier                       |
| 17                       | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +18)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table<br>7.6.1.1-6           |
|                          | 1<br>(F <sub>UL_high</sub> +18) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15***                                       | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                  | CW carrier                       |
| 20                       | (F <sub>UL_low</sub> -11)       | to             | (F <sub>UL_high</sub> +20)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table<br>7.6.1.1-6           |
|                          | 1<br>(F <sub>UL_high</sub> +20) | to<br>to       | (F <sub>UL_low</sub> -11)<br>12750 | -15***                                       | P <sub>REFSENS</sub> +6dB*           |                                                                                                                                                                                                  | CW carrier                       |
| 25                       | (F <sub>UL_low</sub> -20)       | to             | (F <sub>UL_high</sub> +15)         | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table<br>7.6.1.1-6           |
|                          | 1<br>(F <sub>UL_high</sub> +15) | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15***                                       | PREFSENS +6dB*                       | —                                                                                                                                                                                                | CW carrier                       |
| 31                       | (F <sub>UL_low</sub> -20)       | to             | $(F_{UL_high} + 5)$                | -43                                          | PREFSENS +6dB*                       | See table 7.6.1.1-<br>6                                                                                                                                                                          | See table<br>7.6.1.1-6           |
|                          | 1<br>(F <sub>UL_high</sub> +5)  | to<br>to       | (F <sub>UL_low</sub> -20)<br>12750 | -15***                                       | PREFSENS +6dB*                       | —                                                                                                                                                                                                | CW carrier                       |

| Note*:   | PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-1 for E-UTRA and is specified in       |
|----------|--------------------------------------------------------------------------------------------------------------|
|          | Table 7.2.1-5 for NB-IoT.                                                                                    |
| Note**:  | For a BS capable of multiband operation, in case of interfering signal that is not in the in-band blocking   |
|          | frequency range of the operating band where the wanted signal is present, the wanted signal mean power is    |
|          | equal to PREFSENS + 1.4 dB.                                                                                  |
| Note***: | For NB-IoT, up to 24 exceptions are allowed for spurious response frequencies in each wanted signal          |
|          | frequency when measured using a 1MHz step size. For these exceptions the above throughput requirement        |
|          | shall be met when the blocking signal is set to a level of -40 dBm for 15 kHz subcarrier spacing and -46 dBm |
|          | for 3.75 kHz subcarrier spacing. In addition, each group of exceptions shall not exceed three contiguous     |
|          | measurements using a 1MHz step size.                                                                         |

NOTE: Table 7.6.1.1-5 assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

#### Table 7.6.1.1-6: Interfering signals for blocking performance requirement for E-UTRA with NB-IoT inband/guard band operation

| E-UTRA<br>channel BW of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Interfering signal<br>centre frequency<br>minimum offset to<br>the lower/upper<br>Base Station RF<br>Bandwidth edge or<br>sub-block edge<br>inside a sub-block<br>gap [MHz] | Type of interfering signal |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| 3(Note)                                                                          | ±4.5                                                                                                                                                                        | 3MHz E-UTRA signal         |  |  |  |
| 5                                                                                | ±7.5                                                                                                                                                                        | 5MHz E-UTRA signal         |  |  |  |
| 10                                                                               | ±7.5                                                                                                                                                                        | 5MHz E-UTRA signal         |  |  |  |
| 15                                                                               | ±7.5                                                                                                                                                                        | 5MHz E-UTRA signal         |  |  |  |
| 20                                                                               | ±7.5                                                                                                                                                                        | 5MHz E-UTRA signal         |  |  |  |
| Note: 3 MHz channel bandwidth is not applicable to guard band operation.         |                                                                                                                                                                             |                            |  |  |  |

# 7.6.2 Co-location with other base stations

This additional blocking requirement may be applied for the protection of E-UTRA and NB-IoT BS receivers when GSM, CDMA, UTRA, E-UTRA or NB-IoT BS operating in a different frequency band are co-located with an E-UTRA or NB-IoT BS. The requirement is applicable to all channel bandwidths supported by the E-UTRA BS and E-UTRA with NB-IoT in-band/guard band operation.

The requirements in this clause assume a 30 dB coupling loss between interfering transmitter and E-UTRA or NB-IoT BS receiver and are based on co-location with base stations of the same class.

#### 7.6.2.1 Minimum requirement

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Table 7.6.2.1-1 for Wide Area BS, in Table 7.6.2.1-2 for Local Area BS and in Table 7.6.2.1-3 for Medium Range BS. The reference measurement channel for the

wanted signal is identified in Tables 7.2.1-1, 7.2.1-2 and 7.2.1-4 for each channel bandwidth for E-UTRA, Table 7.2.1-5 for NB-IoT and further specified in Annex A.

#### Table 7.6.2.1-1: Blocking performance requirement for E-UTRA and NB-IoT Wide Area BS when colocated with BS in other frequency bands.

| Co-located BS type                                               | Centre<br>Frequency of      | Interfering<br>Signal mean | Wanted Signal<br>mean power (dBm)  | Type of<br>Interfering   |
|------------------------------------------------------------------|-----------------------------|----------------------------|------------------------------------|--------------------------|
|                                                                  | Interfering<br>Signal (MHz) | power<br>(dBm)             |                                    | Signal                   |
| Macro GSM850 or<br>CDMA850                                       | 869 – 894                   | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| Macro GSM900                                                     | 921 – 960                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| Macro DCS1800                                                    | 1805 - 1880                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| Macro PCS1900                                                    | 1930 – 1990                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band I or<br>E-UTRA Band 1                           | 2110 – 2170                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band II or<br>E-UTRA Band 2                          | 1930 – 1990                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band III or<br>E-UTRA Band 3                         | 1805 – 1880                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band IV or<br>E-UTRA Band 4                          | 2110 – 2155                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band V or<br>E-UTRA Band 5                           | 869 – 894                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band VI or<br>E-UTRA Band 6                          | 875 – 885                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band VII or<br>E-UTRA Band 7                         | 2620 – 2690                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band VIII<br>or E-UTRA Band 8                        | 925 – 960                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA FDD Band IX or<br>E-UTRA Band 9<br>WA UTRA FDD Band X or | 1844.9 – 1879.9             | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| E-UTRA Band 10<br>WA UTRA FDD Band XI or                         | 2110 – 2170                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| E-UTRA Band 11<br>WA UTRA FDD Band XII or                        | 1475.9 –1495.9              | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| E-UTRA Band 12<br>WA UTRA FDD Band XIIII                         | 729 - 746                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| or E-UTRA FDD Band XIII<br>WA UTRA FDD Band XIV                  | 746 - 756                   | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| or E-UTRA Band 14                                                | 758 - 768                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 17                                                | 734 - 746                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 18                                                | 860 - 875                   | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| WA UTRA FDD Band XIX<br>or E-UTRA Band 19                        | 875 - 890                   | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| WA UTRA FDD Band XX or<br>E-UTRA Band 20<br>WA UTRA FDD Band XXI | 791 - 821                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| or E-UTRA FDD Band XXI<br>WA UTRA FDD Band XXII                  | 1495.9 – 1510.9             | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| or E-UTRA Band 22                                                | 3510 – 3590                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 23                                                | 2180 - 2200                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 24<br>WA UTRA FDD Band XXV                        | 1525 – 1559<br>1930 – 1995  | +16**<br>+16**             | PREFSENS + 6dB*<br>PREFSENS + 6dB* | CW carrier<br>CW carrier |
| or E-UTRA Band 25<br>WA UTRA FDD Band XXVI<br>or E-UTRA Band 26  | 859 – 894                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 27                                                | 852 - 869                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 28                                                | 758 - 803                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 29                                                | 717-728                     | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| WA E-UTRA Band 30                                                | 2350 - 2360                 | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA E-UTRA Band 31                                                | 462.5-467.5                 | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| WA UTRA FDD Band XXXII<br>or E-UTRA Band 32                      | 1452-1496<br>(NOTE 3)       | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA TDD Band a) or<br>E-UTRA Band 33                         | 1900-1920                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |
| WA UTRA TDD Band a) or<br>E-UTRA Band 34                         | 2010-2025                   | +16**                      | P <sub>REFSENS</sub> + 6dB*        | CW carrier               |
| WA UTRA TDD Band b) or<br>E-UTRA Band 35                         | 1850-1910                   | +16**                      | PREFSENS + 6dB*                    | CW carrier               |

|          | TDD Band b) or       |                       |                  |                               |               |  |
|----------|----------------------|-----------------------|------------------|-------------------------------|---------------|--|
| E-UTRA E |                      | 1930-1990             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | TDD Band c) or       | 4040 4000             | . 4.0**          |                               | 014/          |  |
| E-UTRA E |                      | 1910-1930             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | A TDD Band d) or     | 2570-2620             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
| E-UTRA E |                      | 2010-2020             | +10              | T REFSENS + OUD               | Ow camer      |  |
|          | TDD Band f) or       | 1880-1920             | +16**            | P <sub>REFSENS</sub> + 6dB*   | CW carrier    |  |
| E-UTRA E |                      |                       |                  |                               |               |  |
| E-UTRA E | A TDD Band e) or     | 2300-2400             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 41           | 2496 - 2690           | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 42           | 3400-3600             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 43           | 3600-3800             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 43           | 703-803               | +16              | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 45           | 1447-1467             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 45           | 3550-3700             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 65           | 2110 - 2200           | +16              |                               | CW carrier    |  |
|          | RA Band 66           | 2110 - 2200           | +16              | PREFSENS + 6dB*               | CW carrier    |  |
|          |                      |                       |                  | P <sub>REFSENS</sub> + 6dB*   |               |  |
|          | RA Band 67           | 738-758               | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 68           | 753-783               | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 69           | 2570-2620             | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
|          | RA Band 70           | 1995 – 2020           | +16**            | PREFSENS + 6dB*               | CW carrier    |  |
| Note*:   |                      |                       |                  | ed in Table 7.2.1-1 for l     | E-UTRA and    |  |
| Nioto**  |                      | e 7.2.1-5 for NB-IoT. |                  | us response frequencie        | a in aaah     |  |
| Note**:  |                      |                       |                  | z step size. For these e      |               |  |
|          |                      |                       |                  | locking signal is set to      |               |  |
|          |                      |                       |                  | 5 kHz subcarrier spaci        |               |  |
|          |                      |                       |                  | ee contiguous measure         |               |  |
|          | a 1MHz step size.    |                       |                  | ee contiguous measure         | sincing using |  |
| NOTE 1   |                      | erating in Band 13_t  | hese requireme   | nts do not apply when         | the           |  |
|          |                      |                       |                  | coperating band or in t       |               |  |
|          |                      | e any of the support  |                  |                               |               |  |
|          |                      |                       |                  | apply when the interfe        | ring signal   |  |
|          |                      | uency range 768-79    |                  | -TF 7                         | 3 - 3         |  |
| NOTE 2:  |                      |                       |                  | o-site based on the req       | uirements     |  |
|          |                      |                       |                  | ,<br>t allow a single generic |               |  |
|          |                      |                       |                  | A FDD on adjacent free        |               |  |
|          |                      |                       |                  | are certain site-enginee      |               |  |
|          | that can be used. T  | These techniques are  | e addressed in T | R 25.942 [8].                 | 0             |  |
| NOTE 3:  | For a BS operating   | in band 11 or 21, th  | is requirement a | applies for interfering si    | gnal within   |  |
|          | the frequency rang   | e 1475.9-1495.9 M⊦    | lz.              |                               | -             |  |
| NOTE 4:  |                      |                       |                  | nd using the same or a        |               |  |
|          |                      |                       |                  | requirements. For unsy        |               |  |
|          |                      |                       | rements may ap   | ply that are not covere       | d by the      |  |
|          | 3GPP specifications. |                       |                  |                               |               |  |

 Table 7.6.2.1-2: Blocking performance requirement for Local Area BS when co-located with BS in other frequency bands.

| Co-located BS type                          | Centre<br>Frequency of<br>Interfering | Interfering<br>Signal mean<br>power | Wanted Signal<br>mean power (dBm) | Type of<br>Interfering<br>Signal |
|---------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|
|                                             | Signal (MHz)                          | (dBm)                               |                                   | orginal                          |
| Pico GSM850                                 | 869 - 894                             | -7                                  | PREFSENS + 6dB*                   | CW carrier                       |
| Pico GSM900                                 | 921 – 960                             | -7                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| Pico DCS1800                                | 1805 – 1880                           | -4                                  | PREFSENS + 6dB*                   | CW carrier                       |
| Pico PCS1900                                | 1930 – 1990                           | -4                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA UTRA FDD Band I or E-<br>UTRA Band 1     | 2110 – 2170                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band II or E-<br>UTRA Band 2    | 1930 – 1990                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band III or<br>E-UTRA Band 3    | 1805 – 1880                           | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA UTRA FDD Band IV or<br>E-UTRA Band 4     | 2110 – 2155                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band V or<br>E-UTRA Band 5      | 869 – 894                             | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA UTRA FDD Band VI or<br>E-UTRA Band 6     | 875 – 885                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band VII or<br>E-UTRA Band 7    | 2620 – 2690                           | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA UTRA FDD Band VIII or<br>E-UTRA Band 8   | 925 – 960                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band IX or<br>E-UTRA Band 9     | 1844.9 – 1879.9                       | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band X or<br>E-UTRA Band 10     | 2110 – 2170                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XI or<br>E-UTRA Band 11    | 1475.9 - 1495.9                       | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XII or<br>E-UTRA Band 12   | 729 - 746                             | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA UTRA FDD Band XIII or<br>E-UTRA Band 13  | 746 - 756                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XIV or<br>E-UTRA Band 14   | 758 - 768                             | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA E-UTRA Band 17                           | 734 - 746                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 18                           | 860 - 875                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XIX or<br>E-UTRA Band 19   | 875 - 890                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XX or<br>E-UTRA Band 20    | 791 - 821                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XXI or<br>E-UTRA Band 21   | 1495.9 – 1510.9                       | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XXII<br>or E-UTRA Band 22  | 3510 – 3590                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 23                           | 2180-2200                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 24                           | 1525 – 1559                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XXV<br>or E-UTRA Band 25   | 1930 – 1995                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XXVI<br>or E-UTRA Band 26  | 859 – 894                             | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA E-UTRA Band 27                           | 852 - 869                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 28                           | 758 – 803                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 29                           | 717-728                               | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 30                           | 2350 – 2360                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA E-UTRA Band 31                           | 462.5-467.5                           | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA FDD Band XXXII<br>or E-UTRA Band 32 | 1452-1496<br>(NOTE 3)                 | -6                                  | P <sub>REFSENS</sub> + 6dB*       | CW carrier                       |
| LA UTRA TDD Band a) or<br>E-UTRA Band 33    | 1900-1920                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA TDD Band a) or<br>E-UTRA Band 34    | 2010-2025                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA TDD Band b) or<br>E-UTRA Band 35    | 1850-1910                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |
| LA UTRA TDD Band b) or<br>E-UTRA Band 36    | 1930-1990                             | -6                                  | PREFSENS + 6dB*                   | CW carrier                       |

| LA UTRA  | TDD Band c) or            | 4040 4000            | â                  |                             | 014/           |
|----------|---------------------------|----------------------|--------------------|-----------------------------|----------------|
| E-UTRA E |                           | 1910-1930            | -6                 | PREFSENS + 6dB*             | CW carrier     |
|          | TDD Band d) or            | 2570-2620            | -6                 | PREFSENS + 6dB*             | CW carrier     |
| E-UTRA E |                           | 2370-2020            | -0                 | T REFSENS + OUD             | ow carrier     |
|          | TDD Band f) or            | 1880-1920            | -6                 | PREFSENS + 6dB*             | CW carrier     |
| E-UTRA E |                           |                      |                    |                             |                |
|          | RA UTRA TDD<br>or Band 40 | 2300-2400            | -6                 | P <sub>REFSENS</sub> + 6dB* | CW carrier     |
|          | RA Band 40                | 2496 - 2690          | -6                 | PREFSENS + 6dB*             | CW carrier     |
| _        | RA Band 42                | 3400-3600            | -6                 | PREFSENS + 6dB*             | CW carrier     |
|          | RA Band 43                | 3600-3800            | -6                 | PREFSENS + 6dB*             | CW carrier     |
| _        | RA Band 44                | 703-803              | -6                 | PREFSENS + 6dB*             | CW carrier     |
|          | RA Band 45                | 1447-1467            | -6                 | PREFSENS + 6dB*             | CW carrier     |
| _        | RA Band 46                | 5150-5925            | -6                 | PREFSENS + 6dB*             | CW carrier     |
|          | RA Band 48                | 3550-3700            | -6                 | PREFSENS + 6dB*             | CW carrier     |
| _        | RA Band 65                | 2110 - 2200          | -6                 | PREFSENS + 6dB*             | CW carrier     |
|          | RA Band 66                | 2110 - 2200          | -6                 | P <sub>REFSENS</sub> + 6dB* | CW carrier     |
| _        | RA Band 67                | 738-758              | -6                 | PREFSENS + 6dB*             | CW carrier     |
| -        | RA Band 68                | 753-783              | -6                 | P <sub>REFSENS</sub> + 6dB* | CW carrier     |
| _        | RA Band 69                | 2570-2620            | -6                 | P <sub>REFSENS</sub> + 6dB* | CW carrier     |
|          | RA Band 70                | 1995 – 2020          | -6                 | P <sub>REFSENS</sub> + 6dB* | CW carrier     |
| Note*:   | PREESENS depends          | on the channel band  | width as specifie  |                             |                |
|          |                           |                      |                    | nts do not apply when       | the            |
| _        |                           |                      |                    | k operating band or in t    |                |
|          |                           | e any of the support |                    |                             |                |
|          | For a BS operating        | in band 13 the requ  | irements do not    | apply when the interfe      | ring signal    |
|          | falls within the freq     | uency range 768-79   | 7 MHz.             |                             |                |
| NOTE 2:  |                           |                      |                    | o-site based on the req     |                |
|          |                           |                      |                    | t allow a single generic    |                |
|          |                           |                      |                    | A FDD on adjacent free      |                |
|          |                           |                      |                    | are certain site-enginee    | ring solutions |
|          |                           | hese techniques are  |                    |                             |                |
| NOTE 3:  |                           |                      |                    | applies for interfering si  | gnal within    |
|          |                           | e 1475.9-1495.9 M⊦   |                    |                             |                |
| NOTE 4:  |                           |                      |                    | nd using the same or a      |                |
|          |                           |                      |                    | requirements. For unsy      |                |
|          |                           |                      | cial co-location r | equirements may apply       | rnat are not   |
|          | covered by the 3G         | -r specifications.   |                    |                             |                |

Table 7.6.2.1-3: Blocking performance requirement for E-UTRA Medium Range BS when co-locatedwith BS in other frequency bands.

| Co-located BS type                          | Centre<br>Frequency of<br>Interfering<br>Signal (MHz) | Interfering<br>Signal mean<br>power<br>(dBm) | Wanted Signal<br>mean power (dBm)                          | Type of<br>Interfering<br>Signal |
|---------------------------------------------|-------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|----------------------------------|
| Micro/MR GSM850                             | 869 - 894                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| Micro/MR GSM900                             | 921 - 960                                             | +8                                           | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
| Micro/MR DCS1800                            | 1805 – 1880                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| Micro/MR PCS1900                            | 1930 – 1990                                           | +8                                           | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
| MR UTRA FDD Band I or                       |                                                       |                                              |                                                            |                                  |
| E-UTRA Band 1                               | 2110 – 2170                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band II or<br>E-UTRA Band 2     | 1930 – 1990                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band III or<br>E-UTRA Band 3    | 1805 – 1880                                           | +8                                           | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
| MR UTRA FDD Band IV or<br>E-UTRA Band 4     | 2110 – 2155                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band V or<br>E-UTRA Band 5      | 869 - 894                                             | +8                                           | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
| MR UTRA FDD Band VI or<br>E-UTRA Band 6     | 875 – 885                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band VII or<br>E-UTRA Band 7    | 2620 – 2690                                           | +8                                           | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
| MR UTRA FDD Band VIII or<br>E-UTRA Band 8   | 925 – 960                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band IX or                      | 1844.9 – 1879.9                                       | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| E-UTRA Band 9<br>MR UTRA FDD Band X or      | 2110 – 2170                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| E-UTRA Band 10<br>MR UTRA FDD Band XI or    | 1475.9 –1495.9                                        | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| E-UTRA Band 11<br>MR UTRA FDD Band XII or   | 729 - 746                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| E-UTRA Band 12<br>MR UTRA FDD Band XIIII    |                                                       | -                                            |                                                            |                                  |
| or E-UTRA Band 13<br>MR UTRA FDD Band XIV   | 746 - 756                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| or E-UTRA Band 14                           | 758 – 768                                             | +8                                           | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
| MR E-UTRA Band 17                           | 734 – 746                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 18                           | 860 - 875                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band XIX<br>or E-UTRA Band 19   | 875 – 890                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band XX or<br>E-UTRA Band 20    | 791 – 821                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band XXI<br>or E-UTRA Band 21   | 1495.9 – 1510.9                                       | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band XXII                       | 3510 – 3590                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| or E-UTRA Band 22                           | 0100 0000                                             |                                              |                                                            |                                  |
| MR E-UTRA Band 23                           | 2180 - 2200                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 24<br>MR UTRA FDD Band XXV   | 1525 – 1559<br>1930 – 1995                            | +8<br>+8                                     | PREFSENS + 6dB*<br>PREFSENS + 6dB*                         | CW carrier<br>CW carrier         |
| or E-UTRA Band 25<br>MR UTRA FDD Band XXVI  |                                                       |                                              |                                                            |                                  |
| or E-UTRA Band 26<br>MR E-UTRA Band 27      | 859 – 894<br>852 – 869                                | +8<br>+8                                     | P <sub>REFSENS</sub> + 6dB*<br>P <sub>REFSENS</sub> + 6dB* | CW carrier<br>CW carrier         |
| MR E-UTRA Band 28                           | 758 - 803                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 29                           | 717 – 728                                             | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 30                           | 2350 - 2360                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 31                           | 462.5 - 467.5                                         | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR UTRA FDD Band XXXII<br>or E-UTRA Band 32 | 1452-1496<br>(NOTE 3)                                 | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 33                           | 1900 – 1920                                           | τ <u>8</u>                                   | P <sub>REFSENS</sub> + 6dB*                                | CW carrier                       |
|                                             |                                                       | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 34<br>MR E-UTRA Band 35      | 2010 – 2025<br>1850 – 1910                            | +8                                           | FREFSENS + OUD                                             |                                  |
|                                             |                                                       | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 36                           | 1930 - 1990                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 37                           | 1910 - 1930                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |
| MR E-UTRA Band 38                           | 2570 – 2620                                           | +8                                           | PREFSENS + 6dB*                                            | CW carrier                       |

|                                                                                            |                                                                                         | []                   |                   | _                                                   |                |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|-------------------|-----------------------------------------------------|----------------|--|
|                                                                                            | RA Band 39                                                                              | 1880 – 1920          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 40                                                                              | 2300 - 2400          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 41                                                                              | 2496 – 2690          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 42                                                                              | 3400 - 3600          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
|                                                                                            | RA Band 43                                                                              | 3600 - 3800          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 44                                                                              | 703 – 803            | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 45                                                                              | 1447 – 1467          | +8                | P <sub>REFSENS</sub> + 6dB*                         | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 46                                                                              | 5150 – 5925          | +8                | P <sub>REFSENS</sub> + 6dB*                         | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 48                                                                              | 3550-3700            | +8                | P <sub>REFSENS</sub> + 6dB*                         | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 65                                                                              | 2110 – 2200          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 66                                                                              | 2110 – 2200          | +8                | P <sub>REFSENS</sub> + 6dB*                         | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 67                                                                              | 738-758              | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 68                                                                              | 753-783              | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 69                                                                              | 2570-2620            | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| MR E-UT                                                                                    | RA Band 70                                                                              | 1995 – 2020          | +8                | PREFSENS + 6dB*                                     | CW carrier     |  |
| Note*:                                                                                     | PREFSENS depends                                                                        | on the channel band  | width as specifie | ed in Table 7.2.1-4.                                |                |  |
| NOTE 1:                                                                                    |                                                                                         |                      |                   | nts do not apply when t<br>coperating band or in th |                |  |
|                                                                                            |                                                                                         | e any of the support |                   |                                                     |                |  |
|                                                                                            |                                                                                         |                      |                   | apply when the interfer                             | ring signal    |  |
|                                                                                            |                                                                                         | uency range 768-79   |                   |                                                     |                |  |
| NOTE 2:                                                                                    |                                                                                         |                      |                   | o-site based on the requ                            | uirements      |  |
|                                                                                            |                                                                                         |                      |                   | t allow a single generic                            |                |  |
|                                                                                            |                                                                                         |                      |                   | A FDD on adjacent free                              |                |  |
|                                                                                            | 30dB BS-BS minim                                                                        | num coupling loss. H | lowever, there a  | are certain site-enginee                            | ring solutions |  |
|                                                                                            | that can be used. T                                                                     | These techniques are | e addressed in T  | R 25.942 [8].                                       | -              |  |
| NOTE 3:                                                                                    | For a BS operating                                                                      | in band 11 or 21, th | is requirement a  | pplies for interfering sig                          | gnal within    |  |
|                                                                                            | the frequency range 1475.9-1495.9 MHz.                                                  |                      |                   |                                                     |                |  |
| NOTE 4:                                                                                    |                                                                                         |                      |                   |                                                     |                |  |
|                                                                                            | operating band can receive without special co-location requirements. For unsynchronized |                      |                   |                                                     |                |  |
| base stations (except in Band 46), special co-location requirements may apply that are not |                                                                                         |                      |                   |                                                     |                |  |
|                                                                                            | covered by the 3GPP specifications.                                                     |                      |                   |                                                     |                |  |
|                                                                                            |                                                                                         |                      |                   |                                                     |                |  |

# 7.6.3 Additional requirement (regional)

For the Public Safety LTE BS in Korea from 718 to 728 MHz in band 28, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables G-2.2, G-2.3, G-2.4 and G-2.5 for the blocking requirements. The reference measurement channel for the wanted signal is A.1-3 for 10 MHz channel bandwidth and further specified in Annex A.

# 7.7 Receiver spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the BS receiver antenna connector. The requirements apply to all BS with separate RX and TX antenna ports. In this case for FDD BS the test shall be performed when both TX and RX are on, with the TX port terminated.

For TDD BS with common RX and TX antenna port the requirement applies during the Transmitter OFF period. For FDD BS with common RX and TX antenna port the transmitter spurious emission as specified in clause 6.6.4 is valid.

For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the singleband requirements apply and the excluded frequency range is only applicable for the operating band supported on each antenna connector.

The requirements shall apply to BS that supports E-UTRA or E-UTRA with NB-IoT in-band/guard band operation or NB-IoT standalone operation.

## 7.7.1 Minimum requirement

The power of any spurious emission shall not exceed the levels in Table 7.7.1-1:

| Frequency range                                                                                                                               | Maximum<br>level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measurement<br>Bandwidth | Note                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--|
| 30MHz - 1 GHz                                                                                                                                 | -57 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 kHz                  |                                           |  |
| 1 GHz – 12.75 GHz                                                                                                                             | -47 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 MHz                    |                                           |  |
| 12.75 GHz - 5 <sup>th</sup> harmoni<br>of the upper frequency<br>edge of the UL operatin<br>band in GHz                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 MHz                    | Applies only for Bands 22, 42, 43 and 48. |  |
| 12.75 GHz - 26 GHz                                                                                                                            | -47 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 MHz                    | Applies only for Band 46                  |  |
| 2.5 * BW <sub>Chann</sub><br>channel band<br>However, free<br>BS supported<br>any of the BS<br>requirement.<br>operating bar<br>on separate a | NOTE: The frequency range between 2.5 * BW <sub>Channel</sub> below the first carrier frequency and 2.5 * BW <sub>Channel</sub> above the last carrier frequency transmitted by the BS, where BW <sub>Channel</sub> is the channel bandwidth according to Table 5.6-1, may be excluded from the requirement. However, frequencies that are more than 10 MHz below the lowest frequency of any of the BS supported downlink operating band or more than 10 MHz above the highest frequency of any of the BS supported downlink operating band shall not be excluded from the requirement. For BS capable of multi-band operation, the exclusion applies for all supported on separate antenna connectors, the single-band requirements apply and the excluded frequency range is only applicable for the operating band supported on each antenna |                          |                                           |  |

Table 7.7.1-1: General spurious emission minimum requirement

In addition to the requirements in Table 7.7.1-1, the power of any spurious emission shall not exceed the levels specified for Protection of the E-UTRA FDD BS receiver of own or different BS in subclause 6.6.4.2 and for Co-existence with other systems in the same geographical area in subclause 6.6.4.3. In addition, the co-existence requirements for co-located base stations specified in subclause 6.6.4.4 may also be applied.

# 7.8 Receiver intermodulation

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two interfering signals which have a specific frequency relationship to the wanted signal. Interfering signals shall be a CW signal and an E-UTRA signal as specified in Annex C.

# 7.8.1 Minimum requirement

For E-UTRA, the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the BS antenna input, with the conditions specified in Tables 7.8.1-1 and 7.8.1-2 for intermodulation performance and in Tables 7.8.1-3, 7.8.1-4, 7.8.1-5 and 7.8.1-6 for narrowband intermodulation performance. Narrowband intermodulation requirements are not applied for Band 46. The reference measurement channel for the wanted signal is identified in Table 7.2.1-1, Table 7.2.1-2, Table 7.2.1-3 and Table 7.2.1-4 for each channel bandwidth and further specified in Annex A.

For NB-IoT in-band operation, the throughput shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the BS antenna input, with the conditions specified in Tables 7.8.1-1a and 7.8.1-2 for intermodulation performance and in Tables 7.8.1-3a for narrowband intermodulation performance. The reference measurement channel for the wanted signal is identified in Table 7.2.1-5 and further specified in Annex A.

For NB-IoT guard band operation, the throughput shall  $be \ge 95\%$  of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the BS antenna input, with the conditions specified in Tables 7.8.1-1b and 7.8.1-2 for intermodulation performance and in Tables 7.8.1-3b for narrowband intermodulation performance. The reference measurement channel for the wanted signal is identified in Table 7.2.1-5 and further specified in Annex A.

For NB-IoT standalone operation, the throughput shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the BS antenna input, with the conditions specified in Tables 7.8.1-1c and 7.8.1-2a for intermodulation performance and in

Tables 7.8.1-3c for narrowband intermodulation performance. The reference measurement channel for the wanted signal is identified in Table 7.2.1-5 and further specified in Annex A.

The receiver intermodulation requirement is applicable outside the Base Station RF Bandwidth or Radio Bandwidth edges. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the narrowband intermodulation requirement applies in addition inside any sub-block gap in case the sub-block gap is at least as wide as the channel bandwidth of the E-UTRA interfering signal in Table 7.8.1-3. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a BS capable of multi-band operation, the intermodulation requirement applies in addition inside any Inter RF Bandwidth gap, in case the gap size is at least twice as wide as the E-UTRA interfering signal centre frequency offset from the Base Station RF Bandwidth edge.

For a BS capable of multi-band operation, the narrowband intermodulation requirement applies in addition inside any Inter RF Bandwidth gap in case the gap size is at least as wide as the E-UTRA interfering signal in Tables 7.8.1-3, 7.8.1-4 and 7.8.1-6. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

| BS type         |                                                                                  | Wanted signal mean<br>power [dBm] | Interfering signal<br>mean power [dBm] | Type of interfering signal |  |
|-----------------|----------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------|--|
| Wide            | Area BS                                                                          | PREFSENS + 6dB*                   | -52                                    |                            |  |
| Medium Range BS |                                                                                  | PREFSENS + 6dB**                  | -47                                    | See Table 7.8.1-2          |  |
| Local Area BS   |                                                                                  | PREFSENS + 6dB***                 | -44                                    | See Table 7.6.1-2          |  |
| Home BS         |                                                                                  | PREFSENS + 14dB****               | -36                                    |                            |  |
| Note*:          | PREFSENS depe                                                                    | ends on the channel band          | lwidth as specified in Tab             | le 7.2.1-1.                |  |
| Note**:         | Note**: PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-4. |                                   |                                        |                            |  |
| Note***         | *** PREFSENS depends on the channel bandwidth as specified in Table 7.2.1-2.     |                                   |                                        |                            |  |
| Note****        | PREFSENS depe                                                                    | ends on the channel band          | lwidth as specified in Tab             | le 7.2.1-3.                |  |

Table 7.8.1-1: Intermodulation performance requirement for E-UTRA

# Table 7.8.1-1a: Intermodulation performance requirement for E-UTRA with NB-IoT in-band operationBS

| BS type                                                                                       | Wanted signal mean<br>power [dBm] | Interfering signal<br>mean power [dBm] | Type of interfering signal |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------|--|--|
| Wide Area BS                                                                                  | PREFSENS + 6dB*                   | -52                                    | See Table 7.8.1-2          |  |  |
| Note*: P <sub>REFSENS</sub> depends on the sub-carrier spacing as specified in Table 7.2.1-5. |                                   |                                        |                            |  |  |

# Table 7.8.1-1b: Intermodulation performance requirement for E-UTRA with NB-IoT guard bandoperation BS

| BS type                                                                           | Wanted signal mean<br>power [dBm] | Interfering signal<br>mean power [dBm] | Type of interfering signal |  |
|-----------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------|--|
| Wide Area BS                                                                      | PREFSENS + 6dB*                   | -52                                    | See Table 7.8.1-2          |  |
| Note*: PREFSENS depends on the sub-carrier spacing as specified in Table 7.2.1-5. |                                   |                                        |                            |  |

#### Table 7.8.1-1c: Intermodulation performance requirement for NB-IoT standalone

|        |                                                              |                 | NB-IoT<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received [kHz] | Wanted<br>signal<br>mean<br>power<br>[dBm] | Interfering<br>signal<br>mean<br>power<br>[dBm] | Type of<br>interfering<br>signal |
|--------|--------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------|
|        |                                                              | Wide<br>Area BS | 200                                                                                     | P <sub>REFSENS</sub> +<br>6 dB*            | -52                                             | See Table<br>7.8.1-2a            |
| Note*: | PREFSENS depends on the sub<br>spacing as specified in Table |                 |                                                                                         |                                            |                                                 |                                  |

#### Table 7.8.1-2: Interfering signal for Intermodulation performance requirement for E-UTRA or E-UTRA with NB-IoT in-band/guard band operation BS

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Interfering signal<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>[MHz]                                                               | Type of interfering signal      |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
|                                                                                            | ±4.5                                                                                                                                                                                 | CW                              |  |  |  |
| 3                                                                                          | ±10.5                                                                                                                                                                                | 3 MHz E-UTRA signal(Note<br>3)  |  |  |  |
| 5                                                                                          | ±7.5                                                                                                                                                                                 | CW                              |  |  |  |
| 5                                                                                          | ±17.5                                                                                                                                                                                | 5 MHz E-UTRA signal             |  |  |  |
| 10                                                                                         | ±7.375                                                                                                                                                                               | CW                              |  |  |  |
| 10                                                                                         | ±17.5                                                                                                                                                                                | 5 MHz E-UTRA signal             |  |  |  |
| 15                                                                                         | ±7.25                                                                                                                                                                                | CW                              |  |  |  |
| 15                                                                                         | ±17.5                                                                                                                                                                                | 5 MHz E-UTRA signal             |  |  |  |
|                                                                                            | ±7.125                                                                                                                                                                               | CW                              |  |  |  |
| 20                                                                                         | ±17.5                                                                                                                                                                                | 5 MHz E-UTRA signal(Note<br>1)  |  |  |  |
|                                                                                            | ±7.125                                                                                                                                                                               | CW                              |  |  |  |
| 20                                                                                         | ±24                                                                                                                                                                                  | 20 MHz E-UTRA<br>signal(Note 2) |  |  |  |
| Note 2: This ty                                                                            | type of interfering signal is not applied for Band 46.<br>type of interfering signal is only applied for Band 46.<br>Hz channel bandwidth is not applicable to guard band<br>ration. |                                 |  |  |  |

#### Table 7.8.1-2a: Interfering signal for Intermodulation performance requirement for NB-IoT standalone operation BS

| Channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Interfering signal<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>[MHz] | Type of interfering signal |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 0.2                                                                              | ±7.575                                                                                                                 | CW                         |
| 0.2                                                                              | ±17.5                                                                                                                  | 5 MHz E-UTRA signal        |

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz]                                                                                                                                                                                                                                                                                                                                                                                                           | Wanted signal mean<br>power [dBm] | Interfering signal<br>mean power<br>[dBm] | Interfering RB<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>or sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering<br>signal    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -52                                       | ±270                                                                                                                                                              | CW                               |  |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prefsens + 6dB*                   | -52                                       | ±790                                                                                                                                                              | 1.4 MHz E-UTRA signal, 1<br>RB** |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -52                                       | ±270                                                                                                                                                              | CW                               |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prefsens + 6dB*                   | -52                                       | ±780                                                                                                                                                              | 3.0 MHz E-UTRA signal, 1<br>RB** |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -52                                       | ±360                                                                                                                                                              | CW                               |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P <sub>REFSENS</sub> + 6dB*       | -52                                       | ±1060                                                                                                                                                             | 5 MHz E-UTRA signal, 1<br>RB**   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PREFSENS + 6dB*                   | -52                                       | ±325                                                                                                                                                              | CW                               |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (***)                             | -52                                       | ±1240                                                                                                                                                             | 5 MHz E-UTRA signal, 1<br>RB**   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PREESENS + 6dB*                   | -52                                       | ±380                                                                                                                                                              | CW                               |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (***)                             | -52                                       | ±1600                                                                                                                                                             | 5MHz E-UTRA signal, 1<br>RB**    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Passasha L 6dR*                   | -52                                       | ±345                                                                                                                                                              | CW                               |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prefsens + 6dB*<br>(***)          | -52                                       | ±1780                                                                                                                                                             | 5MHz E-UTRA signal, 1<br>RB**    |  |
| Note*:         PREFSENS is related to the channel bandwidth as specified in Table 7.2.1-1.           Note**:         Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge.           Note***:         This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals |                                   |                                           |                                                                                                                                                                   |                                  |  |

| Table 7.8.1-3: Narrowband intermodulation | performance rec | uirement for Wide | Area BS for E-UTRA |
|-------------------------------------------|-----------------|-------------------|--------------------|
|                                           | pon on manoo    |                   |                    |

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wanted signal mean<br>power [dBm] | Interfering signal<br>mean power<br>[dBm] | Interfering RB<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>or sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering<br>signal    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | -52                                       | ±270                                                                                                                                                              | CW                               |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P <sub>REFSENS</sub> + 6dB*       | -52                                       | ±780                                                                                                                                                              | 3.0 MHz E-UTRA signal, 1<br>RB** |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | -52                                       | ±360****                                                                                                                                                          | CW                               |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PREFSENS + 6dB*                   | -52                                       | ±1060                                                                                                                                                             | 5 MHz E-UTRA signal, 1<br>RB**   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P <sub>REFSENS</sub> + 6dB*       | -52                                       | ±325****                                                                                                                                                          | CW                               |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PREFSENS + 00D<br>(***)           | -52                                       | ±1240                                                                                                                                                             | 5 MHz E-UTRA signal, 1<br>RB**   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PREFSENS + 6dB*                   | -52                                       | ±380****                                                                                                                                                          | CW                               |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (***)                             | -52                                       | ±1600                                                                                                                                                             | 5MHz E-UTRA signal, 1<br>RB**    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P <sub>REFSENS</sub> + 6dB*       | -52                                       | ±345****                                                                                                                                                          | CW                               |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (***)                             | -52                                       | ±1780                                                                                                                                                             | 5MHz E-UTRA signal, 1<br>RB**    |  |
| <ul> <li>Note*: P<sub>REFSENS</sub> depends on the sub-carrier spacing as specified in Table 7.2.1-5.</li> <li>Note**: Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge.</li> <li>Note**: This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals.</li> <li>Note***: The frequency offset shall be adjusted to accommodate the IMD product to fall in the NB-IoT RB for NB-IoT in-band operation.</li> <li>Note****: If a BS RF receiver fails the test of the requirement, the test shall be performed with the CW interfering signal frequency shifted away from the wanted signal by 180 kHz and the E-UTRA interfering signal frequency shifted away from the wanted signal by 360 kHz. If the BS RF receiver still fails the test after the frequency shift, then the BS RF receiver shall be deemed to fail the requirement.</li> </ul> |                                   |                                           |                                                                                                                                                                   |                                  |  |

# Table 7.8.1-3a: Narrowband intermodulation performance requirement for Wide Area BS for E-UTRAwith NB-IoT in-band operation BS

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wanted signal mean<br>power [dBm]    | Interfering signal<br>mean power<br>[dBm] | Interfering RB<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>or sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering<br>signal  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | -52                                       | ±360****                                                                                                                                                          | CW                             |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P <sub>REFSENS</sub> + 6dB*          | -52                                       | ±1060                                                                                                                                                             | 5 MHz E-UTRA signal, 1<br>RB** |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | -52                                       | ±325****                                                                                                                                                          | CW                             |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prefsens + 6dB*<br>(***)             | -52                                       | ±1240                                                                                                                                                             | 5 MHz E-UTRA signal, 1<br>RB** |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parante L 6dR*                       | -52                                       | ±380****                                                                                                                                                          | CW                             |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P <sub>REFSENS</sub> + 6dB*<br>(***) | -52                                       | ±1600                                                                                                                                                             | 5MHz E-UTRA signal, 1<br>RB**  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P <sub>REFSENS</sub> + 6dB*          | -52                                       | ±345****                                                                                                                                                          | CW                             |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (***)                                | -52                                       | ±1780                                                                                                                                                             | 5MHz E-UTRA signal, 1<br>RB**  |  |  |
| <ul> <li>Note*: PREFSENS depends on the sub-carrier spacing as specified in Table 7.2.1-5.</li> <li>Note*: Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge.</li> <li>Note**: This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals.</li> <li>Note***: The frequency offset shall be adjusted to accommodate the IMD product to fall in the NB-IoT RB for NB-IoT guard band operation.</li> <li>Note****: If a BS RF receiver fails the test of the requirement, the test shall be performed with the CW interfering signal frequency shifted away from the wanted signal by 180 kHz and the E-UTRA interfering signal frequency shifted away from the wanted signal by 360 kHz. If the BS RF receiver still fails the test after the frequency shift, then the BS RF receiver shall be deemed to fail the requirement.</li> </ul> |                                      |                                           |                                                                                                                                                                   |                                |  |  |

# Table 7.8.1-3b: Narrowband intermodulation performance requirement for Wide Area BS for E-UTRA with NB-IoT guard band operation BS

# Table 7.8.1-3c: Narrowband intermodulation performance requirement for Wide Area BS for NB-IoT standalone

| Channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] |                                  | Interfering signal<br>mean power<br>[dBm] | Interfering RB<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>or sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering<br>signal     |
|----------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                                  |                                  | -52                                       | ±340                                                                                                                                                              | CW                                |
| 0.2                                                                              | P <sub>REFSENS</sub> + 6dB*      | -52                                       | ±880                                                                                                                                                              | 5MHz E-UTRA signal, 1<br>RB**     |
| Note*: PREF                                                                      | SENS depends on the sub-car      | rier spacing as specifie                  | d in Table 7.2.1-5.                                                                                                                                               |                                   |
|                                                                                  | fering signal consisting of on   |                                           |                                                                                                                                                                   |                                   |
|                                                                                  | nterfering signal is located ac  | , , , ,                                   | •                                                                                                                                                                 | 5                                 |
|                                                                                  | BS RF receiver fails the test of |                                           |                                                                                                                                                                   |                                   |
| signa                                                                            | al frequency shifted away from   | m the wanted signal by                    | 180 kHz and the E-UT                                                                                                                                              | RA interfering signal             |
| frequ                                                                            | ency shifted away from the v     | wanted signal by 360 kl                   | Hz. If the BS RF receive                                                                                                                                          | er still fails the test after the |
| frequ                                                                            | ency shift, then the BS RF re    | eceiver shall be deeme                    | d to fail the requiremen                                                                                                                                          | t.                                |

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Wanted signal mean<br>power [dBm]                                                                                                                                 | Interfering signal<br>mean power<br>[dBm]                                     | Interfering RB<br>centre frequency<br>offset from the<br>lower/upper Base<br>Station RF<br>Bandwidth edge<br>or sub-block edge<br>inside a sub-block<br>[kHz] | Type of interfering<br>signal    |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                            |                                                                                                                                                                   | -44                                                                           | ±270                                                                                                                                                          | CW                               |
| 1.4                                                                                        | PREFSENS + 6dB*                                                                                                                                                   | -44                                                                           | ±790                                                                                                                                                          | 1.4 MHz E-UTRA signal, 1<br>RB** |
|                                                                                            |                                                                                                                                                                   | -44                                                                           | ±270                                                                                                                                                          | CW                               |
| 3                                                                                          | PREFSENS + 6dB*                                                                                                                                                   | -44                                                                           | ±780                                                                                                                                                          | 3.0 MHz E-UTRA signal, 1<br>RB** |
|                                                                                            | P <sub>REFSENS</sub> + 6dB*                                                                                                                                       | -44                                                                           | ±360                                                                                                                                                          | CW                               |
| 5                                                                                          |                                                                                                                                                                   | -44                                                                           | ±1060                                                                                                                                                         | 5 MHz E-UTRA signal, 1<br>RB**   |
|                                                                                            | Prefsens + 6dB*<br>(***)                                                                                                                                          | -44                                                                           | ±325                                                                                                                                                          | CW                               |
| 10                                                                                         |                                                                                                                                                                   | -44                                                                           | ±1240                                                                                                                                                         | 5 MHz E-UTRA signal, 1<br>RB**   |
|                                                                                            |                                                                                                                                                                   | -44                                                                           | ±380                                                                                                                                                          | CW                               |
| 15                                                                                         | Prefsens + 6dB*<br>(***)                                                                                                                                          | -44                                                                           | ±1600                                                                                                                                                         | 5MHz E-UTRA signal, 1<br>RB**    |
|                                                                                            | PREFSENS + 6dB*                                                                                                                                                   | -44                                                                           | ±345                                                                                                                                                          | CW                               |
| 20                                                                                         | PREFSENS + 60B*<br>(***)                                                                                                                                          | -44                                                                           | ±1780                                                                                                                                                         | 5MHz E-UTRA signal, 1<br>RB**    |
| Note**: Interfe<br>the int<br>Note***: This re                                             | INS is related to the channel<br>ring signal consisting of one<br>erfering signal is located ad<br>equirement shall apply only<br>ent to the interfering signals. | e resource block position<br>jacently to the lower/up<br>for a FRC A1-3 mappe | oned at the stated offse<br>oper Base Station RF B                                                                                                            |                                  |

| Table 7.8.1-4: Narrowband intermodulation | nerformance rec | nuirement for  | Local Area BS |  |
|-------------------------------------------|-----------------|----------------|---------------|--|
|                                           | periormanee rec | quillement ion |               |  |

| E-UTRA<br>channel<br>bandwidth<br>[MHz] | Wanted signal mean<br>power [dBm]                                                                   | Interfering signal<br>mean power [dBm] | Interfering RB<br>centre frequency<br>offset from the<br>channel edge of<br>the wanted signal<br>[kHz] | Type of interfering signal            |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                         |                                                                                                     | -36                                    | 270                                                                                                    | CW                                    |
| 1.4                                     | P <sub>REFSENS</sub> + 14dB*                                                                        | -36                                    | 790                                                                                                    | 1.4 MHz E-UTRA signal, 1<br>RB**      |
|                                         |                                                                                                     | -36                                    | 270                                                                                                    | CW                                    |
| 3                                       | PREFSENS + 14dB*                                                                                    | -36                                    | 780                                                                                                    | 3.0 MHz E-UTRA signal, 1<br>RB**      |
|                                         |                                                                                                     | -36                                    | 360                                                                                                    | CW                                    |
| 5                                       | PREFSENS + 14dB*                                                                                    | -36                                    | 1060                                                                                                   | 5 MHz E-UTRA signal, 1<br>RB**        |
|                                         |                                                                                                     | -36                                    | 325                                                                                                    | CW                                    |
| 10                                      | P <sub>REFSENS</sub> + 14dB*<br>(***)                                                               | -36                                    | 1240                                                                                                   | 5 MHz E-UTRA signal, 1<br>RB**        |
|                                         |                                                                                                     | -36                                    | 380                                                                                                    | CW                                    |
| 15                                      | Prefsens + 14dB*<br>(***)                                                                           | -36                                    | 1600                                                                                                   | 5MHz E-UTRA signal, 1<br>RB**         |
|                                         | Barrows + 14dB*                                                                                     | -36                                    | 345                                                                                                    | CW                                    |
| 20                                      | Prefsens + 14dB*<br>(***)                                                                           | -36                                    | 1780                                                                                                   | 5MHz E-UTRA signal, 1<br>RB**         |
| Note**: In                              | REFSENS is related to the chan<br>terfering signal consisting of<br>e interfering signal is located | one resource block posi                | tioned at the stated offs                                                                              | set, the channel bandwidth of signal. |

Note\*\*\*: This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals.

| E-UTRA<br>channel<br>bandwidth of<br>the<br>lowest/highest<br>carrier<br>received<br>[MHz] | Wanted signal mean<br>power [dBm]                                                                                                                                 | Interfering signal<br>mean power<br>[dBm]                                     | Interfering RB<br>centre frequency<br>offset to the<br>lower/higher Base<br>Station RF<br>Bandwidth edge or<br>sub-block edge<br>inside a sub-block<br>gap [kHz] | Type of interfering<br>signal    |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                            |                                                                                                                                                                   | -47                                                                           | ±270                                                                                                                                                             | CW                               |
| 1.4                                                                                        | P <sub>REFSENS</sub> + 6dB*                                                                                                                                       | -47                                                                           | ±790                                                                                                                                                             | 1.4 MHz E-UTRA signal, 1<br>RB** |
|                                                                                            |                                                                                                                                                                   | -47                                                                           | ±270                                                                                                                                                             | CW                               |
| 3                                                                                          | Prefsens + 6dB*                                                                                                                                                   | -47                                                                           | ±780                                                                                                                                                             | 3.0 MHz E-UTRA signal, 1<br>RB** |
|                                                                                            |                                                                                                                                                                   | -47                                                                           | ±360                                                                                                                                                             | CW                               |
| 5                                                                                          | Prefsens + 6dB*                                                                                                                                                   | -47                                                                           | ±1060                                                                                                                                                            | 5 MHz E-UTRA signal, 1<br>RB**   |
|                                                                                            | PREFSENS + 6dB*                                                                                                                                                   | -47                                                                           | ±325                                                                                                                                                             | CW                               |
| 10                                                                                         | PREFSENS + OUD<br>(***)                                                                                                                                           | -47                                                                           | ±1240                                                                                                                                                            | 5 MHz E-UTRA signal, 1<br>RB**   |
|                                                                                            | P <sub>REFSENS</sub> + 6dB*                                                                                                                                       | -47                                                                           | ±380                                                                                                                                                             | CW                               |
| 15                                                                                         | (***)                                                                                                                                                             | -47                                                                           | ±1600                                                                                                                                                            | 5MHz E-UTRA signal, 1<br>RB**    |
|                                                                                            | P <sub>REFSENS</sub> + 6dB*                                                                                                                                       | -47                                                                           | ±345                                                                                                                                                             | CW                               |
| 20                                                                                         | (***)                                                                                                                                                             | -47                                                                           | ±1780                                                                                                                                                            | 5MHz E-UTRA signal, 1<br>RB**    |
| Note**: Interfe<br>the interference<br>Note***: This re                                    | INS is related to the channel<br>ring signal consisting of one<br>erfering signal is located ad<br>equirement shall apply only<br>ent to the interfering signals. | e resource block position<br>jacently to the lower/up<br>for a FRC A1-3 mappe | oned at the stated offse<br>oper Base Station RF B                                                                                                               |                                  |

#### Table 7.8.1-6: Narrowband intermodulation performance requirement for Medium Range BS for E-UTRA

# 8 Performance requirement

# 8.1 General

Performance requirements for the BS are specified for the fixed reference channels defined in Annex A and the propagation conditions in Annex B. The requirements only apply to those FRCs that are supported by the base station.

Unless stated otherwise, performance requirements apply for a single carrier only. Performance requirements for a BS supporting carrier aggregation are defined in terms of single carrier requirements. For FDD operation the requirements in clause 8 shall be met with the transmitter(s) on.

NOTE: In normal operating conditions the BS in FDD operation is configured to transmit and receive at the same time. The transmitter may be off for some of the tests as specifed in 36.141 [4].

The SNR used in this clause is specified based on a single carrier and defined as:

SNR = S / N

Where:

- S is the total signal energy in the subframe on a single antenna port.
- N is the noise energy in a bandwidth corresponding to the transmission bandwidth over the duration of a subframe.

For enhanced performance requirements type A, the SINR used in this clause is specified based on a single carrier and defined as:

$$SINR = S/N'$$

Where:

- *S* is the total signal energy in the subframe on a single antenna port.
- N' is the summation of the received energy of the strongest interferers explicitly defined in a test procedure plus the white noise energy N, in a bandwidth corresponding to the transmission bandwidth over the duration of a subframe on a single antenna port. The respective energy of each interferer relative to N' is defined by its associated DIP value.

# 8.2 Performance requirements for PUSCH

## 8.2.1 Requirements in multipath fading propagation conditions

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions. For 2Tx test the HARQ retransmissions for two codewords are independent. The requirements defined based on FRC in Annex A.17 apply to the BS supporting PUSCH with 256QAM. The requirements defined based on FRC in Annex A.18 apply to the BS supporting PUSCH transmission in UpPTS. The requirements defined based on FRC in Annex A.19 apply to the BS supporting both PUSCH transmission in UpPTS and PUSCH with 256QAM. For PUSCH transmission in UpPTS, the special subframe configuration is 10 as specified in 36.211 [10] Table 4.2-1, and during the test only special subframe is scheduled.

| Table 8.2.1-1 | Test parameters | for testing PUSCH |
|---------------|-----------------|-------------------|
|---------------|-----------------|-------------------|

| Parameter                            | Value                  |
|--------------------------------------|------------------------|
| Maximum number of HARQ transmissions | 4                      |
| RV sequence                          | 0, 2, 3, 1, 0, 2, 3, 1 |
| Uplink-downlink allocation for TDD   | Configuration 1 (2:2)  |

#### 8.2.1.1 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 8.2.1.1-1 to 8.2.1.1-6 at the given SNR for 1Tx and in tables 8.2.1.1-7 to 8.2.1.1-12 for 2Tx two layer spatial multiplexing transmission.

Table 8.2.1.1-1 Minimum requirements for PUSCH, 1.4 MHz Channel Bandwidth, 1Tx

| Number of TX<br>antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB]         |
|--------------------------|--------------------------|---------------|------------------------------------------------------------------------|------------------|--------------------------------------|---------------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                            | A3-2             | 30%                                  | -4.1                |
|                          | -                        |               |                                                                        |                  | 70%                                  | 0.1                 |
|                          |                          |               |                                                                        | A4-3             | 70%                                  | 10.6                |
|                          |                          |               |                                                                        | A5-2             | 70%                                  | 17.7                |
|                          |                          |               |                                                                        | A17-1            | 70%                                  | 21.4                |
|                          |                          |               |                                                                        | A18-1            | 70%                                  | 7.4                 |
|                          |                          |               |                                                                        | A19-1            | 70%                                  | 18.1                |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1             | 30%                                  | -2.7                |
|                          |                          |               |                                                                        |                  | 70%                                  | 1.8                 |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 4.4                 |
|                          |                          |               |                                                                        | A5-1             | 70%<br>70%                           | 11.3<br>18.6        |
|                          |                          |               | EVA 70Hz                                                               | A3-1<br>A3-2     | 30%                                  | -3.9                |
|                          |                          |               | Low                                                                    | A3-2             | 70%                                  | 0.7                 |
|                          |                          |               | 2011                                                                   | A4-3             | 30%                                  | 4.0                 |
|                          |                          |               |                                                                        |                  | 70%                                  | 11.9                |
|                          |                          |               | ETU 70Hz*                                                              | A3-1             | 30%                                  | -2.4                |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 2.4                 |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 30%                                  | -2.2                |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 2.9                 |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 4.8                 |
| _                        |                          |               | Low                                                                    |                  | 70%                                  | 13.5                |
|                          | 4                        | Normal        | EPA 5Hz Low                                                            | A3-2             | 30%                                  | -6.6                |
|                          |                          |               |                                                                        |                  | 70%                                  | -3.1                |
|                          |                          |               |                                                                        | A4-3<br>A5-2     | 70%<br>70%                           | 7.1<br>14.4         |
|                          |                          |               |                                                                        | A5-2<br>A17-1    | 70%                                  | 14.4                |
|                          |                          |               |                                                                        | A17-1            | 70%                                  | 4.1                 |
|                          |                          |               |                                                                        | A19-1            | 70%                                  | 14.7                |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1             | 30%                                  | -5.0                |
|                          |                          |               |                                                                        |                  | 70%                                  | -1.3                |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 1.3                 |
|                          |                          |               |                                                                        |                  | 70%                                  | 7.8                 |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 15.4                |
|                          |                          |               | EVA 70Hz                                                               | A3-2             | 30%                                  | -6.3                |
|                          |                          | Low           |                                                                        | 70%              | -2.7                                 |                     |
|                          |                          |               |                                                                        | A4-3             | 30%                                  | 0.8                 |
|                          |                          |               |                                                                        | 10.4             | 70%                                  | 8.3                 |
|                          |                          |               | ETU 70Hz*<br>Low                                                       | A3-1             | 30%<br>70%                           | <u>-4.8</u><br>-1.0 |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 30%                                  | -1.0                |
|                          |                          |               | Low                                                                    | A0-1             | 70%                                  | -4.6                |
|                          |                          |               | ETU 600Hz**                                                            | A13-1            | 30%                                  | -0.9                |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 6.1                 |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 1.6                 |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 9.9                 |
|                          | 8                        | Normal        | EPA 5Hz Low                                                            | A3-2             | 30%                                  | -9.4                |
|                          |                          |               |                                                                        |                  | 70%                                  | -6.4                |
|                          |                          |               |                                                                        | A4-3             | 70%                                  | 4.0                 |
|                          |                          |               |                                                                        | A5-2             | 70%                                  | 10.9                |
|                          |                          |               |                                                                        | A17-1            | 70%                                  | 15.1                |
|                          |                          |               |                                                                        | A18-1<br>A19-1   | 70%<br>70%                           | <u>1.1</u><br>11.6  |
|                          |                          |               | EVA 5Hz Low                                                            | A19-1<br>A3-1    | 30%                                  | -7.2                |
|                          |                          |               |                                                                        | A3-1             | 70%                                  | -7.2                |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | -1.7                |
|                          |                          |               |                                                                        |                  | 70%                                  | 4.6                 |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 11.7                |
|                          |                          |               | EVA 70Hz                                                               | A3-2             | 30%                                  | -9.0                |
|                          | 1                        | 1             | Low                                                                    | 1                | 70%                                  | -5.8                |

|         |                |                  |            |                   | A4-3               | 30%            | -2.5 |
|---------|----------------|------------------|------------|-------------------|--------------------|----------------|------|
|         |                |                  |            |                   |                    | 70%            | 4.8  |
|         |                |                  |            | ETU 70Hz*         | A3-1               | 30%            | -6.8 |
|         |                |                  |            | Low               |                    | 70%            | -3.6 |
|         |                |                  |            | ETU 300Hz*        | A3-1               | 30%            | -6.7 |
|         |                |                  |            | Low               |                    | 70%            | -3.3 |
|         |                | Exte             | ended      | ETU 70Hz*         | A4-2               | 30%            | -1.1 |
|         |                |                  |            | Low               |                    | 70%            | 6.4  |
| Note*:  | Not applicable | for Local Area B | S and Home | e BS.             |                    |                |      |
| Note**: | Not applicable | for Local Area B | S and Home | e BS, and only ap | plicable for BS su | upporting ETU6 | 00.  |

Table 8.2.1.1-2 Minimum requirements for PUSCH, 3 MHz Channel Bandwidth, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB]         |
|--------------------------|--------------------------|---------------|------------------------------------------------------------------------|------------------|--------------------------------------|---------------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                            | A3-3             | 30%                                  | -4.1                |
|                          |                          |               |                                                                        |                  | 70%                                  | 0.1                 |
|                          |                          |               |                                                                        | A4-4             | 70%                                  | 10.9                |
|                          |                          |               |                                                                        | A5-3             | 70%                                  | 18.1                |
|                          |                          |               |                                                                        | A17-2            | 70%                                  | 22.0                |
|                          |                          |               |                                                                        | A18-2            | 70%                                  | 7.4                 |
|                          |                          |               | EVA 5Hz Low                                                            | A19-2<br>A3-1    | 70%<br>30%                           | 17.9<br>-2.8        |
|                          |                          |               | EVA SI IZ LOW                                                          | A3-1             | 70%                                  | 1.8                 |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 4.3                 |
|                          |                          |               |                                                                        |                  | 70%                                  | 11.5                |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 18.8                |
|                          |                          |               | EVA 70Hz                                                               | A3-3             | 30%                                  | -4.0                |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 0.6                 |
|                          |                          |               |                                                                        | A4-4             | 30%                                  | 4.7                 |
|                          |                          |               |                                                                        | 10.4             | 70%                                  | 12.5                |
|                          |                          |               | ETU 70Hz*<br>Low                                                       | A3-1             | 30%                                  | -2.5                |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 70%<br>30%                           | 2.4<br>-2.2         |
|                          |                          |               | Low                                                                    | A3-1             | 70%                                  | 2.9                 |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 4.7                 |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 13.5                |
|                          | 4                        | Normal        | EPA 5Hz Low                                                            | A3-3             | 30%                                  | -6.8                |
|                          |                          |               |                                                                        |                  | 70%                                  | -3.4                |
|                          |                          |               |                                                                        | A4-4             | 70%                                  | 7.7                 |
|                          |                          |               |                                                                        | A5-3             | 70%                                  | 14.4                |
|                          |                          |               |                                                                        | A17-2            | 70%                                  | 18.7                |
|                          |                          |               |                                                                        | A18-2            | 70%                                  | 4.0                 |
|                          |                          |               | EVA 5Hz Low                                                            | A19-2<br>A3-1    | 70%<br>30%                           | 14.0<br>-5.0        |
|                          |                          |               | EVA SI IZ LOW                                                          | A3-1             | 70%                                  | -5.0                |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 1.2                 |
|                          |                          |               |                                                                        | -                | 70%                                  | 7.8                 |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 15.4                |
|                          |                          |               | EVA 70Hz                                                               | A3-3             | 30%                                  | -6.5                |
|                          |                          |               | Low                                                                    |                  | 70%                                  | -2.9                |
|                          |                          |               |                                                                        | A4-4             | 30%                                  | 1.6                 |
|                          |                          |               | ETU 70Hz*                                                              | A3-1             | 70%<br>30%                           | 8.7                 |
|                          |                          |               | Low                                                                    | A3-1             | 70%                                  | -4.8<br>-0.9        |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 30%                                  | -0.9<br>-4.6        |
|                          |                          |               | Low                                                                    |                  | 70%                                  | -0.6                |
|                          |                          |               | ETU 600Hz**                                                            | A13-2            | 30%                                  | -1.1                |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 5.8                 |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 1.5                 |
|                          |                          | N a mag a t   | Low                                                                    | 40.0             | 70%                                  | 9.9                 |
|                          | 8                        | Normal        | EPA 5Hz Low                                                            | A3-3             | <u> </u>                             | -9.6                |
|                          |                          |               |                                                                        | A4-4             | 70%                                  | -6.6<br>4.1         |
|                          |                          |               |                                                                        | A4-4<br>A5-3     | 70%                                  | 11.1                |
|                          |                          |               |                                                                        | A17-2            | 70%                                  | 15.6                |
|                          |                          |               |                                                                        | A18-2            | 70%                                  | 1.3                 |
|                          |                          |               |                                                                        | A19-2            | 70%                                  | 11.0                |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1             | 30%                                  | -7.1                |
|                          |                          |               |                                                                        |                  | 70%                                  | -4.0                |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | -1.6                |
|                          |                          |               |                                                                        |                  | 70%                                  | 4.4                 |
|                          |                          |               | EVA 70Hz                                                               | A5-1<br>A3-3     | 70%<br>30%                           | <u>11.7</u><br>-9.3 |
|                          |                          |               |                                                                        | 4 3- 3           | 3117/0                               | -43                 |

|         |                      |                    |                   | A4-4              | 30%             | -2.8 |
|---------|----------------------|--------------------|-------------------|-------------------|-----------------|------|
|         |                      |                    |                   |                   | 70%             | 4.8  |
|         |                      |                    | ETU 70Hz*         | A3-1              | 30%             | -7.0 |
|         |                      |                    | Low               |                   | 70%             | -3.7 |
|         |                      |                    | ETU 300Hz*        | A3-1              | 30%             | -6.8 |
|         |                      |                    | Low               |                   | 70%             | -3.3 |
|         |                      | Extended           | ETU 70Hz*         | A4-2              | 30%             | -1.2 |
|         |                      |                    | Low               |                   | 70%             | 6.5  |
| Note*:  | Not applicable for L | ocal Area BS and I | Home BS.          |                   |                 |      |
| Note**: | Not applicable for L | ocal Area BS and I | Home BS, and only | applicable for BS | supporting ETU6 | 00.  |

Table 8.2.1.1-3 Minimum requirements for PUSCH, 5 MHz Channel Bandwidth, 1Tx

| Number of TX<br>antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions a<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB]       |
|--------------------------|--------------------------|---------------|--------------------------------------------------------------------------|------------------|--------------------------------------|-------------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                              | A3-4             | 30%                                  | -4.7              |
| ·                        | -                        |               |                                                                          |                  | 70%                                  | -0.7              |
|                          |                          |               |                                                                          | A4-5             | 70%                                  | 10.4              |
|                          |                          |               |                                                                          | A5-4             | 70%                                  | 18.0              |
|                          |                          |               |                                                                          | A17-3            | 70%                                  | 21.9              |
|                          |                          |               |                                                                          | A18-3            | 70%                                  | 8.3               |
|                          |                          |               |                                                                          | A19-3            | 70%                                  | 19.4              |
|                          |                          |               | EVA 5Hz Low                                                              | A3-1             | 30%                                  | -2.7              |
|                          |                          |               |                                                                          |                  | 70%                                  | 1.8               |
|                          |                          |               |                                                                          | A4-1             | 30%                                  | 4.3               |
|                          |                          |               |                                                                          | A5-1             | 70%<br>70%                           | 11.5<br>18.6      |
|                          |                          |               | EVA 70Hz                                                                 | A3-1<br>A3-4     | 30%                                  | -4.5              |
|                          |                          |               | Low                                                                      | A3-4             | 70%                                  | -4.5              |
|                          |                          |               | LOW                                                                      | A4-5             | 30%                                  | 4.3               |
|                          |                          |               |                                                                          | 7110             | 70%                                  | 12.3              |
|                          |                          |               | ETU 70Hz*                                                                | A3-1             | 30%                                  | -2.5              |
|                          |                          |               | Low                                                                      |                  | 70%                                  | 2.4               |
|                          |                          |               | ETU 300Hz*                                                               | A3-1             | 30%                                  | -2.2              |
|                          |                          |               | Low                                                                      |                  | 70%                                  | 2.9               |
|                          |                          | Extended      | ETU 70Hz*                                                                | A4-2             | 30%                                  | 4.8               |
|                          |                          |               | Low                                                                      |                  | 70%                                  | 13.5              |
|                          | 4                        | Normal        | EPA 5Hz Low                                                              | A3-4             | 30%                                  | -7.1              |
|                          |                          |               |                                                                          |                  | 70%                                  | -3.8              |
|                          |                          |               |                                                                          | A4-5<br>A5-4     | 70%<br>70%                           | 7.6               |
|                          |                          |               |                                                                          | A3-4<br>A17-3    | 70%                                  | 18.5              |
|                          |                          |               |                                                                          | A18-3            | 70%                                  | 5.1               |
|                          |                          |               |                                                                          | A19-3            | 70%                                  | 15.8              |
|                          |                          |               | EVA 5Hz Low                                                              | A3-1             | 30%                                  | -5.1              |
|                          |                          |               |                                                                          |                  | 70%                                  | -1.4              |
|                          |                          |               |                                                                          | A4-1             | 30%                                  | 1.2               |
|                          |                          |               |                                                                          |                  | 70%                                  | 7.9               |
|                          |                          |               |                                                                          | A5-1             | 70%                                  | 15.5              |
|                          |                          |               | EVA 70Hz                                                                 | A3-4             | 30%                                  | -6.9              |
|                          |                          |               | Low                                                                      |                  | 70%                                  | -3.3              |
|                          |                          |               |                                                                          | A4-5             | 30%<br>70%                           | <u>1.2</u><br>8.3 |
|                          |                          |               | ETU 70Hz*                                                                | A3-1             | 30%                                  | -4.8              |
|                          |                          |               | Low                                                                      | A3-1             | 70%                                  | -0.9              |
|                          |                          |               | ETU 300Hz*                                                               | A3-1             | 30%                                  | -4.6              |
|                          |                          |               | Low                                                                      |                  | 70%                                  | -0.6              |
|                          |                          |               | ETU 600Hz**                                                              | A13-3            | 30%                                  | -0.9              |
|                          |                          |               | Low                                                                      |                  | 70%                                  | 6.1               |
|                          |                          | Extended      | ETU 70Hz*                                                                | A4-2             | 30%                                  | 1.6               |
|                          |                          |               | Low                                                                      |                  | 70%                                  | 9.9               |
|                          | 8                        | Normal        | EPA 5Hz Low                                                              | A3-4             | 30%                                  | -10.1             |
|                          |                          |               |                                                                          |                  | 70%                                  | -7.2              |
|                          |                          |               |                                                                          | A4-5<br>A5-4     | 70%<br>70%                           | 4.0               |
|                          |                          |               |                                                                          | A5-4<br>A17-3    | 70%                                  | 11.3<br>15.3      |
|                          |                          |               |                                                                          | A17-3<br>A18-3   | 70%                                  | 2.0               |
|                          |                          |               |                                                                          | A19-3            | 70%                                  | 12.5              |
|                          |                          |               | EVA 5Hz Low                                                              | A3-1             | 30%                                  | -7.1              |
|                          |                          |               |                                                                          |                  | 70%                                  | -3.9              |
|                          |                          |               |                                                                          | A4-1             | 30%                                  | -1.9              |
|                          |                          |               |                                                                          |                  | 70%                                  | 4.4               |
|                          |                          |               |                                                                          | A5-1             | 70%                                  | 11.7              |
|                          |                          |               | EVA 70Hz                                                                 | A3-4             | 30%                                  | -9.9              |
|                          | 1                        | 1             | Low                                                                      |                  | 70%                                  | -6.7              |

|         |                        |                   |                     | A4-5              | 30%             | -2.5 |
|---------|------------------------|-------------------|---------------------|-------------------|-----------------|------|
|         |                        |                   |                     |                   | 70%             | 4.6  |
|         |                        |                   | ETU 70Hz*           | A3-1              | 30%             | -6.9 |
|         |                        |                   | Low                 |                   | 70%             | -3.4 |
|         |                        |                   | ETU 300Hz*          | A3-1              | 30%             | -6.9 |
|         |                        |                   | Low                 |                   | 70%             | -3.3 |
|         |                        | Extended          | ETU 70Hz*           | A4-2              | 30%             | -1.2 |
|         |                        |                   | Low                 |                   | 70%             | 6.4  |
| Note*:  | Not applicable for Loc | al Area BS and Ho | me BS.              |                   |                 |      |
| Note**: | Not applicable for Loc | al Area BS and Ho | me BS, and only app | licable for BS su | upporting ETU60 | 00.  |

Table 8.2.1.1-4 Minimum requirements for PUSCH, 10 MHz Channel Bandwidth, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB]  |
|--------------------------|--------------------------|---------------|------------------------------------------------------------------------|------------------|--------------------------------------|--------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                            | A3-5             | 30%                                  | -4.2         |
|                          |                          |               |                                                                        |                  | 70%                                  | -0.4         |
|                          |                          |               |                                                                        | A4-6             | 70%                                  | 10.8         |
|                          |                          |               |                                                                        | A5-5             | 70%                                  | 18.3         |
|                          |                          |               |                                                                        | A17-4            | 70%                                  | 22.6         |
|                          |                          |               |                                                                        | A18-4            | 70%                                  | 8.5          |
|                          |                          |               | EVA 5Hz Low                                                            | A19-4<br>A3-1    | 70%<br>30%                           | 19.5<br>-2.7 |
|                          |                          |               |                                                                        | A3-1             | 70%                                  | 1.9          |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 4.3          |
|                          |                          |               |                                                                        |                  | 70%                                  | 11.4         |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 18.8         |
|                          |                          |               | EVA 70Hz                                                               | A3-5             | 30%                                  | -4.1         |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 0.1          |
|                          |                          |               |                                                                        | A4-6             | 30%                                  | 4.5          |
|                          |                          |               |                                                                        | 10.1             | 70%                                  | 12.6         |
|                          |                          |               | ETU 70Hz*                                                              | A3-1             | 30%                                  | -2.5         |
|                          |                          |               | Low<br>ETU 300Hz*                                                      | A3-1             | 70%<br>30%                           | 2.4<br>-2.2  |
|                          |                          |               | Low                                                                    | A3-1             | 70%                                  | 2.9          |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 4.8          |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 13.6         |
|                          | 4                        | Normal        | EPA 5Hz Low                                                            | A3-5             | 30%                                  | -6.8         |
|                          |                          |               |                                                                        |                  | 70%                                  | -3.5         |
|                          |                          |               |                                                                        | A4-6             | 70%                                  | 7.5          |
|                          |                          |               |                                                                        | A5-5             | 70%                                  | 14.7         |
|                          |                          |               |                                                                        | A17-4            | 70%                                  | 19.2         |
|                          |                          |               |                                                                        | A18-4            | 70%<br>70%                           | 5.3          |
|                          |                          |               | EVA 5Hz Low                                                            | A19-4<br>A3-1    | 30%                                  | 15.8<br>-5.0 |
|                          |                          |               |                                                                        | A3-1             | 70%                                  | -1.2         |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 1.2          |
|                          |                          |               |                                                                        |                  | 70%                                  | 7.9          |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 15.5         |
|                          |                          |               | EVA 70Hz<br>Low                                                        | A3-5             | 30%                                  | -6.7         |
|                          |                          |               |                                                                        |                  | 70%                                  | -2.9         |
|                          |                          |               |                                                                        | A4-6             | 30%                                  | 0.7          |
|                          |                          |               | ETU 70Hz*                                                              | A3-1             | 70%<br>30%                           | 8.0<br>-4.8  |
|                          |                          |               | Low                                                                    | A3-1             | 70%                                  | -4.8         |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 30%                                  | -4.6         |
|                          |                          |               | Low                                                                    |                  | 70%                                  | -0.6         |
|                          |                          |               | ETU 600Hz**                                                            | A13-4            | 30%                                  | -1.0         |
|                          |                          | _             | Low                                                                    |                  | 70%                                  | 6.2          |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 1.7          |
|                          |                          | N a mag a t   | Low                                                                    | 10.5             | 70%                                  | 10.3         |
|                          | 8                        | Normal        | EPA 5Hz Low                                                            | A3-5             | 30%                                  | -9.8         |
|                          |                          |               |                                                                        | A4-6             | <u> </u>                             | -6.7<br>4.2  |
|                          |                          |               |                                                                        | A4-6<br>A5-5     | 70%                                  | 4.2          |
|                          |                          |               |                                                                        | A17-4            | 70%                                  | 15.9         |
|                          |                          |               |                                                                        | A18-4            | 70%                                  | 2.1          |
|                          |                          |               |                                                                        | A19-4            | 70%                                  | 12.5         |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1             | 30%                                  | -6.9         |
|                          |                          |               |                                                                        |                  | 70%                                  | -3.8         |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | -1.7         |
|                          |                          |               |                                                                        |                  | 70%                                  | 4.5          |
|                          |                          |               | EVA 70Hz                                                               | A5-1<br>A3-5     | <u>70%</u><br>30%                    | 11.9<br>-9.7 |
|                          |                          |               |                                                                        |                  |                                      |              |

|         |                |                         |                   | A4-6             | 30%                | -2.6 |
|---------|----------------|-------------------------|-------------------|------------------|--------------------|------|
|         |                |                         |                   |                  | 70%                | 4.7  |
|         |                |                         | ETU 70Hz*         | A3-1             | 30%                | -6.8 |
|         |                |                         | Low               |                  | 70%                | -3.6 |
|         |                |                         | ETU 300Hz*        | A3-1             | 30%                | -6.8 |
|         |                |                         | Low               |                  | 70%                | -3.3 |
|         |                | Extended                | ETU 70Hz*         | A4-2             | 30%                | -1.1 |
|         |                |                         | Low               |                  | 70%                | 6.5  |
| Note*:  |                | for Local Area BS and I |                   |                  |                    | _    |
| Note**: | Not applicable | for Local Area BS and H | Home BS, and only | applicable for B | S supporting ETU60 | 0.   |

Table 8.2.1.1-5 Minimum requirements for PUSCH, 15 MHz Channel Bandwidth, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------------|------------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                            | A3-6             | 30%                                  | -4.5        |
|                          |                          |               |                                                                        |                  | 70%                                  | -0.8        |
|                          |                          |               |                                                                        | A4-7             | 70%                                  | 11.3        |
|                          |                          |               |                                                                        | A5-6             | 70%                                  | 18.8        |
|                          |                          |               |                                                                        | A17-5            | 70%                                  | 22.8        |
|                          |                          |               |                                                                        | A18-5            | 70%                                  | 9.4         |
|                          |                          |               | EVA 5Hz Low                                                            | A19-5<br>A3-1    | 70%<br>30%                           | 21.4        |
|                          |                          |               | EVA SHZ LOW                                                            | A3-1             | 70%                                  | -2.8<br>1.8 |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 4.2         |
|                          |                          |               |                                                                        |                  | 70%                                  | 11.4        |
|                          |                          |               |                                                                        | A5-1             | 70%                                  | 18.7        |
|                          |                          |               | EVA 70Hz                                                               | A3-6             | 30%                                  | -4.5        |
|                          |                          |               | Low                                                                    |                  | 70%                                  | -0.3        |
|                          |                          |               |                                                                        | A4-7             | 30%                                  | 4.2         |
|                          |                          |               |                                                                        |                  | 70%                                  | 12.9        |
|                          |                          |               | ETU 70Hz*                                                              | A3-1             | 30%                                  | -2.5        |
|                          |                          |               | Low                                                                    |                  | 70%                                  | 2.4         |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 30%                                  | -2.2        |
|                          |                          | Extended      | Low<br>ETU 70Hz*                                                       | A4-2             | <u>70%</u><br>30%                    | 2.9<br>4.9  |
|                          |                          | Extended      | Low                                                                    | A4-2             | <u>30%</u><br>70%                    | 4.9         |
|                          | 4                        | Normal        | EPA 5Hz Low                                                            | A3-6             | 30%                                  | -7.2        |
|                          |                          | Norma         |                                                                        | //0/0            | 70%                                  | -3.8        |
|                          |                          |               |                                                                        | A4-7             | 70%                                  | 7.6         |
|                          |                          |               |                                                                        | A5-6             | 70%                                  | 15.0        |
|                          |                          |               |                                                                        | A17-5            | 70%                                  | 18.9        |
|                          |                          |               |                                                                        | A18-5            | 70%                                  | 5.9         |
|                          |                          |               |                                                                        | A19-5            | 70%                                  | 17.1        |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1             | 30%                                  | -5.0        |
|                          |                          |               |                                                                        |                  | 70%                                  | -1.2        |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | 1.2         |
|                          |                          |               |                                                                        | A5-1             | <u> </u>                             | 7.9<br>15.7 |
|                          |                          |               | EVA 70Hz                                                               | A3-6             | 30%                                  | -7.0        |
|                          |                          |               | Low                                                                    | / 10 0           | 70%                                  | -3.3        |
|                          |                          |               |                                                                        | A4-7             | 30%                                  | 0.7         |
|                          |                          |               |                                                                        |                  | 70%                                  | 8.5         |
|                          |                          |               | ETU 70Hz*                                                              | A3-1             | 30%                                  | -4.8        |
|                          |                          |               | Low                                                                    |                  | 70%                                  | -1.0        |
|                          |                          |               | ETU 300Hz*                                                             | A3-1             | 30%                                  | -4.6        |
|                          |                          |               |                                                                        | A40.5            | 70%                                  | -0.6        |
|                          |                          |               | ETU 600Hz**<br>Low                                                     | A13-5            | <u> </u>                             | -0.9<br>6.4 |
|                          |                          | Extended      | ETU 70Hz*                                                              | A4-2             | 30%                                  | 1.6         |
|                          |                          |               | Low                                                                    | ~~~~             | 70%                                  | 10.1        |
|                          | 8                        | Normal        | EPA 5Hz Low                                                            | A3-6             | 30%                                  | -10.4       |
|                          |                          |               |                                                                        |                  | 70%                                  | -7.3        |
|                          |                          |               |                                                                        | A4-7             | 70%                                  | 4.4         |
|                          |                          |               |                                                                        | A5-6             | 70%                                  | 11.8        |
|                          |                          |               |                                                                        | A17-5            | 70%                                  | 15.5        |
|                          |                          |               |                                                                        | A18-5            | 70%                                  | 2.8         |
|                          |                          |               |                                                                        | A19-5            | 70%                                  | 13.8        |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1             | 30%                                  | -7.1        |
|                          |                          |               |                                                                        |                  | 70%                                  | -4.0        |
|                          |                          |               |                                                                        | A4-1             | 30%                                  | -1.7        |
|                          |                          |               |                                                                        | A5-1             | 70%<br>70%                           | 4.4         |
|                          |                          |               | EVA 70Hz                                                               | A3-6             | 30%                                  | -10.1       |
|                          | 1                        | 1             |                                                                        | 7-0-0            | 70%                                  | -10.1       |

|                                     |                 |                    | A4-7              | 30%               | -2.5 |
|-------------------------------------|-----------------|--------------------|-------------------|-------------------|------|
|                                     |                 |                    |                   | 70%               | 5.0  |
|                                     |                 | ETU 70Hz*          | A3-1              | 30%               | -7.0 |
|                                     |                 | Low                |                   | 70%               | -3.6 |
|                                     |                 | ETU 300Hz*         | A3-1              | 30%               | -6.9 |
|                                     |                 | Low                |                   | 70%               | -3.3 |
|                                     | Extended        | ETU 70Hz*          | A4-2              | 30%               | -1.1 |
|                                     |                 | Low                |                   | 70%               | 6.7  |
| Note*: Not applicable for Local     | Area BS and Ho  | ome BS.            |                   |                   |      |
| Note**: Not applicable for Local Ar | rea BS and Home | e BS, and only app | plicable for BS s | upporting ETU600. |      |

Table 8.2.1.1-6 Minimum requirements for PUSCH, 20 MHz Channel Bandwidth, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A)                        | Fraction of<br>maximum<br>throughput | SNR<br>[dB]  |
|--------------------------|--------------------------|---------------|------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                            | A3-7                                    | 30%                                  | -4.2         |
|                          |                          |               |                                                                        |                                         | 70%                                  | -0.4         |
|                          |                          |               |                                                                        | A4-8                                    | 70%                                  | 11.5         |
|                          |                          |               |                                                                        | A5-7                                    | 70%                                  | 19.7         |
|                          |                          |               |                                                                        | A17-6                                   | 70%                                  | 23.7         |
|                          |                          |               |                                                                        | A18-6                                   | 70%                                  | 9.3          |
|                          |                          |               |                                                                        | A19-6                                   | 70%                                  | 21.0         |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1                                    | <u>30%</u><br>70%                    | -2.7<br>1.8  |
|                          |                          |               |                                                                        | A4-1                                    | 30%                                  | 4.3          |
|                          |                          |               |                                                                        | /(+ )                                   | 70%                                  | 11.5         |
|                          |                          |               |                                                                        | A5-1                                    | 70%                                  | 18.7         |
|                          |                          |               | EVA 70Hz                                                               | A3-7                                    | 30%                                  | -4.1         |
|                          |                          |               | Low                                                                    | -                                       | 70%                                  | 0.2          |
|                          |                          |               |                                                                        | A4-8                                    | 30%                                  | 4.2          |
|                          |                          |               |                                                                        |                                         | 70%                                  | 13.0         |
|                          |                          |               | ETU 70Hz*                                                              | A3-1                                    | 30%                                  | -2.4         |
|                          |                          |               | Low                                                                    | -                                       | 70%                                  | 2.4          |
|                          |                          |               | ETU 300Hz*                                                             | A3-1                                    | 30%                                  | -2.1         |
|                          |                          | Extended      | Low<br>ETU 70Hz*                                                       | A 4 0                                   | 70%                                  | 2.9<br>4.7   |
|                          |                          | Extended      | Low                                                                    | A4-2                                    | <u> </u>                             | 4.7          |
|                          | 4                        | Normal        | EPA 5Hz Low                                                            | A3-7                                    | 30%                                  | -6.8         |
|                          | -                        | Normai        |                                                                        | A3-1                                    | 70%                                  | -3.5         |
|                          |                          |               |                                                                        | A4-8                                    | 70%                                  | 7.5          |
|                          |                          |               |                                                                        | A5-7                                    | 70%                                  | 15.9         |
|                          |                          |               |                                                                        | A17-6                                   | 70%                                  | 19.8         |
|                          |                          |               |                                                                        | A18-6                                   | 70%                                  | 5.7          |
|                          |                          |               |                                                                        | A19-6                                   | 70%                                  | 16.6         |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1                                    | 30%                                  | -5.1         |
|                          |                          |               |                                                                        |                                         | 70%                                  | -1.3         |
|                          |                          |               |                                                                        | A4-1                                    | 30%                                  | 1.2          |
|                          |                          |               |                                                                        |                                         | 70%                                  | 7.9          |
|                          |                          |               | EVA 70Hz                                                               | A5-1<br>A3-7                            | <u>70%</u><br>30%                    | 15.6<br>-6.7 |
|                          |                          |               | Low                                                                    | A3-7                                    | 70%                                  | -0.7         |
|                          |                          |               | 2011                                                                   | A4-8                                    | 30%                                  | 0.7          |
|                          |                          |               |                                                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 70%                                  | 8.6          |
|                          |                          |               | ETU 70Hz*                                                              | A3-1                                    | 30%                                  | -4.4         |
|                          |                          |               | Low                                                                    |                                         | 70%                                  | -0.9         |
|                          |                          |               | ETU 300Hz*                                                             | A3-1                                    | 30%                                  | -4.6         |
|                          |                          |               | Low                                                                    |                                         | 70%                                  | -0.7         |
|                          |                          |               | ETU 600Hz**                                                            | A13-6                                   | 30%                                  | -0.9         |
|                          |                          | Estate de de  | Low                                                                    |                                         | 70%                                  | 6.4          |
|                          |                          | Extended      | ETU 70Hz*<br>Low                                                       | A4-2                                    | <u>30%</u><br>70%                    | 1.6<br>10.0  |
|                          | 8                        | Normal        | EPA 5Hz Low                                                            | A3-7                                    | 30%                                  | -9.7         |
|                          | 0                        | noma          |                                                                        | 1-1-1                                   | 70%                                  | -9.7<br>-6.7 |
|                          |                          |               |                                                                        | A4-8                                    | 70%                                  | 4.3          |
|                          |                          |               |                                                                        | A5-7                                    | 70%                                  | 12.5         |
|                          |                          |               |                                                                        | A17-6                                   | 70%                                  | 16.3         |
|                          |                          |               |                                                                        | A18-6                                   | 70%                                  | 2.6          |
|                          |                          |               |                                                                        | A19-6                                   | 70%                                  | 13.2         |
|                          |                          |               | EVA 5Hz Low                                                            | A3-1                                    | 30%                                  | -7.0         |
|                          |                          |               |                                                                        |                                         | 70%                                  | -3.9         |
|                          |                          |               |                                                                        | A4-1                                    | 30%                                  | -1.7         |
|                          |                          |               |                                                                        | A E 4                                   | 70%                                  | 4.6          |
|                          |                          |               | EVA 70Hz                                                               | A5-1<br>A3-7                            | <u>70%</u><br>30%                    | 12.0<br>-9.7 |
|                          |                          |               |                                                                        |                                         |                                      |              |

|         |       |                     |                |                   | A4-8             | 30%                | -2.2 |
|---------|-------|---------------------|----------------|-------------------|------------------|--------------------|------|
|         |       |                     |                |                   |                  | 70%                | 4.9  |
|         |       |                     |                | ETU 70Hz*         | A3-1             | 30%                | -6.9 |
|         |       |                     |                | Low               |                  | 70%                | -3.5 |
|         |       |                     |                | ETU 300Hz*        | A3-1             | 30%                | -6.8 |
|         |       |                     |                | Low               |                  | 70%                | -3.3 |
|         |       |                     | Extended       | ETU 70Hz*         | A4-2             | 30%                | -1.2 |
|         |       |                     |                | Low               |                  | 70%                | 6.5  |
| Note*:  | Not a | pplicable for Local | Area BS and Ho | me BS.            |                  |                    |      |
| Note**: | Not a | pplicable for Local | Area BS and Ho | me BS, and only a | applicable for B | S supporting ETU60 | Э.   |

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Cyclic<br>prefix   | Propagation<br>conditions and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|--------------------|---------------------------------------------------------------------|---------------------|--------------------------------------|-------------|
| 2                           | 2                           | Normal             | EPA 5Hz Low                                                         | A3-2                | 70%                                  | 4.6         |
|                             |                             |                    |                                                                     | A4-3                | 70%                                  | 17.70       |
|                             | 4                           | Normal             | EPA 5Hz Low                                                         | A3-2                | 70%                                  | -0.1        |
|                             |                             |                    |                                                                     | A4-3                | 70%                                  | 11.9        |
|                             | 8                           | Normal EPA 5Hz Low | A3-2                                                                | 70%                 | -3.0                                 |             |
|                             |                             |                    |                                                                     | A4-3                | 70%                                  | 7.5         |

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Cyclic<br>prefix | Propagation<br>conditions and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|------------------|---------------------------------------------------------------------|---------------------|--------------------------------------|-------------|
| 2                           | 2 2 Norma                   |                  | Normal EPA 5Hz Low                                                  | A3-3                | 70%                                  | 4.4         |
|                             |                             |                  |                                                                     | A4-4                | 70%                                  | 17.6        |
|                             | 4                           | Normal           | EPA 5Hz Low                                                         | A3-3                | 70%                                  | 0.3         |
|                             |                             |                  |                                                                     | A4-4                | 70%                                  | 11.8        |
|                             | 8                           | Normal           | EPA 5Hz Low                                                         | A3-3                | 70%                                  | -3.1        |
|                             |                             |                  |                                                                     | A4-4                | 70%                                  | 7.6         |

## Table 8.2.1.1-9 Minimum requirements for PUSCH, 5 MHz Channel Bandwidth, 2Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Cyclic<br>prefix | Propagation<br>conditions and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|------------------|---------------------------------------------------------------------|---------------------|--------------------------------------|-------------|
| 2                           | 2                           | Normal           | EPA 5Hz Low                                                         | A3-4                | 70%                                  | 3.7         |
|                             |                             |                  |                                                                     | A4-5                | 70%                                  | 18.2        |
|                             | 4                           | Normal           | EPA 5Hz Low                                                         | A3-4                | 70%                                  | -0.5        |
|                             |                             |                  |                                                                     | A4-5                | 70%                                  | 11.9        |
|                             | 8                           | Normal           | EPA 5Hz Low                                                         | A3-4                | 70%                                  | -3.9        |
|                             |                             |                  |                                                                     | A4-5                | 70%                                  | 7.6         |

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Cyclic<br>prefix | Propagation<br>conditions and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|------------------|---------------------------------------------------------------------|---------------------|--------------------------------------|-------------|
| 2                           | 2 Normal                    |                  | Normal EPA 5Hz Low                                                  | A3-5                | 70%                                  | 4.2         |
|                             |                             |                  |                                                                     | A4-6                | 70%                                  | 18.6        |
|                             | 4                           | Normal           | Normal EPA 5Hz Low                                                  | A3-5                | 70%                                  | 0.2         |
|                             |                             |                  |                                                                     | A4-6                | 70%                                  | 12.0        |
|                             | 8                           | Normal           | EPA 5Hz Low                                                         | A3-5                | 70%                                  | -3.3        |
|                             |                             |                  |                                                                     | A4-6                | 70%                                  | 7.9         |

Table 8.2.1.1-10 Minimum requirements for PUSCH, 10 MHz Channel Bandwidth, 2Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Cyclic<br>prefix | Propagation<br>conditions and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|------------------|---------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 2                           | 2 Norm                      | Normal           | Normal EPA 5Hz Low                                                  | A3-6             | 70%                                  | 3.7         |
|                             |                             |                  |                                                                     | A4-7             | 70%                                  | 19.4        |
|                             | 4 Norma                     |                  | ormal EPA 5Hz Low                                                   | A3-6             | 70%                                  | -0.2        |
|                             |                             |                  |                                                                     | A4-7             | 70%                                  | 12.7        |
|                             | 8 Norn                      |                  | Normal EPA 5Hz Low                                                  |                  | 70%                                  | -3.8        |
|                             |                             |                  |                                                                     | A4-7             | 70%                                  | 8.3         |

Table 8.2.1.1-12 Minimum requirements for PUSCH, 20 MHz Channel Bandwidth, 2Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Cyclic<br>prefix | Propagation<br>conditions and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|------------------|---------------------------------------------------------------------|---------------------|--------------------------------------|-------------|
| 2                           | 2 2 Norm                    |                  | Normal EPA 5Hz Low                                                  | A3-7                | 70%                                  | 4.4         |
|                             |                             |                  |                                                                     | A4-8                | 70%                                  | 19.7        |
|                             | 4                           | Normal           | EPA 5Hz Low                                                         | A3-7                | 70%                                  | 0.5         |
|                             |                             |                  |                                                                     | A4-8                | 70%                                  | 12.7        |
|                             | 8                           | Normal           | EPA 5Hz Low                                                         | A3-7                | 70%                                  | -3.4        |
|                             |                             |                  |                                                                     | A4-8                | 70%                                  | 8.3         |

## 8.2.2 Requirements for UL timing adjustment

The performance requirement of UL timing adjustment is determined by a minimum required throughput for the moving UE at given SNR. The performance requirements assume HARQ retransmissions. The performance requirements for UL timing adjustment scenario 2 defined in Annex B.4 are optional.

In the tests for UL timing adjustment, two signals are configured, one being transmitted by a moving UE and the other being transmitted by a stationary UE. The transmission of SRS from UE is optional. FRC parameters in Table A.7-1 and Table A.8-1 are applied for both UEs. The received power for both UEs is the same. The resource blocks allocated for both UEs are consecutive. In Scenario 2, Doppler shift is not taken into account.

This requirement shall not be applied to Local Area BS and Home BS.

| Parameter                                              | Value                                                       |
|--------------------------------------------------------|-------------------------------------------------------------|
| Maximum number of HARQ transmissions                   | 4                                                           |
| RV sequence                                            | 0, 2, 3, 1, 0, 2, 3, 1                                      |
| Uplink-downlink allocation for TDD                     | Configuration 1 (2:2)                                       |
| Subframes in which PUSCH is transmitted                | For FDD: subframe #0, #2, #4, #6,<br>and #8 in radio frames |
|                                                        | For TDD: subframe #2, #3, #7 and #8 in radio frames         |
| Subframes in which sounding RS is transmitted (Note 1) | For FDD: subframe #1 in radio frames                        |
|                                                        | For TDD: UpPTS in subframe #1 in radio frames               |
| Note 1. The transmission of SRS is optional.           |                                                             |

Table 8.2.2-1 Test parameters for testing UL timing adjustment

#### 8.2.2.1 Minimum requirements

The throughput shall be  $\geq$  70% of the maximum throughput of the reference measurement channel as specified in Annex A for the moving UE at the SNR given in table 8.2.2.1-1.

| Number of TX<br>antennas | Number of RX<br>antennas | Cyclic prefix | Channel<br>Bandwidth<br>[MHz]                                                                                                                                                                                                                                           | Moving<br>propagation<br>conditions and<br>correlation<br>matrix (Annex<br>B) | FRC<br>(Annex A) | SNR<br>[dB]                                                                                  |
|--------------------------|--------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|
|                          |                          |               | 1 /                                                                                                                                                                                                                                                                     | Scenario 1 Low                                                                | A7-1             | 13.1                                                                                         |
|                          |                          |               | 1.4                                                                                                                                                                                                                                                                     | Scenario 2 Low                                                                | A8-1             | -1.9                                                                                         |
|                          |                          |               | 3                                                                                                                                                                                                                                                                       | Scenario 1 Low                                                                | A7-2             | 13.4                                                                                         |
|                          |                          |               |                                                                                                                                                                                                                                                                         | Scenario 2 Low                                                                | A8-2             | -1.5                                                                                         |
|                          |                          |               | Б                                                                                                                                                                                                                                                                       | Scenario 1 Low                                                                | A7-3             | 13.2                                                                                         |
| 1                        | 2                        | Normal        | 5                                                                                                                                                                                                                                                                       | Scenario 2 Low                                                                | A8-3             | [dB]<br>13.1<br>-1.9<br>13.4<br>-1.5                                                         |
| I                        | 2                        | Normai        | 10                                                                                                                                                                                                                                                                      | Scenario 1 Low                                                                | A7-4             | 13.8                                                                                         |
|                          |                          |               | Channel<br>Bandwidth<br>[MHz]propagation<br>conditions and<br>correlation<br>matrix (Annex<br>B)FRC<br>(Annex /<br>A1.4Scenario 1 Low<br>Scenario 2 LowA7-1<br>A8-13Scenario 1 Low<br>Scenario 2 LowA7-2<br>A8-25Scenario 1 Low<br>Scenario 2 LowA7-3<br>Scenario 2 Low | A8-4                                                                          | -1.8             |                                                                                              |
|                          |                          |               | 15                                                                                                                                                                                                                                                                      | Scenario 1 Low                                                                | A7-5             | [dB]<br>13.1<br>-1.9<br>13.4<br>-1.5<br>13.2<br>-1.6<br>13.8<br>-1.8<br>14.0<br>-1.8<br>13.9 |
|                          |                          |               | 15                                                                                                                                                                                                                                                                      | Scenario 2 Low                                                                | A8-5             | -1.8                                                                                         |
|                          |                          |               | 20                                                                                                                                                                                                                                                                      | Scenario 1 Low                                                                | A7-6             | 13.9                                                                                         |
|                          |                          |               | 20                                                                                                                                                                                                                                                                      | Scenario 2 Low                                                                | A8-6             | -1.8                                                                                         |

Table 8.2.2.1-1 Minimum requirements for UL timing adjustment

# 8.2.3 Requirements for high speed train

The performance requirement of PUSCH for high speed train is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions. The performance requirements for high speed train are optional.

This requirement shall not be applied to Local Area BS and Home BS.

| Parameter                               | Value                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------|
| Maximum number of HARQ transmissions    | 4                                                                     |
| RV sequence                             | 0, 2, 3, 1, 0, 2, 3, 1                                                |
| Uplink-downlink allocation for TDD      | Configuration 1 (2:2)                                                 |
| Subframes in which PUSCH is             | For FDD:                                                              |
| transmitted                             | subframe #0 and #8 in radio frames for which SFN mod 4 = 0            |
|                                         | subframe #6 in radio frames for which SFN mod 4 = 1                   |
|                                         | subframe #4 in radio frames for which SFN mod 4 = 2                   |
|                                         | subframe #2 in radio frames for which SFN mod 4 = 3                   |
|                                         |                                                                       |
|                                         | For TDD:                                                              |
|                                         | subframe #2 in each radio frame                                       |
| Subframes in which PUCCH is             | For FDD:                                                              |
| transmitted (Note 1, Note 2)            | subframe #5 in radio frames                                           |
|                                         |                                                                       |
|                                         | For TDD:                                                              |
|                                         | subframe #3 in each radio frame                                       |
| Note 1: The configuration of PUCCH (for |                                                                       |
| Note 2: The SNR values per antenna sha  | all be set to -4.5 dB and -1.5 dB for Scenario 1 and 3, respectively. |

#### 8.2.3.1 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in table 8.2.3.1-1 at the given SNR.

| Channel<br>Bandwidth<br>[MHz] | Cyclic<br>prefix | FRC<br>(Annex A) | Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-------------------------------|------------------|------------------|-----------------------------|-----------------------------|------------------------------------------------------------------|--------------------------------------|-------------|
| 1.4                           | Normal           | A3-2             | 1                           | 1                           | HST Scenario 3                                                   | 30%                                  | -1.5        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | 1.9         |
|                               |                  |                  |                             | 2                           | HST Scenario 1 Low                                               | 30%                                  | -3.9        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | -0.6        |
| 3                             | Normal           | A3-3             |                             | 1                           | HST Scenario 3                                                   | 30%                                  | -2.1        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | 1.6         |
|                               |                  |                  |                             | 2                           | HST Scenario 1 Low                                               | 30%                                  | -4.5        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | -1.0        |
| 5                             | Normal           | Normal A3-4      | 1                           | 1                           | 1 HST Scenario 3                                                 | 30%                                  | -2.6        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | 1.3         |
|                               |                  |                  |                             | 2                           | HST Scenario 1 Low                                               | 30%                                  | -5.1        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | -1.4        |
| 10                            | Normal           | Normal A3-5      | A3-5                        | 1                           | HST Scenario 3                                                   | 30%                                  | -2.7        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | 1.2         |
|                               |                  |                  |                             | 2                           | HST Scenario 1 Low                                               | 30%                                  | -5.4        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | -1.5        |
| 15                            | Normal           | A3-6             |                             | 1                           | HST Scenario 3                                                   | 30%                                  | -2.7        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | 1.2         |
|                               |                  |                  |                             | 2                           | HST Scenario 1 Low                                               | 30%                                  | -5.2        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | -1.4        |
| 20                            | Normal           | A3-7             | 1                           | 1                           | HST Scenario 3                                                   | 30%                                  | -2.7        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | 1.2         |
|                               |                  |                  |                             | 2                           | HST Scenario 1 Low                                               | 30%                                  | -5.3        |
|                               |                  |                  |                             |                             |                                                                  | 70%                                  | -1.4        |

Table 8.2.3.1-1 Minimum requirements of PUSCH for high speed train

## 8.2.4 Requirements for HARQ-ACK multiplexed on PUSCH

Two performance requirements are defined for HARQ-ACK multiplexed on PUSCH: ACK false detection and ACK missed detection requirements.

The ACK false detection probability for PUSCH is the probability that ACK is detected when data only is sent on symbols where HARQ-ACK information can be allocated (i.e. by puncturing data).

The ACK missed detection probability for HARQ-ACK multiplexed on PUSCH is the conditional probability of not detecting an ACK when it was sent on PUSCH resources.

In the tests for ACK missed detection on PUSCH, data is punctured by the control information (i.e. ACK/NACK) in both slots within subframe on symbols as specified in 36.212.

In both tests none of CQI, RI nor SRS is transmitted. Tests are to be performed for one bit HARQ-ACK information (O = 1).

#### 8.2.4.1 Minimum requirement

The ACK false detection probability as well as the ACK missed detection probability for HARQ-ACK multiplexed on PUSCH shall not exceed 1% at PUSCH power settings presented in table 8.2.4.1-1.

| Number<br>of TX<br>antennas | Number of<br>RX<br>antennas | Cyclic<br>Prefix | Propagation<br>conditions<br>and correlation<br>matrix (Annex B) | Channel<br>Bandwidth<br>[MHz] | FRC<br>(Annex A) | $I_{offset}^{HARQ-ACK}$ | SNR<br>[dB] |
|-----------------------------|-----------------------------|------------------|------------------------------------------------------------------|-------------------------------|------------------|-------------------------|-------------|
| 1                           | 2                           | Normal           | EVA 5* Low                                                       | 1.4                           | A.3-1            | 8                       | 6.8         |
|                             |                             |                  |                                                                  |                               | A.4-3            | 5                       | 13.6        |
|                             |                             |                  |                                                                  | 3                             | A.3-1            | 8                       | 6.8         |
|                             |                             |                  |                                                                  |                               | A.4-4            | 5                       | 13.1        |
|                             |                             |                  |                                                                  | 5                             | A.3-1            | 8                       | 6.9         |
|                             |                             |                  |                                                                  |                               | A.4-5            | 5                       | 12.4        |
|                             |                             |                  |                                                                  | 10                            | A.3-1            | 8                       | 6.8         |
|                             |                             |                  |                                                                  |                               | A.4-6            | 5                       | 12.4        |
|                             |                             |                  |                                                                  | 15                            | A.3-1            | 8                       | 6.8         |
|                             |                             |                  |                                                                  |                               | A.4-7            | 5                       | 12.0        |
|                             |                             |                  |                                                                  | 20                            | A.3-1            | 8                       | 6.8         |
|                             |                             |                  |                                                                  |                               | A.4-8            | 5                       | 11.9        |
|                             |                             |                  | ETU70** Low                                                      | 1.4                           | A.3-1            | 8                       | 6.6         |
|                             |                             |                  |                                                                  |                               | A.4-3            | 5                       | 13.8        |
|                             |                             |                  |                                                                  | 3                             | A.3-1            | 8                       | 6.6         |
|                             |                             |                  |                                                                  |                               | A.4-4            | 5                       | 12.9        |
|                             |                             |                  |                                                                  | 5                             | A.3-1            | 8                       | 6.5         |
|                             |                             |                  |                                                                  |                               | A.4-5            | 5                       | 12.5        |
|                             |                             |                  |                                                                  | 10                            | A.3-1            | 8                       | 6.6         |
|                             |                             |                  |                                                                  |                               | A.4-6            | 5                       | 12.3        |
|                             |                             |                  |                                                                  | 15                            | A.3-1            | 8                       | 6.7         |
|                             |                             |                  |                                                                  |                               | A.4-7            | 5                       | 12.1        |
|                             |                             |                  |                                                                  | 20                            | A.3-1            | 8                       | 6.5         |
|                             |                             |                  |                                                                  |                               | A.4-8            | 5                       | 12          |
|                             |                             |                  | BS and Medium Range E<br>BS and Home BS.                         | 3S.                           |                  |                         |             |

Table 8.2.4.1-1 Minimum requirements for HARQ-ACK multiplexed on PUSCH

# 8.2.5 Requirements for PUSCH with TTI bundling and enhanced HARQ pattern

The performance requirement of PUSCH configured with TTI bundling and enhanced HARQ pattern, as specified in 36.213 [11] clause 8 and 8.0, is determined by residual block error probability (BLER) after HARQ retransmission. The performance is measured by the required SNR at residual BLER of 2% for the FRCs listed in Annex A.11. The residual BLER is defined as follows:

$$BLER_{residual} = \frac{A}{B}$$

where:

- A is the number of incorrectly decoded transport blocks after HARQ retransmission.
- B is the number of transmitted transport blocks (retransmitted transport blocks are not counted repetitively).

The requirement is applicable for FDD. TTI bundling and enhanced HARQ pattern are enabled in the tests.

Table 8.2.5-1: Test parameters for PUSCH with TTI bundling and enhanced HARQ pattern

| Parameter                                             | Value      |
|-------------------------------------------------------|------------|
| Number of TTIs for a TTI bundle                       | 4          |
| RV sequence for 4 TTIs within a TTI bundle            | 0, 2, 3, 1 |
| HARQ round trip time                                  | 12 ms      |
| Maximum number of HARQ transmissions for a TTI bundle | 5          |

## 8.2.5.1 Minimum requirements

The residual BLER shall not exceed 2% at the given SNR in Table 8.2.5.1-1.

Table 8.2.5.1-1: Minimum requirements for PUSCH with TTI bundling and enhanced HARQ pattern

| Number            | Number            | Cyclic | Propagation<br>conditions and<br>correlation<br>matrix (Annex<br>B) | Channel Bandwidth / SNR [dB] |       |       |        |        |        |  |
|-------------------|-------------------|--------|---------------------------------------------------------------------|------------------------------|-------|-------|--------|--------|--------|--|
| of TX<br>antennas | of RX<br>antennas | Prefix |                                                                     | 1.4 MHz                      | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz |  |
| 1                 | 2                 | Normal | EVA 5 Low                                                           | -4.7                         | -4.7  | -4.7  | -4.7   | -4.6   | -4.6   |  |
|                   |                   |        | ETU 300* Low                                                        | -7.9                         | -7.9  | -8.0  | -7.9   | -8.0   | -7.9   |  |
|                   | 4                 |        | EVA 5 Low                                                           | -8.4                         | -8.3  | -8.3  | -8.3   | -8.4   | -8.4   |  |
|                   |                   |        | ETU 300* Low                                                        | -10.3                        | -10.3 | -10.3 | -10.4  | -10.3  | -10.3  |  |
|                   | 8                 |        | EVA 5 Low                                                           | -11.4                        | -11.3 | -11.4 | -11.4  | -11.3  | -11.4  |  |
|                   |                   |        | ETU 300* Low                                                        | -12.5                        | -12.4 | -12.5 | -12.4  | -12.4  | -12.5  |  |

# 8.2.6 Enhanced performance requirement type A in multipath fading propagation conditions with synchronous interference

The enhanced performance requirement type A of PUSCH is determined by a minimum required throughput for a given SINR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

The purpose is to verify the demodulation performance when the wanted PUSCH signal in the serving cell is interfered by PUSCH of one or two dominant interferer(s) applying the interference model defined in clause B.6.2.

The requirements apply to the BS supporting the enhanced performance requirements type A.

The requirements apply to the BS receiving the synchronous interference i.e., the interference is time-synchronous with the tested signal.

| Para                                                                                                                                                                                                                                             | neter             | Unit | Tested signal                                                         | Interferer 1<br>(Note 1)        | Interferer 2<br>(Note 1)        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-----------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|
| Maximum num<br>transmi                                                                                                                                                                                                                           |                   |      | 4 N/A                                                                 |                                 | N/A                             |  |  |  |
| RV seq                                                                                                                                                                                                                                           | uence             |      | 0, 2, 3, 1, 0, 2, 3, 1 N/A                                            |                                 | N/A                             |  |  |  |
|                                                                                                                                                                                                                                                  | Set 1             | dB   | N/A                                                                   | -1.11                           | -10.91                          |  |  |  |
| DIP (Note 2)                                                                                                                                                                                                                                     | Set 2             | dB   | N/A                                                                   | -0.43                           | -13.78                          |  |  |  |
| Cell Id                                                                                                                                                                                                                                          |                   |      | 0                                                                     | 1                               | 2                               |  |  |  |
| Interferen                                                                                                                                                                                                                                       | ce model          |      | N/A                                                                   | As specified in<br>clause B.6.2 | As specified in<br>clause B.6.2 |  |  |  |
| Cyclic                                                                                                                                                                                                                                           | Cyclic Prefix     |      |                                                                       | Normal                          |                                 |  |  |  |
| Uplink-downlink a                                                                                                                                                                                                                                | llocation for TDD |      | Configuration 1 (2:2)                                                 |                                 |                                 |  |  |  |
| Demodulation reference signal for<br>PUSCH                                                                                                                                                                                                       |                   |      | $\Delta_{ m ss}$ =0, $n_{ m DMRS}^{(1)}$ =0, $n_{ m DMRS,0}^{(2)}$ =0 |                                 |                                 |  |  |  |
|                                                                                                                                                                                                                                                  |                   |      | Group hopping and sequence hopping are disabled.                      |                                 |                                 |  |  |  |
| Note 1: One explicit interferer, i.e., interferer 1, is modelled for tests with 2 RX antennas. Two explicit interferers are modelled for tests with 4 or 8 RX antennas.                                                                          |                   |      |                                                                       |                                 |                                 |  |  |  |
| Note 2: The respective received energy of each interferer relative to $N'$ is defined by its associated DIP value as specified in clause B.6.1. DIP set 1 and set 2 are derived respectively in homogeneous and heterogeneous network scenarios. |                   |      |                                                                       |                                 |                                 |  |  |  |
| Note 3: All cells are time-synchronous.                                                                                                                                                                                                          |                   |      |                                                                       |                                 |                                 |  |  |  |

Table 8.2.6-1: Test parameters for enhanced performance requirement type A

#### 8.2.6.1 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 8.2.6.1-1 to 8.2.6.1-6 at the given SINR.

| Number<br>of TX                                                                                     | Number<br>of RX                                                                                                | Propagation<br>matrix | DIP<br>set          | FRC<br>(Annex | Fraction of<br>maximum | SINR<br>[dB] |            |          |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------|------------------------|--------------|------------|----------|--|
| antennas                                                                                            | antennas                                                                                                       | Tested                | Tested Interferer 1 |               |                        | A)           | throughput | (Note 3) |  |
| (Note 1)                                                                                            | (Note 1)                                                                                                       | signal                |                     |               |                        |              |            |          |  |
| 1                                                                                                   | 2                                                                                                              | EPA 5 Low             | ETU 5 Low           | N/A           | Set 2                  | A12-1        | 70%        | -4.8     |  |
|                                                                                                     |                                                                                                                | EVA 70 Low            | ETU 70 Low          | N/A           | Set 1*                 | A12-1        | 70%        | -2.0     |  |
|                                                                                                     | 4                                                                                                              | EPA 5 Low             | ETU 5 Low           | ETU 5 Low     | Set 2                  | A13-1        | 70%        | -4.1     |  |
|                                                                                                     |                                                                                                                | EVA 70 Low            | ETU 70 Low          | ETU 70 Low    | Set 1*                 | A13-1        | 70%        | -0.1     |  |
|                                                                                                     | 8                                                                                                              | EPA 5 Low             | ETU 5 Low           | ETU 5 Low     | Set 2                  | A4-3         | 70%        | -4.7     |  |
|                                                                                                     |                                                                                                                | EVA 70 Low            | ETU 70 Low          | ETU 70 Low    | Set 1*                 | A4-3         | 70%        | 0.0      |  |
| Note*: Not applicable for Local Area BS and Home BS.                                                |                                                                                                                |                       |                     |               |                        |              |            |          |  |
| Note 1: Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2. |                                                                                                                |                       |                     |               |                        |              |            |          |  |
| Note 2:                                                                                             | The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent. |                       |                     |               |                        |              |            |          |  |
| Note 3:                                                                                             | SINR corresponds to $S/N'$ of the tested signal as defined in clause 8.1.                                      |                       |                     |               |                        |              |            |          |  |

Table 8.2.6.1-1: Enhanced performance requirement type A for PUSCH, 1.4 MHz Channel Bandwidth

| Number<br>of TX | Number<br>of RX                                                                                                |                   | Propagation conditions and correlation<br>matrix (Annex B) (Note 2) |                   |            |       | Fraction of<br>maximum | SINR<br>[dB] |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------|-------------------|------------|-------|------------------------|--------------|--|--|
| antennas        | antennas                                                                                                       | Tested            | Interferer 1                                                        | Interferer 2      |            | A)    | throughput             | (Note 3)     |  |  |
| (Note 1)        | (Note 1)                                                                                                       | signal            |                                                                     |                   |            |       |                        |              |  |  |
| 1               | 2                                                                                                              | EPA 5 Low         | ETU 5 Low                                                           | N/A               | Set 2      | A12-2 | 70%                    | -5.0         |  |  |
|                 |                                                                                                                | EVA 70 Low        | ETU 70 Low                                                          | N/A               | Set 1*     | A12-2 | 70%                    | -2.3         |  |  |
|                 | 4                                                                                                              | EPA 5 Low         | ETU 5 Low                                                           | ETU 5 Low         | Set 2      | A13-2 | 70%                    | -4.4         |  |  |
|                 |                                                                                                                | EVA 70 Low        | ETU 70 Low                                                          | ETU 70 Low        | Set 1*     | A13-2 | 70%                    | -0.1         |  |  |
|                 | 8                                                                                                              | EPA 5 Low         | ETU 5 Low                                                           | ETU 5 Low         | Set 2      | A4-4  | 70%                    | -4.6         |  |  |
|                 |                                                                                                                | EVA 70 Low        | ETU 70 Low                                                          | ETU 70 Low        | Set 1*     | A4-4  | 70%                    | -0.1         |  |  |
| Note*:          | Not applicabl                                                                                                  | e for Local Area  | BS and Home B                                                       | 3S.               |            |       |                        |              |  |  |
| Note 1:         | Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.                    |                   |                                                                     |                   |            |       |                        |              |  |  |
| Note 2:         | The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent. |                   |                                                                     |                   |            |       |                        |              |  |  |
| Note 3:         | SINR corresp                                                                                                   | oonds to $S/N'$ c | of the tested sign                                                  | nal as defined ir | n clause 8 | .1.   |                        |              |  |  |

Table 8.2.6.1-2: Enhanced performance requirement type A for PUSCH, 3 MHz Channel Bandwidth

### Table 8.2.6.1-3: Enhanced performance requirement type A for PUSCH, 5 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX                                                                                                |                   |                    | DIP               | FRC        | Fraction of  | SINR                  |                  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|------------|--------------|-----------------------|------------------|--|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                                           | Tested<br>signal  | Interferer 1       | Interferer 2      | set        | (Annex<br>A) | maximum<br>throughput | [dB]<br>(Note 3) |  |  |
| 1                    | 2                                                                                                              | EPA 5 Low         | ETU 5 Low          | N/A               | Set 2      | A12-3        | 70%                   | -5.1             |  |  |
|                      |                                                                                                                | EVA 70 Low        | ETU 70 Low         | N/A               | Set 1*     | A12-3        | 70%                   | -2.5             |  |  |
|                      | 4                                                                                                              | EPA 5 Low         | ETU 5 Low          | ETU 5 Low         | Set 2      | A13-3        | 70%                   | -4.1             |  |  |
|                      |                                                                                                                | EVA 70 Low        | ETU 70 Low         | ETU 70 Low        | Set 1*     | A13-3        | 70%                   | 0.1              |  |  |
|                      | 8                                                                                                              | EPA 5 Low         | ETU 5 Low          | ETU 5 Low         | Set 2      | A4-5         | 70%                   | -4.7             |  |  |
|                      |                                                                                                                | EVA 70 Low        | ETU 70 Low         | ETU 70 Low        | Set 1*     | A4-5         | 70%                   | -0.5             |  |  |
| Note*:               | Not applicabl                                                                                                  | e for Local Area  | BS and Home I      | BS.               |            |              |                       |                  |  |  |
| Note 1:              | Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.                    |                   |                    |                   |            |              |                       |                  |  |  |
| Note 2:              | The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent. |                   |                    |                   |            |              |                       |                  |  |  |
| Note 3:              | SINR corresp                                                                                                   | bonds to $S/N'$ c | of the tested sign | nal as defined ir | n clause 8 | 5.1.         |                       |                  |  |  |

| Table 8.2.6.1-4: Enhanced | performance req | uirement type / | A for PUSCH. | 10 MHz Channel Bandwidth |
|---------------------------|-----------------|-----------------|--------------|--------------------------|
|                           |                 |                 |              |                          |

| Number<br>of TX      | Number<br>of RX                                                                                                | Propagation<br>matrix | DIP<br>set       | FRC<br>(Annex     | Fraction of maximum | SINR<br>[dB] |            |          |  |
|----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------|---------------------|--------------|------------|----------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                                           | Tested<br>signal      | Interferer 1     | Interferer 2      |                     | A)           | throughput | (Note 3) |  |
| 1                    | 2                                                                                                              | EPA 5 Low             | ETU 5 Low        | N/A               | Set 2               | A12-4        | 70%        | -5.4     |  |
|                      |                                                                                                                | EVA 70 Low            | ETU 70 Low       | N/A               | Set 1*              | A12-4        | 70%        | -2.7     |  |
|                      | 4                                                                                                              | EPA 5 Low             | ETU 5 Low        | ETU 5 Low         | Set 2               | A13-4        | 70%        | -4.2     |  |
|                      |                                                                                                                | EVA 70 Low            | ETU 70 Low       | ETU 70 Low        | Set 1*              | A13-4        | 70%        | -0.1     |  |
|                      | 8                                                                                                              | EPA 5 Low             | ETU 5 Low        | ETU 5 Low         | Set 2               | A4-6         | 70%        | -4.5     |  |
|                      |                                                                                                                | EVA 70 Low            | ETU 70 Low       | ETU 70 Low        | Set 1*              | A4-6         | 70%        | -0.2     |  |
| Note*:               | Not applicabl                                                                                                  | e for Local Area      | BS and Home I    | 3S.               |                     |              |            |          |  |
| Note 1:              | Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.                    |                       |                  |                   |                     |              |            |          |  |
| Note 2:              | The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent. |                       |                  |                   |                     |              |            |          |  |
| Note 3:              | SINR corresp                                                                                                   | bonds to $S/N'$ c     | f the tested sig | nal as defined ir | n clause 8          | .1.          |            |          |  |

| Number<br>of TX | Number<br>of RX                                                                                                | • •              | Propagation conditions and correlation<br>matrix (Annex B) (Note 2) |                   |            |       | Fraction of<br>maximum | SINR<br>[dB] |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------|-------------------|------------|-------|------------------------|--------------|--|--|
| antennas        | antennas                                                                                                       | Tested           | Interferer 1                                                        | Interferer 2      |            | A)    | throughput             | (Note 3)     |  |  |
| (Note 1)        | (Note 1)                                                                                                       | signal           |                                                                     |                   |            |       |                        |              |  |  |
| 1               | 2                                                                                                              | EPA 5 Low        | ETU 5 Low                                                           | N/A               | Set 2      | A12-5 | 70%                    | -5.5         |  |  |
|                 |                                                                                                                | EVA 70 Low       | ETU 70 Low                                                          | N/A               | Set 1*     | A12-5 | 70%                    | -2.7         |  |  |
|                 | 4                                                                                                              | EPA 5 Low        | ETU 5 Low                                                           | ETU 5 Low         | Set 2      | A13-5 | 70%                    | -4.0         |  |  |
|                 |                                                                                                                | EVA 70 Low       | ETU 70 Low                                                          | ETU 70 Low        | Set 1*     | A13-5 | 70%                    | 0.0          |  |  |
|                 | 8                                                                                                              | EPA 5 Low        | ETU 5 Low                                                           | ETU 5 Low         | Set 2      | A4-7  | 70%                    | -4.5         |  |  |
|                 |                                                                                                                | EVA 70 Low       | ETU 70 Low                                                          | ETU 70 Low        | Set 1*     | A4-7  | 70%                    | -0.3         |  |  |
| Note*:          | Not applicabl                                                                                                  | e for Local Area | BS and Home I                                                       | 3S.               |            |       |                        |              |  |  |
|                 | Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.                    |                  |                                                                     |                   |            |       |                        |              |  |  |
| Note 2:         | The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent. |                  |                                                                     |                   |            |       |                        |              |  |  |
| Note 3:         | SINR corresp                                                                                                   | onds to $S/N'$ c | f the tested sig                                                    | nal as defined ir | n clause 8 | 3.1.  |                        |              |  |  |

Table 8.2.6.1-5: Enhanced performance requirement type A for PUSCH, 15 MHz Channel Bandwidth

#### Table 8.2.6.1-6: Enhanced performance requirement type A for PUSCH, 20 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX                                                                             | Propagation conditions and correlation<br>matrix (Annex B) (Note 2) |                    |                   | DIP<br>set | FRC<br>(Annex  | Fraction of<br>maximum | SINR<br>[dB] |  |
|----------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------|-------------------|------------|----------------|------------------------|--------------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                        | Tested<br>signal                                                    | Interferer 1       | Interferer 2      |            | A)             | throughput             | (Note 3)     |  |
| 1                    | 2                                                                                           | EPA 5 Low                                                           | ETU 5 Low          | N/A               | Set 2      | A12-6          | 70%                    | -5.7         |  |
|                      |                                                                                             | EVA 70 Low                                                          | ETU 70 Low         | N/A               | Set 1*     | A12-6          | 70%                    | -3.0         |  |
|                      | 4                                                                                           | EPA 5 Low                                                           | ETU 5 Low          | ETU 5 Low         | Set 2      | A13-6          | 70%                    | -4.5         |  |
|                      |                                                                                             | EVA 70 Low                                                          | ETU 70 Low         | ETU 70 Low        | Set 1*     | A13-6          | 70%                    | -0.4         |  |
|                      | 8                                                                                           | EPA 5 Low                                                           | ETU 5 Low          | ETU 5 Low         | Set 2      | A4-8           | 70%                    | -4.6         |  |
|                      |                                                                                             | EVA 70 Low                                                          | ETU 70 Low         | ETU 70 Low        | Set 1*     | A4-8           | 70%                    | -0.1         |  |
| Note*:               | Not applicabl                                                                               | e for Local Area                                                    | BS and Home E      | 3S.               |            |                |                        |              |  |
| Note 1:              | Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2. |                                                                     |                    |                   |            |                |                        |              |  |
| Note 2:              | The propagat                                                                                | tion conditions fo                                                  | or the tested sig  | nal, interferer 1 | and interf | erer 2 are sta | atistically indep      | endent.      |  |
| Note 3:              | SINR corresp                                                                                | bonds to $S/N'$ c                                                   | of the tested sign | hal as defined ir | n clause 8 | .1.            |                        |              |  |

# 8.2.6A Enhanced performance requirement type A in multipath fading propagation conditions with asynchronous interference

The enhanced performance requirement type A of PUSCH is determined by a minimum required throughput for a given SINR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

The purpose is to verify the demodulation performance when the wanted PUSCH signal in the serving cell is interfered by PUSCH of two interferers from the same interfering cell, applying the interference model defined in clause B.6.3.

The requirements apply to the BS supporting the enhanced performance requirements type A.

The requirements apply to the BS receiving the asynchronous interference i.e., the interference is time-asynchronous with the tested signal.

| Parameter                                                                  | Unit          | Tested signal                                                                                                                | Interferer 1-1<br>(Note 1)      | Interferer 1-2<br>(Note 1)      |  |  |
|----------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|
| Maximum number of HARQ<br>transmissions                                    |               | 4                                                                                                                            | N/A                             | N/A                             |  |  |
| RV sequence                                                                |               | 0, 2, 3, 1, 0, 2, 3, 1                                                                                                       | N/A                             | N/A                             |  |  |
| DIP (Note 2)                                                               | dB            | N/A                                                                                                                          | -0.43                           | -0.43                           |  |  |
| Cell Id                                                                    |               | 0                                                                                                                            | 1                               | 1                               |  |  |
| Interference model                                                         |               | N/A                                                                                                                          | As specified in<br>clause B.6.3 | As specified in<br>clause B.6.3 |  |  |
| Cyclic Prefix                                                              |               | Normal                                                                                                                       |                                 |                                 |  |  |
| Demodulation reference signal for<br>PUSCH                                 |               | $\Delta_{\rm ss}$ =0, $n_{\rm DMRS}^{(1)}$ =0, $n_{\rm DMRS,0}^{(2)}$ =0<br>Group hopping and sequence hopping are disabled. |                                 |                                 |  |  |
| Note 1: Interferer 1-1 and interferer 1-<br>respectively in the even subfr |               | ected to the same cell and                                                                                                   |                                 |                                 |  |  |
| Note 2: The respective received ener<br>value as specified in clause B     | 0,            | nterferer relative to $N'$ is                                                                                                | s defined by its as             | sociated DIP                    |  |  |
| Note 3: The transmissions of both intensional by 0.33 ms.                  | erferer 1-1 a | nd interferer 1-2 are dela                                                                                                   | yed with respect to             | o the tested                    |  |  |

Table 8.2.6A-1: Test parameters for enhanced performance requirement type A

### 8.2.6A.1 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 8.2.6A.1-1 to 8.2.6A.1-6 at the given SINR.

Table 8.2.6A.1-1 Enhanced performance requirement type A for PUSCH, 1.4 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX      |                    | Propagation conditions and correlation<br>matrix (Annex B) (Note 2) |                      | FRC<br>(Annex A) | Fraction of<br>maximum | SINR<br>[dB] |  |
|----------------------|----------------------|--------------------|---------------------------------------------------------------------|----------------------|------------------|------------------------|--------------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1) | Tested signal      | Interferer 1-1                                                      | Interferer 1-2       |                  | throughput             | (Note 3)     |  |
| 1                    | 2                    | EPA 5 Low          | ETU 5 Low                                                           | ETU 5 Low            | A12-1            | 70%                    | -2.3         |  |
|                      | 4                    | EPA 5 Low          | ETU 5 Low                                                           | ETU 5 Low            | A13-1            | 70%                    | -1.4]        |  |
|                      | 8                    | EPA 5 Low          | ETU 5 Low                                                           | ETU 5 Low            | A4-3             | 70%                    | -2.2         |  |
| Note 1:              | Antenna conf         | figuration applies | for each of the te                                                  | sted signal, interfe | erer 1-1 and in  | terferer 1-2.          |              |  |
| Note 2:              |                      |                    |                                                                     |                      |                  |                        |              |  |
| Note 3:              | SINR corresp         | bonds to $S/N'$ of | the tested signal                                                   | as defined in clau   | ıse 8.1.         |                        |              |  |

#### Table 8.2.6A.1-2 Enhanced performance requirement type A for PUSCH, 3 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX                                                                                                       |                   | n conditions and<br>ix (Annex B) (No | FRC<br>(Annex A)     | Fraction of<br>maximum | SINR<br>[dB]  |          |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------|----------------------|------------------------|---------------|----------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                                                  | Tested signal     | Interferer 1-1                       | Interferer 1-2       |                        | throughput    | (Note 3) |  |
| 1                    | 2                                                                                                                     | EPA 5 Low         | ETU 5 Low                            | ETU 5 Low            | A12-2                  | 70%           | -2.5     |  |
|                      | 4                                                                                                                     | EPA 5 Low         | ETU 5 Low                            | ETU 5 Low            | A13-2                  | 70%           | -1.6     |  |
|                      | 8                                                                                                                     | EPA 5 Low         | ETU 5 Low                            | ETU 5 Low            | A4-4                   | 70%           | -2.2     |  |
| Note 1:              | Antenna conf                                                                                                          | iguration applies | for each of the te                   | sted signal, interfe | erer 1-1 and int       | terferer 1-2. |          |  |
|                      | 2: The propagation conditions for the tested signal, interferer 1-1 and interferer 1-2 are statistically independent. |                   |                                      |                      |                        |               |          |  |
| Note 3:              | SINR corresp                                                                                                          | onds to $S/N'$ of | the tested signal                    | as defined in clau   | use 8.1.               |               |          |  |

| Number<br>of TX      | Number<br>of RX      |                      | Propagation conditions and correlation<br>matrix (Annex B) (Note 2) |                      |                 | Fraction of<br>maximum | SINR<br>[dB] |  |
|----------------------|----------------------|----------------------|---------------------------------------------------------------------|----------------------|-----------------|------------------------|--------------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1) | Tested signal        | Interferer 1-1                                                      | Interferer 1-2       |                 | throughput             | (Note 3)     |  |
| 1                    | 2                    | EPA 5 Low            | ETU 5 Low                                                           | ETU 5 Low            | A12-3           | 70%                    | -2.6         |  |
|                      | 4                    | EPA 5 Low            | ETU 5 Low                                                           | ETU 5 Low            | A13-3           | 70%                    | -1.3         |  |
|                      | 8                    | EPA 5 Low            | ETU 5 Low                                                           | ETU 5 Low            | A4-5            | 70%                    | -2.1         |  |
| Note 1: A            | ntenna config        | guration applies for | or each of the tes                                                  | ted signal, interfer | er 1-1 and inte | erferer 1-2.           |              |  |
|                      |                      |                      |                                                                     |                      |                 |                        |              |  |
| Note 3:              | SINR corresp         | onds to $S/N'$ of    | the tested signal                                                   | as defined in clau   | use 8.1.        |                        |              |  |

Table 8.2.6A.1-3 Enhanced performance requirement type A for PUSCH, 5 MHz Channel Bandwidth

### Table 8.2.6A.1-4: Enhanced performance requirement type A for PUSCH, 10 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX                                                                                                    |                   | n conditions and<br>rix (Annex B) (No | FRC<br>(Annex A)     | Fraction of<br>maximum | SINR<br>[dB] |          |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|----------------------|------------------------|--------------|----------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                                               | Tested signal     | Interferer 1-1                        | Interferer 1-2       |                        | throughput   | (Note 3) |  |
| 1                    | 2                                                                                                                  | EPA 5 Low         | ETU 5 Low                             | ETU 5 Low            | A12-4                  | 70%          | -2.8     |  |
|                      | 4                                                                                                                  | EPA 5 Low         | ETU 5 Low                             | ETU 5 Low            | A13-4                  | 70%          | -1.3     |  |
|                      | 8                                                                                                                  | EPA 5 Low         | ETU 5 Low                             | ETU 5 Low            | A4-6                   | 70%          | -1.9     |  |
|                      |                                                                                                                    |                   |                                       | sted signal, interfe |                        |              |          |  |
|                      | The propagation conditions for the tested signal, interferer 1-1 and interferer 1-2 are statistically independent. |                   |                                       |                      |                        |              |          |  |
| Note 3:              | SINR corresp                                                                                                       | onds to $S/N'$ of | the tested signal                     | as defined in clau   | ise 8.1.               |              |          |  |

### Table 8.2.6A.1-5: Enhanced performance requirement type A for PUSCH, 15 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX                                                                                                    |                   | n conditions and<br>ix (Annex B) (No |                      | FRC<br>(Annex A) | Fraction of<br>maximum | SINR<br>[dB] |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------|----------------------|------------------|------------------------|--------------|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                                               | Tested signal     | Interferer 1-1                       | Interferer 1-2       |                  | throughput             | (Note 3)     |  |
| 1                    | 2                                                                                                                  | EPA 5 Low         | ETU 5 Low                            | ETU 5 Low            | A12-5            | 70%                    | -2.7         |  |
|                      | 4                                                                                                                  | EPA 5 Low         | ETU 5 Low                            | ETU 5 Low            | A13-5            | 70%                    | -1.1         |  |
|                      | 8                                                                                                                  | EPA 5 Low         | ETU 5 Low                            | ETU 5 Low            | A4-7             | 70%                    | -1.4         |  |
| Note 1:              | Antenna conf                                                                                                       | iguration applies | for each of the te                   | sted signal, interfe | erer 1-1 and int | terferer 1-2.          |              |  |
|                      | The propagation conditions for the tested signal, interferer 1-1 and interferer 1-2 are statistically independent. |                   |                                      |                      |                  |                        |              |  |
| Note 3:              | SINR corresp                                                                                                       | onds to $S/N'$ of | the tested signal                    | as defined in clau   | ise 8.1.         |                        |              |  |

### Table 8.2.6A.1-6: Enhanced performance requirement type A for PUSCH, 20 MHz Channel Bandwidth

| Number<br>of TX      | Number<br>of RX                                                                                                    |                    | n conditions and<br>ix (Annex B) (No | FRC<br>(Annex A)     | Fraction of<br>maximum | SINR<br>[dB]  |          |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------|----------------------|------------------------|---------------|----------|--|--|
| antennas<br>(Note 1) | antennas<br>(Note 1)                                                                                               | Tested signal      | Interferer 1-1                       | Interferer 1-2       |                        | throughput    | (Note 3) |  |  |
| 1                    | 2                                                                                                                  | EPA 5 Low          | ETU 5 Low                            | ETU 5 Low            | A12-6                  | 70%           | -2.9     |  |  |
|                      | 4                                                                                                                  | EPA 5 Low          | ETU 5 Low                            | ETU 5 Low            | A13-6                  | 70%           | -1.1     |  |  |
|                      | 8                                                                                                                  | EPA 5 Low          | ETU 5 Low                            | ETU 5 Low            | A4-8                   | 70%           | -1.3     |  |  |
| Note 1:              | Antenna conf                                                                                                       | figuration applies | for each of the te                   | sted signal, interfe | erer 1-1 and in        | terferer 1-2. |          |  |  |
| Note 2:              | The propagation conditions for the tested signal, interferer 1-1 and interferer 1-2 are statistically independent. |                    |                                      |                      |                        |               |          |  |  |
| Note 3:              | SINR corresp                                                                                                       | bonds to $S/N'$ of | the tested signal                    | as defined in clau   | use 8.1.               |               |          |  |  |

### 8.2.7 Requirements for PUSCH supporting coverage enhancement

For the parameters specified in Table 8.2.7-1 the throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 8.2.7-2 to 8.2.7-11 at the given SNR.

| Parameter                               | unit              | Mode A                     | Mode B                                                                                                                                      |
|-----------------------------------------|-------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum number of HARQ<br>transmissions |                   | 4                          | 2                                                                                                                                           |
| RV sequences                            |                   | 0, 2, 3, 1, 0, 2, 3, 1     | FDD: 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3,<br>3, 3, 1, 1, 1, 1<br>TDD: 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2,<br>3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 |
| Number of PUSCH repetitions             |                   | 8                          | 256                                                                                                                                         |
| Frequency hopping                       |                   | ON                         | ON                                                                                                                                          |
| Frequency hopping interval              | subframes         | 4: FDD<br>5: TDD           | 4: FDD<br>5: TDD                                                                                                                            |
| Note 1: Guard period shall be of        | created according | ng to TS36.211, 5.2.5 [12] |                                                                                                                                             |

#### Table 8.2.7-1 Test Parameters for PUSCH

### Table 8.2.7-2 Minimum requirements for PUSCH, 3 MHz Channel Bandwidth for Mode A, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode A  | EPA 5Hz Low                                                      | A3-2             | 70%                                  | -6.2        |

### Table 8.2.7-3 Minimum requirements for PUSCH, 5 MHz Channel Bandwidth for Mode A, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode A  | EPA 5Hz Low                                                      | A3-2             | 70%                                  | -6.6        |

### Table 8.2.7-4 Minimum requirements for PUSCH, 10 MHz Channel Bandwidth for Mode A, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode A  | EPA 5Hz Low                                                      | A3-2             | 70%                                  | -6.9        |

### Table 8.2.7-5 Minimum requirements for PUSCH, 15 MHz Channel Bandwidth for Mode A, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode A  | EPA 5Hz Low                                                      | A3-2             | 70%                                  | -6.9        |

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode A  | EPA 5Hz Low                                                      | A3-2             | 70%                                  | -7.0        |

### Table 8.2.7-6 Minimum requirements for PUSCH, 20 MHz Channel Bandwidth for Mode A, 1Tx

#### Table 8.2.7-7 Minimum requirements for PUSCH, 3 MHz Channel Bandwidth for Mode B, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode B  | ETU 1Hz Low                                                      | A3-1             | 70%                                  | -15.0       |

### Table 8.2.7-8 Minimum requirements for PUSCH, 5 MHz Channel Bandwidth for Mode B, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode B  | ETU 1Hz Low                                                      | A3-1             | 70%                                  | -15.2       |

#### Table 8.2.7-9 Minimum requirements for PUSCH, 10 MHz Channel Bandwidth for Mode B, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode B  | ETU 1Hz Low                                                      | A3-1             | 70%                                  | -15.3       |

#### Table 8.2.7-10 Minimum requirements for PUSCH, 15 MHz Channel Bandwidth for Mode B, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode B  | ETU 1Hz Low                                                      | A3-1             | 70%                                  | -15.1       |

### Table 8.2.7-11 Minimum requirements for PUSCH, 20 MHz Channel Bandwidth for Mode B, 1Tx

| Number of<br>TX antennas | Number of RX<br>antennas | CE Mode | Propagation<br>conditions and<br>correlation matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|--------------------------|--------------------------|---------|------------------------------------------------------------------|------------------|--------------------------------------|-------------|
| 1                        | 2                        | Mode B  | ETU 1Hz Low                                                      | A3-1             | 70%                                  | -15.2       |

### 8.2.8 Requirements for PUSCH of Frame structure type 3

For the parameters specified in Table 8.2.8-1 the throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 8.2.8-2 at the given SNR when the PUSCH is transmitted with Frame structure type 3.

| Parameter                                          | Unit                                                                                                                                                                                                                                                                                              | Value (NOTE 1)                                                                                                                                  |  |  |  |  |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Maximum number of HARQ                             |                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                               |  |  |  |  |  |  |  |  |
| transmissions                                      |                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                               |  |  |  |  |  |  |  |  |
| RV sequences                                       |                                                                                                                                                                                                                                                                                                   | [0,2,0,2]                                                                                                                                       |  |  |  |  |  |  |  |  |
| PUSCH starting position<br>(NOTE 2)                |                                                                                                                                                                                                                                                                                                   | '01'                                                                                                                                            |  |  |  |  |  |  |  |  |
| PUSCH ending symbol<br>(NOTE 3)                    |                                                                                                                                                                                                                                                                                                   | ʻ0'                                                                                                                                             |  |  |  |  |  |  |  |  |
| periodicity of 10ms. Va<br>transmission on the cor | lue 1 in the bir                                                                                                                                                                                                                                                                                  | as the bitmap {1111000000} with the<br>tmap indicates there is PUSCH data<br>brames; Value 0 indicates that there<br>e corresponding subframes. |  |  |  |  |  |  |  |  |
| transmission subframe<br>subframes indicated in    | is no PUSCH data transmission on the corresponding subframes.<br>NOTE 2: The PUSCH starting position is applicable to only the first PUSCH<br>transmission subframe indicated in the bitmap. For other transmission<br>subframes indicated in the bitmap, PUSCH starting position is at symbol 0. |                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                    |                                                                                                                                                                                                                                                                                                   | dicates the configuration of the last on subframe indicated in the bitmap.                                                                      |  |  |  |  |  |  |  |  |

Table 8.2.8-1: Test Parameters for PUSCH with frame structure type 3

Table 8.2.8-2: Minimum requirements for PUSCH, 20 MHz Channel Bandwidth, 1Tx

| Number of TX<br>antennas | Number of RX<br>antennas | Cyclic prefix | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex A) | Fraction of<br>nominal<br>maximum<br>throughput<br>(NOTE 1) | SNR<br>[dB] |
|--------------------------|--------------------------|---------------|------------------------------------------------------------------------|------------------|-------------------------------------------------------------|-------------|
| 1                        | 2                        | Normal        | EPA 5Hz Low                                                            | A20-1            | 70%                                                         | -0.2        |
|                          |                          |               |                                                                        | A20-2            | 70%                                                         | 12.1        |
|                          | 4                        | Normal        | EPA 5Hz Low                                                            | A20-1            | 70%                                                         | -3.2        |
|                          |                          |               |                                                                        | A20-2            | 70%                                                         | 8.3         |

NOTE1: Fraction of nominal maximum throughput is calculated based on the actual transmitted PUSCH

## 8.3 Performance requirements for PUCCH

### 8.3.1 DTX to ACK performance

The DTX to ACK requirement is valid for any number of receive antennas, for all frame structures and for any channel bandwidth.

The DTX to ACK probability for multi user PUCCH case denotes the probability that ACK is detected when nothing is sent on the wanted signal and the interfering signals are present.

### 8.3.1.1 Minimum requirement

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing was sent, shall not exceed 1%, where the performance measure definition is as follows:

Prob(PUCCH DTX 
$$\rightarrow$$
 ACK bits) =  $\frac{\#(\text{false ACK bits})}{\#(\text{PUCCH DTX}) \times \#(\text{ACK/NAK bits})} \le 10^{-2}$ 

where:

- #(false ACK bits) denotes the number of detected ACK bits.
- #(ACK/NACK bits) denotes the number of encoded bits per sub-frame
- #(PUCCH DTX) denotes the number of DTX occasions

# 8.3.2 ACK missed detection requirements for single user PUCCH format 1a

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

ACK/NACK repetitions are disabled for PUCCH transmission.

Test parameters for PUCCH transmission on two antenna ports are presented in Annex A.10.

### 8.3.2.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.2.1-1 for 1Tx and in table 8.3.2.1-2 for 2Tx case.

| Number            | Number            | Cyclic   | Propagation                                             |         | Chann | el Bandwi | dth / SNR | [dB]      |        |
|-------------------|-------------------|----------|---------------------------------------------------------|---------|-------|-----------|-----------|-----------|--------|
| of TX<br>antennas | of RX<br>antennas | Prefix   | conditions<br>and<br>correlation<br>matrix<br>(Annex B) | 1.4 MHz | 3 MHz | 5 MHz     | 10<br>MHz | 15<br>MHz | 20 MHz |
| 1                 | 2                 | Normal   | EPA 5 Low                                               | -2.5    | -3.9  | -4.8      | -5.4      | -5.3      | -5.1   |
|                   |                   |          | EVA 5 Low                                               | -4.5    | -5.1  | -5.1      | -5.0      | -5.1      | -5.1   |
|                   |                   |          | EVA 70 Low                                              | -4.9    | -5.2  | -5.2      | -5.1      | -5.2      | -5.1   |
|                   |                   |          | ETU 300* Low                                            | -5.0    | -5.1  | -4.9      | -5.0      | -5.2      | -5.2   |
|                   |                   | Extended | ETU 70* Low                                             | -4.2    | -4.3  | -4.1      | -4.3      | -4.2      | -4.3   |
|                   | 4                 | Normal   | EPA 5 Low                                               | -7.9    | -8.4  | -8.7      | -8.9      | -8.9      | -9.0   |
|                   |                   |          | EVA 5 Low                                               | -8.8    | -9.1  | -9.1      | -8.8      | -8.9      | -8.9   |
|                   |                   |          | EVA 70 Low                                              | -8.9    | -9.0  | -9.0      | -8.8      | -9.0      | -8.8   |
|                   |                   |          | ETU 300* Low                                            | -8.7    | -8.9  | -8.7      | -8.7      | -8.9      | -8.8   |
|                   |                   | Extended | ETU 70* Low                                             | -7.9    | -8.1  | -7.9      | -8.1      | -8.0      | -8.0   |
|                   | 8                 | Normal   | EPA 5 Low                                               | -11.2   | -11.5 | -12.2     | -12.3     | -12.3     | -12.3  |
|                   |                   |          | EVA 5 Low                                               | -12.0   | -12.0 | -12.1     | -12.1     | -12.3     | -12.2  |
|                   |                   |          | EVA 70 Low                                              | -12.0   | -12.1 | -12.2     | -12.1     | -12.3     | -12.1  |
|                   |                   |          | ETU 300* Low                                            | -11.6   | -11.6 | -11.6     | -11.8     | -11.6     | -11.8  |
|                   |                   | Extended | ETU 70* Low                                             | -10.5   | -10.7 | -10.6     | -10.7     | -10.6     | -10.6  |

 Table 8.3.2.1-1 Minimum requirements for single user PUCCH format 1a, 1Tx

Note\*: Not applicable for Local Area BS and Home BS.

Table 8.3.2.1-2 Minimum requirements for single user PUCCH format 1a, 2Tx

| Number            | Number            | Cyclic | Propagation                                             | Channel Bandwidth / SNR [dB] |       |       |        |        |        |  |
|-------------------|-------------------|--------|---------------------------------------------------------|------------------------------|-------|-------|--------|--------|--------|--|
| of TX<br>antennas | of RX<br>antennas | Prefix | conditions<br>and<br>correlation<br>matrix<br>(Annex B) | 1.4<br>MHz                   | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz |  |
| 2                 | 2                 | Normal | EPA 5 Low                                               | -4.6                         | -4.9  | -6.4  | -6.5   | -6.5   | -6.7   |  |
|                   |                   |        | EVA 70 Low                                              | -5.8                         | -5.9  | -6.4  | -5.9   | -6.4   | -6.4   |  |
|                   | 4                 | Normal | EPA 5 Low                                               | -8.5                         | -8.5  | -9.3  | -9.5   | -9.5   | -9.5   |  |
|                   |                   |        | EVA 70 Low                                              | -9.0                         | -9.2  | -9.3  | -9.3   | -9.4   | -9.5   |  |
| 2                 | 8                 | Normal | EPA 5 Low                                               | -11.4                        | -11.5 | -11.9 | -12.0  | -11.9  | -12.0  |  |
| 2                 |                   |        | EVA 70 Low                                              | -11.7                        | -11.8 | -11.8 | -11.8  | -11.8  | -11.8  |  |

### 8.3.3 CQI performance requirements for PUCCH format 2

The CQI block error probability (BLER) is defined as the conditional probability of incorrectly decoding the CQI information when the CQI information is sent. All CQI information shall be decoded (no exclusion due to DTX).

The CQI information bit payload per sub-frame is equal to 4 bits.

Test parameters for PUCCH transmission on two antenna ports are presented in Annex A.10.

### 8.3.3.1 Minimum requirements

The CQI block error probability shall not exceed 1% at the SNR given in table 8.3.3.1-1 for 1Tx and in table 8.3.3.1-2 for 2Tx case.

| Number                                                      | Number            | Cyclic      | Propagation                                          |         | Channel Bandwidth / SNR [dB] |       |           |           |        |  |  |
|-------------------------------------------------------------|-------------------|-------------|------------------------------------------------------|---------|------------------------------|-------|-----------|-----------|--------|--|--|
| of TX<br>antennas                                           | of RX<br>antennas | Prefix      | conditions and<br>correlation<br>matrix (Annex<br>B) | 1.4 MHz | 3 MHz                        | 5 MHz | 10<br>MHz | 15<br>MHz | 20 MHz |  |  |
| 1                                                           | 2                 | Normal      | EVA 5* Low                                           | -3.7    | -4.1                         | -4.4  | -4.0      | -4.2      | -4.2   |  |  |
|                                                             |                   |             | ETU 70** Low                                         | -3.9    | -4.4                         | -4.2  | -4.4      | -4.4      | -4.4   |  |  |
| Note*: Not applicable for Wide Area BS and Medium Range BS. |                   |             |                                                      |         |                              |       |           |           |        |  |  |
| Note**:                                                     | Not applicab      | le for Loca | I Area BS and Hom                                    | e BS.   |                              |       |           |           |        |  |  |

Table 8.3.3.1-1 Minimum requirements for PUCCH format 2, 1Tx

| Table 8.3.3.1-2 Minimum requirements for | for PUCCH format 2, 2Tx |
|------------------------------------------|-------------------------|
|------------------------------------------|-------------------------|

| Number            | Number            | Cyclic | Propagation                                             | ppagation Channel Bandwidth / SNR [dB] |       |       |        |        |        |  |
|-------------------|-------------------|--------|---------------------------------------------------------|----------------------------------------|-------|-------|--------|--------|--------|--|
| of TX<br>antennas | of RX<br>antennas | Prefix | conditions<br>and<br>correlation<br>matrix<br>(Annex B) | 1.4 MHz                                | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz |  |
| 2                 | 2                 | Normal | EVA 5 Low                                               | -5.7                                   | -5.6  | -5.9  | -5.8   | -5.9   | -5.9   |  |

### 8.3.4 ACK missed detection requirements for multi user PUCCH format 1a

The ACK missed detection probability is the conditional probability of not detecting an ACK on the wanted signal in the presence of the wanted signal and the interfering signals.

Test parameters for multi user PUCCH case are presented in Annex A.9.

ACK/NACK repetitions are disabled for PUCCH transmission.

### 8.3.4.1 Minimum requirement

The ACK missed detection probability for multi user PUCCH case shall not exceed 1% at the SNR given in table 8.3.4.1-1.

| Number            | Number            | Cyclic | Propagation                                             | Channel Bandwidth / SNR [dB] |       |       |        |        |        |  |  |
|-------------------|-------------------|--------|---------------------------------------------------------|------------------------------|-------|-------|--------|--------|--------|--|--|
| of TX<br>antennas | of RX<br>antennas | Prefix | conditions<br>and<br>correlation<br>matrix<br>(Annex B) | 1.4 MHz                      | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz |  |  |
| 1                 | 2                 | Normal | ETU 70* Low                                             | -4.1                         | -4.4  | -4.4  | -4.6   | -4.6   | -4.4   |  |  |
| Note*: N          | lot applicable    |        |                                                         |                              |       |       |        |        |        |  |  |

# 8.3.5 ACK missed detection requirements for PUCCH format 1b with Channel Selection

The ACK missed detection probability is the probability of not detecting an ACK bit when an ACK bit was sent on particular channel, with each missed ACK bit counted as one error.

The number of encoded ACK bits per sub-frame is equal to 4 bits (AAAA),

ACK/NACK repetitions are disabled for PUCCH transmission.

This requirement is applicable for FDD and TDD.

### 8.3.5.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.5.1-1.

| Number<br>of Tx<br>antennas | Number            | Cyclic | Cyclic Propagation<br>Prefix Conditions<br>and<br>correlation<br>matrix<br>(Annex B) | Channel Bandwidth / SNR [dB] |      |      |        |       |       |  |  |
|-----------------------------|-------------------|--------|--------------------------------------------------------------------------------------|------------------------------|------|------|--------|-------|-------|--|--|
|                             | of RX<br>antennas | Prefix |                                                                                      | 1.4MHz                       | 3MHz | 5MHz | 10 MHz | 15MHz | 20MHz |  |  |
| 1                           | 2                 | Normal | EPA 5 Low                                                                            | -                            | -    | -    | -4.5   | -4.6  | -4.6  |  |  |
|                             |                   |        | EVA70 Low                                                                            | -                            | -    | -    | -4.3   | -4.5  | -4.5  |  |  |
|                             | 4                 | Normal | EPA 5 Low                                                                            | -                            | -    | -    | -8.4   | -8.5  | -8.6  |  |  |
|                             |                   |        | EVA70 Low                                                                            | -                            | -    | -    | -8.3   | -8.5  | -8.5  |  |  |
|                             | 8                 | Normal | EPA 5 Low                                                                            | -                            | -    | -    | -11.7  | -11.8 | -11.8 |  |  |
|                             |                   |        | EVA70 Low                                                                            | -                            | -    | -    | -11.5  | -11.7 | -11.6 |  |  |

### 8.3.6 ACK missed detection requirements for PUCCH format 3

The ACK missed detection probability is the probability of not detecting an ACK bit when an ACK bit was sent on the particular bit position, with each missed ACK bit being accounted as one error.

The number of encoded ACK/NACK bits per sub-frame is defined for two cases as presented below:

- 4AN bits: applicable for FDD and TDD
- 16AN bits : applicable for TDD

ACK/NACK repetitions are disabled for PUCCH transmission. Random codeword selection is assumed.

### 8.3.6.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.6.1-1 and table 8.3.6.1-2, for 4 and 16 AN bits per sub-frame, respectively.

| Number<br>of Tx   | Number<br>of RX | Cyclic<br>Prefix                          |           | Channel Bandwidth / SNR [dB] |      |        |       |       |       |  |  |
|-------------------|-----------------|-------------------------------------------|-----------|------------------------------|------|--------|-------|-------|-------|--|--|
| antennas antennas | Frenx           | and<br>correlation<br>matrix<br>(Annex B) | 1.4MHz    | 3MHz                         | 5MHz | 10 MHz | 15MHz | 20MHz |       |  |  |
| 1                 | 2               | Normal                                    | EPA 5 Low | -                            | -    | -      | -3.7  | -3.8  | -3.8  |  |  |
|                   |                 |                                           | EVA70 Low | -                            | -    | -      | -3.5  | -3.6  | -3.7  |  |  |
|                   | 4               | Normal                                    | EPA 5 Low | -                            | -    | -      | -7.3  | -7.4  | -7.5  |  |  |
|                   |                 |                                           | EVA70 Low | -                            | -    | -      | -7.2  | -7.3  | -7.3  |  |  |
|                   | 8               | Normal                                    | EPA 5 Low | -                            | -    | -      | -11.1 | -10.9 | -11.1 |  |  |
|                   |                 |                                           | EVA70 Low | -                            | -    | -      | -10.9 | -11.0 | -11.0 |  |  |

| Number            | Number                   | Cyclic                                    | Propagation<br>Conditions |      | [dB] |        |       |       |      |
|-------------------|--------------------------|-------------------------------------------|---------------------------|------|------|--------|-------|-------|------|
| of Tx<br>antennas | of RX Prefix<br>antennas | and<br>correlation<br>matrix<br>(Annex B) | 1.4MHz                    | 3MHz | 5MHz | 10 MHz | 15MHz | 20MHz |      |
| 1                 | 2                        | Normal                                    | EPA 5 Low                 | -    | -    | -      | -1.3  | -1.2  | -1.2 |
|                   |                          |                                           | EVA70 Low                 | -    | -    | -      | -0.8  | -0.9  | -0.9 |
|                   | 4                        | Normal                                    | EPA 5 Low                 | -    | -    | -      | -5.3  | -5.3  | -5.4 |
|                   |                          |                                           | EVA70 Low                 | -    | -    | -      | -5.0  | -5.1  | -5.1 |
|                   | 8                        | Normal                                    | EPA 5 Low                 | -    | -    | -      | -8.8  | -8.8  | -8.9 |
|                   |                          |                                           | EVA70 Low                 | -    | -    | -      | -8.7  | -8.8  | -8.7 |

 Table 8.3.6.1-2 Minimum requirements for PUCCH format 3, 16AN bits

### 8.3.7 NACK to ACK requirements for PUCCH format 3

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

Prob(PUCCH NACK  $\rightarrow$  ACK bits) =  $\frac{\#(\text{NACK bits decoded as ACK bits})}{\#(\text{Total NACK bits})}$ 

where:

- #(Total NACK bits) denotes the total number of NACK bits transmitted
- #(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

ACK/NACK repetitions are disabled for PUCCH transmission. Random codeword selection is assumed.

Note: NACK to ACK requirement only applies to the PUCCH format3 16AN bits cases.

### 8.3.7.1 Minimum requirement

The NACK to ACK probability shall not exceed 0,1% at the SNR given in table 8.3.7.1-1 for 16 AN bits.

Table 8.3.7.1-1 Minimum requirements for PUCCH format 3, 16AN bits

| Number            | Number<br>of RX | Cyclic<br>Prefix | Propagation<br>Conditions –<br>and<br>correlation<br>matrix<br>(Annex B) | Channel Bandwidth / SNR [dB] |      |      |        |       |       |  |  |
|-------------------|-----------------|------------------|--------------------------------------------------------------------------|------------------------------|------|------|--------|-------|-------|--|--|
| of Tx<br>antennas | ennas antennas  | Frenx            |                                                                          | 1.4MHz                       | 3MHz | 5MHz | 10 MHz | 15MHz | 20MHz |  |  |
| 1                 | 2               | Normal           | EPA 5 Low                                                                | -                            | -    | -    | 1.4    | 1.6   | 1.5   |  |  |
|                   |                 |                  | EVA70 Low                                                                | -                            | -    | -    | 2.1    | 1.9   | 1.9   |  |  |
|                   | 4               | Normal           | EPA 5 Low                                                                | -                            | -    | -    | -3.1   | -3.3  | -3.5  |  |  |
|                   |                 |                  | EVA70 Low                                                                | -                            | -    | -    | -2.9   | -3.1  | -3.2  |  |  |
|                   | 8               | Normal           | EPA 5 Low                                                                | -                            | -    | -    | -7.3   | -7.3  | -7.3  |  |  |
|                   |                 |                  | EVA70 Low                                                                | -                            | -    | -    | -7.0   | -7.1  | -7.2  |  |  |

# 8.3.8 CQI performance requirements for PUCCH format 2 with DTX detection

The requirements in this subclause apply to a BS supporting PUCCH format 2 with DTX. It is optional for a BS to support PUCCH format 2 with DTX.

A BS may meet the PUCCH format 2 requirements specified in Section 8.3.8.1 instead of requirements specified in Section 8.3.3.1.

The CQI block error probability (BLER) is defined as the sum of the:

- conditional probability of incorrectly decoding the CQI information when the CQI information is sent and
- conditional probability of detecting UE transmission as DTX, when the CQI information is sent.

The CQI false alarm probability is defined as the conditional probability of false detecting the CQI information transmitted from UE when no CQI information is sent.

The CQI information bit payload per sub-frame is equal to 4 bits.

Test parameters for PUCCH transmission on two antenna ports are presented in Annex A.10.

### 8.3.8.1 Minimum requirements

The CQI false alarm probability and the CQI block error probability shall not exceed 10% and 1%, respectively, at the SNR given in table 8.3.8.1-1.

| Number                                                                                                         | Number            | Cyclic | Propagation                                          |         | Chann | el Bandwi | dth / SNR | [dB]      |        |
|----------------------------------------------------------------------------------------------------------------|-------------------|--------|------------------------------------------------------|---------|-------|-----------|-----------|-----------|--------|
| of TX<br>antennas                                                                                              | of RX<br>antennas | Prefix | conditions and<br>correlation<br>matrix (Annex<br>B) | 1.4 MHz | 3 MHz | 5 MHz     | 10<br>MHz | 15<br>MHz | 20 MHz |
| 1                                                                                                              | 2                 | Normal | EVA 5* Low                                           | -3.7    | -4.0  | -4.4      | -4.0      | -4.2      | -4.2   |
|                                                                                                                |                   |        | ETU 70** Low                                         | -3.7    | -4.0  | -3.7      | -4.1      | -3.9      | -4.1   |
| 2                                                                                                              | 2                 | Normal | EVA 5 Low                                            | -5.3    | -5.2  | -5.5      | -5.4      | -5.3      | -5.5   |
| Note*:Not applicable for Wide Area BS and Medium Range BS.Note**:Not applicable for Local Area BS and Home BS. |                   |        |                                                      |         |       |           |           |           |        |

Table 8.3.8.1-1 Minimum requirements for PUCCH format 2 with DTX detection

### 8.3.9 PUCCH performance requirements for coverage enhancement

### 8.3.9.1 DTX to ACK performance

The DTX to ACK requirement is valid for any number of receive antennas, for all frame structures and for any channel bandwidth.

#### 8.3.9.1.1 Minimum requirement

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing is sent per PUCCH transmission, shall not exceed 1% per PUCCH transmission. A PUCCH transmission may take multiple subframes due to PUCCH transmission repetition. The performance measure is defined as follows:

Prob(PUCCH DTX 
$$\rightarrow$$
 ACK bits) =  $\frac{\#(\text{false ACK bits})}{\#(\text{PUCCH DTX}) \times \#(\text{ACK/NAK bits})} \le 10^{-2}$ 

where:

- #(false ACK bits) denotes the number of detected ACK bits per PUCCH transmission.
- #(ACK/NACK bits) denotes the number of encoded bits per PUCCH transmission.
- #(PUCCH DTX) denotes the number of DTX occasions per PUCCH transmission.

### 8.3.9.2 ACK missed detection requirements for single user PUCCH format 1a

The ACK missed detection probability is the probability of not detecting an ACK when an ACK is sent.

### 8.3.9.2.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.9.2.1-1 for 1Tx.

| Number                                                                                                                       | Number            | Cyclic | Propagation                                       | Repetitions | Channel Bandwidth / SNR [dB] |       |           |           |           |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------------------------------------------------|-------------|------------------------------|-------|-----------|-----------|-----------|--|
| of TX<br>antennas                                                                                                            | of RX<br>antennas | Prefix | conditions and<br>correlation matrix<br>(Annex B) |             | 3 MHz                        | 5 MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |  |
| 1                                                                                                                            | 2                 | normal | EPA5 Low                                          | 4           | -5.2                         | -5.5  | -5.5      | -5.6      | -5.5      |  |
|                                                                                                                              |                   |        |                                                   | 8           | -9.2                         | -11.0 | -10.9     | -11.1     | -11.3     |  |
|                                                                                                                              |                   |        |                                                   | 32          | -13.7                        | -14.8 | -15.1     | -15.1     | -15.1     |  |
| Note 1:Frequency Hopping Intervals: 4 (FDD); 10 (TDD).Note 2:Guard period shall be created according to TS36.211, 5.2.5 [12] |                   |        |                                                   |             |                              |       |           |           |           |  |

Table 8.3.9.2.1-1 Minimum requirements for single user PUCCH format 1a, 1Tx

### 8.3.9.3 CQI performance requirements for PUCCH format 2

The CQI block error probability (BLER) is defined as the conditional probability of incorrectly decoding the CQI information when the CQI information is sent per PUCCH transmission. A PUCCH transmission may take multiple subframes due to PUCCH transmission repetition. All CQI information shall be decoded (no exclusion due to DTX).

The CQI information bit payload per PUCCH transmission is equal to 4 bits.

### 8.3.9.3.1 Minimum requirements

The CQI block error probability shall not exceed 1% at the SNR given in table 8.3. 9.3.1-1 for 1Tx.

| Number            | Number                                                                  | Cyclic | Propagation                                             | Repetitions | Ch       | annel Ba | andwidth  | n / SNR [ | dB]       |  |  |
|-------------------|-------------------------------------------------------------------------|--------|---------------------------------------------------------|-------------|----------|----------|-----------|-----------|-----------|--|--|
| of TX<br>antennas | of RX<br>antennas                                                       | Prefix | conditions<br>and<br>correlation<br>matrix<br>(Annex B) |             | 3<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |  |  |
| 1                 | 2                                                                       | normal | EVA5 Low                                                | 4           | -4.1     | -5.0     | -5.1      | -4.9      | -4.7      |  |  |
|                   |                                                                         |        |                                                         | 8           | -9.8     | -10.3    | -10.0     | -10.1     | -10.0     |  |  |
|                   |                                                                         |        |                                                         | 32          | -13.7    | -14.1    | -13.8     | -14.0     | -13.9     |  |  |
| Note 1:           | Note 1: Frequency Hopping Intervals: 4 (FDD); 10 (TDD)                  |        |                                                         |             |          |          |           |           |           |  |  |
| Note 2: 0         | Note 2: Guard period shall be created according to TS36.211, 5.2.5 [12] |        |                                                         |             |          |          |           |           |           |  |  |

Table 8.3.9.3.1-1 Minimum requirements for PUCCH format 2, 1Tx

## 8.3.10 ACK missed detection requirements for PUCCH format 4

The ACK missed detection probability is the probability of not detecting an ACK bit when an ACK bit was sent on the particular bit position, with each missed ACK bit being accounted as one error.

The number of encoded ACK/NACK bits per sub-frame is defined for two cases as presented below:

- 24AN bits with 1PRB allocated
- 64AN bits with 2PRB allocated

The requirements are applicable for FDD only, TDD only and TDD-FDD CA.

The requirements are applicable for both PUCCH on PCell and PUCCH on SCell.

ACK/NACK repetitions are disabled for PUCCH transmission. DAI based codebook size determination is disabled. Random codeword selection is assumed.

### 8.3.10.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.10.1-1 and table 8.3.10.1-2 for 24 AN bits with 1 PRB allocated and 64 AN bits with 2 PRB allocated per sub-frame, respectively.

| Number            | Number            | Cyclic | Propagation                                |         | Chann | el Bandwi | dth / SNR | [dB]      |        |
|-------------------|-------------------|--------|--------------------------------------------|---------|-------|-----------|-----------|-----------|--------|
| of TX<br>antennas | of RX<br>antennas | Prefix | conditions<br>and<br>correlation<br>matrix | 1.4 MHz | 3 MHz | 5 MHz     | 10<br>MHz | 15<br>MHz | 20 MHz |
|                   |                   |        | (Annex B)                                  |         |       |           |           |           |        |
|                   | 2                 | Normal | EPA 5 Low                                  | -       | -     | -         | 1.2       | 1.1       | 1.0    |
|                   | 2                 | Normai | EVA 70 Low                                 | -       | -     | -         | 1.4       | 1.2       | 1.2    |
| 1                 | 4                 | Normal | EPA 5 Low                                  | -       | -     | -         | -3.0      | -2.8      | -2.9   |
| I                 | 1 4               | Normal | EVA 70 Low                                 | -       | -     | -         | -2.6      | -3.0      | -3.0   |
|                   | 0                 | Normal | EPA 5 Low                                  | -       | -     | -         | -6.1      | -6.1      | -6.1   |
|                   | 8                 |        | EVA 70 Low                                 | -       | -     | -         | -6.0      | -6.0      | -6.1   |

### Table 8.3.10.1-1 Minimum requirements for PUCCH format 4, 24AN bits with 1 PRB allocated

### Table 8.3.10.1-2 Minimum requirements for PUCCH format 4, 64AN bits with 2 PRB allocated

| Number            | Number            | Cyclic   | Propagation                                             | Channel Bandwidth / SNR [dB] |       |       |           |           |        |  |
|-------------------|-------------------|----------|---------------------------------------------------------|------------------------------|-------|-------|-----------|-----------|--------|--|
| of TX<br>antennas | of RX<br>antennas | Prefix   | conditions<br>and<br>correlation<br>matrix<br>(Annex B) | 1.4 MHz                      | 3 MHz | 5 MHz | 10<br>MHz | 15<br>MHz | 20 MHz |  |
|                   | C                 | 2 Normal | EPA 5 Low                                               | -                            | -     | -     | 1.7       | 1.5       | 1.5    |  |
|                   | 2                 |          | EVA 70 Low                                              | -                            | -     | -     | 2.1       | 2.0       | 1.9    |  |
| 1                 | 4                 | Normal   | EPA 5 Low                                               | -                            | -     | -     | -3.0      | -2.9      | -2.9   |  |
| I                 | 4                 | Normai   | EVA 70 Low                                              | -                            | -     | -     | -2.5      | -2.7      | -2.7   |  |
|                   | 8                 | Normal   | EPA 5 Low                                               | -                            | -     | -     | -6.3      | -6.3      | -6.4   |  |
|                   |                   |          | EVA 70 Low                                              | -                            | -     | -     | -6.0      | -6.2      | -6.2   |  |

### 8.3.11 ACK missed detection requirements for PUCCH format 5

The ACK missed detection probability is the probability of not detecting an ACK bit when an ACK bit was sent on the particular bit position, with each missed ACK bit being accounted as one error.

The number of encoded ACK/NACK bits per sub-frame is equal to 24 bits.

The requirement is applicable for FDD only, TDD only and TDD-FDD CA. The requirement is applicable for both PUCCH on PCell and PUCCH on SCell.

ACK/NACK repetitions are disabled for PUCCH transmission. DAI based codebook size determination is disabled. Random codeword selection is assumed.

### 8.3.11.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.11.1-1.

| Number            | Number            | Cyclic | Propagation                                             | Channel Bandwidth / SNR [dB] |      |      |        |       |       |  |  |
|-------------------|-------------------|--------|---------------------------------------------------------|------------------------------|------|------|--------|-------|-------|--|--|
| of Tx<br>antennas | of RX<br>antennas | IS     | Conditions<br>and<br>correlation<br>matrix<br>(Annex B) | 1.4MHz 3<br>ו                | 3MHz | 5MHz | 10 MHz | 15MHz | 20MHz |  |  |
| 1                 | 2                 | Normal | EPA 5 Low                                               | -                            | -    | -    | 1.6    | 1.3   | 1.3   |  |  |
|                   |                   |        | EVA70 Low                                               | -                            | -    | -    | 1.6    | 1.5   | 1.5   |  |  |
|                   | 4                 | Normal | EPA 5 Low                                               | -                            | -    | -    | -2.9   | -2.8  | -2.8  |  |  |
|                   |                   |        | EVA70 Low                                               | -                            | -    | -    | -2.5   | -2.8  | -2.7  |  |  |
|                   | 8                 | Normal | EPA 5 Low                                               | -                            | -    | -    | -6.0   | -5.9  | -6.0  |  |  |
|                   |                   |        | EVA70 Low                                               | -                            | -    | -    | -5.8   | -5.9  | -6.0  |  |  |

 Table 8.3.11.1-1 Minimum requirements for PUCCH format 5

### 8.4 Performance requirements for PRACH

### 8.4.1 PRACH False alarm probability

The false alarm requirement is valid for any number of receive antennas, for all frame structures and for any channel bandwidth.

The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

### 8.4.1.1 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

### 8.4.2 PRACH detection requirements

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than 1.04us. For ETU70 and EPA1, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than 2.08us. The strongest path for the timing estimation error refers to the strongest path (i.e. average of the delay of all paths having the same highest gain = 310ns for ETU) in the power delay profile.

The test preambles for normal mode are listed in table A.6-1 and the test preambles for high speed mode restriced set type A are listed in A.6-2. The test preambles for coverage enhancement are listed in table A.6-3. The test preambles for high speed mode restriced set type B are listed in A.6-4.

### 8.4.2.1 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 8.4.2.1-1 to 8.4.2.1-5.

The requirements for Burst format 4 are optional and only valid for base stations supporting TDD. The requirements for high speed mode restricted set type A (table 8.4.2.1-2) and high speed mode restricted set type B (table 8.4.2.1-5) are only valid for the base stations supporting high speed mode restricted set A and restricted set type B respectively.

The requirements for coverage enhancement (Tables 8.4.2.1-3 and 8.4.2.1-4) are only valid for the base stations supporting coverage enhancement.

| Number of      | Number of      | Propagation                                       | Frequency |                      |                      | SNR [dB]             |                      | Burst<br>format<br>4<br>-7.2 |  |  |  |  |
|----------------|----------------|---------------------------------------------------|-----------|----------------------|----------------------|----------------------|----------------------|------------------------------|--|--|--|--|
| TX<br>antennas | RX<br>antennas | conditions and<br>correlation matrix<br>(Annex B) | offset    | Burst<br>format<br>0 | Burst<br>format<br>1 | Burst<br>format<br>2 | Burst<br>format<br>3 | format                       |  |  |  |  |
| 1              | 2              | AWGN                                              | 0         | -14.2                | -14.2                | -16.4                | -16.5                | -7.2                         |  |  |  |  |
|                |                | ETU 70 Low*                                       | 270 Hz    | -8.0                 | -7.8                 | -10.0                | -10.1                | -0.1                         |  |  |  |  |
|                | 4              | AWGN                                              | 0         | -16.9                | -16.7                | -19.0                | -18.8                | -9.8                         |  |  |  |  |
|                |                | ETU 70 Low*                                       | 270 Hz    | -12.1                | -11.7                | -14.1                | -13.9                | -5.1                         |  |  |  |  |
|                | 8              | AWGN                                              | 0         | -19.8                | -19.4                | -21.5                | -21.3                | -11.8                        |  |  |  |  |
|                |                | ETU 70 Low*                                       | 270 Hz    | -16.3                | -15.9                | -17.8                | -17.5                | -8.6                         |  |  |  |  |
| Note*: Not     | applicable for | Local Area BS and Ho                              | -         | -16.3                | -15.9                | -17.8                |                      | -17.5                        |  |  |  |  |

Table 8.4.2.1-1 PRACH missed detection requirements for Normal Mode

The requirements in Table 8.4.2.1-2 shall not be applied to Local Area BS and Home BS.

| Number of   | Number of   | Propagation                                       | Frequency |                   | SNR               | [dB]              |                   |
|-------------|-------------|---------------------------------------------------|-----------|-------------------|-------------------|-------------------|-------------------|
| TX antennas | RX antennas | conditions and<br>correlation<br>matrix (Annex B) | offset    | Burst<br>format 0 | Burst<br>format 1 | Burst<br>format 2 | Burst<br>format 3 |
| 1           | 2           | AWGN                                              | 0         | -14.1             | -14.2             | -16.3             | -16.6             |
|             |             | ETU 70 Low                                        | 270 Hz    | -7.4              | -7.3              | -9.3              | -9.5              |
|             |             | AWGN                                              | 625 Hz    | -12.4             | -12.3             | -14.4             | -14.4             |
|             |             | AWGN                                              | 1340 Hz   | -13.4             | -13.5             | -15.5             | -15.7             |
|             | 4           | AWGN                                              | 0         | -16.9             | -16.6             | -18.9             | -18.8             |
|             |             | ETU 70 Low                                        | 270 Hz    | -11.8             | -11.4             | -13.7             | -13.7             |
|             |             | AWGN                                              | 625 Hz    | -14.9             | -14.6             | -16.8             | -16.8             |
|             |             | AWGN                                              | 1340 Hz   | -15.9             | -15.5             | -17.8             | -17.8             |
|             | 8           | AWGN                                              | 0         | -19.3             | -19.1             | -20.9             | -21.0             |
|             |             | ETU 70 Low                                        | 270 Hz    | -15.6             | -15.1             | -17.0             | -17.0             |
|             |             | AWGN                                              | 625 Hz    | -17.7             | -17.4             | -19.3             | -19.4             |
|             |             | AWGN                                              | 1340 Hz   | -18.7             | -18.4             | -20.5             | -20.5             |

# Table 8.4.2.1-3 PRACH missed detection requirements for coverage enhancement (PRACH frequency hopping OFF)

| Number            | Number            | Propagation                                                            | Frequency       | Number of             |                      | SNR                  | [dB]                 |                      |
|-------------------|-------------------|------------------------------------------------------------------------|-----------------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| of TX<br>antennas | of RX<br>antennas | conditions and<br>correlation matrix<br>(Annex B)                      | offset          | Repetitions           | Burst<br>format<br>0 | Burst<br>format<br>1 | Burst<br>format<br>2 | Burst<br>format<br>3 |
| 1                 | 2                 | AWGN                                                                   | 0               | 4                     | -                    | -                    | -21.3                | -21.1                |
|                   |                   |                                                                        |                 | 8                     | -21.7                | -21.3                | -                    | -                    |
|                   |                   |                                                                        |                 | 16                    | -                    | -                    | -25.1                | -25.0                |
|                   |                   |                                                                        |                 | 32                    | -25.6                | -25.3                | -                    | -                    |
|                   |                   | EPA1 Low                                                               | 270 Hz          | 4                     | -                    | -                    | -12.1                | -11.7                |
|                   |                   |                                                                        |                 | 8                     | -13.0                | -12.3                | -                    | -                    |
|                   |                   |                                                                        |                 | 16                    | -                    | -                    | -17.2                | -17.2                |
|                   |                   |                                                                        |                 | 32                    | -19.0                | -18.6                | -                    | -                    |
| I N               | PRACH Conf        | channels, the PRACH<br>iguration Indexes. The<br>Configuration Indexes | requirements in | this table are define | ed based o           | on the sim           | ulation res          |                      |

| Number            | Number                                                                                                                                                                                                                                                                                                                                    | Propagation                                          | Frequency         | Number of           |                      | SNR                  | [dB]                 |                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------|---------------------|----------------------|----------------------|----------------------|----------------------|
| of TX<br>antennas | of RX<br>antennas                                                                                                                                                                                                                                                                                                                         | conditions and<br>correlation<br>matrix (Annex<br>B) | offset            | Repetitions         | Burst<br>format<br>0 | Burst<br>format<br>1 | Burst<br>format<br>2 | Burst<br>format<br>3 |
| 1                 | 2                                                                                                                                                                                                                                                                                                                                         | EPA1 Low                                             | 270 Hz            | 4                   | -                    | -                    | -15.5                | -15.3                |
|                   |                                                                                                                                                                                                                                                                                                                                           |                                                      |                   | 8                   | -16.2                | -15.8                | -                    | -                    |
|                   |                                                                                                                                                                                                                                                                                                                                           |                                                      |                   | 16                  | -                    | -                    | -20.1                | -20.2                |
|                   |                                                                                                                                                                                                                                                                                                                                           |                                                      |                   | 32                  | -21.3                | -21.1                | -                    | -                    |
|                   | te 1: Under fading channels, the PRACH detection performance may be significantly different with different<br>PRACH Configuration Indexes. The requirements in this table are defined based on the simulation results<br>with PRACH Configuration Indexes (3, 19, 35, 51) for Format 0, Format 1, Format 2, and Format 3<br>respectively. |                                                      |                   |                     |                      |                      |                      |                      |
|                   | : The requirements in this table are defined under the assumption that UE RF tuning during PRACH frequency hopping has no impact on the symbols in PRACH subframes and thus all symbols in PRACH subframes are available for the transmission of PRACH preambles.                                                                         |                                                      |                   |                     |                      |                      |                      |                      |
| Note 3:           | The requirem                                                                                                                                                                                                                                                                                                                              | ents in this table are                               | defined under the | assumption that the | PRACH                | frequency            | offset (pr           | ach-                 |
|                   | FreqOffset-r13) is 0 and frequency hopping offset is $N_{\rm RB}^{\rm UL}$ -6, where $N_{\rm RB}^{\rm UL}$ is defined in TS36.211 [12].                                                                                                                                                                                                   |                                                      |                   |                     |                      |                      |                      |                      |
|                   | The requirements in this table apply for channel bandwidth of 5MHz, 10MHz, 15MHz or 20MHz. For channel bandwidth of 3MHz, the requirements in Table 8.4.2.1-3 apply.                                                                                                                                                                      |                                                      |                   |                     |                      |                      |                      |                      |

# Table 8.4.2.1-4 PRACH missed detection requirements for coverage enhancement (PRACH frequency hopping ON)

Table 8.4.2.1-5 PRACH missed detection requirements for High speed Mode restricted set type B

| Number of   | Number of   | Propagation                                       | Frequency |                   | SNR               | [dB]              |                   |
|-------------|-------------|---------------------------------------------------|-----------|-------------------|-------------------|-------------------|-------------------|
| TX antennas | RX antennas | conditions and<br>correlation<br>matrix (Annex B) | offset    | Burst<br>format 0 | Burst<br>format 1 | Burst<br>format 2 | Burst<br>format 3 |
| 1           | 2           | AWGN                                              | 0         | -14.5             | -14.1             | -16.7             | -16.8             |
|             |             | AWGN                                              | 625       | -12.0             | -11.7             | -13.9             | -13.9             |
|             |             | ETU 70 Low                                        | 270 Hz    | -7.3              | -6.9              | -9.1              | -9.2              |
|             |             | AWGN                                              | 1875 Hz   | -11.8             | -11.4             | -13.8             | -14.0             |
|             | 4           | AWGN                                              | 0         | -17.1             | -16.6             | -19.1             | -19.1             |
|             |             | AWGN                                              | 625       | -14.4             | -14.1             | -16.1             | -16.2             |
|             |             | ETU 70 Low                                        | 270 Hz    | -11.8             | -11.3             | -13.5             | -13.4             |
|             |             | AWGN                                              | 1875 Hz   | -14.2             | -13.8             | -15.9             | -16.3             |
|             | 8           | AWGN                                              | 0         | -19.6             | -19.1             | -21.2             | -21.2             |
|             |             | AWGN                                              | 625       | -16.4             | -16.3             | -18.1             | -18.2             |
|             |             | ETU 70 Low                                        | 270 Hz    | -15.3             | -15.1             | -17.1             | -17.5             |
|             |             | AWGN                                              | 1875 Hz   | -16.3             | -16.0             | -18.0             | -18.4             |

## 8.5 Performance requirements for Narrowband IoT

### 8.5.1 Requirements for NPUSCH format 1

### 8.5.1.1 Requirements

The performance requirement of NPUSCH format 1 is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A16. The performance requirements assume HARQ retransmissions.

An NB-IoT Base Station supports 15 kHz subcarrier spacing requirements, or 3.75 kHz subcarrier spacing requirements, or both.

For 15kHz subcarrier spacing single-subcarrier/multi-subcarrier, the demodulation requirements apply for the supported number of subcarriers.

### Table 8.5.1.1-1: Test parameters

| Parameter                            | Value    |
|--------------------------------------|----------|
| Maximum number of HARQ transmissions | 4        |
| RV sequence                          | RV0, RV2 |

### 8.5.1.1.1 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in table 8.5.1.1.1-1 for the single-subcarrier of 3.75KHz subcarrier spacing, in table 8.5.1.1.1-2 for 15KHz subcarrier spacing at the given SNR for 1Tx, and in table 8.5.1.1.1-3 for multi-subcarrier of 15KHz subcarrier spacing at the given SNR for 1Tx.

# Table 8.5.1.1.1-1: Minimum requirements for NPUSCH format 1, 200KHz Channel Bandwidth, 3.75KHz subcarrier spacing, 1Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Subcarrier<br>spacing | Number of<br>allocated<br>subcarriers | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Repetition<br>number | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|-----------------------|---------------------------------------|------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------|-------------|
|                             |                             |                       |                                       |                                                                        |                     | 1                    | 70%                                  | -1.9        |
| 1                           | 2                           | 3.75KHz               | 1                                     | ETU 1Hz                                                                | A16-1               | 16                   | 70%                                  | -9.2        |
| I                           | 2                           | 5.7 JNI 12            | I                                     | Low                                                                    |                     | 64                   | 70%                                  | -<br>12.2   |

# Table 8.5.1.1.1-2: Minimum requirements for NPUSCH format 1, 200KHz Channel Bandwidth, 15KHz subcarrier spacing, single subcarrier, 1Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Subcarrier<br>spacing | Number of<br>allocated<br>subcarriers | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Repetition<br>number | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|-----------------------|---------------------------------------|------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------|-------------|
|                             |                             |                       |                                       |                                                                        |                     | 1                    | 70%                                  | -2.1        |
| 1                           | 2                           | 15KHz                 | 1                                     | ETU 1Hz                                                                | A16-2               | 16                   | 70%                                  | -8.8        |
| I                           | 2                           | TORTIZ                | I                                     | Low                                                                    |                     | 64                   | 70%                                  | -<br>12.6   |

# Table 8.5.1.1.1-3: Minimum requirements for NPUSCH format 1, 200KHz Channel Bandwidth, 15KHz subcarrier spacing, multiple subcarriers, 1Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Subcarrier<br>spacing | Number of<br>allocated<br>subcarriers | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | FRC<br>(Annex<br>A) | Repetition<br>number | Fraction of<br>maximum<br>throughput | SNR<br>[dB] |
|-----------------------------|-----------------------------|-----------------------|---------------------------------------|------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------|-------------|
|                             |                             |                       |                                       |                                                                        |                     | 2                    | 70%                                  | -3.0        |
|                             |                             |                       | з                                     | 3 ETU 1Hz                                                              | A16-3               | 16                   | 70%                                  | -8.1        |
|                             |                             |                       | S Low                                 | ///0/0                                                                 | 64                  | 70%                  | -<br>11.4                            |             |
|                             |                             |                       |                                       |                                                                        |                     | 2                    | 70%                                  | -0.6        |
| 1                           | 2                           | 15KHz                 | 6                                     | ETU 1Hz                                                                | A16-4               | 16                   | 70%                                  | -6.8        |
|                             | 2                           | 131(12                | 0                                     | Low                                                                    |                     | 64                   | 70%                                  | -<br>10.5   |
|                             |                             |                       |                                       |                                                                        |                     | 2                    | 70%                                  | -0.7        |
|                             |                             |                       | 12                                    | ETU 1Hz                                                                | A16-5               | 16                   | 70%                                  | -6.4        |
|                             |                             |                       | 12                                    | Low                                                                    | 710-0               | 64                   | 70%                                  | -           |
|                             |                             |                       |                                       |                                                                        |                     |                      |                                      | 10.1        |

### 8.5.2 Performance requirements for NPUSCH format 2

### 8.5.2.1 DTX to ACK performance

The DTX to ACK probability for NPUSCH format 2 case denotes the probability that ACK is detected when nothing is sent on the wanted signal and only the noise is present per NPUSCH format 2 transmission.

An NB-IoT Base Station supports 15 KHz sub-carrier spacing requirements, or 3.75 KHz sub-carrier spacing requirements, or both.

### 8.5.2.1.1 Minimum requirement

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing was sent, shall not exceed 1% per NPUSCH format 2 transmission. Where the performance measure definition is as follows:

Prob(NPUSCH format 2 DTX  $\rightarrow$  ACK bits) =  $\frac{\#(\text{false ACK bits})}{\#(\text{NPUSCH format 2 DTX}) \times \#(\text{ACK/NAK bits})} \le 10^{-2}$ 

where:

- #(false ACK bits) denotes the number of detected ACK bits.
- #(ACK/NACK bits) denotes the number of HARQ-ACK information bit per NPUSCH format 2 transmission.
- #( NPUSCH format 2 DTX) denotes the number of DTX occasions.

### 8.5.2.2 ACK missed detection requirements

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent per NPUSCH format 2 transmission.

### 8.5.2.2.1 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.5.2.2.1-1 and table 8.5.2.2.1-2 for 1Tx case.

# Table 8.5.2.2.1-1: Minimum requirements for NPUSCH format 2, 200KHz Channel Bandwidth, 3.75KHz subcarrier spacing, 1Tx

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | Number of<br>allocated<br>subcarriers | Subcarrier<br>spacing | Repetition<br>number | SNR [dB] |
|-----------------------------|-----------------------------|------------------------------------------------------------------------|---------------------------------------|-----------------------|----------------------|----------|
|                             |                             |                                                                        |                                       |                       | 1                    | 7.0      |
| 1                           | 2                           | EPA 5 Low                                                              | 1                                     | 3.75KHz               | 16                   | -5.3     |
|                             |                             |                                                                        |                                       |                       | 64                   | -10.9    |

| Number<br>of TX<br>antennas | Number<br>of RX<br>antennas | Propagation<br>conditions<br>and<br>correlation<br>matrix<br>(Annex B) | Number of<br>allocated<br>subcarriers | Subcarrier<br>spacing | Repetition<br>number | SNR [dB] |
|-----------------------------|-----------------------------|------------------------------------------------------------------------|---------------------------------------|-----------------------|----------------------|----------|
|                             |                             |                                                                        |                                       |                       | 1                    | 6.3      |
| 1                           | 2                           | EPA 5 Low                                                              | 1                                     | 15KHz                 | 16                   | -3.9     |
|                             |                             |                                                                        |                                       |                       | 64                   | -9.5     |

# Table 8.5.2.2.1-2: Minimum requirements for NPUSCH format 2, 200KHz Channel Bandwidth, 15KHz subcarrier spacing, 1Tx

### 8.5.3 Performance requirements for NPRACH

### 8.5.3.1 NPRACH False alarm probability

The false alarm requirement is valid for any number of receive antennas, for all repetition numbers and for any number of subcarriers.

The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

### 8.5.3.1.1 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

### 8.5.3.2 NPRACH detection requirements

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. A timing estimation error occurs if the estimation error of the timing of the strongest path is larger than 3.646us. The strongest path for the timing estimation error refers to the strongest path in the power delay profile.

#### Table 8.5.3.2-1 Test preambles for NPRACH

| Parameter                | Value |
|--------------------------|-------|
| Narrowband physical      | 0     |
| layer cell identity      |       |
| Initial subcarrier index | 0     |

### 8.5.3.2.1 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in table 8.5.3.2.1-1.

### Table 8.5.3.2.1-1 NPRACH missed detection requirements

| Number of   | Number of RX | Repetition | Propagation                                       | Frequency | SNR                  | [dB]                 |
|-------------|--------------|------------|---------------------------------------------------|-----------|----------------------|----------------------|
| TX antennas | antennas     | number     | conditions and<br>correlation matrix<br>(Annex B) | offset    | Preamble<br>format 0 | Preamble<br>format 1 |
| 1           | 2            | 8          | AWGN                                              | 0         | -2.1                 | -2.1                 |
|             |              |            | EPA1 Low                                          | 200 Hz    | 6.1                  | 6.1                  |
|             |              | 32         | AWGN                                              | 0         | -6.8                 | -6.8                 |
|             |              |            | EPA1 Low                                          | 200 Hz    | 0.5                  | 0.5                  |

## 9 Channel access procedures

## 9.1 Downlink channel access procedure

For downlink operation in Band 46, a channel access procedure for PDSCH transmission as described in TS 36.213, Clause 15.1.1 is specified.

### 9.1.1 Channel access parameters

Channel access related parameters for PDSCH are listed in Table 9.1.1-1.

| Parameter                      | Unit                   | Value      |
|--------------------------------|------------------------|------------|
| LBT measurement bandwidth      | MHz                    | 10, 20     |
| Energy detection threshold     | dBm/20MHz<br>dBm/10MHz | -72<br>-75 |
| Maximum channel occupancy time | ms                     | 8          |

### Table 9.1.1-1: Channel access parameters for PDSCH

### 9.1.2 Minimum requirement

The Base Station shall be able to assess whether the medium is busy or idle with at least 90% probability, using a channel access procedure with the parameters in Table 9.1.1-1.

## Annex A (normative): Reference measurement channels

The parameters for the reference measurement channels are specified in clause A.1 for E-UTRA reference sensitivity and in-channel selectivity and in clause A.2 for dynamic range.

A schematic overview of the encoding process for the E-UTRA reference measurement channels is provided in Figure A-1.

E-UTRA receiver requirements in the present document are defined with a throughput stated relative to the Maximum throughput of the FRC. The Maximum throughput for an FRC equals the Payload size \* the Number of uplink subframes per second. For FDD, 1000 uplink sub-frames per second are used.

The parameters for the reference measurement channels are specified in clause A.12 for NB-IoT reference sensitivity and in clause A.13 for dynamic range.

A schematic overview of the encoding process for the NB-IoT reference measurement channels is provided in Figure A-2.

NB-IoT receiver requirements in the present document are defined with a throughput stated relative to the Maximum throughput of the FRC. The Maximum throughput for an FRC equals the Payload size / (Number of Resource Unit \* time to send one Resource Unit).

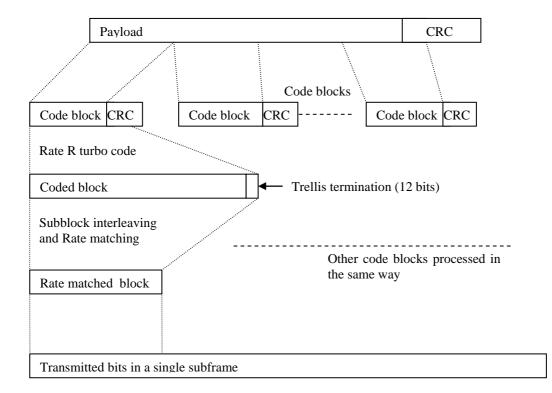
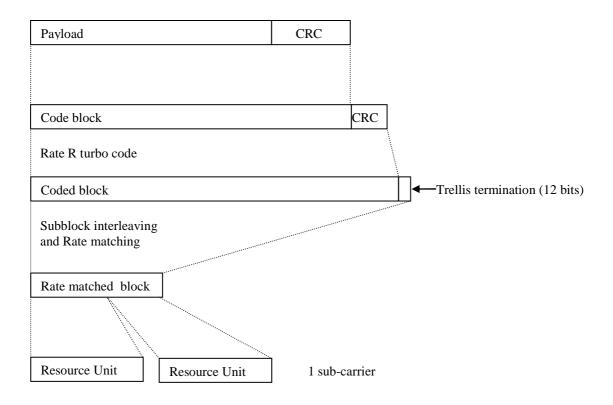




Figure A-1. Schematic overview of the encoding process



### Figure A-2. Schematic overview of the encoding process for NB-IoT

# A.1 Fixed Reference Channels for reference sensitivity and in-channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in Table A.1-1 for reference sensitivity and inchannel selectivity.

| Reference channel                                                                                                                           | A1-1                                 | A1-2                     | A1-3       | A1-4 | A1-5 | A1-6 | A1-7 | A1-8            | A1-9            |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|------------|------|------|------|------|-----------------|-----------------|
| Allocated resource blocks                                                                                                                   | 6                                    | 15                       | 25         | 3    | 9    | 12   | 24   | 10 <sup>1</sup> | 10 <sup>2</sup> |
| DFT-OFDM Symbols per subframe                                                                                                               | 12                                   | 12                       | 12         | 12   | 12   | 12   | 12   | 12              | 12              |
| Modulation                                                                                                                                  | QPSK                                 | QPSK                     | QPSK       | QPSK | QPSK | QPSK | QPSK | QPSK            | QPSK            |
| Code rate                                                                                                                                   | 1/3                                  | 1/3                      | 1/3        | 1/3  | 1/3  | 1/3  | 1/3  | 1/3             | 1/3             |
| Payload size (bits)                                                                                                                         | 600                                  | 1544                     | 2216       | 256  | 936  | 1224 | 2088 | 1032            | 1032            |
| Transport block CRC (bits)                                                                                                                  | 24                                   | 24                       | 24         | 24   | 24   | 24   | 24   | 24              | 24              |
| Code block CRC size (bits)                                                                                                                  | 0                                    | 0                        | 0          | 0    | 0    | 0    | 0    | 0               | 0               |
| Number of code blocks - C                                                                                                                   | 1                                    | 1                        | 1          | 1    | 1    | 1    | 1    | 1               | 1               |
| Coded block size including 12bits trellis termination (bits)                                                                                | 1884                                 | 4716                     | 6732       | 852  | 2892 | 3756 | 6348 | 3180            | 3180            |
| Total number of bits per sub-frame                                                                                                          | 1728                                 | 4320                     | 7200       | 864  | 2592 | 3456 | 6912 | 2880            | 2880            |
| Total symbols per sub-frame                                                                                                                 | 864                                  | 2160                     | 3600       | 432  | 1296 | 1728 | 3456 | 1440            | 1440            |
| NOTE 1: For reference channel A1-8, th<br>N, N+5, N+10,, N+45 where<br>NOTE 2: For reference channel A1-9, th<br>N, N+10, N+20,, N+90 where | e N = {0, <sup>·</sup><br>ne allocat | 1, 2, 3, 4}<br>ed RB's a | are unifor | • •  |      |      |      |                 |                 |

Table A.1-1 FRC parameters for reference sensitivity and in-channel selectivity

# A.2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

The parameters for the reference measurement channels are specified in Table A.2-1 for dynamic range.

| Reference channel                                                                                                                                                                                                                                                                   | A2-1     | A2-2     | A2-3      | A2-4            | A2-5            |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|-----------------|-----------------|--|--|--|
| Allocated resource blocks                                                                                                                                                                                                                                                           | 6        | 15       | 25        | 10 <sup>1</sup> | 10 <sup>2</sup> |  |  |  |
| DFT-OFDM Symbols per subframe                                                                                                                                                                                                                                                       | 12       | 12       | 12        | 12              | 12              |  |  |  |
| Modulation                                                                                                                                                                                                                                                                          | 16QAM    | 16QAM    | 16QAM     | 16QAM           | 16QAM           |  |  |  |
| Code rate                                                                                                                                                                                                                                                                           | 2/3      | 2/3      | 2/3       | 2/3             | 2/3             |  |  |  |
| Payload size (bits)                                                                                                                                                                                                                                                                 | 2344     | 5992     | 9912      | 4008            | 4008            |  |  |  |
| Transport block CRC (bits)                                                                                                                                                                                                                                                          | 24       | 24       | 24        | 24              | 24              |  |  |  |
| Code block CRC size (bits)                                                                                                                                                                                                                                                          | 0        | 0        | 24        | 0               | 0               |  |  |  |
| Number of code blocks - C                                                                                                                                                                                                                                                           | 1        | 1        | 2         | 1               | 1               |  |  |  |
| Coded block size including 12bits trellis                                                                                                                                                                                                                                           | 7116     | 18060    | 14988     | 12108           | 12108           |  |  |  |
| termination (bits)                                                                                                                                                                                                                                                                  |          |          |           |                 |                 |  |  |  |
| Total number of bits per sub-frame                                                                                                                                                                                                                                                  | 3456     | 8640     | 14400     | 5760            | 5760            |  |  |  |
| Total symbols per sub-frame                                                                                                                                                                                                                                                         | 864      | 2160     | 3600      | 1440            | 1440            |  |  |  |
| <ul> <li>NOTE 1: For reference channel A2-4, the allocated RB's are uniformly spaced over the channel bandwidth at RB index N, N+5, N+10,, N+45 where N = {0, 1, 2, 3, 4}.</li> <li>NOTE 2: For reference channel A2-5, the allocated RB's are uniformly spaced over the</li> </ul> |          |          |           |                 |                 |  |  |  |
| channel bandwidth at RB index<br>9}.                                                                                                                                                                                                                                                | N, N+10, | N+20,, I | N+90 wher | re N = {0, 1    | , 2,            |  |  |  |

| Table A.2-1 FRC | parameters for | dynamic range |
|-----------------|----------------|---------------|
|-----------------|----------------|---------------|

A.3

# Fixed Reference Channels for performance requirements (QPSK 1/3)

| Table A.3-1 FRC p | arameters for perfor | mance requirements | (QPSK 1/3) |
|-------------------|----------------------|--------------------|------------|
|                   |                      |                    | (          |

| Reference channel                         | A3-1 | A3-2 | A3-3 | A3-4 | A3-5  | A3-6  | A3-7  |
|-------------------------------------------|------|------|------|------|-------|-------|-------|
| Allocated resource blocks                 | 1    | 6    | 15   | 25   | 50    | 75    | 100   |
| DFT-OFDM Symbols per subframe             | 12   | 12   | 12   | 12   | 12    | 12    | 12    |
| Modulation                                | QPSK | QPSK | QPSK | QPSK | QPSK  | QPSK  | QPSK  |
| Code rate                                 | 1/3  | 1/3  | 1/3  | 1/3  | 1/3   | 1/3   | 1/3   |
| Payload size (bits)                       | 104  | 600  | 1544 | 2216 | 5160  | 6712  | 10296 |
| Transport block CRC (bits)                | 24   | 24   | 24   | 24   | 24    | 24    | 24    |
| Code block CRC size (bits)                | 0    | 0    | 0    | 0    | 0     | 24    | 24    |
| Number of code blocks - C                 | 1    | 1    | 1    | 1    | 1     | 2     | 2     |
| Coded block size including 12bits trellis | 396  | 1884 | 4716 | 6732 | 15564 | 10188 | 15564 |
| termination (bits)                        |      |      |      |      |       |       |       |
| Total number of bits per sub-frame        | 288  | 1728 | 4320 | 7200 | 14400 | 21600 | 28800 |
| Total symbols per sub-frame               | 144  | 864  | 2160 | 3600 | 7200  | 10800 | 14400 |

# A.4 Fixed Reference Channels for performance requirements (16QAM 3/4)

| Reference channel                                                  | A4-1  | A4-2  | A4-3  | A4-4  | A4-5  | A4-6  | A4-7  | A4-8  |
|--------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Allocated resource blocks                                          | 1     | 1     | 6     | 15    | 25    | 50    | 75    | 100   |
| DFT-OFDM Symbols per<br>subframe                                   | 12    | 10    | 12    | 12    | 12    | 12    | 12    | 12    |
| Modulation                                                         | 16QAM |
| Code rate                                                          | 3/4   | 3/4   | 3/4   | 3/4   | 3/4   | 3/4   | 3/4   | 3/4   |
| Payload size (bits)                                                | 408   | 376   | 2600  | 6456  | 10680 | 21384 | 32856 | 43816 |
| Transport block CRC (bits)                                         | 24    | 24    | 24    | 24    | 24    | 24    | 24    | 24    |
| Code block CRC size (bits)                                         | 0     | 0     | 0     | 24    | 24    | 24    | 24    | 24    |
| Number of code blocks - C                                          | 1     | 1     | 1     | 2     | 2     | 4     | 6     | 8     |
| Coded block size including<br>12bits trellis termination<br>(bits) | 1308  | 1212  | 7884  | 9804  | 16140 | 16140 | 16524 | 16524 |
| Total number of bits per sub-frame                                 | 576   | 480   | 3456  | 8640  | 14400 | 28800 | 43200 | 57600 |
| Total symbols per sub-<br>frame                                    | 144   | 120   | 864   | 2160  | 3600  | 7200  | 10800 | 14400 |

### Table A.4-1 FRC parameters for performance requirements (16QAM 3/4)

# A.5 Fixed Reference Channels for performance requirements (64QAM 5/6)

### Table A.5-1 FRC parameters for performance requirements (64QAM 5/6)

| Reference channel                                            | A5-1  | A5-2  | A5-3  | A5-4  | A5-5  | A5-6  | A5-7  |
|--------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Allocated resource blocks                                    | 1     | 6     | 15    | 25    | 50    | 75    | 100   |
| DFT-OFDM Symbols per subframe                                | 12    | 12    | 12    | 12    | 12    | 12    | 12    |
| Modulation                                                   | 64QAM |
| Code rate                                                    | 5/6   | 5/6   | 5/6   | 5/6   | 5/6   | 5/6   | 5/6   |
| Payload size (bits)                                          | 712   | 4392  | 11064 | 18336 | 36696 | 55056 | 75376 |
| Transport block CRC (bits)                                   | 24    | 24    | 24    | 24    | 24    | 24    | 24    |
| Code block CRC size (bits)                                   | 0     | 0     | 24    | 24    | 24    | 24    | 24    |
| Number of code blocks - C                                    | 1     | 1     | 2     | 3     | 6     | 9     | 13    |
| Coded block size including 12bits trellis termination (bits) | 2220  | 13260 | 16716 | 18444 | 18444 | 18444 | 17484 |
| Total number of bits per sub-frame                           | 864   | 5184  | 12960 | 21600 | 43200 | 64800 | 86400 |
| Total symbols per sub-frame                                  | 144   | 864   | 2160  | 3600  | 7200  | 10800 | 14400 |

## A.6 PRACH Test preambles

#### Table A.6-1 Test preambles for Normal Mode

| Burst format | Ncs | Logical sequence index | v  |
|--------------|-----|------------------------|----|
| 0            | 13  | 22                     | 32 |
| 1            | 167 | 22                     | 2  |
| 2            | 167 | 22                     | 0  |
| 3            | 0   | 22                     | 0  |
| 4            | 10  | 0                      | 0  |

| Burst format | Ncs | Logical sequence index | v |
|--------------|-----|------------------------|---|
| 0            | 15  | 384                    | 0 |
| 1            | 202 | 384                    | 0 |
| 2            | 202 | 384                    | 0 |
| 3            | 237 | 384                    | 0 |

### Table A.6-2 Test preambles for High speed Mode restricted set type A

### Table A.6-3 Test preambles for coverage enhancement

| Burst format | Ncs | Logical sequence index | v  |
|--------------|-----|------------------------|----|
| 0            | 13  | 22                     | 32 |
| 1            | 167 | 22                     | 2  |
| 2            | 167 | 22                     | 0  |
| 3            | 0   | 22                     | 0  |

Table A.6-4 Test preambles for High speed Mode restricted set type B

| Burst format | Ncs | Logical sequence index | v  |
|--------------|-----|------------------------|----|
| 0            | 15  | 30                     | 30 |
| 1            | 100 | 168                    | 20 |
| 2            | 118 | 204                    | 10 |
| 3            | 137 | 264                    | 0  |

A.7 Fixed Reference Channels for UL timing adjustment (Scenario 1)

Table A.7-1 FRC parameters for UL timing adjustment (Scenario 1)

| Reference channel                                            | A7-1  | A7-2  | A7-3  | A7-4  | A7-5  | A7-6  |
|--------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Allocated resource blocks                                    | 3     | 6     | 12    | 25    | 25    | 25    |
| DFT-OFDM Symbols per subframe                                | 12    | 12    | 12    | 12    | 12    | 12    |
| Modulation                                                   | 16QAM | 16QAM | 16QAM | 16QAM | 16QAM | 16QAM |
| Code rate                                                    | 3/4   | 3/4   | 3/4   | 3/4   | 3/4   | 3/4   |
| Payload size (bits)                                          | 1288  | 2600  | 5160  | 10680 | 10680 | 10680 |
| Transport block CRC (bits)                                   | 24    | 24    | 24    | 24    | 24    | 24    |
| Code block CRC size (bits)                                   | 0     | 0     | 0     | 24    | 24    | 24    |
| Number of code blocks - C                                    | 1     | 1     | 1     | 2     | 2     | 2     |
| Coded block size including 12bits trellis termination (bits) | 3948  | 7884  | 15564 | 16140 | 16140 | 16140 |
| Total number of bits per sub-frame                           | 1728  | 3456  | 6912  | 14400 | 14400 | 14400 |
| Total symbols per sub-frame                                  | 432   | 864   | 1728  | 3600  | 3600  | 3600  |
| SRS bandwidth configuration (See TS 36.211, 5.5.3) (Note 1)  | 7     | 5     | 3     | 2     | 5     | 2     |
| SRS-Bandwidth b (See TS 36.211, 5.5.3) (Note 1, 2)           | 0     | 0     | 0     | 0     | 0     | 1     |

## A.8

# 8 Fixed Reference Channels for UL timing adjustment (Scenario 2)

### Table A.8-1 FRC parameters for UL timing adjustment (Scenario 2)

| Reference channel                                                                                                     | A8-1 | A8-2 | A8-3 | A8-4 | A8-5 | A8-6 |
|-----------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|
| Allocated resource blocks                                                                                             | 3    | 6    | 12   | 25   | 25   | 25   |
| DFT-OFDM Symbols per subframe                                                                                         | 12   | 12   | 12   | 12   | 12   | 12   |
| Modulation                                                                                                            | QPSK | QPSK | QPSK | QPSK | QPSK | QPSK |
| Code rate                                                                                                             | 1/3  | 1/3  | 1/3  | 1/3  | 1/3  | 1/3  |
| Payload size (bits)                                                                                                   | 256  | 600  | 1224 | 2216 | 2216 | 2216 |
| Transport block CRC (bits)                                                                                            | 24   | 24   | 24   | 24   | 24   | 24   |
| Code block CRC size (bits)                                                                                            | 0    | 0    | 0    | 0    | 0    | 0    |
| Number of code blocks - C                                                                                             | 1    | 1    | 1    | 1    | 1    | 1    |
| Coded block size including 12bits trellis termination (bits)                                                          | 852  | 1884 | 3756 | 6732 | 6732 | 6732 |
| Total number of bits per sub-frame                                                                                    | 864  | 1728 | 3456 | 7200 | 7200 | 7200 |
| Total symbols per sub-frame                                                                                           | 432  | 864  | 1728 | 3600 | 3600 | 3600 |
| SRS bandwidth configuration (See TS 36.211, 5.5.3) (Note 1)                                                           | 7    | 5    | 3    | 2    | 5    | 2    |
| SRS-Bandwidth b (See TS 36.211, 5.5.3) (Note 1, 2) 0 0 0 0 0                                                          |      |      |      |      | 1    |      |
| NOTE 1. The transmission of SRS is optional<br>NOTE 2. PUSCH resource blocks shall be included in SRS resource blocks |      |      |      |      |      |      |

## A.9 Multi user PUCCH test

| Table A.9-1 Test parameters | s for multi user PUCCH case |
|-----------------------------|-----------------------------|
|-----------------------------|-----------------------------|

|                                                                                                                                                 | Resource index for<br>PUCCH formats 1/1a/1b<br>$n_{ m PUCCH}^{(1)}$ |    | Relative timing<br>[ns] |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----|-------------------------|--|--|--|
| Tested signal                                                                                                                                   | 2                                                                   | -  | -                       |  |  |  |
| Interferer 1                                                                                                                                    | 1                                                                   | 0  | 0                       |  |  |  |
| Interferer 2                                                                                                                                    | 7                                                                   | -3 |                         |  |  |  |
| Interferer 3                                                                                                                                    | 14                                                                  | 3  |                         |  |  |  |
| NOTE1: The following parameters shall be used $N_{\rm ID}^{\rm cell} = 150$ , $N_{\rm cs}^{(1)} = 0$ and $\Delta_{\rm shift}^{\rm PUCCH} = 2$ . |                                                                     |    |                         |  |  |  |
| NOTE2: All above listed signals are transmitted on the same PUCCH resource block, with different PUCCH resource indices as presented above.     |                                                                     |    |                         |  |  |  |

# A.10 PUCCH transmission on two antenna ports test

### Table A.10-1 Test parameters for PUCCH transmission on two antenna ports case

|        | PUCCH format                                                                                                                                                                    | Resource indices for two antenna ports                               |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
|        | Format 1a                                                                                                                                                                       | $n_{\text{PUCCH}}^{(1,p=p_0)} = 1, n_{\text{PUCCH}}^{(1,p=p_1)} = 2$ |  |  |  |  |
|        | Format 2                                                                                                                                                                        | $n_{\text{PUCCH}}^{(2,p=p_0)} = 1, n_{\text{PUCCH}}^{(2,p=p_1)} = 2$ |  |  |  |  |
| NOTE1: | E1: The following parameters shall be used $N_{\text{ID}}^{\text{cell}} = 150$ , $N_{\text{cs}}^{(1)} = 0$ . For PUCCH format 1a, $\Delta_{\text{shift}}^{\text{PUCCH}} = 2$ is |                                                                      |  |  |  |  |
|        | <ul><li>assumed.</li><li>2: The signals transmitted on two antenna ports are in the same PUCCH resource block with different resource indices as presented above.</li></ul>     |                                                                      |  |  |  |  |

# A.11 Fixed Reference Channel for PUSCH with TTI bundling and enhanced HARQ pattern

### Table A.11-1 FRC parameters for PUSCH with TTI bundling and enhanced HARQ pattern

| Reference channel                                            | A11-1  |
|--------------------------------------------------------------|--------|
| Allocated resource blocks                                    | 3      |
| DFT-OFDM Symbols per subframe                                | 12     |
| Modulation                                                   | QPSK   |
| Code rate                                                    | 11/27* |
| Payload size (bits)                                          | 328    |
| Transport block CRC (bits)                                   | 24     |
| Code block CRC size (bits)                                   | 0      |
| Number of code blocks - C                                    | 1      |
| Coded block size including 12bits trellis termination (bits) | 1068   |
| Total number of bits per sub-frame                           | 864    |
| Total symbols per sub-frame                                  | 432    |
| Note *: code rate per TTI                                    |        |

# A.12 Fixed Reference Channels for performance requirements (QPSK 0.36)

### Table A.12-1 FRC parameters for performance requirements (QPSK 0.36)

| Reference channel                                            | A12-1        | A12-2         | A12-3        | A12-4        | A12-5        | A12-6 |
|--------------------------------------------------------------|--------------|---------------|--------------|--------------|--------------|-------|
| Allocated resource blocks                                    | 6            | 15            | 25           | 50           | 75           | 100   |
| DFT-OFDM Symbols per subframe                                | 12           | 12            | 12           | 12           | 12           | 12    |
| Modulation                                                   | QPSK         | QPSK          | QPSK         | QPSK         | QPSK         | QPSK  |
| Code rate                                                    | 0.36         | 0.36          | 0.36         | 0.36         | 0.36         | 0.36  |
| MCS index                                                    | 6            | 6             | 6            | 6            | 6            | 6     |
| Payload size (bits)                                          | 600          | 1544          | 2600         | 5160         | 7736         | 10296 |
| Transport block CRC (bits)                                   | 24           | 24            | 24           | 24           | 24           | 24    |
| Code block CRC size (bits)                                   | 0            | 0             | 0            | 0            | 24           | 24    |
| Number of code blocks - C                                    | 1            | 1             | 1            | 1            | 2            | 2     |
| Coded block size including 12bits trellis termination (bits) | 1884         | 4716          | 7884         | 15564        | 11724        | 15564 |
| Total number of bits per sub-frame                           | 1728         | 4320          | 7200         | 14400        | 21600        | 28800 |
| Total symbols per sub-frame                                  | 864          | 2160          | 3600         | 7200         | 10800        | 14400 |
| NOTE 1: FRC A12-1, A12-2, A12-4,                             | A12-6 are ic | lentical to A | 3-2, A3-3, A | A3-5, A3-7 r | respectively |       |

# A.13 Fixed Reference Channels for performance requirements (16QAM 1/2)

| Reference channel                  | A13-1 | A13-2 | A13-3 | A13-4 | A13-5 | A13-6 |
|------------------------------------|-------|-------|-------|-------|-------|-------|
| Allocated resource blocks          | 6     | 15    | 25    | 50    | 75    | 100   |
| DFT-OFDM Symbols per subframe      | 12    | 12    | 12    | 12    | 12    | 12    |
| Modulation                         | 16QAM | 16QAM | 16QAM | 16QAM | 16QAM | 16QAM |
| Code rate                          | 0.51  | 0.50  | 0.50  | 0.49  | 0.50  | 0.49  |
| MCS index                          | 15    | 15    | 15    | 15    | 15    | 15    |
| Payload size (bits)                | 1736  | 4264  | 7224  | 14112 | 21384 | 28336 |
| Transport block CRC (bits)         | 24    | 24    | 24    | 24    | 24    | 24    |
| Code block CRC size (bits)         | 0     | 0     | 24    | 24    | 24    | 24    |
| Number of code blocks - C          | 1     | 1     | 2     | 3     | 4     | 5     |
| Coded block size including 12bits  | 5292  | 12876 | 10956 | 14220 | 16140 | 17100 |
| trellis termination (bits)         |       |       |       |       |       |       |
| Total number of bits per sub-frame | 3456  | 8640  | 14400 | 28800 | 43200 | 57600 |
| Total symbols per sub-frame        | 864   | 2160  | 3600  | 7200  | 10800 | 14400 |

### Table A.13-1 FRC parameters for performance requirements (16QAM 1/2)

# A.14 Fixed Reference Channels for NB-IOT reference sensitivity ( $\pi/2$ BPSK, R=1/3)

The parameters for the reference measurement channels are specified in Table A.14-1 for reference sensitivity

| Reference channel                                          | A14-1            | A14-2         |
|------------------------------------------------------------|------------------|---------------|
| Sub-carrier spacing (kHz)                                  | 15               | 3.75          |
| Number of tone                                             | 1                | 1             |
| Diversity                                                  | No               | No            |
| Modulation                                                 | π/2 BPSK         | π/2 BPSK      |
| Frequency offset                                           | 0                | 0             |
| Channel estimation length (ms) Note 1                      | 4                | 16            |
| Number of NPUSCH repetition                                | 1                | 1             |
| IMCS / TBS                                                 | 0/0              | 0 / 0         |
| Payload size (bits)                                        | 32               | 32            |
| Allocated resource unit                                    | 2                | 2             |
| Code rate (target)                                         | 1/3              | 1/3           |
| Code rate (effective)                                      | 0.29             | 0.29          |
| Transport block CRC (bits)                                 | 24               | 24            |
| Code block CRC size (bits)                                 | 0                | 0             |
| Number of code blocks - C                                  | 1                | 1             |
| Total number of bits per resource unit                     | 96               | 96            |
| Total symbols per resource unit                            | 96               | 96            |
| Tx time (ms)                                               | 16               | 64            |
| Note 1: Channel estimation lengths an<br>information only. | re included in t | the table for |

### Table A.14-1 FRC parameters for reference sensitivity and in-channel selectivity

# A.15 Fixed Reference Channels for NB-IoT dynamic range $(\pi/4 \text{ QPSK}, \text{R}=2/3)$

The parameters for the reference measurement channels are specified in Table A.15-1 for NB-IoT dynamic range.

| Reference channel                                                                  | A15-1    | A15-2    |  |  |  |
|------------------------------------------------------------------------------------|----------|----------|--|--|--|
| Sub carrier spacing (kHz)                                                          | 15       | 3.75     |  |  |  |
| Number of tone                                                                     | 1        | 1        |  |  |  |
| Modulation                                                                         | π/4 QPSK | π/4 QPSK |  |  |  |
| Diversity                                                                          | No       | No       |  |  |  |
| Frequency offset                                                                   | 0        | 0        |  |  |  |
| IMCS / ITBS                                                                        | 7 / 7    | 7/7      |  |  |  |
| Payload size (bits)                                                                | 104      | 104      |  |  |  |
| Allocated resource units                                                           | 1        | 1        |  |  |  |
| Transport block CRC (bits)                                                         | 24       | 24       |  |  |  |
| Coding rate (target)                                                               | 2/3      | 2/3      |  |  |  |
| Coding Rate                                                                        | 0.67     | 0.67     |  |  |  |
| Code block CRC size (bits)                                                         | 0        | 0        |  |  |  |
| Number of code blocks – C                                                          | 1        | 1        |  |  |  |
| Total symbols per resource unit                                                    | 96       | 96       |  |  |  |
| Total number of bits per resource unit                                             | 192      | 192      |  |  |  |
| Tx time (ms)                                                                       | 8        | 32       |  |  |  |
| Frequency offset                                                                   | 0        | 0        |  |  |  |
| Channel estimation length (ms) Note 1                                              | 4        | 16       |  |  |  |
| Note 1: Channel estimation lengths are included in the table for information only. |          |          |  |  |  |

Table A.15-1 FRC parameters for NB-IoT dynamic range

# A.16 Fixed Reference Channels for NB-IoT NPUSCH format 1

## A.16.1 One PRB

| Reference channel                      | A16-1        | A16-2             | A16-3              | A16-4       | A16-5                                              |
|----------------------------------------|--------------|-------------------|--------------------|-------------|----------------------------------------------------|
| Subcarrier spacing (kHz)               | 3.75         | 15                | 15                 | 15          | 15                                                 |
| Number of allocated subcarriers        | 1            | 1                 | 3                  | 6           | 12                                                 |
| Diversity                              | No           | No                | No                 | No          | No                                                 |
| Modulation                             | BPSK         | BPSK              | QPSK               | QPSK        | QPSK                                               |
| Itbs / Iru                             | 0 / 1        | 0 / 1             | 3/0                | 7/0         | 9 / 0                                              |
| Payload size (bits)                    | 32           | 32                | 40                 | 104         | 136                                                |
| Allocated resource unit                | 2            | 2                 | 1                  | 1           | 1                                                  |
| Code rate (target)                     | 1/3          | 1/3               | 1/3                | 1/3         | 2/3                                                |
| Code rate (effective)                  | 0.29         | 0.29              | 0.22               | 0.44        | 0.56                                               |
| Transport block CRC (bits)             | 24           | 24                | 24                 | 24          | 24                                                 |
| Code block CRC size (bits)             | 0            | 0                 | 0                  | 0           | 0                                                  |
| Number of code blocks - C              | 1            | 1                 | 1                  | 1           | 1                                                  |
| Total number of bits per resource unit | 96           | 96                | 288                | 288         | 288                                                |
| Total symbols per resource unit        | 96           | 96                | 144                | 144         | 144                                                |
| Channel estimation length (ms) Note 1  | 16           | 4                 | 4                  | 4           | 2 (when repetition = 2)<br>4 (when repetition > 2) |
| Note 1: Channel estimation lengths     | are included | l<br>d in the tab | l<br>le for inforr | nation only |                                                    |

### Table A.16.1-1: FRC parameters for NB-IoT NPUSCH format 1

# A.17 Fixed Reference Channels for performance requirements (256QAM 5/6)

### Table A.17-1 FRC parameters for performance requirements (256QAM 5/6)

| Reference channel                                            | A17-1  | A17-2  | A17-3  | A17-4  | A17-5  | A17-6  |
|--------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Allocated resource blocks                                    | 6      | 15     | 25     | 50     | 75     | 100    |
| DFT-OFDM Symbols per subframe                                | 12     | 12     | 12     | 12     | 12     | 12     |
| Modulation                                                   | 256QAM | 256QAM | 256QAM | 256QAM | 256QAM | 256QAM |
| Code rate                                                    | 5/6    | 5/6    | 5/6    | 5/6    | 5/6    | 5/6    |
| Payload size (bits)                                          | 5544   | 14112  | 22920  | 46888  | 68808  | 93800  |
| Transport block CRC (bits)                                   | 24     | 24     | 24     | 24     | 24     | 24     |
| Code block CRC size (bits)                                   | 0      | 24     | 24     | 24     | 24     | 24     |
| Number of code blocks - C                                    | 1      | 3      | 4      | 8      | 12     | 16     |
| Coded block size including 12bits trellis termination (bits) | 16716  | 14220  | 17292  | 17676  | 17292  | 17676  |
| Total number of bits per sub-frame                           | 6912   | 17280  | 28800  | 57600  | 86400  | 115200 |
| Total symbols per sub-frame                                  | 864    | 2160   | 3600   | 7200   | 10800  | 14400  |

# A.18 Fixed Reference Channels for PUSCH transmission in UpPTS (16QAM 0.65)

### Table A.18-1: FRC parameters for PUSCH transmission in UpPTS (16QAM 0.65)

| Reference channel                                                                                                                                                | A18-1 | A18-2 | A18-3 | A18-4 | A18-5 | A18-6 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Allocated resource blocks                                                                                                                                        | 6     | 15    | 25    | 50    | 75    | 100   |
| DFT-OFDM Symbols in UpPTS                                                                                                                                        | 5     | 5     | 5     | 5     | 5     | 5     |
| Modulation                                                                                                                                                       | 16QAM | 16QAM | 16QAM | 16QAM | 16QAM | 16QAM |
| Code rate                                                                                                                                                        | 0.65  | 0.65  | 0.65  | 0.65  | 0.65  | 0.65  |
| Payload size (bits) (Note 1)                                                                                                                                     | 840   | 2152  | 3880  | 7736  | 12216 | 15840 |
| Transport block CRC (bits)                                                                                                                                       | 24    | 24    | 24    | 24    | 24    | 24    |
| Code block CRC size (bits)                                                                                                                                       | 0     | 0     | 24    | 24    | 24    | 24    |
| Number of code blocks - C                                                                                                                                        | 1     | 1     | 1     | 2     | 2     | 3     |
| Coded block size including 12bits trellis termination (bits)                                                                                                     | 2604  | 6540  | 17724 | 11724 | 18516 | 15948 |
| Total number of bits in UpPTS                                                                                                                                    | 1440  | 3600  | 6000  | 12000 | 18000 | 24000 |
| Total symbols in UpPTS                                                                                                                                           | 360   | 900   | 1500  | 3000  | 4500  | 6000  |
| Note 1: for special subframe configuration with more than 3 UpPTS SC-FDMA data symbols, the UE shall determine the TBS using $\max\{N_{PRB} \times 0.375, 1\}$ . |       |       |       |       |       |       |

# A.19 Fixed Reference Channels for PUSCH transmission in UpPTS (256QAM 0.69)

### Table A.19-1: FRC parameters for PUSCH transmission in UpPTS (256QAM 0.69)

| Reference channel                                                                                                                                                | A19-1  | A19-2  | A19-3  | A19-4  | A19-5  | A19-6  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Allocated resource blocks                                                                                                                                        | 6      | 15     | 25     | 50     | 75     | 100    |
| DFT-OFDM Symbols in UpPTS                                                                                                                                        | 5      | 5      | 5      | 5      | 5      | 5      |
| Modulation                                                                                                                                                       | 256QAM | 256QAM | 256QAM | 256QAM | 256QAM | 256QAM |
| Code rate                                                                                                                                                        | 0.69   | 0.69   | 0.69   | 0.69   | 0.69   | 0.69   |
| Payload size (bits)                                                                                                                                              | 1864   | 4584   | 8248   | 16416  | 26416  | 34008  |
| Transport block CRC (bits)                                                                                                                                       | 24     | 24     | 24     | 24     | 24     | 24     |
| Code block CRC size (bits)                                                                                                                                       | 0      | 0      | 24     | 24     | 24     | 24     |
| Number of code blocks - C                                                                                                                                        | 1      | 1      | 2      | 3      | 5      | 6      |
| Coded block size including 12bits trellis termination (bits)                                                                                                     | 5767   | 13836  | 12492  | 16524  | 15948  | 17100  |
| Total number of bits in UpPTS                                                                                                                                    | 2880   | 7200   | 12000  | 24000  | 36000  | 48000  |
| Total symbols in UpPTS                                                                                                                                           | 360    | 900    | 1500   | 3000   | 4500   | 6000   |
| Note 1: for special subframe configuration with more than 3 UpPTS SC-FDMA data symbols, the UE shall determine the TBS using $\max\{N_{PRB} \times 0.375, 1\}$ . |        |        |        |        |        |        |

# A.20 Fixed Reference Channels for PUSCH of Frame structure type 3

### Table A.20-1: FRC parameters for performance requirements (QPSK 1/3)

| Reference channel                         | A20-1   |  |
|-------------------------------------------|---------|--|
| Uplink resource allocation type           | 3       |  |
| Allocated resource blocks                 | 50      |  |
| DFT-OFDM Symbols per subframe             | 11      |  |
| Modulation                                | QPSK    |  |
| Code rate                                 | 1/3     |  |
| Payload size (bits)                       | 4392    |  |
| Transport block CRC (bits)                | 24      |  |
| Code block CRC size (bits)                | 0       |  |
| Number of code blocks – C                 | 1       |  |
| Coded block size including 12bits trellis | 13260   |  |
| termination (bits)                        |         |  |
| Total number of bits per sub-frame with   | 13200   |  |
| the PUSCH starting position at 25µs in    |         |  |
| symbol 0                                  |         |  |
| Total number of bits per sub-frame with   | 14400   |  |
| the PUSCH starting position at symbol     |         |  |
| 0                                         |         |  |
| Total symbols per sub-frame with the      | 6600    |  |
| PUSCH starting position at 25µs in        |         |  |
| symbol 0                                  |         |  |
| Total symbols per sub-frame with the      | 7200    |  |
| PUSCH starting position at symbol 0       |         |  |
| NOTE1: The PUSCH ending symbol for all    |         |  |
|                                           | ne last |  |
| symbol.                                   |         |  |

| Reference channel                         | A20-2 |  |  |
|-------------------------------------------|-------|--|--|
| Uplink resource allocation type           | 3     |  |  |
| Allocated resource blocks                 | 50    |  |  |
| DFT-OFDM Symbols per subframe             | 11    |  |  |
| Modulation                                | 16QAM |  |  |
| Code rate                                 | 3⁄4   |  |  |
| Payload size (bits)                       | 19848 |  |  |
| Transport block CRC (bits)                | 24    |  |  |
| Code block CRC size (bits)                | 24    |  |  |
| Number of code blocks – C                 | 4     |  |  |
| Coded block size including 12bits trellis | 14988 |  |  |
| termination (bits)                        |       |  |  |
| Total number of bits per the sub-frame    | 26400 |  |  |
| with the PUSCH starting position at       |       |  |  |
| 25µs in symbol 0                          |       |  |  |
| Total number of bits per the sub-frame    | 28800 |  |  |
| with the PUSCH starting position at       |       |  |  |
| symbol 0                                  |       |  |  |
| Total symbols per the sub-frame with      | 6600  |  |  |
| the PUSCH starting positon at 25µs in     |       |  |  |
| symbol 0                                  |       |  |  |
| Total symbols per the sub-frame with      | 7200  |  |  |
| the PUSCH starting positon at symbol      |       |  |  |
| 0                                         |       |  |  |
| NOTE1: The PUSCH ending symbol for all    |       |  |  |
| scheduled subframes is the last           |       |  |  |
| symbol.                                   |       |  |  |

| Table A.20-2 FRC | parameters for | performance red | uirements ( | (16QAM 3/4) |
|------------------|----------------|-----------------|-------------|-------------|
|                  |                |                 |             |             |

## Annex B (normative): Propagation conditions

## B.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading or multi-paths exist for this propagation model.

## B.2 Multi-path fading propagation conditions

Tables B.2-1 - B.2-3 show multi-path delay profiles that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum, defined as:

(CLASS)

$$S(f) \propto 1/(1 - (f/f_D)^2)^{0.5}$$
 for  $f \in -f_D, f_D$ .

| Excess tap delay<br>[ns] | Relative power<br>[dB] |
|--------------------------|------------------------|
| 0                        | 0.0                    |
| 30                       | -1.0                   |
| 70                       | -2.0                   |
| 90                       | -3.0                   |
| 110                      | -8.0                   |
| 190                      | -17.2                  |
| 410                      | -20.8                  |

#### Table B.2-1 Extended Pedestrian A model (EPA)

#### Table B.2-2 Extended Vehicular A model (EVA)

| Excess tap delay<br>[ns] | Relative power [dB] |
|--------------------------|---------------------|
| 0                        | 0.0                 |
| 30                       | -1.5                |
| 150                      | -1.4                |
| 310                      | -3.6                |
| 370                      | -0.6                |
| 710                      | -9.1                |
| 1090                     | -7.0                |
| 1730                     | -12.0               |
| 2510                     | -16.9               |

#### Table B.2-3 Extended Typical Urban model (ETU)

| Excess tap delay<br>[ns] | Relative power [dB] |
|--------------------------|---------------------|
| 0                        | -1.0                |
| 50                       | -1.0                |
| 120                      | -1.0                |
| 200                      | 0.0                 |
| 230                      | 0.0                 |
| 500                      | 0.0                 |
| 1600                     | -3.0                |
| 2300                     | -5.0                |
| 5000                     | -7.0                |

A multipath fading propagation condition is defined by a combination of a multi-path delay profile and a maximum Doppler frequency  $f_D$  which is either 5, 70 or 300 Hz. In addition, 200 Hz Doppler frequency is specified for UL timing adjustment performance requirement.

For carrier aggregation requirements, the fading of the signals for each carrier shall be independent.

## B.3 High speed train condition

High speed train conditions are as follows:

Scenario 1: Open space

Scenario 3: Tunnel for multi-antennas

The high speed train conditions for the test of the baseband performance are two non-fading propagation channels in both scenarios. For BS with Rx diversity defined in scenario 1, the Doppler shift variation is the same between antennas.

Doppler shift for both scenarios is given by:

$$f_s(t) = f_d \cos\theta(t) \tag{B.3.1}$$

where  $f_s(t)$  is the Doppler shift and  $f_d$  is the maximum Doppler frequency. The cosine of angle  $\theta(t)$  is given by:

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos\theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where  $D_s/2$  is the initial distance of the train from BS, and  $D_{\min}$  is BS-Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle is given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 and B.3-2 are applied for all frequency bands.

Table B.3-1: Parameters for high speed train conditions

| Parameter  | Value      |            |  |
|------------|------------|------------|--|
|            | Scenario 1 | Scenario 3 |  |
| $D_s$      | 1000 m     | 300 m      |  |
| $D_{\min}$ | 50 m       | 2 m        |  |
| v          | 350 km/h   | 300 km/h   |  |
| $f_d$      | 1340 Hz    | 1150 Hz    |  |

NOTE1: Parameters for HST conditions in table B.3-1 including  $f_d$  and Doppler shift trajectories presented on figures B.3-1 and B.3-2 were derived from Band1 and are applied for performance verification in all frequency bands.

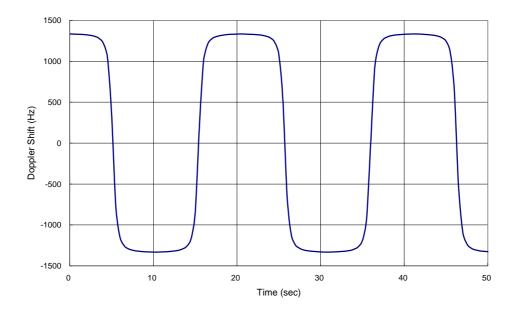



Figure B.3-1: Doppler shift trajectory for scenario 1

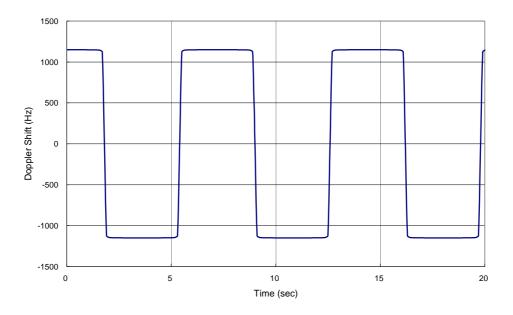



Figure B.3-2: Doppler shift trajectory for scenario 3

## B.4 Moving propagation conditions

Figure B.4-1 illustrates the moving propagation conditions for the test of the UL timing adjustment performance. The time difference between the reference timing and the first tap is according Equation (B.4-1). The timing difference between moving UE and stationary UE is equal to  $\Delta \tau - (T_A - 31) \times 16T_s$ . The relative timing among all taps is fixed. The parameters for the moving propagation conditions are shown in Table B.4-1.

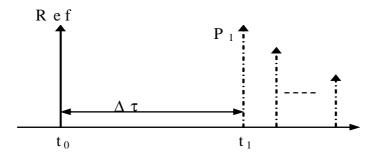



Figure B.4-1: Moving propagation conditions

$$\Delta \tau = \frac{A}{2} \cdot \sin(\Delta \omega \cdot t) \tag{B.4-1}$$

#### Table B.4-1: Parameters for UL timing adjustment

| Parameter     | Scenario 1           | Scenario 2           |
|---------------|----------------------|----------------------|
| Channel model | Stationary UE: AWGN  | AWGN                 |
|               | Moving UE: ETU200    |                      |
| UE speed      | 120 km/h             | 350 km/h             |
| CP length     | Normal               | Normal               |
| А             | 10 μs                | 10 µs                |
| Δω            | 0.04 s <sup>-1</sup> | 0.13 s <sup>-1</sup> |

NOTE 1: Multipath fading propagation conditions for Scenario 1 were derived for Band 1 with additional rounding applied to the Doppler frequency calculated for the specified UE speed.

NOTE 2: In Scenario 2, Doppler shift is not taken into account.

## B.5 Multi-Antenna channel models

The MIMO channel correlation matrices defined in B.5 apply for the antenna configuration using uniform linear arrays at both UE and eNodeB.

## B.5.1 Definition of MIMO Correlation Matrices

Table B.5.1-1 defines the correlation matrix for the eNodeB:

|                     | One antenna   | Two antennas                                                         | Four antennas                                                                                                                                                                                                                                                                                                        |
|---------------------|---------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eNode B Correlation | $R_{eNB} = 1$ | $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$ | $R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$ |

| Table | B.5.1-1 | eNodeB | correlation | matrix |
|-------|---------|--------|-------------|--------|
|       |         |        |             |        |

Table B.5.1-2 defines the correlation matrix for the UE:

 Table B.5.1-2 UE correlation matrix

|                | One antenna  | Two antennas                                                      | Four antennas                                                                                                                                                                                                                                                                                                                 |
|----------------|--------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UE Correlation | $R_{UE} = 1$ | $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$ | $R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 \end{pmatrix}$ |

Table B.5.1-3 defines the channel spatial correlation matrix  $R_{spat}$ . The parameters  $\alpha$  and  $\beta$  in Table B.5.1-3 defines the spatial correlation between the antennas at the eNodeB and UE respectively.

| 1x2 case | $R_{spat} = R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2x2 case | $R_{spat} = R_{UE} \otimes R_{eNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \beta & \beta\alpha \\ \alpha^* & 1 & \beta\alpha^* & \beta \\ \beta^* & \beta^*\alpha & 1 & \alpha \\ \beta^*\alpha^* & \beta^* & \alpha^* & 1 \end{bmatrix}$                |
| 2x4 case | $R_{spat} = R_{UE} \otimes R_{eNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \end{bmatrix}$                           |
| 4x4 case | $ \left( \begin{array}{cccc} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9^{*}}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \end{array} \right) \left  \begin{array}{cccc} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9^{*}}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \end{array} \right  $ |

Table B.5.1-3:  $R_{spat}$  correlation matrices

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of  $R_{UE}$  and  $R_{eNB}$  according to  $R_{spat} = R_{UE} \otimes R_{eNB}$ .

## B.5.2 MIMO Correlation Matrices at High, Medium and Low Level

The  $\alpha$  and  $\beta$  for different correlation types are given in Table B.5.2-1.

| Low | correlation | Medium C | Correlation | High Co | rrelation |
|-----|-------------|----------|-------------|---------|-----------|
| α   | β           | α        | β           | α       | β         |
| 0   | 0           | 0.9      | 0.3         | 0.9     | 0.9       |

The correlation matrices for high, medium and low correlation are defined in Table B.5.2-2, B.5.2-3 and B.5.2-4 as below.

The values in Table B.5.2-2 have been adjusted for the 2x4 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 2x4 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.5.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a =0.00012.

| 1x2<br>case | $R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2x2<br>case | $R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2x4<br>case | $R_{high} = \begin{bmatrix} 1.0000 & 0.9883 & 0.9542 & 0.8999 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9883 & 1.0000 & 0.9883 & 0.9542 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9542 & 0.9883 & 1.0000 & 0.9883 & 0.8587 & 0.8894 & 0.8999 & 0.8894 \\ 0.8999 & 0.9542 & 0.9883 & 1.0000 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.9542 & 0.9883 & 1.0000 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.8894 & 0.8587 & 0.8099 & 1.0000 & 0.9883 & 0.9542 & 0.8999 \\ 0.8999 & 0.8894 & 0.8587 & 0.8099 & 1.0000 & 0.9883 & 0.9542 & 0.8999 \\ 0.8894 & 0.8999 & 0.8894 & 0.8587 & 0.9883 & 1.0000 & 0.9883 & 0.9542 \\ 0.8587 & 0.8894 & 0.8999 & 0.8894 & 0.9542 & 0.9883 & 1.0000 & 0.9883 \\ 0.8099 & 0.8587 & 0.8894 & 0.8999 & 0.8999 & 0.9542 & 0.9883 & 1.0000 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4x4<br>case | $R_{migh} = \begin{bmatrix} 1.0000\ 0.9882\ 0.9541\ 0.8999\ 0.9882\ 0.9767\ 0.9430\ 0.8894\ 0.9541\ 0.9430\ 0.9105\ 0.8587\ 0.8999\ 0.8894\ 0.8587\ 0.8099\\ 0.9882\ 1.0000\ 0.9882\ 0.9541\ 0.9767\ 0.9882\ 0.9767\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9105\ 0.8894\ 0.8587\ 0.8999\ 0.8894\ 0.8587\\ 0.9541\ 0.9882\ 1.0000\ 0.9882\ 0.9430\ 0.9767\ 0.9882\ 0.9767\ 0.9105\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.8587\ 0.8894\ 0.8999\ 0.8894\ 0.8587\\ 0.8999\ 0.9541\ 0.9882\ 1.0000\ 0.8894\ 0.9430\ 0.9767\ 0.9882\ 0.8587\ 0.9105\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9767\ 0.9882\ 0.9541\ 0.9882\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.9541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\ 0.9682\ 0.95541\$ |

Table B.5.2-2: MIMO correlation matrices for high correlation

| 1x2 case    |                            |                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                          |                                                                                                                      | [                                                                                                                                        | N/A]                                                                                                                                     |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                        |                                                                                                                                                              |                                                                                                                                |
|-------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 2x2 case    |                            |                                                                                                                                          |                                                                                                                                                                                                                                                        | [ <i>R</i> ,                                                                                                                                                                                                                                    | nedium <sup>=</sup>                                                                                                                      | $= \begin{bmatrix} 0\\ 0 \end{bmatrix}$                                                                                                  | .0000<br>.9000<br>.3000<br>.2700                                                                                     | 1.0<br>0.2                                                                                                                               | 9000<br>9000<br>2700<br>3000                                                                                                             | 0.2<br>1.0                                                                                                                               | 000<br>2700<br>0000<br>0000                                                                                                              | 0.27<br>0.30<br>0.90<br>1.00                                                                                                             | 000                                                                                                                                      | ]                                                                                                                                        |                                        |                                                                                                                                                              |                                                                                                                                |
| 2x4 case    | [R <sub>mediu</sub>        |                                                                                                                                          | 1.0000<br>0.98<br>0.95<br>0.90<br>0.30<br>0.29<br>0.28<br>0.27                                                                                                                                                                                         | 84<br>43<br>00<br>00<br>65<br>63                                                                                                                                                                                                                | .9884<br>1.000<br>0.983<br>0.954<br>0.290<br>0.300<br>0.290<br>0.280                                                                     | 00<br>84<br>43<br>65<br>00<br>65                                                                                                         | 9543<br>0.9884<br>1.0000<br>0.9884<br>0.2862<br>0.2962<br>0.3000<br>0.2962                                           | 4 0<br>0 0<br>4 1<br>3 0<br>5 0<br>0 0                                                                                                   | 000<br>.9543<br>.9884<br>.0000<br>.2700<br>.2863<br>.2965<br>.3000                                                                       | 0.<br>0.<br>1.<br>0.<br>0.                                                                                                               | )00<br>2965<br>2863<br>2700<br>0000<br>9884<br>9543<br>9000                                                                              | 0.2<br>0.2<br>0.9<br>1.0<br>0.9                                                                                                          | 55<br>000<br>965<br>863<br>884<br>000<br>884<br>543                                                                                      | 0.286<br>0.29<br>0.30<br>0.29<br>0.95<br>0.95<br>1.00<br>0.98                                                                            | 965<br>900<br>965<br>543<br>884<br>900 | .2700<br>0.280<br>0.290<br>0.300<br>0.900<br>0.954<br>0.983<br>1.000                                                                                         | 53  <br>55  <br>00  <br>00  <br>143  <br>84                                                                                    |
| 4x4<br>case | [<br>R <sub>mxdium</sub> = | 0.9882<br>0.9541<br>0.8999<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>0.5855<br>0.5787<br>0.5588<br>0.5270<br>0.3000<br>0.2965<br>0.2862 | 1.0000         0.9882           0.9541         0.8645           0.8645         0.8747           0.8645         0.8747           0.8645         0.5787           0.5787         0.5787           0.5588         0.25685           0.3000         0.2965 | 9541         0.           0.9882         1.0000           0.9882         0.8347           0.8645         0.8747           0.8645         0.5787           0.5588         0.5787           0.2862         0.2965           0.3000         0.2965 | 0.9541<br>0.9882<br>1.0000<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.5270<br>0.5588<br>0.5787<br>0.5855<br>0.2700<br>0.2862<br>0.2965 | 0.8645<br>0.8347<br>0.7872<br>1.0000<br>0.9882<br>0.9541<br>0.8999<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>0.5855<br>0.5787<br>0.5588 | 0.8645<br>0.8347<br>0.9882<br>1.0000<br>0.9882<br>0.9541<br>0.8645<br>0.8747<br>0.8645<br>0.8347<br>0.5787<br>0.5855 | 0.8645<br>0.8747<br>0.8645<br>0.9541<br>0.9882<br>1.0000<br>0.9882<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.5588<br>0.5787<br>0.5855 | 0.8347<br>0.8645<br>0.8747<br>0.8999<br>0.9541<br>0.9882<br>1.0000<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.5270<br>0.5588<br>0.5787 | 0.5787<br>0.5588<br>0.5270<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>1.0000<br>0.9882<br>0.9541<br>0.8999<br>0.8747<br>0.8645<br>0.8347 | 0.5855<br>0.5787<br>0.5588<br>0.8645<br>0.8747<br>0.8645<br>0.8347<br>0.9882<br>1.0000<br>0.9882<br>0.9541<br>0.8645<br>0.8747<br>0.8645 | 0.5787<br>0.5855<br>0.5787<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.9541<br>0.9882<br>1.0000<br>0.9882<br>0.8347<br>0.8645<br>0.8747 | 0.5588<br>0.5787<br>0.5855<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.8999<br>0.9541<br>0.9882<br>1.0000<br>0.7872<br>0.8347<br>0.8645 | 0.2965<br>0.2862<br>0.2700<br>0.5855<br>0.5787<br>0.5588<br>0.5270<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>1.0000<br>0.9882<br>0.9541 | 0.3000<br>0.2965<br>0.2862<br>0.5787   | 0.2965<br>0.3000<br>0.2965<br>0.5588<br>0.5787<br>0.5855<br>0.5787<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.8741<br>0.8645<br>0.9541<br>0.9882<br>1.0000 | 0.2862<br>0.2965<br>0.3000<br>0.5270<br>0.5588<br>0.5787<br>0.5855<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.8699<br>0.9541 |

| Table B.5.2-3: MIMO correlation matrices | s for medium correlation |
|------------------------------------------|--------------------------|
|------------------------------------------|--------------------------|

Table B.5.2-4: MIMO correlation matrices for low correlation

| 1x2 case | $R_{low} = \mathbf{I}_2$    |
|----------|-----------------------------|
| 1x4 case | $R_{low} = \mathbf{I}_4$    |
| 2x2 case | $R_{low} = \mathbf{I}_4$    |
| 2x4 case | $R_{low} = \mathbf{I}_8$    |
| 4x4 case | $R_{low} = \mathbf{I}_{16}$ |

In Table B.5.2-4,  $\mathbf{I}_d$  is a  $d \times d$  identity matrix.

NOTE: For completeness, the 1x2 cases were defined for high, medium and low correlation but for Rel-8 onwards for 1Tx, performance requirements exist only for low correlation.

# B.5A Multi-Antenna channel models using cross polarized antennas

The MIMO channel correlation matrices defined in B.5A apply to two cases as presented below:

- One TX antenna and multiple RX antennas case, with cross polarized antennas used at eNodeB
- Multiple TX antennas and multiple RX antennas case, with cross polarized antennas used at both UE and eNodeB

The cross-polarized antenna elements with +/-45 degrees polarization slant angles are deployed at eNB. For one TX antenna case, antenna element with +90 degree polarization slant angle is deployed at UE. For multiple TX antennas case, cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of TX or RX antennas.

### B.5A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{Spat} = P_{UL} \left( R_{UE} \otimes \Gamma_{UL} \otimes R_{eNB} \right) P_{UL}^{T}$$

Where

- $R_{UE}$  is the spatial correlation matrix at the UE with same polarization,
- $R_{eNB}$  is the spatial correlation matrix at the eNB with same polarization,
- $\Gamma_{UL}$  is a polarization correlation matrix,
- $P_{UL}$  is a permutation matrix, and
- $(\bullet)^T$  denotes transpose.

Table B.5A.1-1 defines the polarization correlation matrix.

#### Table B.5A.1-1 Polarization correlation matrix

|                                    | One TX antenna                                                           | Multiple TX antennas                                                                                                                 |
|------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Polarization correlation<br>matrix | $\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma \\ -\gamma & 1 \end{bmatrix}$ | $\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma & 0 & 0 \\ -\gamma & 1 & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ 0 & 0 & \gamma & 1 \end{bmatrix}$ |

The matrix  $P_{UL}$  is defined as

$$\mathbf{P}_{UL}(a,b) = \begin{cases} 1 & \text{for } a = (j-1)Nr + i \text{ and } b = 2(j-1)Nr + i, & i = 1, \cdots, Nr, \ j = 1, \cdots, \lceil Nt / 2 \rceil \\ 1 & \text{for } a = (j-1)Nr + i \text{ and } b = 2(j-Nt / 2)Nr - Nr + i, & i = 1, \cdots, Nr, \ j = \lceil Nt / 2 \rceil + 1, \dots, Nt \\ 0 & \text{otherwise} \end{cases}$$

where Nt and Nr is the number of TX and RX antennas respectively, and  $|\bullet|$  is the ceiling operator.

The matrix  $P_{UL}$  is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.5A.

### B.5A.2 Spatial Correlation Matrices at UE and eNB sides

### B.5A.2.1 Spatial Correlation Matrices at UE side

For 1-antenna transmitter,  $R_{UE} = 1$ .

For 2-antenna transmitter using one pair of cross-polarized antenna elements,  $R_{UE} = 1$ .

For 4-antenna transmitter using two pairs of cross-polarized antenna elements,  $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$ .

### B.5A.2.2 Spatial Correlation Matrices at eNB side

For 2-antenna receiver using one pair of cross-polarized antenna elements,  $R_{eNB} = 1$ .

For 4-antenna receiver using two pairs of cross-polarized antenna elements,  $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$ .

For 8-antenna receiver using four pairs of cross-polarized antenna elements,  $R_{eNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9*} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9*} & \alpha^{1/9*} & 1 & \alpha^{1/9} \\ \alpha^{*} & \alpha^{4/9*} & \alpha^{1/9*} & 1 \end{pmatrix}.$ 

### B.5A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters  $\alpha$ ,  $\beta$  and  $\gamma$  for low spatial correlation are given in Table B.5A.3-1.

#### Table B.5A.3-1 Values for parameters $\alpha$ , $\beta$ and $\gamma$

| Low spatial correlation                                                                                                                                                                                                |                                          |                             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|--|--|--|
| α β γ                                                                                                                                                                                                                  |                                          |                             |  |  |  |
| 0 0 0                                                                                                                                                                                                                  |                                          |                             |  |  |  |
| Note 1: Value of $\alpha$ applies when more than one pair of cross-polarized antenna elements at eNB side.<br>Note 2: Value of $\beta$ applies when more than one pair of cross-polarized antenna elements at UE side. |                                          |                             |  |  |  |
| Note 2: Value of $\beta$ applies when r                                                                                                                                                                                | nore than one pair of cross-polarized ar | itenna elements at UE side. |  |  |  |

The correlation matrices for low spatial correlation are defined in Table B.5A.3-2 as below.

#### Table B.5A.3-2 MIMO correlation matrices for low spatial correlation

| 1x8 case | $R_{low} = \mathbf{I}_8$    |
|----------|-----------------------------|
| 2x8 case | $R_{low} = \mathbf{I}_{16}$ |

In Table B.5A.3-2,  $\mathbf{I}_d$  is a  $d \times d$  identity matrix.

# B.6 Interference model for enhanced performance requirements type A

This clause provides a description for the modelling of interfering UE transmissions for enhanced performance requirements type A including: definition of dominant interferer proportion, interference model for synchronous scenario and interference model for asynchronous scenario.

## B.6.1 Dominant interferer proportion

Each interferer involved in enhanced performance requirements type A is characterized by its associated dominant interferer proportion (DIP) value:

$$DIP_i = \frac{\hat{I}_{or(i)}}{N} (i = 1, ..., M)$$

where  $\hat{I}_{or(i)}$  is the received energy from the *i*-th strongest interferer involved in the requirement scenario and

 $N = \sum_{j=1}^{M} \hat{I}_{or(j)} + N$  where N is the the energy of the white noise source consistent with the definition provided in

subclause 8.1 and M is the total number of simultaneously transmitted interferers involved in a given requirement scenario.

### B.6.2 Interference model for synchronous scenario

This subclause provides interference modelling for each explicitly modelled interferer in the requirement scenario where the interferer(s) are time-synchronous with the tested signal.

In each subframe, each interferer shall transmit 16QAM randomly modulated data over the entire PUSCH region and the full transmission bandwidth. Demodulation reference signal, configured according to Table 8.2.6-1, is transmitted associated with the transmission of PUSCH.

### B.6.3 Interference model for asynchronous scenario

This subclause provides interference modelling for each explicitly modelled interferer in the requirement scenario where the interferer(s) are time-asynchronous with the tested signal.

Two interfering UEs from the same interfering cell, named interferer 1-1 and interferer 1-2, are modelled. Interferer 1-1 and interferer 1-2 shall transmit 16QAM randomly modulated data over the entire PUSCH region and the full transmission bandwidth, respectively in the even subframes and odd subframes, as illustrated in Figure B.6.3-1. Demodulation reference signal, configured according to Table 8.2.6A-1, is transmitted associated with the transmission of PUSCH. The transmissions of both interferer 1-1 and interferer 1-2 are delayed with respect to the tested signal by 0.33 ms.

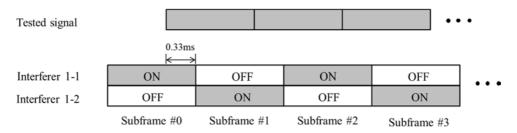



Figure B.6.3-1: Configuration of asynchronous interferers

## Annex C (normative): Characteristics of the interfering signals

For E-UTRA or E-UTRA with NB-IoT (in-band and/or guard band operation) BS, the interfering signal shall be a PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211. Mapping of PUSCH modulation to receiver requirement are specified in table C-1.1.

| Receiver requirement         | Modulation |
|------------------------------|------------|
| In-channel selectivity       | 16QAM      |
| Adjacent channel selectivity | QPSK       |
| and narrow-band blocking     |            |
| Blocking                     | QPSK       |
| Receiver intermodulation     | QPSK       |

#### Table C-1: Modulation of the interfering signal

For NB-IoT standalone BS, the interfering signal shall be a NPUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 10.1 of TS36.211. Mapping of NPUSCH modulation to receiver requirement are specified in table C-2.

#### Table C-2: Modulation of the interfering signal – NB-IoT

| Receiver requirement         | Modulation |
|------------------------------|------------|
| Adjacent channel selectivity | π/4 QPSK   |
| and narrow-band blocking     |            |
| Blocking                     | π/4 QPSK   |
| Receiver intermodulation     | π/4 QPSK   |

# Annex D (normative): Environmental requirements for the BS equipment

The BS equipment shall fulfil all the requirements in the full range of environmental conditions for the relevant environmental class from the relevant IEC specifications listed below

60 721-3-3 "Stationary use at weather protected locations" [13]

60 721-3-4 "Stationary use at non weather protected locations" [14]

Normally it should be sufficient for all tests to be conducted using normal test conditions except where otherwise stated. For guidance on the use of test conditions to be used in order to show compliance refer to TS 36.141.

## Annex E (normative): Error Vector Magnitude

## E.1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in Figure E.1-1 below.

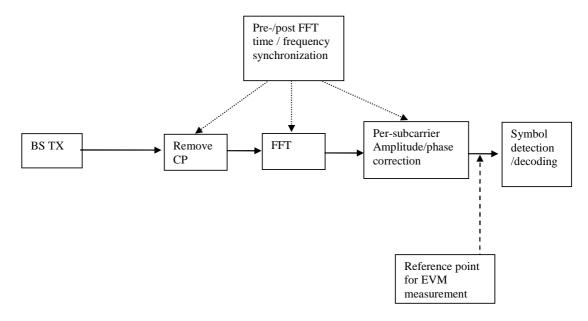



Figure E.1-1: Reference point for EVM measurement

## E.2 Basic unit of measurement

The basic unit of EVM measurement is defined over one subframe (1ms) in the time domain and  $N_{BW}^{RB}$  subcarriers (180kHz) in the frequency domain:

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z'(t, f) - I(t, f)|^2}{\sum_{t \in T} \sum_{f \in F(t)} |I(t, f)|^2}}$$

where

T is the set of symbols with the considered modulation scheme being active within the subframe,

F(t) is the set of subcarriers within the  $N_{BW}^{RB}$  subcarriers with the considered modulation scheme being active in symbol *t*,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,

Z'(t, f) is the modified signal under test defined in E.3.

Note: Although the basic unit of measurement is one subframe, the equalizer is calculated over 10 subframe measurement periods to reduce the impact of noise in the reference symbols. The boundaries of the 10 subframe measurement periods need not be aligned with radio frame boundaries.

## E.3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalised and decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\} e^{j2\pi f\Delta \tilde{t}}}{\tilde{a}(f) \cdot e^{j\tilde{\varphi}(f)}}$$

where

z(v) is the time domain samples of the signal under test.

 $\Delta \tilde{t}$  is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in E.7.

 $\Delta f$  is the RF frequency offset.

 $\tilde{\varphi}(f)$  is the phase response of the TX chain.

 $\tilde{a}(f)$  is the amplitude response of the TX chain.

## E.4 Estimation of frequency offset

The observation period for determining the frequency offset  $\Delta \tilde{f}$  shall be 1 ms.

## E.5 Estimation of time offset

The observation period for determining the sample timing difference  $\Delta \tilde{t}$  shall be 1 ms.

In the following  $\Delta \tilde{c}$  represents the middle sample of the EVM window of length W (defined in E.5.1) or the last sample of the first window half if W is even.

 $\Delta \tilde{c}$  is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on the primary synchronization signal and reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for  $\Delta \tilde{t}$  are determined:

$$\Delta \tilde{t}_i = \Delta \tilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$$
 and

$$\Delta \tilde{t}_h = \Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$$
 where  $\alpha = 0$  if W is odd and  $\alpha = 1$  if W is even.

When the cyclic prefix length varies from symbol to symbol (e.g. time multiplexed MBMS and unicast) then T shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

## E.5.1 Window length

Table E.5.1-1 and Table E.5.1-1a below specify EVM window length (W) for normal CP, the cyclic prefix length  $N_{cp}$  is 160 for symbols 0 and 144 for symbols 1-6.

Table E.5.1-2, Table E.5.1-2a and Table E.5.1-2b specify the EVM window length (W) for extended CP for 15 kHz, 7.5 kHz and 1.25 kHz sub-carrier spacing, the cyclic prefix length  $N_{cp}$  is 512, 1024 and 6144 respectively.

| Channel<br>Bandwidth<br>MHz                                                                                                               | FFT size |  | Cyclic prefix<br>length for<br>symbols 0 in<br>FFT samples | Cyclic<br>prefix<br>length for<br>symbols<br>1-6 in FFT<br>samples | EVM<br>window<br>length <i>W</i> | Ratio of <i>W</i><br>to total CP<br>for<br>symbols<br>1-6 <sup>(Note 1)</sup><br>[%] |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|--|------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|
| 1.4                                                                                                                                       | 128      |  | 10                                                         | 9                                                                  | 5                                | 55.6                                                                                 |
| 3                                                                                                                                         | 256      |  | 20                                                         | 18                                                                 | 12                               | 66.7                                                                                 |
| 5                                                                                                                                         | 512      |  | 40                                                         | 36                                                                 | 32                               | 88.9                                                                                 |
| 10                                                                                                                                        | 1024     |  | 80                                                         | 72                                                                 | 66                               | 91.7                                                                                 |
| 15                                                                                                                                        | 1536     |  | 120                                                        | 108                                                                | 102                              | 94.4                                                                                 |
| 20                                                                                                                                        | 2048     |  | 160                                                        | 144                                                                | 136                              | 94.4                                                                                 |
| Note 1: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a<br>longer CP and therefore a lower percentage. |          |  |                                                            |                                                                    |                                  |                                                                                      |

Table E.5.1-1: EVM window length for normal CP for E-UTRA

Table E.5.1-1a: EVM window length for normal CP for NB-IoT

| FFT size                                                                                                                                     | Cyclic prefix<br>length for<br>symbols 0 in<br>FFT samples | Cyclic<br>prefix<br>length for<br>symbols<br>1-6 in FFT<br>samples | EVM<br>window<br>length <i>W</i> | Ratio of <i>W</i><br>to total CP<br>for<br>symbols<br>1-6 <sup>(Note 1)</sup><br>[%] |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|--|
| 128                                                                                                                                          | 10                                                         | 9                                                                  | 3                                | 33.3                                                                                 |  |
| Note 1: These percentages are informative and apply to symbols 1<br>through 6. Symbol 0 has a longer CP and therefore a lower<br>percentage. |                                                            |                                                                    |                                  |                                                                                      |  |

| Table E.5.1-2 EVM window length for extended CP for 15 kHz si | ub-carrier spacing |
|---------------------------------------------------------------|--------------------|
|                                                               |                    |

| Channel<br>Bandwidth<br>[MHz]              | FFT size | Cyclic prefix<br>in FFT<br>samples | EVM<br>window<br>length <i>W</i> | Ratio of W to<br>total CP (Note 1)<br>[%] |
|--------------------------------------------|----------|------------------------------------|----------------------------------|-------------------------------------------|
| 1.4                                        | 128      | 32                                 | 28                               | 87.5                                      |
| 3                                          | 256      | 64                                 | 58                               | 90.6                                      |
| 5                                          | 512      | 128                                | 124                              | 96.9                                      |
| 10                                         | 1024     | 256                                | 250                              | 97.7                                      |
| 15                                         | 1536     | 384                                | 378                              | 98.4                                      |
| 20                                         | 2048     | 512                                | 504                              | 98.4                                      |
| Note 1: These percentages are informative. |          |                                    |                                  |                                           |

| Channel<br>Bandwidth<br>[MHz] | FFT size       | Cyclic prefix<br>in FFT<br>samples | EVM<br>window<br>length <i>W</i> | Ratio of <i>W</i> to<br>total CP <sup>(Note 1)</sup><br>[%] |
|-------------------------------|----------------|------------------------------------|----------------------------------|-------------------------------------------------------------|
| 1.4                           | 256            | 64                                 | 56                               | 87.5                                                        |
| 3                             | 512            | 128                                | 116                              | 90.6                                                        |
| 5                             | 1024           | 256                                | 248                              | 96.9                                                        |
| 10                            | 2048           | 512                                | 500                              | 97.7                                                        |
| 15                            | 3072           | 768                                | 756                              | 98.4                                                        |
| 20                            | 4096           | 1024                               | 1008                             | 98.4                                                        |
| Note 1: Th                    | ese percentage | es are informative.                |                                  |                                                             |

Table E.5.1-2a EVM window length for extended CP for 7.5 kHz sub-carrier spacing

| Table E.5.1-2b EVM window | length for extended CP for 1.25 kHz sub-carrie | er spacing |
|---------------------------|------------------------------------------------|------------|
|                           |                                                |            |

| Channel<br>Bandwidth<br>[MHz] | FFT size      | Cyclic prefix<br>in FFT<br>samples | EVM<br>window<br>length <i>W</i> | Ratio of <i>W</i> to<br>total CP (Note 1)<br>[%] |
|-------------------------------|---------------|------------------------------------|----------------------------------|--------------------------------------------------|
| 1.4                           | 1536          | 384                                | 336                              | 87.5                                             |
| 3                             | 3072          | 768                                | 696                              | 90.6                                             |
| 5                             | 6144          | 1536                               | 1488                             | 96.9                                             |
| 10                            | 12288         | 3072                               | 3000                             | 97.7                                             |
| 15                            | 18432         | 4608                               | 4536                             | 98.4                                             |
| 20                            | 24576         | 6144                               | 6048                             | 98.4                                             |
| Note 1: Th                    | ese percentag | es are informative.                |                                  |                                                  |

# E.6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients  $\tilde{a}(f)$  and  $\tilde{\varphi}(f)$  are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal Z'(t, f) and the post-FFT Ideal signal  $I_2(t, f)$ , for each reference symbol, over 10 subframes. This process creates a set of complex ratios:

$$a(t, f).e^{j\varphi(t, f)} = \frac{Z'(t, f)}{I_2(t, f)}$$

Where the post-FFT Ideal signal  $I_2(t, f)$  is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted content: i.e. nominal Reference Symbols and the Primary Synchronisation Channel, (all other modulation symbols are set to 0 V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing.

2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is 10 subframes. Prior to the averaging of the phases  $\varphi(t_i, f)$  an unwrap operation must be performed according to

the following definition: The unwrap operation corrects the radian phase angles of  $\varphi(t_i, f)$  by adding multiples

of 2\*PI when absolute phase jumps between consecutive time instances  $t_i$  are greater then or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every third subcarrier with the exception of the reference subcarrier spacing across the DC subcarrier).

$$a(f) = \frac{\sum_{i=1}^{N} a(t_i, f)}{N}$$

$$\varphi(f) = \frac{\sum_{i=1}^{N} \varphi(t_i, f)}{N}$$

Where *N* is the number of reference symbol time-domain locations  $t_i$  from Z'(f,t) for each reference signal subcarrier *f*.

- 3. The equalizer coefficients for amplitude and phase  $\hat{a}(f)$  and  $\hat{\varphi}(f)$  at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every third subcarrier. The moving average window size is 19. For reference subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure E.6-1.
- 4. Perform linear interpolation from the equalizer coefficients  $\hat{a}(f)$  and  $\hat{\varphi}(f)$  to compute coefficients  $\tilde{a}(f)$ ,  $\tilde{\varphi}(f)$  for each subcarrier.

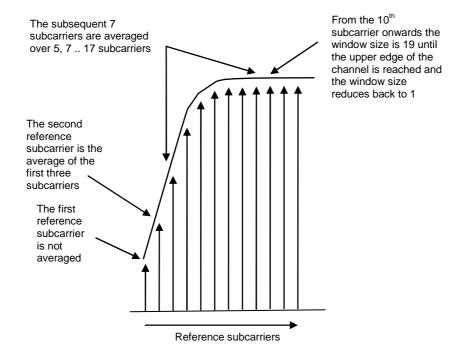



Figure E.6-1: Reference subcarrier smoothing in the frequency domain

# E.7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of 10 downlink subframes:

For FDD the averaging in the time domain equals the 10 subframe duration of the 10 subframes measurement period from the equalizer estimation step.

For TDD the averaging in the time domain can be calculated from subframes of different frames and should have a minimum of 10 subframes averaging length. TDD special fields (DwPTS and GP) are not included in the averaging.

$$\overline{EVM}_{frame} = \sqrt{\frac{1}{\sum_{i=1}^{N_{dl}} Ni} \sum_{i=1}^{N_{dl}} \sum_{j=1}^{Ni} EVM_{i,j}^{2}}}$$

Where Ni is the number of resource blocks with the considered modulation scheme in subframe *i* and  $N_{dl}$  is the number of allocated downlink subframes in one frame.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus  $\overline{\text{EVM}}_{\text{frame, 1}}$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_l$  in the expressions above and  $\overline{\text{EVM}}_{\text{frame, h}}$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_h$  in the  $\overline{\text{EVM}}_{\text{frame}}$  calculation.

Thus we get:

 $EVM_{frame} = \max(\overline{EVM}_{frame,1}, \overline{EVM}_{frame,h})$ 

The averaged EVM with the minimum averaging length of at least 10 subframes is then achieved by further averaging of the  $EVM_{frame}$  results

$$\overline{EVM} = \sqrt{\frac{1}{N_{frame}}} \sum_{k=1}^{N_{frame}} EVM_{frame,k}^2 , N_{frame} = \left[\frac{10}{N_{dl}}\right]$$

# Annex F (Informative): Unwanted emission requirements for multi-carrier BS

## F.1 General

In subclause 6.6, unwanted emission requirements for single carrier or multi-carrier BS are specified. This multi-carrier BS corresponds to a multi-carrier BS for E-UTRA, or a BS supporting intra-band contiguous CA. The following two pragmatic scenarios are considered in this annex:

- multi-carrier BS of different E-UTRA channel bandwidths, covering all scenarios except the channel bandwidth of the outermost carrier less than 5 MHz
- multi-carrier BS of E-UTRA and UTRA, covering all scenarios except the channel bandwidth of the outermost carrier less than 5 MHz.

All scenarios for channel bandwidths of the outermost carrier less than 5 MHz are for further study. The guidelines below assumes that the power spectral density of the multiple carriers is the same. All other combinations of multiple carriers are ffs.

Note 1: Further information and analysis for these scenarios can be found in TR 36.942 [9].

# F.2 Multi-carrier BS of different E-UTRA channel bandwidths

For a multi-carrier E-UTRA BS transmitting a group of carriers of different channel bandwidths, the channel bandwidth of the outermost carriers ( $\geq$ 5 MHz) should be considered for ACLR and Operating band unwanted emission requirements. That is, the corresponding requirements for the channel bandwidth of each of the outermost carriers should be applied at the respective side of the group of transmitted carriers.

## F.3 Multi-carrier BS of E-UTRA and UTRA

For a multi-carrier BS transmitting a group of carriers of E-UTRA and UTRA, the RAT being used on the outermost carriers ( $\geq$ 5 MHz) should be considered for ACLR and Operating band unwanted emission requirements. That is, the corresponding requirements for the RAT being used on each of the outermost carriers should be applied at the respective side of the group of transmitted carriers.

# Annex G (Informative): Regional requirement for protection of DTT

# G.1 Regional requirement for protection of DTT

The European Communications Committee (ECC) has adopted the "ECC Decision on harmonised conditions for Mobile/Fixed Communications Networks operating in the band 790-862 MHz" [12] applicable for BS operating in band 20. The decision defines a requirement for "Out-of-block BEM baseline requirements for 'mobile/fixed communications network' (MFCN) base stations within the spectrum allocated to the broadcasting (DTT) service", where three different cases A, B, and C for protecting broadcasting DTT are defined. These cases can be applied on a per-channel and/or per-region basis, i.e. for the same channel different cases can be applied in different geographic areas (e.g. area related to DTT coverage) and different cases can be applied to different channels in the same geographic area.

For band 20, compliance with the regulatory requirements in Europe referenced above can be assessed based on the manufacturer's declaration of  $P_{EM,N}$  specified in subclause 6.6.3.3, together with the deployment characteristics. Maximum output Power in 10 MHz ( $P_{10MHz}$ ) is also declared by the manufacturer. The parameters  $G_{ant}$  and  $N_{ant}$  are deployment specific parameters related to the deployment of the BS, where  $G_{ant}$  is the antenna gain and  $N_{ant}$  is the number of antennas.

For each channel (N) the EIRP level is calculated using:  $P_{EIRP,N} = P_{EM,N} + G_{ant} + 10*log(N_{ant})$ . The regulatory requirement in [12] limits the EIRP level to the Maximum level in Table G-1 for the protection case(s) defined in the regulation.

| Case                                                                                              | Measurement<br>filter centre<br>frequency | Condition on BS<br>maximum aggregate<br>EIRP / 10 MHz,<br>P <sub>EIRP_10MHz</sub><br>(Note) | Maximum Level<br>Peirp,n,max     | Measurement<br>Bandwidth |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--|--|
| A: for DTT<br>frequencies where                                                                   | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | $P_{\text{EIRP}\_10\text{MHz}} \geq 59 \text{ dBm}$                                         | 0 dBm                            | 8 MHz                    |  |  |
| broadcasting is<br>protected                                                                      | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | $\begin{array}{l} 36 \leq P_{\text{EIRP}\_10MHz} < 59 \\ dBm \end{array}$                   | P <sub>EIRP_10MHz</sub> – 59 dBm | 8 MHz                    |  |  |
|                                                                                                   | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | P <sub>EIRP_10MHz</sub> < 36 dBm                                                            | -23 dBm                          | 8 MHz                    |  |  |
| B: for DTT<br>frequencies where                                                                   | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | $P_{\text{EIRP}\_10\text{MHz}} \geq 59 \ dBm$                                               | 10 dBm                           | 8 MHz                    |  |  |
| broadcasting is<br>subject to an                                                                  | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | $\begin{array}{l} 36 \leq P_{\text{EIRP}\_10MHz} < 59 \\ dBm \end{array}$                   | P <sub>EIRP_10MHz</sub> – 49 dBm | 8 MHz                    |  |  |
| intermediate level of protection                                                                  | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | P <sub>EIRP_10MHz</sub> < 36 dBm                                                            | -13 dBm                          | 8 MHz                    |  |  |
| C: for DTT<br>frequencies where<br>broadcasting is not<br>protected                               | N*8 + 306 MHz,<br>21 ≤ N ≤ 60             | N.A.                                                                                        | 22 dBm                           | 8 MHz                    |  |  |
| NOTE: PEIRP_10MHz (dBm) is defined by the expression PEIRP_10MHz = P10MHz + Gant + 10*log10(Nant) |                                           |                                                                                             |                                  |                          |  |  |

#### Table G-1: EIRP limits for protection of broadcasting (DTT) service

# G.2 Regional requirement for Public Safety LTE BS in Korea

Public Safety LTE (PS-LTE) service, commercial mobile service and Broadcasting are closely allocated for Band 28 in Korea. By making more strong blocking requirements, it provides more flexible site selection to locate for the PS-LTE

BS and also it protects the uplink performance degradation. RRA (National Radio Research Agency) Announce 2015-30, "Article 17 of Technical Requirements of the Other Service Radio Equipment for Simple radio station, Space station and Earth station (Radio Equipment for Integrated Public Network)".

| 69 | 8 71                     | 0 7                     | 18 7              | 28 74                    | 18 75                   | 3 77                    | 1 773                   | 3 7                 | 83                | 803 | 806               |
|----|--------------------------|-------------------------|-------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|-------------------|-----|-------------------|
|    | Broadcasting<br>(12 MHz) | Guard<br>Band<br>(8MHz) | PS-LTE<br>(10MHz) | Mobile <b>↑</b><br>20MHz | Guard<br>Band<br>(5MHz) | Broadcasting<br>(18MHz) | Guard<br>Band<br>(2MHz) | PS-LTE ↓<br>(10MHz) | Mobile ↓<br>20MHz | Ba  | ard<br>nd<br>IHz) |

#### Figure G.2-1 Frequency Allocation in Korea

#### Table G-2.1: PS-LTE frequency band in Korea

| PS- LTE           | Downlink  | Uplink    |
|-------------------|-----------|-----------|
| Operating<br>Band | [MHz]     | [MHz]     |
| 28                | 773 - 783 | 718 - 728 |

#### Table G-2.2: Blocking requirement for Wide Area BS, PS-LTE in Korea

| E-UTRA<br>channel<br>bandwidth<br>[MHz] | Wanted signal mean<br>power [dBm]                                                  | Interfering signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>[MHz] | Type of interfering<br>signal |
|-----------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------|
| 10                                      | PREFSENS + 6dB*                                                                    | -21                                       | 701.5, 707.5                                    | 5MHz E-UTRA signal            |
| Note**: Refer                           | ENS depends on the channe<br>to 3GPP TS 36.141, E-UTF<br>ver antenna respectively. |                                           |                                                 |                               |

#### Table G-2.3: Blocking requirement for Local Area BS, PS-LTE in Korea

| E-UTRA<br>channel<br>bandwidth<br>[MHz] | Wanted signal mean<br>power [dBm]                                                       | Interfering signal<br>mean power<br>[dBm] | Interfering signal<br>centre frequency<br>[MHz] | Type of interfering signal                        |
|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| 10                                      | P <sub>REFSENS</sub> + 6dB*                                                             | -13                                       | 701.5, 707.5                                    | 5MHz E-UTRA signal                                |
| Note**: Refe                            | SENS depends on the channe<br>or to 3GPP TS 36.141, E-UTF<br>iver antenna respectively. |                                           |                                                 | ubclause 7.2.1.<br>signal shall be applied to the |

#### Table G-2.4: Blocking requirement for Home BS, PS-LTE in Korea

| E-UTRA<br>channel<br>bandwidth<br>[MHz] | Wanted signal mean<br>power [dBm]                                                     | Interfering signal<br>mean power [dBm] | Interfering signal<br>centre frequency<br>[MHz] | Type of interfering signal |
|-----------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|----------------------------|
| 10                                      | PREFSENS + 22dB*                                                                      | +3                                     | 701.5, 707.5                                    | 5MHz E-UTRA signal         |
| Note**: Refe                            | SENS depends on the channe<br>r to 3GPP TS 36.141, E-UT<br>iver antenna respectively. |                                        |                                                 |                            |

| E-UTR<br>channe<br>bandwic<br>[MHz] | el<br>dth                  | Wanted signal mean<br>power [dBm]                                                                | Interfering<br>signal mean<br>power [dBm] | Interfering signal centre                                   | Type of interfering signal    |  |
|-------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|-------------------------------|--|
| 10                                  | P <sub>REFSENS</sub> +1dB* |                                                                                                  | -21                                       | 701.5, 707.5                                                | 5MHz E-UTRA signal            |  |
| Note*:<br>Note**:                   | Refe                       | <sub>SENS</sub> depends on the channe<br>r to 3GPP TS 36.141, E-UT<br>iver antenna respectively. |                                           | becified in Table 7.2.1-4.<br>I (E-TM1.1) The interfering s | ignal shall be applied to the |  |

Table G-2.5: Blocking requirement for E-UTRA Medium Range BS, PS-LTE in Korea

## Annex H (Informative): Calculation of EIRP based on manufacturer declarations and site specific conditions

# H.1 Calculation of EIRP based on manufacturer declarations and site specific conditions

Some regional requirements are defined per effective isotropic radiated power (EIRP), which is a combination of the transmitted power (or in some cases spectral density) and the effective antenna gain which is a site specific condition. Such requirements may be applied per antenna, per cell, or per base station. It shall be noted that the definition of BS or cell may differ between regulations. Where the regulator prescribes a method for EIRP calculation, that method supersedes the proposed assessment in this annex.

The 3GPP specifications mandate manufacturer declarations of the (conducted) output power or power spectral density per connector for the base station under the reference conditions stated as a way to accommodate the referred regional requirements without putting requirements on the local site conditions.

For the case when the base station manufacturer maximum output power or unwanted emission declarations apply per antenna connector, the maximum EIRP can be estimated using the following formulas:

EIRP per antenna:  $P_{EIRP} = P_{Tx} + G_{Ant}$ 

EIRP per cell or per BS:  $P_{EIRPcell} = 10 * \log (\sum 10^{PEIRPn/10})$ 

In case the EIRP requirement is set per polarisation, the summation shall be made per polarisation.

" $P_{EIRP}$ " is the resulting effective isotropic radiated power (or radiated power spectral density) resulting from the power (or power spectral density) declared by the manufacturer in dBm (or dBm/measurement BW).

" $P_{Tx}$ " is the conducted power or power spectral density declared by the manufacturer in dBm (or dBm/measurement BW)

" $G_{Ant}$ " is the effective antenna gain, calculated as the antenna gain (dBi) minus the loss of the site infrastructure connecting the BS antenna connector with the antenna (dB) for the applied frequency. The antenna nominal gain is only applicable within a certain frequency range.

"n" is the index number of the co-located antennas illuminating the same cell. P<sub>EIRPn</sub> is the P<sub>EIRP</sub> of the n:th antenna.

"Cell" is in this annex used in the sense that it is the limited geographical area covered by the carrier transmitted from one site.

Annex I (Informative): Change history

| Date               | Monting              | TDec                   | CR       | Rev | Cat      | ge history                                                                                                                                | New            |
|--------------------|----------------------|------------------------|----------|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Date               | Meeting              | TDoc                   | UR       | Rev | Cat      | Subject/Comment                                                                                                                           | version        |
| 2007-08            | RAN4#4<br>4          | R4-071465              |          |     |          | TS skeleton created from 3GPP TS template.                                                                                                | 0.0.1          |
| 2007-10            | RAN4#4<br>4bis       | R4-071709              |          |     |          | Agreed TP in RAN4#44:<br>R4-071466, "TP Common definitions for TS 36.104"                                                                 | 0.0.2          |
| 2007-10            | RAN4#4               | R4-071782              |          |     | 1        | Agreed TP in RAN4#44bis:                                                                                                                  | 0.1.0          |
| 2001 10            | 4bis                 |                        |          |     |          | <b>R4-071681</b> , "TP 36.104: General (6.1)".                                                                                            | 01110          |
|                    |                      |                        |          |     |          | R4-071740, "E-UTRA FDD BS general receiver                                                                                                |                |
|                    |                      |                        |          |     |          | requirements".                                                                                                                            |                |
| 2007-11            | RAN4#4<br>5          | R4-072157              |          |     |          | Agreed TP in RAN4#45:<br><b>R4-071854</b> , "E-UTRA FDD BS Reference sensitivity<br>level"<br><b>P4 071959</b> , "E-UTRA FDD BS Reserver  | 0.2.0          |
|                    |                      |                        |          |     |          | R4-071858, "E-UTRA FDD BS Receiver<br>intermodulation"<br>R4-071859, "E-UTRA FDD BS Fixed Reference<br>Channels"                          |                |
|                    |                      |                        |          |     |          | R4-071860, "E-UTRA FDD BS In-channel selectivity"<br>R4-071964, "TS 36.104: TP for Unwanted emissions                                     |                |
|                    |                      |                        |          |     |          | (6.6)"<br><b>R4-071968</b> , "TS 36.104: TP for Tx Intermodulation<br>(6.7)"                                                              |                |
|                    |                      |                        |          |     |          | <b>R4-071969</b> , "TS 36.104: TP for Rx spurious emissions (7.6)"                                                                        |                |
|                    |                      |                        |          |     |          | <b>R4-072123</b> , "TS 36.104: TP for General (4)"<br><b>R4-072124</b> , "TS 36.104: TP for Operating band<br>unwanted emissions (6.6.3)" |                |
|                    |                      |                        |          |     |          | R4-072126, "E-UTRÀ FDĎ BS Dynamic range"<br>R4-072127, "E-UTRA FDD BS Adjacent channel                                                    |                |
|                    |                      |                        |          |     |          | selectivity and narrow band blocking"<br><b>R4-072128</b> , "TS 36.104: TP for Propagation conditions<br>for BS (Annex B)"                |                |
|                    |                      |                        |          |     |          | R4-072130, "E-UTRA FDD BS Blocking"<br>R4-072155, "TS 36.104: TP for Occupied bandwidth                                                   |                |
|                    |                      |                        |          |     |          | (6.6.1)"<br><b>R4-072162</b> , "TP to 36.104 on performance                                                                               |                |
|                    |                      |                        |          |     |          | requirements"<br><b>R4-072177</b> , "TS 36.104: TP for Frequency bands and<br>channel arrangement (5)"                                    |                |
|                    |                      |                        |          |     |          | <b>R4-072185</b> , "TS 36.104: TP for ACLR (6.6.2)"<br><b>R4-072205</b> , "TS 36.104: TP for Transmitter spurious                         |                |
| 0007.44            | DANIHOO              | DD 070075              |          |     | -        | emissions (6.6.4)"                                                                                                                        | 4.0.0          |
| 2007-11            | RAN#38               | RP-070975              | -        |     | -        | Presentation to TSG                                                                                                                       | 1.0.0          |
| 2007-11<br>2008-03 | RAN#39               | RP-080123              | 3        | 2   |          | Approved version at TSG RAN #38<br>Combined updates of E-UTRA BS RF requirements                                                          | 8.0.0<br>8.1.0 |
| 2008-03            | RAN#39               | RP-080325              | 4        | 2   |          | Updates of E-UTRA BS requirements                                                                                                         | 8.2.0          |
| 2008-03            | RAN#40<br>RAN#41     | RP-080640              | 7        | 2   |          | LTE BS ON-OFF Mask                                                                                                                        | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 8        | 2   |          | Removal of brackets for LTE BS RF requirements                                                                                            | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 14       | 1   |          | Unwanted emission requirements for multi-carrier BS                                                                                       | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 15       | 2   |          | Clarification of emission requirements for co-existence                                                                                   | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 17       | 1   |          | eNB performance requirements for UL timing adjustment                                                                                     | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 18       |     |          | eNodeB performance requirements for PUCCH format 2                                                                                        | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 21       |     |          | eNB performance requirements for highs speed train                                                                                        | 8.3.0          |
| 2008-09            | RAN#41               | RP-080640              | 23       | -   |          | Additional band 17                                                                                                                        | 8.3.0          |
| 2008-09<br>2008-09 | RAN#41<br>RAN#41     | RP-080641<br>RP-080641 | 5<br>9   | 2   |          | Updates of Fixed Reference Channels<br>Removal of brackets and notes related to test<br>requirements                                      | 8.3.0<br>8.3.0 |
| 2008-09            | RAN#41               | RP-080641              | 10       |     | 1        | High Speed Train scenarios modification                                                                                                   | 8.3.0          |
| 2008-09            | RAN#41               | RP-080641              | 12       |     |          | Several modifications for TS36.104                                                                                                        | 8.3.0          |
| 2008-09            | RAN#41               | RP-080641              | 13       |     |          | Removal of notes on frequency offset                                                                                                      | 8.3.0          |
| 2008-09            | RAN#41               | RP-080641              | 16       | 1   | <u> </u> | LTE Abbreviations update                                                                                                                  | 8.3.0          |
| 2008-09            | RAN#41               | RP-080641              | 19       | 1   |          | eNodeB performance requirements for PUSCH and RF<br>requirements                                                                          | 8.3.0          |
| 2008-09            | RAN#41               | RP-080641              | 20<br>22 | 1   | 1        | Clarification on High Speed train model in 36.104                                                                                         | 8.3.0          |
| 2008-09<br>2008-12 | RAN#41<br>RAN<br>#42 | RP-080641<br>RP-080914 | 37       | 1   |          | Clarification of ACLR for multi-carrier E-UTRA BS<br>Editorial updates of TS 36.104                                                       | 8.3.0<br>8.4.0 |
| 2008-12            | #42<br>RAN<br>#42    | RP-080915              | 30       |     |          | Correction to the figure with the transmission bandwidth configuration                                                                    | 8.4.0          |
|                    |                      |                        |          |     |          |                                                                                                                                           | 0.4.0          |
| 2008-12            | RAN<br>#42<br>RAN    | RP-080916<br>RP-080917 | 77<br>38 | 1   |          | Modification to EARFCN<br>Alignement of clause 5 betweeb E-UTRA specs                                                                     | 8.4.0<br>8.4.0 |

| 2008-12 | RAN<br>#42        | RP-080918 | 26 |   | Correction of output power dynamics requirement                                                                                      | 8.4.0 |
|---------|-------------------|-----------|----|---|--------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2008-12 | RAN<br>#42        | RP-080918 | 27 |   | LTE BS ON-OFF Mask                                                                                                                   | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080918 | 28 |   | Correction to RE power control dynamic range                                                                                         | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080919 | 29 | 1 | BS RF requirements for Band 17                                                                                                       | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080920 | 41 |   | Update of total dynamic range limits                                                                                                 | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080921 | 39 | 1 | Update of TDD-FDD coexistance requirements                                                                                           | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080922 | 33 | 1 | eNB performance requirements for Multi User PUCCH                                                                                    | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080922 | 42 |   | PRACH demodulation requirements update                                                                                               | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080922 | 25 | 1 | Updates of Fized Reference Channels and requirements<br>for UL timing adjustment and PUCCH format 2                                  | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080922 | 44 |   | eNB performance requirements for HARQ-ACK<br>multiplexed on PUSCH                                                                    | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080923 | 43 |   | General updates to Clause 8 and appendix A                                                                                           | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080925 | 24 |   | LTE TDD Update for Annex E of 36.104                                                                                                 | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080927 | 32 | 1 | Clarification of eNB HST propagation conditions                                                                                      | 8.4.0 |
| 2008-12 | RAN<br>#42        | RP-080927 | 31 |   | Corrections of eNB performance requirements for high speed train                                                                     | 8.4.0 |
| 2009-03 | RAN<br>#43        | RP-090173 | 53 | 1 | Clarification of EARFCN                                                                                                              | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090175 | 60 | 1 | Regional requirement on maximum rated power for Band 34                                                                              | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090176 | 45 |   | Correction to additional requirements for operating band unwanted emissions                                                          | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090176 | 48 |   | Clarification of PHS band including the future plan                                                                                  | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090176 | 49 |   | Unsynchronized TDD coexistence requirements                                                                                          | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090176 | 54 |   | eNB transmitter transient period                                                                                                     | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090176 | 56 | 1 | eNB ACS frequency offset                                                                                                             | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090176 | 57 |   | Correction to unwanted emission limit for 3MHz(E-UTRA bands < 1GHz) for Category A                                                   | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090177 | 46 |   | Modifications on UL timing adjustment test case                                                                                      | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090177 | 47 | 1 | Modifications on PUSCH high speed train test case                                                                                    | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090177 | 50 |   | Clarification on PUCCH ACK/NAK repetitions for BS<br>performance tests                                                               | 8.5.0 |
| 2009-03 | RAN<br>#43        | RP-090177 | 52 |   | PUSCH ACK/NAK simulation assumptions finalization<br>for simulations with implementation margins                                     | 8.5.0 |
| 2009-03 | #43<br>RAN<br>#43 | RP-090177 | 59 |   | HARQ-ACK multiplexed on PUSCH performance<br>requirement results                                                                     | 8.5.0 |
| 2009-05 | RAN<br>#44        | RP-090544 | 63 |   | Clarification of requirements for multicarrier BS.<br>(Technically Endorsed CR in R4-50bis - R4-091375)                              | 8.6.0 |
| 2009-05 | RAN<br>#44        | RP-090545 | 62 |   | CR ACS frequency offset. (Technically Endorsed CR in<br>R4-50bis - R4-091329)                                                        | 8.6.0 |
| 2009-05 | #44<br>RAN<br>#44 | RP-090545 | 67 |   | Correction to DL RS power                                                                                                            | 8.6.0 |
| 2009-05 | RAN<br>#44        | RP-090545 | 69 |   | Correction to Receiver Dynamic Range minimum                                                                                         | 8.6.0 |
| 2009-05 | #44<br>RAN<br>#44 | RP-090545 | 64 |   | vequirements<br>UL timing adjustment performance requirement<br>clarifications. (Technically Endorsed CR in R4-50bis -<br>R4-091437) | 8.6.0 |
| 2009-05 | RAN<br>#44        | RP-090559 | 61 |   | Introduction of Extended LTE800 requirements.<br>(Technically Endorsed CR in R4-50bis - R4-091060)                                   | 9.0.0 |
| 2009-09 | RAN<br>#45        | RP-090953 | 71 |   | Clarification of the UL timing adjustment performance<br>determination                                                               | 9.1.0 |
| 2009-09 | RAN<br>#45        | RP-090953 | 73 |   | Corrections to E-UTRA Rx requirements                                                                                                | 9.1.0 |
| 2009-09 | RAN<br>#45        | RP-090953 | 78 |   | Clarifications on testing UL timing adjustment requirements                                                                          | 9.1.0 |
| 2009-09 | #45<br>RAN<br>#45 | RP-090953 | 90 |   | Correction on Table A.3-1 FRC parameters for<br>performance requirements (QPSK 1/3) of Annex 3                                       | 9.1.0 |

| 2009-09 | RAN<br>#45 | RP-090954 | 86  | 2   | LTE operating band unwanted emissions revision                                                                                         | 9.1.0 |
|---------|------------|-----------|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2009-09 | RAN<br>#45 | RP-090826 | 74  |     | Correction of spurious emission requirements for<br>LTE800                                                                             | 9.1.0 |
| 2009-12 | RP-46      | RP-091286 | 093 |     | Introduction of Extended LTE1500 requirements for<br>TS36.104 (Technically endorsed at RAN 4 52bis in R4-<br>093633)                   | 9.2.0 |
| 2009-12 | RP-46      | RP-091265 | 095 |     | Correction to ICS requirement (Technically endorsed at RAN 4 52bis in R4-093639)                                                       | 9.2.0 |
| 2009-12 | RP-46      | RP-091265 | 097 |     | CR eNB FDD EVM (Technically endorsed at RAN 4 52bis in R4-093713)                                                                      | 9.2.0 |
| 2009-12 | RP-46      | RP-091265 | 099 |     | Correction on terminology for noise bandwidth<br>(Technically endorsed at RAN 4 52bis in R4-093740)                                    | 9.2.0 |
| 2009-12 | RP-46      | RP-091266 | 101 |     | LTE operating band unwanted emissions correction<br>(Technically endorsed at RAN 4 52bis in R4-093801)                                 | 9.2.0 |
| 2009-12 | RP-46      | RP-091266 | 103 |     | Multi-path fading propagation conditions reference<br>correction (Technically endorsed at RAN 4 52bis in R4-<br>093927)                | 9.2.0 |
| 2009-12 | RP-46      | RP-091266 | 105 |     | Clarification on Spurious emissions limits for BS co-<br>existed with another BS (Technically endorsed at RAN 4<br>52bis in R4-094011) | 9.2.0 |
| 2009-12 | RP-46      | RP-091266 | 106 |     | Correction to the transmitter intermodulation (Technically endorsed at RAN 4 52bis in R4-094084)                                       | 9.2.0 |
| 2009-12 | RP-46      | RP-091270 | 109 | 1   | Clarification on PRACH False alarm probability                                                                                         | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 110 | 1   | E-UTRA BS classification                                                                                                               | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 111 | 1   | Home eNode B maximum output power                                                                                                      | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 112 | 1   | Home eNode B in-channel selectivity requirement                                                                                        | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 113 | 1   | Home eNode B receiver intermodulation requirement                                                                                      | 9.2.0 |
| 2009-12 | RP-46      | RP-091293 | 114 | 2   | Demodulation requirements of Pico NodeB                                                                                                | 9.2.0 |
| 2009-12 | RP-46      | RP-091269 | 116 |     | UL Timing Adjustment test clarifications                                                                                               | 9.2.0 |
| 2009-12 | RP-46      | RP-091265 | 118 |     | Corrections on frequency range of unwanted emissions<br>requirements                                                                   | 9.2.0 |
| 2009-12 | RP-46      | RP-091276 | 122 |     | Testing in case of Rx diversity, Tx diversity and MIMO                                                                                 | 9.2.0 |
| 2009-12 | RP-46      | RP-091265 | 124 |     | Table reference correction                                                                                                             | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 125 | 1   | Home eNode B ACLR requirement                                                                                                          | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 126 | 1   | Home eNode B ACS and narrow band blocking requirement                                                                                  | 9.2.0 |
| 2009-12 | RP-46      | RP-091295 | 127 | 1   | Home eNode B Blocking requirement                                                                                                      | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 128 | 1   | Home eNode B dynamic range requirement                                                                                                 | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 129 | 1   | Home eNode B frequency error requirement                                                                                               | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 130 | 2   | Home eNode B performance requirement                                                                                                   | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 131 | 1   | Home eNode B operating band unwanted emissions<br>requirement                                                                          | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 132 | 1   | Home eNode B reference sensitivity level requirement                                                                                   | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 133 | 2   | Home eNode B spurious emission requirement                                                                                             | 9.2.0 |
| 2009-12 | RP-46      | RP-091284 | 135 | 1   | Inclusion of Band 20 BS RF parameters                                                                                                  | 9.2.0 |
| 2009-12 | RP-46      | RP-091265 | 139 |     | Corrections on blocking performance requirement for<br>Band 17                                                                         | 9.2.0 |
| 2009-12 | RP-46      | RP-091294 | 140 |     | CR-Protection of Adjacent Channels Owned by Other<br>Operators                                                                         | 9.2.0 |
| 2009-12 | RP-46      | RP-091293 | 141 |     | Introduction of LTE Pico NodeB class                                                                                                   | 9.2.0 |
| 2010-03 | RP-47      | RP-100252 | 155 |     | Correction of the frequency range for unwanted<br>emmissions limits (cat-B/option 2/BW 3MHz)                                           | 9.3.0 |
| 2010-03 | RP-47      | RP-100252 | 152 | 1   | Correction of Band 4 and 10 co-existence requirement                                                                                   | 9.3.0 |
| 2010-03 | RP-47      | RP-100262 | 160 | 1   | Adding missing references                                                                                                              | 9.3.0 |
| 2010-03 | RP-47      | RP-100275 | 145 | 1   | Corrections of operating band unwanted emissions for<br>Local Area BS                                                                  | 9.3.0 |
| 2010-03 | RP-47      | RP-100275 | 146 | 1   | Editorial correction in TS36.104 for Pico NodeB                                                                                        | 9.3.0 |
| 2010-03 | RP-47      | RP-100273 | 153 | + ' | Correction of DTT protection requirement                                                                                               | 9.3.0 |
| 2010-03 | RP-47      | RP-100266 | 144 | 1   | Corrections of operating band unwanted emissions for<br>Home BS                                                                        | 9.3.0 |
| 2010-03 | RP-47      | RP-100266 | 156 | 1   | Corrections on Home BS operating band unwanted<br>emission limits                                                                      | 9.3.0 |
| 2010-03 | RP-47      | RP-100266 | 147 |     | Corrections of additional spurious emissions and<br>blocking requirements for HeNB                                                     | 9.3.0 |
| 2010-03 | RP-47      | RP-100266 | 150 |     | Corrections on Home BS Output Power for Adjacent<br>Channel Protection                                                                 | 9.3.0 |
| 2010-03 | RP-47      | RP-100274 | 157 |     | Requirements for HARQ-ACK multiplexed on PUSCH for<br>E-UTRA LA and Home BS                                                            | 9.3.0 |
| 2010-03 | RP-47      | RP-100274 | 158 |     | CQI missed detection requirements for PUCCH format 2<br>for E-UTRA LA and Home BS                                                      | 9.3.0 |
|         |            |           |     |     |                                                                                                                                        |       |
| 2010-03 | RP-47      | RP-100274 | 149 | 1   | Corrections to the receiver intermodulation requirements                                                                               | 9.3.0 |

| 2010-06 | RP-48 | RP-100621 | 162 |   | Spurious emissions limits and blocking requirements for<br>coexistence with CDMA850         | 9.4.0  |
|---------|-------|-----------|-----|---|---------------------------------------------------------------------------------------------|--------|
| 2010-06 | RP-48 | RP-100621 | 167 | 1 | Correction to the FRC for PUSCH 1.4M requirements                                           | 9.4.0  |
| 2010-06 | RP-48 | RP-100625 | 172 |   | Clarification of applicability of requirements for multi-<br>carrier BS                     | 9.4.0  |
| 2010-06 | RP-48 | RP-100631 | 168 |   | Co-existence with services in adjacent frequency bands                                      | 9.4.0  |
| 2010-09 | RP-49 | RP-100920 | 178 |   | UL Timing Adjustment: Stationary UE propagation<br>channel clarification                    | 9.5.0  |
| 2010-09 | RP-49 | RP-100927 | 173 |   | CR LTE_TDD_2600_US spectrum band definition<br>additions to TS 36.104                       | 10.0.0 |
| 2010-12 | RP-50 | RP-101327 | 194 |   | Band 12 channel arrangement correction on 36.104                                            | 10.1.0 |
| 2010-12 | RP-50 | RP-101328 | 190 |   | PUCCH format 2 performance requirements definition<br>clarification                         | 10.1.0 |
| 2010-12 | RP-50 | RP-101328 | 203 |   | Correction on multi user PUCCH test                                                         | 10.1.0 |
| 2010-12 | RP-50 | RP-101342 | 183 |   | Equaliser coefficient derivation for EVM                                                    | 10.1.0 |
| 2010-12 | RP-50 | RP-101342 | 186 |   | Corrections on table reference for Local Area BS co-<br>located with another BS             | 10.1.0 |
| 2010-12 | RP-50 | RP-101342 | 200 |   | Correction of applicability of requirements                                                 | 10.1.0 |
| 2010-12 | RP-50 | RP-101356 | 181 | 3 | CR UMTS/LTE-3500 TDD spectrum band definition<br>additions for BS to TS 36.104              | 10.1.0 |
| 2010-12 | RP-50 | RP-101358 | 191 |   | Base Station Rated Output Power with up to 8 Transmit<br>Antennas                           | 10.1.0 |
| 2010-12 | RP-50 | RP-101359 | 204 |   | Introduction of Carrier Aggregation for LTE in TS 36.104                                    | 10.1.0 |
| 2011-04 | RP-51 | RP-110360 | 179 | 4 | Introduction of L-Band in TS 36.104                                                         | 10.2.0 |
| 2011-04 | RP-51 | RP-110357 | 210 | 2 | Band 42 and 43 co-existence for UMTS/LTE 3500 (TDD)<br>for TS 36.104                        | 10.2.0 |
| 2011-04 | RP-51 | RP-110344 | 212 | - | Operating band unwanted emissions for Band 1, 33 and 34 (TS 36.104)                         | 10.2.0 |
| 2011-06 | RP-52 | RP-110794 | 218 |   | Modifications to Band 3 to allow LTE Band 3 operation in Japan (Rel-10 TS36.104 CR)         | 10.3.0 |
| 2011-06 | RP-52 | RP-110812 | 219 |   | Add 2GHz S-Band (Band 23) in 36.104                                                         | 10.3.0 |
| 2011-06 | RP-52 | RP-110802 | 224 |   | Co-existence/co-location between Band 42 and 43 in TS 36.104                                | 10.3.0 |
| 2011-06 | RP-52 | RP-110796 | 225 |   | Harmonization of co-existence between Home BS and WA BS in 36.104                           | 10.3.0 |
| 2011-06 | RP-52 | RP-110807 | 221 | 1 | LTE CA alignment of definitions in TS 36.104                                                | 10.3.0 |
| 2011-06 | RP-52 | RP-110807 | 220 | 1 | Corrections on LTE Carrier Aggregation requirements                                         | 10.3.0 |
| 2011-06 | RP-52 | RP-110804 | 214 | 1 | Expanded 1900 MHz addition to 36.104                                                        | 10.3.0 |
| 2011-06 | RP-52 | RP-110795 | 233 | 1 | Fixing the misalignment of Band 24 GPS Coexistence specifications between 36.104 and 37.104 | 10.3.0 |
| 2011-06 | RP-52 | RP-110811 | 223 | 2 | Requirements for HeNB Autonomous Power Setting for<br>Macro-eNB Scenario                    | 10.3.0 |
| 2011-09 | RP-53 | RP-111252 | 249 |   | Band 3/III operation in Japan                                                               | 10.4.0 |
| 2011-09 | RP-53 | RP-111255 | 246 | 1 | Band 42 and 43 for LTE 3500 (TDD) correction to TS 36.104                                   | 10.4.0 |
| 2011-09 | RP-53 | RP-111255 | 247 | 1 | Add Band 22/XXII for LTE/UMTS 3500 (FDD) to TS<br>36.104                                    | 10.4.0 |
| 2011-09 | RP-53 | RP-111259 | 234 | 1 | Introduction of correlation matrices for UL MIMO                                            | 10.4.0 |
| 2011-09 | RP-53 | RP-111260 | 236 | 2 | Performance requirements for UL-MIMO                                                        | 10.4.0 |
| 2011-09 | RP-53 | RP-111262 | 240 | 1 | CR to TS 36.104 Minimum requirements of Operating<br>Band Unwanted Emissions                | 10.4.0 |
| 2011-09 | RP-53 | RP-111262 | 244 |   | Co-existence and co-location corrections in 36.104                                          | 10.4.0 |
| 2011-09 | RP-53 | RP-111264 | 245 |   | Band 25/XXV co-existence fix in TS 36.104                                                   | 10.4.0 |
| 2011-09 | RP-53 | RP-111266 | 226 | 2 | TS36.104 CR: on PUSCH performance                                                           | 10.4.0 |

| 2011-12 | RP-54          | RP-111684 | 254  |   | Correction for uplink demodulation performance                                                         | 10.5.0 |
|---------|----------------|-----------|------|---|--------------------------------------------------------------------------------------------------------|--------|
| 2011-12 | RP-54          | RP-111734 | 255  |   | Clarification of general blocking requirements for co-<br>existence in TS 36.104                       | 10.5.0 |
| 2011-12 | RP-54          | RP-111686 | 256  |   | Requirements for HeNB Power Setting for HeNB-eNB<br>Scenario                                           | 10.5.0 |
| 2011-12 | RP-54          | RP-111691 | 260  |   | CA PUCCH performance requirements for 36.104                                                           | 10.5.0 |
| 2011-12 | RP-54          | RP-111687 | 261  | 2 | TX ON or OFF CR 36.104                                                                                 | 10.5.0 |
| 2011-12 | RP-54          | RP-111733 | 262  |   | Correction of frequency range for spurious emission<br>requirements                                    | 10.5.0 |
| 2012-03 | RP-55          | RP-120296 | 265  |   | TS36.104 CR: Add the Tx antenna number for CA<br>PUCCH requirements                                    | 10.6.0 |
| 2012-03 | RP-55          | RP-120304 | 267  | 1 | Definition of synchronized operation                                                                   | 10.6.0 |
| 2012-03 | RP-55          | RP-120295 | 268  | 1 | Finalizing Home BS Output Power parameter for co-<br>channel E-UTRA protection in 36.104               | 10.6.0 |
| 2012-03 | RP-55          | RP-120298 | 272  | 1 | Addition of Band 23 HeNB specifications in 36.104                                                      | 10.6.0 |
| 2012-03 | RP-55          | RP-120303 | 273  |   | Editorial corrections in BS output power requirements                                                  | 10.6.0 |
| 2012-03 | RP-55          | RP-120309 | 263  | 2 | Introduction of intra-band non-contiguous operation for<br>E-UTRA                                      | 11.0.0 |
| 2012-03 | RP-55          | RP-120310 | 264  |   | TS36.104 change for B41 CA                                                                             | 11.0.0 |
| 2012-03 | RP-55          | RP-120305 | 274  |   | Introduction of Band 26/XXVI to TS 36.104                                                              | 11.0.0 |
| 2012-06 | RP-56          | RP-120773 | 296  |   | Introduction of CA band combination Band4 + Band13 to TS 36.104                                        | 11.1.0 |
| 2012-06 | RP-56          | RP-120773 | 298  |   | Introduction of CA band combination Band4 + Band17 to TS 36.104                                        | 11.1.0 |
| 2012-06 | RP-56          | RP-120791 | 299  | 2 | Introduction of e850_LB (Band 27) to TS 36.104                                                         | 11.1.0 |
| 2012-06 | RP-56          | RP-120773 | 280  |   | Introduction of CA band combination Band1 + Band19 to TS 36.104                                        | 11.1.0 |
| 2012-06 | RP-56          | RP-120782 | 294  |   | Time alignment error headline                                                                          | 11.1.0 |
| 2012-06 | RP-56          | RP-120764 | 305  |   | Correction of PHS protection requirements for TS 36.104                                                | 11.1.0 |
| 2012-06 | RP-56          | RP-120788 | 279  | 1 | Corrections related to intra-band non-contiguous<br>operation for E-UTRA                               | 11.1.0 |
| 2012-06 | RP-56          | RP-120788 | 285  |   | Introduction of time alignment error requirement for intra-<br>band non-contiguous carrier aggregation | 11.1.0 |
| 2012-06 | RP-56          | RP-120793 | 286  |   | Introduction of APAC700(FDD) into TS 36.104                                                            | 11.1.0 |
| 2012-06 | RP-56          | RP-120793 | 292  |   | Introduction of Band 44                                                                                | 11.1.0 |
| 2012-09 | RP-57          | RP-121328 | 306  |   | Introduction of CA band combination Band2 + Band17 to TS 36.104                                        | 11.2.0 |
| 2012-09 | RP-57          | RP-121321 | 307  |   | Correction to intra-band non-contiguous carrier<br>aggregation bands acronym                           | 11.2.0 |
| 2012-09 | RP-57          | RP-121335 | 308  |   | Introduction of CA band combination Band1 + Band21 to<br>TS 36.104                                     | 11.2.0 |
| 2012-09 | RP-57<br>RP-57 | RP-121327 | 309  |   | Introduction of CA_B7_B20 in 36.104                                                                    | 11.2.0 |
| 2012-09 | _              | RP-121301 | 312  | 0 | Introduction of Japanese regulatory requirements for<br>LTE band 8, 36.104 R11                         | 11.2.0 |
| 2012-09 | RP-57          | RP-121340 | 313  | 2 | Performant requirements of PUCCH format 2 with DTX detection for 36.104                                | 11.2.0 |
| 2012-09 | RP-57          | RP-121334 | 314  | 1 | Add requirements for inter-band CA of B_1-18 in<br>TS36.104                                            | 11.2.0 |
| 2012-09 | RP-57          | RP-121338 | 315  | 1 | TS 36.104 CR for CA_7                                                                                  | 11.2.0 |
| 2012-09 | RP-57          | RP-121340 | 316  | 2 | Reusing band 41 requirements for the Japan 2.5G TDD band                                               | 11.2.0 |
| 2012-09 | RP-57          | RP-121329 | 317  |   | Introduction of CA band combination Band3 + Band5 to<br>TS 36.104                                      | 11.2.0 |
| 2012-09 | RP-57          | RP-121321 | 318  | 1 | Intra-band non-contiguous CA BS receiver requirement                                                   | 11.2.0 |
| 2012-09 | RP-57          | RP-121300 | 324  |   | Modifications of frequency ranges on spurious emission<br>requirements for Band 6, 18, 19              | 11.2.0 |
| 2012-09 | RP-57          | RP-121331 | 325  |   | Introduction of CA band combination Band3 + Band20 to<br>TS 36.104                                     | 11.2.0 |
| 2012-09 | RP-57          | RP-121333 | 327  |   | Introduction of CA band combination Band8 + Band20 to<br>TS 36.104                                     | 11.2.0 |
| 2012-09 | RP-57          | RP-121324 | 328  |   | Introduction of CA_B3_B7 in 36.104                                                                     | 11.2.0 |
| 2012-12 | RP-58          | RP-121884 | 0330 |   | Introduction of CA band combination Band3 + Band8 to<br>TS 36.104                                      | 11.3.0 |
| 2012-12 | RP-58          | RP-121861 | 0331 |   | Introduction of CA band combination Band4 + Band5 to<br>TS 36.104                                      | 11.3.0 |
| 2012-12 | RP-58          | RP-121896 | 0332 |   | Introduction of CA band combination Band5 + Band17 to<br>TS 36.104                                     | 11.3.0 |
| 2012-12 | RP-58          | RP-121906 | 0333 |   | Introduction of medium range BS class to TS 36.104<br>(clause 1-5)                                     | 11.3.0 |
| 2012-12 | RP-58          | RP-121861 | 0335 |   | Correction of performance requirements of PUCCH<br>format2 with DTX                                    | 11.3.0 |
| 2012-12 | RP-58          |           | 0338 |   | Modification of ouput power requirement for LA E-UTRA                                                  | 11.3.0 |

| 2012-12            | RP-58          | RP-121861              | 0340         |        | Correction on BS demodulation performance                                                                       | 11.3.0           |
|--------------------|----------------|------------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------|------------------|
| 2012-12            | RP-58          | RP-121867              | 0343         |        | Clean up of specification R11                                                                                   | 11.3.0           |
| 2012-12            | RP-58          | RP-121911              | 0344         | 1      | Modification on E-UTRA BS transmitter requriements                                                              | 11.3.0           |
| 2012-12            | RP-58          | RP-121899              | 0348         | 1      | Implementing NC CA in LTE LA                                                                                    | 11.3.0           |
| 2012-12            | RP-58          | RP-121894              | 0349         |        | Introduction of CA_B5_B12 in 36.104                                                                             | 11.3.0           |
| 2012-12            | RP-58          | RP-121899              | 0351         |        | Correction to intra-band non-contiguous carrier aggregation bands acronym                                       | 11.3.0           |
| 2012-12            | RP-58          |                        | 0352         | 2      | Transmitter characteristics (Clause 6) due to introduction                                                      | 11.3.0           |
|                    | <b>DD 5</b> 0  | RP-121906              | 0050         |        | of Medium Range BS                                                                                              | 11.0.0           |
| 2012-12            | RP-58          | RP-121906              | 0353         | 1      | E-UTRA MR BS receiver requirements                                                                              | 11.3.0           |
| 2012-12            | RP-58          | RP-121899              | 0354         | 1      | Further corrections for NC CA in LTE LA BS                                                                      | 11.3.0           |
| 2012-12            | RP-58          | RP-121887              | 0355         |        | Introduction of inter-band CA_4-12 into TS 36.104                                                               | 11.3.0           |
| 2012-12            | RP-58          | RP-121882              | 0356         |        | Introduction of inter-band CA_11-18 into TS 36.104                                                              | 11.3.0           |
| 2012-12            | RP-58          | RP-121907              | 0357         |        | Introduction of new BS classes to E-UTRA core<br>specification (performance part)                               | 11.3.0           |
| 2012-12            | RP-58          | RP-121863              | 0362         |        | Removal of brackets around medium correlation in table                                                          | 11.3.0           |
| 2012-12            | RP-58          | RP-121892              | 0363         |        | Introduction of inter-band CA_4-7 into TS 36.104                                                                | 11.3.0           |
| 2012-12            | RP-58          | RP-121901              | 0364         |        | Introduction of Band 29                                                                                         | 11.3.0           |
| 2012-12            | RP-58          | RP-121901              | 0304         |        | Editorial Corrections                                                                                           | 11.3.1           |
|                    |                |                        |              |        |                                                                                                                 |                  |
| 2013-03<br>2013-03 | RP-59<br>RP-59 | RP-130307<br>RP-130365 | 0290<br>0336 | 1<br>3 | TS 36.104 CR for CA_38<br>CR 36.104: Performant requirements of PUCCH format                                    | 11.4.0<br>11.4.0 |
| 2013-03            | RP-59          | RP-130266              | 368          |        | 2 with DTX detection<br>Correction of BS performance requirements                                               | 11.4.0           |
| 2013-03            | RP-59          | RP-130273              | 371          | 1      | Supplement some note information for MR BS in TS                                                                | 11.4.0           |
| 2013-03            | RP-59          | RP-130273              | 372          | 1      | 36.104<br>Correction of UEM requirements in TS 36.104                                                           | 11.4.0           |
| 2013-03            | RP-59          | RP-130273              | 373          |        | Correction to LTE BS classes core requirements                                                                  | 11.4.0           |
| 2013-03            | RP-59          | RP-130284              | 375          | 1      | Alignment of terminology for intra-band non-contiguous<br>CA requirement                                        | 11.4.0           |
| 2013-03            | RP-59          | RP-130287              | 376          |        | Band 41 requirements for operation in Japan                                                                     | 11.4.0           |
| 2013-03            | RP-59          | RP-130287              | 377          |        | CR 36.104: Performance requirements of PUCCH                                                                    | 11.4.0           |
| 2010 00            | 11 00          | 100207                 | 011          |        | format 2 with DTX detection and removal of brackets.                                                            | 11.4.0           |
| 2013-06            | RP-60          | RP-130769              | 0378         |        | Correct the interfering signal offsets for ACS requirement<br>for Medium range BS                               | 11.5.0           |
| 2013-06            | RP-60          | RP-130765              | 0380         | 1      | Editorial correction for the UL-MIMO channel model                                                              | 11.5.0           |
| 2013-06            | RP-60          | RP-130766              | 0387         | + ·    | CR on TAE for inter-band CA                                                                                     | 11.5.0           |
| 2013-06            | RP-60          | RP-130766              | 0388         | 1      | Editorial correction of inter band CA table to TS 36.104                                                        | 11.5.0           |
| 2013-00            | RP-60          | RP-130770              | 0389         | - '    | Addiction of Bands for intra-band non-contiguous CA for                                                         | 11.5.0           |
|                    |                |                        |              |        | 36.104                                                                                                          |                  |
| 2013-06            | RP-60          | RP-130761              | 0390         |        | Modification on co-location spurious emission<br>requirement for Medium Range BS                                | 11.5.0           |
| 2013-06            | RP-60          | RP-130769              | 0391         | 1      | Modification on co-location blocking requirement for E-<br>UTRA Medium Range BS                                 | 11.5.0           |
| 2013-06            | RP-60          | RP-130769              | 0394         | 1      | Introduction of multi-band BS to TS 36.104                                                                      | 11.5.0           |
| 2013-06            | RP-60          | RP-130770              | 0396         | 1      | Editorial: Figure 5.6-3 Definition of Sub-block Bandwidth<br>for intra-band non-contiguous spectrum.            | 11.5.0           |
| 2013-06            | RP-60          | RP-130765              | 0400         |        | CR for UL-MIMO performance requirements                                                                         | 11.5.0           |
| 2013-06            | RP-60          | RP-130771              | 0366         | 1      | Introduction of CA 1+8 into TS36.104(Rel-12)                                                                    | 12.0.0           |
| 2013-06            | RP-60          | RP-130771<br>RP-130781 | 0300         | 1      | Introduction of LTE Advanced inter-band Carrier                                                                 | 12.0.0           |
| 2013-06            | RP-60          | RP-130785              | 0381         |        | Aggregation of Band 3 and Band 28 to TS 36.104<br>Introduction of LTE Advanced inter-band Carrier               | 12.0.0           |
|                    |                |                        |              |        | Aggregation of Band 23 and Band 29 to TS 36.104                                                                 |                  |
| 2013-06            | RP-60          | RP-130779              | 0383         |        | Introduction of LTE Advanced inter-band carrier<br>aggregation of Band 3 and Band 26 into TS36.104 (Rel-<br>12) | 12.0.0           |
| 2013-06            | RP-60          | RP-130777              | 0384         |        | Introduction of CA band combination Band3 + Band19                                                              | 12.0.0           |
| 2013-06            | RP-60          | RP-130783              | 0385         |        | to TS 36.104<br>Introduction of CA band combination Band19 + Band21                                             | 12.0.0           |
| 2013-06            | RP-60          | RP-130773              | 0392         |        | to TS 36.104<br>Introduction of inter-band CA combination for Band 2                                            | 12.0.0           |
| 2013-06            | RP-60          | RP-130787              | 0393         |        | and Band 4<br>Introduction of intra-band non-contiguous CA                                                      | 12.0.0           |
|                    |                |                        |              |        | combination for Band 4                                                                                          |                  |
| 2013-06            | RP-60          | RP-130791              | 0395         | 1      | Introduction of US WCS Band (Band 30) to TS 36.104                                                              | 12.0.0           |
| 2013-06            | RP-60          | RP-130790              | 0397         |        | Introduction of LTE 450 in Brazil into TS 36.104                                                                | 12.0.0           |
| 2013-06            | RP-60          | RP-130775              | 0399         | 1      | Introduction of LTE Advanced Inter-Band Carrier<br>Aggregation of Band 2 and Band 13 to TS36.104                | 12.0.0           |
| 09-2013            | RP-61          | RP-131300              | 0401         | 1      | 36.104 CR for LTE_CA_C_B3                                                                                       | 12.1.0           |
| 09-2013            | RP-61          | RP-131283              | 0403         |        | Correction of rated output power of MR BS for E-UTRA<br>(R12)                                                   | 12.1.0           |
|                    | 1              | 1                      | 1            | 1      | Clarification on single-band operation of multi-band BS                                                         | 1                |

| 00.2012            |                | DD 121206              | 0409 | T | Add requirements for CA 4.26 into TS26.404                                                                | 1010             |
|--------------------|----------------|------------------------|------|---|-----------------------------------------------------------------------------------------------------------|------------------|
| 09-2013<br>09-2013 | RP-61<br>RP-61 | RP-131296<br>RP-131298 | 0408 | - | Add requirements for CA_1-26 into TS36.104<br>Introduction of inter-band CA Band 2+5                      | 12.1.0<br>12.1.0 |
| 09-2013            | RP-61          | RP-131296              | 0409 | - | Non-contiguous intraband CA minimum channel                                                               | 12.1.0           |
| 03-2013            | 111-01         | 101203                 | 0413 |   | spacing.                                                                                                  | 12.1.0           |
| 12-2013            | RP-62          | RP-131959              | 0414 |   | Introduction of intra-band contiguous CA for Band 27                                                      | 12.2.0           |
| 12-2013            | RP-62          | RP-131965              | 0415 |   | Introduction of LTE-Advanced intra-band non-contiguous                                                    | 12.2.0           |
| 10 0010            | RP-62          | RP-131946              | 0416 | - | Carrier Aggregation (CA) in Band 23 to TS 36.104<br>Introduction of CA band combination Band2 + Band12 to | 12.2.0           |
| 12-2013            | RP-62          | RP-131946              | 0416 |   | TS 36.104                                                                                                 | 12.2.0           |
| 12-2013            | RP-62          | RP-131954              | 0417 |   | Introduction of CA band combination Band12 + Band25<br>to TS 36.104                                       | 12.2.0           |
| 12-2013            | RP-62          | RP-131945              | 0419 | 1 | PUCCH format 1a performance requirements for 2Tx<br>8Rx                                                   | 12.2.0           |
| 12-2013            | RP-62          | RP-131930              | 0422 |   | Clarification for CACLR in TS36.104                                                                       | 12.2.0           |
| 12-2013            | RP-62          | RP-131931              | 0426 |   | Intraband non-contiguous CA minimum channel spacing                                                       | 12.2.0           |
| 12-2013            | RP-62          | RP-131945              | 0427 | 2 | PUSCH performance requirements for 2Tx 8Rx                                                                | 12.2.0           |
| 12-2013            | RP-62          | RP-131945              | 0428 | 1 | PUSCH performance requirements for 1Tx 8Rx                                                                | 12.2.0           |
| 12-2013            | RP-62          | RP-131945              | 0429 | 1 | Single user PUCCH format 1a performance requiements<br>for 8 Rx                                           | 12.2.0           |
| 12-2013            | RP-62          | RP-131945              | 0430 | - | Introduction of UL 8Rx channel correlation matrices                                                       | 12.2.0           |
| 12-2013            | RP-62          | RP-131945              | 0431 | 2 | Performance requirements for 8Rx PUCCH format 1b,<br>PUCCH format 3 and PRACH                             | 12.2.0           |
| 12-2013            | RP-62          | RP-131957              | 0432 | - | Introduction of LTE-Advanced intra-band contiguous<br>Carrier Aggregation (CA) in Band 23 to TS 36.104    | 12.2.0           |
| 12-2013            | RP-62          | RP-131961              | 0433 | - | Introduction of Intra-band non-contiguous CA in band 3<br>to TS 36.104                                    | 12.2.0           |
| 12-2013            | RP-62          | RP-131934              | 0435 | - | CR for clarification for receiver requirement on MB-MSR<br>BS                                             | 12.2.0           |
| 12-2013            | RP-62          | RP-131930              | 0438 | - | Corrections to requirements for multi-band operation                                                      | 12.2.0           |
| 12-2013            | RP-62          | RP-131950              | 0441 | - | Introduction of CA band combination Band5 + Band25 to TS 36.104                                           | 12.2.0           |
| 12-2013            | RP-62          | RP-131948              | 0442 | - | Introduction of CA band combination B5 + B7 to TS<br>36.104                                               | 12.2.0           |
| 12-2013            | RP-62          | RP-131952              | 0444 | - | Introduction of CA band combination B7 + B28 to TS<br>36.104                                              | 12.2.0           |
| 12-2013            | RP-62          | RP-131931              | 0446 | - | Consideration on CA OBW requirement                                                                       | 12.2.0           |
| 12-2013            | RP-62          | RP-131963              | 0450 | - | Introduction of Intra-band non-contiguous CA in band 7<br>to TS 36.104                                    | 12.2.0           |
| 12-2013            | RP-62          | RP-131967              | 0452 | - | Band 41 deployment in Japan                                                                               | 12.2.0           |
| 03-2014            | RP-63          | RP-140388              | 451  | 1 | TS36.104 changes for B39 CA                                                                               | 12.3.0           |
| 03-2014            | RP-63          | RP-140387              | 436  | 1 | Introduction of CA band combination Band 39+Band 41 into BS specification                                 | 12.3.0           |
| 03-2014            | RP-63          | RP-140386              | 453  |   | Introduction of CA band combination Band 3 and Band<br>27 to TS 36.104                                    | 12.3.0           |
| 03-2014            | RP-63          | RP-140375              | 463  |   | Correction of abbreviations for negative<br>acknowledgement                                               | 12.3.0           |
| 06-2014            | RP-64          | RP-140913              | 504  |   | Clarification on definitions and ACLR requirement in TS36.104                                             | 12.4.0           |
| 06-2014            | RP-64          | RP-140913              | 465  |   | CR for clarification for receiver requirement on MB-MSR<br>BS                                             | 12.4.0           |
| 06-2014            | RP-64          | RP-140926              | 512  | 1 | Introduction of operating band 32 and CA band 20+32 in<br>TS36.104                                        | 12.4.0           |
| 06-2014            | RP-64          | RP-140930              | 509  |   | Introduction of LTE-Advanced CA of Band 8 and Band<br>40 into TS 36.104                                   | 12.4.0           |
| 06-2014            | RP-64          | RP-140931              | 501  |   | Introduction of CA 1+11 to 36.104 (Rel-12)                                                                | 12.4.0           |
| 06-2014            | RP-64          | RP-140933              | 477  | 1 | Introduction of band B4+B27 CA to TS36.104                                                                | 12.4.0           |
| 06-2014            | RP-64          | RP-140938              | 483  |   | Introduction of intra-band non-contiguous Carrier<br>Aggregation in Band 2 to TS 36.104                   | 12.4.0           |
| 06-2014            | RP-64          | RP-140940              | 527  |   | Introduction of LTE_CA_NC_B42 into 36.104                                                                 | 12.4.0           |
| 06-2014            | RP-64          | RP-140942              | 535  |   | Introduction of CA band combination Band 1 and Band                                                       | 12.4.0           |
| 06-2014            | RP-64          | RP-140942              | 469  |   | 20 to TS 36.104<br>Introduction of CA band combination Band 1 and Band                                    | 12.4.0           |
| 06-2014            | RP-64          | RP-140944              | 478  |   | 20 to TS 36.104<br>Introduction of intra-band non-contiguous Carrier                                      | 12.4.0           |
| 06-2014            | RP-64          | RP-140946              | 537  |   | Aggregation in Band 41 for 3DL to TS 36.104<br>Introduction of intra-band CA_Band 42C to TS 36.104        | 12.4.0           |
| 00-2014            | RP-65          | RP-140940<br>RP-141538 | 537  | 1 | Introduction of intra-band CA_Band 42C to TS 36.104                                                       | 12.4.0           |
| 09-2014            | RP-65          | RP-141556              | 557  | - | Introduction of a Band Carrier Aggregation (3DL/1UL) of<br>Band 1, Band 3 and Band 8 to TS 36.104         | 12.5.0           |
| 09-2014            | RP-65          | RP-141532              | 559  | - | Clarification of high speed train conditions in 36.104                                                    | 12.5.0           |
| 09-2014            | RP-65          | RP-141551              | 560  | - | Introduction of CA 8+11 to 36.104 (Rel-12)                                                                | 12.5.0           |

| 09-2014 | RP-65 | RP-141548 | 562  | - |   | Introduction of CA band combination Band1 + Band3 to                                                      | 12.5.0 |
|---------|-------|-----------|------|---|---|-----------------------------------------------------------------------------------------------------------|--------|
| 00.0014 | DD 05 | DD 444004 | 500  |   |   | TS 36.104                                                                                                 | 40.5.0 |
| 09-2014 | RP-65 | RP-141201 | 563  | 1 |   | Introduction of CA band combination Band1 + Band3 +<br>Band19 to TS 36.104                                | 12.5.0 |
| 09-2014 | RP-65 | RP-141557 | 564  | - |   | Introduction of CA band combination Band19 + Band42 to TS 36.104                                          | 12.5.0 |
| 09-2014 | RP-65 | RP-141559 | 565  | - |   | Introduction of CA band combination Band1 + Band42 to TS 36.104                                           | 12.5.0 |
| 09-2014 | RP-65 | RP-141446 | 567  | 1 |   | Introduction of CA band combination B1+B7 and<br>B1+B5+B7 to TS 36.104 Rel-12                             | 12.5.0 |
| 09-2014 | RP-65 | RP-141706 | 569  | 1 |   | Introduction of 3 Band Carrier Aggregation of Band<br>1,Band 3 and Band 5 to TS 36.104                    | 12.5.0 |
| 09-2014 | RP-65 | RP-141108 | 571  | 1 |   | Introduction of inter-band CA_18-28 into TS36.104                                                         | 12.5.0 |
| 09-2014 | RP-65 | RP-141558 | 577  | - |   | Introduction of CA band combination Band 1, Band 3<br>and Band 20 to TS 36.104                            | 12.5.0 |
| 09-2014 | RP-65 | RP-141528 | 589  | - |   | Correction on UEM related to multi-band operation in                                                      | 12.5.0 |
| 09-2014 | RP-65 | RP-141554 | 591  | 1 |   | TS36.104<br>Introduction of CA combinations                                                               | 12.5.0 |
| 09-2014 | RP-65 | RP-141562 | 591  | - |   | Update of definitions to support supplemental DL in                                                       | 12.5.0 |
|         |       |           |      |   |   | TS36.104                                                                                                  |        |
| 09-2014 | RP-65 | RP-141463 | 595  | - |   | Introduction of CA band combination Band 1, Band 7<br>and Band 20 to TS 36.104                            | 12.5.0 |
| 12-2014 | RP-66 | RP-142175 | 599  | 1 |   | FRC for PUSCH with TTI bundling and enhanced HARQ<br>pattern                                              | 12.6.0 |
| 12-2014 | RP-66 | RP-142154 | 593  | 2 |   | Introduction of annex H and references in TS36.104                                                        | 12.6.0 |
| 12-2014 | RP-66 | RP-142182 | 614  |   |   | Introduction of inter-band CA_1-28 into TS36.104                                                          | 12.6.0 |
| 12-2014 | RP-66 | RP-142149 | 618  |   |   | Correction on transmitter intermodulation requirement                                                     | 12.6.0 |
| 12-2014 | RP-66 | RP-142189 | 624  |   |   | CR for TR 36.104: LTE_CA_B5_B13                                                                           | 12.6.0 |
| 12-2014 | RP-66 | RP-142175 | 615  | 1 |   | Performance requirements for PUSCH with TTI bundling<br>and enhanced HARQ pattern                         | 12.6.0 |
| 12-2014 | RP-66 | RP-142179 | 619  | 1 |   | CR on RF requirements for 256QAM                                                                          | 12.6.0 |
| 12-2014 | RP-66 | RP-142190 | 609  | 2 |   | Introduction of 3DL CA combinations                                                                       | 12.6.0 |
| 03-2015 | RP-67 | RP-150382 | 627  |   |   | Co-location between Band 42 and Band 43 in TS 36.104                                                      | 12.7.0 |
| 03-2015 | RP-67 | RP-150391 | 629  |   |   | Introduction of CA_3A-42A and CA_3A-42C into 36.104                                                       | 12.7.0 |
| 03-2015 | RP-67 | RP-150388 | 636  |   |   | MB and TDD+FDD                                                                                            | 12.7.0 |
| 07-2015 | RP-68 | RP-150955 | 647  |   |   | Clarification of parameter P for emission requirements                                                    | 12.8.0 |
| 07-2015 | RP-68 | RP-150955 | 658  |   |   | Some corrections related to single carrier requirements                                                   | 12.8.0 |
| 07-2015 | RP-68 | RP-150968 | 630  | 4 |   | Introduction of 2DL CA combinations                                                                       | 13.0.0 |
| 07-2015 | RP-68 | RP-150972 | 631  | 4 |   | Introduction of 3DL CA combinations                                                                       | 13.0.0 |
| 07-2015 | RP-68 | RP-150974 | 651  | 1 |   | Introduction of 4DL CA combinations                                                                       | 13.0.0 |
| 07-2015 | RP-68 | RP-150669 | 664  |   |   | Introduction of CA_3A-40A to TS 36.104                                                                    | 13.0.0 |
| 09-2015 | RP-69 | RP-151476 | 667  |   |   | BS Spec improvements: TS 36.104 Corrections                                                               | 13.1.0 |
| 09-2015 | RP-69 | RP-151506 | 678  |   |   | CR on core requirements for support of 256QAM in wide area BS                                             | 13.1.0 |
| 09-2015 | RP-69 | RP-151499 | 680  |   |   | Introduction of 3DL CA combinations                                                                       | 13.1.0 |
| 09-2015 | RP-69 | RP-151501 | 681  |   |   | Introduction of 4DL CA combinations                                                                       | 13.1.0 |
| 09-2015 | RP-69 | RP-151204 | 682  |   |   | Introduction of CA_7A-40A and CA_7A-40C to TS 36.104                                                      | 13.1.0 |
| 12-2015 | RP-70 | RP-152168 | 0686 | - |   | Introduction of intra-band CA_8B to TS 36.104                                                             | 13.2.0 |
| 12-2015 | RP-70 | RP-152171 | 0700 | - |   | Introduction of E-UTRA band 65 to TS36.104                                                                | 13.2.0 |
| 12-2015 | RP-70 | RP-152132 | 0703 | - |   | Clarification on the transmitter intermodulation requirement in TS36.104                                  | 13.2.0 |
| 12-2015 | RP-70 | RP-152157 | 0705 | 1 |   | Introduction of Band 67 and CA_20-67 to 36.104                                                            | 13.2.0 |
| 12-2015 | RP-70 | RP-152167 | 0708 | - |   | Introduction of CA_5B to TS 36.104                                                                        | 13.2.0 |
| 12-2015 | RP-70 | RP-152169 | 0709 | - |   | Introduction of intra-band NC CA_5A-5A to TS 36.104                                                       | 13.2.0 |
| 12-2015 | RP-70 | RP-152173 | 0711 | - |   | Introduction of 1447-1467MHz Band into 36.104                                                             | 13.2.0 |
| 12-2015 | RP-70 | RP-152132 | 0714 | - |   | Correction on UEM requirement for MB-MSR                                                                  | 13.2.0 |
| 12-2015 | RP-70 | RP-152148 | 0715 | 2 |   | Introduction of LAA in TS 36.104                                                                          | 13.2.0 |
| 12-2015 | RP-70 | RP-152132 | 0718 | - |   | BS Spec improvements: TS 36.104 Corrections                                                               | 13.2.0 |
| 12-2015 | RP-70 | RP-152132 | 0721 | - |   | Corrections on definition of f_offsetmax for BS operating<br>in multiple bands or non-contiguous spectrum | 13.2.0 |
| 12-2015 | RP-70 | RP-152172 | 0729 | - |   | Introduction of Band 66 to 36.104                                                                         | 13.2.0 |
| 12-2015 | RP-70 | RP-152156 | 0731 | - |   | Introduction of 2DL CA combinations                                                                       | 13.2.0 |
| 12-2015 | RP-70 | RP-152161 | 0732 | - |   | Introduction of 3DL CA combinations                                                                       | 13.2.0 |
| 12-2015 | RP-70 | RP-152162 | 0733 | - | 1 | Introduction of 4DL CA combinations                                                                       | 13.2.0 |
| 03/2016 | RP-71 | RP-160480 | 0753 |   | В | Introduction of 3DL CA combinations                                                                       | 13.3.0 |
| 03/2016 | RP-71 | RP-160481 | 0754 |   | В | Introduction of 4DL CA combinations                                                                       | 13.3.0 |
| 03/2016 | RP-71 | RP-160482 | 0752 |   | В | Introduction of 5DL CA combinations                                                                       | 13.3.0 |
|         | RP-71 | RP-160483 |      | 2 |   | Introduction of Band 68 into 36.104                                                                       | 13.3.0 |

| 03/2016            | RP-71          | RP-160488              | 0747       |   | А | Band 20 and Band 28 BS co-existence                                                                  | 13.3.0           |
|--------------------|----------------|------------------------|------------|---|---|------------------------------------------------------------------------------------------------------|------------------|
| 03/2016            | RP-71          | RP-160489              | 0747       |   | A | Corrections to BS spurious emissions requirements for                                                | 13.3.0           |
| 00/2010            |                | 111 100400             | 0100       |   | ~ | band 22 and 42 in TS36.104 (Rel-13)                                                                  | 10.0.0           |
| 03/2016            | RP-71          | RP-160490              | 0748       |   | F | Correction of BS RF requirements in TS 36.104                                                        | 13.3.0           |
| 06/2016            | RP-72          | RP-161131              | 0760       |   | В | 36.104 CR for BS MMSE-IRC receiver - Definitions                                                     | 13.4.0           |
| 06/2016            | RP-72          | RP-161131              | 0761       | 1 | В | 36.104 CR for BS MMSE-IRC receiver - Demodulation tests in synchronous interference scneario         | 13.4.0           |
| 06/2016            | RP-72          | RP-161131              | 0762       | 1 | В | 36.104 CR for BS MMSE-IRC receiver - Demodulation tests in asynchronous interference scneario        | 13.4.0           |
| 06/2016            | RP-72          | RP-161131              | 0763       | 1 | В | 36.104 CR for BS MMSE-IRC receiver - FRC definitions                                                 | 13.4.0           |
| 06/2016            | RP-72          | RP-161131              | 0764       |   | В | 36.104 CR for BS MMSE-IRC receiver - Interference                                                    | 13.4.0           |
|                    |                |                        |            |   |   | model for synchronous and asynchronous scnearios                                                     |                  |
| 06/2016            | RP-72          | RP-161128              | 0765       | 3 | В | CR: Cat-M1 PRACH Performance Requirements                                                            | 13.4.0           |
| 06/2016            | RP-72          | RP-161128              | 0766       | 2 | В | CR: Cat-M1 PUCCH Performance Requirements                                                            | 13.4.0           |
| 06/2016            | RP-72          | RP-161142              | 0773       | 1 | F | Correction on co-existence and co-location emssion requirement for LAA                               | 13.4.0           |
| 06/2016            | RP-72          | RP-161142              | 0780       |   | F | Band 46 sub-bands indication                                                                         | 13.4.0           |
| 06/2016            | RP-72          | RP-161142              | 0781       |   | F | Band 46 channel access procedures requirements                                                       | 13.4.0           |
| 06/2016            | RP-72          | RP-116131              | 0783       |   | В | Performance requirements for BS MMSE-IRC receiver in asynchronous interference scneario              | 13.4.0           |
| 2016/06            | RP-72          | RP-161129              | 0784       | 1 | В | CR: Performance requirements for PUCCH format 4 (Rel-13)                                             | 13.5.0           |
| 2016/06            | RP-72          | RP-161128              | 0785       | 1 | В | CR for eMTC PUSCH performance requirements                                                           | 13.5.0           |
| 06/2016            | RP-72          | RP-161129              | 0788       | 1 | В | CR for PUCCH format 5 performance requirements for 36.104                                            | 13.4.0           |
| 06/2016            | RP-72          | RP-161142              | 0789       | 1 | F | Correction related to band 65                                                                        | 13.4.0           |
| 06/2016            | RP-72          | RP-161140              | 0795       | 1 | F | Corrections on definition of multi-band definition and blocking                                      | 13.4.0           |
| 06/2016            | RP-72          | RP-116142              | 0799       |   | F | Correction to BS spurious emissions for co-location with                                             | 13.4.0           |
| 06/2016            | RP-72          | DD 161106              | 0800       | - | В | Band 46<br>CR to TS36.104 for NB-IoT feature introduction                                            | 13.4.0           |
| 06/2016            | RP-72<br>RP-72 | RP-161126<br>RP-161125 | 782        | - | B | Introduction of Band 70 to 36.104                                                                    | 13.4.0           |
| 06/2016            | RP-72          | RP-1611125             | 790        | - | B | Introduction of additional band combinations for 4DL                                                 | 14.0.0           |
|                    |                |                        |            |   |   | inter-band CA                                                                                        |                  |
| 06/2016            | RP-72          | RP-161117              | 792        | - | В | Introduction of completed R14 2DL band combinations to TS 36.104                                     | 14.0.0           |
| 06/2016            | RP-72          | RP-161118              | 794        | 1 | В | Introduction of completed R14 3DL band combination to TS 36.104                                      | 14.0.0           |
| 06/2016            | RP-72          | RP-161124              | 798        | - | В | Introduction of Band 69 and CA_3-69 to 36.104                                                        | 14.0.0           |
| 09/2016            | RP-73          | RP-161623              | 802        |   | В | Introduction of completed R14 3DL band combination to TS 36.104                                      | 14.1.0           |
| 09/2016            | RP-73          | RP-161637              | 804        |   | Α | Corrections on NB-IoT BS unwanted emissions requirements                                             | 14.1.0           |
| 09/2016            | RP-73          | RP-161622              | 805        |   | В | Introduction of completed R14 2DL band combinations                                                  | 14.1.0           |
| 09/2016            | RP-73          | RP-161636              | 807        |   | A | to TS 36.104<br>correction CR for 36.104(Rel-14) NB-IoT In-channel                                   | 14.1.0           |
| 00/0040            | D.D. 70        | DD (01700              |            |   |   | selectivity                                                                                          |                  |
| 09/2016<br>09/2016 | RP-73<br>RP-73 | RP-161786<br>RP-161782 | 809<br>811 |   | A | 36.104 CR on bracket removal for BS IRC receiver<br>CR for eMTC PUCCH performance requirements (Rel- | 14.1.0<br>14.1.0 |
|                    |                |                        |            |   |   | 14)                                                                                                  |                  |
| 09/2016            | RP-73          | RP-161782              | 813        |   | A | CR for eMTC PUSCH performance requirements(Rel-<br>14)                                               | 14.1.0           |
| 09/2016            | RP-73          | RP-161780              | 815        |   | А | CR: Demodulation requirements for NPUSCH format 1<br>(Rel-14)                                        | 14.1.0           |
| 09/2016            | RP-73          | RP-161780              | 817        |   | A | CR: Demodulation requirements for NPUSCH format 2 (Rel-14)                                           | 14.1.0           |
| 09/2016            | RP-73          | RP-161782              | 820        | 1 | A | CR: Add Test tolerances for eMTC BS demodulation                                                     | 14.1.0           |
| 09/2016            | RP-73          | RP-161640              | 824        | 1 | A | Corrections to operating band unwanted emissions in                                                  | 14.1.0           |
| 09/2016            | RP-73          | RP-161624              | 825        |   | В | TS36.104 (Rel-14)<br>Introduction of additional band combinations for 4DL                            | 14.1.0           |
| 09/2016            | RP-73          | RP-161629              | 835        | - | F | inter-band CA<br>Corrections of CA operating band tables                                             | 14.1.0           |
| 09/2016            | RP-73<br>RP-73 | RP-161629<br>RP-161636 | 835        |   | A | CR to section 7.8 Receiver intermodulation                                                           | 14.1.0           |
| 09/2016            | RP-73          | RP-161637              | 840        |   | A | CR to section 7.8 Receiver intermodulation                                                           | 14.1.0           |
| 09/2016            | RP-73<br>RP-73 | RP-161637<br>RP-161636 | 845        |   | A | Clarification on EARFCN                                                                              | 14.1.0           |
| 09/2016            | RP-73          | RP-161637              | 847        | 1 | A | Correction on ACS for standalone NB-IoT BS in TS                                                     | 14.1.0           |
| 09/2016            | RP-73          | RP-161636              | 849        |   | A | 36.104<br>Correction on FRC for EUTRA with in-band NB-IoT in TS                                      | 14.1.0           |
| 00/0040            | DD 70          | DD 404005              | 050        |   |   | 36.104                                                                                               | 4440             |
| 09/2016            | RP-73          | RP-161625              | 850        |   | В | Introduction of 5DL CA combinations                                                                  | 14.1.0           |

| 09/2016                       | RP-73          | RP-161786              | 852          |   | A        | Maintenance for BS MMSE-IRC receiver<br>requirements(Rel-13)                                                | 14.1.0           |
|-------------------------------|----------------|------------------------|--------------|---|----------|-------------------------------------------------------------------------------------------------------------|------------------|
| 09/2016                       | RP-73          | RP-161618              | 818          | 1 | В        | CR on ETU600 PUSCH test for 36.104                                                                          | 14.1.0           |
| 09/2016                       | RP-73          | RP-161617              | 828          | 1 | В        | Introduction of V2V bands                                                                                   | 14.1.0           |
| 09/2016                       | RP-73          | RP-161635              | 822          | 1 | А        | Introduction of Korea regulatory requirements for PS-<br>LTE BS, band 28, 36.104                            | 14.1.0           |
| 09/2016                       | RP-73          | RP-161638              | 857          |   | А        | LAA BS unwanted emission mask requirements in<br>36.104                                                     | 14.1.0           |
| 12/2016                       | RP-74          | RP-162384              | 0862         |   | Α        | CR for Rel-14 eMTC PRACH performance requirements                                                           | 14.2.0           |
| 12/2016                       | RP-74          | RP-162388              | 0863         | 1 | F        | Maintenance for PUSCH ETU600 requirements                                                                   | 14.2.0           |
| 12/2016                       | RP-74          | RP-162428              | 0864         |   | A        | Update of the Total Power Dynamic Range requirement for Band 46                                             | 14.2.0           |
| 12/2016                       | RP-74          | RP-162407              | 0879         | 1 | В        | Addition of new operating bands for NB-IoT                                                                  | 14.2.0           |
| 12/2016                       | RP-74          | RP-162434              | 0881         |   | А        | Interfering signal bandwidth for NB-IoT BS receiver<br>dynamic range requirements                           | 14.2.0           |
| 12/2016                       | RP-74          | RP-162434              | 0882         |   | А        | Spurious responses for NB-IoT BS receiver blocking requirements                                             | 14.2.0           |
| 12/2016                       | RP-74          | RP-162457              | 0883         |   | В        | Introduction of additional band combinations for 4DL inter-band CA                                          | 14.2.0           |
| 12/2016                       | RP-74          | RP-162398              | 0884         |   | В        | Introduction of additional band combinations for Intra-<br>band CA                                          | 14.2.0           |
| 12/2016                       | RP-74          | RP-162379              | 0888         |   | А        | CR: Correction of Fixed Reference Channels for<br>NPUSCH format 1 (Rel-14, 36.104)                          | 14.2.0           |
| 12/2016                       | RP-74          | RP-162379              | 0891         |   | А        | CR: Demodulation requirements for NPRACH (Rel-14)                                                           | 14.2.0           |
| 12/2016                       | RP-74          | RP-162379              | 0893         |   | A        | CR: Updates to demodulation requirements for NPUSCH format 1 (Rel-14)                                       | 14.2.0           |
| 12/2016                       | RP-74          | RP-162456              | 0895         | 1 | A        | CR: Updates to demodulation requirements for NPUSCH format 2 (Rel-14)                                       | 14.2.0           |
| 12/2016                       | RP-74          | RP-162382              | 0897         |   | A        | CR on cleaning up Rel-14 eMTC PUSCH performance requirements                                                | 14.2.0           |
| 12/2016                       | RP-74          | RP-162399              | 0898         |   | В        | Introduction of completed R14 2DL band combinations<br>to TS 36.104                                         | 14.2.0           |
| 12/2016                       | RP-74          | RP-162433              | 0900         |   | A        | Correction to interfering signal for Narrowband blocking requirement for NB-IOT (Rel-14)                    | 14.2.0           |
| 12/2016                       | RP-74          | RP-162400              | 0901         |   | В        | Introduction of completed R14 3DL band combinations<br>to TS 36.104                                         | 14.2.0           |
| 12/2016                       | RP-74          | RP-162387              | 0902         | 1 | F        | Sets of EARFCN for multiple Scell operation in Band 46                                                      | 14.2.0           |
| 12/2016                       | RP-74          | RP-162433              | 0904         |   | A        | Correction of Fixed Reference Channels for NB-IOT reference sensitivity and dynamic range                   | 14.2.0           |
| 12/2016                       | RP-74          | RP-162395              | 0905         | 1 | В        | Necessary changes to the core requirements for Multi-<br>Band Base Station testing with three or more bands | 14.2.0           |
| 12/2016                       | RP-74          | RP-162402              | 0906         |   | В        | Introduction of 5DL CA combinations                                                                         | 14.2.0           |
| 12/2016                       | RP-74          | RP-162405              | 0907         |   | В        | Introduction of Band 48                                                                                     | 14.2.0           |
| 12/2016                       | RP-74          | RP-162413              | 0914         | 1 | Α        | Correction to dynamic range requirement                                                                     | 14.2.0           |
| 03/2017                       | RP-75          | RP-170568              | 0915         |   | В        | Introduction of additional band combinations for 4DL                                                        | 14.3.0           |
| 03/2017                       | RP-75          | RP-170565              | 0916         | 2 | В        | inter-band CA<br>Introduction of additional band combinations for Intra-                                    | 14.3.0           |
|                               | <u> </u>       |                        |              |   | <u> </u> | band CA                                                                                                     |                  |
| 03/2017                       | RP-75          | RP-170567              | 0917         |   | F        | Correction of completed 2DL and 3DL CAs                                                                     | 14.3.0           |
| 03/2017                       | RP-75          | RP-170569              | 0918         |   | В        | Introduction of 5DL CA combinations                                                                         | 14.3.0           |
| 03/2017                       | RP-75          | RP-170593              | 0922         |   | A        | CR to 36.104 for correction of performance requirements<br>for BS MMSE-IRC receiver                         | 14.3.0           |
| 03/2017                       | RP-75          | RP-170573              | 0924         | 1 | A        | CR to 36.104: Addition of 1.4 and 3 MHz channel<br>bandwidths for Band 65                                   | 14.3.0           |
| 03/2017                       | RP-75          | RP-170600              | 0926         |   | A        | CR:Cleanup for NB-IoT BS demod performance<br>requirements(R14)                                             | 14.3.0           |
| 03/2017                       | RP-75          | RP-170596              | 0928         |   | А        | CR for PRACH requirements (Rel-14)                                                                          | 14.3.0           |
| 03/2017                       | RP-75          | RP-170553              | 0931         | 1 | В        | CR on eLAA BS for TS 36.104                                                                                 | 14.3.0           |
| 03/2017                       | RP-75          | RP-170598              | 0933         |   | А        | Correction on FRC for NB-IoT in TS 36.104                                                                   | 14.3.0           |
| 03/2017                       | RP-75          | RP-170567              | 0934         |   | В        | Introduction of completed R14 3DL band combinations<br>to TS 36.104                                         | 14.3.0           |
| 03/2017                       | RP-75          | RP-170595              | 0936         |   | A        | Correction CR on PUSCH and PUCCH supporting Cat-<br>M1 considering guard period in 36.104                   | 14.3.0           |
| 03/2017                       | RP-75          | RP-170598              | 0938         |   | A        | Corrections on NB-IoT narrowband intermodulation<br>performance requirement                                 | 14.3.0           |
| 03/2017                       | RP-75          | RP-170577              | 0939         |   | F        | B70 Carrier Frequency and EARFCN Correction                                                                 | 14.3.0           |
| 03/2017                       | RP-75          | RP-170566              | 0941         |   | В        | Introduction of completed R14 2DL band combinations to TS 36.104                                            | 14.3.0           |
|                               | RP-76          | RP-171282              | 0322         | 1 | F        | CR on BS for protection of V2X UE in TS 36.104                                                              | 14.4.0           |
|                               |                |                        |              |   | -        |                                                                                                             |                  |
| 06/2017<br>06/2017<br>06/2017 | RP-76<br>RP-76 | RP-171279<br>RP-171301 | 0944<br>0973 | 1 | B        | Intorduction of new bands for NB-IoT in 36.104<br>Updates to performance requirements for NPUSCH            | 14.4.0<br>14.4.0 |

| 06/2017 | RP-76 | RP-171310 | 0975 |   | А | clean up eMTC PUCCH requirements(Rel-14)                                                          | 14.4.0 |
|---------|-------|-----------|------|---|---|---------------------------------------------------------------------------------------------------|--------|
| 06/2017 | RP-76 | RP-171257 | 0976 | 3 | В | CR for new PRACH performance requirements                                                         | 14.4.0 |
| 06/2017 | RP-76 | RP-171261 | 4667 | 1 | В | CR to 36.104: Introduction of FeMBMS numerologies                                                 | 14.4.0 |
| 06/2017 | RP-76 | RP-171276 | 4668 | 1 | В | Introduction of 5DL CA combinations to 36.104                                                     | 14.4.0 |
| 06/2017 | RP-76 | RP-171272 | 4671 | 1 | В | Introduction of additional band combinations for Intra-<br>band CA                                | 14.4.0 |
| 06/2017 | RP-76 | RP-171275 | 4672 | 2 | В | Introduction of Rel-14 4DL/1UL combinations in 36.104                                             | 14.4.0 |
| 06/2017 | RP-76 | RP-171273 | 4673 |   | В | Introduction of completed R14 2DL band combinations to TS 36.104                                  | 14.4.0 |
| 06/2017 | RP-76 | RP-171274 | 4674 |   | В | Introduction of completed R14 3DL band combinations to TS 36.104                                  | 14.4.0 |
| 06/2017 | RP-76 | RP-171260 | 4676 | 1 | В | Introduction of BS performance requirements for<br>256QAM in 36.104                               | 14.4.0 |
| 06/2017 | RP-76 | RP-171299 | 4678 |   | F | Channel Raster For Multiple Standalone NB-IoT Carriers<br>(TS 36.104)                             | 14.4.0 |
| 06/2017 | RP-76 | RP-171299 | 4680 |   | A | Narrowband blocking requirement for NB-IoT guard band operation (TS 36.104)                       | 14.4.0 |
| 06/2017 | RP-76 | RP-171300 | 4682 |   | A | Intermodulation performance requirement for NB-IoT operation (TS 36.104)                          | 14.4.0 |
| 06/2017 | RP-76 | RP-171299 | 4684 |   | А | Note on BS in-channel selectivity for NB-IoT                                                      | 14.4.0 |
| 06/2017 | RP-76 | RP-171300 | 4686 |   | А | Clarification on 1.4 MHz for in-band operation                                                    | 14.4.0 |
| 09/2017 | RP-77 | RP-171972 | 4691 |   | A | NB-IoT PRB position in Refsens for >5 MHz E-UTRA in-<br>band operation (TS 36.104)                | 14.5.0 |
| 09/2017 | RP-77 | RP-171971 | 4698 |   | А | CR on eMTC BS PRACH requirements R14                                                              | 14.5.0 |
| 09/2017 | RP-77 | RP-171934 | 4703 |   | В | Removal of brackets of perfromance requirements for 256QAM.                                       | 14.5.0 |
| 09/2017 | RP-77 | RP-171934 | 4705 |   | В | Introduction of perfromance requirements for PUSCH<br>transmission in UpPTS                       | 14.5.0 |
| 09/2017 | RP-77 | RP-171968 | 4709 |   | A | CR to 36.104: Correction to LA BS spurious emissions limits table                                 | 14.5.0 |
| 09/2017 | RP-77 | RP-171933 | 4712 | 1 | В | Introduce test case for eLAA PUSCH                                                                | 14.5.0 |
| 09/2017 | RP-77 | RP-171972 | 4713 |   | F | Correction on NB-IoT BS standalone UEM                                                            | 14.5.0 |
| 09/2017 | RP-77 | RP-171942 | 4715 |   | F | Maintance CR for HST PRACH enhancement<br>requirements                                            | 14.5.0 |
| 12/2017 | RP-78 | RP-172609 | 4722 |   | А | Correction on NB-IoT RB power dynamic range                                                       | 14.6.0 |
| 12/2017 | RP-78 | RP-172584 | 4724 | 1 | F | Introduction of perfromance requirements for PUSCH<br>transmission in UpPTS                       | 14.6.0 |
| 12/2017 | RP-78 | RP-172613 | 4726 |   | A | CR to 36.104: BS Spurious emissions limits for<br>protection of the BS receiver for B28 in Europe | 14.6.0 |
| 12/2017 | RP-78 | RP-172586 | 4736 | 1 | F | Correction of channel spacing for band 46 intraband CA band combinations with 10 MHz bandwidth    | 14.6.0 |
| 12/2017 | RP-78 | RP-172584 | 4738 | 1 | F | CR to 36.104: Corrections to co-location tables for B48                                           | 14.6.0 |
| 12/2017 | RP-78 | RP-172611 | 4742 |   | F | CR on corrections of table notes (36.104)                                                         | 14.6.0 |
| 12/2017 | RP-78 | RP-172611 | 4745 |   | А | Removal of BS repetition sensitivity                                                              | 14.6.0 |
| 12/2017 | RP-78 | RP-172586 | 4749 | 1 | F | Introduce burst model for eLAA PUSCH demodualtion                                                 | 14.6.0 |

# History

|         | Document history |             |  |  |  |  |  |  |
|---------|------------------|-------------|--|--|--|--|--|--|
| V14.3.0 | April 2017       | Publication |  |  |  |  |  |  |
| V14.4.0 | July 2017        | Publication |  |  |  |  |  |  |
| V14.5.0 | October 2017     | Publication |  |  |  |  |  |  |
| V14.6.0 | January 2018     | Publication |  |  |  |  |  |  |
|         |                  |             |  |  |  |  |  |  |