ETSI TS 136 101 V12.7.0 (2015-05)

LTE;

Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 12.7.0 Release 12)

Reference RTS/TSGR-0436101vc70 Keywords LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015.
All rights reserved.

DECT[™], **PLUGTESTS**[™], **UMTS**[™] and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**[™] and **LTE**[™] are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ectual Property Rights	2
Forew	vord	2
Moda	l verbs terminology	2
Forew	vord	17
1	Scope	18
2	References	18
3	Definitions, symbols and abbreviations	18
3.1	Definitions	18
3.2	Symbols	20
3.3	Abbreviations	22
4	General	
4.1	Relationship between minimum requirements and test requirements	23
4.2	Applicability of minimum requirements	
4.3	Void	
4.3A 4.4	Applicability of minimum requirements (CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0) RF requirements in later releases	
5	Operating bands and channel arrangement	25
5.1	General	
5.2	Void	
5.3	Void	
5.4	Void	25
5.5	Operating bands	25
5.5A	Operating bands for CA	26
5.5B	Operating bands for UL-MIMO	32
5.5C	Operating bands for Dual Connectivity	
5.5D	Operating bands for ProSe	
5.6	Channel bandwidth	
5.6.1	Channel bandwidths per operating band	
5.6A	Channel bandwidth for CA	
5.6A.1		
5.6B	Channel bandwidth for UL-MIMO	
5.6B.1 5.6C	Void	
5.6C.1	•	
5.6D	Channel bandwidth for ProSe	
5.6D.1		
5.7	Channel arrangement.	
5.7.1	Channel spacing	
5.7.1A	· ·	
5.7.2	Channel raster	
5.7.2A		
5.7.3	Carrier frequency and EARFCN	52
5.7.4	TX-RX frequency separation	
5.7.4A	TX-RX frequency separation for CA	54
6	Transmitter characteristics	
6.1 6.2	General Transmit power	
6.2.1	Void	
6.2.2	UE maximum output power	
6.2.2A		
6.2.2B	1 1	
6.2.3	UE maximum output power for modulation / channel bandwidth	
6.2.3A		

6.2.3D	UE maximum output power for modulation / channel bandwidth for ProSe	
6.2.4	UE maximum output power with additional requirements	
6.2.4A	UE maximum output power with additional requirements for CA	
6.2.4A.1		
6.2.4A.2		
6.2.4A.3		
6.2.4A.4 6.2.4A.5		
6.2.4A.5 6.2.4A.6		
6.2.4A.0 6.2.4A.7		
6.2.4A.8		
6.2.4B	UE maximum output power with additional requirements for UL-MIMO	
6.2.4D	UE maximum output power with additional requirements for ProSe	
6.2.5	Configured transmitted power	
6.2.5A	Configured transmitted power for CA	
6.2.5B	Configured transmitted power for UL-MIMO	
6.2.5C	Configured transmitted power for Dual Connectivity	
6.2.5D	Configured transmitted power for ProSe	87
6.3	Output power dynamics	88
6.3.1	(Void)	88
6.3.2	Minimum output power	
6.3.2.1	Minimum requirement	88
6.3.2A	UE Minimum output power for CA	
6.3.2A.1	1	
6.3.2B	UE Minimum output power for UL-MIMO	
6.3.2B.1	1	
6.3.3	Transmit OFF power	
6.3.3.1.	Minimum requirement	
6.3.3A	UE Transmit OFF power for CA	
6.3.3A.1	1	
6.3.3B 6.3.3B.1	UE Transmit OFF power for UL-MIMO	
6.3.3D.1	Minimum requirement	
6.3.4	ON/OFF time mask	
6.3.4.1	General ON/OFF time mask	
6.3.4.2	PRACH and SRS time mask	
6.3.4.2.1		
6.3.4.2.2		
6.3.4.3	Slot / Sub frame boundary time mask	
6.3.4.4	PUCCH / PUSCH / SRS time mask	
6.3.4A	ON/OFF time mask for CA	94
6.3.4B	ON/OFF time mask for UL-MIMO	94
6.3.4D	ON/OFF time mask for ProSe	94
6.3.4D.1		
6.3.4D.2		
6.3.4D.3		
6.3.4D.4		
6.3.5	Power Control	
6.3.5.1	Absolute power tolerance	
6.3.5.1.1	1	
6.3.5.2 6.3.5.2.1	Relative Power tolerance	
	1	
6.3.5.3 6.3.5.3.1	Aggregate power control tolerance	
6.3.5A	Power control for CA	
6.3.5A 6.3.5A.1		
6.3.5A.1		
6.3.5A.1		
6.3.5A.2	*	
6.3.5A.3		
6.3.5A.3		

6.3.5B	Power control for UL-MIMO	100
6.3.5D	Power Control for ProSe	100
6.3.5D.1	Absolute power tolerance	
6.4	Void	101
6.5	Transmit signal quality	
6.5.1	Frequency error	
6.5.1A	Frequency error for CA	
6.5.1B	Frequency error for UL-MIMO	
6.5.1D	Frequency error for ProSe	
6.5.2	Transmit modulation quality	
6.5.2.1	Error Vector Magnitude	
6.5.2.1.1	Minimum requirement	
6.5.2.2	Carrier leakage	
6.5.2.2.1	Minimum requirements	
6.5.2.3	In-band emissions	
6.5.2.3.1	Minimum requirements	
6.5.2.4	EVM equalizer spectrum flatness	
6.5.2.4.1	Minimum requirements	
6.5.2A	Transmit modulation quality for CA	
6.5.2A.1	Error Vector Magnitude	
6.5.2A.2	Carrier leakage for CA	
6.5.2A.2.1		
6.5.2A.3	In-band emissions	
6.5.2A.3.1		
6.5.2B	Transmit modulation quality for UL-MIMO	
6.5.2B.1	Error Vector Magnitude	
6.5.2B.2	Carrier leakage	
6.5.2B.3	In-band emissions	
6.5.2B.4	EVM equalizer spectrum flatness for UL-MIMO	
6.5.2D	Transmit modulation quality for ProSe	
6.5.2D.1	Error Vector Magnitude	
6.5.2D.2	Carrier leakage	
6.5.2D.3	In-band emissions	
6.5.2D.4	EVM equalizer spectrum flatness for ProSe	
6.6	Output RF spectrum emissions.	
6.6.1	Occupied bandwidth	
6.6.1A	Occupied bandwidth for CA	
6.6.1B	Occupied bandwidth for UL-MIMO.	
6.6.2	Out of band emission	
6.6.2.1	Spectrum emission mask	
6.6.2.1.1	Minimum requirement	
6.6.2.1A	Spectrum emission mask for CA	
6.6.2.2	Additional spectrum emission mask	
6.6.2.2.1	Minimum requirement (network signalled value "NS_03", "NS_11", "NS_20", and "NS_21")	
6.6.2.2.2	Minimum requirement (network signalled value "NS_04")	
6.6.2.2.3	Minimum requirement (network signalled value "NS_06" or "NS_07")	
6.6.2.2A	Additional Spectrum Emission Mask for CA	113
6.6.2.2A.1	<u>-</u>	113
6.6.2.3	Adjacent Channel Leakage Ratio	
6.6.2.3.1	Minimum requirement E-UTRA	
6.6.2.3.1A	•	
6.6.2.3.1 <i>A</i>		
6.6.2.3.2	Minimum requirements UTRA	
6.6.2.3.2A		
6.6.2.3.3A		
6.6.2.4	Void	
6.6.2.4.1	Void	
6.6.2A	Void	
6.6.2B	Out of band emission for UL-MIMO	
6.6.3	Spurious emissions	
6.6.3.1	Minimum requirements	
6.6.3.1 A	Minimum requirements for CA	110

6.6.3.2	Spurious emission band UE co-existence	120
6.6.3.2A	Spurious emission band UE co-existence for CA	126
6.6.3.3	Additional spurious emissions	132
6.6.3.3.1	Minimum requirement (network signalled value "NS_05")	132
6.6.3.3.2	Minimum requirement (network signalled value "NS_07")	
6.6.3.3.3	Minimum requirement (network signalled value "NS_08")	
6.6.3.3.4	Minimum requirement (network signalled value "NS_09")	
6.6.3.3.5	Minimum requirement (network signalled value "NS_12")	
6.6.3.3.6	Minimum requirement (network signalled value "NS_13")	
6.6.3.3.7	Minimum requirement (network signalled value "NS_14")	
6.6.3.3.8	Minimum requirement (network signalled value "NS_15")	
6.6.3.3.9	Minimum requirement (network signalled value "NS_16")	
6.6.3.3.10		
6.6.3.3.11		
6.6.3.3.11		
6.6.3.3.12	1	
6.6.3.3.14	1 ,	
6.6.3.3.15		
6.6.3.3.16	1 \ \ \ = /	
6.6.3.3.17	· · · · · · · · · · · · · · · · · · ·	
6.6.3.3.18		
6.6.3.3A	Additional spurious emissions for CA	
6.6.3.3A.1		138
6.6.3.3A.2		
6.6.3.3A.3		
6.6.3.3A.4		
6.6.3.3A.5		
6.6.3.3A.6	· · · · · · · · · · · · · · · · · · ·	
6.6.3.3A.7	Minimum requirement for CA_42C (network signalled value "CA_NS_08")	140
6.6.3A	Void	140
6.6.3B	Spurious emission for UL-MIMO	141
6.6A	Void	141
6.6B	Void	141
6.7	Transmit intermodulation	141
6.7.1	Minimum requirement	141
6.7.1A	Minimum requirement for CA	141
6.7.1B	Minimum requirement for UL-MIMO.	
6.8	Void	142
6.8.1	Void	
6.8A	Void	
6.8B	Time alignment error for UL-MIMO	
6.8B.1	Minimum Requirements	
	•	
7 Re	ceiver characteristics	142
7.1	General	142
7.2	Diversity characteristics	143
7.3	Reference sensitivity power level	143
7.3.1	Minimum requirements (QPSK)	
7.3.1A	Minimum requirements (QPSK) for CA	
7.3.1B	Minimum requirements (QPSK) for UL-MIMO	
7.3.1D	Minimum requirements (QPSK) for ProSe	
7.3.1E	Minimum requirements (QPSK) for UE category 0	
7.3.1L 7.3.2	Void	
7.3.2	Maximum input level	
7. 4 7.4.1	Minimum requirements.	
7.4.1 7.4.1A	Minimum requirements for CA	
7.4.1A 7.4.1B	Minimum requirements for UL-MIMO	
	1	
7.4.1D	Minimum requirements for ProSe	
7.4A	Void	
7.4A.1	Void	
7.5	Adjacent Channel Selectivity (ACS)	
7.5.1	Minimum requirements	

7.5.1A	Minimum requirements for CA	171
7.5.1B	Minimum requirements for UL-MIMO	173
7.5.1D	Minimum requirements for ProSe	173
7.6	Blocking characteristics	174
7.6.1	In-band blocking	174
7.6.1.1	Minimum requirements	174
7.6.1.1A	Minimum requirements for CA	
7.6.1.1D	Minimum requirements for ProSe	
7.6.2	Out-of-band blocking	
7.6.2.1	Minimum requirements	
7.6.2.1A	Minimum requirements for CA	
7.6.2.1D	Minimum requirements for ProSe	
7.6.3	Narrow band blocking	
7.6.3.1	Minimum requirements	
7.6.3.1A	Minimum requirements for CA	
7.6.3.1D	Minimum requirements for ProSe	
7.6.3.1D 7.6A	Void	
7.6A 7.6B	Blocking characteristics for UL-MIMO	
	S .	
7.7	Spurious response	
7.7.1	Minimum requirements	
7.7.1A	Minimum requirements for CA	
7.7.1B	Minimum requirements for UL-MIMO	
7.7.1D	Minimum requirements for ProSe	
7.8	Intermodulation characteristics	
7.8.1	Wide band intermodulation	
7.8.1.1	Minimum requirements	
7.8.1A	Minimum requirements for CA	
7.8.1B	Minimum requirements for UL-MIMO	
7.8.1D	Minimum requirements for ProSe	190
7.8.2	Void	190
7.9	Spurious emissions	190
7.9.1	Minimum requirements	191
7.10	Receiver image	191
7.10.1	Void	191
7.10.1A	Minimum requirements for CA	191
0 D		100
	erformance requirement	
8.1	General	
8.1.1	Receiver antenna capability	
8.1.1.1	Simultaneous unicast and MBMS operations	
8.1.1.2	Dual-antenna receiver capability in idle mode	
8.1.2	Applicability of requirements	193
8.1.2.1	Applicability of requirements for different channel bandwidths	193
8.1.2.2	Definition of CA capability	193
8.1.2.2A	Definition of dual connectivity capability	194
8.1.2.3	Applicability and test rules for different CA configurations and bandwidth combination sets	195
8.1.2.3A	Applicability and test rules for different dual connectivity configuration and bandwidth	
	combination set	197
8.1.2.3B	Applicability and test rules for different TDD-FDD CA configurations and bandwidth	
	combination sets	198
8.1.2.4	Test coverage for different number of component carriers	
8.2	Demodulation of PDSCH (Cell-Specific Reference Symbols)	
8.2.1	FDD (Fixed Reference Channel)	
8.2.1.1	Single-antenna port performance	
8.2.1.1.1	Minimum Requirement	
8.2.1.1.2	Void	
8.2.1.1.3	Void	
8.2.1.1.4	Minimum Requirement 1 PRB allocation in presence of MBSFN	
8.2.1.2	Transmit diversity performance	
8.2.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8 2 1 2 2	Minimum Requirement 4 Tx Antenna Port	204 204
O. /. L./. /.	WITH HITH INVALIDATION → IX AMEDINA FULL	/ ,1 14

8.2.1.2.3	Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor	204
8.2.1.2.3A	cell ABS)	.205
0.2.1.2.3A	cell ABS and CRS assistance information are configured)	207
8.2.1.2.4	Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference	0,
	model	.209
8.2.1.3	Open-loop spatial multiplexing performance	.210
8.2.1.3.1	Minimum Requirement 2 Tx Antenna Port	
8.2.1.3.1B	Enhanced Performance Requirement Type C –2Tx Antenna Ports	
8.2.1.3.1C	Enhanced Performance Requirement Type C - 2 Tx Antenna Ports with TM1 interference	.215
8.2.1.3.2	Minimum Requirement 4 Tx Antenna Port	.216
8.2.1.3.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	.216
8.2.1.3.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.2.1.4	Closed-loop spatial multiplexing performance	
8.2.1.4.1	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	.222
8.2.1.4.1A	Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port	.223
8.2.1.4.1B	Enhanced Performance Requirement Type A - Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model	.223
8.2.1.4.1C	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation	
	subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	
8.2.1.4.2	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	.227
8.2.1.4.2A	Enhanced Performance Requirement Type C – Multi-layer Spatial Multiplexing 2Tx Antenna	
	Ports	
8.2.1.4.3	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port	.229
8.2.1.4.3A	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port for dual connectivity	
8.2.1.5	MU-MIMO	
8.2.1.6	[Control channel performance: D-BCH and PCH]	
8.2.1.7	Carrier aggregation with power imbalance	
8.2.1.7.1	Minimum Requirement	
8.2.1.8	Intra-band non-contiguous carrier aggregation with timing offset	
8.2.1.8.1	Minimum Requirement	
8.2.2	TDD (Fixed Reference Channel)	
8.2.2.1	Single-antenna port performance	
8.2.2.1.1	Minimum Requirement	
8.2.2.1.2	Void	
8.2.2.1.3 8.2.2.1.4	Void	
8.2.2.1.4	Transmit diversity performance	
8.2.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.2.2.2.2	Minimum Requirement 4 Tx Antenna Port	
8.2.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	, <u>4</u> T I
0.2.2.2.3	cell ABS)	242
8.2.2.2.3A	Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	
8.2.2.2.4	Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference model	
8.2.2.2.5	Minimum Requirement 2 Tx Antenna Port (when EIMTA-MainConfigServCell-r12 is configured)	
8.2.2.3	Open-loop spatial multiplexing performance	
8.2.2.3.1	Minimum Requirement 2 Tx Antenna Port	
8.2.2.3.1A	Soft buffer management test	
8.2.2.3.1B	Enhanced Performance Requirement Type C - 2Tx Antenna Ports	
8.2.2.3.1 b	Minimum Requirement 4 Tx Antenna Port	
8.2.2.3.3	Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor	
=. =.=.	cell ABS)	.251
8.2.2.3.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	
8.2.2.4		
U.2.2.T	Closcu-100p spanar muniple	757

8.2.2.4.1	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	257
8.2.2.4.1A	Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port	258
8.2.2.4.1B		
	Antenna Port with TM4 interference model	258
8.2.2.4.1C		
0.2.2.	subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	260
8.2.2.4.2	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	
		202
8.2.2.4.2A		200
00010	Port	
8.2.2.4.3	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port	
8.2.2.4.4	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port	
8.2.2.5	MU-MIMO	
8.2.2.6	[Control channel performance: D-BCH and PCH]	268
8.2.2.7	Carrier aggregation with power imbalance	268
8.2.2.7.1	Minimum Requirement	268
8.2.3	TDD FDD CA (Fixed Reference Channel)	
8.2.3.1	Single-antenna port performance	
8.2.3.1.1	Minimum Requirement for FDD PCell	
8.2.3.1.2	Minimum Requirement for TDD PCell	
8.2.3.1.2	Open-loop spatial multiplexing performance 2Tx Antenna port	
8.2.3.2.1	Minimum Requirement for FDD PCell	
8.2.3.2.1A		
8.2.3.2.2	Minimum Requirement for TDD PCell	
8.2.3.2.2A		
8.2.3.3	Closed-loop spatial multiplexing performance 4Tx Antenna Port	278
8.2.3.3.1	Minimum Requirement for FDD PCell	278
8.2.3.3.2	Minimum Requirement for TDD PCell	
	Demodulation of PDSCH (User-Specific Reference Symbols)	
8.3.1	FDD	
8.3.1.1	Single-layer Spatial Multiplexing	
8.3.1.1A	Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9	20.
0.3.1.1A	interference model	206
0.2.1.1D		283
8.3.1.1B	Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and	205
	CRS assistance information are configured)	
8.3.1.2	Dual-Layer Spatial Multiplexing	
8.3.1.2A	Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing	
8.3.1.3	Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports	
8.3.1.3.1	Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)	291
8.3.1.3.2	Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)	.293
8.3.1.3.3	Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS	
	resource)	.295
8.3.2	TDD	
8.3.2.1	Single-layer Spatial Multiplexing	
8.3.2.1A	Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)	
		495
8.3.2.1B	Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9	201
	interference model	301
8.3.2.1C	Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and	
	CRS assistance information are configured)	
8.3.2.2	Dual-Layer Spatial Multiplexing	
8.3.2.2A	Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing	306
8.3.2.3	Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)	
8.3.2.4	Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports	
8.3.2.4.1	Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)	
8.3.2.4.2	Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)	
8.3.2.4.3		
0.3.2.4.3	Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS	212
0.4	resource)	
	Demodulation of PDCCH/PCFICH	
8.4.1	FDD	
8.4.1.1	Single-antenna port performance	
8.4.1.2	Transmit diversity performance	
8.4.1.2.1	Minimum Requirement 2 Tx Antenna Port	314
8.4.1.2.2	Minimum Requirement 4 Tx Antenna Port	

	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	315
8.4.1.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.4.2	TDD	
8.4.2.1	Single-antenna port performance	
8.4.2.2	Transmit diversity performance	
8.4.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.4.2.2.2	Minimum Requirement 4 Tx Antenna Port	324
8.4.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS)	325
8.4.2.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	329
8.5	Demodulation of PHICH.	
8.5.1	FDD	
8.5.1.1	Single-antenna port performance	
8.5.1.2	Transmit diversity performance	
8.5.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.5.1.2.2	Minimum Requirement 4 Tx Antenna Port	
8.5.1.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	554
0.3.1.2.3	cell ABS)	224
05101		334
8.5.1.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	226
0.7.0	cell ABS and CRS assistance information are configured)	
8.5.2	TDD	
8.5.2.1	Single-antenna port performance	
8.5.2.2	Transmit diversity performance	
8.5.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.5.2.2.2	Minimum Requirement 4 Tx Antenna Port	340
8.5.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS)	340
8.5.2.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	342
8.6	Demodulation of PBCH	344
8.6.1	FDD	344
8.6.1.1	Single-antenna port performance	344
8.6.1.2	Transmit diversity performance	345
8.6.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.6.1.2.2	Minimum Requirement 4 Tx Antenna Port	
8.6.1.2.3	Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource	
	Restriction with CRS Assistance Information	345
8.6.2	TDD	
8.6.2.1	Single-antenna port performance	
8.6.2.2	Transmit diversity performance	
8.6.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.6.2.2.2	Minimum Requirement 4 Tx Antenna Port	
8.6.2.2.3	Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource	347
0.0.2.2.3	•	240
0.7	Restriction with CRS Assistance Information	
8.7	Sustained downlink data rate provided by lower layers	
8.7.1	FDD	
8.7.2	TDD	
8.7.3	FDD (EPDCCH scheduling)	
8.7.4	TDD (EPDCCH scheduling)	
8.7.5	TDD FDD CA	
8.7.5.1	Minimum Requirement FDD PCell	
8.7.5.2	Minimum Requirement TDD PCell	
8.8	Demodulation of EPDCCH	
8.8.1	Distributed Transmission	362
8.8.1.1	FDD	362
8.8.1.1.1	Void	363
8.8.1.2	TDD	363
8.8.1.2.1	Void	
8.8.2	Localized Transmission with TM9	
8.8.2.1	FDD.	364

8.8.2.1.1	Void	
8.8.2.1.2		
8.8.2.2	TDD	365
8.8.2.2.1	Void	367
8.8.2.2.2	Void	367
8.8.3	Localized transmission with TM10 Type B quasi co-location type	367
8.8.3.1	FDD	
8.8.3.2	TDD	
8.9	Demodulation performance (Single receiver antenna and for FDD, half-duplex FDD and TDD)	
8.9.1	PDSCH	
8.9.1.1	FDD and half-duplex FDD (Fixed Reference Channel)	
8.9.1.1.1	Transmit diversity performance (Cell-Specific Reference Symbols)	
8.9.1.1.2		
8.9.1.1.3		
8.9.1.2	TDD (Fixed Reference Channel)	
8.9.1.2.1	Transmit diversity performance (Cell-Specific Reference Symbols)	
8.9.1.2.2		
8.9.1.2.3		
8.9.2	PHICH	
8.9.2.1	FDD and half-duplex FDD	
8.9.2.1.1	Transmit diversity performance	
8.9.2.2	TDD	
8.9.2.2.1	Transmit diversity performance	378
8.9.3	PBCH	378
8.9.3.1	FDD and half-duplex FDD	378
8.9.3.1.1	Transmit diversity performance	378
8.9.3.2	TDD	
8.9.3.2.1		
	• •	
	eporting of Channel State Information	
9.1	General	
9.1.1	Applicability of requirements	379
9.1.1.1	Applicability of requirements for different channel bandwidths	
9.1.1.2	Applicability and test rules for different CA configurations and bandwidth combination sets	379
9.1.1.2A	Applicability and test rules for different TDD-FDD CA configurations and bandwidth	
	combination sets	380
9.1.1.3	Test coverage for different number of component carriers	381
9.2	CQI reporting definition under AWGN conditions	
9.2.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)	
9.2.1.1	FDD	
9.2.1.2	TDD	
9.2.1.3	FDD (CSI measurements in case two CSI subframe sets are configured)	
9.2.1.4	TDD (CSI measurements in case two CSI subframe sets are configured)	
9.2.1.4	FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance	56.
9.2.1.3		387
0.2.1.6	information)	30
9.2.1.6	TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance	200
	information)	
9.2.2	Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)	
9.2.2.1	FDD	
9.2.2.2	TDD	
9.2.3	Minimum requirement PUCCH 1-1 (CSI Reference Symbols)	
9.2.3.1	FDD	
9.2.3.2	TDD	
9.2.4	Minimum requirement PUCCH 1-1 (With Single CSI Process)	395
9.2.4.1	FDD	395
9.2.4.2	TDD	398
9.3	CQI reporting under fading conditions	
9.3.1	Frequency-selective scheduling mode	
9.3.1.1	Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)	
9.3.1.1.1	FDD.	
9.3.1.1.2		

9.3.1.1.3	FDD (CSI measurements in case two CSI subframe sets are configured and with CRS	
	assistance information)	402
9.3.1.1.4	TDD (CSI measurements in case two CSI subframe sets are configured and with CRS	
	assistance information)	
9.3.1.2	Minimum requirement PUSCH 3-1 (CSI Reference Symbol)	
9.3.1.2.1	FDD	
9.3.1.2.2	TDD	
9.3.2	Frequency non-selective scheduling mode	
9.3.2.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)	
9.3.2.1.1	FDD	
9.3.2.1.2	TDD	
9.3.2.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.3.2.2.1	FDD	
9.3.2.2.2	TDD	
9.3.3	Frequency-selective interference	
9.3.3.1	Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)	
9.3.3.1.1	FDD	
9.3.3.1.2	TDD	
9.3.3.2	Void	
9.3.3.2.1	Void	
9.3.3.2.2	Void	
9.3.4	UE-selected subband CQI	
9.3.4.1	Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)	
9.3.4.1.1	FDD	
9.3.4.1.2	TDD	
9.3.4.2	Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)	
9.3.4.2.1	FDD	
9.3.4.2.2	TDD	
9.3.5	Additional requirements for enhanced receiver Type A	
9.3.5.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)	
9.3.5.1.1	FDD	
9.3.5.1.2	TDD	
9.3.5.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.3.5.2.1	FDD	
9.3.5.2.2	TDD	
9.3.6	Minimum requirement (With multiple CSI processes)	
9.3.6.1	FDD	
9.3.6.2	TDD	
9.3.7	Minimum requirement PUSCH 3-2	
9.3.7.1	FDD	
9.3.7.2	TDD	
9.4	Reporting of Precoding Matrix Indicator (PMI)	
9.4.1	Single PMI	
9.4.1.1	Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)	
9.4.1.1.1	FDD	
9.4.1.1.2	TDD	
9.4.1.2	Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)	
9.4.1.2.1	FDD	
9.4.1.2.2	TDD	
9.4.1.3	Minimum requirement PUSCH 3-1 (CSI Reference Symbol)	
9.4.1.3.1	FDD	
9.4.1.3.2	TDD	
9.4.1.4	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.4.1.4.1	FDD (with 4Tx enhanced codebook)	
9.4.1.4.2	TDD (with 4Tx enhanced codebook)	
9.4.1a	Void	
9.4.1a.1	Void	
9.4.1a.1.1	Void	
9.4.1a.1.2 9.4.2		
9.4.2 9.4.2.1	Multiple PMI	
9.4.2.1 9.4.2.1.1	FDDFDD	
7.4.4.1.1	LDD	

9.4.2.1.2	TDD	455
9.4.2.2	Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)	456
9.4.2.2.1	· · · · · · · · · · · · · · · · · · ·	
9.4.2.2.2		
9.4.2.3	Minimum requirement PUSCH 1-2 (CSI Reference Symbol)	
9.4.2.3.1	· · · · · · · · · · · · · · · · · · ·	
9.4.2.3.1		
9.4.2.3.2		
9.4.2.3.3 9.4.2.3.4		
	,	
9.4.3	Void	
9.4.3.1	Void	
9.4.3.1.1		
9.4.3.1.2		
9.5	Reporting of Rank Indicator (RI)	
9.5.1	Minimum requirement (Cell-Specific Reference Symbols)	
9.5.1.1	FDD	466
9.5.1.2	TDD	
9.5.2	Minimum requirement (CSI Reference Symbols)	468
9.5.2.1	FDD	468
9.5.2.2	TDD	470
9.5.3	Minimum requirement (CSI measurements in case two CSI subframe sets are configured)	472
9.5.3.1	FDD	472
9.5.3.2	TDD	474
9.5.4	Minimum requirement (CSI measurements in case two CSI subframe sets are configured and C	
	assistance information are configured)	
9.5.4.1	FDD	
9.5.4.2	TDD	
9.5.5	Minimum requirement (with CSI process)	
9.5.5.1	FDD	
9.5.5.2	TDD	
9.6	Additional requirements for carrier aggregation	
9.6.1	Periodic reporting on multiple cells (Cell-Specific Reference Symbols)	
9.6.1.1	FDD	
9.6.1.1	TDD	
9.6.1.3	TDD-FDD CA with FDD PCell	
9.6.1.4	TDD-FDD CA with TDD PCell	
	CSI reporting (Single receiver antenna and for FDD, half-duplex FDD and TDD)	
9.7		
9.7.1	CQI reporting definition under AWGN conditions	
9.7.1.1	FDD and half-duplex FDD	
9.7.1.2	TDD	
9.7.2	Frequency-selective scheduling mode	
9.7.2.1	FDD and half-duplex FDD	
9.7.2.2	TDD	496
10 P	erformance requirement (MBMS)	407
	FDD (Fixed Reference Channel)	
10.1 10.1.1	Minimum requirement	
10.1.1		
	TDD (Fixed Reference Channel)	
10.2.1	Minimum requirement	499
Anney	A (normative): Measurement channels	500
A.1 G	General	500
A.2 U	IL reference measurement channels	500
A.2.1	General	
A.2.1 A.2.1.1	Applicability and common parameters	
A.2.1.1 A.2.1.2		
	Determination of payload size	
A.2.1.3	Overview of UL reference measurement channels	
A.2.2	Reference measurement channels for FDD	
A.2.2.1	Full RB allocation	
A.2.2.1.1		507 508
ハフフェニ	/ LD-(1Δ M	508

A.2.2.1.3	64-QAM	508
A.2.2.2	Partial RB allocation	508
A.2.2.2.1	QPSK	509
A.2.2.2.2	16-QAM	511
A.2.2.2.3	64-QAM	511
A.2.2.3	Void	512
A.2.3	Reference measurement channels for TDD	512
A.2.3.1	Full RB allocation	512
A.2.3.1.1	QPSK	512
A.2.3.1.2	16-QAM	513
A.2.3.1.3	64-QAM	514
A.2.3.2	Partial RB allocation	514
A.2.3.2.1	QPSK	515
A.2.3.2.2	16-QAM	517
A.2.3.2.3	64-QAM	518
A.2.3.3	Void	
		~ 1.0
	L reference measurement channels	
A.3.1	General	
A.3.1.1	Overview of DL reference measurement channels	
A.3.2	Reference measurement channel for receiver characteristics	
A.3.3	Reference measurement channels for PDSCH performance requirements (FDD)	
A.3.3.1	Single-antenna transmission (Common Reference Symbols)	
A.3.3.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.3.2.1	Two antenna ports	
A.3.3.2.2	Four antenna ports	
A.3.3.3	Reference Measurement Channel for UE-Specific Reference Symbols	
A.3.3.3.1	Two antenna port (CSI-RS)	
A.3.3.3.2	Four antenna ports (CSI-RS)	
A.3.4	Reference measurement channels for PDSCH performance requirements (TDD)	
A.3.4.1	Single-antenna transmission (Common Reference Symbols)	
A.3.4.2	Multi-antenna transmission (Common Reference Signals)	
A.3.4.2.1	Two antenna ports	
A.3.4.2.2	Four antenna ports	
A.3.4.3	Reference Measurement Channels for UE-Specific Reference Symbols	
A.3.4.3.1	Single antenna port (Cell Specific)	
A.3.4.3.2	Two antenna ports (Cell Specific)	
A.3.4.3.3	Two antenna ports (CSI-RS)	
A.3.4.3.4	Four antenna ports (CSI-RS)	
A.3.4.3.5	Eight antenna ports (CSI-RS)	
A.3.5	Reference measurement channels for PDCCH/PCFICH performance requirements	575
A.3.5.1	FDD	575
A.3.5.2	TDD	575
A.3.6	Reference measurement channels for PHICH performance requirements	
A.3.7	Reference measurement channels for PBCH performance requirements	576
A.3.8	Reference measurement channels for MBMS performance requirements	576
A.3.8.1	FDD	576
A.3.8.2	TDD	578
A.3.9	Reference measurement channels for sustained downlink data rate provided by lower layers	580
A.3.9.1	FDD	580
A.3.9.2	TDD	582
A.3.9.3	FDD (EPDCCH scheduling)	583
A.3.9.4	TDD (EPDCCH scheduling)	584
A.3.10	Reference Measurement Channels for EPDCCH performance requirements	585
A.3.10.1	FDD	585
A.3.10.2	TDD	585
A.4 CS	SI reference measurement channels	585
A.5 Ol	FDMA Channel Noise Generator (OCNG)	591
A.5.1	OCNG Patterns for FDD	
A.5.1.1	OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern	
Δ 5 1 2	OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern	

A.5.1.	OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	592
A.5.1.		
A.5.1.		
A.5.1.		
A.5.1.	1	
A.5.2	OCNG Patterns for TDD	
A.5.2.	1	
A.5.2.		
A.5.2.		
A.5.2.	1	
A.5.2.		
A.5.2. A.5.2.		
A.6	Sidelink reference measurement channels	601
A.6.1	General	
A.6.2	Reference measurement channel for receiver characteristics	
Anne	x B (normative): Propagation conditions	604
B.1	Static propagation condition	604
B.2	Multi-path fading propagation conditions	60/
Б.2 В.2.1		
B.2.1	Delay profiles	
B.2.2	MIMO Channel Correlation Matrices	
B.2.3.		
B.2.3.		
B.2.3 <i>A</i>	· · · · · · · · · · · · · · · · · · ·	
B.2.3 <i>F</i>		
B.2.3 <i>P</i>		
B.2.3A		
B.2.3		
B.2.3	1	
B.2.4	Propagation conditions for CQI tests	
B.2.4.		
B.2.5	Void	
B.2.6	MBSFN Propagation Channel Profile	612
B.3	High speed train scenario	613
B.4	Beamforming Model	614
B.4.1	Single-layer random beamforming (Antenna port 5, 7, or 8)	
B.4.2	Dual-layer random beamforming (antenna ports 7 and 8)	
B.4.3	Generic beamforming model (antenna ports 7-14)	
B.4.4	Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)	616
B.4.5	Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)	
B.5	Interference models for enhanced performance requirements Type-A	617
B.5.1	Dominant interferer proportion	
B.5.2	Transmission mode 3 interference model	617
B.5.3	Transmission mode 4 interference model	618
B.5.4	Transmission mode 9 interference model	618
Anne	x C (normative): Downlink Physical Channels	619
C.1	General	619
C.2	Set-up	619
C.3	Connection	61¢
C.3.1	Measurement of Receiver Characteristics	
C.3.2	Measurement of Performance requirements	
C.3.3	Aggressor cell power allocation for Measurement of Performance Requirements when ABS is	621

C.3.4		or Measurement of Performance Requirements when Quasi Co-location Type B:	622
Anne	ex D (normative):	Characteristics of the interfering signal	623
D.1	General		623
D.2	Interference signals		623
Anne	ex E (normative):	Environmental conditions	624
E.1	General		624
E.2 E.2.1 E.2.2 E.2.3	Temperature Voltage		624
Anne	ex F (normative):	Transmit modulation	626
F.1	Measurement Point		626
F.2	Basic Error Vector N	Magnitude measurement	626
F.3	Basic in-band emissi	ons measurement	627
F.4	Modified signal unde	er test	627
F.5 F.5.1 F.5.2 F.5.3 F.5.4 F.5.5	Timing offset Window length Window length for Window length for	normal CP Extended CP. PRACH	629 629 630
F.6	Averaged EVM		631
F.7	Spectrum Flatness		632
Anne	ex G (informative):	Reference sensitivity level in lower SNR	633
G.1	General		633
G.2	Typical receiver sens	sitivity performance (QPSK)	633
G.3	Reference measurem	nent channel for REFSENSE in lower SNR	636
Anne	ex H (normative):	Modified MPR behavior	639
H.1	Indication of modifie	ed MPR behavior	639
Anne	ex I (informative):	Change history	640
Histo	r.v		659

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
 - 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [1] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain" [2] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the [3] terrestrial component of International Mobile Telecommunications-2000". [4] 3GPP TS 36.211: "Physical Channels and Modulation". [5] 3GPP TS 36.212: "Multiplexing and channel coding". [6] 3GPP TS 36.213: "Physical layer procedures". 3GPP TS 36.331: "Requirements for support of radio resource management". [7] [8] 3GPP TS 36.307: "Requirements on User Equipments (UEs) supporting a release-independent frequency band". [9] 3GPP TS 36.423: "X2 application protocol (X2AP) ". 3GPP TS 23.303: "Technical Specification Group Services and System Aspects; Proximity-based [10] services (ProSe); Stage 2". 3GPP TS36.300: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal [11] Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply in the case of a single component carrier. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Aggregated Transmission Bandwidth Configuration: The number of resource block allocated within the aggregated channel bandwidth.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Composite spectrum emission mask: Emission mask requirement for intraband non-contiguous carrier aggregation which is a combination of individual sub-block spectrum emissions masks.

Composite spurious emission requirement: Spurious emission requirement for intraband non-contiguous carrier aggregation which is a combination of individual sub-block spurious emission requirements.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Enhanced performance requirements type A: This defines performance requirements assuming as baseline receiver reference symbol based linear minimum mean square error interference rejection combining.

Enhanced performance requirements type C: This defines performance requirements assuming as baseline receiver inter-stream interference cancellation.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Lower sub-block **edge:** The frequency at the lower edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

Non-contiguous spectrum: Spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

ProSe-enabled UE: A UE that supports ProSe requirements and associated procedures.

NOTE: As defined in TS 23.303 [10].

ProSe Direct Communication: A communication between two or more UEs in proximity that are ProSe-enabled.

NOTE: As defined in TS 23.303 [10].

ProSe Direct Discovery: A procedure employed by a ProSe-enabled UE to discover other ProSe-enabled UEs in its vicinity.

NOTE: As defined in TS 23.303 [10].

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

Synchronized operation: Operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

Unsynchronized operation: Operation of TDD in two different systems, where the conditions for synchronized operation are not met.

Upper sub-block edge: The frequency at the upper edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 $\begin{array}{ll} BW_{Channel} & Channel \ bandwidth \\ BW_{Channel,block} & Sub-block \ bandwidth, \ expressed \ in \ MHz. \ BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low.} \\ BW_{Channel_CA} & Aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \end{array}$

 ${
m BW}_{
m GB}$ Virtual guard band to facilitate transmitter (receiver) filtering above / below edge CCs. E_{RS} Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.

excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B

transmit antenna connector

 $\hat{E}_{\rm s}$ The averaged received energy per RE of the wanted signal during the useful part of the symbol,

i.e. excluding the cyclic prefix, at the UE antenna connector; average power is computed within a set of REs used for the transmission of physical channels (including user specific RSs when present), divided by the number of REs within the set, and normalized to the subcarrier spacing

F Frequency

 $F_{agg_alloc_low} \qquad \quad Aggregated \ Transmission \ Bandwidth \ Configuration. \ The \ lowest \ frequency \ of \ the \ simultaneously$

transmitted resource blocks.

F_{agg_alloc_high} Aggregated Transmission Bandwidth Configuration. The highest frequency of the simultaneously

transmitted resource blocks.

 $F_{Interferer}$ (offset) Frequency offset of the interferer $F_{Interferer}$ Frequency of the interferer

F_C Frequency of the carrier centre frequency

 $F_{C_{agg}} \qquad \qquad \text{Aggregated Transmission Bandwidth Configuration. Center frequency of the aggregated carriers.} \\$

 $F_{C,block,\;high} \qquad \qquad \text{Center frequency of the highest transmitted/received carrier in a sub-block.} \\ F_{C,block,\;low} \qquad \qquad \text{Center frequency of the lowest transmitted/received carrier in a sub-block.} \\$

 F_{C_low} The centre frequency of the *lowest carrier*, expressed in MHz. F_{C_high} The centre frequency of the *highest carrier*, expressed in MHz.

 $\begin{array}{ll} F_{DL_low} & The \ lowest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{DL_high} & The \ highest \ frequency \ of \ the \ downlink \ operating \ band \\ F_{UL_low} & The \ lowest \ frequency \ of \ the \ uplink \ operating \ band \\ F_{UL_high} & The \ highest \ frequency \ of \ the \ uplink \ operating \ band \\ \end{array}$

 $\begin{array}{ll} F_{edge,block,low} & The \ lower \ sub-block \ edge, \ where \ F_{edge,block,low} = F_{C,block,low} - F_{offset.} \\ F_{edge,block,high} & The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ sub-block \ edge, \ where \ F_{edge,block,high} = F_{C,block,high} + F_{offset.} \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ F_{edge,block,high} = F_{C,block,low} - F_{offset.} \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ F_{edge,block,high} = F_{C,block,high} + F_{offset.} \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ MHz. \\ The \ upper \ edge \ of \ aggregated \ channel \ bandwidth, \ expressed \ in \ upper \ edge \ of \ aggregated \ channel \ edge \ of \ aggregated \ channel \ edge \ of \ aggregated \ edge \ of \ aggregated \$

 $F_{offset,block,low}$ Separation between lower edge of a sub-block and the center of the lowest component carrier

within the sub-block

 $F_{\text{offset,block,high}}$ Separation between higher edge of a sub-block and the center of the highest component carrier

within the sub-block

 $F_{offset_NS_23}$ Frequency offset in MHz needed if NS_23 is used

F_{OOB} The boundary between the E-UTRA out of band emission and spurious emission domains.

7	
I_o	The power spectral density of the total input signal (power averaged over the useful part of the
	symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the countries signal.
I_{or}	including the own-cell downlink signal The total transmitted power spectral density of the own-cell downlink signal (power averaged over
1 or	the useful part of the symbols within the transmission bandwidth configuration, divided by the
	total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{I}_{or}	The total received power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
I_{ot}	The received power spectral density of the total noise and interference for a certain RE (average
	power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE
_	antenna connector
L_{CRB}	Transmission bandwidth which represents the length of a contiguous resource block allocation expressed in units of resources blocks
N_{cp}	Cyclic prefix length
$N_{ m DL}$	Downlink EARFCN
N_{oc}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as
	measured at the UE antenna connector
N_{oc1}	The power spectral density of a white noise source (average power per RE normalized to the
	subcarrier spacing), simulating interference in non-CRS symbols in ABS subframe from cells that
N_{oc2}	are not defined in a test procedure, as measured at the UE antenna connector. The power spectral density of a white noise source (average power per RE normalized to the
oc2	subcarrier spacing), simulating interference in CRS symbols in ABS subframe from all cells that
	are not defined in a test procedure, as measured at the UE antenna connector.
N_{oc3}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference in non-ABS subframe from cells that are not defined in a test procedure, as measured at the UE antenna connector
N_{oc}	The power spectral density (average power per RE normalised to the subcarrier spacing) of the
	summation of the received power spectral densities of the strongest interfering cells explicitly
	defined in a test procedure plus $N_{oc}^{}$, as measured at the UE antenna connector. The respective
	power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP
	value.
$N_{\mathrm{Offs\text{-}DL}}$	Offset used for calculating downlink EARFCN
$N_{\rm Offs-UL}$	Offset used for calculating uplink EARFCN
N_{otx}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B
N_{RB}	transmit antenna connector Transmission bandwidth configuration, expressed in units of resource blocks
N_{RB_agg}	The number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth.
N_{RB_alloc}	Total number of simultaneously transmitted resource blocks in Channel bandwidth or Aggregated
N	Channel Bandwidth.
$N_{RB,c}$	The transmission bandwidth configuration of component carrier c , expressed in units of resource blocks
$N_{RB,largest\;BW}$	The largest transmission bandwidth configuration of the component carriers in the bandwidth
-	combination, expressed in units of resource blocks
N_{RX}	Number of receiver antennas
N _{UL} Rav	Uplink EARFCN. Minimum average throughput per PR
Rav P _{CMAX}	Minimum average throughput per RB. The configured maximum UE output power.
P_{CMAX} , c	The configured maximum UE output power for serving cell c .
P_{EMAX}	Maximum allowed UE output power signalled by higher layers. Same as IE <i>P-Max</i> , defined in [7].

 $P_{EMAX. c}$ Maximum allowed UE output power signalled by higher layers for serving cell c. Same as IE

P-Max, defined in [7].

P_{Interferer} Modulated mean power of the interferer

 $\begin{array}{ll} P_{PowerClass} & P_{PowerClass} \ is \ the \ nominal \ UE \ power \ (i.e., \ no \ tolerance). \\ P_{UMAX} & The \ measured \ configured \ maximum \ UE \ output \ power. \end{array}$

Puw Power of an unwanted DL signal Pw Power of a wanted DL signal

RB_{start} Indicates the lowest RB index of transmitted resource blocks.
RB_{end} Indicates the highest RB index of transmitted resource blocks.

 Δf_{OOB} Δ Frequency of Out Of Band emission.

 $\Delta R_{IB,c}$ Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving

cen c

ΔT_{IB,c} Allowed maximum configured output power relaxation due to support for inter-band CA

operation, for serving cell c.

 $\Delta T_{\rm C}$ Allowed operating band edge transmission power relaxation.

 ΔT_{Cc} Allowed operating band edge transmission power relaxation for serving cell c.

σ Test specific auxiliary variable used for the purpose of downlink power allocation, defined in

Annex C.3.2.

 W_{gap} Sub-block gap size

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ABS Almost Blank Subframe

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

AWGN Additive White Gaussian Noise

BS Base Station
CA Carrier Aggregation

CA_X Intra-band contiguous CA of component carriers in one sub-block within Band X where X is the

applicable E-UTRA operating band

CA_X-X Intra-band non-contiguous CA of component carriers in two sub-blocks within Band X where X is

the applicable E-UTRA operating band

CA_X-Y Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable E-UTRA operating band

CA_X-X-Y CA of component carriers in two sub-blocks within Band X and component carrier(s) in one sub-

block within Band Y where X and Y are the applicable E-UTRA operating bands

CC Component Carriers CG Carrier Group

CPE Customer Premise Equipment

CPE_X Customer Premise Equipment for E-UTRA operating band X

CW Continuous Wave DC Dual Connectivity

DC_X-Y Inter-band DC of component carrier(s) in one sub-block within Band X and component carrier(s)

in one sub-block within Band Y where X and Y are the applicable E-UTRA operating band

DL Downlink

DIP Dominant Interferer Proportion

EARFCN E-UTRA Absolute Radio Frequency Channel Number

EPRE Energy Per Resource Element

E-UTRA Evolved UMTS Terrestrial Radio Access

EUTRAN Evolved UMTS Terrestrial Radio Access Network

EVM Error Vector Magnitude
FDD Frequency Division Duplex
FRC Fixed Reference Channel
HD-FDD Half- Duplex FDD

MCS Modulation and Coding Scheme

MCG Main Carrier Group
MOP Maximum Output Power
MPR Maximum Power Reduction
MSD Maximum Sensitivity Degradation
OCNG OFDMA Channel Noise Generator

OFDMA Orthogonal Frequency Division Multiple Access

OOB Out-of-band PA Power Amplifier

PCC Primary Component Carrier

P-MPR Power Management Maximum Power Reduction

ProSe Proximity-based Services

PSBCH Physical Sidelink Broadcast CHannel
PSCCH Physical Sidelink Control CHannel
PSDCH Physical Sidelink Discovery CHannel
PSS Primary Synchronization Signal

PSS_RA PSS-to-RS EPRE ratio for the channel PSS

PSSCH Physical Sidelink Shared CHannel PSSS Primary Sidelink Synchronization Signal

RE Resource Element

REFSENS Reference Sensitivity power level

r.m.s Root Mean Square

SCC Secondary Component Carrier SCG Secondary Carrier Group

SINR Signal-to-Interference-and-Noise Ratio

SNR Signal-to-Noise Ratio

SSS Secondary Synchronization Signal

SSS_RA SSS-to-RS EPRE ratio for the channel SSSSSS Secondary Sidelink Synchronization Signal

TDD Time Division Duplex UE User Equipment UL Uplink

UL-MIMO Up Link Multiple Antenna transmission
UMTS Universal Mobile Telecommunications System

UTRA UMTS Terrestrial Radio Access

UTRAN UMTS Terrestrial Radio Access Network

xCH_RA xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS xCH_RB xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing RS

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.521-1 Annex F defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

 a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios

- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The reference sensitivity power levels defined in subclause 7.3 are valid for the specified reference measurement channels.
- d) Note: Receiver sensitivity degradation may occur when:
 - 1) The UE simultaneously transmits and receives with bandwidth allocations less than the transmission bandwidth configuration (see Figure 5.6-1), and
 - 2) Any part of the downlink transmission bandwidth is within an uplink transmission bandwidth from the downlink center subcarrier.
- e) The spurious emissions power requirements are for the long term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Void

4.3A Applicability of minimum requirements (CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0)

The requirements in clauses 5, 6 and 7 which are specific to CA, UL-MIMO, ProSe, Dual Connectivity and UE category 0 are specified as suffix A, B, C, D, E where;

- a) Suffix A additional requirements need to support CA
- b) Suffix B additional requirements need to support UL-MIMO
- c) Suffix C additional requirements need to support Dual Connectivity
- d) Suffix D additional requirements need to support ProSe
- e) Suffix E additional requirements need to support UE category 0

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffix A, B, C, D and E) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C, D, and E) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature (CA, UL-MIMO, ProSe, Dual Connectivity, and UE category 0) in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal supporting CA, compliance with minimum requirements for non-contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for contiguous intraband carrier aggregation in the same operating band.

For a terminal supporting CA, compliance with minimum requirements for contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for non- contiguous intra-band carrier aggregation in the same operating band.

A terminal which supports a DL CA configuration shall support all the lower order fallback DL CA combinations and it shall support at least one bandwidth combination set for each of the constituent lower order DL combinations containing all the bandwidths specified within each specific combination set of the upper order DL combination.

Terminal supporting Dual Connectivity configuration shall meet the minimum requirements for corresponding CA configuration (suffix A), unless otherwise specified.

For a terminal that supports ProSe Direct Communication and/or ProSe Direct Discovery, the minimum requirements are applicable when

- the UE is associated with PCell on the ProSe carrier, or
- the UE is not associated with PCell on the ProSe carrier and is provisioned with the preconfigured radio parameters for ProSe Direct Communications that are associated with known Geographical Area.

When the ProSe UE is not associated with PCell on the ProSe carrier, and the UE does not have knowledge of its geographical area, or is provisioned with preconfigured with radio parameters that are not associated with any Geographical Area, ProSe transmissions are not allowed, and the requirements in Section 6.3.3D apply.

4.4 RF requirements in later releases

The standardisation of new frequency bands and carrier aggregation configurations (downlink and uplink aggregation) may be independent of a release. However, in order to implement a UE that conforms to a particular release but supports a band of operation or a carrier aggregation configuration that is specified in a later release, it is necessary to specify some extra requirements. TS 36.307 [8] specifies requirements on UEs supporting a frequency band or a carrier aggregation configuration that is independent of release.

NOTE: For UEs conforming to the 3GPP release of the present document, some RF requirements of later releases may be mandatory independent of whether the UE supports the bands specif or carrier aggregation configurations ied in later releases or not. The set of RF requirements of later releases that is also mandatory for UEs conforming to the 3GPP release of the present document is determined by regional regulation.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

- 5.2 Void
- 5.3 Void
- 5.4 Void

5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5-1 E-UTRA operating bands

E-UTRA Operating Band	UE t	recei	ve mit	BS t UE	Downlink (DL) operating band BS transmit UE receive FDL_low - FDL_high					
	F _{UL_low}	– F	UL_high		_ I	DL_high				
1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD			
2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD			
3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD			
4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD			
5	824 MHz	_	849 MHz	869 MHz	_	894MHz	FDD			
6 ¹	830 MHz	_	840 MHz	875 MHz	_	885 MHz	FDD			
7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD			
8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD			
9	1749.9 MHz	-	1784.9 MHz	1844.9 MHz	-	1879.9 MHz	FDD			
10	1710 MHz	_	1770 MHz	2110 MHz	_	2170 MHz	FDD			
11	1427.9 MHz	-	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	FDD			
12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD			
13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	FDD			
14	788 MHz	_	798 MHz	758 MHz	_	768 MHz	FDD			
15	Re	serve	ed	Re	serv	ed	FDD			
16	Re	serve	ed	Re	serv	ed	FDD			
17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	FDD			
18	815 MHz	_	830 MHz	860 MHz	_	875 MHz	FDD			
19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD			
20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD			
21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	-	1510.9 MHz	FDD			
22	3410 MHz	_	3490 MHz	3510 MHz	_	3590 MHz	FDD			
23	2000 MHz	_	2020 MHz	2180 MHz	_	2200 MHz	FDD			
24	1626.5 MHz	-	1660.5 MHz	1525 MHz	-	1559 MHz	FDD			
25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	FDD			
26	814 MHz	_	849 MHz	859 MHz	_	894 MHz	FDD			
27	807 MHz	_	824 MHz	852 MHz	_	869 MHz	FDD			
28	703 MHz	_	748 MHz	758 MHz	_	803 MHz	FDD			
29		N/A		717 MHz	_	728 MHz	FDD ²			
30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	FDD			
31	452.5 MHz	_	457.5 MHz	462.5 MHz	_	467.5 MHz	FDD			
32		N/A		1452 MHz	_	1496 MHz	FDD^2			
33	1900 MHz	_	1920 MHz	1900 MHz	_	1920 MHz	TDD			
34	2010 MHz	_	2025 MHz	2010 MHz	_	2025 MHz	TDD			
35	1850 MHz	_	1910 MHz	1850 MHz	_	1910 MHz	TDD			
36	1930 MHz	_	1990 MHz	1930 MHz	_	1990 MHz	TDD			
37	1910 MHz		1930 MHz	1910 MHz	_	1930 MHz	TDD			
38	2570 MHz	_	2620 MHz	2570 MHz	_	2620 MHz	TDD			
39	1880 MHz	_	1920 MHz	1880 MHz	_	1920 MHz	TDD			
40	2300 MHz	_	2400 MHz	2300 MHz	_	2400 MHz	TDD			
41	2496 MHz		2690 MHz	2496 MHz		2690 MHz	TDD			
42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD			
43	3600 MHz		3800 MHz	3600 MHz	_	3800 MHz	TDD			
44	703 MHz		803 MHz	703 MHz	_	803 MHz	TDD			

NOTE 1: Band 6 is not applicable

NOTE 2: Restricted to E-UTRA operation when carrier aggregation is configured. The downlink operating band is paired with the uplink operating band (external) of the carrier aggregation configuration that is supporting the configured Pcell.

5.5A Operating bands for CA

E-UTRA carrier aggregation is designed to operate in the operating bands defined in Tables 5.5A-1 and 5.5A-2.

Table 5.5A-1: Intra-band contiguous CA operating bands

E-UTRA	E-UTRA	Uplink (UL)	Uplink (UL) operating band			Downlink (DL) operating band			
CA Band	Band	BS receive	: / U	E transmit	BS transi	Mode			
		F_{UL_low}	_ [F _{UL_high}	F _{DL_lo}				
CA_1	1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD	
CA_2	2	1850 MHz	ı	1910 MHz	1930 MHz	-	1990 MHz	FDD	
CA_3	3	1710MHz	ı	1785MHz	1805MHz	_	1880MHz	FDD	
CA_7	7	2500 MHz	1	2570 MHz	2620 MHz	-	2690 MHz	FDD	
CA_12	12	699 MHz	_	716 MHz	629 MHz	_	746 MHz	FDD	
CA_23	23	2000 MHz	_	2020 MHz	2180 MHz	_	2200 MHz	FDD	
CA_27	27	807 MHz	-	824 MHz	852 MHz	_	869 MHz	FDD	
CA_38	38	2570 MHz	_	2620 MHz	2570 MHz	_	2620 MHz	TDD	
CA_39	39	1880 MHz	_	1920 MHz	1880 MHz	_	1920 MHz	TDD	
CA_40	40	2300 MHz	-	2400 MHz	2300 MHz	-	2400 MHz	TDD	
CA_41	41	2496 MHz	-	2690 MHz	2496 MHz	_	2690 MHz	TDD	
CA_42	42	3400 MHz	ı	3600 MHz	3400 MHz	-	3600 MHz	TDD	

Table 5.5A-2: Inter-band CA operating bands (two bands)

E-UTRA CA Band	E-UTRA Band	Uplink (UL) operating band BS receive / UE transmit		Downlink (D	Duplex Mode			
CA Ballu	Бани						UE receive	Wode
			1	F _{UL_high}		<u>w – </u>	F _{DL_high}	
CA_1-3	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	
CA_1-5	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	
CA_1-7	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
_	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	
CA_1-8	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
0	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	
CA_1-11	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
Ο/_1 11	11	1427.9 MHz	_	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	100
CA_1-18	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
OA_1-10	18	815 MHz	_	830 MHz	860 MHz	_	875 MHz	100
CA_1-19	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
CA_1-19	19	830 MHz	_	845 MHz	875 MHz	-	890 MHz	רטט
04.4.00	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	EDD
CA_1-20	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	
CA_1-21	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz	FDD
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	
CA_1-26	26	814 MHz	<u> </u>	849 MHz	859 MHz		894 MHz	FDD
	1	1920 MHz		1980 MHz	2110 MHz		2170 MHz	
CA_1-28	28		_	748 MHz		_	803 MHz	FDD
		703 MHz	_		758 MHz	_		EDD
CA_1-41	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
_	41	2496 MHz	_	2690 MHz	2496 MHz	_	2690 MHz	TDD
CA_1-42	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
O/ (_ ! ! ! _	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD
CA_2-4	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
UA_2-4	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	100
CA_2-4-4	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
CA_2-4-4	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	רטט
CA 0.5	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	רטט
CA_2-5	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD
04.00.5	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-2-5	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-12	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-13	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	FDD
CA 2.2	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	
CA_2-2- 13	13	777 MHz	-	787 MHz	746 MHz		756 MHz	FDD
13	2			1910 MHz				
CA_2-17		1850 MHz	_		1930 MHz	_	1990 MHz	FDD
	17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	
CA_2-29	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
	29		N/A		717 MHz	_	728 MHz	
CA_2-30	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
071_2 00	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	100
CA_3-5	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
OA_0-0	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	טטו
CA_3-7	3	1710 MHz	-	1785 MHz	1805 MHz	L-	1880 MHz	FDD
UA_3-1	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	
CA 2.2	3	1710 MHz	-	1785 MHz	1805 MHz	_	1880 MHz	
CA_3-8	8	880 MHz	-	915 MHz	925 MHz	_	960 MHz	FDD
04 5 15	3	1710 MHz	-	1785 MHz	1805 MHz	_	1880 MHz	
CA_3-19	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD
	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	
CA_3-20	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD
	20	JUL IVII IZ	<u> </u>	302 IVII 12		1	JE 1 1811 12	ı

			1					
CA_3-26	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
	26	814 MHz	_	849 MHz	859 MHz	_	894 MHz	
CA_3-27	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
	27	807 MHz	_	824 MHz	852 MHz	_	869 MHz	
CA_3-28	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
O/ (_0 20	28	703 MHz	_	748 MHz	758 MHz	_	803 MHz	
CA_3-42	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
UA_3-42	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD
CA_4-5	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
CA_4-5	5	824 MHz	-	849 MHz	869 MHz	_	894 MHz	רטט
CA 4.4.5	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	רחח
CA_4-4-5	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD
04.47	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
CA_4-7	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
00 4 4 7	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
CA_4-4-7	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
CA_4-12	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
CA_4-4-	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
12	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
	4	1710 MHz		1755 MHz	2110 MHz	_	2155 MHz	
CA_4-13	13	777 MHz		787 MHz	746 MHz	_	756 MHz	FDD
CA_4-4-	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	
13	•		_			_		FDD
13	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	
CA_4-17	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
_	17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	
CA_4-27	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
	27	807 MHz	_	824 MHz	852 MHz	_	869 MHz	
CA_4-29	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
0/(_120	29		N/A		717 MHz	_	728 MHz	. 55
CA_4-30	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
OA_ 1 -30	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	100
CA_5-7	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD
CA_3-1	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	יטט ו
CA_5-12	5	824 MHz	_	849 MHz	869 MHz	-	894 MHz	FDD
CA_5-12	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
04 5 40	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	
CA_5-13	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	FDD
04 5 45	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	
CA_5-17	17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	FDD
	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	
CA_5-25	25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	FDD
	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	
CA_5-30	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz	FDD
	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	
CA_7-8	8	880 MHz		915 MHz	925 MHz	_	960 MHz	FDD
	7	2500 MHz		2570 MHz	2620 MHz	<u> </u>	2690 MHz	
CA_7-12	12	699 MHz		716 MHz	729 MHz	<u> </u>	746 MHz	FDD
	7		_			_		
CA_7-20		2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	
CA_7-28	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
_	28	703 MHz	_	748 MHz	758 MHz	_	803 MHz	
CA_8-11	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD
	11	1427.9 MHz	_	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	
CA_8-20	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD
5.1_0 20	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	
CA_8-40	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD
U/_U^4U	40	2300 MHz	_	2400 MHz	2300 MHz	_	2400 MHz	TDD
CA_11-18	11	1427.9 MHz	_	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	FDD
OU_11-10	18	815 MHz	L=	830 MHz	860 MHz	L-	875 MHz	טטיו
		•			•			

CA 12.25	12	699 MHz	-	716 MHz	729 MHz	_	746 MHz	FDD
CA_12-25	25	1850 MHz	-	1915 MHz	1930 MHz	-	1995 MHz	FDD
CA 12-30	12	699 MHz	-	716 MHz	729 MHz	-	746 MHz	FDD
CA_12-30	30	2305 MHz	_	2315 MHz	2350 MHz	-	2360 MHz	FDD
CA 10 20	18	815 MHz	-	830 MHz	860 MHz	-	875 MHz	FDD
CA_18-28	28	703 MHz	_	733 MHz	758 MHz	-	788 MHz	FDD
CA_19-21	19	830 MHz	_	845 MHz	875 MHz	-	890 MHz	EDD
CA_19-21	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	-	1510.9 MHz	FDD
CA 10 12	19	830 MHz	-	845 MHz	875 MHz	_	890 MHz	FDD
CA_19-42	42	3400 MHz	-	3600 MHz	3400 MHz	-	3600 MHz	TDD
CA 20 22	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD
CA_20-32	32		N/A		1452 MHz	_	1496 MHz	FDD
CA 22 20	23	2000 MHz	_	2020 MHz	2180 MHz	_	2200 MHz	FDD
CA_23-29	29		N/A		717 MHz	-	728 MHz	סטיז
CA 25 44	25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	FDD
CA_25-41	41	2496 MHz	-	2690 MHz	2496 MHz	-	2690 MHz	TDD
CA 26-41	26	814 MHz	_	849 MHz	859 MHz	-	894 MHz	FDD
CA_20-41	41	2496 MHz	_	2690 MHz	2496 MHz	-	2690 MHz	TDD
CA 29-30	29		N/A		717 MHz	-	728 MHz	FDD
CA_29-30	30	2305 MHz	-	2315 MHz	2350 MHz	-	2360 MHz	FDD
CA 39-41	39	1880 MHz	_	1920 MHz	1880 MHz	_	1920 MHz	TDD
UA_39-41	41	2496 MHz	-	2690 MHz	2496 MHz	-	2690 MHz	טטו
CA_41-42	41	2496 MHz	-	2690 MHz	2496 MHz	-	2690 MHz	TDD
UA_41-42	42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	טטו

Table 5.5A-2a: Inter-band CA operating bands (three bands)

E-UTRA CA	E-UTRA	Uplink (UL)	Uplink (UL) operating band			Downlink (DL) operating band			
Band	Band			JE transmit			UE receive	Duplex Mode	
				F _{UL_high}			F _{DL high}		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-3-5	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD	
	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-3-8	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD	
_	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-3-19	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD	
	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-3-20	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD	
	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-3-26	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD	
	26	814 MHz	_	849 MHz	859 MHz	_	894 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-5-7	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD	
	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-7-20	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD	
	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-18-28	18	815 MHz	_	830 MHz	860 MHz	_	875 MHz	FDD	
	28	703 MHz	_	733 MHz	758 MHz	_	788 MHz		
	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz		
CA_1-19-21	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD	
	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-4-5	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD	
	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-4-12	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD	
	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-4-13	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD	
	13	777 MHz	-	787 MHz	746 MHz	_	756 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-4-29	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD	
	29		N/A		717 MHz	_	728 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-5-12	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD	
	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-5-13	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD	
	13	777 MHz	_	787 MHz	746 MHz	_	756 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-5-30	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD	
	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	_	
CA_2-12-30	12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD	
	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz		
	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz		
CA_2-29-30	29		N/A		717 MHz	_	728 MHz	FDD	
	30	2305 MHz	_	2315 MHz	2350 MHz	_	2360 MHz		
CA_3-7-20	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD	
575 7 20	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	. 55	

	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	
	4	1710 MHz	ı	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-5-12	5	824 MHz	-	849 MHz	869 MHz	_	894 MHz	FDD
	12	699 MHz	ı	716 MHz	729 MHz	-	746 MHz	
	4	1710 MHz	ı	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-5-13	5	824 MHz	-	849 MHz	869 MHz	_	894 MHz	FDD
	13	777 MHz	ı	787 MHz	746 MHz	-	756 MHz	
	4	1710 MHz	ı	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-5-30	5	824 MHz	ı	849 MHz	869 MHz	-	894 MHz	FDD
	30	2305 MHz	ı	2315 MHz	2350 MHz	-	2360 MHz	
	4	1710 MHz	ı	1755 MHz	2110 MHz	-	2155 MHz	FDD
CA_4-7-12	7	2500 MHz	-	2570 MHz	2620 MHz	_	2690 MHz	
	12	699 MHz	ı	716 MHz	729 MHz	_	746 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	
CA_4-12-30	12	699 MHz	ı	716 MHz	729 MHz	-	746 MHz	FDD
	30	2305 MHz	ı	2315 MHz	2350 MHz	_	2360 MHz	
	4	1710 MHz	-	1755 MHz	2110 MHz	_	2155 MHz	
CA_4-29-30	29		N/A	4	717 MHz	-	728 MHz	FDD
	30	2305 MHz	ı	2315 MHz	2350 MHz	-	2360 MHz	
	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	
CA_7-8-20	8	880 MHz	_	915 MHz	925 MHz	-	960 MHz	FDD
	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	

Table 5.5A-3: Intra-band non-contiguous CA operating bands (with two sub-blocks)

E-UTRA	E-UTRA	Uplink (UL) operating band			Downlink (D	Duplex Mode			
CA Band	Band	BS receive / UE transmit			BS transi	BS transmit / UE receive			
		F_{UL_low}	F _{UL_low} - F _{UL_high}			$F_{DL_low} - F_{DL_high}$			
CA_2-2	2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD	
CA_3-3	3	1710 MHz	-	1785 MHz	1805 MHz	_	1880 MHz	FDD	
CA_4-4	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD	
CA_7-7	7	2500 MHz	-	2570 MHz	2620 MHz	_	2690 MHz	FDD	
CA_23-23	23	2000 MHz	_	2020 MHz	2180 MHz	-	2200 MHz	FDD	
CA_25-25	25	1850 MHz	-	1915 MHz	1930 MHz	_	1995 MHz	FDD	
CA_41-41	41	2496 MHz	ı	2690 MHz	2496 MHz	-	2690 MHz	TDD	
CA_42-42	42	3400 MHz	-	3600 MHz	3400 MHz	-	3600 MHz	TDD	

5.5B Operating bands for UL-MIMO

E-UTRA UL-MIMO is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5B-1: Void

5.5C Operating bands for Dual Connectivity

E-UTRA dual connectivity is designed to operate in the operating bands defined in Table 5.5C-1.

Table 5.5C-1: Inter-band dual connectivity operating bands (two bands)

E-UTRA	E-		Uplink (UL) operating band BS receive / UE transmit				perating band	Duplex	
DC Band	UTRA						UE receive	Mode	
	Band		_	F _{UL_high}		w –	F _{DL_high}		
DC_1-3	1	1920 MHz	-	1980 MHz	2110 MHz	_	2170 MHz	FDD	
	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	. 55	
DC_1-5	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD	
	5	824 MHz	-	849 MHz	869 MHz	_	894 MHz	100	
DC_1-7	1	1920 MHz	-	1980 MHz	2110 MHz	_	2170 MHz	FDD	
	7	2500 MHz	-	2570 MHz	2620 MHz	_	2690 MHz	100	
DC_1-8	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD	
	8	880 MHz	-	915 MHz	925 MHz	_	960 MHz	100	
DC_1-19	1	1920 MHz	-	1980 MHz	2110 MHz	_	2170 MHz	FDD	
	19	830 MHz	-	845 MHz	875 MHz	_	890 MHz	100	
DC_1-21	1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD	
	21	1447.9 MHz	ı	1462.9 MHz	1495.9 MHz	-	1510.9 MHz	FDD	
DC_2-4	2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz	EDD	
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	FDD	
DC_2-13	2	1850 MHz	-	1910 MHz	1930 MHz	_	1990 MHz	EDD	
	13	777 MHz	-	787 MHz	746 MHz	_	756 MHz	FDD	
DC_3-5	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	EDD	
	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz	FDD	
DC_3-7	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	500	
_	7	2500 MHz	-	2570 MHz	2620 MHz	_	2690 MHz	FDD	
DC 3-8	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz		
	8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD	
DC_3-19	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz		
	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD	
DC_3-20	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz		
	20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD	
DC_3-26	3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz		
2 0_0 20	26	814 MHz	_	849 MHz	859 MHz	_	894 MHz	FDD	
DC_4-7	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz		
	7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD	
DC_4-12	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz		
	12	699 MHz		716 MHz	729 MHz	_	746 MHz	FDD	
DC_4-13	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz		
DO_1 10	13	777 MHz	_	787 MHz	746 MHz		756 MHz	FDD	
DC_4-17	4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz		
	17	704 MHz	_	716 MHz	734 MHz		746 MHz	FDD	
DC_5-7	5	824 MHz		849 MHz	869 MHz		894 MHz		
DO_0-1	7	2500 MHz	Ē	2570 MHz	2620 MHz		2690 MHz	FDD	
DC_5-12	5	824 MHz		849 MHz	869 MHz		894 MHz		
DO_0-12	12	699 MHz		716 MHz	729 MHz		746 MHz	FDD	
DC_5-17	5	824 MHz	_	849 MHz	869 MHz	_	894 MHz		
DC_0-17	17	704 MHz	_	716 MHz			746 MHz	FDD	
DC_7-20	7	2500 MHz	_	2570 MHz	734 MHz 2620 MHz	_	2690 MHz		
DC_1-20			_					FDD	
DC 7 30	20	832 MHz 2500 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD	
DC_7-28	7		_	2570 MHz	2620 MHz 758 MHz	_	2690 MHz		
DC 40.04	28	703 MHz	_	748 MHz		_	803 MHz		
DC_19-21	19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD	
DC 00 11	21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz		
DC_39-41	39	1880 MHz	_	1920 MHz	1880 MHz	_	1920 MHz	TDD	
NOTE 4: T'	41	2496 MHz		2690 MHz	2496 MHz		2690 MHz		
NOTE 1: The	DC COULIG	jurations Will fol	IOW	corresponding	CA configuration	กร ล	as defined in Table	5.0A.1-2.	

5.5D Operating bands for ProSe

E-UTRA ProSe is designed to operate in the operating bands defined in Table 5.5D-1.

Table 5.5D-1 E-UTRA ProSe operating band

E-UTRA	E-UTRA	ProSe UE transmit	ProSe UE receive	ProSe	ProSe Direct	
ProSe Band	Operating Band	F _{UL_low} - F _{UL_high}	F _{DL_low} - F _{DL_high}	Duplex Mode	Disc.	Comm.
2	2	1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	HD	Yes	
3	3	1710 MHz – 1785 MHz	1710 MHz – 1785 MHz	HD	Yes	Yes
4	4	1710 MHz – 1755 MHz	1710 MHz – 1755 MHz	HD	Yes	
7	7	2500 MHz - 2570 MHz	2500 MHz - 2570 MHz	HD	Yes	Yes
14	14	788 MHz – 798 MHz	788 MHz – 798 MHz	HD	Yes	Yes
20	20	832 MHz - 862 MHz	832 MHz - 862 MHz	HD	Yes	Yes
26	26	814 MHz – 849 MHz	814 MHz – 849 MHz	HD	Yes	Yes
28	28	703 MHz - 748 MHz	703 MHz - 748 MHz	HD	Yes	Yes
31	31	452.5 MHz - 457.5 MHz	452.5 MHz - 457.5 MHz	HD	Yes	Yes
41	41	2496 MHz - 2690 MHz	2496 MHz - 2690 MHz	HD	Yes	

5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1: Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]		1.4	3	5	10	15	20
	Transmission bandwidth configuration N _{RB}	6	15	25	50	75	100

Figure 5.6-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at $F_C + /- BW_{Channel} / 2$.

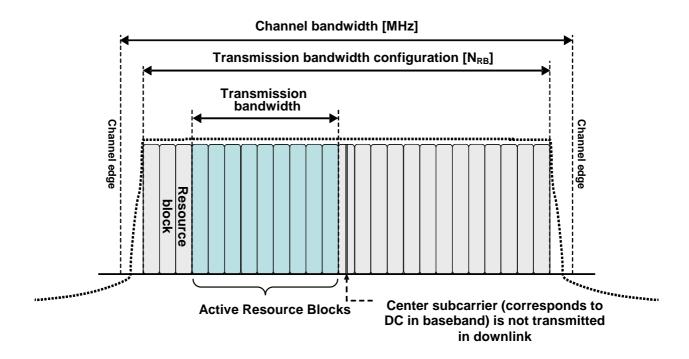


Figure 5.6-1: Definition of channel bandwidth and transmission bandwidth configuration for one E-UTRA carrier

5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

Table 5.6.1-1: E-UTRA channel bandwidth

E-UTRA band / Channel bandwidth											
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz					
1			Yes	Yes	Yes	Yes					
2	Yes	Yes	Yes	Yes	Yes ¹	Yes¹					
3	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹					
4	Yes	Yes	Yes	Yes	Yes	Yes					
5	Yes	Yes	Yes	Yes ¹	. 55						
6			Yes	Yes ¹							
7			Yes	Yes	Yes ³	Yes ^{1, 3}					
8	Yes	Yes	Yes	Yes ¹							
9			Yes	Yes	Yes ¹	Yes ¹					
10			Yes	Yes	Yes	Yes					
11			Yes	Yes ¹							
12	Yes	Yes	Yes ¹	Yes ¹							
13			Yes ¹	Yes ¹							
14			Yes ¹	Yes ¹							
17			Yes ¹	Yes ¹							
18			Yes	Yes ¹	Yes ¹						
19			Yes	Yes ¹	Yes ¹						
20			Yes	Yes	Yes ¹	Yes ¹					
21			Yes	Yes ¹	Yes ¹						
22			Yes	Yes	Yes ¹	Yes ¹					
23	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹					
24	100	100	Yes	Yes	100						
25	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹					
26	Yes	Yes	Yes	Yes ¹	Yes ¹						
27	Yes	Yes	Yes	Yes ¹							
28		Yes	Yes	Yes ¹	Yes ¹	Yes ^{1, 2}					
30			Yes	Yes ¹							
31	Yes	Yes ¹	Yes ¹								
33			Yes	Yes	Yes	Yes					
34			Yes	Yes	Yes						
35	Yes	Yes	Yes	Yes	Yes	Yes					
36	Yes	Yes	Yes	Yes	Yes	Yes					
37			Yes	Yes	Yes	Yes					
38			Yes	Yes	Yes ³	Yes ³					
39			Yes	Yes	Yes ³	Yes ³					
40			Yes	Yes	Yes	Yes					
41			Yes	Yes	Yes	Yes					
42			Yes	Yes	Yes	Yes					
43			Yes	Yes	Yes	Yes					
44		Yes	Yes	Yes	Yes	Yes					

NOTE 1: 1 refers to the bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (subclause 7.3) is allowed

sensitivity requirement (subclause 7.3) is allowed.

NOTE 2: For the 20 MHz bandwidth, the minimum requirements are specified for E-UTRA UL carrier frequencies confined to either 713-723 MHz or 728-738 MHz

738 MHz
NOTE 3: ³ refers to the bandwidth for which the uplink transmission bandwidth can be restricted by the network for some channel assignments in FDD/TDD co-existence scenarios in order to meet unwanted emissions requirements (Clause 6.6.3.2).

b) The use of different (asymmetrical) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.6A Channel bandwidth for CA

For intra-band contiguous carrier aggregation *Aggregated Channel Bandwidth*, *Aggregated Transmission Bandwidth Configuration* and *Guard Bands* are defined as follows, see Figure 5.6A-1.

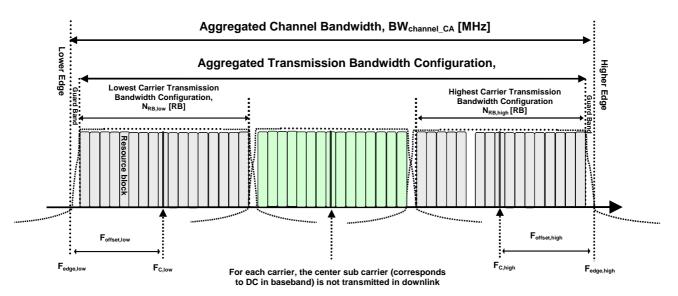


Figure 5.6A-1. Definition of Aggregated channel bandwidth and aggregated channel bandwidth edges

The aggregated channel bandwidth, BW_{Channel CA}, is defined as

$$BW_{Channel\ CA} = F_{edge,high} - F_{edge,low}$$
 [MHz].

The lower bandwidth edge $F_{edge,low}$ and the upper bandwidth edge $F_{edge,high}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{\text{edge,low}} = F_{\text{C,low}} - F_{\text{offset,low}}$$

$$F_{edge,high} = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$F_{offset,low} = (0.18N_{RB,low} + \Delta f_1)/2 + BW_{GB}[MHz]$$

$$F_{offset,high} = (0.18N_{RB,high} + \Delta f_1)/2 + BW_{GB} [MHz]$$

where $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier, respectively. BW_{GB} denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

NOTE: The values of BW_{Channel_CA} for UE and BS are the same if the lowest and the highest component carriers are identical.

Aggregated Transmission Bandwidth Configuration is the number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth and is defined per CA Bandwidth Class (Table 5.6A-1).

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.6A-2.

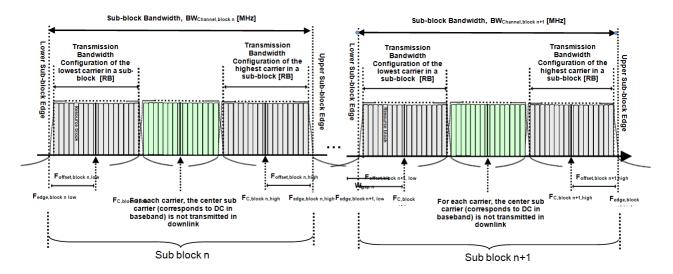


Figure 5.6A-2. Non-contiguous intraband CA terms and definitions

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

$$F_{\text{edge,block, low}} = F_{\text{C,block,low}} - F_{\text{offset,block, low}}$$

The upper sub-block edge of the Sub-block Bandwidth is defined as

$$F_{edge,block,high} = F_{C,block,high} + F_{offset,block,high}$$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

$$_{BWChannel,block} = F_{edge,block,high} - F_{edge,block,low}$$
[MHz]

The lower and upper frequency offsets $F_{\text{offset,block,low}}$ and $F_{\text{offset,block,high}}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$F_{offset,block,low} = (0.18N_{RB,low} + \Delta f_1)/2 + BW_{GB}[MHz]$$

$$F_{offset,block,high}\!=(0.18N_{RB,high}+\Delta f_1)/2+BW_{GB}\left[MHz\right]$$

where $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier within a sub-block, respectively. BW_{GB} denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

$$W_{gap} = F_{edge,block n+1,low} - F_{edge,block n,high [MHz]}$$

Table 5.6A-1: CA bandwidth classes and corresponding nominal guard bands

CA Bandwidth Class	Aggregated Transmission Bandwidth Configuration	Number of contiguous CC	Nominal Guard Band BW _{GB}
Α	N _{RB,agg} ≤ 100	1	$a_1 \text{ BW}_{\text{Channel}(1)} - 0.5\Delta f_1 \text{ (NOTE 2)}$
В	25 < N _{RB,agg} ≤ 100	2	0.05 $max(BW_{Channel(1)},BW_{Channel(2)})$ - 0.5 Δf_1
С	100 < N _{RB,agg} ≤ 200	2	$0.05 \ max(BW_{Channel(1)},BW_{Channel(2)}) - 0.5\Delta f_1$
D	200 < N _{RB,agg} ≤ 300	3	0.05 $max(BW_{Channel(1)},BW_{Channel(2)}, BW_{Channel(3)}) - 0.5\Delta f_1$
E	300 < N _{RB,agg} ≤ 400	4	NOTE 3
F	400 < N _{RB,agg} ≤ 500	5	NOTE 3

NOTE 1: BW_{Channel(j)}, j = 1, 2, 3, is the channel bandwidth of an E-UTRA component carrier according to Table 5.6-1 and $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing while $\Delta f_1 = 0$ for the uplink.

NOTE 2: $a_1 = 0.16/1.4$ for BW_{Channel(1)} = 1.4 MHz whereas $a_1 = 0.05$ for all other channel bandwidths.

NOTE 3: Applicaple for later releases.

The channel spacing between centre frequencies of contiguously aggregated component carriers is defined in subclause 5.7.1A.

5.6A.1 Channel bandwidths per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations with associated bandwidth combination sets. For inter-band carrier aggregation, a *carrier aggregation configuration* is a combination of operating bands, each supporting a carrier aggregation bandwidth class. For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class.

For each carrier aggregation configuration, requirements are specified for all bandwidth combinations contained in a *bandwidth combination set*, which is indicated per supported band combination in the UE radio access capability. A UE can indicate support of several bandwidth combination sets per band combination.

Requirements for intra-band contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-1. Requirements for inter-band carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-2 and Table 5.6A.1-2a. Requirements for intra-band non-contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-3.

The DL component carrier combinations for a given CA configuration shall be symmetrical in relation to channel centre unless stated otherwise in Table 5.6A.1-1, Table 5.6A.1-2 and Table 5.6A.1-2a.

Table 5.6A.1-1: E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA

E-UTRA CA	Uplink CA	E-UTRA CA configur Component carrie			et Maximum	Bandwidth
configuratio n	configur ations (NOTE 3)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	combinatio n set
CA_1C	CA_1C	15	15		40	0
		20	20			-
		5	20		_	
CA_2C		10	15, 20		40	0
51 5		15	10, 15, 20			-
		20	5, 10, 15, 20			
CA_3C	CA_3C	5, 10, 15	20		40	0
<u> </u>	0,1_00	20	5, 10, 15, 20		.0	
		15	15		40	0
		20	20		40	Ŭ.
CA_7C	CA_7C	10	20			
		15	15, 20		40	1
		20	10, 15, 20			
CA_12B	-	5	5, 10		15	0
0		10	10			_
CA_23B	-	5	15		20	0
		1.4, 3, 5	5			
CA_27B	-	1.4, 3	10		13	0
CA_38C	CA_38C	15	15		40	0
		20	20			-
CA_39C	CA_39C	5,10,15	20		35	0
	0.500	20	5, 10, 15			
		10	20			
		15	15		40	0
CA_40C	CA_40C	20	10, 20			
51-2100		10, 15	20			
		15	15		40	1
		20	10, 15, 20			
		10, 15, 20	20	20		
CA_40D	CA_40C	20	10, 15	20	60	0
		20	20	10, 15		
		10	20		=	
		15	15, 20		40	0
CA_41C	CA_41C	20	10, 15, 20			
S. <u>C.</u> 110	0110	5, 10	20			
		15	15, 20		40	1
		20	5, 10, 15, 20			
CA_41D	CA_41C	10	20	15	60	0

		10	15, 20	20		
		15	20	10, 15		
		15	10, 15, 20	20		
		20	15, 20	10		
		20	10, 15, 20	15, 20		
CA_42C	CA_42C	5, 10, 15, 20	20		40	0
UA_42U	UA_42U	20	5, 10, 15		40	

NOTE 1: The CA configuration refers to an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal. NOTE 3: Uplink CA configurations are the configurations supported by the present release of specifications.

Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA (two bands)

E-UTRA CA		E-U1	RA CA c	onfigu	ation /	Bandw	idth co	mbina	tion set	1	
CA_1A-3A CA_1A-3A 3 Yes Yes Yes Yes 40 0 CA_1A-5A 1 Yes Yes Yes 20 0 1 Yes Yes Yes Yes Yes Yes 5 Yes Yes Yes Yes Yes Yes 6 1 Yes <		Uplink CA configurations	E- UTRA	1.4	3	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth	combination
CA_1A-5A 5 Yes Yes Yes 30 1 CA_1A-7A 1 Yes Yes <td>CA_1A-3A</td> <td>CA_1A-3A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40</td> <td>0</td>	CA_1A-3A	CA_1A-3A								40	0
CA_1A-SA										20	0
CA_1A-7A CA_1A-7A 1 Yes Yes <th< td=""><td>CA_1A-5A</td><td>CA_1A-5A</td><td>1</td><td></td><td></td><td></td><td>Yes</td><td>Yes</td><td>Yes</td><td>30</td><td>1</td></th<>	CA_1A-5A	CA_1A-5A	1				Yes	Yes	Yes	30	1
CA_1A-7A								Yes	Yes		
See CA_4A-4A CA_1A-8A CA_1A	CA_1A-7A	CA_1A-7A					Yes	Yes	Yes	40	0
CA_1A-8A								res	res	30	0
1	CA_1A-8A	CA_1A-8A								20	1
CA_1A-11A - 1 Yes Yes Yes Yes yes O CA_1A-18A - 11 Yes Yes Yes Yes O 1 CA_1A-18A - 18 Yes			1			Yes	Yes	Yes	Yes	30	2
11	CA 1A-11Δ	_	1		res	Yes	Yes	Yes	Yes	30	0
CA_1A-18A - 18 Yes Yes Yes 20 1 CA_1A-19A 1 Yes Yes </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Yes</td> <td>Yes</td> <td></td> <td></td>								Yes	Yes		
18	CA_1A-18A	-				Yes	Yes			35	Ü
CA_1A-19A			18			Yes	Yes			20	1
CA_1A-20A -	CA_1A-19A	CA_1A-19A							Yes	35	0
CA_1A-21A 1 Yes Yes Yes Yes O CA_1A-21A 21 Yes Yes Yes Yes Yes O CA_1A-26A - 1 Yes Yes<	CA_1A-20A	-								40	0
Table 5.6A.1-1	CA_1A-21A	CA_1A-21A	1			Yes	Yes	Yes		35	0
CA_1A-26A -			1			Yes	Yes	Yes	Yes	35	0
CA_1A-28A -	CA_1A-26A	-						Yes			
CA_1A-28A - 28 Yes Yes Yes 40 0 CA_1A-28A - 1 Yes Yes Yes 20 1 CA_1A-41A - 1 Yes Yes Yes Yes 40 0 CA_1A-41C - 41 Yes								Yes	Yes		
CA_1A-41A CA_1A-41A CA_1A-41A CA_1A-41A CA_1A-41A CA_1A-41A CA_1A-41A CA_1A-42A CA_1A-42A CA_1A-42C CA_1	CA_1A-28A	-	28			Yes	Yes			40	0
CA_1A-41A - 41	-									20	1
Table	CA_1A-41A	-								40	0
CA_1A-42A - 1 Yes Yes </td <td>CA_1A-41C</td> <td>-</td> <td>1</td> <td>See</td> <td></td> <td>Yes C Band</td> <td>Yes Iwidth C</td> <td>Yes Combina</td> <td>Yes</td> <td>60</td> <td>0</td>	CA_1A-41C	-	1	See		Yes C Band	Yes Iwidth C	Yes Combina	Yes	60	0
CA_1A-42C - 1 Yes Yes Yes Yes Yes Yes Accordance Accordance </td <td>CA_1A-42A</td> <td>-</td> <td></td> <td></td> <td>Jet</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td>40</td> <td>0</td>	CA_1A-42A	-			Jet	Yes	Yes	Yes		40	0
CA_2A-4A CA_2A-4A-4A CA_2A-4A-4	CA_1A-42C	-	1	See		Yes C Band	Yes Iwidth C	Yes Combina	Yes	60	0
CA_2A-4A 2 Yes Yes 20 1 4 Yes Yes Yes Yes Yes 2 Yes Yes Yes Yes Yes 4 Yes Yes Yes Yes Yes CA_2A-4A-4A - 4 See CA_4A-4A Bandwidth Combination Set 0 in Table 5.6A.1-3 60 0			2	Yes		Yes	Yes	Yes		40	0
4 Yes Yes Yes Yes 40 2 2 Yes Yes Yes Yes Yes Yes CA_2A-4A-4A - See CA_4A-4A Bandwidth Combination Set 0 in Table 5.6A.1-3 60 0	CA_2A-4A	CA_2A-4A	2			Yes	Yes	163	163	20	1
CA_2A-4A-4A - 2 Yes Yes Yes Yes Yes See CA_4A-4A Bandwidth Combination Set 0 in Table 5.6A.1-3 60 0										40	2
Set 0 in Table 5.6A.1-3	CA_2A-4A-4A	-	2	See	CA_4A-	Yes	Yes	Yes	Yes	60	0
- NO CONO 1 - 1 / 1 1 TEN 1	CA_2A-5A	_	2						Yes	30	0

		5			Yes	Yes				
		2			Yes	Yes			20	1
		5			Yes	Yes			20	ı
CA 2A 2A 5A		2	See CA_2A-2A Bandwidth Combination Set 0 in Table 5.6A.1-3						5 0	
CA_2A-2A-5A	-	5		Set	Yes	Yes	1.1-3		50	0
		2			Yes	Yes	Yes	Yes		
		12			Yes	Yes	100	100	30	0
CA_2A-12A	-	2			Yes	Yes	Yes	Yes		
		12		Yes	Yes	Yes	163	163	30	1
		2		162	Yes	Yes	Yes	Yes		
CA_2A-12B	-	12	See	CA_12					35	0
				Set		ble 5.6/		1		
		2			Yes	Yes	Yes	Yes	30	0
CA_2A-13A	CA_2A-13A	13				Yes				
071_271 1071	0/(<u>_</u> 2/(10/(2			Yes	Yes			20	1
		13				Yes				'
CA_2A-2A-		2	See	CA_2A-		ndwidth ble 5.6 <i>F</i>		nation	5 0	
13A	-	12		Set	U III Tai		1.1-3	1	50	0
		13	 		Voc	Yes	-			+
CA_2A-17A	-	2	-		Yes	Yes	1		20	0
		17	-	1	Yes	Yes	1			
		2	-		Yes	Yes	-		20	0
		29	ļ	Yes	Yes	Yes				-
CA_2A-29A	-	2			Yes	Yes	1		20	1
,		29	ļ		Yes	Yes				
		2			Yes	Yes	Yes	Yes	30	2
		29	ļ		Yes	Yes				
CA 20 204		2	See (CA_2C				on Set	5 0	
CA_2C-29A	-	29		1	In table	5.6A.1 Yes	-1		50	0
		_	1	1	Yes		Voc	Voc		+
CA_2A-30A	-	2	-			Yes	Yes	Yes	30	0
		30	-		Yes	Yes	\/	V		1
		3	-		\/	Yes	Yes	Yes	30	0
		5			Yes	Yes	-			
CA_3A-5A	CA_3A-5A	3			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Yes	-		20	1
		5			Yes	Yes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		3	ļ	1	Yes	Yes	Yes	Yes	30	2
		5	<u> </u>		Yes	Yes	ļ ,,			
CA_3A-7A	CA_3A-7A	3	ļ		Yes	Yes	Yes	Yes	40	0
20,.,,,	JO/ (// (7				Yes	Yes	Yes		
04 51 55		3	_	<u> </u>	Yes	Yes	Yes	Yes		_
CA_3A-7C	-	7	See	CA_7C 1		idth cor 5.6A.1		on set	60	0
		2	See (CA_3C				on Set		
CA_3C-7A	-	3			in table	5.6A.1	-1		60	0
		7			Yes	Yes	Yes	Yes		
		3				Yes	Yes	Yes	20	0
		8			Yes	Yes			30	0
CA 24 24	OA OA OA	3				Yes			00	4
CA_3A-8A	CA_3A-8A	8			Yes	Yes			20	1
		3	1		Yes	Yes	Yes	Yes		_
		8		Yes	Yes	Yes	T		30	2
		3		. 55	Yes	Yes	Yes	Yes		
CA_3A-19A	CA_3A-19A	19	1	-	Yes	Yes	Yes	. 55	35	0
		3	-		Yes	Yes	Yes	Yes		1
		20					162	162	30	0
CA_3A-20A	CA_3A-20A	3	-		Yes	Yes	Vo-	Vac		
			-	1	Yes	Yes	Yes	Yes	40	1
		20	-		Yes	Yes	Yes	Yes		
		3	ļ		Yes	Yes	Yes	Yes	35	0
CA_3A-26A	CA_3A-26A	26			Yes	Yes	Yes			
		3			Yes	Yes	1		20	1

		26			Yes	Yes		1		1
		3			Yes	Yes	Yes	Yes		
CA_3A-27A	-	27			Yes	Yes	163	163	30	0
							Voc	Voc		
CA_3A-28A	-	3			Yes	Yes	Yes	Yes	40	0
		28			Yes	Yes	Yes	Yes		
CA_3A-42A	_	3			Yes	Yes	Yes	Yes	40	0
07(_07(127(42			Yes	Yes	Yes	Yes		, ,
CA_3A-42C		3			Yes	Yes	Yes	Yes	60	0
UA_3A-42U	-	42		Se	e Table	e 5.6A.′	1-1		00	0
		4			Yes	Yes			00	
		5			Yes	Yes			20	0
CA_4A-5A	-	4			Yes	Yes	Yes	Yes		
		5			Yes	Yes			30	1
			Sool	 ΓΛ			Combir	ation		
CA_4A-4A-5A		4	366		0 in tab			lation	50	0
OA_4A-4A-3A	_	5		1	Yes	Yes	<u> </u>		30	0
		4								
CA_4A-7A	CA_4A-7A				Yes	Yes			30	0
	_	7	<u> </u>		Yes	Yes	Yes	Yes		
		4			Yes	Yes				
CA_4A-4A-7A	-	4	ļ		Yes	Yes			40	0
		7	<u></u>	<u> </u>	Yes	Yes	Yes	Yes		<u> </u>
		4	Yes	Yes	Yes	Yes			20	
		12			Yes	Yes			20	0
		4	Yes	Yes	Yes	Yes	Yes	Yes		_
		12			Yes	Yes			30	1
		4			Yes	Yes	Yes	Yes		
CA_4A-12A	CA_4A-12A	12		Yes	Yes	Yes	163	163	30	2
				165						
		4			Yes	Yes			20	3
		12			Yes	Yes				
		4			Yes	Yes	Yes	Yes	30	4
		12			Yes	Yes			30	7
CA 4A 4A		4	4 See CA_4A-4A Bandwidth Combination							
CA_4A-4A-	-			Set	0 in Tal	ole 5.6 <i>P</i>	۸.1-3		50	0
12A		12			Yes	Yes				
		4			Yes	Yes	Yes	Yes		
CA_4A-12B	-	12	See	CA 12	B Band	dwidth C	Combina	ation	35	0
_					0 in Tal					
		4			Yes	Yes	Yes	Yes		
		13				Yes			30	0
CA_4A-13A	CA_4A-13A	4			Yes	Yes				
			1		169	Yes			20	1
		13	Cook	Γ Ω Λ 4 Λ	4A Da		Corebin	l otice		1
CA_4A-4A-		4	See				Combir	iation	50	
13A	-	40	 	Set	0 in Tal		\. 1-3 	1	50	0
		13	 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Yes				1
CA_4A-17A	CA_4A-17A	4		ļ	Yes	Yes	ļ		20	0
		17			Yes	Yes				
CA_4A-27A	-	4			Yes	Yes	Yes	Yes	30	0
UΛ_4Λ-21A		27		Yes	Yes	Yes			30	
		4			Yes	Yes				
		29	Ì	Yes	Yes	Yes			20	0
		4	1		Yes	Yes				
CA_4A-29A	-	29	1		Yes	Yes			20	1
		4	 		Yes	Yes	Yes	Yes		1
			 				162	162	30	2
		29	1		Yes	Yes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1
CA_4A-30A	_	4	ļ		Yes	Yes	Yes	Yes	30	0
5		30			Yes	Yes				Ŭ
CA_5A-7A	CA_5A-7A	5	Yes	Yes	Yes	Yes		<u> </u>	30	0
CA_SA-7A	UA_UA-TA	7				Yes	Yes	Yes	30	
04 54 151	04 54 151	5	1		Yes	Yes			22	_
CA_5A-12A	CA_5A-12A	12			Yes	Yes			20	0
	002	5	†		Yes	Yes				
CA_5A-13A	-	13			162	Yes			20	0

CA_5A-17A	-	5			Yes	Yes			20	0
		17 5			Yes	Yes				
CA_5A-25A	-	25			Yes Yes	Yes Yes	Yes	Yes	30	0
		5			Yes	Yes	165	165		
CA_5A-30A	-	30		-	Yes	Yes	-		20	0
		7			165	Yes	Yes	Yes		
CA_7A-8A	-	8		Yes	Yes	Yes	162	165	30	0
		7		162	Yes	Yes	Yes	Yes		
CA_7A-12A	-	12		-	Yes	Yes	162	165	30	0
		7			163	Yes	Yes	Yes		
		20			Yes	Yes	163	163	30	0
CA_7A-20A	CA_7A-20A	7			163	Yes	Yes	Yes		
		20			Yes	Yes	Yes	Yes	40	1
		7			Yes	Yes	Yes	Yes		
CA_7A-28A	CA_7A-28A	28			Yes	Yes	Yes	103	35	0
		8			Yes	Yes	103			
CA_8A-11A	-	11			Yes	Yes			20	0
		8			Yes	Yes				
		20		<u> </u>	Yes	Yes	<u> </u>		20	0
CA_8A-20A	-	8		Yes	Yes	Yes				
		20		100	Yes	Yes			20	1
		8			Yes	Yes				
CA_8A-40A	-	40			Yes	Yes	Yes	Yes	30	0
		11			Yes	Yes	100	100		
CA_11A-18A	-	18			Yes	Yes	Yes		25	0
		12			Yes	Yes	100			
CA_12A-25A	-	25			Yes	Yes	Yes	Yes	30	0
		12			Yes	Yes	100	100		
CA_12A-30A	-	30			Yes	Yes			20	0
		18			Yes	Yes	Yes			
CA_18A-28A	-	28			Yes	Yes			25	0
		19			Yes	Yes	Yes			
CA_19A-21A	CA_19A-21A	21			Yes	Yes	Yes		30	0
		19			Yes	Yes	Yes			_
CA_19A-42A	-	42			Yes	Yes	Yes	Yes	35	0
		19			Yes	Yes	Yes			
CA_19A-42C	-	40	See	CA_42		dwidth C	Combina	ation	55	0
		42		Set	0 in Tal	ole 5.6 <i>P</i>	\.1-1			
CA_20A-32A	_	20			Yes	Yes			30	0
UA_20A-32A	_	32			Yes	Yes	Yes	Yes	30	U
		23			Yes	Yes	Yes	Yes	30	0
CA_23A-29A	_	29		Yes	Yes	Yes	ļ			J
0.1_20,120,1		23			Yes	Yes			20	1
		29		Yes	Yes	Yes				,
CA_25A-41A	_	25			Yes	Yes	Yes	Yes	40	0
020,. 11,.		41		ļ	Yes	Yes	Yes	Yes		Ŭ
04.054.115		25		<u> </u>	Yes	Yes	Yes	Yes		
CA_25A-41C	-	41	See	CA_41				ation	60	0
		26		Set	1 in Tal			1		
CA_26A-41A	-	41		-	Yes	Yes	Yes	Voc	40	0
				<u> </u>	Yes	Yes	Yes	Yes		
CA_26A-41C	_	26	900	CA_41	Yes	Yes	Yes	l ation	55	0
O/_20A-410	_	41	366		1 in Tab			auon	33	
		29			Yes	Yes				
CA_29A-30A	-	30		<u> </u>	Yes	Yes	<u> </u>		20	0
		39		<u> </u>	, 55	Yes	Yes	Yes		
CA_39A-41A	CA_39A-41A	41		<u> </u>		, 55	1 . 55	Yes	40	0
		39				Yes	Yes	Yes		
CA_39A-41C	-	41						Yes	60	0
L	1	1	l		1	1				1

		41						Yes		
	39 See CA_39C Bandwidth Combination							ation		
CA_39C-41A	-			Set	0 in Tal	ole 5.6A	55	0		
		41						Yes		
CA 41A 42A		41				Yes	Yes	Yes	40	0
CA_41A-42A	-	42				Yes	Yes	Yes	40	U

NOTE 1: The CA Configuration refers to a combination of an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For each band combination, all combinations of indicated bandwidths belong to the set.

NOTE 3: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal. NOTE 4: Uplink CA configurations are the configurations supported by the present release of specifications.

Table 5.6A.1-2a: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA (three bands)

		E-UTRA C	A config	uration /	Bandwid	th comb	ination s	set				
E-UTRA CA Configuration	Uplink CA configurations (NOTE 5)	E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set		
		1			Yes	Yes	Yes	Yes				
		3			Yes	Yes	Yes	Yes	50	0		
CA_1A-3A-5A	-	5			Yes	Yes						
_		1			Yes	Yes	Vaa	Vaa	40			
		<u>3</u> 5			Yes Yes	Yes Yes	Yes	Yes	40	1		
		1			Yes	Yes	Yes	Yes				
		3			Yes	Yes	Yes	Yes	50	0		
		8		Yes	Yes	Yes			1			
		1			Yes	Yes						
CA_1A-3A-8A	-	3			Yes	Yes	Yes	Yes	40	1		
		8		Yes	Yes	Yes						
		1			Yes	Yes	Yes			_		
		3		.,	Yes	Yes	Yes		40	2		
		8		Yes	Yes	Yes	\/	V				
CA 1A 2A 10A		1			Yes	Yes	Yes Yes	Yes	- F-F	0		
CA_1A-3A-19A	-	3 19			Yes Yes	Yes Yes	Yes	Yes	55	0		
		19			Yes	Yes	Yes	Yes				
CA_1A-3A-26A	_	3			Yes	Yes	Yes	Yes	50	0		
O/_//\ O/\ 20/\		26			Yes	Yes	103	103	- 50			
		1			Yes	Yes	Yes	Yes				
CA_1A-3A-20A	-	3			Yes	Yes	Yes	Yes	60	60	60	0
(NOTE 4)		20			Yes	Yes	Yes	Yes				
		1			Yes	Yes						
		5			Yes	Yes			40	0		
CA_1A-5A-7A	_	7				Yes	Yes	Yes				
OA_IA-JA-IA		1			Yes	Yes	Yes	Yes				
		5			Yes	Yes	.,	.,	50	1		
		7				Yes	Yes	Yes				
CA_1A-7A-20A		1			Yes	Yes	Yes	Yes		0		
(NOTE 4)	-	7 20			Yes	Yes Yes	Yes	Yes	50	0		
		1			Yes	Yes	Yes	Yes				
		18			Yes	Yes	Yes	163	45	0		
		28			Yes	Yes	100		1 .0			
CA_1A-18A-28A	-	1			Yes	Yes	Yes	Yes				
		18			Yes	Yes			40	1		
		28			Yes	Yes						
		1			Yes	Yes	Yes	Yes				
CA_1A-19A-21A	-	19			Yes	Yes	Yes		50	0		
		21			Yes	Yes	Yes					
		2			Yes	Yes	Yes	Yes				
CA_2A-4A-5A	-	4			Yes	Yes	Yes	Yes	50	0		
		5			Yes	Yes						
		2			Yes	Yes	Yes	Yes				
CA_2A-4A-12A	-	4			Yes	Yes	Yes	Yes	50	0		
	_	12			Yes	Yes						
		2			Yes	Yes	Yes	Yes	_			
CA_2A-4A-13A	CA_2A-4A-13A -	4			Yes	Yes	Yes	Yes	50	0		
		13				Yes						
		2			Yes	Yes	Yes	Yes				
CA_2A-4A-29A	-	4			Yes	Yes	Yes	Yes		0		
		29			Yes	Yes						
CA_2A-5A-12A		2			Yes	Yes	Yes	Yes	40	0		
UM_2A-UA-12A	_	5			Yes	Yes			40			

		12		Yes	Yes				
		2		Yes	Yes	Yes	Yes		
CA_2A-5A-13A	-	5		Yes	Yes			40	0
		13			Yes			1	
		2		Yes	Yes	Yes	Yes		
CA_2A-5A-30A	-	5		Yes	Yes			40	0
		30		Yes	Yes				
		2		Yes	Yes	Yes	Yes		
CA_2A-12A-30A	-	12		Yes	Yes			40	0
		30		Yes	Yes				
		2		Yes	Yes	Yes	Yes		
CA_2A-29A-30A	-	29		Yes	Yes			40	0
		30		Yes	Yes				
		3		Yes	Yes	Yes	Yes		
CA_3A-7A-20A	-	7			Yes	Yes	Yes	60	0
		20		Yes	Yes	Yes	Yes		
		4		Yes	Yes	Yes	Yes		
CA_4A-5A-12A	-	5		Yes	Yes			40	0
		12		Yes	Yes				
		4		Yes	Yes	Yes	Yes		
CA_4A-5A-13A	-	5		Yes	Yes			40	0
		13			Yes				
		4		Yes	Yes	Yes	Yes		
CA_4A-5A-30A	-	5		Yes	Yes			40	0
		30		Yes	Yes				
		4		Yes	Yes				
CA_4A-7A-12A	-	7		Yes	Yes	Yes	Yes	40	0
		12		Yes	Yes				
		4		Yes	Yes	Yes	Yes		
CA_4A-12A-30A	-	12		Yes	Yes			40	0
		30		Yes	Yes				
		4		Yes	Yes	Yes	Yes		
CA_4A-29A-30A	-	29		Yes	Yes			40	0
		30		Yes	Yes			1	
		7			Yes	Yes	Yes		
CA_7A-8A-20A	-	8	Yes	Yes	Yes			40	0
		20		Yes	Yes			1	

NOTE 1: The CA Configuration refers to a combination of an operating band and a CA bandwidth class specified in Table 5.6A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For each band combination, all combinations of indicated bandwidths belong to the set.

NOTE 3: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

NOTE 4: A terminal which supports a DL CA configuration shall support all the lower order fallback DL CA combinations and it shall support at least one bandwidth combination set for each of the constituent lower order DL combinations containing all the bandwidths specified within each specific combination set of the upper order DL combination.

NOTE 5: Uplink CA configurations are the configurations supported by the present release of specifications.

Table 5.6A.1-3: E-UTRA CA configurations and bandwidth combination sets defined for noncontiguous intra-band CA (with two sub-blocks)

E-UTRA CA configuration / Bandwidth combination set																
	Uplink CA	increas	ent carriers in sing carrier fre	quency	Maximum	Bandwidth										
E-UTRACA configuration	configurations (NOTE 1)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	combination set										
CA_2A-2A	-	5, 10, 15, 20	5, 10, 15, 20		40	0										
CA_3A-3A	-	5, 10, 15, 20	5, 10, 15, 20		40	0										
CA_4A-4A	CA_4A-4A	5, 10, 15, 20	5, 10, 15, 20		40	0										
		5	15													
CA_7A-7A	-	10	10, 15		40	0										
<u> </u>		15	15, 20			-										
		20	20													
CA_23A-23A	-	5	10		15	0										
		5, 10	5, 10		20	0										
CA_25A-25A	-	5, 10, 15, 20	5, 10, 15, 20		40	1										
		10, 15, 20	10, 15, 20		40	0										
CA_41A-41A	-	5, 10, 15, 20	5, 10, 15, 20		40	1										
CA_41A-41C	-	5, 10, 15, 20	_	C Bandwidth Set 1 in Table	60	0										
CA_41C-41A	-		C Bandwidth Set 1 in Table A.1-1	60	0											
CA_42A-42A	-	5, 10, 15, 20	5, 10, 15, 20		40	0										
NOTE 1: Uplin	k CA configuration	s are the config	gurations suppo	rted by the pres	ent release of	NOTE 1: Uplink CA configurations are the configurations supported by the present release of specifications.										

5.6B Channel bandwidth for UL-MIMO

The requirements specified in subclause 5.6 are applicable to UE supporting UL-MIMO.

5.6B.1 Void

5.6C Channel bandwidth for Dual Connectivity

The requirements specified in subclause 5.6C are applicable to UE supporting Dual Connectivity.

5.6C.1 Channel bandwidth per operating band for dual connectivity

Requirements for inter-band dual connectivity are defined for the dual connectivity configurations and bandwidth combination sets specified in Table 5.6C.1-1.

Table 5.6C.1-1: E-UTRA DC configurations and bandwidth combination sets defined for inter-band DC (two bands)

Contiduration	E- DTRA ands 1 3 1 5 1 5 1 7	1.4 MHz	3 MHz	5 MHz Yes Yes	10 MHz Yes Yes Yes	15 MHz Yes	20 MHz Yes	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
DC_1A-5A DC_1A-7A DC_1A-8A	3 1 5 1 5 1 7				Yes		Yes		
DC_1A-5A DC_1A-7A DC_1A-8A	1 5 1 5 1 7			Yes				40	0
DC_1A-7A —— DC_1A-8A ——	5 1 5 1 7				Voc	Yes	Yes	+0	Ů
DC_1A-7A —— DC_1A-8A ——	1 5 1 7							20	0
DC_1A-7A —— DC_1A-8A ——	5 1 7 1			1/	Yes				
DC_1A-8A	1 7 1			Yes	Yes	Yes	Yes	30	1
DC_1A-8A	7			Yes Yes	Yes Yes	Yes	Yes		
	1			165	Yes	Yes	Yes	40	0
				Yes	Yes	Yes	Yes		
	8			Yes	Yes	100	100	30	0
DC_1A-19A —	1			Yes	Yes				
DC_1A-19A	8			Yes	Yes			20	1
DC_1A-19A —	1			Yes	Yes	Yes	Yes	0.5	
	19			Yes	Yes	Yes		35	0
DC 44 044	1			Yes	Yes	Yes	Yes	25	0
DC_1A-21A	21			Yes	Yes	Yes		35	0
	2	Yes	Yes	Yes	Yes	Yes	Yes	40	0
	4			Yes	Yes	Yes	Yes	40	U
DC_2A-4A	2			Yes	Yes			20	1
DO_2A-4A	4			Yes	Yes			20	
	2			Yes	Yes	Yes	Yes	40	2
	4			Yes	Yes	Yes	Yes		_
	2			Yes	Yes	Yes	Yes	30	0
DC_2A-13A	13				Yes				
_	2			Yes	Yes			20	1
	13				Yes	Vaa	Vaa		
	5			Yes	Yes Yes	Yes	Yes	30	0
	3			165	Yes			+	
DC_3A-5A	5			Yes	Yes			20	1
	3			Yes	Yes	Yes	Yes		
	5			Yes	Yes	100	100	30	2
	3			Yes	Yes	Yes	Yes		
DC_3A-7A	7				Yes	Yes	Yes	40	0
	3				Yes	Yes	Yes		
DO 04 04	8			Yes	Yes			30	0
DC_3A-8A	3				Yes			20	4
	8	-		Yes	Yes			20	1
DC_3A-19A	3			Yes	Yes	Yes	Yes	35	0
DO_0N-10N	19			Yes	Yes	Yes		33	
	3			Yes	Yes	Yes	Yes	30	0
DC_3A-20A	20		1	Yes	Yes				, ,
	3			Yes	Yes	Yes	Yes	40	1
	20			Yes	Yes	Yes	Yes	 	-
	3		-	Yes	Yes	Yes	Yes	35	0
DC_3A-26A	26 3		1	Yes	Yes	Yes		 	
	26			Yes	Yes			20	1
	4			Yes	Yes			+	
DC_4A-7A	7		-	Yes Yes	Yes Yes	Yes	Yes	30	0
	4	Yes	Yes	Yes	Yes	162	162	+	
	12	165	162	Yes	Yes			20	0
DC_4A-12A	4	Yes	Yes	Yes	Yes	Yes	Yes	+	
	12	163	163	Yes	Yes	100	163	30	1

	4			Yes	Yes	Yes	Yes	30	2
	12		Yes	Yes	Yes			30	
	4			Yes	Yes			20	3
	12			Yes	Yes			20	3
	4			Yes	Yes	Yes	Yes	20	4
	12			Yes	Yes			30	4
	4			Yes	Yes	Yes	Yes	20	0
DC 44 424	13				Yes			30	0
DC_4A-13A	4			Yes	Yes			20	4
	13				Yes			20	1
DC 40 470	4			Yes	Yes			20	0
DC_4A-17A	17			Yes	Yes			20	0
DC 54.74	5	Yes	Yes	Yes	Yes			20	0
DC_5A-7A	7				Yes	Yes	Yes	30	
DC 5A 10A	5			Yes	Yes			20	0
DC_5A -12A	12			Yes	Yes			20	0
DC_5A-17A	5			Yes	Yes			20	0
DC_5A-17A	17			Yes	Yes			20	0
	7				Yes	Yes	Yes	20	0
DC 74 204	20			Yes	Yes			30	0
DC_7A-20A	7				Yes	Yes	Yes	40	1
	20			Yes	Yes	Yes	Yes	40	I I
DC 74 204	7			Yes	Yes	Yes	Yes	25	0
DC_7A-28A	28			Yes	Yes	Yes		35	U
DC 10A 21A	19			Yes	Yes	Yes		20	0
DC_19A-21A	21	_		Yes	Yes	Yes	_	30	0
DC_39A-41A	39				Yes	Yes	Yes	40	0
DO_38A-41A	41						Yes	4 0	U

NOTE 1: Requirements for the dual connectivity configurations are defined in the section corresponding E-UTRA uplink CA configurations, unless otherwise specified.

NOTE 2: For TDD inter-band dual connectivity configurations, requirements are applicable only for synchronous operation.

5.6D Channel bandwidth for ProSe

5.6D.1 Channel bandwidths per operating band for ProSe

The ProSe combination of channel bandwidths and operating bands is shown in Table 5.6D.1-1 and Table 5.6D.1-2. The transmission bandwidth configuration in Table 5.6D.1-1 and Table 5.6D.1-2 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

Table 5.6D.1-1 ProSe Direct Discovery channel bandwidth

	E-UTR	A ProSe ba	nd / ProSe o	hannel ban	dwidth	
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
2			Yes	Yes	Yes	Yes
3			Yes	Yes	Yes	Yes
4			Yes	Yes	Yes	Yes
7			Yes	Yes	Yes	Yes
14			Yes	Yes		
20			Yes	Yes	Yes	Yes
26			Yes	Yes	Yes	
28		•	Yes	Yes	Yes	Yes
31		•	Yes			
41			Yes	Yes	Yes	Yes

	E-UTRA ProSe band / ProSe channel bandwidth							
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
3				Yes				
7				Yes				
14				Yes				
20				Yes				
26				Yes				
28				Yes				
31			Yes					

Table 5.6D.1-2 ProSe Direct Communication channel bandwidth

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing =
$$(BW_{Channel(1)} + BW_{Channel(2)})/2$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.7.1A Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent E-UTRA component carriers is defined as the following:

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two E-UTRA component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.2A Channel raster for CA

For carrier aggregation the channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0-65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL_low} and $N_{Offs-DL}$ are given in Table 5.7.3-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL \text{ low}} + 0.1(N_{DL} - N_{Offs\text{-}DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where $F_{UL\ low}$ and $N_{Offs\text{-}UL}$ are given in Table 5.7.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs\text{-}UL})$$

Table 5.7.3-1: E-UTRA channel numbers

E-UTRA		Downlink			Uplink	
Operating Band	F _{DL_low} (MHz)	$N_{\text{Offs-DL}}$	Range of N _{DL}	F _{UL_low} (MHz)	N _{Offs-UL}	Range of N _{UL}
1	2110	0	0 – 599	1920	18000	18000 – 18599
2	1930	600	600 – 1199	1850	18600	18600 – 19199
3	1805	1200	1200 – 1949	1710	19200	19200 – 19949
4	2110	1950	1950 – 2399	1710	19950	19950 - 20399
5	869	2400	2400 - 2649	824	20400	20400 - 20649
6	875	2650	2650 - 2749	830	20650	20650 - 20749
7	2620	2750	2750 – 3449	2500	20750	20750 - 21449
8	925	3450	3450 – 3799	880	21450	21450 – 21799
9	1844.9	3800	3800 – 4149	1749.9	21800	21800 - 22149
10	2110	4150	4150 – 4749	1710	22150	22150 - 22749
11	1475.9	4750	4750 – 4949	1427.9	22750	22750 - 22949
12	729	5010	5010 – 5179	699	23010	23010 - 23179
13	746	5180	5180 - 5279	777	23180	23180 - 23279
14	758	5280	5280 - 5379	788	23280	23280 - 23379
17	734	5730	5730 - 5849	704	23730	23730 - 23849
18	860	5850	5850 - 5999	815	23850	23850 - 23999
19	875	6000	6000 - 6149	830	24000	24000 - 24149
20	791	6150	6150 - 6449	832	24150	24150 - 24449
21	1495.9	6450	6450 - 6599	1447.9	24450	24450 - 24599
22	3510	6600	6600 - 7399	3410	24600	24600 - 25399
23	2180	7500	7500 – 7699	2000	25500	25500 - 25699
24	1525	7700	7700 – 8039	1626.5	25700	25700 - 26039
25	1930	8040	8040 - 8689	1850	26040	26040 - 26689
26	859	8690	8690 - 9039	814	26690	26690 - 27039
27	852	9040	9040 - 9209	807	27040	27040 - 27209
28	758	9210	9210 – 9659	703	27210	27210 – 27659
29 ²	717	9660	9660 – 9769		N/A	
30	2350	9770	9770 – 9869	2305	27660	27660 – 27759
31	462.5	9870	9870 – 9919	452.5	27760	27760 – 27809
32 ²	1452	9920	9920 – 10359		N/A	
33	1900	36000	36000 – 36199	1900	36000	36000 - 36199
34	2010	36200	36200 - 36349	2010	36200	36200 - 36349
35	1850	36350	36350 - 36949	1850	36350	36350 - 36949
36	1930	36950	36950 - 37549	1930	36950	36950 - 37549
37	1910	37550	37550 – 37749	1910	37550	37550 – 37749
38	2570	37750	37750 – 38249	2570	37750	37750 – 38249
39	1880	38250	38250 - 38649	1880	38250	38250 - 38649
40	2300	38650	38650 - 39649	2300	38650	38650 - 39649
41	2496	39650	39650 -41589	2496	39650	39650 -41589
42	3400	41590	41590 – 43589	3400	41590	41590 – 43589
43	3600	43590	43590 – 45589	3600	43590	43590 – 45589
44	703	45590	45590 – 46589	703	45590	45590 – 46589

NOTE 1: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.

NOTE 2: Restricted to E-UTRA operation when carrier aggregation is configured.

NOTE 3: For ProSe the corresponding UL channel number are also specified for the DL for the associated ProSe operating bands i.e. $ProSe_{LL} = F_{UL}$ and $ProSe_{DL} = F_{UL}$.

5.7.4 TX-RX frequency separation

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

Table 5.7.4-1: Default UE TX-RX frequency separation

E-UTRA Operating Band	TX – RX
	carrier centre frequency
	separation
1	190 MHz
2	80 MHz.
3	95 MHz.
4	400 MHz
5	45 MHz
6	45 MHz
7	120 MHz
8	45 MHz
9	95 MHz
10	400 MHz
11	48 MHz
12	30 MHz
13	-31 MHz
14	-30 MHz
17	30 MHz
18	45 MHz
19	45 MHz
20	-41 MHz
21	48 MHz
22	100 MHz
23	180 MHz
24	-101.5 MHz
25	80 MHz
26	45 MHz
27	45 MHz
28	55 MHz
30	45 MHz
31	10 MHz

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

5.7.4A TX-RX frequency separation for CA

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.7.4-1 is applied to PCC and SCC, respectively.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

6.2 Transmit power

6.2.1 Void

6.2.2 UE maximum output power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth for non CA configuration and UL-MIMO unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2-1: UE Power Class

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1	,	ì	•	, ,	23	±2		• •
2					23	±2 ±2 ²		
3					23	±2 ²		
4					23	±2		
5					23	±2		
6					23	±2		
7					23	±2 ²		
8					23	±2 ±2 ² ±2 ²		
9					23	<u>+2</u>		
10					23	±2		
11					23	±2		
12					23	±2 ²		
13					23	±2		
14	31	+2/-3			23	±2		
17					23	±2		
18					23	±2 ⁵		
19					23	±2		
20					23	±2 ±2 ²		
21					23	±2		
22					23 23 ⁶	+2/-3.5 ²		
23					23 ⁶	±2 ⁶		
24					23	±2		
25					23	±2 ² ±2 ²		
26					23	±2 ²		
27					23	±2		
28					23	+2/-2.5		
30					23	±2		
31					23	±2		
33					23	±2		
34					23	±2		
35					23	±2		
36					23	±2		
37					23	±2		
38					23	±2		
39					23	±2		
40					23	±2		
41					23	±2 ²		
42					23	+2/-3		
43					23	+2/-3		
44 NOTE 4:					23	+2/[-3]		

NOTE 1: Void

NOTE 2: ² refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.

NOTE 4: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 5: For a UE that supports both Band 18 and Band 26, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB for transmission bandwidths confined within 815 MHz and 818 MHz.

NOTE 6: When NS_20 is signalled, the total output power within 2000-2005 MHz shall be limited to 7 dBm.

6.2.2A UE maximum output power for CA

The following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth.

The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the requirements in subclause 6.2.2 apply.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, UE maximum output power shall be measured over all component carriers from different bands. If each band has separate antenna connectors, maximum output power is measured as the sum of maximum output power at each UE antenna connector. The maximum output power is specified in Table 6.2.2A-0.

Table 6.2.2A-0: UE Power Class for dual uplink interband CA

E-UTRA CA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
Configuration	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
CA_1A-3A					23	+2/-3 ²		
CA_1A-5A					23	+2/-3		
CA_1A-7A					23	+2/-3 ²		
CA_1A-8A					23	+2/-3 ²		
CA_1A-19A					23	+2/-3		
CA_1A-21A					23	+2/-3		
CA_2A-4A					23	+2/-3 ²		
CA_2A-13A					23	+2/-3 ²		
CA_3A-5A					23	+2/-3 ²		
CA_3A-7A					23	+2/-3 ²		
CA_3A-8A					23	+2/-3 ²		
CA_3A-19A					23	+2/-32		
CA_3A-20A					23	+2/-3 ²		
CA_3A-26A					23	+2/-3 ²		
CA_4A-7A					23	+2/-3 ²		
CA_4A-12A					23	+2/-3 ²		
CA_4A-13A					23	+2/-3		
CA_4A-17A					23	+2/-3		
CA_5A-7A					23	+2/-3 ²		
CA_5A-12A					23	+2/-3 ²		
CA_5A-17A					23	+2/-3		
CA_7A-20A					23	+2/-3 ²		
CA_7A-28A					23	+2/-3 ²		
CA_19A-21A					23	+2/-3		
CA 39A-41A					23	+2/-3 ²		

NOTE 1: Void

NOTE 2: ² refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} –

NOTE 2: ³ refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} –

NOTE 2: ⁴ refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 4: For inter-band carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).

For intra-band contiguous carrier aggregation the maximum output power is specified in Table 6.2.2A-1.

Table 6.2.2A-1: CA UE Power Class for intraband contiguous CA

E-UTRA CA Configuration	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
CA_1C					23	+2/-2		
CA_3C					23	+2/-2 ²		
CA_7C					23	+2/-2 ²		
CA_38C					23	+2/-2		
CA_39C					23	+2/-2		
CA_40C					23	+2/-2		
CA_41C					23	+2/-2 ²		
CA_42C					23	+2/-3		

NOTE 1: Void

NOTE 2: If all transmitted resource blocks (Figure 5.6A-1) over all component carriers are confined within F_{UL_low} and F_{UL_low} + 4 MHz or/and F_{UL_high} – 4 MHz and F_{UL_high}, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

NOTE 4: For intra-band contiguous carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.2 apply. For intra-band non-contiguous carrier aggregation with two uplink carriers the maximum output power is specified in Table 6.2.2A-2.

Table 6.2.2A-2: UE Power Class for intraband non-contiguous CA

E-UTRA (CA Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance	
Configurat	ion (dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	
CA_4A-4	A				23	+2/-2			
NOTE 1:	NOTE 1: For transmission bandwidths (Figure 5.6-1) confined within F _{UL_low} and F _{UL_low} + 4 MHz or F _{UL_high} – 4 MHz and								
1	F _{UL high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB								
NOTE 2:	P _{PowerClass} is the r	naximum UE p	ower specifi	ed without tak	king into acc	count the tolerar	nce		
NOTE 3:	NOTE 3: For intra-band non-contiguous carrier aggregation the maximum power requirement should apply to the total								
1	transmitted power over all component carriers (per UE).								

6.2.2B UE maximum output power for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2B-1: UE Power Class for UL-MIMO in closed loop spatial multiplexing scheme

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1					23	+2/-3		İ
2					23	+2/-3 ²		
3					23	+2/-32		
4					23	+2/-3		
5					23	+2/-3		
6					23	+2/-3		
7					23	+2/-3 ²		
8					23	+2/-3 ²		
9					23	+2/-3		ĺ
10					23	+2/-3		ĺ
11					23	+2/-3		
12					23	+2/-3 ²		
13					23	+2/-3		
14					23	+2/-3		İ
17					20	12/ 0		i
17					23	+2/-3		ĺ
18					23	+2/-3		
19					23	+2/-3		
20					23	+2/-3 ²		<u> </u>
21					23	+2/-3		<u> </u>
22						+2/-4.5 ²		
23					23	+2/-3		
24					23	+2/-3		
25					23	+2/-3 ²		
26					23	+2/-3 ²		ĺ
27					23	+2/-3		
28					23	+2/[-3]		ĺ
30					23	+2/-3		ĺ
31					23	+2/-3		
33					23	+2/-3		
34					23	+2/-3]
35					23	+2/-3		
36					23	+2/-3		
37					23	+2/-3		
38					23	+2/-3		
39				1	23	+2/-3		
40					23	+2/-3		
41					23	+2/-3 ²		
42					23	+2/-4		
43					23	+2/-4		
44					23	+2/[-3]		
NOTE 1	Void			l		12/[0]	1	

NOTE 1: Void
NOTE 2: ² refers to the transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

NOTE 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.

NOTE 4: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

Table 6.2.2B-2: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission mode	DCI format	Codebook Index
Mode 2	DCI format 4	Codebook index 0

For single-antenna port scheme, the requirements in subclause 6.2.2 apply.

6.2.3 UE maximum output power for modulation / channel bandwidth

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

Modulation	Channel bandwidth / Transmission bandwidth (N _{RB})						MPR (dB)	
	1.4	1.4 3.0 5 10 15 20						
	MHz	MHz	MHz	MHz	MHz	MHz		
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	

For PRACH, PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For transmissions with non-contiguous resource allocation in single component carrier, the allowed Maximum Power Reduction (MPR) for the maximum output power in table 6.2.2-1, is specified as follows

$$MPR = CEIL \{M_A, 0.5\}$$

Where M_A is defined as follows

 $M_A = 8.00\text{-}10.12A \qquad ; 0.00 < A \leq 0.33$

5.67 - 3.07A ; $0.33 < A \le 0.77$

3.31 ; $0.77 < A \le 1.00$

Where

 $A = N_{RB \ alloc} / N_{RB.}$

CEIL{M_A, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0]

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

6.2.3A UE Maximum Output power for modulation / channel bandwidth for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1due to higher order modulation and contiguously aggregated transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3A-1. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

MPR Modulation **CA bandwidth Class C** 25 RB + 50 RB + 100 RB + (dB) 75 RB + 75 RB + 100 RB 100 RB **75 RB** 100 RB 100 RB **QPSK** > 8 and ≤ > 12 and > 16 and > 16 and > 18 and ≤ 1 25 ≤ 50 ≤ 75 ≤ 75 ≤ 100 **QPSK** > 75 > 75 ≤ 2 > 25 > 50 > 100 16 QAM ≤ 8 ≤ 12 ≤ 16 ≤ 16 ≤ 18 ≤ 1 16 QAM > 8 and ≤ > 12 and > 16 and > 16 and > 18 and ≤ 2 ≤ 75 25 ≤ 50 ≤ 75 ≤ 100 > 75 > 75 **16 QAM** > 25 > 50 > 100 ≤ 3

Table 6.2.3A-1: Maximum Power Reduction (MPR) for Power Class 3

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

$$MPR = CEIL \{ min(M_A, M_{IM5}), 0.5 \}$$

Where MA is defined as follows

$$\begin{array}{lll} M_A = & 8.2 & ; 0 \leq A < 0.025 \\ & 9.2 - 40A & ; 0.025 \leq A < 0.05 \\ & 8 - 16A & ; 0.05 \leq A < 0.25 \\ & 4.83 - 3.33A & ; 0.25 \leq A \leq 0.4, \\ & 3.83 - 0.83A & ; 0.4 \leq A \leq 1, \end{array}$$

and M_{IM5} is defined as follows

$$\begin{split} M_{IM5} = \ 4.5 & ; \Delta_{IM5} < 1.5 * BW_{Channel_CA} \\ & 6.0 & ; 1.5 * BW_{Channel_CA} \leq \Delta_{IM5} < \ BW_{Channel_CA} / 2 + F_{OOB} \\ & M_A & ; \Delta_{IM5} \geq BW_{Channel_CA} / 2 + F_{OOB} \end{split}$$

Where

$$A = N_{RB_alloc} / N_{RB_agg.}$$

$$\Delta_{IM5} = max(\mid F_{C_agg} - (3*F_{agg_alloc_low} - 2*F_{agg_alloc_high})\mid, \mid F_{C_agg} - (3*F_{agg_alloc_high} - 2*F_{agg_alloc_low})\mid)$$

CEIL{ M_{A_i} 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5].

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.3 apply. For intra-band non-contiguous carrier aggregation with two uplink carriers the MPR is defined for those E-UTRA bands where maximum possible $W_{GAP} \le 42.2$ MHz as follows

$$MPR = CEIL \{M_N, 0.5\}$$

Where M_N is defined as follows

$$\begin{split} M_{N} &= -0.125 \; N + 18.25 \qquad ; \; 2 \leq N \leq 50 \\ &- 0.0333 \; N + 13.67 \qquad ; \; 50 < N \leq 200 \end{split}$$

Where $N=N_{RB\ alloc}$ is the number of allocated resource blocks.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

6.2.3B UE maximum output power for modulation / channel bandwidth for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2B-1 is specified in Table 6.2.3-1. The requirements shall be met with UL-MIMO configurations defined in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.3 apply.

6.2.3D UE maximum output power for modulation / channel bandwidth for ProSe

For UE Power Class 1 and 3, this subclause specifies the allowed Maximum Power Reduction (MPR) power for ProSe physical channels and signals due to higher order modulation and transmit bandwidth configuration (resource blocks).

The allowed MPR for the maximum output power for ProSe physical channels PSDCH, PSCCH, PSSCH, and PSBCH shall be as specified in subclause 6.2.3 for PUSCH for the corresponding modulation and transmission bandwidth.

The allowed MPR for the maximum output power for ProSe physical signal PSSS shall be as be as specified in subclause 6.2.3 for PUSCH QPSK modulation for the corresponding transmission bandwidth.

The allowed MPR for the maximum output power for ProSe physical signal SSSS is specified in Table 6.2.3D-1.

Table 6.2.3D-1: Maximum Power Reduction (MPR) for SSSS for Power Class 1 and 3

Channel bandwidth	MPR for SSSS (dB)
1.4 MHz	
3.0 MHz	
5.0 MHz	≤ [4]
10 MHz	≤ [4]
15 MHz	≤ [4]
20 MHz	≤ [4]

6.2.4 UE maximum output power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the output power as specified in Table 6.2.2-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For UE Power Class 1 and 3 the specific requirements and identified subclauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in subclause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤1
		2, 4,10, 23, 25,	5	>6	≤ 1
NS_03	6.6.2.2.1	35, 36	10	>6	≤ 1
		33, 30	15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.2	41	5	>6	≤ 1
113_04	0.0.2.2.2	41	10, 15, 20	Table	6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40	≤ 1
	0.0.0.0.1		· ·	> 55	≤ 2
NS_10		20	15, 20	Table 6.2.4-3	
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table	6.2.4-6
NS_13	6.6.3.3.6	26	5	Table	6.2.4-7
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15		6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥ 2 ≥ 1	≤ 1 ≤ 4
NS_19	6.6.3.3.12	44	10, 15, 20	Table	6.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20	Table 6.2.4-15	
NS_21	6.6.2.2.1 6.6.3.3.15	30	5, 10		6.2.4-16
NS_22	6.6.3.3.16	42, 43	5, 10, 15, 20	Table	6.2.4-17
NS_23	6.6.3.3.17	42, 43	5, 10, 15, 20	N	I/A
NS_32	-	-	-	-	-

Table 6.2.4-2: A-MPR for "NS_07"

Parameters	Re	gion A	Regio	Region C	
RB _{start}	(0 - 12	13 – 18	19 – 42	43 – 49
L _{CRB} [RBs]	6-8	1 to 5 and 9-50	≥8	≥18	≤2
A-MPR [dB]	≤8	≤ 12	≤ 12	≤ 6	≤ 3

NOTE 1; RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2; L_{CRB} is the length of a contiguous resource block allocation NOTE 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.

NOTE 4; For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

Table 6.2.4-3: A-MPR for "NS_10"

Channel bandwidth [MHz]	Parameters	Region A
	RB _{start}	0 – 10
15	L _{CRB} [RBs]	1 -20
	A-MPR [dB]	≤ 2
	RB _{start}	0 – 15
20	L _{CRB} [RBs]	1 -20
	A-MPR [dB]	≤5

- NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks
- L_{CRB} is the length of a contiguous resource block allocation NOTE 2:
- NOTE 3: For intra-subframe frequency hopping which intersects Region A, notes 1 and 2 apply on a per slot basis
- NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe

Table 6.2.4-4: A-MPR requirements for "NS_04" with bandwidth >5MHz

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
10	RB _{start}	0 – 12	13 – 36	37 – 49
	RB _{start} + L _{CRB} [RBs]	N/A	>37	N/A ³
	A-MPR [dB]	≤3dB	≤2dB	≤3dB
15	RB _{start}	0 – 18	19 – 55	56 – 74
	RB _{start} + L _{CRB} [RBs]	N/A	>56	N/A ³
	A-MPR [dB]	≤3dB	≤2dB	≤3dB
20	RB _{start}	0 – 24	25 – 74	75 – 99
	RB _{start} + L _{CRB} [RBs]	N/A ³	>75	N/A ³
	A-MPR [dB]	≤3dB	≤2dB	≤3dB

- NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks
- NOTE 2:
- L_{CRB} is the length of a contiguous resource block allocation ³ refers to any RB allocation that starts in Region A or C is allowed the specified A-MPR
- NOTE 4: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis
- NOTE 5: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

Table 6.2.4-5: A-MPR for "NS_11"

Channel Bandwidth [MHz]	Parameters									
	Fc [MHz]	<20	04			≥2004				
3	L _{CRB} [RBs]	1-1	-			>5				
	A-MPR [dB]	≤{				≤ 1				
	Fc [MHz]	<20	04		200)4 ≤ Fc <	:2007		≥2(007
5	L _{CRB} [RBs]	1-2	25			6 & -25	8-12		>	6
	A-MPR [dB]	≤7	7		≤	4	0		≤	1
	Fc [MHz]	200)5 ≤	Fc <2	2015	,	,	201	5	
4.0	RB _{start}		0-	-49				0-49	9	
10	L _{CRB} [RBs]		1-50				1-50			
	A-MPR [dB]	≤ 12					0			
	Fc [MHz]	<2012.5								
	RB _{start}	0-4			5-21	1	22	-56		57-74
	L _{CRB} [RBs]	≥1	7-	50	0-	6 & ≥50	≤25	>2	5	>0
	A-MPR [dB]	≤15	¥	7		≤10	0	≤6		≤15
15	Fc [MHz]					2012	5			
	RB _{start}	0-12			13-	-39	40-6	5		66-74
	L _{CRB} [RBs]	≥1		≥3	0	<30	≥ (69 RB _{star}			≥1
	A-MPR [dB]	≤10	≤10 ≤6		0	≤2			≤6.5	
	Fc [MHz]	2010								
	RB _{start}	0-12		1	3-29)	30-68			69-99
20	L _{CRB} [RBs]	≥1	10	-60		1-9 & >60	1-24	≥25		≥1
	A-MPR [dB]	≤15	<u> </u>	≨ 7		≤10	0	≤7	7	≤15

Table 6.2.4-6: A-MPR for "NS_12"

Channel bandwidth [MHz]	Parameters	Region A		Region B
	RB _{start}	0		1-2
1.4	L _{CRB} [RBs]	≤3	≥4	≥4
	A-MPR [dB]	≤3	≤6	≤3
	RB _{start}	0-3	3	4-5
3	L _{CRB} [RBs]	1-1	5	≥9
	A-MPR [dB]	≤4		≤3
	RB _{start}	0-6		0-9
5	L _{CRB} [RBs]	≤8		≥9
	A-MPR [dB]	≤5		≤3
	RB _{start}	0-1	5	0-22
10	L _{CRB} [RBs]	≤18	3	≥20
	A-MPR [dB]	≤4		≤2
	RB _{start}	0-30		0-30
15	L _{CRB} [RBs]	≤30		≥32
	A-MPR [dB]	≤4		≤3

Table 6.2.4-7: A-MPR for "NS_13"

Channel bandwidth [MHz]	Parameters	Region A		
	RB _{start}	0-2		
5	L _{CRB} [RBs]	≤5	≥18	
	A-MPR [dB]	≤3	≤2	

Table 6.2.4-8: A-MPR for "NS_14"

Channel bandwidth [MHz]	Parameters	Region A				
	RB _{star} t	0				
10	L _{CRB} [RBs]	≤5	≥50			
	A-MPR [dB]	≤3	≤1			
	RB _{start}	5≥	3			
15	L _{CRB} [RBs]	≤16	≥50			
	A-MPR [dB]	≤3	≤1			

Table 6.2.4-9: A-MPR for "NS_15" for E-UTRA highest channel edge > 845 MHz and ≤ 849 MHz

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
1.4	RB _{end} [RB]			4-5
1	A-MPR [dB]			≤3
	RB _{end} [RB]	0-1	8-12	13-14
3	L _{CRB} [RB]	≤2	≥8	>0
	A-MPR [dB]	≤4	≤4	≤9
	RB _{end} [RB]	0-4	12-19	20-24
5	L _{CRB} [RB]	≤2	≥8	>0
	A-MPR [dB]	≤4	≤5	≤9
	RB _{end} [RB]	0-12	23-36	37-49
10	L _{CRB} [RB]	≤2	≥15	>0
	A-MPR [dB]	≤4	≤6	≤9
	RB _{end} [RB]	0-20	26-53	54-74
15	L _{CRB} [RB]	≤2	≥20	>0
	A-MPR [dB]	≤4	≤5	≤9

Table 6.2.4-10: A-MPR for "NS_15" for E-UTRA highest channel edge ≤ 845 MHz

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
	RB _{end} [RB]			19-24
5	L _{CRB} [RB]			≥18
	A-MPR [dB]			≤2
	RB _{end} [RB]	0-4	29-44	45-49
10	L _{CRB} [RB]	≤2	≥24	>0
	A-MPR [dB]	≤4	≤4	≤9
	RB _{end} [RB]	0-12	44-61	62-74
15	L _{CRB} [RB]	≤2	≥20	>0
	A-MPR [dB]	≤4	≤5	≤9

Table 6.2.4-11: A-MPR for "NS_16" with channel lower edge at ≥807 MHz and <808.5 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D	Region E
	RB _{start}	0	1-2			
3 MHz	L _{CRB} [RBs]	≥12	12			
	A-MPR [dB]	≤2	≤1			
	RB _{start}	0-1	2	2-9	2-5	
5 MHz	L _{CRB} [RBs]	1 - 25	12	15-18	20	
	A-MPR [dB]	≤5	≤1	≤2	≤3	
	RB _{start}	0 - 8	0-	14	15-20	15-24
10 MHz	L _{CRB} [RBs]	1 - 12	15-20	≥24	≥30	24-27
	A-MPR [dB]	≤5	≤3	≤7	≤3	≤1

Table 6.2.4-12: A-MPR for "NS_16" with channel lower edge at ≥808.5 MHz and <812 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D	Region E
	RB _{start}	0	0-1	1-5		
5 MHz	L _{CRB} [RBs]	16-20	≥24	16-20		
	A-MPR [dB]	≤2	≤3	≤1		
	RB _{start}	0-	-6	0-10	0-14	11-20
10 MHz	L _{CRB} [RBs]	1-12	15-20	24-32	≥36	24-32
	A-MPR [dB]	≤5	≤2	≤4	≤5	≤1

Table 6.2.4-13: A-MPR for "NS_16" with channel lower edge at ≥812 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D
	RB _{start}	0 - 9	0	1-14	0-5
10 MHz	L _{CRB} [RBs]	27-32	36-40	36-40	≥45
	A-MPR [dB]	≤1	≤2	≤1	≤3

Table 6.2.4-14: A-MPR for "NS_19"

Channel bandwidth [MHz]	Parameters	Region A		Region B
	RB _{start}			0-6
10	L _{CRB} [RBs]			≥40
	A-MPR [dB]			≤1
	RB _{start}	0-6		7-20
15	L _{CRB} [RBs]	≤18	≥36	≥42
	A-MPR [dB]	≤2	≤3	≤2
	RB _{start}	0-	14	15-30
20	L _{CRB} [RBs]	≤40	≥45	≥50
	A-MPR [dB]	≤2	≤3	≤2

Table 6.2.4-15: A-MPR for "NS_20"

Channel Bandwidth [MHz]	Parameters										
	Fc [MHz]	< 20	07.5		200	7.5	≤ Fc <	2012	2.5	2012.5 ≤ F	c ≤ 2017.5
5	RB _{start}	≤ <u>;</u>	24		()-3			4-6	≤2	24
3	L _{CRB} [RBs]	>	·0	1	5-19	2	≥20		≥18	1-2	25
	A-MPR [dB]	≤	17		≤1		≤4		≤2	≤	0
	Fc [MHz]	2005									
	RB _{start}		0-25				26-3	4		35-	49
	L _{CRB} [RBs]	>0				8-15	3-15 >		15	>0	
10	A-MPR [dB]	≤16			≤2 ≤5		≤5	≤ 6			
10	Fc [MHz]	2015									
	RB _{start}	0-5						6-10			
	L _{CRB} [RBs]		≥;	32				≥40			
	A-MPR [dB]		≤	4				≤2			
	Fc [MHz]						2012.5	5			
15	RB _{start}		0-14				15	-24		25-39	61-74
13	L _{CRB} [RBs]	1-9 & 4	0-75	10-	39	24	4-29		≥30	≥36	≤6
	A-MPR [dB]	≤11	≤11		3		≤1		≤7	≤5	≤6
	Fc [MHz]						2010				
20	RB _{start}	0-21		22-3	1		32-3	38	39-49	50-68	69-99
20	L _{CRB} [RBs]	>0	1-9 & 3	31-75	10-	30	≥1	5	≥24	≥25	>0
	A-MPR [dB]	≤17	≤1:	2	≤(3	≤9)	≤7	≤5	≤16

NOTE 1: When NS_20 is signaled the minimum requirements for the 10 MHz bandwidth are specified for E-UTRA UL carrier center frequencies of 2005 MHz or 2015 MHz.

NOTE 2: When NS_20 is signaled the minimum requirements for the 15 MHz channel bandwidth are specified for E-UTRA UL carrier center frequency of 2012.5 MHz.

Table 6.2.4-16: A-MPR for "NS_21"

Channel Bandwidth [MHz]	Parameters	Region A		Region B	
10	RB _{start}	0 – 6	0 – 6	N/A	N/A
	RB _{end}	N/A	N/A	43 – 49	43 – 49
	L _{CRB} [RBs]	1 – 2	3 – 12, 32 - 50	1 – 2	3 – 12, 32 - 50
	A-MPR [dB]	≤ 4	≤3	≤ 4	≤ 3

Table 6.2.4-17: A-MPR for "NS_22"

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C	Region D			
5	N	No A-MPR is needed for 5 MHz channel bandwidth						
10	RB _{start}	0-13	0-17	≤ 6	≥12			
	L _{CRB} [RBs]	> 36	33-36	≤ 32	≤ 32			
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥44			
	A-MPR [dB]	4	3	3	3			
15	RB _{start}	0-24	0-38	≤ 14	≥ 23			
	L _{CRB} [RBs]	> 50	37-50	≤ 36	≤ 36			
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥59			
	A-MPR [dB]	5	4	3	3			
20	RB _{start}	0-35	0-51	≤ 21	≥ 31			
	L _{CRB} [RBs]	> 64	49-64	≤ 48	≤ 48			
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥79			
	A-MPR [dB]	5	4	3	3			

NOTE 1; RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2; L_{CRB} is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.

NOTE 4; For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

For PRACH, PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5 apply.

6.2.4A UE maximum output power with additional requirements for CA

Additional ACLR, spectrum emission and spurious emission requirements for carrier aggregation can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the CA Power Class as specified in Table 6.2.2A-1.

If for intra-band carrier aggregation the UE is configured for transmissions within an E-UTRA channel bandwidth, then subclauses 6.2.3 and 6.2 4 apply with the Network Signaling value indicated by the IE *additionalSpectrumEmission* of the PCC.

For intra-band contiguous aggregation with the UE configured for transmissions within the aggregated channel bandwidth, the maximum output power reductions specified in Table 6.2.4A-1 is allowed when the applicable CA network signalling value is indicated by the IE *additionalSpectrumEmissionSCell-r10*. Then clause 6.2.3A does not apply, i.e. carrier aggregation MPR = 0dB.

Table 6.2.4A-1: Additional Maximum Power Reduction (A-MPR) for CA

CA Network Signalling value	Requirements (subclause)	Uplink CA Configuration	A-MPR [dB] (subclause)
CA_NS_01	6.6.3.3A.1	CA_1C	6.2.4A.1
CA_NS_02	6.6.3.3A.2	CA_1C	6.2.4A.2
CA_NS_03	6.6.3.3A.3	CA_1C	6.2.4A.3
CA_NS_04	6.6.2.2A.1	CA_41C	6.2.4A.4
CA_NS_05	6.6.3.3A.4	CA_38C	6.2.4A.5
CA_NS_06	6.6.3.3A.5	CA_7C	6.2.4A.6
CA_NS_07	6.6.3.3A.6	CA_39C	6.2.4A.7
CA_NS_08	6.6.3.3A.7	CA_42C	6.2.4A.8

For PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band carrier aggregation, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR specified in table 6.2.4A-1, the power limits specified in subclause 6.2.5A apply.

6.2.4A.1 A-MPR for CA_NS_01 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCC and the SCC for contiguously aggregated signals is specified in table 6.2.4A.1-1.

Table 6.2.4A.1-1: Contiguous allocation A-MPR for CA NS 01

CA_1C: CA_NS_01	RB _{start}	L _{CRB} [RBs]	RB _{start} + L _{CRB} [RBs]	A-MPR for QPSK and 16- QAM [dB]
	0 – 23 and 176 – 199	> 0	N/A	≤ 12.0
100 RB / 100 RB	24 – 105	> 64	N/A	≤ 6.0
	106 – 175	N/A	> 175	≤ 5.0
	0 – 6 and 143 – 149	0 < L _{CRB} ≤ 10	N/A	≤ 11.0
75 RB / 75 RB		> 10	N/A	≤ 6.0
	7 – 90	> 44	N/A	≤ 5.0
	91 – 142	N/A	> 142	≤ 2.0

NOTE 1: RB start indicates the lowest RB index of transmitted resource blocks

NOTE 2: L_CRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL
$$\{M_A, 0.5\}$$

Where M_A is defined as follows

$$\begin{array}{ll} M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ \\ -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \end{array}$$

$$-1.7 A + 8.2$$
 ; $0.70 \le A \le 1$

Where $A = N_{RB \text{ alloc}} / N_{RB \text{ agg.}}$

6.2.4A.2 A-MPR for CA_NS_02 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.2-1.

Table 6.2.4A.2-1: Contiguous allocation A-MPR for CA_NS_02

CA_1C: CA_NS_02	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16 –QAM [dB]
	0 –20	> 0	≤ 4 dB
	21 – 46	> 0	≤ 3 dB
100 RB / 100 RB	47 – 99	> RB _{end} - 20	≤ 3 dB
	100 – 184	> 75	≤ 6 dB
	185 – 199	> 0	≤ 10 dB
	0 – 48	> 0	≤ 2 dB
	49 – 80	> RB _{end} - 20	≤ 3 dB
75 RB / 75 RB	81 – 129	> 60	≤ 5 dB
	130 – 149	> 84	≤ 6 dB
	130 – 149	1 – 84	≤ 2 dB

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL
$$\{M_A, 0.5\}$$

Where MA is defined as follows

$$\begin{array}{ll} M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ \\ -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \\ \\ -1.7 \ A + 8.2 & ; \ 0.70 \leq A \leq 1 \end{array}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.3 A-MPR for CA_NS_03 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.3-1.

Table 6.2.4A.3-1: Contiguous allocation A-MPR for CA_NS_03

CA_1C: CA_NS_03	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 – 26	> 0	≤ 10 dB
	27 – 63	≥ RB _{end} - 27	≤ 6 dB
100 RB / 100 RB	27 – 63	< RB _{end} - 27	≤ 1 dB
100 KB / 100 KB	64 – 100	> RB _{end} - 20	≤ 4 dB
	101 – 171	> 68	≤ 7 dB
	172 – 199	> 0	≤ 10 dB
75 RB / 75 RB	0 – 20	> 0	≤ 10 dB
	21 – 45	> 0	≤ 4 dB
	46 – 75	> RB _{end} – 13	≤ 2 dB
	76 – 95	> 45	≤ 5 dB
	96 – 149	> 43	≤ 8 dB
	120 – 149	1 - 43	≤ 6 dB

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL
$$\{M_A, 0.5\}$$

Where M_A is defined as follows

$$\begin{split} M_A = & -23.33A + 17.5 & ; 0 \leq A < 0.15 \\ & -7.65A + 15.15 & ; 0.15 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.4 A-MPR for CA_NS_04

If the UE is configured to CA_41C and it receives IE CA_NS_04 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.4-1.

Table 6.2.4A.4-1: Contigous Allocation A-MPR for CA_NS_04

CA Bandwidth Class C	RB _{Start}	L _{CRB} [RBs]	RB _{start} + L _{CRB} [RBs]	A-MPR for QPSK [dB]	A-MPR for 16QAM [dB]
50RB / 100 RB	0 – 44 and 105 – 149	>0	N/A	≤4dB	≤4dB
	45 – 104	N/A	>105	≤3dB	≤4dB
75 RB / 75 RB	0 – 44 and 105 – 149	>0	N/A	≤4dB	≤4dB
	45 – 104	N/A	>105	≤4dB	≤4dB
100 RB / 75 RB	0 – 49 and 125 – 174	>0	N/A	≤4dB	≤4dB
	50 - 124	N/A	>125	≤3dB	≤4dB
100 RB / 100 RB	0 - 59 and 140 - 199	>0	N/A	≤3dB	≤4dB
	60– 139	N/A	>140	≤3dB	≤4dB

NOTE 1: RB_{start} indicates the lowest RB index of transmitted resource blocks

NOTE 2: L_{CRB} is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_41C and it receives IE CA_NS_04 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_{A_s} 0.5\}$$

Where M_A is defined as follows

$$\begin{split} M_A &= 10.5, &0 \leq A < 0.05 \\ &= -50.0A + 13.00, &0.05 \leq A < 0.15 \\ &= -4.0A + 6.10, &0.15 \leq A < 0.40 \\ &= -0.83A + 4.83, &0.40 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.5 A-MPR for CA_NS_05 for CA_38C

If the UE is configured to CA_38C and it receives IE CA_NS_05 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.5-1.

Table 6.2.4A.5-1: Contigous Allocation A-MPR for CA NS 05

CA_38C	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 – 12	>0	≤ 5 dB
100RB/100RB	13 – 79	> RB _{end} – 13	≤ 2 dB
TOURD/TOURD	80 – 180	>60	≤ 6 dB
	181 – 199	> 0	≤ 11 dB
	0 – 70	> max (0, RB _{end} -10)	≤ 2 dB
	71- 108	> 60	≤ 5 dB
75RB/75RB	109 – 139	>0	≤ 5 dB
	140 – 149	≤ 70	≤ 2 dB
	140 – 149	>70	≤ 6 dB

NOTE 1: RB_{end} indicates the highest RB index of transmitted resource blocks

NOTE 2: LCRB is the length of a contiguous resource block allocation

NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

If the UE is configured to CA_38C and it receives IE CA_NS_05 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_{A}, 0.5\}$$

Where MA is defined as follows

$$M_A = -14.17 \ A + 16.50$$
 ; $0 \le A < 0.60$

$$-2.50 \text{ A} + 9.50$$
 ; $0.60 \le \text{A} \le 1$

Where $A=N_{RB_alloc}\,/\,N_{RB_agg.}$

6.2.4A.6 A-MPR for CA_NS_06

If the UE is configured to CA_7C and it receives IE CA_NS_06 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.6-1.

Table 6.2.4A.6-1: Contiguous Allocation A-MPR for CA_NS_06

CA Bandwidth Class C	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 –22	>0	≤ 4 dB
	23 – 33	> RB _{end} - 10	≤ 2 dB
100RB/100RB	106 – 142	> 75	≤ 3 dB
	143 – 177	>70	≤ 5 dB
	178 – 199	> 0	≤ 10 dB
	0 – 7	>0	≤ 5 dB
	20- 74	> RB _{end} – 10	≤ 2 dB
75RB/75RB	75 – 109	>64	≤ 2 dB
	110 – 144	>35	≤ 6 dB
	145 – 149	>0	≤ 10 dB
	0 – 10	> 0	≤ 5 dB
50RB/100RB	11 – 75	> max(0, RB_End - 25)	≤ 2 dB
and	76 – 103	> 50	≤ 3 dB
100RB/50RB	104 – 144	> 25	≤ 6 dB
	145 – 149	> 0	≤ 10 dB
	0 – 15	> 0	≤ 5 dB
75RB/100RB	16 – 75	> max(0, RB_End - 15)	≤ 2 dB
and	76 – 120	> 50	≤ 3 dB
100RB/75RB	121 – 160	> 50	≤ 6 dB
	161 – 174	> 0	≤ 10 dB

If the UE is configured to CA_7C and it receives IE CA_NS_06 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

$$A\text{-MPR} = CEIL \{M_{A,} 0.5\}$$

Where M_A is defined as follows

$$\begin{array}{ll} M_A = & -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ \\ & -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1 \end{array}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.7 A-MPR for CA_NS_07

If the UE is configured to CA_39C and it receives IE CA_NS_07 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.7-1.

A-MPR for QPSK and CA_39C: CA_NS_07 **RB**Start L_{CRB} [RBs] 16-QAM[dB] 0 – 13 ≤ 11 > 0 14 - 50≤ 60 ≤ 3 75 RB / 100 RB 14 – 100 > 60 ≤ 7 and 100 RB / 75 RB 101<u>- 155</u> > max(155 - RBstart, 0) ≤ 2 156 - 174> 0 ≤ 5 0 - 5> 0 ≤ 11 ≤ 25 ≤ 3 6 - 4250 RB / 100 RB > 25 ≤ 6 and 43 - 80> 50 ≤ 5 100 RB / 50 RB 81 - 138> 20 ≤ 2 139 - 149> 0 ≤ 5 ≥ 84 ≤ 6 0 - 3225 RB / 100 RB < 84 ≤ 4 and 33 - 60> 50 ≤ 3 100 RB / 25 RB 61 – 124 > 20 ≤ 3

Table 6.2.4A.7-1: Contiguous Allocation A-MPR for CA_NS_07

If the UE is configured to CA_39C and it receives IE CA_NS_07 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_A, 0.5\}$$

Where M_A is defined as follows

 $M_A = -16.67A + 17.50$; $0 \le A < 0.30$

 $-9.00 \; A + 15.20 \qquad \qquad ; \; 0.30 \; \leq A < 0.80$

-2.50 A + 10.00 ; $0.80 \le A \le 1$

Where $A = N_{RB_alloc} / N_{RB_agg}$

6.2.4A.8 A-MPR for CA_NS_08

If the UE is configured to CA_42C and it receives IE CA_NS_08 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.8-1.

Table 6.2.4A.8-1: Contiguous Allocation A-MPR for CA_NS_08

CA_42C: CA_NS_08	RB _{Start}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM[dB]
100RB/100RB	-	-	TBD
75 RB / 100 RB and 100 RB / 75 RB	-	-	TBD
50 RB / 100 RB and 100 RB / 50 RB	-	-	TBD
25 RB / 100 RB and 100 RB / 25 RB	-	-	TBD

6.2.4B UE maximum output power with additional requirements for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the A-MPR values specified in subclause 6.2.4 shall apply to the maximum output power specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output

power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.4 apply.

6.2.4D UE maximum output power with additional requirements for ProSe

The allowed A-MPR for the maximum output power for ProSe physical channels PSDCH, PSCCH, PSSCH, and PSBCH shall be as specified in subclause 6.2.4 for PUSCH for the corresponding modulation and transmission bandwidth.

The allowed A-MPR for the maximum output power for ProSe physical signal PSSS and SSSS shall be as be as specified in subclause 6.2.4 for PUSCH QPSK modulation for the corresponding transmission bandwidth.

6.2.5 Configured transmitted power

The UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c. The configured maximum output power $P_{CMAX,c}$ is set within the following bounds:

 $P_{CMAX_L,c} \leq P_{CMAX,c} \leq P_{CMAX_H,c}$ with

$$\begin{aligned} P_{CMAX_L,c} &= MIN \; \{ P_{EMAX,c} - \Delta T_{C,c}, \; \; P_{PowerClass} - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{ProSe}, P-MPR_c) \} \\ P_{CMAX_L,c} &= MIN \; \{ P_{EMAX,c}, \; \; P_{PowerClass} \} \end{aligned}$$

where

- $P_{EMAX,c}$ is the value given by IE *P-Max* for serving cell c, defined in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2-1 without taking into account the tolerance specified in the Table 6.2.2-1;
- MPR_c and A-MPR_c for serving cell c are specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2; $\Delta T_{IB,c} = 0$ dB otherwise;
- $\Delta T_{C,c} = 1.5$ dB when Note 2 in Table 6.2.2-1 applies;
- $\Delta T_{C,c} = 0$ dB when Note 2 in Table 6.2.2-1 does not apply;
- $\Delta T_{ProSe} = 0.1$ dB when the UE supports ProSe Direct Discovery and/or ProSe Direct Communication on the corresponding E-UTRA ProSe band; $\Delta T_{ProSe} = 0$ dB otherwise.

P-MPR_c is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR $_c$ for serving cell c only for the above cases. For UE conducted conformance testing P-MPR shall be $0~\mathrm{dB}$

NOTE 1: P-MPR $_c$ was introduced in the $P_{CMAX,c}$ equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.

NOTE 2: P-MPR_c may impact the maximum uplink performance for the selected UL transmission path.

For each subframe, the $P_{CMAX_L,c}$ for serving cell c is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum $P_{CMAX_L,c}$ over the two slots is then applied for the entire subframe. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured configured maximum output power $P_{\text{UMAX},c}$ shall be within the following bounds:

$$P_{CMAX_L,c} - \ MAX\{T_{L,c}, T(P_{CMAX_L,c})\} \ \leq \ P_{UMAX,c} \leq \ P_{CMAX_H,c} + \ T(P_{CMAX_H,c}).$$

where the tolerance $T(P_{CMAX,c})$ for applicable values of $P_{CMAX,c}$ is specified in Table 6.2.5-1. The tolerance $T_{L,c}$ is the absolute value of the lower tolerance for the applicable operating band as specified in Table 6.2.2-1.

Table 6.2.5-1: P_{CMAX} tolerance

P _{CMAX,c} (dBm)	Tolerance T(P _{CMAX,c}) (dB)
23 < P _{CMAX,c} ≤ 33	2.0
$21 \le P_{CMAX,c} \le 23$	2.0
20 ≤ P _{CMAX,c} < 21	2.5
19 ≤ P _{CMAX,c} < 20	3.5
18 ≤ P _{CMAX,c} < 19	4.0
13 ≤ P _{CMAX,c} < 18	5.0
$8 \le P_{\text{CMAX},c} < 13$	6.0
-40 ≤ P _{CMAX,c} < 8	7.0

For the UE which supports inter-band carrier aggregation configurations with the uplink assigned to one or two E-UTRA bands the $\Delta T_{IB,c}$ is defined for applicable bands in Table 6.2.5-2 and Table 6.2.5-3.

Table 6.2.5-2: ΔT_{IB,c} (two bands)

Inter-band CA Configuration	E-UTRA Band	ΔT _{IB,c} [dB]
CA_1A-3A	1 3	0.3 0.3
	1	0.3
CA_1A-5A	5	0.3
CA 4A 7A	1	0.5
CA_1A-7A	7	0.6
CA_1A-8A	1	0.3
	8	0.3
CA_1A-11A	1 11	0.3
	1	0.3 0.3
CA_1A-18A	18	0.3
00 40 400	1	0.3
CA_1A-19A	19	0.3
CA_1A-20A	1	0.3
0/_1/\ 20/\	20	0.3
CA_1A-21A	1	0.3
	21 1	0.3 0.3
CA_1A-26A	26	0.3
04.44.004	1	0.3
CA_1A-28A	28	0.6
CA_1A-41A ⁸	1	0.5
OA_1A-41A	41	0.5
CA_1A-41C ⁸	1	0.5
	41	0.5
CA_1A-42A	1 42	0.3 [0.8]
	1	0.3
CA_1A-42C	42	[0.8]
CA 2A 4A	2	0.5
CA_2A-4A	4	0.5
CA_2A-4A-4A	2	0.5
	4	0.5
CA_2A-5A	<u>2</u> 5	0.3
	2	0.3 0.3
CA_2A-2A-5A	5	0.3
04 04 404	2	0.3
CA_2A-12A	12	0.3
CA_2A-12B	2	0.3
O/ (_Z/ (12B	12	0.3
CA_2A-13A	2	0.3
	13	0.3 0.3
CA_2A-2A-13A	13	0.3
04 04 :=:	2	0.3
CA_2A-17A	17	0.8
CA_2A-29A	2	0.3
CA_2C-29A	2	0.3
CA_2A-30A	2	0.5
	30	0.3
CA_3A-5A	<u>3</u> 5	0.3 0.3
	3	0.5
CA_3A-7A	7	0.5
CA 2A 7C	3	0.5
CA_3A-7C	7	0.5
CA_3C-7A	3	0.5
	7	0.5
CA_3A-8A	3	0.3

	8	0.3
CA_3A-19A	3	0.3
	19	0.3
CA_3A-20A	3	0.3
0/1_0/1 20/1	20	0.3
CA 2A 2CA	3	0.3
CA_3A-26A	26	0.3
	3	0.3
CA_3A-27A	27	0.3
	3	0.3
CA_3A-28A		
_	28	0.3
CA_3A-42A	3	0.6
0/1_0/1 12/1	42	[0.8]
CA_3A-42C	3	0.6
UA_3A-42U	42	[8.0]
0	4	0.3
CA_4A-5A	5	0.3
	4	0.3
CA_4A-4A-5A		
	5	0.3
CA_4A-7A	4	0.5
	7	0.5
CA_4A-4A-7A	4	0.5
UA_4A-4A-1A	7	0.5
04 44 404	4	0.3
CA_4A-12A	12	0.8
	4	0.3
CA_4A-4A-12A	12	0.8
CA_4A-12B	4	0.3
	12	0.8
CA_4A-13A	4	0.3
0/1_// 10/1	13	0.3
CA_4A-4A-13A	4	0.3
CA_4A-4A-13A	13	0.3
0.4.4.7.4	4	0.3
CA_4A-17A	17	0.8
	4	0.3
CA_4A-27A	27	0.3
CA_4A-29A	4	0.3
UA_4A-23A		
CA_4A-30A	4	0.5
_	30	0.3
CA_5A-7A	5	0.3
0/_3/\ //\	7	0.3
CA	5	0.8
CA_5A-12A	12	0.4
	5	0.5
CA_5A-13A	13	0.5
	5	0.8
CA_5A-17A		
	17	0.4
CA_5A-25A	5	0.3
	25	0.3
CA_5A-30A	5	0.3
UA_5A-30A	30	0.3
04 74 04	7	0.3
CA_7A-8A	8	0.6
	7	0.3
CA_7A-12A	12	0.3
	7	
CA_7A-20A		0.3
	20	0.3
CA_7A-28A	7	0.3
J. 17. 20A	28	0.3
CA 0A 44A	8	0.3
CA_8A-11A	11	0.4
	8	0.4
CA_8A-20A	20	0.4
CA_8A-40A	8	0.3
UA_0A-4UA	0	U. ა

	40	0.3
00 440 400	11	0.3
CA_11A-18A	18	0.3
04 404 054	12	0.3
CA_12A-25A	25	0.3
04 404 004	12	0.3
CA_12A-30A	30	0.3
CA 40A 20A ⁹	18	0.5
CA_18A-28A ⁹	28	0.5
CA 40A 04A	19	0.3
CA_19A-21A	21	0.4
CA 40A 40A	19	0.3
CA_19A-42A	42	[0.8]
CA 40A 40C	19	0.3
CA_19A-42C	42	[0.8]
CA_20A-32A	20	0.3
CA_23A-29A	23	0.3
CA_25A-41A ⁸	25	0.5
CA_25A-41A	41	0.5
CA_25A-41C ⁸	25	0.5
CA_25A-41C	41	0.5
CA 26A 44A	26	0.3
CA_26A-41A	41	0.3
CA 26A 44C	26	0.3
CA_26A-41C	41	0.3
CA_29A-30A	30	0.3
CA 20A 44A	39	04
CA_39A-41A	41	04
CA 20A 44A	39	0.5
CA_39A-41A	41	0.5
CA_39A-41C	39	04
CA_39A-41C	41	04
CA 20C 41A	39	04
CA_39C-41A	41	04
CA 41A 42A	41	04
CA_41A-42A	42	[0.5] ⁴

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 2: The above additional tolerances also apply in non-aggregated operation for the supported E-UTRA operating bands that belong to the supported interband carrier aggregation configurations
- NOTE 3: In case the UE supports more than one of the above 2DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 2DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz, the applicable additional tolerance shall be the average of the 2DL tolerances above, truncated to one decimal place for that operating band among the supported 2DL CA configurations. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 2DL carrier aggregation configurations involving such band shall be applied
 - When the E-UTRA operating band frequency range is >1GHz, the applicable additional 2DL tolerance shall be the maximum tolerance above that applies for that operating band among the supported 2DL CA configurations
- NOTE 4: Only applicable for UE supporting inter-band carrier aggregation with uplink in one E-UTRA band and without simultaneous Rx/Tx.
- NOTE 5: Tolerances for a UE supporting multiple 3DL inter-band CA configurations are FFS.
- NOTE 6: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.

- NOTE 7: Applicable for UE supporting inter-band carrier aggregation with two uplinks and without simultaneous Rx/Tx.
- NOTE 8: Only applicable for UE supporting inter-band carrier aggregation with the uplink active in the FDD band.
- NOTE 9: For Band 28, the requirements only apply for the restricted frequency range specified for this CA configuration (Table 5.5A-2).

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE: To meet the $\Delta T_{IB,c}$ requirements for CA_3A-7A with state-of-the-art technology, an increase in power consumption of the UE may be required. It is also expected that as the state-of-the-art technology evolves in the future, this possible power consumption increase can be reduced or eliminated.

Table 6.2.5-3: $\Delta T_{IB,c}$ (three bands)

Inter-band CA Configuration	E-UTRA Band	ΔT _{IB,c} [dB]
J	1	0.3
CA_1A-3A-8A	3	0.3
	8	0.3
	1	0.3
CA_1A-3A-5A	3	0.3
	5	0.3
	1	0.3
CA_1A-3A-19A	3	0.3
	19	0.3
	1	0.3
CA_1A-3A-20A	3	0.3
	20	0.3
	1	0.3
CA_1A-3A-26A	3	0.3
	26	0.3
	1	0.5
CA_1A-5A-7A	5	0.3
0/_//\ \	7	0.6
	1	0.5
CA_1A-7A-20A	7	0.6
J. 1.11.120A	20	0.3
	1	0.3
CA_1A-18A-	18	0.5
28A	28	0.5
CA_1A-19A-	1	0.3
21A	19	0.3
	21	0.4
04 04 44 54	2	0.5
CA_2A-4A-5A	4	0.5
	5	0.3
CA_2A-4A-12A	2	0.5
	4	0.5
	12	0.8
	2	0.5
CA_2A-4A-13A	4	0.5
	13	0.3
CA_2A-4A-29A —	2	[0.5]
O/(_Z/(4/(Z)/(4	0.5
	2	0.3
CA_2A-5A-12A	5	0.8
	12	0.4
	2	0.3
CA_2A-5A-13A	5	0.5
	13	0.5
	2	0.5
CA_2A-5A-30A	5	0.3
	30	0.3
CA 2A 42A	2	0.5
CA_2A-12A-	12	0.3
30A	30	0.3
CA 2A-29A-	2	0.5
30A	30	0.3
-	3	0.5
CA_3A-7A-20A	7	0.5
	20	0.3
	4	0.3
CA_4A-5A-12A	5	0.8
5	12	0.8
	4	0.3
CA_4A-5A-13A	5	0.5
υΛ_ 1 Λ-υΛ-1υΛ	13	
	10	0.5

	4	0.5
CA_4A-5A-30A	5	0.3
	30	0.3
	4	0.5
CA_4A-7A-12A	7	0.5
	12	0.8
00 40 400	4	0.5
CA_4A-12A- 30A	12	0.8
JUA	30	0.3
CA_4A-29A-	4	0.5
30A	30	0.3
	7	0.3
CA_7A-8A-20A	8	0.6
	20	[0.6]

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 2: The above additional tolerances also apply in non-aggregated operation for the supported E-UTRA operating bands that belong to the supported interband carrier aggregation configurations
- NOTE 3: Tolerances for a UE supporting multiple 3DL inter-band CA configurations are FFS
- NOTE 4: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and other bands are >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

6.2.5A Configured transmitted power for CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell c and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c}$ on serving cell c shall be set as specified in subclause 6.2.5.

For uplink inter-band carrier aggregation, MPR_c and A-MPR_c apply per serving cell c and are specified in subclause 6.2.3 and subclause 6.2.4, respectively. P-MPR_c accounts for power management for serving cell c. P_{CMAX,c} is calculated under the assumption that the transmit power is increased independently on all component carriers.

For uplink intra-band contiguous and non-contiguous carrier aggregation, $MPR_c = MPR$ and $A-MPR_c = A-MPR$ with MPR and A-MPR specified in subclause 6.2.3A and subclause 6.2.4A respectively. There is one power management term for the UE, denoted P-MPR, and P-MPR $_c = P-MPR$. $P_{CMAX,c}$ is calculated under the assumption that the transmit power is increased by the same amount in dB on all component carriers.

The total configured maximum output power P_{CMAX} shall be set within the following bounds:

$$P_{CMAX_L} \leq P_{CMAX} \leq P_{CMAX_H}$$

For uplink inter-band carrier aggregation with one serving cell c per operating band,

$$P_{CMAX_L} = MIN \; \{ 10log_{10} \sum MIN \; [\; p_{EMAX,c} / (\Delta t_{C,c}), \; \; p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) \; , \; p_{PowerClass} / pmpr_c], \; P_{PowerClass} \}$$

$$P_{CMAX\ H} = MIN\{10 log_{10} \sum p_{EMAX.c}, P_{PowerClass}\}$$

where

- $p_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE *P-Max* for serving cell *c* in [7];

- P_{PowerClass} is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1; p_{PowerClass} is the linear value of P_{PowerClass};
- mpr_c and a-mpr_c are the linear values of MPR_c and A-MPR_c as specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- pmpr_c is the linear value of P-MPR_c;
- $\Delta t_{C,c}$ is the linear value of $\Delta T_{C,c}$. $\Delta t_{C,c} = 1.41$ when Note 2 in Table 6.2.2-1 applies for a serving cell c, otherwise $\Delta t_{C,c} = 1$;
- $\Delta t_{IB,c}$ is the linear value of the inter-band relaxation term $\Delta T_{IB,c}$ of the serving cell c as specified in Table 6.2.5-2; otherwise $\Delta t_{IB,c} = 1$.

For uplink intra-band contiguous and non-contiguous carrier aggregation,

$$\begin{split} P_{CMAX_L} &= MIN\{10 \ log_{10} \sum p_{EMAX,c} \ -\Delta T_C, \ P_{PowerClass} - MAX(MPR + A-MPR + \Delta T_{IB,c} + \Delta T_C, \ P-MPR) \ \} \\ &\qquad \qquad P_{CMAX_H} &= MIN\{10 \ log_{10} \sum p_{EMAX,c}, \ P_{PowerClass} \} \end{split}$$

where

- $p_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE *P-Max* for serving cell *c* in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1;
- MPR and A-MPR are specified in subclause 6.2.3A and subclause 6.2.4A respectively;
- $\Delta T_{\rm IB,c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2;
- P-MPR is the power management term for the UE;
- $\Delta T_{\rm C}$ is the highest value $\Delta T_{\rm C,c}$ among all serving cells c in the subframe over both timeslots. $\Delta T_{\rm C,c} = 1.5$ dB when Note 2 in Table 6.2.2A-1 applies to the serving cell c, otherwise $\Delta T_{\rm C,c} = 0$ dB.

For each subframe, the P_{CMAX_L} is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum P_{CMAX_L} over the two slots is then applied for the entire subframe. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

If the UE is configured with multiple TAGs and transmissions of the UE on subframe i for any serving cell in one TAG overlap some portion of the first symbol of the transmission on subframe i+1 for a different serving cell in another TAG, the UE minimum of $P_{\text{CMAX_L}}$ for subframes i and i+1 applies for any overlapping portion of subframes i and i+1. $P_{\text{PowerClass}}$ shall not be exceeded by the UE during any period of time.

The measured maximum output power P_{UMAX} over all serving cells shall be within the following range:

$$\begin{split} P_{CMAX_L} - MAX\{T_L,\,T_{LOW}(P_{CMAX_L})~\} & \leq ~P_{UMAX} \leq ~P_{CMAX_H} + ~T_{HIGH}(P_{CMAX_H}) \\ \\ P_{UMAX} = 10~log_{10} \sum p_{UMAX,c} \end{split}$$

where $p_{UMAX,c}$ denotes the measured maximum output power for serving cell c expressed in linear scale. The tolerances $T_{LOW}(P_{CMAX})$ and $T_{HIGH}(P_{CMAX})$ for applicable values of P_{CMAX} are specified in Table 6.2.5A-1 and Table 6.2.5A-2 for inter-band carrier aggregation and intra-band carrier aggregation, respectively. The tolerance T_L is the absolute value of the lower tolerance for applicable E-UTRA CA configuration as specified in Table 6.2.2A-0, Table 6.2.2A-1 and Table 6.2.2A-2 for inter-band carrier aggregation, intra-band contiguous carrier aggregation and intra-band non-contiguous carrier aggregation, respectively.

Table 6.2.5A-1: P_{CMAX} tolerance for dual-uplink inter-band CA

P _{CMAX} (dBm)	Tolerance T _{LOW} (P _{CMAX}) (dB)	Tolerance T _{HIGH} (P _{CMAX}) (dB)	
$P_{CMAX} = 23$	3.0	2.0	
22 ≤ P _{CMAX} < 23	5.0	2.0	
21 ≤ P _{CMAX} < 22	5.0	3.0	
20 ≤ P _{CMAX} < 21	6.0	4.0	
16 ≤ P _{CMAX} < 20	5.0		
11 ≤ P _{CMAc} < 16	6.0		
-40 ≤ P _{CMAX} < 11	7.0		

Table 6.2.5A-2: P_{CMAX} tolerance

P _{CMAX} (dBm)	Tolerance T _{LOW} (P _{CMAX}) (dB)	Tolerance T _{HIGH} (P _{CMAX}) (dB)	
21 ≤ P _{CMAX} ≤ 23	2	.0	
20 ≤ P _{CMAX} < 21	2.5		
19 ≤ P _{CMAX} < 20	3.5		
18 ≤ P _{CMAX} < 19	4.0		
13 ≤ P _{CMAX} < 18	5.0		
8 ≤ P _{CMAX} < 13	6.0		
-40 ≤ P _{CMAX} < 8	7.0		

6.2.5B Configured transmitted power for UL-MIMO

For UE supporting UL-MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power $P_{CMAX,c}$, the lower bound $P_{CMAX_L,c}$, and the higher bound $P_{CMAX_H,c}$ specified in subclause 6.2.5 shall apply to UE supporting UL-MIMO, where

- $P_{PowerClass}$ and $\Delta T_{C,c}$ are specified in subclause 6.2.2B;
- MPR_{.c} is specified in subclause 6.2.3B;
- A-MPR_{,c} is specified in subclause 6.2.4B.

The measured configured maximum output power $P_{UMAX,c}$ for serving cell c shall be within the following bounds:

$$P_{CMAX_L,c} - \ MAX\{T_L, T_{LOW}(P_{CMAX_L,c})\} \ \leq \ P_{UMAX,c} \leq \ P_{CMAX_H,c} + \ T_{HIGH}(P_{CMAX_H,c})$$

where $T_{LOW}(P_{CMAX_L,c})$ and $T_{HIGH}(P_{CMAX_H,c})$ are defined as the tolerance and applies to $P_{CMAX_L,c}$ and $P_{CMAX_H,c}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2.2B-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial amultiplexing scheme, the tolerance is specified in Table 6.2.5B-1. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2.

P _{CMAX,c} (dBm)	Tolerance T _{LOW} (P _{CMAX_L,c}) (dB)	Tolerance T _{HIGH} (P _{CMAX_H,c}) (dB)		
P _{CMAX,c} =23	3.0	2.0		
22 ≤ P _{CMAX,c} < 23	5.0	2.0		
21 ≤ P _{CMAX,c} < 22	5.0	3.0		
20 ≤ P _{CMAX,c} < 21	6.0	4.0		
16 ≤ P _{CMAX,c} < 20	5.0			
11 ≤ P _{CMAX,c} < 16	6.0			
-40 ≤ P _{CMAX c} < 11	7.0			

Table 6.2.5B-1: P_{CMAX,c} tolerance in closed-loop spatial multiplexing scheme

For single-antenna port scheme, the requirements in subclause 6.2.5 apply.

6.2.5C Configured transmitted power for Dual Connectivity

For dual connectivity inter-band deployment with one uplink serving cell per CG, the UE is allowed to set its configured maximum output power $P_{CMAX,c,i}$ on each serving cell of CG i, where i is in the set $\{1,2\}$, and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c,i}$ on a serving cell c on cell group i shall be set within the following bounds:

$$P_{\text{CMAX_L},c,i} \leq P_{\text{CMAX_L},c,i} \leq P_{\text{CMAX_L},c,i}$$
 where $P_{\text{CMAX_L},c,i}$ and $P_{\text{CMAX_L},c,i}$ are $P_{\text{CMAX_L},c}$ and $P_{\text{CMAX_L},c}$, respectively for CG i , defined in subclause 6.2.5.

The total UE configured maximum output power P_{CMAX} shall be set within the following bounds:

$$P_{CMAX~L} \leq P_{CMAX} \leq P_{CMAX~H}$$

If the UE is configured in Dual Connectivity, the subframes in one CG that overlap with subframes in another CG in their respective slot 1 shall be paired together between CGs.

When synchronous transmissions occur between cell groups' uplink serving cells, P_{CMAX_L} and P_{CMAX_H} , are defined in subclause 6.2.5A for carrier aggregation inter-band case.

If the UE is configured in Dual Connectivity and synchronous transmissions of the UE on subframe p for a serving cell in one CG overlaps some portion of the first symbol of the transmission on subframe q+1 for a different serving cell in the other CG, the UE minimum of P_{CMAX_L} between subframes pairs (p, q) and (p+1, q+1) respectively applies for any overlapping portion of subframes (p, q) and (p+1, q+1). $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

When asynchronous overlapping transmissions occur, the leading CG is always taken as reference subframe i.e. whose subframe leads in time compared to the other subframe in the subframe pair. The reference subframe is the subframe where the calculated per UE P_{CMAX} is applied by the UE. If subframe p and subframe q are the subframe pair (p,q) between MCG and SCG respectively, then

- 1. if MCG leads, the (p,q) and (p,q-1) pairs are considered for P_{CMAX} definition i.e. for deriving the values of P_{CMAX_L} and P_{CMAX_H} .
- 2. if SCG leads, the (p-1,q) and (p,q) pairs are considered for P_{CMAX} definition i.e. for deriving the values of P_{CMAX_L} and P_{CMAX_H} .

The above P_{CMAX_L} and P_{CMAX_H} bounds are defined as follows.

For the reference subframe p duration (when subframe p in MCG leads):

$$P_{CMAX L} = MIN \{P_{CMAX L}(p,q), P_{CMAX L}(p,q-1)\}$$

$$P_{CMAX_H} = MAX \{P_{CMAX_H} (p,q), P_{CMAX_H} (p,q-1)\}$$

For the reference subframe q duration (when subframe q in SCG leads):

$$P_{CMAX L} = MIN \{P_{CMAX L} (p-1,q), P_{CMAX L} (p,q)\}$$

$$P_{\text{CMAX H}} = \text{MAX} \{P_{\text{CMAX H}}(p-1,q), P_{\text{CMAX H}}(p,q)\}$$

where P_{CMAX_L} and P_{CMAX_H} for each overlapping pairs of subframes (p,q), (p,q-1), (p-1,q) in the above equations are defined in subclause 6.2.5A for carrier aggregation inter-band case.

The UE measured configured maximum output power $P_{UMAX, c,i}$ of the uplink serving cell c of a CG i is defined in subclause 6.2.5.

The UE total measured configured maximum output power P_{UMAX} for a reference measurement subframe p (or q) duration over all serving cells of both defined CGs is defined as follows:

$$P_{\text{UMAX}} = 10 \log_{10} \sum p_{\text{UMAX}, c,i}$$

where $p_{UMAX,c,i}$ denotes the measured configured maximum output power for serving cell c in CG i expressed in linear scale.

$$P_{CMAX_L} - \ T_{LOW} \left(P_{CMAX_L} \right) \ \leq \ P_{UMAX} \leq \ P_{CMAX_H} + T_{HIGH} \left(P_{CMAX_H} \right)$$

The tolerance $T(P_{CMAX})$ is defined by the table below and applies to $P_{CMAX L}$ and $P_{CMAX H}$ separately.

Tolerance Tolerance P_{CMAX}(dBm) T_{HIGH} (P_{CMAX_H})(dB) $T_{LOW}(P_{CMAX_L})(dB)$ 3.0 2.0

Table 6.2.5x-1: P_{CMAX} tolerance for inter-band Dual Connectivity

 $P_{CMAX} = 23$ 22 ≤P_{CMAX},< 23 5.0 2.0 $21 \le P_{CMAX} < 22$ 3.0 5.0 $20 \le P_{CMAX} < 21$ 6.0 4.0 $16 \le P_{CMAX} < 20$ 5.0 $11 \le P_{CMAX} < 16$ 6.0 -40 ≤ P_{CMAX} < 11 7.0

6.2.5D Configured transmitted power for ProSe

The configured maximum output power $P_{CMAX,c}$ and power boundary requirement specified in subclause 6.2.5 shall apply to UE supporting ProSe, where

- MPR_c is specified in subclause 6.2.3D;
- A-MPR_c is specified in subclause 6.2.4D;
- $\Delta T_{\text{ProSe}} = 0.1 \text{ dB}.$

For $P_{\text{CMAX},PSSCH}$ and $P_{\text{CMAX},PSCCH}$, $P_{\text{EMAX},c}$ is the value given by IE P-Max for serving cell c, defined by [7], when present. P_{EMAX,c} is the value given by IE maxTxPower, defined by [7], when the UE is not associated with a serving cell on the ProSe carrier.

For $P_{\text{CMAX},PSDCH}$, $P_{\text{EMAX},c}$ is the value given by the IE discMaxTxPower in [7].

For $P_{\text{CMAX},PSBCH}$, $P_{\text{EMAX},c}$ is the value given by the IE maxTxPower in [7] when the ProSe UE is not associated with a serving cell on the ProSe carrier. When the UE is associated with a serving cell, then P_{EMAX,c} is the value given by the IE P-Max when PSBCH/SLSS transmissions is triggered for ProSe Direct communication as specified in [7], and is the value given by the IE discMaxTxPower in [7] otherwise.

For $P_{\text{CMAX},SSSS}$, the value is as calculated for $P_{\text{CMAX},PSBCH}$ and applying the MPR for SSSS as specified in Section 6.2.3D.

6.3 Output power dynamics

6.3.1 (Void)

6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

Channel bandwidth / Minimum output power / Measurement bandwidth 1.4 3 0 15 20 MHz MHz MHz MHz MHz MHz Minimum output -40 dBm power Measurement 9.0 MHz 1.08 MHz 2.7 MHz 4.5 MHz 13.5 MHz 18 MHz bandwidth

Table 6.3.2.1-1: Minimum output power

6.3.2A UE Minimum output power for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands and intra-band contiguous and non-contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., the power in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

6.3.2A.1 Minimum requirement for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the minimum output power is defined per carrier and the requirement is specified in subclause 6.3.2.1.

For intra-band contiguous and non-contiguous carrier aggregation the minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2A.1-1.

Table 6.3.2A.1-1: Minimum output power for intra-band contiguous and non-contiguous CA UE

	CC Chan	nel bandwi	dth / Minimu band\		ower / Meas	urement
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power			-40 c	lBm		
Measurement bandwidth			4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.2B UE Minimum output power for UL-MIMO

For UE supporting UL-MIMO, the minimum controlled output power is defined as the broadband transmit power of the UE, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) at each transmit antenna connector, when the UE power is set to a minimum value.

6.3.2B.1 Minimum requirement

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2B.1-1.

Channel bandwidth / Minimum output power / Measurement bandwidth 20 1.4 3.0 5 10 15 MHz MHz MHz MHz MHz MHz Minimum output -40 dBm power Measurement 13.5 MHz 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 18 MHz bandwidth

Table 6.3.2B.1-1: Minimum output power

For single-antenna port scheme, the requirements in subclause 6.3.2 apply.

6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3.1. Minimum requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

Channel bandwidth / Transmit OFF power / Measurement bandwidth 1.4 3.0 10 15 20 5 MHz MHz MHz MHz MHz MHz Transmit OFF -50 dBm power Measurement 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 13.5 MHz 18 MHz bandwidth

Table 6.3.3.1-1: Transmit OFF power

6.3.3A UE Transmit OFF power for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands and intra-band contiguous and non-contiguous carrier aggregation, transmit OFF power is defined as the mean power per component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

6.3.3A.1 Minimum requirement for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, transmit OFF power requirement is defined per carrier and the requirement is specified in subclause 6.3.3.1.

For intra-band contiguous and non-contiguous carrier aggregation the transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3A.1-1.

Table 6.3.3A.1-1: Transmit OFF power for intra-band contiguous and non-contiguos CA UE

	CC Cha	nnel bandv	vidth / Trans bandv	•	wer / Measu	rement
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power			-50 c	dBm		
Measurement bandwidth			4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.3B UE Transmit OFF power for UL-MIMO

For UE supporting UL-MIMO, the transmit OFF power is defined as the mean power at each transmit antenna connector when the transmitter is OFF at all transmit antenna connectors. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3B.1 Minimum requirement

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.3B.1-1.

Table 6.3.3B.1-1: Transmit OFF power per antenna port

	Chanr	nel bandwid	tth / Transm bandv	•	er/ Measurer	ment
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-50 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.3D Transmit OFF power for ProSe

The Prose UE shall Transmit OFF power at all times when the UE is not associated with PCell on the ProSe carrier and does not have knowledge of its geographical area or is provisioned with pre-configured radio parameters that are not associated with any known Geographical Area.

The requirements specified in subclause 6.3.3 shall apply to UE supporting ProSe when

- the UE is associated with PCell on the ProSe carrier, or

the UE is not associated with PCell on the ProSe carrier and is provisioned with the preconfigured radio parameters for ProSe Direct Communications that are associated with known Geographical Area.

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

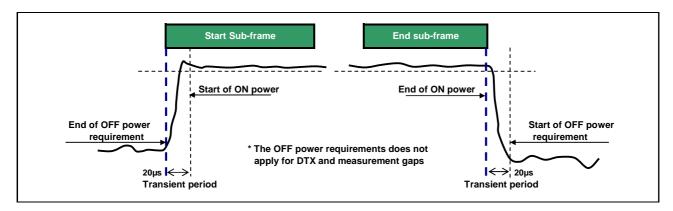


Figure 6.3.4.1-1: General ON/OFF time mask

6.3.4.2 PRACH and SRS time mask

6.3.4.2.1 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.4.2-1. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
1	0.1470

Table 6.3.4.2-1: PRACH ON power measurement period

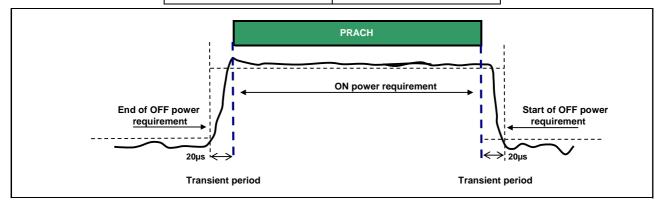


Figure 6.3.4.2-1: PRACH ON/OFF time mask

6.3.4.2.2 SRS time mask

In the case a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period. Figure 6.3.4.2.2-1

In the case a dual SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2-2

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

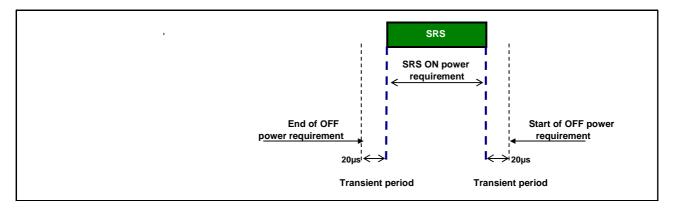


Figure 6.3.4.2.2-1: Single SRS time mask

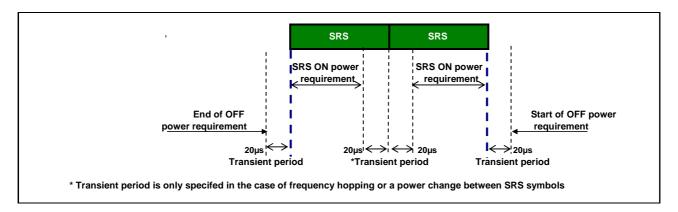


Figure 6.3.4.2.2-2: Dual SRS time mask for the case of UpPTS transmissions

6.3.4.3 Slot / Sub frame boundary time mask

The sub frame boundary time mask defines the observation period between the previous/subsequent sub–frame and the (reference) sub-frame. A transient period at a slot boundary within a sub-frame is only allowed in the case of Intra-sub frame frequency hopping. For the cases when the subframe contains SRS the time masks in subclause 6.3.4.4 apply.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

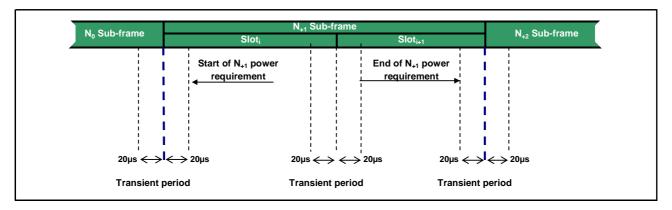


Figure 6.3.4.3-1: Transmission power template

6.3.4.4 PUCCH / PUSCH / SRS time mask

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

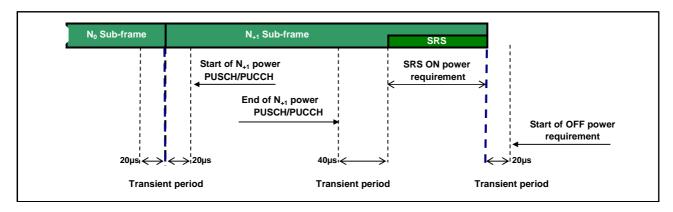


Figure 6.3.4.4-1: PUCCH/PUSCH/SRS time mask when there is a transmission before SRS but not after

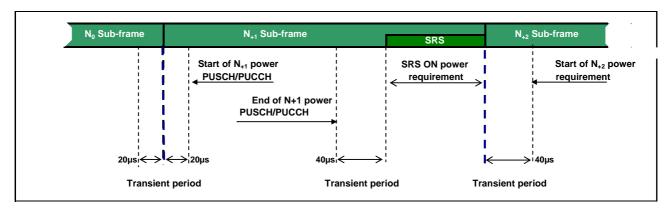


Figure 6.3.4.4-2: PUCCH/PUSCH/SRS time mask when there is transmission before and after SRS

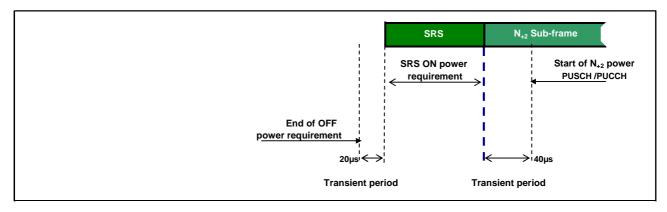


Figure 6.3.4.4-3: PUCCH/PUSCH/SRS time mask when there is a transmission after SRS but not before

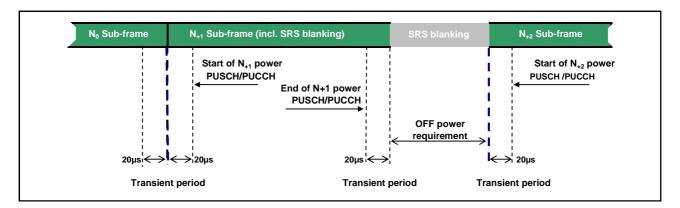


Figure 6.3.4.4-4: SRS time mask when there is FDD SRS blanking

6.3.4A ON/OFF time mask for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands and intra-band contiguous and non-contiguous carrier aggregation, the general output power ON/OFF time mask specified in subclause 6.3.4.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.4.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3.4B ON/OFF time mask for UL-MIMO

For UE supporting UL-MIMO, the ON/OFF time mask requirements in subclause 6.3.4 apply at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.4.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.3.4 apply.

6.3.4D ON/OFF time mask for ProSe

For ProSe Direct Discovery and ProSe Direct Communications, additional requirements on ON/OFF time masks for ProSe physical channels and signals are specified in this clause.

6.3.4D.1 General time mask for ProSe

The General ON/OFF time mask defines the observation period between the Transmit OFF and ON power and between Transmit ON and OFF power for PSDCH. PSCCH, and PSSCH transmissions in a subframe wherein the last symbol is punctured to create a guard period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

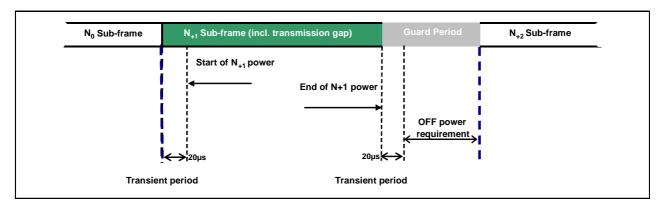


Figure 6.3.4D.1-1: PSDCH/PSCCH/PSSCH time mask

6.3.4D.2 PSSS/SSS time mask

The PSSS time mask / SSSS time mask defines the observation period between the Transmit OFF and ON power and between Transmit ON and OFF power for PSSS/SSSS transmissions in a subframe when not multiplexed with PSBCH in that subframe.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

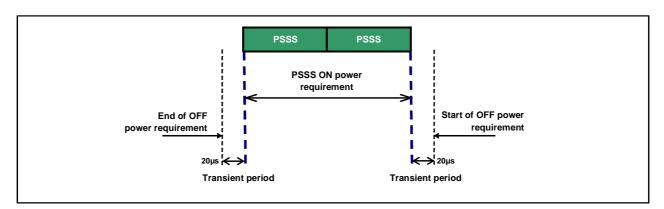


Figure 6.3.4D.2-1: PSSS time mask for normal CP transmission (when not time-multiplexed with PSBCH)

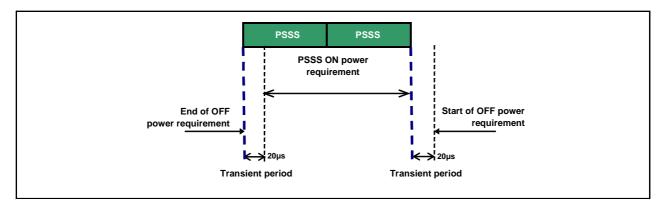


Figure 6.3.4D.2-2: PSSS time mask for extended CP transmission (when not time-multiplexed with PSBCH)

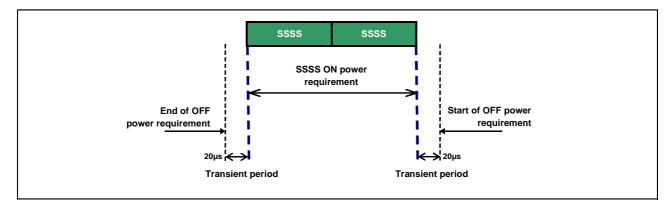


Figure 6.3.4D.2-3: SSSS time mask (when not time-multiplexed with PSBCH)

6.3.4D.3 PSSS / SSSS / PSBCH time mask

The PSSS/SSSS/PSBCH time mask defines the observation period between SSSS and adjacent PSSS/PSBCH symbols in a subframe, with last symbol punctured to create a guard period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

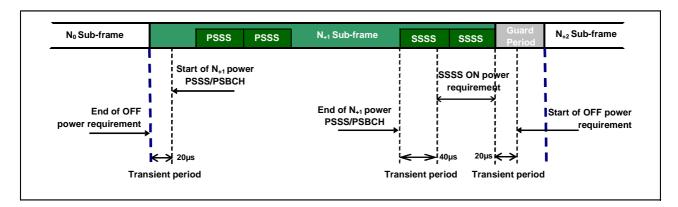


Figure 6.3.4D.3-1: PSSS/SSSS/PBCH time mask for normal CP transmission

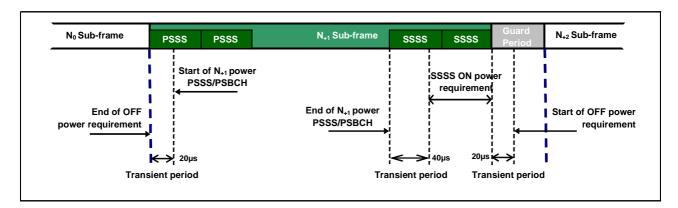


Figure 6.3.4D.3-2: PSSS/SSSS/PBCH time mask for extended CP transmission

6.3.4D.4 PSSCH / SRS time mask

The PSSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PSSCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3.

The PSSCH/SRS time mask shall follow the PUSCH/PUCCH/SRS time mask as specified in subclause 6.3.4.4.

6.3.5 Power Control

6.3.5.1 Absolute power tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133)

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133).

6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in subclause 6.2.2 and the Minimum output power as defined in subclause 6.3.2.

For operating bands under Note 2 in Table 6.2.2-1, the absolute power tolerance as specified in Table 6.3.5.1.1-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} .

Table 6.3.5.1.1-1: Absolute power tolerance

Conditions	Tolerance
Normal	± 9.0 dB
Extreme	± 12.0 dB

6.3.5.2 Relative Power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms

For PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power relatively to the power of the most recently transmitted preamble. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

6.3.5.2.1 Minimum requirements

The requirements specified in Table 6.3.5.2.1-1 apply when the power of the target and reference sub-frames are within the power range bounded by the Minimum output power as defined in subclause 6.3.2 and the measured PUMAX as defined in subclause 6.2.5 (i.e, the actual power as would be measured assuming no measurement error). This power shall be within the power limits specified in subclause 6.2.5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range

bounded by the requirements of minimum power and maximum power specified in subclauses 6.3.2 and 6.2.2. For these exceptions the power tolerance limit is a maximum of ± 6.0 dB in Table 6.3.5.2.1-1

Table 6.3.5.2.1-1 Relative power tolerance for transmission (normal conditions)

Power step ΔP (Up or down) [dB]	All combinations of PUSCH and PUCCH transitions [dB]	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames [dB]	PRACH [dB]
ΔP < 2	±2.5 (Note 3)	±3.0	±2.5
2 ≤ ΔP < 3	±3.0	±4.0	±3.0
3 ≤ ΔP < 4	±3.5	±5.0	±3.5
4 ≤ ΔP ≤ 10	±4.0	±6.0	±4.0
10 ≤ ΔP < 15	±5.0	±8.0	±5.0
15 ≤ ΔP	±6.0	±9.0	±6.0

NOTE 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power tolerance is relaxed by increasing the upper limit by 1.5 dB if the transmission bandwidth of the reference sub-frames is confined within $F_{UL\ low}$ and $F_{UL\ low}$ + 4 MHz or $F_{UL\ high}$ – 4 MHz and $F_{UL\ high}$ and the target

NOTE 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed

sub-frame is not confined within any one of these frequency ranges; if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges, then the tolerance is relaxed by reducing the lower limit by 1.5 dB.

NOTE 3: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods for TDD: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is ±1.0 dB.

The power step (ΔP) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to subclause 5.1 of [TS 36.213]. The error is the difference between ΔP and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2.1-1.

For sub-frames not containing an SRS symbol, the power change is defined as the relative power difference between the mean power of the original reference sub-frame and the mean power of the target subframe not including transient durations. The mean power of successive sub-frames shall be calculated according to Figure 6.3.4.3-1 and Figure 6.3.4.1-1 if there is a transmission gap between the reference and target sub-frames.

If at least one of the sub-frames contains an SRS symbol, the power change is defined as the relative power difference between the mean power of the last transmission within the reference sub-frame and the mean power of the first transmission within the target sub-frame not including transient durations. A transmission is defined as PUSCH, PUCCH or an SRS symbol. The mean power of the reference and target sub-frames shall be calculated according to Figures 6.3.4.1-1, 6.3.4.2-1, 6.3.4.4-1, 6.3.4.4-2 and 6.3.4.4-3 for these cases.

6.3.5.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.1 Minimum requirement

The UE shall meet the requirements specified in Table 6.3.5.3.1-1 for aggregate power control over the power range bounded by the minimum output power as defined in subclause 6.3.2 and the maximum output power as defined in subclause 6.2.2.

Table 6.3.5.3.1-1: Aggregate power control tolerance

TPC command UL channel		Aggregate power tolerance within 21 ms		
0 dB	PUCCH	±2.5 dB		
0 dB PUSCH		±3.5 dB		
NOTE: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.				

6.3.5A Power control for CA

The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per component carrier with power setting in accordance with Clause 5.1 of [6].

6.3.5A.1 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

6.3.5A.1.1 Minimum requirements

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the absolute power control tolerance is specified on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by maximum output power as defined in subclause 6.2.2A. The requirements defined in Table 6.3.5.1.1-1 shall apply on each component carrier with both component carriers active. The requirements can be tested by time aligning any transmission gaps on both the component carriers.

For intra-band contiguous carrier aggregation bandwidth class C and intra-band non-contiguous carrier aggregation the absolute power control tolerance per component carrier is given in Table 6.3.5.1.1-1.

6.3.5A.2 Relative power tolerance

6.3.5A.2.1 Minimum requirements

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the relative power tolerance is specified on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by P_{UMAX} as defined in subclause 6.2.5A. The requirements shall apply on each component carrier with both component carriers active. The UE transmitter shall have the capability of changing the output power independently on all component carriers in the uplink and:

- a) the requirements for all combinations of PUSCH and PUCCH transitions per component carrier is given in Table 6.3.5.2.1-1.
- b) for SRS the requirements for combinations of PUSCH/PUCCH and SRS transitions between subframes given in Table 6.3.5.2.1-1 apply per component carrier when the target and reference subframes are configured for either simultaneous SRS or simultaneous PUSCH.
- c) for RACH the requirements apply for the primary cell and are given in Table 6.3.5.2.1-1.

The requirements apply when the power of the target and reference sub-frames on each component carrier exceed -20 dBm and the total power is limited by P_{UMAX} as defined in subclause 6.2.5A. For the purpose of these requirements, the power in each component carrier is specified over only the transmitted resource blocks.

For intra-band contiguous carrier aggregation bandwidth class C and intra-band non-contiguous carrier aggregation, the UE shall meet the following requirements for transmission on both assigned component carriers when the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame:

a) for all possible combinations of PUSCH and PUCCH transitions per component carrier, the corresponding requirements given in Table 6.3.5.2.1-1;

- b) for SRS transitions on each component carrier, the requirements for combinations of PUSCH/PUCCH and SRS transitions given in Table 6.3.5.2.1-1 with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subrames;
- c) for RACH on the primary component carrier, the requirements given in Table 6.3.5.2.1-1 for PRACH.

For a) and b) above, the power step ΔP between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

For a), b) and c) above, two exceptions are allowed for each component carrier for a power per carrier ranging from -20 dBm to $P_{UMAX,c}$ as defined in subclause 6.2.5. For these exceptions the power tolerance limit is ± 6.0 dB in Table 6.3.5.2.1-1.

6.3.5A.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in [6] are constant on all active component carriers.

6.3.5A.3.1 Minimum requirements

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the aggregate power tolerance is specified on each component carrier exceed the minimum output power as defined in subclause 6.3.2A and the total power is limited by maximum output power as defined in subclause 6.2.2A. The requirements defined in Table 6.3.5.3.1-1 shall apply on each component carrier with both component carriers active. The requirements can be tested by time aligning any transmission gaps on both the component carriers.

For intra-band contiguous carrier aggregation bandwidth class C and intra-band non-contiguous carrier aggregation, the aggregate power tolerance per component carrier is given in Table 6.3.5.3.1-1 with either simultaneous PUSCH or simultaneous PUCCH-PUSCH (if supported by the UE) configured. The average power per PRB shall be aligned across both assigned carriers before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

6.3.5B Power control for UL-MIMO

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.5 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2, wherein

- The Maximum output power requirements for UL-MIMO are specified in subclause 6.2.2B
- The Minimum output power requirements for UL-MIMO are specified in subclause 6.3.2B
- The requirements for configured transmitted power for UL-MIMO are specified in subclause 6.2.5B.

For single-antenna port scheme, the requirements in subclause 6.3.5 apply.

6.3.5D Power Control for ProSe

6.3.5D.1 Absolute power tolerance

For ProSe transmissions, the absolute power tolerance requirements specified in subclause 6.3.5.1 shall apply for each ProSe transmission.

6.4 Void

6.5 Transmit signal quality

6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

6.5.1A Frequency error for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the frequency error requirements defined in subclause 6.5.1 shall apply on each component carrier with both component carriers active.

For intra-band contiguous carrier aggregation the UE modulated carrier frequencies per band shall be accurate to within ± 0.1 PPM observed over a period of one timeslot compared to the carrier frequency of primary component carrier received from the E-UTRA in the corresponding band.

For intra-band non-contiguous carrier aggregation the requirements in Section 6.5.1 applies per component carrier.

6.5.1B Frequency error for UL-MIMO

For UE(s) supporting UL-MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B.

6.5.1D Frequency error for ProSe

The UE modulated carrier frequency for ProSe sidelink transmissions shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the synchronization source. The synchronization source can be E-UTRA Node B or a ProSe UE transmitting sidelink synchronization signals.

6.5.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.5.2 are defined using the measurement methodology specified in Annex F.

6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.

6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.5.2.1.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
QPSK or BPSK	%	17.5	17.5
16QAM	%	12.5	12.5

Table 6.5.2.1.1-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ -40
Operating conditions		Normal conditions

6.5.2.2 Carrier leakage

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

6.5.2.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.1-1.

Table 6.5.2.2.1-1: Minimum requirements for relative carrier leakage power

Parameters	Relative limit (dBc)	Applicable frequencies
Output power >10 dBm	-28	Carrier center frequency < 1 GHz
	-25	Carrier center frequency ≥ 1 GHz
0 dBm ≤ Output power ≤10 dBm	-25	
-30 dBm ≤ Output power ≤0 dBm	-20	
-40 dBm ≤ Output power < -30 dBm	-10	

6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.

Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

Parameter description	Unit		Applicable Frequencies				
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ -57 dBm / 180 kHz - P_{RB} \right\}$		Any non-allocated (Note 2)			
IQ Image	dB	-28	Image frequencies when carrier center frequency < 1 GHz and Output power > 10 dBm	Imaga			
		-25	Image frequencies when carrier center frequency < 1 GHz and Output power ≤ 10 dBm	Image frequencies (Notes 2, 3)			
							-25
Carrier leakage	dBc	-28	Output power > 10 dBm and carrier center frequency < 1 GHz				
		-25	Output power > 10 dBm and carrier center frequency ≥ 1 GHz	Carrier frequency			
		-25	0 dBm ≤ Output power ≤10 dBm	(Notes 4, 5)			
		-20	-30 dBm ≤ Output power ≤ 0 dBm				
		-10	-40 dBm ≤ Output power < -30 dBm				

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 10.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.
- NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even, but excluding any allocated RB.
- NOTE 6: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.6-1).
- NOTE 7: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.6-1).
- NOTE 8: *EVM* is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{\it RB}=1$ or $\Delta_{\it RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- NOTE 10: $P_{\it RB}$ is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

6.5.2.4.1 Minimum requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.5.2.4.1-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB,

and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.5.2.4.1-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.5.2.4.1-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.1-1).

Table 6.5.2.4.1-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

Frequency range	Maximum ripple [dB]				
F _{UL_Meas} – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz	4 (p-p)				
(Range 1)					
F _{UL_Meas} – F _{UL_Low} < 3 MHz or F _{UL_High} – F _{UL_Meas} < 3 MHz	8 (p-p)				
(Range 2)					
NOTE 1: F _{UL Meas} refers to the sub-carrier frequency for which the equalizer coefficient is					
evaluated					
NOTE 2: F _{UL Low} and F _{UL High} refer to each E-UTRA frequency band specified in Table					
5.5-1					

Table 6.5.2.4.1-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency range	Maximum Ripple [dB]			
F _{UL_Meas}	s – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)			
	(Range 1)				
F _{UL_Mea}	$_{ls}$ - F_{UL_Low} < 5 MHz or F_{UL_High} - F_{UL_Meas} < 5 MHz	12 (p-p)			
	(Range 2)				
NOTE 1:	F_{UL_Meas} refers to the sub-carrier frequency for which	the equalizer coefficient is			
	evaluated				
NOTE 2:	NOTE 2: F _{UL_low} and F _{UL_High} refer to each E-UTRA frequency band specified in Table				
	5.5-1				

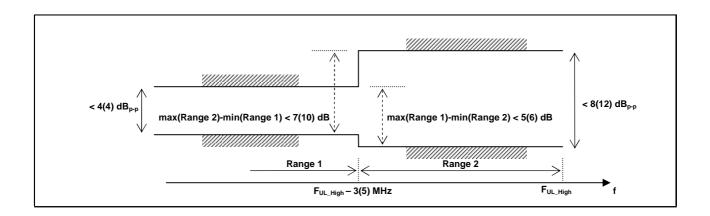


Figure 6.5.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

6.5.2A Transmit modulation quality for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the requirements shall apply on each component carrier as defined in clause 6.5.2 with both component carriers active.

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.5.2A.1 Error Vector Magnitude

For the intra-band contiguous and non-contiguous carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers.

When a single component carrier is configured Table 6.5.2.1.1-1 apply.

The EVM requirements are according to Table 6.5.2A.1-1 if CA is configured in uplink.

Table 6.5.2A.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level per CC	Reference Signal EVM Level
QPSK or BPSK	%	17.5	17.5
16QAM	%	12.5	12.5

6.5.2A.2 Carrier leakage for CA

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. Carrier leakage is defined for each component carrier and is measured on the carrier with PRBs allocated. The measurement interval is one slot in the time domain.

6.5.2A.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2A.2.1-1.

Table 6.5.2A.2.1-1: Minimum requirements for Relative Carrier Leakage Power

Parameters	Relative Limit (dBc)
Output power >0 dBm	-25
-30 dBm ≤ Output power ≤0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

6.5.2A.3 In-band emissions

6.5.2A.3.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation bandwidth class C, the requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 apply within the aggregated transmission bandwidth configuration with both component carrier (s) active and one single contiguous PRB allocation of bandwidth L_{CRB} at the edge of the aggregated transmission bandwidth configuration.

The inband emission is defined as the interference falling into the non allocated resource blocks for all component carriers. The measurement method for the inband emissions in the component carrier with PRB allocation is specified in annex F. For a non allocated component carrier a spectral measurement is specified.

For intra-band non-contiguous carrier aggregation the requirements for in-band emissions should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers according to Table 6.5.2.3.1.

Table 6.5.2A.3.1-1: Minimum requirements for in-band emissions (allocated component carrier)

Parameter	Unit		Limit	Applicable Frequencies	
	dB	_	$25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$		
General		20 · log 10	$EVM - 3 - 5 \cdot (\left \Delta_{RB}\right - 1) / L_{CRB},$	Any non-allocated (Note 2)	
		– 57 dBm	$/180 kH_Z - P_{RB} $		
IQ Image	dB		-25	Exception for IQ image (Note 3)	
Carrier leakage	I URC	-25	Output power > 0 dBm	Expontion for Corrier frequency	
		-20 -30 dBm ≤ Output power ≤ 0 di	-30 dBm ≤ Output power ≤ 0 dBm	Exception for Carrier frequency (Note 4)	
		-10	-40 dBm ≤ Output power < -30 dBm	(Note 4)	

- NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 9. The limit is evaluated in each non-allocated RB.
- NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs
- NOTE 3: Exceptions to the general limit are allowed for up to $L_{\it CRBs}$ +1 RBs within a contiguous width of $L_{\it CRBs}$ +1 non-allocated RBs. The measurement bandwidth is 1 RB.
- NOTE 4: Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in the non-allocated RB to the measured total power in all allocated RBs.
- NOTE 5: $L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.6-1) not exceeding $\lfloor N_{\it RB}/2-1 \rfloor$
- NOTE 6: $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.6-1) of the component carrier with RBs allocated.
- NOTE 7: EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- NOTE 8: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth).
- NOTE 9: P_{RR} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

Table 6.5.2A.3.1-2: Minimum requirements for in-band emissions (not allocated component carrier)

Para- meter	Unit	Meas BW Note 1		Limit	remark	Applicable Frequencies
General	dΒ	BW of 1 RB (180KHz rectangular)	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ -57 \ dBm / 180 \ kHz - P_{RB} \right\}$		The reference value is the average power per allocated RB in the allocated component carrier	Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
IQ Image	dB	BW of 1 RB (180KHz rectangular)		-25 Note 2	The reference value is the average power per allocated RB in the allocated component carrier	The frequencies of the $L_{\it CRB}$ contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
	dBc	BW of 1 RB (180KHz		Note 3	The reference	The frequencies of
Carrier leakage		rectangular)	-25	Output power > 0 dBm	value is the total power	the up to 2 non-allocated
			-20	-30 dBm ≤ Output power ≤ 0 dBm	of the allocated RBs in the allocated component carrier	RBs are unknown. The frequency raster of the RBs is derived when this
			-10	-40 dBm ≤ Output power < -30 dBm	54.1161	component carrier is allocated with RBs

NOTE1: Resolution BWs smaller than the measurement BW may be integrated to achieve the measurement bandwidth.

NOTE 2: Exceptions to the general limit is are allowed for up to $L_{\it CRB}$ +1 RBs within a contiguous width of $L_{\it CRB}$ +1 non-allocated RBs.

NOTE 3: Two Exceptions to the general limit are allowed for up to two contiguous non-allocated RBs

NOTE 4: Notes 1, 5, 6, 7, 8, 9 from Table 6.5.2A.3.1-1 apply for Table 6.5.2A.3.1-2 as well.

NOTE 5: Δ_{RB} for measured non-allocated RB in the non allocated component carrier may take non-integer values when the carrier spacing between the CCs is not a multiple of RB.

6.5.2B Transmit modulation quality for UL-MIMO

For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

For single-antenna port scheme, the requirements in subclause 6.5.2 apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

6.5.2B.1 Error Vector Magnitude

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.5.2.1.1-1 which is defined in subclause 6.5.2.1 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.2 Carrier leakage

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.5.2.2.1-1 which is defined in subclause 6.5.2.2 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.3 In-band emissions

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.5.2.3.1-1 which is defined in subclause 6.5.2.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.4 EVM equalizer spectrum flatness for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.5.2.4.1-1 and Table 6.5.2.4.1-2 which are defined in subclause 6.5.2.4 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2D Transmit modulation quality for ProSe

The requirements in this clause apply to ProSe sidelink transmissions.

6.5.2D.1 Error Vector Magnitude

For ProSe sidelink physical channels PSDCH, PSCCH, PSSCH, and PSBCH, the Error Vector Magnitude requirements shall be as specified for PUSCH in subclause 6.5.2.1 for the corresponding modulation and transmission bandwidth. When ProSe transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the EVM measurement interval is reduced by one symbol, accordingly.

For PSBCH the duration over which EVM is averaged shall be [24] subframes.

This requirement is not applicable for ProSe physical signals PSSS and SSSS.

6.5.2D.2 Carrier leakage

The requirements of subcaluse 6.5.2.2 shall apply for ProSe transmissions.

6.5.2D.3 In-band emissions

For ProSe sidelink physical channels PSDCH, PSCCH, PSSCH, and PSBCH, the In-band emissions requirements shall be as specified for PUSCH in subclause 6.5.2.3 for the corresponding modulation and transmission bandwidth. When ProSe transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the In-band emissions measurement interval is reduced by one symbol, accordingly.

6.5.2D.4 EVM equalizer spectrum flatness for ProSe

The requirements of subcaluse 6.5.2.4 shall apply for ProSe transmissions.

6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

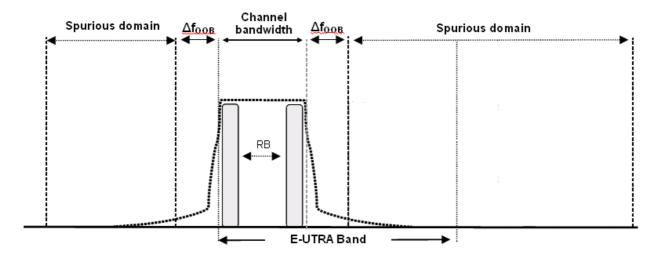


Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1

Occupied channel bandwidth / Channel bandwidth 1.4 3.0 5 10 15 20 MHz MHz MHz MHz MHz MHz **Channel bandwidth** 1.4 20 (MHz)

Table 6.6.1-1: Occupied channel bandwidth

6.6.1A Occupied bandwidth for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the occupied bandwidth is defined per component carrier. Occupied bandwidth is the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on assigned channel bandwidth on the component carrier. The occupied bandwidth shall be less than the channel bandwidth specified in Table 6.6.1-1.

For intra-band contiguous carrier aggregation the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth defined in subclause 5.6A.

For intra-band non-contiguous carrier aggregation sub-block occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the sub-block. In case the sub-block consist of one component carrier the occupied bandwidth of the sub-block shall be less than the channel bandwidth specified in Table 6.6.1-1.

6.6.1B Occupied bandwidth for UL-MIMO

For UE supporting UL-MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in Table 6.6.1B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

Occupied channel bandwidth / Channel bandwidth 3.0 20 MHz MHz MHz MHz MHz MHz Channel bandwidth 1.4 3 5 10 15 20 (MHz)

Table 6.6.1B-1: Occupied channel bandwidth

For single-antenna port scheme, the requirements in subclause 6.6.1 apply.

6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.1-1 the spurious requirements in subclause 6.6.3 are applicable.

6.6.2.1.1 Minimum requirement

± 15-20

± 20-25

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.

Spectrum emission limit (dBm)/ Channel bandwidth 1.4 Measurement Δf_{OOB} 3.0 10 20 (MHz) MHz MHz MHz MHz MHz MHz bandwidth -18 $\pm 0-1$ -10 -13 -15 -20 -21 30 kHz \pm 1-2.5 -10 -10 -10 -10 -10 -10 1 MHz $\pm 2.5 - 2.8$ -25 -10 -10 -10 -10 -10 1 MHz -10 -10 -10 -10 -10 1 MHz $\pm 2.8-5$ -25 -13 -13 -13 -13 1 MHz ± 5-6 -25 -13 -13 -13 1 MHz \pm 6-10 ± 10-15 -25 -13 -13 1 MHz

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

-25

-13

-25

1 MHz

1 MHz

6.6.2.1A Spectrum emission mask for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the spectrum emission mask of the UE is defined per component carrier while both component carriers are active and the requirements are specified in subclauses 6.6.2.1 and 6.6.2.2. If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the aggregated channel bandwidth (Table 5.6A-1) For intra-band contiguous carrier aggregation the bandwidth class C, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.1A-1 for the specified channel bandwidth.

Spectrum emission limit [dBm]/BW_{Channel_CA} Δf_{OOB} 25RB+100RB 50RB+100RB 75RB+75RB 75RB+100RB 100RB+100RB Measurement (MHz) (24.95MHz) (29.9 MHz) (30 MHz) (34.85 MHz) (39.8 MHz) bandwidth -22 -22.5 -22.5 -23.5 -24 30 kHz $\pm 0-1$ -10 -10 -10 -10 -10 1 MHz ± 1-5 -13 -13 -13 -13 -13 1 MHz $\pm 5 - 24.95$ ± 24.95-29.9 -25 -13 -13 -13 -13 1 MHz -25 -25 -13 -13 -13 1 MHz ± 29.9-29.95 -25 -13 -13 -13 1 MHz $\pm 29.95-30$ -13 -25 -25 -13 1 MHz $\pm 30 - 34.85$ -25 -25 -25 -13 1 MHz ± 34.85-34.9 -25 -25 -13 1 MHz $\pm 34.9 - 35$ -25 $\pm 35 - 39.8$ -13 1 MHz ± 39.8-39.85 -25 -25 1 MHz $\pm 39.85 - 44.8$ -25 1 MHz

Table 6.6.2.1A-1: General E-UTRA CA spectrum emission mask for Bandwidth Class C

For intra-band non-contiguous carrier aggregation transmission the spectrum emission mask requirement is defined as a composite spectrum emissions mask. Composite spectrum emission mask applies to frequencies up to \pm Δf_{OOB} starting from the edges of the sub-blocks. Composite spectrum emission mask is defined as follows

- a) Composite spectrum emission mask is a combination of individual sub-block spectrum emissions masks
- b) In case the sub-block consist of one component carrier the sub-lock general spectrum emission mask is defined in subclause 6.6.2.1.1
- c) If for some frequency sub-block spectrum emission masks overlap then spectrum emission mask allowing higher power spectral density applies for that frequency
- d) If for some frequency a sub-block spectrum emission mask overlaps with the sub-block bandwidth of another sub-block, then the emission mask does not apply for that frequency.

6.6.2.2 Additional spectrum emission mask

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2.1 Minimum requirement (network signalled value "NS_03", "NS_11", "NS_20", and "NS_21")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03", "NS_11", "NS_20" or "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.

	1	Spectrum emission limit (dBm)/ Channel bandwidth							
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth		
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz		
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz		
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz		
± 2.8-5		-13	-13	-13	-13	-13	1 MHz		
± 5-6		-25	-13	-13	-13	-13	1 MHz		
± 6-10			-25	-13	-13	-13	1 MHz		
± 10-15				-25	-13	-13	1 MHz		
± 15-20					-25	-13	1 MHz		
+ 20-25						-25	1 MHz		

Table 6.6.2.2.1-1: Additional requirements

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.2 Minimum requirement (network signalled value "NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

		Spectrum emission limit (dBm)/ Channel bandwidth					
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz
± 2.8-5.5		-13	-13	-13	-13	-13	1 MHz
± 5.5-6		-25	-25	-25	-25	-25	1 MHz
± 6-10			-25	-25	-25	-25	1 MHz
± 10-15				-25	-25	-25	1 MHz
± 15-20					-25	-25	1 MHz
± 20-25						-25	1 MHz

Table 6.6.2.2.2-1: Additional requirements

Note:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.3 Minimum requirement (network signalled value "NS_06" or "NS_07")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.

± 10-15

Spectrum emission limit (dBm)/ Channel bandwidth Δf_{OOB} 1 4 3.0 10 Measurement 5 (MHz) MHz MHz MHz MHz bandwidth -13 -13 -18 30 kHz $\pm 0 - 0.1$ -15 -13 -13 -13 -13 100 kHz $\pm 0.1-1$ -13 -13 -13 -13 1 MHz $\pm 1 - 2.5$ -25 -13 -13 -13 1 MHz $\pm 2.5 - 2.8$ 1 MHz -13 -13 -13 $\pm 2.8-5$ -13 -25 -13 1 MHz \pm 5-6 -25 -13 1 MHz $\pm 6-10$

Table 6.6.2.2.3-1: Additional requirements

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

-25

1 MHz

6.6.2.2A Additional Spectrum Emission Mask for CA

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2A.1 Minimum requirement (network signalled value "CA_NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "CA_NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2A-1.

	Spectrum emission limit [dBm]/BW _{Channel_CA}						
Δf _{OOB} (MHz)	50+100RB (29.9 MHz)	75+75B (30 MHz)	75+100RB (34.85 MHz)	100+100RB (39.8 MHz)	Measurement bandwidth		
± 0-1	-22.5	-22.5	-23.5	-24	30 kHz		
± 1-5.5	-13	-13	-13	-13	1 MHz		
± 5.5-34.9	-25	-25	-25	-25	1 MHz		
± 34.9-35		-25	-25	-25	1 MHz		
± 35-39.85			-25	-25	1 MHz		
± 39.85-44.8				-25	1 MHz		

Table 6.6.2.2A-1: Additional requirements

Note:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements for one E-UTRA carrier are specified for two scenarios for an adjacent E-UTRA and /or UTRA channel as shown in Figure 6.6.2.3-1.

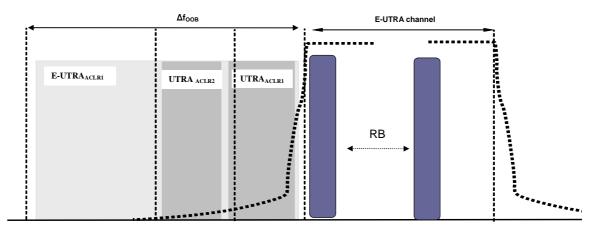


Figure 6.6.2.3-1: Adjacent Channel Leakage requirements for one E-UTRA carrier

6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2. If the measured adjacent channel power is greater than -50 dBm then the E-UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2.

Table 6.6.2.3.1-1: General requirements for E-UTRA_{ACLR}

	Char	Channel bandwidth / E-UTRA _{ACLR1} / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	30 dB	
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz	
Adjacent channel centre frequency offset [MHz]	+1.4 / -1.4	+3.0 / -3.0	+5 / -5	+10 / -10	+15 / -15	+20 / -20	

Table 6.6.2.3.1-2: Additional E-UTRA_{ACLR} requirements for Power Class 1

	Channel bandwidth / E-UTRA _{ACLR1} / Measurement bandwidth					
	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
E-UTRA _{ACLR1}			37 dB	37 dB		
E-UTRA channel						
Measurement			4.5 MHz	9.0 MHz		
bandwidth						
Adjacent channel	+5 +10					
centre frequency			/	/		
offset [MHz]			-5	-10		
NOTE 1: E-UTRA _{ACLR1} shall be applicable for >23dBm						

6.6.2.3.1A Void

6.6.2.3.1Aa Minimum requirement E-UTRA for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned channel bandwidth on a

component carrier to the filtered mean power centred on an adjacent channel frequency. The E-UTRA Adjacent Channel Leakage power Ratio is defined per carrier and the requirement is specified in subclause 6.6.2.3.1.

For intra-band non-contiguous carrier aggregation when all sub-blocks consist of one component carrier the E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA $_{ACLR}$) is the ratio of the sum of the filtered mean powers centred on the assigned sub-block frequencies to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. In case the sub-block gap bandwidth Wgap is smaller than of the sub-block bandwidth then for that sub-block no E-UTRA $_{ACLR}$ requirement is set for the gap. In case the sub-block gab bandwidth Wgap is smaller than either of the sub-block bandwidths then no E-UTRA $_{ACLR}$ requirement is set for the gap. The assigned E-UTRA sub-block power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1Aa-1. If the measured adjacent channel power is greater than -50dBm then the E-UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.1Aa-1.

Table 6.6.2.3.1Aa-1: General requirements for non-contiguous intraband CA E-UTRA_{ACLR}

	CC and ac	CC and adjacent channel bandwidth / E-UTRA _{ACLR} / Measurement bandwidth				
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	30 dB
CC and adjacent channel measurement bandwidth [MHz]	1.08	2.7	4.5	9	13.5	18
Adjacent channel centre frequency offset [MHz]	+ 1.4 / - 1.4	+ 3 / - 3	+ 5 / - 5	+ 10 / - 10	+ 15 / - 15	+ 20 / - 20

6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2^{nd} UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than –50dBm then the UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.2-1.

Table 6.6.2.3.2-1: Requirements for UTRA_{ACLR1/2}

	Channel bandwidth / UTRA _{ACLR1/2} / Measurement bandwidth					
	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
UTRA _{ACLR1}	33 dB	33 dB	33 dB	33 dB	33 dB	33 dB
Adjacent channel centre frequency offset [MHz]	0.7+BW _{UTRA} /2 / -0.7- BW _{UTRA} /2	1.5+BW _{UTRA} /2 / -1.5- BW _{UTRA} /2	+2.5+BW _{UTRA} /2 / -2.5-BW _{UTRA} /2	+5+BW _{UTRA} /2 / -5-BW _{UTRA} /2	+7.5+BW _{UTRA} /2 / -7.5-BW _{UTRA} /2	+10+BW _{UTRA} /2 / -10-BW _{UTRA} /2
UTRA _{ACLR2}	-	-	36 dB	36 dB	36 dB	36 dB
Adjacent channel centre frequency offset [MHz]	-	-	+2.5+3*BW _{UTRA} /2 / -2.5-3*BW _{UTRA} /2	+5+3*BW _{UTRA} /2 / -5-3*BW _{UTRA} /2	+7.5+3*BW _{UTRA} /2 / -7.5-3*BW _{UTRA} /2	+10+3*BW _{UTRA} /2 / -10-3*BW _{UTRA} /2
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
UTRA 5MHz channel Measurement bandwidth (Note 1)	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz
UTRA 1.6MHz channel measurement bandwidth (Note 2)	1.28 MHz	1.28 MHz	1.28 MHz	1.28MHz	1.28MHz	1.28MHz

NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

6.6.2.3.2A Minimum requirement UTRA for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel bandwidth on the component carrier to the filtered mean power centred on an adjacent channel frequency. The UTRA Adjacent Channel Leakage power Ratio is defined per carrier and the requirement is specified in subclause 6.6.2.3.2.

For intra-band contiguous carrier aggregation the UTRA Adjacent Channel Leakage power Ratio (UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

For intra-band non-contiguous carrier aggregation when all sub-blocks consist of one component carrier the UTRA Adjacent Channel Leakage power Ratio (UTRA $_{ACLR}$) is the ratio of the sum of the filtered mean powers centered on the assigned sub-block frequencies to the filtered mean power centred on an adjacent(s) UTRA channel frequency. UTRA $_{ACLR1/2}$ requirements are applicable for all sub-blocks and are specified in Table 6.6.2.3.2A-2. UTRA $_{ACLR1}$ is required to be met in the sub-block gap when the gap bandwidth Wgap is $5MHz \le Wgap < 15MHz$. Both UTRA $_{ACLR1}$ and UTRA $_{ACLR2}$ are required to be met in the sub-block gap when the gap bandwidth Wgap is $15MHz \le Wgap$.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA $_{ACLR1}$) and the 2^{nd} UTRA adjacent channel (UTRA $_{ACLR2}$). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned aggregated channel bandwidth power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2A-1 for intraband contiguous carrier aggregation or 6.6.2.3.2A-2 for intraband non-contiguous carrier aggregation. If the measured UTRA channel power is greater than –50dBm then the UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.2A-1 for intraband contiguous carrier aggregation or 6.6.2.3.2A-2 for intraband non-contiguous carrier aggregation.

Table 6.6.2.3.2A-1: Requirements for UTRA_{ACLR1/2}

	CA bandwidth class / UTRA _{ACLR1/2} / measurement bandwidth			
	CA bandwidth class C			
UTRA _{ACLR1}	33 dB			
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} /2 + BW _{UTRA} /2 / - BW _{Channel_CA} / 2 - BW _{UTRA} /2			
UTRA _{ACLR2}	36 dB			
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} /2 + 3*BW _{UTRA} /2 / - BW _{Channel_CA} /2 - 3*BW _{UTRA} /2			
CA E-UTRA channel Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}			
UTRA 5MHz channel Measurement bandwidth (Note 1)	3.84 MHz			
UTRA 1.6MHz channel measurement bandwidth (Note 2)	1.28 MHz			
	DD co-existence with UTRA FDD in paired spectrum.			
NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.				

Table 6.6.2.3.2A-2: Requirements for intraband non-contiguous CA UTRA_{ACLR1/2}

	UTRA _{ACLR1/2} / measurement bandwidth			
UTRA _{ACLR1}	33 dB			
Adjacent channel centre frequency offset (in MHz)	+ F _{edge,block,high} + BW _{UTRA} /2 / - F _{edge,block,low} - BW _{UTRA} /2			
UTRA _{ACLR2}	36 dB			
Adjacent channel centre frequency offset (in MHz)	+ F _{edge,block,high} + 3*BW _{UTRA} /2 / - F _{edge,block,low} - 3*BW _{UTRA} /2			
Sub-block measurement bandwidth	BW _{Channel,block} - 2* BW _{GB}			
UTRA 5 MHz channel Measurement bandwidth (Note 1)	3.84 MHz			
UTRA 1.6 MHz channel measurement bandwidth (Note 2)	1.28 MHz			
NOTE 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum. NOTE 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.				

6.6.2.3.3A Minimum requirements for CA E-UTRA

For intra-band contiguous carrier aggregation the carrier aggregation E-UTRA Adjacent Channel Leakage power Ratio (CA E-UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.3A-1. If the measured adjacent channel power is greater than - 50dBm then the E-UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.3A-1.

Table 6.6.2.3.3A-1: General requirements for CA E-UTRA_{ACLR}

	CA bandwidth class / CA E-UTRA _{ACLR} / Measurement bandwidth
	CA bandwidth class C
CA E-UTRA _{ACLR}	30 dB
CA E-UTRA channel Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} / - BW _{Channel_CA}

6.6.2.4 Void

6.6.2.4.1 Void

6.6.2A Void

<reserved for future use>

6.6.2B Out of band emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.2 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.6.3 apply.

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.3.1 Minimum requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (NRB) and channel bandwidths.

Table 6.6.3.1-1: Boundary between E-UTRA out of band and spurious emission domain

Channel bandwidth	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
OOB	2.8	6	10	15	20	25
boundary						
F _{OOB} (MHz)						

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than F_{OOB} (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be $F_{OOB} + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

Frequency Range Maximum Measurement Note Level bandwidth $9 \text{ kHz} \le f < 150 \text{ kHz}$ -36 dBm 1 kHz 150 kHz ≤ f < 30 MHz -36 dBm 10 kHz -36 dBm 100 kHz $30 \text{ MHz} \le f < 1000 \text{ MHz}$ 1 GHz ≤ f < 12.75 GHz -30 dBm 1 MHz 12.75 GHz ≤ f < 5^{th} harmonic of the upper frequency edge of the -30 dBm 1 MHz 1 UL operating band in GHz NOTE 1: Applies for Band 22, Band 42 and Band 43

Table 6.6.3.1-2: Spurious emissions limits

6.6.3.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the spurious emission requirement Table 6.6.3.1-2 apply for the frequency ranges that are more than F_{OOB} as defined in Table 6.6.3.1-1 away from edges of the assigned channel bandwidth on a component carrier. If for some frequency a spurious emission requirement of individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

NOTE: For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the requirements in Table 6.6.3.1-2 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.6.3.1-2 would be considered to be verified by the measurements verifying the one uplink inter-band CA spurious emission requirement.

For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth (Table 5.6A-1). For frequencies Δ fOOB greater than FOOB as specified in Table 6.6.3.1A-1 the spurious emission requirements in Table 6.6.3.1-2 are applicable.

Table 6.6.3.1A-1: Boundary between E-UTRA out of band and spurious emission domain for intraband contiguous carrier aggregation

CA Bandwidth Class	OOB boundary F _{OOB} (MHz)
A	Table 6.6.3.1-1
В	FFS
С	BW _{Channel_CA} + 5

For intra-band non-contiguous carrier aggregation transmission the spurious emission requirement is defined as a composite spurious emission requirement. Composite spurious emission requirement applies to frequency ranges that are more than F_{OOB} away from the edges of the sub-blocks. Composite spurious emission requirement is defined as follows

- a) Composite spurious emission requirement is a combination of individual sub-block spurious emission requirements
- b) In case the sub-block consist of one component carrier the sub-lock spurious emission requirement and F_{OOB} are defined in subclause 6.6.3.1
- c) If for some frequency an individual sub-block spurious emission requirement overlaps with the general spectrum emission mask or the sub-block bandwidth of another sub-block then it does not apply

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than F_{OOB} (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the aggregated channel should be $F_{OOB} + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band, for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.6.3.2-1: Requirements

Spurious emission									
E-UTRA Band	Protected band		ency MHz	range :)	Maximum Level (dBm)	MBW (MHz)	Note		
1	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44	F_{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 3, 34	F _{DL_low}	-	F_{DL_high}	-50	1	15		
	Frequency range	1880		1895	-40	1	15,27		
	Frequency range	1895		1915	-15.5	5	15, 26, 27		
	Frequency range	1915		1920	+1.6	5	15, 26, 27		
	Frequency range	1839.9	-	1879.9	-50	1	15		
2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 23, 24, 26, 27, 28, 29, 30, 41, 42	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 2, 25	F _{DL_low}	-	F _{DL_high}	-50	1	15		
	E-UTRA Band 43	F_{DL_low}	-	F _{DL_high}	-50	1	2		
3	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 43, 44	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 3	F _{DL_low}	-	F_{DL_high}	-50	1	15		
	E-UTRA Band 11, 18, 19, 21	F_{DL_low}	-	F _{DL_high}	-50	1	13		
	E-UTRA Band 22, 42	F _{DL_low}	-	F_{DL_high}	-50	1	2		
	Frequency range	1884.5	-	1915.7	-41	0.3	13		
4	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 41, 43	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 42	F _{DL_low}	-	F_{DL_high}	-50	1	2		
5	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 23, 24, 25, 28, 29, 30, 31, 38, 40, 42, 43	F _{DL low}	_	F _{DL_high}	-50	1			
	E-UTRA Band 41	F _{DL_low}	_	F _{DL_high}	-50	1	2		
	E-UTRA Band 26	859	_	869	-27	1			
6	E-UTRA Band 1, 9, 11, 34	F _{DL_low}	-	F _{DL_high}	-50	1			
	Frequency range	860	-	875	-37	1			
	Frequency range	875	-	895	-50	1			
	Frequency range	1884.5	-	1919.6	-41	0.3	7		
		1884.5	-	1915.7		0.0	8		
7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1			
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26		
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26		
	Frequency range	2595	-	2620	-40	1	15, 21		
8	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA band 3	F_{DL_low}	-	F_{DL_high}	-50	1	2		
	E-UTRA band 7	F_{DL_low}	-	F_{DL_high}	-50	1	2		
	E-UTRA Band 8	F_{DL_low}	-	F_{DL_high}	-50	1	15		
	E-UTRA Band 22, 41, 42, 43	F_{DL_low}	-	F_{DL_high}	-50	1	2		
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	23		
	Frequency range	860	-	890	-40	1	15, 23		
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 23		
9	E-UTRA Band 1, 11, 18, 19, 21, 26, 28, 34	F _{DL_low}	-	F _{DL_high}	-50	1			
	Frequency range	1884.5	-	1915.7	-41	0.3	8		
	Frequency range	945		960	-50	1			
	Frequency range	1839.9	-	1879.9	-50	1			
	Frequency range	2545	-	2575	-50	1			
	Frequency range	2595	-	2645	-50	1			

10	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,					1	1
10	23, 24, 25, 26, 27, 28, 29, 30, 41, 43	F _{DL low}	_	F _{DL high}	-50	1	
	E-UTRA Band 22, 42	F _{DL_low}	-	F _{DL high}	-50	1	2
11	E-UTRA Band 1, 11, 18, 19, 21, 28, 34	F _{DL_low}	_	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
	Frequency range	2545	•	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
12	E-UTRA Band 2, 5, 13, 14, 17, 23, 24, 25, 26, 27, 30, 41	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 4, 10	F _{DL low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12	F _{DL_low}		F _{DL high}	-50	1	15
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 17, 23, 25, 26, 27, 29, 41	F _{DL low}	_	F _{DL high}	-50	1	
	Frequency range	769		775	-35	0.00625	15
	Frequency range	799	-	805	-35	0.00625	11, 15
	E-UTRA Band 14	F _{DL low}	-	F _{DL high}	-50	1	15
	E-UTRA Band 24, 30	F _{DL_low}	-	F _{DL_high}	-50	1	2
14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 29, 30, 41	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	769	-	775	-35	0.00625	12, 15
	Frequency range	799	-	805	-35	0.00625	11, 12, 15
17	E-UTRA Band 2, 5, 13, 14, 17, 23, 24, 25, 26, 27, 30, 41	F _{DL low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 4, 10	F _{DL_low}	-	F _{DL high}	-50	1	2
	E-UTRA Band 12	F _{DL_low}	-	F _{DL high}	-50	1	15
18	E-UTRA Band 1, 11, 21, 34	F _{DL_low}	-	F _{DL high}	-50	1	
	Frequency range	860	-	890	-40	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	758	-	799	-50	1	
	Frequency range	799	-	803	-40	1	15
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
19	E-UTRA Band 1, 11, 21, 28, 34	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945		960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	

	T =					1	
20	E-UTRA Band 1, 3, 7, 8, 20, 22, 31, 32,	_		_	-50	1	
	33, 34, 40, 43	F _{DL_low}	-	F _{DL_high}	50	4	45
	E-UTRA Band 20	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 38, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	758	-	788	-50	1	
21	E-UTRA Band 1, 18, 19, 28, 34	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945	-	960	-50	1	
	Frequency range Frequency range	1839.9 2545	-	1879.9 2575	-50 -50	1	
		2595	_	2645	-50 -50	1	
22	Frequency range E-UTRA Band 1, 3, 7, 8, 20, 26, 27, 28,	2090	-	2043			
	31, 32, 33, 34, 38, 39, 40, 43	F _{DL_low}	_	F _{DL_high}	-50	1	
	Frequency range	3510	-	3525	-40	1	15
	Frequency range	3525	_	3590	-50	1	
23	E-UTRA Band 4, 5, 10, 12, 13, 14, 17,	0020		0000			
	23, 24, 26, 27, 29, 30, 41	F_{DL_low}	-	F _{DL_high}	-50	1	
24	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,	_			-50	1	
05	23, 24, 25, 26, 29, 30, 41	F _{DL_low}	-	F _{DL_high}			
25	E-UTRA Band 4, 5, 10,12, 13, 14, 17, 23, 24, 26, 27, 28, 29, 30, 41, 42	F _{DL low}	_	F _{DL high}	-50	1	
	E-UTRA Band 2	F _{DL low}	_	F _{DL high}	-50	1	15
	E-UTRA Band 25		H		-50	1	15
	E-UTRA Band 25	F _{DL_low}	-	F _{DL_high}	-50	1	2
26	E-UTRA Band 43 E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12,	F _{DL_low}	-	F _{DL_high}	-50	'	
20	13, 14, 17, 18,19, 21, 23, 24, 25, 26, 29,				-50	1	
	30, 31, 34, 40, 42, 43	F_{DL_low}	-	F _{DL_high}			
	E-UTRA Band 41	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	703	-	799	-50	1	
	Trequency range	799	-	803	-40	1	15
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
27	E-UTRA Band 1, 2, 3, 4, 5, 7, 10, 12, 13,						
	14, 17, 23, 25, 26, 27, 29, 30, 31, 38, 41,	F _n , .		Fa	-50	1	
	42, 43	F _{DL_low}	-	F _{DL_high}			
		F _{DL_low} 799	-	F _{DL_high}	-50 -35	0.00625	
	42, 43 Frequency range	799	-	805	-35	0.00625	
28	42, 43 Frequency range E-UTRA Band 28	799 F _{DL_low}	- - -	805 790	-35 -50	0.00625	
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20,	799	- - -	805	-35	0.00625	
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41	799 F _{DL_low}	- - -	805 790	-35 -50	0.00625	2
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43	F _{DL_low} F _{DL_low}	- - - -	790 FDL_high	-35 -50 -50	0.00625	2 19, 24
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21	FDL_low FDL_low FDL_low	- - - -	805 790 F _{DL_high} F _{DL_high}	-35 -50 -50	0.00625	
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1	FDL_low FDL_low FDL_low FDL_low FDL_low	- - - - -	790 FDL_high	-35 -50 -50 -50 -50	0.00625 1 1 1 1	19, 24 19, 25
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low 470	- - - - -	805 790 FDL_high FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1	19, 24
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low	- - - - - -	790 FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -42	0.00625 1 1 1 1 1 1 8	19, 24 19, 25 15, 35
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Frequency range Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low FDL_low 470 470 758	- - - - - - -	790 FDL_high FDL_high FDL_high FDL_high 694 710	-35 -50 -50 -50 -50 -50 -42 -26.2	0.00625 1 1 1 1 1 1 8 6	19, 24 19, 25 15, 35 34
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Frequency range Frequency range Frequency range Frequency range	799 F_DL_low F_DL_low F_DL_low F_DL_low 470 470 758 773		790 FDL_high FDL_high FDL_high FDL_high 694 710 773	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50	0.00625 1 1 1 1 1 8 6 1	19, 24 19, 25 15, 35 34
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range	F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} 470 470 758 773 662	-	790 FDL_high FDL_high FDL_high FDL_high FDL_high 694 710 773 803 694	-35 -50 -50 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2	0.00625 1 1 1 1 1 8 6	19, 24 19, 25 15, 35 34 15
28	Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range	F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} 470 470 758 773 662 1884.5	-	790 FDL_high FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41	0.00625 1 1 1 1 1 8 6 1 1 6 0.3	19, 24 19, 25 15, 35 34 15
	Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range	F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} 470 470 758 773 662 1884.5 1839.9	-	790 FDL_high FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50	0.00625 1 1 1 1 1 8 6 1 1 6 0.3 1	19, 24 19, 25 15, 35 34 15
28	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 1 1, 21 E-UTRA Band 1 Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range	F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low} 470 470 758 773 662 1884.5	-	790 FDL_high FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41	0.00625 1 1 1 1 1 8 6 1 1 6 0.3	19, 24 19, 25 15, 35 34 15
	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low 470 470 758 773 662 1884.5 1839.9 FDL_low FDL_low	-	790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 0.3 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 1 1, 21 E-UTRA Band 1 Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low 470 470 758 773 662 1884.5 1839.9 FDL_low	-	790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50	0.00625 1 1 1 1 1 8 6 1 0.3 1 1	19, 24 19, 25 15, 35 34 15
30	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low 470 470 758 773 662 1884.5 1839.9 FDL_low FDL_low	-	790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 0.3 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range	FDL_low FDL_low FDL_low FDL_low FDL_low 470 470 758 773 662 1884.5 1839.9 FDL_low FDL_low	-	790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high	-35 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 0.3 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30 31	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range	799 F_DL_low F_DL_low F_DL_low F_DL_low 470 470 758 773 662 1884.5 1839.9 F_DL_low F_DL_low F_DL_low F_DL_low	-	805 790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1 8 6 0.3 1 1 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30 31	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 11, 21 E-UTRA Band 1 Frequency range Fre	799 F_DL_low F_DL_low F_DL_low 470 470 470 470 484.5 1839.9 F_DL_low F_DL_lo	-	805 790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 1 1 6 0.3 1 1 1 1 1 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30 31 33	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 1 Frequency range Freque	799 F_DL_low F_DL_low F_DL_low F_DL_low 470 470 758 773 662 1884.5 1839.9 F_DL_low	-	805 790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 1 1 6 0.3 1 1 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30 31 33	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 1 Frequency range Freque	799 FDL low FDL low FDL low 470 470 758 773 662 1884.5 1839.9 FDL low FDL low FDL low FDL low FDL low FDL low FDL low	-	805 790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1 8 6 1 1 6 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19 2 2 5 15
30 31 33	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 1 Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 29, 30, 38, 41 E-UTRA Band 1, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 40, 42, 43 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44 Frequency range	799 FDL low FDL low FDL low 470 470 758 773 662 1884.5 1839.9 FDL low FDL low FDL low FDL low FDL low FDL low	-	805 790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 1 1 6 0.3 1 1 1 1 1 1 1 1	19, 24 19, 25 15, 35 34 15 15 8, 19
30 31 33	42, 43 Frequency range E-UTRA Band 28 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 41 E-UTRA Band 1, 4, 10, 22, 42, 43 E-UTRA Band 1 Frequency range Freque	799 FDL low FDL low FDL low 470 470 758 773 662 1884.5 1839.9 FDL low FDL low FDL low FDL low FDL low FDL low FDL low	-	805 790 FDL_high FDL_high FDL_high 694 710 773 803 694 1915.7 1879.9 FDL_high FDL_high FDL_high FDL_high	-35 -50 -50 -50 -50 -50 -50 -42 -26.2 -32 -50 -26.2 -41 -50 -50 -50 -50 -50 -50 -50	0.00625 1 1 1 1 1 1 8 6 1 1 6 0.3 1 1 1 1 1 1 0.3	19, 24 19, 25 15, 35 34 15 15 8, 19 2 2 5 15

36							
37							
38	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43	$F_{DL_{low}}$	-	F _{DL high}	-50	1	
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
	Frequency range	2645	-	2690	-40	1	15, 22
39	E-UTRA Band 22, 34, 40, 41, 42, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1805		1855	-40	1	32
	Frequency range	1855		1875	-15.5	5	15,26,32
	Frequency range	1875		1880	-15.5	5	15,26,33
40	E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44	F _{DL low}	1	F _{DL high}	-50	1	
41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	E-UTRA Band 9, 11, 18, 19, 21	F _{DL low}	-	F _{DL high}	-50	1	30
	Frequency range	1839.9		1879.9	-50	1	30
	Frequency range	1884.5		1915.7	-41	0.3	8, 30
42	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 31, 32, 33, 34, 38, 40, 41, 44	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
43	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 31,32, 33, 34, 38, 40	F _{DL low}	-	F _{DL high}	-50	1	
	E-UTRA Band 22	F _{DL_low}	-	F _{DL_high}	[-50]	[1]	3
44	E-UTRA Band 3, 5, 8, 34, 39, 41	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 40, 42	F_{DL_low}	-	F _{DL_high}	-50	1	2

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band
- NOTE 4: N/A
- NOTE 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- NOTE 6: N/A
- NOTE 7: Applicable when co-existence with PHS system operating in 1884.5-1919.6MHz.
- NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
- NOTE 9: N/A
- NOTE 10: N/A
- NOTE 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD
- NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB
- NOTE 13: This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz.
- NOTE 14: N/A
- NOTE 15: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.
- NOTE 16: N/A
- NOTE 17: N/A
- NOTE 18: N/A
- NOTE 19: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 20: N/A
- NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 22: This requirement is applicable for any channel bandwidths within the range 2570 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.

 For carriers with channel bandwidth overlapping the frequency range 2615 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE *P-Max*.
- NOTE 23: This requirement is applicable only for the following cases:
 for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 902.5 MHz $\leq F_c < 907.5$ MHz with an uplink transmission bandwidth less than or equal to 20 RB for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 907.5 MHz $\leq F_c \leq 912.5$ MHz without any restriction on uplink transmission bandwidth. for carriers of 10 MHz channel bandwidth when carrier centre frequency (F_c) is $F_c = 910$ MHz with an uplink transmission bandwidth less than or equal to 32 RB with RB_{start} > 3.
- NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 27: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink

transmission bandwidth less than or equal to 54 RB.

NOTE 28: N/A

NOTE 29: N/A

NOTE 30: This requirement applies when the E-UTRA carrier is confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz

NOTE 31: N/A

- NOTE 32: This requirement is applicable for an uplink transmission bandwidth less than or equal to [54 RB] for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1887.5 1889.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1890 1898 MHz.
- NOTE 33: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to [54 RB] for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1892.5 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1895 1903 MHz
- NOTE 34: This requirement is applicable for 5 and 10 MHz E-UTRA channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart < 48.
- NOTE 35: This requirement is applicable in the case of a 10 MHz E-UTRA carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.

6.6.3.2A Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For inter-band carrier aggregation with the uplink assigned to two E-UTRA bands, the requirements in Table 6.6.3.2A-0 apply on each component carrier with both component carriers are active.

NOTE: For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the requirements in Table 6.6.3.2A-0 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.6.3.2A-0 would be considered to be verified by the measurements verifying the one uplink inter-band CA UE to UE co-existence requirements.

Table 6.6.3.2A-0: Requirements for dual-uplink inter-band carrier aggregation

		Spurio	us	emission			
E-UTRA CA Configuration	Protected band		ency MHz	/ range z)	Maximum Level (dBm)	MBW (MHz)	Note
CA_1A-3A	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 38, 40, 41, 43, 44	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA band 3, 34	F_{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA band 11,18,19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	10
	E-UTRA band 22, 42	F _{DL low}	-	F _{DL high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	10
Frequency range		1880		1895	-40	1	3,12
	Frequency range	1895		1915	-15.5	5	3, 12, 13
	Frequency range	1915		1920	+1.6	5	3, 12, 13
CA_1A-5A	E-UTRA Band 1, 5, 7, 8, 22, 28, 31, 38, 40, 42, 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA band 3,34	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA band 26	859	-	869	-27	1	
CA_1A-7A	E-UTRA Band 1, 2, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31,32, 40, 42, 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA band 3, 34	F_{DL_low}	-	F_{DL_high}	-50	1	3
	Frequency range	1880		1895	-40	1	3,12
	Frequency range	1895		1915	-15.5	5	3, 12, 13
	Frequency range	1915		1920	+1.6	5	3, 12, 13
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
CA_1A-8A	Frequency range E-UTRA Band 1, 5, 20, 26, 28,	2595 F _{DL low}	-	2620 F _{DL high}	-40 -50	1	3, 14
	31, 32, 38, 40	F _{DL_low}		F _{DL_high}	-50	1	2,3
	E-UTRA band 3, 34		_		-50	1	2,3
	E-UTRA band 7 E-UTRA Band 8	F _{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA band 11, 21	F _{DL_low}	-	F_{DL_high} F_{DL_high}	-50	1	11
	E-UTRA band 22, 41, 42, 43	F _{DL_low}		F _{DL_high}	-50	1	2
	Frequency range	860	-	890	-40	1	3, 11
	Frequency range	1884.5	_	1915.7	-41	0.3	4, 11
	Frequency range	1880		1895	-40	1	3,12
	Frequency range	1895		1915	-15.5	5	3, 12, 13
	Frequency range	1915		1920	+1.6	5	3, 12, 13
CA_1A-19A	E-UTRA Band 1, 11, 21, 28	F _{DL_low}	-	F _{DL_high}	-50	1	-, , -
_	E-UTRA Band 34	F _{DL low}	-	F _{DL_high}	-50	1	3
	Frequency range	860	-	890	-40	1	3, 8
	Frequency range	945	-	960	-50	1	3
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 4, 7
	Frequency range	1839.9	-	1879.9	-50	1	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
CA_1A-21A	E-UTRA Band 11	F_{DL_low}	-	F _{DL_high}	-35	1	3, 16
	E-UTRA Band 1, 18, 19, 28, 34	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 21	F_{DL_low}		F _{DL_high}	-50	1	16
	Frequency range	1884.5		1915.7	-41	0.3	4
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	_	1879.9	-50	1	
	Frequency range	2545	_	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
CA_2A-4A	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 26, 27, 28, 29, 30, 41	$F_{DL_{low}}$		F_{DL_high}	-50	1	
	E-UTRA Band 2, 25	F _{DL low}	-	F _{DL_high}	-50	1	3
	E-UTRA Band 42, 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
CA_2A-13A	E-UTRA Band 4, 5,10,12,13,17,	F _{DL_low}	-	F _{DL_high}	-50	1	<u> </u>

1	22, 23, 26, 27, 29, 41, 42	I	1				
	E-UTRA Band 2,14, 25	F _{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA Band 24, 30, 43	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	769	_	775	-35	0.00625	3
	Frequency range	799	-	805	-35	0.00625	3, 9
CA_3A-5A	E-UTRA Band 1, 5, 7, 8, 22, 28, 31, 38, 40, 42, 43	F _{DL_low}	-	F _{DL_high}	-50	1	0, 0
	E-UTRA band 3,34	F _{DL low}		F _{DL_high}	-50	1	3
	E-UTRA band 3,34	859		869	-27	1	3
CA_3A-7A	E-UTRA band 26 E-UTRA Band 1, 7, 8, 20, 26, 27,	039	-		-21	ı ı	
CA_SA-7A	28, 29, 34, 40, 41, 43, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3	F _{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	10
	E-UTRA band 22, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	10
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_3A-8A	E-UTRA Band 1, 20, , 27, 28, 31, 33, 34, 38, 39, 40, 44	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 8	F_{DL_low}	-	F _{DL_high}	-50	1	2, 3
	E-UTRA band 11, , , 21,	F _{DL_low}	-	F _{DL_high}	-50	1	10,11
	E-UTRA band 7, 22, 41, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	4, 10, 11
	Frequency range	860	-	890	-40	1	3,11,17
CA_3A-19A	E-UTRA Band 1, 11, 21, 28	F _{DL_low}	-	F _{DL_high}	-50	1	0, ,
0/1_0/1 10/1	E-UTRA Band 1, 11, 21, 28	F _{DL_low}	_	F _{DL_high}	-50	1	3
	Frequency range	860		890	-40	1	3, 8
	Frequency range		-				
		945	-	960	-50	1	3
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 4, 7
	Frequency range	1839.9	-	1879.9	-50	1	3
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
CA_3A-20A	E-UTRA Band 1, 7, 8, 33, 34, 43	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 3, 20	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA Band 22, 38, 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
CA_3A-26A	E-UTRA Band 1, 2, 4, 5, 7, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 28, 20, 20, 24, 40, 42	F _{DL_low}	-	F _{DL_high}	-50	1	
	29, 30, 31, 34, 40, 43	_		_	50	4	
	E-UTRA band 3	F _{DL_low}	-	F _{DL_high}	-50	1	3
	E-UTRA band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	10
	E-UTRA band 22, 41, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	4, 10
	Frequency range	703		799	-50	1	
	1 requestion ratings	799	-	803	-40	1	3
	Frequency range	851		859	-53	0.00625	15
	E-UTRA Band 27	F _{DL low}	<u></u>	859	-32	1	15
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
CA_4A-7A	E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 27, 28, 29	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_4A-12A	E-UTRA Band 2, 5, 7,13, 14, 17, 22, 23, 24, 25, 26, 27,28, 29, 30,	F _{DL_low}	_	F _{DL_high}	-50	1	<u> </u>
	41, 43	_					
	E-UTRA Band 4, 10. 42	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 12	F_{DL_low}	L-	F_{DL_high}	-50	1	3
CA_4A-13A	E-UTRA Band 2,4, 5, 7, 10,12,13,17, 22, 23,25, 26, 27, 29, 41, 43	F _{DL_low}	_	F _{DL_high}	-50	1	
	E-UTRA Band 14	F _{DL_low}	-	F _{DL_high}	-50	1	3

	E-UTRA Band 24, 30, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	769	-	775	-35	0.00625	3
	Frequency range	799	-	805	-35	0.00625	3, 9
CA_4A-17A	E-UTRA Band 2, 5, 7,13, 14, 17, 22, 23, 24, 25, 26, 27,28, 29, 30, 41, 43	F _{DL_low}	-	F_{DL_high}	-50	1	,
	E-UTRA Band 4, 10. 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12	F_{DL_low}	-	F _{DL_high}	-50	1	3
CA_5A-7A	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 22, 28, 29, 30, 31, 40, 42, 43	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	E-UTRA band 26	859	-	869	-27	1	
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_5A-12A	E-UTRA Band 2, 5, 13, 14, 17, 22, 23, 24, 25, 28, 29, 30, 31, 42, 43	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA band 4, 10, 41	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA band 26	859	-	869	-27	1	
	E-UTRA band 12	F_{DL_low}	-	F_{DL_high}	-50	1	3
CA_5A-17A	E-UTRA Band 2, 5, 13, 14, 17, 22, 23, 24, 25, 28, 29, 30, 31, 42, 43	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA band 4, 10, 41	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA band 26	859	-	869	-27	1	
	E-UTRA band 12	F_{DL_low}	-	F_{DL_high}	-50	1	3
CA_7A-20A	E-UTRA Band 1,3, 7, 8, 22, 27, 28, 29, 33, 34, 40, 43	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 20	F_{DL_low}	-	F_{DL_high}	-50	1	3
	E-UTRA Band 38, 42	F_{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	3, 13, 14
	Frequency range	2575	-	2595	-15.5	5	3, 13, 14
	Frequency range	2595	-	2620	-40	1	3, 14
CA_7A-28A	E-UTRA Band 3,7,8, 20,27,31,34	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 1, 22, 42, 43	F_{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 1	F_{DL_low}	-	F_{DL_high}	-50	1	5, 6
	Frequency range	758	-	773	-32	1	3
	Frequency range	773	-	803	-50	1	
CA_19A-21A	E-UTRA Band 1, 18, 19, 28, 34	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 11	F_{DL_low}	-	F _{DL_high}	-50	1	3, 16
	E-UTRA Band 21	F_{DL_low}	-	F_{DL_high}	-50	1	16
	Frequency range	860	-	890	-40	1	3, 8
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	4
	Frequency range	1839.9		1879.9	-50	1	
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
CA 39A-41A	E-UTRA Band 34, 40, 42, 44	F _{DL low}	-	F _{DL high}	-50	1	
	Frequency range	1805	-	1855	[-40]	1	19
	Frequency range	1855	-	1875	[-15.5]	5	3, 13,19
	Frequency range	1875	-	1880	[-15.5]	5	3, 13, 20
	Frequency range	1884.5	-	1915.7	-41	0.3	4, 18

NOTE 1: F_{DL_low} and F_{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2nd, 3rd or 4th harmonic totally or partially overlaps the measurement bandwidth (MBW).

NOTE 3: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

NOTE 4: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.

NOTE 5: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.

- NOTE 6: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
- NOTE 7: Applicable when NS_05 in section 6.6.3.3.1 is signalled by the network.
- NOTE 8: Applicable when NS 08 in subclause 6.6.3.3.3 is signalled by the network
- NOTE 9: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD.
- NOTE10: This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz.
- NOTE 11: This requirement is applicable only for the following cases:
 - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 902.5 MHz \leq F_c < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 907.5 MHz \leq F_c \leq 912.5 MHz without any restriction on uplink transmission bandwidth.
 - for carriers of 10 MHz channel bandwidth when carrier centre frequency (F_c) is F_c = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RB_{start} > 3.
- NOTE 12: This requirement is applicable for any channel bandwidths within the range 1920 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE13: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 14: This requirement is applicable for any channel bandwidths within the range 2500 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 15: Applicable when NS_15 in subclause 6.6.3.3.8 is signalled by the network.
- NOTE 16: Applicable when NS_09 in subclause 6.6.3.3.4 is signalled by the network
- NOTE 17: This requirement is applicable only when Band 3 transmission frequency is less than or equal to 1765 MHz.
- NOTE 18: This requirement applies when the E-UTRA carrier is confined within 2545-2575MHz or 2595-2645MHz and the channel bandwidth is 10 or 20 MHz
- NOTE 19: This requirement is applicable for an uplink transmission bandwidth less than or equal to [54 RB] for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1887.5 1889.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1890 1898 MHz.
- NOTE 20: This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to [54 RB] for carriers of 15 MHz bandwidth when carrier center frequency is within the range 1892.5 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier center frequency is within the range 1895 1903 MHz.

Table 6.6.3.2A-1: Requirements for intraband carrier aggregation

E-		Spurious	em	ission			
UTRA CA Config uration	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
CA_1C	E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 38, 40, 41, 42, 43, 44	F _{DL low}	_	F _{DL high}	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
CA_3C	E-UTRA Band 1, 7, 8, 20, 26, 27, 28, 31, 33, 34, 38, 41, 43, 44	F _{DL_low}	_	F_{DL_high}	-50	1	
	E-UTRA Band 3	F _{DL_low} - F _{DL_high}		-50	1	10	
	E-UTRA Band 22, 42	F _{DL_low}	-	F_{DL_high}	-50	1	2
CA_7C	E-UTRA Band 1, 3, 7, 8, 20, 22, 27, 28, 29, 30. 31, 33, 34, 40, 42, 43	F _{DL_low}	_	F _{DL_high}	-50	1	
CA_38C	E-UTRA Band 1,3, 8, 20, 22, 27, 28, 29, 30, 31, 33, 34, 40, 42, 43	F_{DL_low}	-	F _{DL_high}	-50	1	
CA_39C	E-UTRA Band 22, 34, 40, 41, 42, 44	F_{DL_low}	-	F_{DL_high}	-50	1	
CA_40C	E-UTRA Band 1, 3, 7, 8, 20, 22, 26, 27, 33, 34, 38, 39, 41, 42, 43, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
CA_41C	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 42, 44	F_{DL_low}	1	F_{DL_high}	-50	1	
CA_42C	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 11, 19, 20, 21, 25, 26, 27, 28, 31, 33, 34, 38, 40, 41, 44	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	

NOTE 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval

NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band

NOTE 4: N/A NOTE 5: N/A

NOTE 6: N/A NOTE 7: N/A

NOTE 8: N/A

NOTE 9: N/A

NOTE 10: The requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

NOTE 11: N/A

NOTE 12: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

NOTE 13: N/A

NOTE 14: N/A

Spurious emission E-UTRA CA **MBW** Protected band Frequency range Maximum Note Configur (MHz) Level (MHz) ation (dBm) E-UTRA Band 2, 4, 5, 7, 10, 12, 13, 14, 17, 22, 23, 24, 25, 26, 27, -50 1 CA_4A- F_{DL_low} F_{DL_high} 28, 29, 30, 41, 43 4A E-UTRA Band 42 F_{DL_high} -50 F_{DL_low}

Table 6.6.3.2A-2: Requirements for intraband non-contiguous CA

NOTE 1: F_{DL_low} and F_{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1

NOTE 1: PDL_low and PDL_high refer to each E-OTRA frequency band specified in Table 5.5-1

NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.6-1) for which the 2nd or 3rd harmonic, i.e. the frequency equal to two or three times the frequency of that RE, is within the measurement bandwidth (MBW).

6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.6.3.3.1 Minimum requirement (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.1-1: Additional requirements (PHS)

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)			Measurement bandwidth	Note	
	5 10 15 20 MHz MHz MHz MHz					
	IVITIZ	IVITIZ	IVITIZ	IVITIZ		
1884.5 ≤ f ≤1915.7	-41	-41	-41	-41	300 KHz	1

NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned, where channel BW is as defined in subclause 5.6. Additional restrictions apply for operations below this point.

The requirements in Table 6.6.3.3.1-1 apply with the additional restrictions specified in Table 6.6.3.3.1-2 when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is less than the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned.

Table 6.6.3.3.1-2: RB restrictions for additional requirement (PHS).

15 MHz channel bandwidth with f _c = 1932.5 MHz							
RB _{start} 0-7 8-66 67-74							
L_{CRB} N/A \leq MIN(30, 67 – RB _{start}) N/A							
	20 MHz channel ba	$ndwidth with f_c = 1930 MHz$	Z				
RB _{start}	0-23	24-75	76-99				
L_{CRB} N/A \leq MIN(24, 76 – RB _{start}) N/A							

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

6.6.3.3.2 Minimum requirement (network signalled value "NS_07")

When "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.2-1: Additional requirements

Frequency band (MHz)		Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth				
		10 MHz					
769 :	≤ f ≤ 775	-57	6.25 kHz				
NOTE:	NOTE: The emissions measurement shall be sufficiently power averaged to ensure						
	standard standard deviation < 0.5 dB.						

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

6.6.3.3.3 Minimum requirement (network signalled value "NS_08")

When "NS 08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.3-1: Additional requirement

Frequency band	Channel ban	Channel bandwidth / Spectrum emission limit (dBm)						
(MHz)	5MHz	5MHz 10MHz 15MHz						
860 ≤ f ≤ 890	-40	-40 -40 -40						

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

6.6.3.3.4 Minimum requirement (network signalled value "NS_09")

When "NS 09" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.4-1: Additional requirement

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)		Measurement bandwidth	
	5MHz	10MHz	15MHz	
1475.9 ≤ f ≤ 1510.9	-35	-35	-35	1 MHz

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

NOTE 2: To improve measurement accuracy, A-MPR values for NS_09 specified in Table 6.2.4-1 in subclause 6.2.4 are derived based on both the above NOTE 1 and 100 kHz RBW.

6.6.3.3.5 Minimum requirement (network signalled value "NS_12")

When "NS 12" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.5-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz	Measurement bandwidth
806 ≤ f ≤ 813.5	-42	6.25 kHz
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 814.2 MHz.		nnel edge at or
	NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.	

6.6.3.3.6 Minimum requirement (network signalled value "NS 13")

When "NS 13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.6-1: Additional requirements

-	ency band MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
		1.4, 3, 5 MHz	
806	≤ f ≤ 816	-42	6.25 kHz
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 819 MHz.		inel edge at or	
NOTE 2:	NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.		aged to ensure a

6.6.3.3.7 Minimum requirement (network signalled value "NS_14")

When "NS 14" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.7-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.7-1: Additional requirements

	ency band MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
		10 MHz, 15 MHz	
806	≤ f ≤ 816	-42	6.25 kHz
NOTE 1: The requirement applies for E-UTRA carriers with lower channel above 824 MHz.		inel edge at or	
NOTE 2:	NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.		aged to ensure a

6.6.3.3.8 Minimum requirement (network signalled value "NS_15")

When "NS 15" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.8-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.8-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz	Measurement bandwidth
851 ≤ f ≤ 859	-53	6.25 kHz
NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.		aged to ensure a

6.6.3.3.9 Minimum requirement (network signalled value "NS_16")

When "NS_16" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.9-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.9-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4, 3, 5, 10 MHz	Measurement bandwidth	Note
790 ≤ f ≤ 803	-32	1 MHz	

6.6.3.3.10 Minimum requirement (network signalled value "NS 17")

When "NS_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.10-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.10-1: Additional requirements

Frequency	Channel bandwidth / Spectrum	Measurement	Note	
band	emission limit (dBm)	bandwidth		
(MHz)	5, 10 MHz			
470 ≤ f ≤ 710	-26.2	6 MHz	1	
NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz				
and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.				

6.6.3.3.11 Minimum requirement (network signalled value "NS_18")

When "NS_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.11-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.11-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth	Note
692-698	-26.2	6 MHz	

6.6.3.3.12 Minimum requirement (network signalled value "NS_19")

When "NS_19" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.12-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.12-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 3, 5, 10, 15, 20 MHz	Measurement bandwidth	Note
662 ≤ f ≤ 694	-25	8 MHz	

6.6.3.3.13 Minimum requirement (network signalled value "NS_11")

When "NS_11" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.13-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Table 6.6.3.3.13-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4, 3, 5, 10, 15, 20 MHz	Measurement bandwidth
E-UTRA Band 2	-50	1 MHz
1998 ≤ f ≤ 1999	-21	1 MHz
1997 ≤ f < 1998	-27	1 MHz
1996 ≤ f < 1997	-32	1 MHz
1995 ≤ f < 1996	-37	1 MHz
1990 ≤ f < 1995	-40	1 MHz

6.6.3.3.14 Minimum requirement (network signalled value "NS_20")

When "NS_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.14-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Table 6.6.3.3.14-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth
1990 ≤ f < 1999	-40	1 MHz
1999 ≤ f ≤ 2000	-40	Note 1
Note 1: The measurement bandwidth is 1% of the applicable E-UTRA channel bandwidth.		

6.6.3.3.15 Minimum requirement (network signalled value "NS_21")

When "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.15-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Table 6.6.3.3.15-1: Additional requirements

Frequency band	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
(MHz)	5, 10 MHz	
2200 ≤ f < 2288	-40	1 MHz
2288 ≤ f < 2292	-37	1 MHz
2292 ≤ f < 2296	-31	1 MHz
2296 ≤ f < 2300	-25	1 MHz
2320 ≤ f < 2324	-25	1 MHz
2324 ≤ f < 2328	-31	1 MHz
2328 ≤ f < 2332	-37	1 MHz
2332 ≤ f ≤ 2395	-40	1 MHz

6.6.3.3.16 Minimum requirement (network signalled value "NS_22")

When "NS 22" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.16-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.16-1: Additional requirement

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	MBW						
3400 ≤ f ≤ 3800	-23 (Note 1, Note 3)	5 MHz						
	-40 (Note 2)	1 MHz						
MOTER 1 TEL:	NOTE 1. This was in the little of the control of th							

NOTE 1: This requirement applies within an offset between 5 MHz and 25 MHz from the lower and from the upper edge of the channel bandwidth.

NOTE 2: This requirement applies from 3400 MHz up to 25 MHz below the lower E-UTRA channel edge and from 25 MHz above the upper E-UTRA channel edge up to 3800 MHz.

NOTE 3: This emission limit might imply risk of harmful interference to UE(s) operating in the protected operating band

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth.

6.6.3.3.17 Minimum requirement (network signalled value "NS 23")

When "NS 23" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.17-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.17-1: Additional requirement

Frequency band (MHz)		Channel bandwidth / Spectrum emission limit (dBm)	MBW						
		5, 10, 15, 20 MHz							
3400	≤ f ≤ 3800	-23 (Note 1, Note 4)	5 MHz						
		-40 (Note 2)	1 MHz						
NOTE 1:	This requirem	nent applies within an offset between 5 MHz + I	F _{offset_NS_23} and						
	25 MHz + F _{off}	set_NS_23 from the lower and from the upper edg	es of the						
	channel band	width.							
NOTE 2:	This requirem	nent applies from 3400 MHz up to 25 MHz + F	offset_NS_23 below						
	the lower E-U	TRA channel edge and from 25 MHz + Foffset_	NS_23 above the						
	upper E-UTR	A channel edge up to 3800 MHz.							
NOTE 3:	F _{offset_NS_23} is:								
	0 MHz for 5 N	/IHz channel BW,							
	5 MHz for 10	for 10 MHz channel BW,							
	9 MHz for 15	15 MHz channel BW and							
	12 MHz for 20	for 20 MHz channel BW.							
NOTE 4:	This emission	n limit might imply risk of harmful interference	e to UE(s)						
	operating in t	he protected operating band	·						

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth.

6.6.3.3.18 Void

Table 6.6.3.3.18-1: Void

6.6.3.3A Additional spurious emissions for CA

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell reconfiguration message.

6.6.3.3A.1 Minimum requirement for CA_1C (network signalled value "CA_NS_01")

When "CA_NS_01" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.1-1: Additional requirements (PHS)

Protected band	Frequenc	y ra	inge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note		
E-UTRA band 34	FDL_low	-	FDL_high	-50	1			
Frequency range	1884.5	-	1915.7	-41	0.3	1		
NOTE 1: Applicable when the aggregated channel bandwidth is confined within frequency range 1940 – 1980 MHz								

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

6.6.3.3A.2 Minimum requirement for CA_1C (network signalled value "CA_NS_02")

When "CA_NS_02" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.2-1: Additional requirements

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
E-UTRA band 34	F_{DL_low}	-	F _{DL_high}	-50	1	
Frequency range	1900	-	1915	-15.5	5	1, 2
Frequency range	1915	-	1920	+1.6	5	1, 2

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.14-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.3 Minimum requirement for CA_1C (network signalled value "CA_NS_03")

When "CA_NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.3-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.3-1: Additional requirements

Protected band	Frequenc	cy ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
E-UTRA band 34	F_{DL_low}	-	F _{DL_high}	-50	1	
Frequency range	1880	-	1895	-40	1	
Frequency range	1895	-	1915	-15.5	5	1, 2
Frequency range	1915		1920	+1.6	5	1, 2

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.4 Minimum requirement for CA_38C (network signalled value "CA_NS_05")

When "CA_NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth. This requirement is applicable for carriers with aggregated channel bandwidths confined in 2570 - 2615 MHz.

Table 6.6.3.3A.4-1: Additional requirements

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
Frequency range	2620	-	2645	-15.5	5	1, 2, 3
Frequency range	2645	-	2690	-40	1	1, 3

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

NOTE 3: This requirement is applicable for carriers with aggregated channel bandwidths confined in 2570-2615 MHz.

6.6.3.3A.5 Minimum requirement for CA_7C (network signalled value "CA_NS_06")

When "CA_NS_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.5-1: Additional requirements

Protected band	Frequenc	cy rar	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
Frequency range	2570	-	2575	+1.6	5	1, 2
Frequency range	2575	-	2595	-15.5	5	1, 2
Frequency range	2595	-	2620	-40	1	

NOTE 1: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.6 Minimum requirement for CA_39C (network signalled value "CA_NS_07")

When "CA_NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.6-1: Additional requirements

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
Frequency range	1805	-	1855	[-40]	1	
Frequency range	1855	-	1875	[-15.5]	5	2, 3
Frequency range	1875	-	1880	[-15.5] ¹	5	2, 3

NOTE 1: This requirement is applicable for carriers with aggregated channel bandwidths confined in 1885-1920 MHz.

NOTE 2: The requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

6.6.3.3A.7 Minimum requirement for CA_42C (network signalled value "CA_NS_08")

When "CA_NS_08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.7-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Table 6.6.3.3A.6-1: Additional requirements

Protected band	Frequency range (MHz)		nge (MHz)	Maximum Level (dBm)	MBW (MHz)	
43	$F_{DL_{low}}$	-	F _{DL_high}	[-50]	1	
NOTE: The [-50] dBm/MHz in 6.6.3.3A.6-1 is for unsynchronized operation. To meet these						
requirements some restriction will be needed for either the operating band or protected band.						

6.6.3A Void

<reserved for future use>

6.6.3B Spurious emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.3 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-1.

For single-antenna port scheme, the general requirements in subclause 6.6.3 apply.

6.6A Void

6.6B Void

6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.

BW Channel (UL) 5MHz 10MHz 15MHz 20MHz Interference Signal 5MHz 10MHz 10MHz 20MHz 15MHz 30MHz 20MHz 40MHz Frequency Offset Interference CW Signal -40dBc Level Intermodulation Product -29dBc -35dBc -29dBc -35dBc -29dBc -35dBc -29dBc -35dBc Measurement bandwidth 4.5MHz 9.0MHz 9.0MHz 13.5MHz 13.5MHz 4.5MHz 18MHz 18MHz

Table 6.7.1-1: Transmit Intermodulation

6.7.1A Minimum requirement for CA

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product on both component carriers when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through rectangular filter with measurement bandwidth shown in Table 6.7.1A-1.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands, the requirement is specified in Table 6.7.1-1 which shall apply on each component carrier with both component carriers active.

For intra-band contiguous carrier aggregation the requirement of transmitting intermodulation is specified in Table 6.7.1A-1.

Table 6.7.1A-1: Transmit Intermodulation

CA bandwidth class(UL)	С		
Interference Signal Frequency Offset	BW _{Channel_CA}	2*BW _{Channel_CA}	
Interference CW Signal Level	-40dBc		
Intermodulation Product	-29dBc	-35dBc	
Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}		

6.7.1B Minimum requirement for UL-MIMO

For UE supporting UL-MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.7.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.7.1 apply.

- 6.8 Void
- 6.8.1 Void
- 6.8A Void

6.8B Time alignment error for UL-MIMO

For UE(s) with multiple transmit antenna connectors supporting UL-MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

6.8B.1 Minimum Requirements

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements,

assuming a 0 dBi gain antenna. . For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.4-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers (one component carrier per sub-block), an in-gap test refers to the case when the interfering signal is located at a negative offset with respect to the assigned channel frequency of the highest carrier frequency and located at a positive offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers (one component carrier per sub-block), an out-of-gap test refers to the case when the interfering signal(s) is (are) located at a positive offset with respect to the assigned channel frequency of the highest carrier frequency, or located at a negative offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers with channel bandwidth larger than or equal to 5 MHz (one component carrier per sub-block), the existing adjacent channel selectivity requirements, in-band blocking requirements (for each case), and narrow band blocking requirements apply for in-gap tests only if the corresponding interferer frequency offsets with respect to the two measured carriers satisfy the following condition in relation to the sub-block gap size W_{gap} for at least one of these carriers j, j = 1,2, so that the interferer frequency position does not change the nature of the core requirement tested:

$$Wgap \ge 2 |FInterferer (offset)_{i}| - BWChannel(_{i})$$

where $F_{Interferer (offset),j}$ is the interferer frequency offset with respect to carrier j as specified in subclause 7.5.1, subclause 7.6.1 and subclause 7.6.3 for the respective requirement and $BW_{Channel(j)}$ the channel bandwidth of carrier j. The interferer frequency offsets for adjacent channel selectivity, each in-band blocking case and narrow-band blocking shall be tested separately with a single in-gap interferer at a time.

For a ProSe UE that supports both ProSe Direct Discovery and ProSe Direct Communication, the receiver characteristics specified in clause 7 for ProSe Direct Communication shall apply.

For ProSe Direct Discovery and ProSe Direct Communication on E-UTRA ProSe operating bands that correspond to TDD E-UTRA operating bands as specified in subclause 5.5D, the only additional requirement for ProSe is specified in subclause 7.4D is applicable.

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. These requirements apply to all UE categories unless stated otherwise. Requirements for 4 ports are FFS. With the exception of subclause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

For a category 0 UE the requirements in Section 7 assume that the receiver is equipped with single Rx port.

7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports for all UE categories except category 0, or to the single antenna port for UE category 0, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3.1 Minimum requirements (QPSK)

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2

Table 7.3.1-1: Reference sensitivity QPSK PREFSENS

Channel bandwidth										
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode			
1			-100	-97	-95.2	-94	FDD			
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD			
3	-101.7	-98.7	-97	-94	-92.2	-91	FDD			
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD			
5	-103.2	-100.2	-98	-95			FDD			
6			-100	-97			FDD			
7			-98	-95	-93.2	-92	FDD			
8	-102.2	-99.2	-97	-94			FDD			
9			-99	-96	-94.2	-93	FDD			
10			-100	-97	-95.2	-94	FDD			
11			-100	-97			FDD			
12	-101.7	-98.7	-97	-94			FDD			
13			-97	-94			FDD			
14			-97	-94			FDD			
17			-97	-94			FDD			
18			-100 ⁷	-97 ⁷	-95.2 ⁷		FDD			
19			-100	-97	-95.2		FDD			
20			-97	-94	-91.2	-90	FDD			
21			-100	-97	-95.2		FDD			
22			-97	-94	-92.2	-91	FDD			
23	-104.7	-101.7	-100	-97	-95.2	-94	FDD			
24			-100	-97			FDD			
25	-101.2	-98.2	-96.5	-93.5	-91.7	-90.5	FDD			
26	-102.7	-99.7	-97.5 ⁶	-94.5 ⁶	-92.7 ⁶		FDD			
27	-103.2	-100.2	-98	-95			FDD			
28		-100.2	-98.5	-95.5	-93.7	-91	FDD			
30			-99	-96			FDD			
31	-99.0	-95.7	-93.5				FDD			
33			-100	-97	-95.2	-94	TDD			
34			-100	-97	-95.2		TDD			
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD			
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD			
37			-100	-97	-95.2	-94	TDD			
38			-100	-97	-95.2	-94	TDD			
39			-100	-97	-95.2	-94	TDD			
40			-100	-97	-95.2	-94	TDD			
41			-98	-95	-93.2	-92	TDD			
42			-99	-96	-94.2	-93	TDD			
43			-99	-96	-94.2	-93	TDD			
44		[-100.2]	[-98]	[-95]	[-93.2]	[-92]	TDD			

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

NOTE 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

NOTE 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

NOTE 6: ⁶ indicates that the requirement is modified by -0.5 dB when the carrier

frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.

NOTE 7: For a UE that support both Band 18 and Band 26, the reference sensitivity level for Band 26 applies for the applicable channel bandwidths.

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1-2.

NOTE: Table 7.3.1-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex G (informative).

For the UE which supports inter-band carrier aggregation configuration in Table 7.3.1-1A and Table 7.3.1-1B with the uplink in one or two E-UTRA bands, the minimum requirement for reference sensitivity in Table 7.3.1-1 shall be increased by the amount given in $\Delta R_{IB,c}$ in Table 7.3.1-1A and Table 7.3.1-1B for the applicable E-UTRA bands.

Table 7.3.1-1A: ΔR_{IB,c} (two bands)

Inter-band CA Configuration	E-UTRA Band	ΔR _{IB,c} [dB]
CA_1A-3A	1 3	0
CA_1A-5A	1	0
CA_1A-7A	5 1	0 0
CA_1A-8A	7 1	0 0
	<u>8</u> 1	0 0
CA_1A-11A	11 1	0
CA_1A-18A	18	0 0
CA_1A-19A	<u>1</u> 19	0 0
CA_1A-20A	<u>1</u> 20	0
CA_1A-21A	1 21	0
CA_1A-26A	1	0
CA_1A-28A	<u>26</u> 1	0 0
	28 1	0.2
CA_1A-41A ⁸	41 1	0 0
CA_1A-41C ⁸	41	0
CA_1A-42A	1 42	0 [0.5]
CA_1A-42C	<u>1</u> 42	[0.5]
CA_2A-4A	2 4	0.3 0.3
CA_2A-4A-4A	2	0.3
CA_2A-5A	4 2	0.3
	<u>5</u> 2	0 0
CA_2A-2A-5A	5 2	0
CA_2A-12A	12	0
CA_2A-12B	2 12	0 0
CA_2A-13A	2 13	0 0
CA_2A-2A-13A	2 13	0
CA_2A-17A	2 17	0 0.5
CA_2A-30A	2	0.4
CA_3A-5A	30 3	0.5 0
	5 3	0
CA_3A-7A	7 3	0
CA_3A-7C	7	0
CA_3C-7A	3 7	0 0
CA_3A-8A	3 8	0 0
CA_3A-19A	3	0

19 0 CA_3A-20A 20 0 CA_3A-26A 26 0 CA_3A-27A 3 0 CA_3A-28A 28 0 CA_3A-42A 3 0.2 CA_3A-42C 42 [0.5] CA_3A-42C 42 [0.5] CA_4A-5A 4 0 CA_4A-5A 5 0 CA_4A-7A 4 0.5 CA_4A-7A 7 0.5 CA_4A-12A 12 0.5 CA_4A-12A 12 0.5 CA_4A-12A 4 0 CA_4A-12A 4 0.5 CA_4A-12B 12 0.5 CA_4A-12A 4 0 CA_4A-12A 12 0.5 CA_4A-13A 4 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-13A 13 0		T	
CA_3A-20A		19	0
CA_3A-20A	04 04 004	3	0
CA_3A-26A 3 0 CA_3A-27A 27 0 CA_3A-28A 3 0 CA_3A-42A 42 [0.5] CA_3A-42C 42 [0.5] CA_4A-5A 5 0 CA_4A-5A 4 0 CA_4A-4A-5A 5 0 CA_4A-4A-5A 5 0 CA_4A-4A-7A 7 0.5 CA_4A-12A 4 0.5 CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-13A 4 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-13A 4 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-17A 17 0.5 <td>CA_3A-20A</td> <td></td> <td></td>	CA_3A-20A		
CA_3A-2FA		i	
CA_3A-27A	CA 3A-26A		
CA_3A-2FA	0/1_0/120/1	26	0
CA_3A-2FA		3	0
CA_3A-28A 3 0 CA_3A-42A 3 0.2 CA_3A-42C 3 0.2 CA_4A-5A 4 0 CA_4A-5A 5 0 CA_4A-4A-5A 5 0 CA_4A-4A-7A 7 0.5 CA_4A-12A 4 0.5 CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-12A 4 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 4 0 CA_4A-17A 17 0.5 CA_4A-12A 12 0.5 CA_4A-12A 13 0 CA_4A-12A 13 0	CA_3A-27A		
CA_3A-2A			
CA_3A-42A	CA 3A-28A	3	0
CA_3A-42A	0A_5A-20A	28	0
CA_3A-4ZA CA_3A-4ZC CA_3A-4ZC A2 B2 CA_4A-5A CA_4A-5A CA_4A-4A-5A CA_4A-4A-5A CA_4A-4A-5A CA_4A-4A-7A CA_4A-4A-7A CA_4A-4A-7A CA_4A-4A-7A CA_4A-4A-12A CA_4A-4A-13A CA_4A-4A-13A CA_4A-4A-1A CA_4A-3OA CA_4A-3OA CA_4A-3OA CA_5A-1A CA_5A-2A CA_5A-2B CA_5A-1A CA_5A-2B CA_5A-3B CA_5A-			0.2
CA_3A-42C	CA_3A-42A		
CA_3A-42C			
CA_4A-5A	CA 2A 42C	3	0.2
CA_4A-5A 4 0 S 0 CA_4A-4A-5A 5 0 CA_4A-7A 7 0.5 CA_4A-4A-7A 7 0.5 CA_4A-4A-7A 7 0.5 CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-13A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-17A 17 0.5 CA_4A-27A 27 0 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-7A 5 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0 CA_5A-25A 5 0	CA_3A-42C	42	[0.5]
CA_4A-AA-SA 5 0 CA_4A-4A-SA 4 0.5 CA_4A-7A 7 0.5 CA_4A-4A-7A 7 0.5 CA_4A-12A 4 0 CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-12A 12 0.5 CA_4A-12A 4 0 CA_4A-13A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-17A 17 0.5 CA_4A-27A 4 0 CA_4A-27A 4 0 CA_4A-30A 30 0.5 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-13A 13		_	
CA_4A-4A-5A	CA 4A-5A		
CA_4A-7A 5 0 CA_4A-7A 4 0.5 CA_4A-4A-7A 4 0.5 CA_4A-4A-7A 7 0.5 CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-12A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 17 0.5 CA_4A-17A 17 0.5 CA_4A-27A 27 0 CA_4A-27A 27 0 CA_5A-17A 17 0 CA_5A-17A 7 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 <td></td> <td></td> <td>0</td>			0
CA_4A-7A	00 40 40 50	4	0
CA_4A-7A 4 0.5 CA_4A-4A-7A 7 0.5 CA_4A-4A-7A 7 0.5 CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-4A-12A 12 0.5 CA_4A-13A 4 0 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-17A 17 0.5 CA_4A-27A 27 0 CA_4A-30A 4 0.4 CA_5A-7A 27 0 CA_5A-7A 5 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-25A 25 <	CA_4A-4A-5A	5	Λ
CA_4A-4A-7A CA_4A-4A-7A CA_4A-4A-7A CA_4A-4A-7A CA_4A-4A-7A CA_4A-12B CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-12B 12 0.5 CA_4A-12A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-12A 12 0.5 0.5 0 CA_5A-13A 13 0 CA_5A-26A 25 0 0 CA_5A-14A 17 0 0 CA_7A-28A 7 0 CA_7A-28A 8 0 CA_7A-28A 7 0 CA_7A-28A 28 0 CA_7A-28A 28 0 CA_AA-1A 11 0 CA_BA-20A 20 0 CA_BA-40A 8 8 0 CA_BA-40A 8 0 CA_AA-1A-1A 11 0 CA_AA-1A 11 0 CA_AA-1A-1A 11 0 CA_AA-1A-1A 11 0 CA_AA-1A 1A 1A 1B 1B 1B 1B 1B 1B 1B			
CA_4A-4A-7A	CA 4A-7A	 	0.5
CA_4A-4A-7A 4 0.5 CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-4A-12A 4 0 CA_4A-4A-12A 12 0.5 CA_4A-13A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 4 0 CA_4A-27A 27 0 CA_4A-30A 4 0.4 CA_5A-7A 5 0 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-1A 5 0.5 CA_5A-1A 17 0.3 CA_5A-1A 13 0 CA_5A-1A 17 0.3 CA_5A-1A 5 0.5 CA_5A-1A 17 0.3 CA_5A-1A 17 0.3 CA_5A-1A 17 0.3 CA_5A-2A 5 0 </td <td>O/(_+/(//(</td> <td>7</td> <td>0.5</td>	O/(_ + /(//(7	0.5
CA_4A-12A 7 0.5 CA_4A-12A 4 0 CA_4A-12B 12 0.5 CA_4A-4A-12A 12 0.5 CA_4A-4A-12A 12 0.5 CA_4A-13A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-17A 17 0.5 CA_4A-27A 4 0 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-17A 5 0 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-13A 13 0 CA_5A-17A 17 0.3 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-25A 5 0 CA_5A-26A 5 0 CA_7A-28A 7 0 </td <td></td> <td></td> <td></td>			
CA_4A-12A	CA_4A-4A-7A		
CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-4A-12A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-27A 4 0 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-13A 17 0 CA_5A-25A 25 0			
CA_4A-12A 12 0.5 CA_4A-12B 12 0.5 CA_4A-4A-12A 12 0.5 CA_4A-13A 13 0 CA_4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-27A 4 0 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-13A 17 0 CA_5A-25A 25 0	00 40 400	4	0
CA_4A-12B 4 0 CA_4A-4A-12A 12 0.5 CA_4A-13A 12 0.5 CA_4A-13A 13 0 CA_4A-4A-13A 13 0 CA_4A-17A 4 0 CA_4A-27A 4 0 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-12A 5 0.5 CA_5A-12A 13 0 CA_5A-12A 17 0.3 CA_5A-30A 5 0.5 CA_5A-30A 5 0 CA_5A-30A 5 0 CA_7A-8A 8 0.2 CA_7A-8A 8 0.2 CA_7A-2A 7 0 CA_7A-2BA 28 0 CA_8A-11A 11 0 <	CA_4A-12A		
CA_4A-12B 12 0.5 CA_4A-4A-12A 4 0 CA_4A-13A 13 0 CA_4A-4A-13A 13 0 CA_4A-17A 4 0 CA_4A-27A 4 0 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-13A 13 0 CA_5A-17A 5 0 CA_5A-30A 5 0 CA_5A-25A 25 0 CA_7A-8A 8 0.2 CA_7A-2A 7 0 CA_7A-2A 7 0 CA_7A-2BA 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0 <			
CA_4A-4A-12A	CA 4A-12R	}	
CA_4A-4A-12A 4 0 CA_4A-13A 12 0.5 CA_4A-4A-13A 13 0 CA_4A-4A-13A 13 0 CA_4A-17A 17 0.5 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 5 0 CA_5A-12A 12 0.3 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-17A 17 0.3 CA_5A-30A 5 0 CA_5A-25A 25 0 CA_5A-30A 5 0 CA_7A-2A 7 0 CA_7A-2A 7 0 CA_7A-2A 7 0 CA_7A-2A 7 0 CA_7A-2BA 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_11A-18A 0 0 </td <td>O/_\-120</td> <td>12</td> <td>0.5</td>	O/_ \ -120	12	0.5
CA_4A-4A-12A 12 0.5 CA_4A-13A 4 0 CA_4A-4A-13A 13 0 CA_4A-17A 4 0 CA_4A-27A 27 0 CA_4A-30A 4 0.4 CA_5A-7A 7 0 CA_5A-12A 5 0.5 CA_5A-12A 5 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-17A 17 0.3 CA_5A-30A 5 0 CA_5A-25A 5 0 CA_5A-30A 30 0 CA_7A-8A 7 0 CA_7A-8A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0 </td <td></td> <td></td> <td></td>			
CA_4A-13A	CA_4A-4A-12A	-	
CA_4A-13A 13 0 CA_4A-4A-13A 4 0 CA_4A-17A 17 0.5 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 5 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 13 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-8A 7 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0			0.5
CA_4A-4A-13A	00 40 400	4	0
CA_4A-4A-13A 4 0 CA_4A-17A 4 0 CA_4A-27A 17 0.5 CA_4A-27A 27 0 CA_4A-30A 4 0.4 CA_5A-7A 5 0 CA_5A-12A 5 0.5 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-25A 25 0 CA_5A-30A 30 0 CA_7A-8A 8 0.2 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 20 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_11A-18A 11 0	CA_4A-13A	13	Λ
CA_4A-4A-13A 13 0 CA_4A-17A 4 0 17 0.5 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-25A 5 0 CA_5A-30A 30 0 CA_7A-8A 8 0.2 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 20 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0			
CA_4A-17A	CA 4A-4A-13A		
CA_4A-17A 4 0 CA_4A-27A 4 0 CA_4A-30A 30 0.5 CA_5A-7A 5 0 CA_5A-12A 12 0.3 CA_5A-13A 5 0 CA_5A-17A 5 0.5 CA_5A-17A 0.3 0 CA_5A-30A 5 0 CA_5A-25A 25 0 CA_5A-30A 30 0 CA_7A-8A 8 0.2 CA_7A-12A 7 0 CA_7A-20A 20 0 CA_7A-28A 8 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 0 0	0/1_ // // // / / / / / / / / / / / / / /	13	0
CA_4A-27A 17 0.5 CA_4A-27A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 5 0 CA_5A-12A 5 0.5 CA_5A-12A 5 0.5 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-25A 5 0 CA_5A-25A 25 0 CA_5A-30A 30 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-12A 12 0 CA_7A-20A 20 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0		Δ	0
CA_4A-27A	CA_4A-17A		
CA_4A-2/A 27 0 CA_4A-30A 30 0.5 CA_5A-7A 5 0 CA_5A-12A 5 0.5 CA_5A-13A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-25A 5 0 CA_5A-25A 25 0 CA_5A-30A 30 0 CA_7A-8A 7 0 CA_7A-8A 8 0.2 CA_7A-12A 12 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0			
CA_4A-30A	CA 4A 07A	4	0
CA_4A-30A 4 0.4 30 0.5 CA_5A-7A 5 0 CA_5A-12A 12 0.3 CA_5A-13A 13 0 CA_5A-17A 5 0.5 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 12 0 CA_7A-20A 7 0 CA_7A-28A 20 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0	CA_4A-27A	27	0
CA_4A-30A 30 0.5 CA_5A-7A 7 0 CA_5A-12A 5 0.5 CA_5A-13A 12 0.3 CA_5A-17A 13 0 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 20 0 CA_7A-20A 20 0 CA_7A-28A 8 0 CA_8A-11A 11 0 CA_8A-40A 40 0 CA_11A-18A 11 0			
CA_5A-7A	CA 4A-30A		
CA_5A-7A 7 0 CA_5A-12A 5 0.5 CA_5A-13A 5 0 CA_5A-17A 13 0 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0	G/ (_ I/ (GG/ (30	0.5
CA_5A-7A 7 0 CA_5A-12A 5 0.5 CA_5A-13A 5 0 CA_5A-17A 13 0 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0		5	0
CA_5A-12A 5 0.5 CA_5A-13A 5 0 CA_5A-17A 13 0 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	CA_5A-7A		
CA_5A-12A 12 0.3 CA_5A-13A 5 0 CA_5A-17A 13 0 CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0			
CA_5A-13A	CA 5A 12A	5	0.5
CA_5A-13A 5 0 CA_5A-17A 5 0.5 CA_5A-25A 5 0 CA_5A-25A 25 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-28A 7 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 20 0 CA_8A-40A 8 0 CA_11A-18A 11 0	CA_5A-12A	12	0.3
CA_SA-13A 13 0 CA_5A-17A 5 0.5 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0			
CA_5A-17A	CA 5A-13A		
CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-28A 7 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0			
CA_5A-17A 17 0.3 CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-28A 7 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	04 54 174	5	0.5
CA_5A-25A 5 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 7 0 CA_7A-28A 7 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	CA_5A-1/A		
CA_5A-25A 25 0 CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 20 0 CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0			
CA_5A-30A	CA 5A-25A		
CA_5A-30A 5 0 CA_7A-8A 7 0 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 20 0 CA_7A-28A 28 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	JO. \ 20/ \	25	0
CA_5A-30A 30 0 CA_7A-8A 8 0.2 CA_7A-12A 7 0 CA_7A-20A 12 0 CA_7A-20A 20 0 CA_7A-28A 7 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0			0
CA_7A-8A	CA_5A-30A		
CA_7A-8A 8 0.2 CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-28A 20 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 0 0			
CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-20A 20 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0 CA_11A-18A 11 0	CA 7A 9A	7	
CA_7A-12A 7 0 CA_7A-20A 7 0 CA_7A-28A 20 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 0 0 CA_11A-18A 0 0	UA_1A-0A	8	0.2
CA_7A-12A 12 0 CA_7A-20A 7 0 CA_7A-28A 28 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 0 0 CA_11A-18A 0 0			
CA_7A-20A 7 0 CA_7A-20A 20 0 CA_7A-28A 7 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_8A-40A 40 0 CA_11A-18A 11 0	CA 7A-12A		
CA_7A-20A 20 0 CA_7A-28A 7 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	····		
CA_7A-20A 20 0 CA_7A-28A 7 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	04 74 66:	7	0
CA_7A-28A 7 0 CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0 CA_11A-18A 11 0	CA_7A-20A		
CA_7A-28A 28 0 CA_8A-11A 11 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0		i	
CA_8A-11A	CA 7A-29A	/	Ü
CA_8A-11A 8 0 CA_8A-20A 8 0 CA_8A-40A 8 0 CA_11A-18A 11 0	CA_/A-28A	28	0
CA_8A-11A			
CA_8A-20A	CA 8A-11A		
CA_8A-20A 20 0 CA_8A-40A 8 0 CA_11A-18A 11 0		11	
CA_8A-20A 20 0 CA_8A-40A 8 0 CA_11A-18A 11 0	04 04 65:	8	0
CA_8A-40A	CA_8A-20A		
CA_8A-40A			
CA 11A-18A 11 0	CA 8A-40A		
CA 11A-18A 11 0	U/_U/\- 1 U/\	40	0
[Δ 11Δ-18Δ			
U	CA_11A-18A		
	=	18	U

CA_12A-25A	12	0
CA_12A-23A	25	0
CA_12A-30A	12	0
CA_12A-30A	30	0
CA_18A-28A ⁹	18	0
CA_10A-20A	28	0
CA_19A-21A	19	0
CA_19A-21A	21	0
CA 10A 12A	1	0
CA_19A-42A	42	[0.5]
CA_19A-42C	1	0
UA_19A-42U	42	[0.5]
CA_25A-41A ⁸	25	0
CA_25A-41A	41	0
CA_25A-41C ⁸	25	0
UA_25A-410	41	0
CA_26A-41A	26	0
UA_20A-41A	41	0
CA_26A-41C	26	0
UA_20A-410	41	0
CA_39A-41A	39	0.24
UA_33A-41A	41	0.2 ⁴ 0.2 ⁷
CA_39A-41A	39	
UA_33A-41A	41	0.27
CA_39A-41C	39	0.24
UA_33A-410	41	0.24
CA_39C-41A	39	0.24
UA_33U-41A	41	0.24
CA_41A-42A	41	[0.4] ⁴
UA_41A-42A	42	[0.5]4

- NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 2: The above additional tolerances also apply in intra-band and non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations
- NOTE 3: In case the UE supports more than one of the above 2DL inter-band carrier aggregation configurations and a E-UTRA operating band belongs to more than one 2DL inter-band carrier aggregation configurations then:
 - When the E-UTRA operating band frequency range is ≤ 1GHz, the applicable additional tolerance shall be the average of the 2DL tolerances in Table 7.3.1-1A, truncated to one decimal place that would apply for that operating band among the supported 2DL CA configurations. In case there is a harmonic relation between low band UL and high band DL, then the maximum tolerance among the different supported 2DL carrier aggregation configurations involving such band shall be applied
 - When the E-UTRA operating band frequency range is >1GHz, the applicable additional tolerance shall be the maximum 2DL tolerance in Table 7.3.1-1A that would apply for that operating band among the supported 2DL CA configurations
- NOTE 4: Only applicable for UE supporting inter-band carrier aggregation with uplink in one E-UTRA band and without simultaneous Rx/Tx.
- NOTE 5: Tolerances for a UE supporting multiple 3DL inter-band CA configurations are FFS
- NOTE 6: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.
- NOTE 7: Applicable for UE supporting inter-band carrier aggregation with two uplinks and without simultaneous Rx/Tx.
- NOTE 8: Only applicable for UE supporting inter-band carrier aggregation with the uplink active in the FDD band.
- NOTE 9: For Band 28, the requirements only apply for the restricted frequency range specified for this CA configuration (Table 5.5A-2).

Table 7.3.1-1B: $\Delta R_{IB,c}$ (three bands)

Inter-band CA Configuration	E-UTRA Band	ΔR _{IB,c} [dB]
	1	0
CA_1A-3A-5A	3	0
	5	0
	1	0
CA_1A-3A-8A	3	0
	8	0
	1	0
CA_1A-3A-19A	3	0
	19	0
	1	0
CA_1A-3A-20A	3	0
	20	0
	1	0
CA_1A-3A-26A	3	0
_	26	0
	1	0
CA_1A-5A-7A	5	0
	7	0
		0
CA_1A-7A-20A	7	0
O/_//\ //\ 20/\	20	0
	1	0
CA_1A-18A-	18	0
28A		
	<u>28</u> 1	0
CA_1A-19A-		
21A	19	0
	21	0
00 00 10 50	2	0.3
CA_2A-4A-5A	4	0.3
	5	0
04 04 44 404	2	0.3
CA_2A-4A-12A	4	0.3
	12	0.5
	2	0.3
CA_2A-4A-13A	4	0.3
	13	0
	2	0
CA_2A-5A-12A	5	0.5
	12	0.3
	2	0
CA_2A-5A-12A	5	0
	13	0
	2	0.4
CA_2A-5A-30A	5	0
	30	0.5
CA_2A-12A-	2	0.4
30A	12	0
30/	30	0.5
	3	0
CA_3A-7A-20A	7	0
1	20	0
[0
	4	U
CA 4A-5A-12A		
CA_4A-5A-12A	5	0.5
CA_4A-5A-12A	5 12	0.5 0.5
	5 12 4	0.5 0.5 0
CA_4A-5A-12A	5 12 4 5	0.5 0.5 0
	5 12 4 5 13	0.5 0.5 0 0
CA_4A-5A-13A	5 12 4 5 13 4	0.5 0.5 0 0 0 0
	5 12 4 5 13	0.5 0.5 0 0

	7	0.5
	12	0.5
CA 4A 42A	4	0.4
CA_4A-12A- 30A	12	0.5
30A	30	0.5
	7	0
CA_7A-8A-20A	8	0.2
	20	[0.2]

NOTE 1: The above additional tolerances are only applicable for the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE 2: The above additional tolerances also apply in intra-band and non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

NOTE 3: Tolerances for a UE supporting multiple 3DL inter-band CA configurations are FES

NOTE 4: The above additional tolerances applicable for the E-UTRA operating bands that belong to the supported highest order inter-band carrier aggregation configuration, also applies to the same E-UTRA operating bands that belong to a supported lower order CA configuration.

NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and other bands are >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

Table 7.3.1-2: Uplink configuration for reference sensitivity

E-UTRA Band / Channel bandwidth / N _{RB} / Duplex mode								
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode	
1			25	50	75	100	FDD	
2	6	15	25	50	50 ¹	50 ¹	FDD	
3	6	15	25	50	50 ¹	50 ¹	FDD	
4	6	15	25	50	75	100	FDD	
5	6	15	25	25 ¹			FDD	
6			25	25 ¹			FDD	
7			25	50	75	75 ¹	FDD	
8	6	15	25	25 ¹			FDD	
9			25	50	50 ¹	50 ¹	FDD	
10			25	50	75	100	FDD	
11			25	25 ¹			FDD	
12	6	15	20 ¹	20 ¹			FDD	
13			20 ¹	20 ¹			FDD	
14			15 ¹	15 ¹			FDD	
17			20 ¹	20 ¹	1		FDD	
18			25	25 ¹	25 ¹		FDD	
19			25	25 ¹	25 ¹		FDD	
20			25	20 ¹	20 ³	20 ³	FDD	
21			25	25 ¹	25 ¹		FDD	
22			25	50	50 ¹	50 ¹	FDD	
23	6	15	25	50	75	100	FDD	
24			25	50			FDD	
25	6	15	25	50	50 ¹	50 ¹	FDD	
26	6	15	25	25 ¹	25 ¹		FDD	
27	6	15	25	25 ¹			FDD	
28		15	25	25 ¹	25 ¹	25 ¹	FDD	
30			25	25 ¹			FDD	
31	6	5 ^⁴	5 ^⁴				FDD	
			_	_	_			
33			25	50	75	100	TDD	
34			25	50	75		TDD	
35	6	15	25	50	75	100	TDD	
36	6	15	25	50	75	100	TDD	
37			25	50	75	100	TDD	
38			25	50	75	100	TDD	
39			25	50	75	100	TDD	
40			25	50	75	100	TDD	
41			25	50	75	100	TDD	
42			25	50	75	100	TDD	
43			25	50	75	100	TDD	
44		15	25	50	75	100	TDD	

NOTE 1: 1 refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

NOTE 2: For the UE which supports both Band 11 and Band 21 the uplink

configuration for reference sensitivity is FFS.

³ refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16 ⁴ refers to Band 31; in the case of 3 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 9 and in the case of 5 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 10.

Unless given by Table 7.3.1-3, the minimum requirements specified in Tables 7.3.1-1 and 7.3.1-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1-3: Network signalling value for reference sensitivity

E-UTRA Band	Network Signalling value
_	
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09
23	NS_03
30	NS_21

7.3.1A Minimum requirements (QPSK) for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with all downlink component carriers active and one of the uplink carriers active. The UE shall meet the requirements specified in subclause 7.3.1 with the following exceptions.

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0a, exceptions to the aforementioned requirements are allowed when the uplink is active in a lower-frequency band and is within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3.1A-0a. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0a and Table 7.3.1A-0b.

Table 7.3.1A-0a: Reference sensitivity for carrier aggregation QPSK PREFSENS, CA (exceptions)

Channel bandwidth									
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode	
	1	, ,	, ,	-89.8	-89.4	-89	-88.7		
CA_1A-28A ^{5,6}	28			-98.3	-95.3	-93.5	-90.8	FDD	
04 04 044	3				N/A	N/A	N/A	FDD	
CA_3A-8A ⁴	8			N/A	N/A				
910	3			-96.8	-93.8	-92	-90.8	FDD	
CA_3A-42A ^{9,10}	42			[-71.7]	[-71.7]	[-71.7]	[-71.7]	TDD	
	3			-96.8	-93.8	-92	-90.8	FDD	
CA_3A-42A ¹¹	42			[-97.1]	[-94.7]	[-93.2]	[-92.5]	TDD	
0.40	3			-96.8	-93.8	-92	-90.8	FDD	
CA_3A-42C ^{9,10}	42			[-71.7]	[-71.7]	[-71.7]	[-71.7]	TDD	
	3			-96.8	-93.8	-92	-90.8	FDD	
CA_3A-42C ¹¹	42			[-97.1]	[-94.7]	[-93.2]	[-92.5]	TDD	
	4	-89.2	-89.2	-90	-89.5	-89	-88.5	100	
CA_4A-12A ^{5,6}	12	-03.2	-03.2	-96.5	-93.5	-09	-00.5	FDD	
CA_4A-17A ^{5,6}	4			-90.5	-89.5			FDD	
	17			-96.5	-93.5				
0.4.04.44	2			-97.7	-94.7	-92.9	-91.7	FDD	
CA_2A-4A- 12A ^{5,6}	4			-90	-89.5	-89	-88.5		
12A	12			-96.5	-93.5				
CA_4A-4A-	4			-90	-89.5	-89	-88.5	FDD	
12A ^{5,6}	12			-96.5	-93.5			FDD	
CA_4A-5A-	4			-90	-89.5	-89	-88.5		
12A ^{5,6}	5			-97.5	-94.5			FDD	
12/1	12			-96.5	-93.5				
CA 4A-7A-	4			[-90]	[-89.5]	[-89]	[-88.5]		
CA_4A-7A- 12A ^{5,6}	7			-97.5	-94.5			FDD	
12/1	12			-96.5	-93.5				
CA_4A-12B ^{5,6}	4			-90	-89.5	-89	-88.5	FDD	
OA_ 1 A-12D	12			-96.5	-93.5				
CA_26A-41A ⁸	26			N/A	N/A	N/A		FDD	
UA_20A-41A	41			N/A	N/A	N/A	N/A	TDD	
CA_26A-41C ⁸	26			N/A	N/A	N/A		FDD	
UA_2UA-41U	41			N/A	N/A	N/A	N/A	TDD	
CA_7A-8A ^{5,6}	7				-87.4	-87	-86.7	FDD	
OA_IA-OA	8		-99	-96.8	-93.8			100	
CA_7A-8A-	7				-87.4	-87	-86.7]	
20A ^{5,6}	8		-99	-96.8	-93.8			FDD	
ZUM	20			[-96.8]	[-93.8]				

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

NOTE 4: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity is only verified when this is not the case (the requirements specified in clause 7.3.1 apply).

NOTE 5: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of a low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of a high band.

NOTE 6: The requirements should be verified for UL EARFCN of a low band (superscript LB) such that $f_{UL}^{LB} = \left \lfloor f_{DL}^{HB} \middle / 0.3 \right \rfloor 0.1 \text{ in MHz and } F_{UL_low}^{LB} + BW_{Channel}^{LB} \middle / 2 < f_{UL}^{LB} < F_{UL_high}^{LB} - BW_{Channel}^{LB} \middle / 2 \text{ with } f_{DL}^{HB}$ the carrier frequency of a high band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the low band.

NOTE 7: Void.

NOTE 8: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity is only verified when this is

not the case (the requirements specified in clause 7.3.1 apply).

NOTE 9: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band and a range ΔF_{HD} above and below the edge of this downlink transmission bandwidth. The value ΔF_{HD} depends on the E-UTRA configuration: $\Delta F_{HD} = 10$ MHz for CA_3A-42A and CA_3A-42C.

NOTE 10: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left| f_{DL}^{HB} / 0.2 \right| 0.1$ in MHz and

 $F_{UL_low}^{LB} + BW_{Channel}^{LB}/2 < f_{UL}^{LB} < F_{UL_high}^{LB} - BW_{Channel}^{LB}/2 \ \ \text{with} \ f_{DL}^{HB} \ \ \text{carrier frequency in the victim}$ (higher) band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the lower band.

NOTE 11: The requirements are only applicable to channel bandwidths with a carrier frequency at $\pm \left(20 + BW_{Channel}^{HB}/2\right) \text{ MHz offset from } 2 f_{UL}^{LB} \text{ in the victim (higher band) with} \\ F_{UL_low}^{LB} + BW_{Channel}^{LB}/2 < f_{UL}^{LB} < F_{UL_high}^{LB} - BW_{Channel}^{LB}/2 \text{ , where } BW_{Channel}^{LB} \text{ and } BW_{Channel}^{HB} \text{ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.}$

Table 7.3.1A-0b: Uplink configuration for the low band (exceptions)

E-UTRA Band / Channel bandwidth of the high band / N _{RB} / Duplex mode									
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode	
CA_1A-28A	28			8	16	25	25	FDD	
CA_4A-12A	12	2	5	8	16	20	20	FDD	
CA_4A-17A	17			8	16			FDD	
CA_2A-4A- 12A	12			8	16	20	20	FDD	
CA_3A-42A	3			12	25	36	50	FDD	
CA_3A-42C	3			12	25	36	50	FDD	
CA_4A-4A- 12A	12			8	16	20	20	FDD	
CA_4A-5A- 12A	12			8	16	20	20	FDD	
CA_4A-7A- 12A	12			8	16	20	20	FDD	
CA_4A-12B	12			8	16	20	20	FDD	
CA_7A-8A	8				16	25	25	FDD	
CA_7A-8A- 20A	8				16	25	25	FDD	

NOTE 1: refers to the UL resource blocks, which shall be centred within the transmission bandwidth configuration for the channel bandwidth.

NOTE 2: the UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.1-2 for the uplink bandwidth in which case the allocation according to Table 7.3.1-2 applies.

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0bA, exceptions are allowed when the uplink is active within a specified frequency range as noted in Table 7.3.1A-0bA. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0bA and Table 7.3.1A-0bB.

Table 7.3.1A-0bA: Reference sensitivity for carrier aggregation QPSK P_{REFSENS, CA} (exceptions for two bands)

Channel bandwidth										
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode		
CA_1A-3A ⁴	1			-100	-97	-95.2	-94	רחח		
CA_1A-3A	3			-94	-91.5	-90	-89	FDD		
CA_1A-3A ⁵	1			-100	-97	-95.2	-94	FDD		
CA_TA-3A	3			-97	-94	-92.2	-91	FDD		
CA_18A-28A ⁶	18			-100	-97	-95.2		FDD		
UA_10A-20A	28			-94	-92.5			רטט		

- NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1
- NOTE 3: The signal power is specified per port
- NOTE 4: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz. For each channel bandwidth in Band 3, the requirement applies regardless of channel bandwidth in Band 1.
- NOTE 5: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz. For each channel bandwidth in Band 3, the requirement applies regardless of channel bandwidth in Band 1.
- NOTE 6: These requirements apply when the uplink is active in Band 18 and the downlink channels in Band 28 are confined within the restricted frequency range specified for this CA configuration (Table 5.5A-2). For each channel bandwidth in Band 28, the requirement applies regardless of channel bandwidth in Band 18.

Table 7.3.1A-0bB: Uplink configuration for the low band (exceptions for two bands)

E-UTRA Band / Channel bandwidth / N _{RB} / Duplex mode									
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode	
CA_1A-3A ^{1, 2}	1			25	25	25	25	FDD	
CA_1A-3A ^{1, 3}	1			25	45	45	45	FDD	
CA_18A-28A ⁴	18			25	25	25		FDD	

- NOTE 1: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 3 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1) in the uplink channel in Band 1.
- NOTE 2: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz
- NOTE 3: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz.
- NOTE 4: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 18 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0bC, exceptions are allowed when the uplink is active within a specified frequency range as noted in Table 7.3.1A-0bC. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0bC and Table 7.3.1A-0bD.

Table 7.3.1A-0bC: Reference sensitivity for carrier aggregation QPSK P_{REFSENS, CA} (exceptions for three bands)

Channel bandwidth											
EUTRA CA	EUTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex			
Configuration	band	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	mode			
	1			-100	-97	-95.2	-94				
CA_1A-3A-5A ⁴	3			[-94]	[-91.5]	[-90]	[-89]	FDD			
	5			-98	-95						
	1			-100	-97	-95.2	-94				
CA_1A-3A-5A ⁵	3			[-94]	[-91.5]	[-90]	[-89]	FDD			
	5			-98	-95						
	1			-100	-97	-95.2	-94				
CA_1A-3A-8A ⁴	3			[-94]	[-91.5]	[-90]	[-89]	FDD			
	8		-99.2	-97	-94						
	1			-100	-97	-95.2	-94				
CA_1A-3A-8A ⁵	3			[-94]	[-91.5]	[-90]	[-89]	FDD			
	8		-99.2	-97	-94						
0.4.4.0.4	1			-100	-97	-95.2	-94				
CA_1A-3A- 19A ⁴	3			-94	-91.5	-90	-89	FDD			
10/1	19			-100	-97	-95.2					
0.4.4.0.4	1			-100	-97	-95.2	-94				
CA_1A-3A- 19A ⁵	3			-97	-94	-92.2	-91	FDD			
13/4	19			-100	-97	-95.2					
04.44.04	1			-100	-97	-95.2	-94				
CA_1A-3A- 20A ⁴	3			[-94]	[-91.5]	[-90]	[-89]	FDD			
20/1	20			-97	-94	-91.2	-90				
	1			-100	-97	-95.2	-94				
CA_1A-3A- 20A ⁵	3			[-94]	[-91.5]	[-90]	[-89]	FDD			
20/1	20			-97	-94	-91.2	-90				
0.4.4.4.0.1	1			-100	-97	-95.2	-94				
CA_1A-18A- 28A ⁶	18			-100	-97	-95.2		FDD			
20/1	28			-94	-92.5						

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

NOTE 4: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz. For each channel bandwidth in Band 3 and Band 19, the requirement applies regardless of channel bandwidth in Band 1.

NOTE 5: These requirements apply when the uplink is active in Band 1 and the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz. For each channel bandwidth in Band 3 and Band 19, the requirement applies regardless of channel bandwidth in Band 1.

NOTE 6: These requirements apply when the uplink is active in Band 18 and the downlink channels in Band 28 are confined within the restricted frequency range specified for this CA configuration (Table 5.5A-2). For each channel bandwidth in Band 28, the requirement applies regardless of channel bandwidth in Band 18.

Table 7.3.1A-0bD: Uplink configuration for the low band (exceptions for three bands)

	E-UT	RA Band / Ch	annel ban	dwidth / N	N _{RB} / Duple	x mode		
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode
CA_1A-3A- 5A ^{1, 2}	1			25	25	25	25	FDD
CA_1A-3A- 5A ^{1, 3}	1			[25]	[45]	[45]	[45]	FDD
CA_1A-3A- 8A ^{1, 2}	1			25	25	25	25	FDD
CA_1A-3A- 8A ^{1, 3}	1			[25]	[45]	[45]	[45]	FDD
CA_1A-3A- 19A ^{1, 2}	1			25	25	25	25	FDD
CA_1A-3A- 19A ^{1, 3}	1			25	45	45	45	FDD
CA_1A-3A- 20A ^{1, 2}	1			25	25	25	25	FDD
CA_1A-3A- 20A ^{1, 3}	1			[25]	[45]	[45]	[45]	FDD
CA_1A-18A- 28A ⁴	18			25	25	25		FDD

- NOTE 1: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 3 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1) in the uplink channel in Band 1.
- NOTE 2: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is < 60 MHz
- NOTE 3: UL allocation when the separation between the lower edge of the uplink channel in Band 1 and the upper edge of the downlink channel in Band 3 is ≥ 60 MHz.
- NOTE 4: refers to the UL resource blocks shall be located as close as possible to the downlink channel in Band 18 but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

For band combinations including operating bands without uplink band (as noted in Table 5.5-1), the requirements are specified in Table 7.3.1A-0d and Table 7.3.1A-0e.

Table 7.3.1A-0d: Reference sensitivity QPSK PREFSENS

			Channel ba	andwidth				
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode
CA 2A 20A	2			-98	-95	-93.2	-92	FDD
CA_2A-29A	29		-98.7	-97	-94			ן דטט
CA 2C 20A	2			-98	-95	-93.2	-92	FDD
CA_2C-29A	29		-98.7	-97	-94			ן דטט
CA 4A 20A	4			-100	-97	-95.2	-94	FDD
CA_4A-29A	29		-98.7	-97	-94			ן דטט
CA 20A 22A	20			-97	-94	-91.2	-90	FDD
CA_20A-32A	32			-100	-97	-95.2	-94	ן דטט
CA 22A 20A	23			-100	-97	-95.2	-94	- FDD
CA_23A-29A	29		-98.7	-97	-94			FDD
CA 20A 20A	29			-97	-94			FDD
CA_29A-30A	30			-99	-96			ן דטט
	2			-97.7	-94.7	-92.9	-91.7	
CA_2A-4A- 29A	4			-99.7	-96.7	-94.9	-93.7	FDD
29A	29			-97	-94			
	2			-97.6	-94.6	-92.8	-91.6	
CA_2A-29A-	29			-97	-94			FDD
30A	30			-98.5	-95.5			
CA_4A-29A- 30A	4			-99.6	-96.6	-94.8	-93.6	
	29			-97	-94			FDD
	30			-98.5	-95.5			1

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1

FDD/TDD as described in Annex A.5.1.1/A.5.2.1

NOTE 3: The signal power is specified per port

Table 7.3.1A-0e: Uplink configuration for reference sensitivity

	E-UT	RA Band / Ch	annel ban	dwidth / N	N _{RB} / Duple	x mode		
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode
CA 2A 20A	2			25	50	50 ¹	50 ¹	FDD
CA_2A-29A	29		N/A	N/A	N/A			FDD
CA 2C 20A	2			25	50	50 ¹	50 ¹	FDD
CA_2C-29A	29		N/A	N/A	N/A			FDD
CA 4A 20A	4			25	50	75	100	FDD
CA_4A-29A	29		N/A	N/A	N/A			FDD
CA 20A 22A	20			25	20 ¹	20 ²	20 ²	FDD
CA_20A-32A	32			N/A	N/A	N/A	N/A	FDD
04 004 004	23			25	50	75	100	EDD
CA_23A-29A	29		N/A	N/A	N/A			FDD
CA 20A 20A	29			N/A	N/A			- FDD
CA_29A-30A	30			25	25			FDD
21 21 11	2			25	50	50 ¹	50 ¹	
CA_2A-4A- 29A	4			25	50	75	100	FDD
29A	29			N/A	N/A			
0.1 0.1 0.1	2			25	50	50	50	
CA_2A-29A- 30A	29			N/A	N/A			FDD
30A	30			25	25			
CA_4A-29A- 30A	4			25	50	75	100	
	29			N/A	N/A			FDD
JUA	30			25	25			

NOTE 1: ¹ refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

NOTE 2: ² refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RBstart 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16

In all cases for single uplink inter-band CA, unless given by Table 7.3.1-3 for the band with the active uplink carrier, the applicable reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For inter-band carrier aggregation with uplink assigned to two E-UTRA bands the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with all downlink component carriers active and both of the uplink carriers active.

For E-UTRA CA configurations given in Table 7.3.1A-0f the reference sensitivity is defined only for the specific uplink and downlink test points which are specified in Table 7.3.1A-0f. For these test points the reference sensitivity requirement specified in Table 7.3.1-1 is relaxed by the amount of parameter MSD given in Table 7.3.1A-0f.

The allowed exceptions defined in Table 7.3.1A-0a and Table 7.3.1A-0b for inter-band carrier aggregation with a single active uplink are also applicable for dual uplink operation.

Table 7.3.1A-0f: dual uplink interband Reference sensitivity QPSK P_{REFSENS} and uplink/downlink configurations

E-U	E-UTRA Band / Channel bandwidth / N _{RB} / Duplex mode										
EUTRA CA Configuration	EUTRA band	UL F _c (MHz)	UL/DL BW (MHz)	UL C _{LRB}	DL F _c (MHz)	MSD (dB)	Duplex mode				

CA_1A_3A	1	1950	5	25	2140	TBD	FDD
CA_TA_SA	3	1760	5	25	1855	N/A	FDD
CA_1A_8A	1	1965	5	25	2155	6	FDD
CA_TA_6A	8	887.5	5	25	932.5	N/A	FDD
CA 2A-4A	2	1860	20	50 ¹	1940	[5]	FDD
CA_ZA-4A	4	1752.5	5	25	2152.5	N/A	FDD
CA_2A-4A	2	1868.3	5	25	1948.3	N/A	FDD
CA_ZA-4A	4	1735	5	25	2135	5	FDD
CA 3A 5A	3	1771	10	50	1866	4	FDD
CA_3A-5A	5	838	5	25	883	N/A	FDD
CA_3A-5A	3	1721	10	50	1816	N/A	FDD
CA_SA-SA	5	838	5	25	883	24	רטט
CA_3A-7A	3	1730	5	25	1825	N/A	FDD
CA_SA-7A	7	2535	10	50	2655	13	רטט
CA_3A-8A	3	1755	10	50	1850	N/A	FDD
CA_SA-6A	8	900	5	25	945	8	רטט
CA 3A 10A	3	1771	5	25	1866	4	FDD
CA_3A-19A	19	838	5	25	883	N/A	רטט
CA 3A 10A	3	1721	5	25	1816	N/A	FDD
CA_3A-19A	19	838	5	25	883	27	רטט
CA 2A 20A	3	1775	5	25	1870	4	FDD
CA-3A-20A	20	840	5	25	799	N/A	רטט
CA 2A 20A	3	1735	5	25	1830	N/A	FDD
CA-3A-20A	20	847	5	25	806	9	FDD
CA 2A 2CA	3	1771	5	25	1866	4	
CA_3A-26A	26	838	5	25	883	N/A	FDD
CA 2A 2CA	3	1721	5	25	1816	N/A	EDD
CA_3A-26A	26	838	5	25	883	26	FDD
00.40.70	4	1730	5	25	1825	N/A	EDD
CA_4A-7A	7	2535	5	25	2655	15	FDD
CA 5A 7A	5	834	5	25	879	12	EDD
CA_5A-7A	7	2547	10	50	2667	N/A	FDD
CA 7A 20A	7	2512	10	50	2632	N/A	EDD
CA_7A-20A	20	851	5	25	810	12	FDD
NOTE 1: Both of the transi	mittara aball k	oo oot min/ .	20 dDm D	\ aa da	finad in aub	olougo C 2 E	^

NOTE 1: Both of the transmitters shall be set min(+20 dBm, P_{CMAX} L_c) as defined in subclause 6.2.5A

NOTE 2: RB_{START} = 0

For intra-band contiguous carrier aggregation the throughput of each component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1A-1. Table 7.3.1A-1 specifies the maximum number of allocated uplink resource blocks for which the intra-band contiguous carrier aggregation reference sensitivity requirement shall be met. The PCC and SCC allocations follow Table 7.3.1A-1 and form a contiguous allocation where TX-RX frequency separations are as defined in Table 5.7.4-1. In case downlink has additional SCC(s) compared to uplink those are configured furthers away from uplink. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2 and the downlink PCC carrier center frequency shall be configured closer to uplink operating band than any of the downlink SCC center frequency. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1A-1: Intra-band contiguous CA uplink configuration for reference sensitivity

		CA c	onfigurati	on / CC	combina	tion / N _R	B_agg / Du	olex mod	е		
CA	CA 100RB+25RB			100RB+50RB		75RB+75RB		100RB+75RB		+100RB	Duplex
configuration	PCC	SCC	PCC	SCC	PCC	SCC	PCC	SCC	PCC	SCC	Mode
CA_1C			N/A	N/A	75	54	N/A	N/A	100	30	FDD
CA_3C	50	0	50	0	N/A	N/A	50	0	50	0	FDD
CA_7C			75	0	75	0	75	0	75	0	FDD
CA_38C					75	75			100	100	TDD
CA_39C	100	25	100	50	N/A	N/A	100	75	N/A	N/A	TDD
CA_40C			100	50	75	75	100	75	100	100	TDD
CA_41C			100	50	75	75	100	75	100	100	TDD
CA_40D			100	50	N/A	N/A	100	75	100	100	TDD
CA_41D			100	50	75	75	100	75	100	100	TDD
CA_42C	100	25	100	50	N/A	N/A	100	75	100	100	TDD

- NOTE 1: The carrier centre frequency of SCC in the UL operating band is configured closer to the DL operating band.
- NOTE 2: The transmitted power over both PCC and SCC shall be set to Pumax as defined in subclause 6.2.5A.
- NOTE 3: The UL resource blocks in both PCC and SCC shall be confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).
- NOTE 4: The UL resource blocks in PCC shall be located as close as possible to the downlink operating band, while the UL resource blocks in SCC shall be located as far as possible from the downlink operating band.
- NOTE 5: In case a CA configuration consists of CC channel bandwidths which are unequal in bandwidth the PCC channel bandwidth shall be the larger one for reference sensitivity test.
- NOTE 6: For intra-band contiguous carrier aggregation, the requirement is verified with the largest number of [simultaneous] active uplink carriers supported by the UE.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the throughput of each downlink component carrier shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with both downlink carriers active and parameters specified in Table 7.3.1-1 and Table 7.3.1A-3 with the power level in Table 7.3.1-1 increased by ΔR_{IBNC} given in Table 7.3.1A-3 for the SCC. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1A-3: Intra-band non-contiguous CA with one uplink configuration for reference sensitivity

CA configuration	Aggregated channel bandwidth (PCC+SCC)	W _{gap} / [MHz]	UL PCC allocation	ΔR _{IBNC} (dB)	Duplex mode
	25RB+25RB	$30.0 < W_{gap} \le 50.0$	12 ¹	5.3	
	23KD+23KD	$0.0 < W_{gap} \le 30.0$	25 ¹	0	
	25RB+50RB	$25.0 < W_{gap} \le 45.0$	12 ¹	4.4	
	20112100112	$0.0 < W_{gap} \le 25.0$	25 ¹	0	
	25RB+75RB	$20.0 < W_{gap} \le 40.0$	12 ¹	4.2	
	20112110112	$0.0 < W_{gap} \le 20.0$	25 ¹	0	
	25RB+100RB	$15.0 < W_{gap} \le 35.0$	12 ¹	3.8	
	201121100112	$0.0 < W_{gap} \le 15.0$	25 ¹	0	
	50RB+25RB	$15.0 < W_{gap} \le 45.0$	12 ¹	5.9	
	OUNDIZOND	$0.0 < W_{gap} \le 15.0$	32 ¹	0	
	50RB+50RB	$10.0 < W_{gap} \le 40.0$	12 ¹	4.6	-
	00112100112	$0.0 < W_{gap} \le 10.0$	321	0	
CA_2A-2A	50RB+75RB	5.0 < W _{gap} ≤ 35.0	12 ¹	4.1	FDD
		$0.0 < W_{gap} \le 5.0$	32 ¹	0	
	50RB+100RB	$0.0 < W_{gap} \le 30.0$	12 ¹	4.0	
	75RB+25RB	$10.0 < W_{gap} \le 40.0$	12 ¹²	6.7	
		$0.0 < W_{gap} \le 10.0$	36 ¹	0	
	75RB+50RB	$5.0 < W_{gap} \le 35.0$	12 ¹²	5.4	
	TORBTOORB	$0.0 < W_{gap} \le 5.0$	36 ¹	0	
	75RB+75RB	$0.0 < W_{gap} \le 30.0$	12 ¹²	4.6	ļ
	75RB+100RB	$0.0 < W_{gap} \le 25.0$	12 ¹²	4.2	
	100RB+25RB	$0.0 < W_{gap} \le 35.0$	16 ¹³	7.2	
	100RB+50RB	$0.0 < W_{gap} \le 30.0$	16 ¹³	5.8	
	100RB+75RB	$0.0 < W_{gap} \le 25.0$	16 ¹³	5.0	
	100RB+100RB	$0.0 < W_{gap} \le 20.0$	16 ¹³	4.6	
	25DD : 25DD	$45.0 < W_{gap} \le 65.0$	12 ¹	4.7	
	25RB+25RB	$0.0 < W_{gap} \le 45.0$	25 ¹	0	
	0500.5000	$40.0 < W_{gap} \le 60.0$	12 ¹	3.8	
	25RB+50RB	$0.0 < W_{gap} \le 40.0$	25 ¹	0	
	0500 7500	$35.0 < W_{gap} \le 55.0$	12 ¹	3.6	
	25RB+75RB	0.0 < W _{gap} ≤ 35.0	25 ¹	0	
		$30.0 < W_{gap} \le 50.0$	12 ¹	3.4	
	25RB+100RB	$0.0 < W_{gap} \le 30.0$	25 ¹	0	
		$30.0 < W_{gap} \le 60.0$	12 ⁹	5.1	
	50RB+25RB	0.0 < W _{gap} ≤ 30.0	32 ¹	0	-
CA_3A-3A		25.0 < W _{gap} ≤ 55.0	12 ⁹	4.3	FDD
	50RB+50RB	$0.0 < W_{gap} \le 25.0$	32 ¹	0	
		20.0 < W _{gap} ≤ 50.0	12 ⁹	3.8	
	50RB+75RB	$0.0 < W_{\text{gap}} \le 20.0$	32 ¹	0	1
		$15.0 < W_{\rm gap} \le 45.0$	12 ⁹	3.4	1
	50RB+100RB	$0.0 < W_{gap} \le 45.0$	32 ¹	0	1
		$25.0 < W_{\rm gap} \le 15.0$	12 ¹⁰	6.0	-
	75RB+25RB		32 ¹	0.0	-
		$0.0 < W_{gap} \le 25.0$	12 ¹⁰		-
	75RB+50RB	$20.0 < W_{gap} \le 50.0$	32 ¹	4.7	-
	7500:7500	$0.0 < W_{gap} \le 20.0$		0	-
	75RB+75RB	$15.0 < W_{gap} \le 45.0$	12 ¹⁰	4.2	<u> </u>

		$0.0 < W_{gap} \le 15.0$	32 ¹	0	
		10.0 < W _{gap} ≤ 40.0	12 ¹⁰	3.8	
	75RB+100RB	• • • • • • • • • • • • • • • • • • • •	32 ¹		
		$0.0 < W_{gap} \le 10.0$		0	
	100RB+25RB	$15.0 < W_{gap} \le 50.0$	16 ¹¹	6.5	
	100110+20110	$0.0 < W_{gap} \le 15.0$	32 ¹	0	
	40000 5000	$10.0 < W_{gap} \le 45.0$	16 ¹¹	5.1	
	100RB+50RB	$0.0 < W_{gap} \le 10.0$	32 ¹	0	
		$5.0 < W_{gap} \le 40.0$	16 ¹¹	4.5	
	100RB+75RB	$0.0 < W_{gap} \le 5.0$	32 ¹	0	
	100RB+100RB	$0.0 < W_{gap} \le 35.0$	16 ¹¹	4.1	
CA_4A-4A	NOTE 6	NOTE 7	NOTE 8	0.0	FDD
_	50RB+50RB	$25.0 < W_{gap} \le 50.0$	32 ¹	0.0	
		$0.0 < W_{gap} \le 25.0$	50 ¹	0.0	
	75RB+25RB	$20.0 < W_{gap} \le 50.0$	32 ¹	0.0	
		$0.0 < W_{gap} \le 20.0$	50 ¹	0.0	
	75RB+50RB	$20.0 < W_{gap} \le 45.0$	32 ¹	0.0	
00 70 70		$0.0 < W_{gap} \le 20.0$	50 ¹	0.0	EDD
CA_7A_7A	75RB+75RB	$15.0 < W_{gap} \le 40.0$	32 ¹	0.0	FDD
		$0.0 < W_{gap} \le 15.0$	50 ¹	0.0	
	100RB+75RB	$15.0 < W_{gap} \le 35.0$	36 ¹	0.0	
	100112110112	$0.0 < W_{gap} \le 15.0$	50 ¹	0.0	
	100RB+100RB	$15.0 < W_{\text{gap}} \le 30.0$	32 ¹	0.0	
	TOOKBITOOKB	$0.0 < W_{gap} \le 15.0$	45 ¹	0.0	
CA 23A-23A	NOTE 6	NOTE 7	NOTE 8	0.0	FDD
<u> </u>		$30.0 < W_{gap} \le 55.0$	10 ¹	5.0	
	25RB+25RB	$0.0 < W_{gap} \le 30.0$	25 ¹	0.0	
		$25.0 < W_{gap} \le 50.0$	10 ¹	4.5	
	25RB+50RB	$0.0 < W_{gap} \le 25.0$	25 ¹	0.0	
		$20 < W_{gap} \le 45$	10 ¹	4.3	
	25RB+75RB	$0 < W_{gap} \le 20$	25 ¹	0	
		$15 < W_{qap} \le 40$	10 ¹	4.1	
	25RB+100RB	0 < W _{gap} ≤ 15	25 ¹	0	
		$15.0 < W_{gap} \le 50.0$	10 ⁴	5.5	
	50RB+25RB	$0.0 < W_{gap} \le 15.0$	32 ¹	0.0	
		$10.0 < W_{gap} \le 45.0$	10 ⁴	5.0	
	50RB+50RB	$0.0 < W_{gap} \le 10.0$	32 ¹	0.0	
CA_25A-25A		$5 < W_{gap} \le 40$	10 ⁴	4.5	FDD
071_20712071	50RB+75RB	$0 < W_{qap} \le 5$	32 ¹	0	. 55
	50RB+100RB	0 < W _{gap} ≤ 35	10 ⁴	4.2	
		$10 < W_{gap} \le 45$	10 ¹⁴	7.6	
	75RB+25RB	0 < W _{gap} ≤ 10	32 ¹	0	
		5 < W _{gap} ≤ 40	10 ¹⁴	6.7	
	75RB+50RB	0 < W _{gap} ≤ 5	32 ¹	0	
	75RB+75RB	0 < W _{gap} ≤ 35	10 ¹⁴	5.6	
	75RB+100RB	$0 < W_{gap} \le 30$	10 ¹⁴	4.8	
	100RB+25RB	$0 < W_{gap} \le 40$	12 ¹⁵	8	
	100RB+50RB	0 < W _{qap} ≤ 35	12 ¹⁵	6.7	
	100RB+75RB	0 < W _{gap} ≤ 30	12 ¹⁵	6.1	
	100RB+100RB	$0 < W_{gap} \le 25$	12 ¹⁵	5.7	
CA 41A-41A	NOTE 6	NOTE 7	NOTE 8	0.0	TDD
CA 42A-42A	NOTE 6	NOTE 7	NOTE 8	0.0	TDD
		e blocks shall be located as			

NOTE 1: 1 refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission.

NOTE 2: W_{qap} is the sub-block gap between the two sub-blocks.

NOTE 3: The carrier center frequency of PCC in the UL operating band is configured closer to the DL operating band.

NOTE 4: refers to the UL resource blocks shall be located at RB_{start}=33.

NOTE 5: For the TDD intra-band non-contiguous CA configurations, the minimum requirements apply only in synchronized operation between all component carriers.

NOTE 6: All combinations of channel bandwidths defined in Table 5.6A.1-3.

NOTE 7: All applicable sub-block gap sizes.

NOTE 8: The PCC allocation is same as Transmission bandwidth configuration N_{RB} as defined in Table 5.6-1.

```
NOTE 9: <sup>9</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=25.

NOTE 10: <sup>10</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=35.

NOTE 11: <sup>11</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=50.

NOTE 12: <sup>12</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=39.

NOTE 13: <sup>13</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=57.

NOTE 14: <sup>14</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=44.

NOTE 15: <sup>15</sup> refers to the UL resource blocks shall be located at RB<sub>start</sub>=62.
```

For intra-band non-contiguous carrier aggregation with two uplink and downlink carriers the reference sensitivity is defined to be met with both downlink and uplink carriers activated. The downlink PCC and SCC minimum requirements for reference sensitivity as specified in Table 7.3.1-1 are increased by amount of ΔR_{2UL_PCC} and ΔR_{2UL_SCC} which are defined in Table 7.3.1A-4 when uplink PCC and SCC allocations are according to the Table 7.3.1A-4.

Table 7.3.1A-4: Intra-band non-contiguous CA with two uplinks configuration for reference sensitivity

CA configuration	Aggregated channel bandwidth (PCC+SCC)	W _{gap} / [MHz]	UL PCC allocation	UL SCC allocation	ΔR _{2UL_PCC} (dB)	ΔR _{2UL_SCC} (dB)	Duplex mode
CA_4A-4A	NOTE 2	NOTE 3	NOTE 4	NOTE 5	0.0	0.0	FDD

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5A.

NOTE 2: All combinations of channel bandwidths defined in Table 5.6A.1-3.

NOTE 3: All applicable sub-block gap sizes.

NOTE 4: The PCC allocation is same as Transmission bandwidth configuration N_{RB} as defined in Table 5.6-1.

NOTE 5: The SCC allocation is same as Transmission bandwidth configuration N_{RB} as defined in Table 5.6-1.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with an uplink configuration in accordance with Table 7.3.1-2 for each band capable of uplink operation. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For these uplink configurations, the UE shall meet the reference sensitivity requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.3.1. The three downlink carriers shall be active throughout the tests. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with an uplink configuration in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For these uplink configurations, the UE shall meet the reference sensitivity requirements for intra-band non-contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.3.1. For the two component carriers within the same band, $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) when the uplink is active in the band supporting the single component carrier. The three downlink carriers shall be active throughout the tests. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For the UE that supports any of the E-UTRA CA configurations of three downlink carriers given in Table 7.3.1A-0a, exceptions to the aforementioned requirements are allowed when the uplink is active in a lower-frequency band and within a specified frequency range such that transmitter harmonics fall within the downlink transmission bandwidth assigned in a higher band as noted in Table 7.3.1A-0a. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0a and Table 7.3.1A-0b.

7.3.1B Minimum requirements (QPSK) for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.3.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmits power over the two transmit antenna connectors.

7.3.1D Minimum requirements (QPSK) for ProSe

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.6.2 with parameters specified in Table 7.3.1D-1 and Table 7.3.1D-2.

Table 7.3.1D-1: Reference sensitivity for ProSe Direct Discovery QPSK PREFSENS

	Channel bandwidth											
ProSe E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode					
2			[-104.2]	[-104.2]	[-104.2]	[-104.2]	HD					
3			[-103.2]	[-103.2]	[-103.2]	[-103.2]	HD					
4			[-106.2]	[-106.2]	[-106.2]	[-106.2]	HD					
7			[-103.9]	[-103.9]	[-103.9]	[-103.9]	HD					
14			[-103.2]	[-103.2]			HD					
20			[-103.3]	[-103.3]	[-102.3]	[-102.3]	HD					
26			[-103.6] ⁵	[-103.6]	[-103.6]		HD					
28			[-104.5]	[-104.5]	[-104.5]	[-103]	HD					
31			[-99.6]				HD					

- NOTE 1: Reference measurement channel is A.6.2
- NOTE 2: The signal power is specified per port
- NOTE 3: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.
- NOTE 4: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.
- NOTE 5: ⁵ indicates that the requirement is modified by -0.5 dB when the carrier frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.
- NOTE 6: For a UE that support both Band 18 and Band 26, the reference sensitivity level for Band 26 applies for the applicable channel bandwidths.

Table 7.3.1D-2: Reference sensitivity for ProSe Direct Communication QPSK PREFSENS

	Channel bandwidth											
ProSe E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode					
3				[-97.8]			HD					
7				[-98.5]			HD					
14				[-97.8]			HD					
20				[-97.9]			HD					
26				[-98.2] ⁵			HD					
28				[-99.1]			HD					
31			[-97]				HD					

- NOTE 1: Reference measurement channel is A.6.2
- NOTE 2: The signal power is specified per port
- NOTE 3: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.
- NOTE 4: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.
- NOTE 5: 5 indicates that the requirement is modified by -0.5 dB when the carrier
 - frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.
- NOTE 6: For a UE that support both Band 18 and Band 26, the reference sensitivity level for Band 26 applies for the applicable channel bandwidths.

NOTE: Table 7.3.1D-1/ Table 7.3.1D-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of allocated resource blocks will be practically constrained by other factors.

For the UE which supports ProSe in an operating band as specified in Section 5.5D and is configured with (and can transmit on) only PCell, and the UE also supports a E-UTRA downlink inter-band carrier aggregation configuration in Table 7.3.1-1A or Table 7.3.1-1B, the minimum requirement for reference sensitivity in Table 7.3.1D-1 and Table 7.3.1D-2 shall be increased by the amount given in $\Delta R_{IB,c}$ in Table 7.3.1-1A and Table 7.3.1-1B for the corresponding E-UTRA ProSe band.

7.3.1E Minimum requirements (QPSK) for UE category 0

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1E-1A/Table 7.3.1E-1B and Table 7.3.1E-2.

Table 7.3.1E-1A: Reference sensitivity for FDD and TDD UE category 0 QPSK PREFSENS

		Cha	annel bar	dwidth			
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
2	-100.2	-97.2	-95.5	-92.5	-90.7	-89.5	FDD
3	-99.2	-96.2	-94.5	-91.5	-89.7	-88.5	FDD
4	-102.2	-99.2	-97.5	-94.5	-92.7	-91.5	FDD
5	-100.7	-97.7	-95.5	-92.5			FDD
8	-99.7	-96.7	-94.5	-91.5			FDD
13			-94	-91			FDD
20			-94.5	-91.5	-88.2	-87	FDD
39			-97.5	-94.5	-92.7	-91.5	TDD
41			-95.5	-92.5	-90.7	-89.5	TDD

NOTE 1: The transmitter shall be set to P_{UMAX} as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG

Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Table 7.3.1E-1B: Reference sensitivity for HD-FDD UE category 0 QPSK PREFSENS

		С	hannel ba	andwidth			
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
2	-101	-98	-96.3	-93.3	-91.5	-90.3	HD-FDD
3	-100	-97	-95.3	-92.3	-90.5	-89.3	HD-FDD
4	-103	-100	-98.3	-95.3	-93.5	-92.3	HD-FDD
5	-101.5	-98.5	-96.3	-93.3			HD-FDD
8	-100.5	-97.5	-95.3	-92.3			HD-FDD
13			-95.3	-92.3			HD-FDD
20			-95.3	-92.3	-89.5	-88.3	HD-FDD

NOTE 1: The transmitter shall be set to Pumax as defined in subclause 6.2.5

NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern

OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1E-1A/Table 7.3.1E-1B shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1E-2.

NOTE: Table 7.3.1E-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex X (informative).

	E-U1	RA Band	/ Chann	el bandwid	th / N _{RB} /	Duplex mo	ode
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
2	6	15	25	[36 ¹]	[36 ¹]	[36 ¹]	FDD and HD-FDD
3	6	15	25	[36 ¹]	[36 ¹]	[36 ¹]	FDD and HD-FDD
4	6	15	25	[36 ¹]	[36 ¹]	[36 ¹]	FDD and HD-FDD
5	6	15	25	[25 ¹]			FDD and HD-FDD
8	6	15	25	25 ¹			FDD and HD-FDD
13			20 ¹	[20 ¹]			FDD and HD-FDD
20			25	20 ¹	20 ²	20 ²	FDD and HD-FDD
39			25	[36 ¹]	[36 ¹]	[36 ¹]	TDD
41			25	[36 ¹]	[36 ¹]	[36 ¹]	TDD

Table 7.3.1E-2: FDD and TDD UE category 0 Uplink configuration for reference sensitivity

NOTE 1: ¹ refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

NOTE 2: ² refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16.

7.3.2 Void

7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

7.4.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1-1

Table 7.4.1-1: Maximum input level

Rx Parameter	Units		(Channel b	andwidth)			
		1.4 3 5 10 15 MHz MHz MHz N							
Power in Transmission	dBm	dBm -25 ²							
Bandwidth Configuration	abiii	-27 ³							
NOTE 1: The transmitter shall	I be set to	4dB belo	w Pcmax_L a	at the mini	mum uplir	nk configu	ration		
specified in Table 7.	3.1-2 with	h Pcmax_L as defined in subclause 6.2.5.							
NOTE 2: Reference measure	ment chan	nnel is Annex A.3.2: 64QAM, R=3/4 variant with one sided							
dynamic OCNG Pat	tern OP.1 I	FDD/TDD	as describ	oed in Anr	nex A.5.1.	1/A.5.2.1.			

NOTE 3: Reference measurement channel is Annex A.3.2: 256QAM, R=4/5 variant with one

sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

7.4.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the maximum input level is defined with the uplink active on the band(s) other than the band whose downlink is being tested. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The UE shall meet the requirements specified in subclause 7.4.1 for each component carrier while all downlink carriers are active.

For intra-band contiguous carrier aggregation maximum input level is defined as the powers received at the UE antenna port over the Transmission bandwidth configuration of each CC, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each component carrier.

The downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.4.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels over each component carrier as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1A-1.

For intra-band non-contiguous carrier aggregation, any single non-contiguous downlink carrier shall meet the requirements specified in Table 7.4.1-1 while all downlink carriers are active, any contiguous downlink carriers belonging to non-contiguous carrier aggregation configuration shall meet the requirements specified in Table 7.4.1A-1 while all downlink carriers are active. The throughput shall be $\geq 95\%$ of the maximum throughput of the specified reference measurement channel as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) over each carrier. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1A-3.

Rx Parameter	Units	CA Bandwidth Class							
		Α	В	С	D	E	F		
Power in largest			-28 ²	-25 ²	-25 ²				
Transmission Bandwidth Configuration CC	dBm		[-30] ³	[-27] ³	[-27] ³				
Power in each other CC			-28+	-25 +	-25 +				
			10log(N _{RB,c}	10log(N _{RB,c}	10log(N _{RB,c}				
			/N _{RB,largest}	/N _{RB,largest}	/N _{RB,largest}				
	dBm		вw) ²	вw) ²	вw) ²				
	иын		[-30]+	[-27] +	[-27] +				
			10log(N _{RB,c}	10log(N _{RB,c}	10log(N _{RB,c}				
			/N _{RB,largest}	/N _{RB,largest}	/N _{RB,largest}				
			BW) 3	BW) 3	BW) 3				

Table 7.4.1A-1: Maximum input level for intra-band contiguous CA

- NOTE 1: The transmitter shall be set to 4dB below Pcmax_L or Pcmax_L_ca as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: Reference measurement channel is Annex A.3.2: 256QAM, R=4/5 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the maximum input-level requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the the requirements specified in subclause 7.4.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the maximum input-level requirements for intra-band non-contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the the requirements specified in subclause 7.4.1. The three downlink carriers shall be active throughout the tests.

7.4.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements in Clause 7.4.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.4.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.6.2.

Table 7.4.1D-1: Maximum input level for ProSe

Rx Parameter	Units	Channel bandwidth					
							20 MHz
Power in Transmission Bandwidth Configuration	dBm	[-22]					
NOTE 1: Reference measure	ment chan	nel is Anr	nex A.6.2				

7.4A Void

7.4A.1 Void

7.5 Adjacent Channel Selectivity (ACS)

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5.1 Minimum requirements

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.5.1-1: Adjacent channel selectivity

		Channel bandwidth						
Rx Parameter	Units	1.4	3	5	10	15	20	
		MHz	MHz	MHz	MHz	MHz	MHz	
ACS	dB	33.0	33.0	33.0	33.0	30	27	

Table 7.5.1-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units		Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
Power in	dBm									
Transmission Bandwidth Configuration				REFSENS	S + 14 dB					
	dBm	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS			
P _{Interferer}		+45.5dB	+45.5dB	+45.5dB	+45.5dB	+42.5dB	+39.5dB			
BW _{Interferer}	MHz	1.4	3	5	5	5	5			
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.0025			
, ,		/	/	/	/	/	/			
		-1.4-0.0025	-3-0.0075	-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-			
							0.0025			

The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX L as defined in subclause 6.2.5.

Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

Rx Parameter	Units			Channel b	andwidth		
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5
P _{Interferer}	dBm			-2	5		
BW _{Interferer}	MHz	1.4	3	5	5	5	5
F _{Interferer} (offset)	MHz	1.4+0.0025 / -1.4-0.0025	3+0.0075 / -3-0.0075	5+0.0025 / -5-0.0025	7.5+0.0075 / -7.5-0.0075	10+0.0125 / -10-0.0125	12.5+0.0025 / -12.5- 0.0025

NOTE 1: The transmitter shall be set to 24dB below PCMAX L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX L as defined in subclause 6.2.5.

7.5.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band, the adjacent channel requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.5.1 for each component carrier while all downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the adjacent channel requirements of subclause 7.5.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.5.1A-2 and Table 7.5.1A-3 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement specified in Table 7.5.1A-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5.1A-2 and 7.5.1A-3.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, each larger than or equal to 5 MHz, the adjacent channel selectivity requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.5.1 and 7.5.1A for a single component carrier and intra-band contiguous component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active. The interferer power $P_{interferer}$ for Case 1 in Table 7.5.1-2 and Table 7.5.1A-2 shall be set to the maximum of the levels given by the carriers of the respective sub-blocks. For both Case 1 and Case 2 (Table 7.5.1-3 and Table 7.5.1A-3), the wanted signal power level for the carriers of each sub-block shall be set in accordance with the ACS requirement (Table 7.5.1-1 and Table 7.5.1A-1) relative to the interferer power $P_{interferer}$.

Table 7.5.1A-1: Adjacent channel selectivity

			CA Bandwidth Class							
Rx Parameter	Units	В	С	D	E	F				
ACS	dB	27	24	22.2						

Table 7.5.1A-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units		CA	Bandwidth C	lass	
		В	С	D	E	F
Pw in Transmission Bandwidth		REFSENS	REFSENS	REFSEN		
Configuration, per CC		+ 14 dB	+ 14 dB	S + 14 dB		
	dBm	Aggregated	Aggregated	Aggregat		
		power +	power +	ed power		
P _{Interferer}		25.5 dB	22.5 dB	+ 20.7 dB		
BW _{Interferer}	MHz	5	5	5		
F _{Interferer} (offset)	MHz		2.5 + F _{offset}	2.5 +		
		2.5 + F _{offset}	/	F _{offset}		
		/	-2.5 - F _{offset}	/		
		-2.5 - F _{offset}		-2.5 -		
				Foffset		

- NOTE 1: The transmitter shall be set to 4dB below P_{CMAX} L.c or P_{CMAX} L as defined in subclause 6.2.5A.
- NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1
- NOTE 3: The $F_{interferer}$ (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the adjacent channel interferer and shall be further adjusted to $\left[F_{interferer}/0.015+0.5\right]0.015+0.0075$ MHz to be offset from the sub-carrier raster.

Table 7.5.1A-3: Test parameters for Adjacent channel selectivity, Case 2

Rx Parameter	Units	nits CA Bandwidth Class						
		В	С	D	E	F		
Pw in Transmission Bandwidth Configuration, per CC	dBm	-50.5 +10log ₁₀ (N _{RB,c} / N _{RB}	-47.5 +10log ₁₀ (N _{RB}	-43.9 +10log10(N _{RB,c} /N _{RB}				
P _{Interferer}	dBm			-25				
BW _{Interferer}	MHz	5	5	5				
F _{Interferer} (offset)	MHz	2.5+ F _{offset} / -2.5- F _{offset}	2.5+ F _{offset} / -2.5- F _{offset}	2.5+ F _{offset} / -2.5- F _{offset}				

- NOTE 1: The transmitter shall be set to 24dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.
- NOTE 2: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1
- NOTE 3: The $F_{interferer}$ (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the adjacent channel interferer and shall be further adjusted to $\left[F_{interferer}/0.015+0.5\right]0.015+0.0075$ MHz to be offset from the sub-carrier raster.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the adjacent channel selectivity requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the the requirements specified in subclause 7.5.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the adjacent channel selectivity requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the the requirements specified in subclause 7.5.1. The three downlink carriers shall be active throughout the tests.

7.5.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.5.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.5.1D Minimum requirements for ProSe

The UE shall fulfil the minimum requirement specified in Table 7.5.1D-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1D-2 and Table 7.5.1D-3 where the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.6.2.

Table 7.5.1D-1: Adjacent channel selectivity for ProSe

		Channel bandwidth					
Rx Parameter	Units	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
ACS	dB			33.0	33.0	30	27

Table 7.5.1D-2: Test parameters for Adjacent channel selectivity for ProSe, Case 1

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in	dBm							
Transmission Bandwidth Configuration				REFSENS	S + 14 dB			
	dBm			REFSENS	REFSENS	REFSENS	REFSENS	
P _{Interferer}				+45.5dB	+45.5dB	+42.5dB	+39.5dB	
BW _{Interferer}	MHz			5	5	5	5	
F _{Interferer} (offset)	MHz			5+0.0025 /	7.5+0.0075 /	10+0.0125 /	12.5+0.0025	
				-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5- 0.0025	
				l			0.0023	

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211.

Table 7.5.1D-3: Test parameters for Adjacent channel selectivity for ProSe, Case 2

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in								
Transmission	dBm			-56.5	-56.5	-53.5	-50.5	
Bandwidth	иын			-30.3	-30.3	-55.5	-50.5	
Configuration								
P _{Interferer}	dBm			-2	5			
BW _{Interferer}	MHz			5	5	5	5	
F _{Interferer} (offset)	MHz			5+0.0025	7.5+0.0075	10+0.0125	12.5+0.0025	
				/	/	/	/	
				-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-	
							0.0025	

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211.

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels..

7.6.1.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

Table 7.6.1.1-1: In band blocking parameters

Rx parameter	Units		Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			REFSENS	+ channel band	width specific	value below			
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9		
BW _{Interferer}	MHz	1.4	3	5	5	5	5		
Floffset, case 1	MHz	2.1+0.0125	4.5+0.0075	7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
F _{loffset, case 2}	MHz	3.5+0.0075	7.5+0.0075	12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
					5	5	5		

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Table 7.6.1.1-2: In-band blocking

E-UTRA	Parameter	Unit	Case 1	Case 2	Case 3	Case 4	Case 5
band	P _{Interferer}	dB m	-56	-44			-38
	F _{Interferer} (offset)	IVIII	=-BW/2 - F _{loffset,case 1} & =+BW/2 + F _{loffset,case 1}	≤-BW/2 − F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}			-BW/2 - 11
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44	Finterferer	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15	Void	Void	
30	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15			F _{DL_low} – 11

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

- a. the carrier frequency -BW/2 Floffset, case 1 and
- b. the carrier frequency +BW/2 + F_{loffset, case 1}

NOTE 3: Finterferer range values for unwanted modulated interfering signal are interferer center frequencies

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{Interferer}$ power defined in Table 7.6.1.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6.1.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the in-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier while all downlink carriers are active. For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{\text{Interferer}}$ power defined in Table 7.6.1.1-2 is increased by the amount given by $\Delta R_{\text{IB,c}}$ in Table 7.3.1-1A. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. The requirements for the component carrier configured in the operating band without uplink band are specified in Table 7.6.1.1-1 and Table 7.6.1.1A-0.

Table 7.6.1.1A-0: In-band blocking for additional operating bands for carrier aggregation

E-UTRA band	Parameter	Unit	Case 1	Case 2
	P _{Interferer}	dBm	-56	-44
	F _{Interferer} (offset)	MHz	=-BW/2 - F _{loffset,case 1} & =+BW/2 + F _{loffset,case 1}	≤-BW/2 − F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}
29, 32	F _{Interferer}	MHz	(Note 2)	$F_{DL_low} - 15$ to $F_{DL_high} + 15$

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

- a. the carrier frequency -BW/2 Floffset, case 1 and
- b. the carrier frequency +BW/2 + F_{loffset, case 1}

NOTE 3: F_{Interferer} range values for unwanted modulated interfering signal are interferer center frequencies

For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the in-band blocking requirements of subclause 7.6.1.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6.1.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.1.1A-1 and Tables 7.6.1.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1A-1 and 7.6.1.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, each larger than or equal to 5 MHz, the in-band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.6.1.1 and 7.6.1.1A for a single component carrier and intra-band contiguous component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active.

Rx Parameter	Units	CA Bandwidth Class						
		В	С	D	E	F		
Pw in Transmission		R	EFSENS + CA B	andwidth Class s	pecific value belo	OW		
Bandwidth Configuration, per CC	dBm	9	12	13.8				
3W _{Interferer}	MHz	5	5	5				
Floffset, case 1	MHz	7.5	7.5	7.5				
Floffset, case 2	MHz	12.5	12.5	12.5				

Table 7.6.1.1A-1: In band blocking parameters

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L, or Pcmax_L as defined in subclause 6.2.5A

NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to

Annex C.3.1

Table 7.6.1.1A-2: In-band blocking

CA configuration	Parameter	Unit	Case 1	Case 2
	P _{Interferer}	dBm	-56	-44
	F _{Interferer} (offset)	MHz	=-F _{offset} F _{loffset,case 1} & =+F _{offset} + F _{loffset,case 1}	≤-F _{offset} - F _{loffset,case 2} & ≥+F _{offset} + F _{loffset,case 2}
CA_1C, CA_2C, CA_3C, CA_7C, CA_12B, CA_23B, CA_27B, CA_38C, CA_39C, CA_40C, CA_41C, CA_40D, CA_41D, CA_42C	F _{Interferer} (Range)	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

a. the carrier frequency - F_{offset} - $F_{\text{loffset, case 1}}$ and

b. the carrier frequency +F_{offset} + F_{loffset}, case 1

NOTE 3: F_{offset} is the frequency offset from the center frequency of the CC being tested to the edge of aggregated channel bandwidth.

NOTE 4: The $F_{\text{interferer}}$ (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the interferer and shall be further adjusted to $\left[F_{\text{interferer}}/0.015+0.5\right]0.015+0.0075$ MHz to be offset from the sub-carrier raster.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an

operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the in-band blocking requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.6.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the in-band blocking requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the requirements specified in subclause 7.6.1. The three downlink carriers shall be active throughout the tests.

7.6.1.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2.

Table 7.6.1.1D-1: In band blocking parameters for ProSe Direct Discovery

Rx parameter	Units	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in		REF	SENS + chan	nel bandwidth s	pecific value be	elow + P _{Interferer}	, offset	
Transmission Bandwidth Configuration	dBm			6	6	7	9	
BW _{Interferer}	MHz			5	5	5	5	
F _{loffset, case 1}	MHz			7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125	
F _{loffset, case 2}	MHz			12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007	
					5	5	5	
P _{Interferer, offset}	dB			[10.9]	[13.9]	[15.7]	[16.9]	

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211

Table 7.6.1.1D-2: In band blocking parameters for ProSe Direct Communication

Rx parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			REFSENS + channel bandwidth specific value below						
Transmission Bandwidth Configuration	dBm			6	6	7	9		
BW _{Interferer}	MHz			5	5	5	5		
F _{loffset, case 1}	MHz			7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
F _{loffset, case 2}	MHz			12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
					5	5	5		

NOTE 1: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211

ProSe	Parameter	Unit	Case 1	Case 2
E-UTRA	P _{Interferer}	dBm	-56	-44
band	E		=-BW/2 - F _{loffset,case 1}	≤-BW/2 − F _{loffset,case 2}
	F _{Interferer} (offset)	MHz	&	&
	(Oliset)		=+BW/2 + F _{loffset,case 1}	≥+BW/2 + F _{loffset,case 2}
2,3,4,7,14, 20,26,28,31	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 15 to
20,20,20,31			·	F _{DL high} + 15

Table 7.6.1.1D-3: In-band blocking for ProSe

NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

NOTE 2: For each carrier frequency the requirement is valid for two frequencies:

a. the carrier frequency -BW/2 - $F_{\text{loffset, case 1}}$ and

b. the carrier frequency +BW/2 + F_{loffset, case 1}

NOTE 3: F_{Interferer} range values for unwanted modulated interfering signal are interferer center frequencies

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{Interferer}$ power defined in Table 7.6.1.1D-3 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6.2 Out-of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.

7.6.2.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $\max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.6-1) and L_{CRBs} is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

Table 7.6.2.1-1: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFS	ENS + ch	annel ban	dwidth sp	ecific valu	e below
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.

Range 3

E-UTRA band **Parameter** Units Frequency Range 1 Range 2 Range 3 Range 4 P_{Interferer} dBm -44 -30 -15 -15 1, 2, 3, 4, 5, 6, F_{DL_low} -15 to F_{DL_low} -60 to F_{DL_low} -85 to 7, 8, 9, 10, 11, F_{DL_low}-60 1 MHz F_{DL_low} -85 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, FInterferer MHz 26, 27, 28, 30, (CW) F_{DL high} +15 to F_{DL high} +60 to F_{DL_high} +85 to 31, 33, 34, 35, +12750 MHz $F_{DL_high} + 60$ F_{DL_high} +85 36, 37, 38, 39, 40, 41, 42, 43, 44 2, 5, 12, 17 MHz F_{Interferer} Ful_low - Ful_high NOTE 1: For the UE which supports both Band 11 and Band 21 the out of blocking is FFS

Table 7.6.2.1-2: Out of band blocking

7.6.2.1A Minimum requirements for CA

Parameter Unit

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band, the out-of-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The throughput in the downlink measured shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1A-0. The UE shall meet these requirements for each component carrier while all downlink carriers are active.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the out-of-band blocking requirements specified above shall be met with the transmitter power for the uplink set to 7 dB below PCMAX_L,c for each serving cell *c*.

For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the out-of-band blocking requirements of subclause 7.6.2.1A do not apply.

Table 7.6.2.1A-0: out-of-band blocking for inter-band carrier aggregation

Range 2

Range 1

i didilict	oi Oilit	italige i	italige 2	italige 5
P _{wanted} dBm		Table 7.6.2.1-1 for all component carriers		
Pinterferer	dBm	$-44 + \Delta R_{IB,c}$	-30 + ∆R _{IB,c}	$-15 + \Delta R_{IB,c}$
Finterferer	MHz	$-60 < f - F_{DL_Low(j)} < -15$	$-85 < f - F_{DL_Low(j)} \le -60$	$1 \le f \le F_{DL_Low(1)} - 85$
(CW)		or	or	or
		$15 < f - F_{DL_High(j)} < 60$	$60 \le f - F_{DL_High(j)} < 85$	F _{DL_High(<i>j</i>)} + 85 ≤ f
				$\leq F_{\mathrm{DL_Low}(j+1)} - 85$ with
				<i>j</i> < X
				or
				$F_{DL_High(X)} + 85 \le f$
				≤ 12750
NOTE 1: F _{DL_Low(j)} and F _{DL_High(j)} denote the respective lower and upper frequency limits of the operating				
	band containing carrier j , $j = 1,,X$, with carriers numbered in increasing order of carrier frequency and X the number of component carriers in the band combination (X = 2 or X = 3 for the present version of this specification).			
NOTE 2:	F _{Interferer} can be in both Range 1 and Range 2. Then the lower of the P _{Interferer} applies.			
NOTE 3:	DTE 3: For $F_{DL_Low(j)} - 15$ MHz $\leq f \leq F_{DL_High(j)} + 15$ MHz the appropriate adjacent channel selectivity and in-band blocking requirments in the respective subclauses 7.5.1A and 7.6.1.1A shall be applied for carrier j .			
NOTE 4:	$\Delta R_{IB,c}$ according to Table 7.3.1-1A applies when serving cell c is measured.			

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per downlink are allowed for spurious response frequencies for one active uplink when measured using a step size of 1 MHz.

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to $2 \cdot \max(24.6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per downlink are allowed for spurious response frequencies for two active uplinks when measured using a step size of 1 MHz. For these exceptions the requirements in clause 7.7.1A apply.

For intra-band contiguous carrier aggreagations the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6.2.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.2.1A-1 and Tables 7.6.2.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1A-1 and 7.6.2.1A-2.

For Table 7.6.2.1A-2 in frequency range 1, 2 and 3, up to $\max(24.6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

Table 7.6.2.1A-1: Out-of-band blocking parameters

Rx Parameter	Units	CA Bandwidth Class					
		В	С	D	Е	F	
Pw in Transmission Bandwidth Configuration, per		REFSE	NS + CA B	andwidth C	lass specifi	c value	
CC	dBm	below					
		9	9	9			
NOTE 1: The transmitter shall be set to 4dB below	PCMAX_L,c (or Pcmax_L a	s defined in	subclause	6.2.5A.		
NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1							
FDD/TDD as described in Annex A.5.1.1/	A.5.2.						

Table 7.6.2.1A-2: Out of band blocking

CA configuration	Parameter	Units	Frequency		
			Range 1	Range 2	Range 3
	P _{Interferer}	dBm	-44	-30	-15
CA_1C, CA_2C, CA_3C, CA_7C, CA_12B, CA_23B, CA_27B, CA_38C, CA_40C, CA_41C, CA_40D, CA_42C	F _{Interferer} (CW)	MHz	F _{DL_low} - 15 to F _{DL_low} - 60 F _{DL_high} +15 to F _{DL_high} +	F _{DL_low} - 60 to F _{DL_low} - 85 F _{DL_high} +60 to F _{DL_high}	F _{DL_low} -85 to 1 MHz F _{DL_high} +85 to +12750
			60	+85	MHz

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the out-of-band blocking requirements are defined with the uplink configuration in accordance with table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.6.2.1 and 7.6.2.1A for a single component carrier and intra-band contiguous component carriers per sub-block, respectely. The requirements apply with all downlink carriers active.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for one active uplink when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $\max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for one active uplink when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 spurious response are applicable.

For intra-band non-contiguous carrier aggregation with two uplink carriers and two downlink carriers, the out-of-band blocking requirements are defined with the uplink configuration of the PCC and SCC being in accordance with Table 7.3.1A-4 and powers of both carriers set to $P_{CMAX_L,c} - 7$ dBm. The UE shall meet the requirements specified in subclause 7.6.2.1 for each component carrier while both downlink carriers are active.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $2 \cdot \max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for two active uplinks in the same operating band when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $2 \cdot \max\{8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil \}$ exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies for two active uplinks in the same operating band when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 spurious response are applicable.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and the uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For each downlink the UE shall meet the out-of-band blocking requirements applicable for inter-band carrier aggregation with one component carrier per operating band in Table 7.6.2.1A-0 but with the sub-block of two component carriers assigned to the same operating band. For the latter sub-block the out-of-band blocking parameters in Table 7.6.2.1-1 are replaced by those specified in Table 7.6.2.1A-1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and the uplink assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For the two component carriers within the same band, P_{wanted} in Table 7.6.2.1A-0 is set using $\Delta R_{IBNC} = 0$ dB for all subblock gaps (Table 7.3.1A-3). For each downlink the UE shall meet the out-of-band blocking requirements applicable for inter-band carrier aggregation with one component carrier per operating band in Table 7.6.2.1A-0 but with two of the component carriers assigned to the same band. The three downlink carriers shall be active throughout the tests.

7.6.2.1D Minimum requirements for ProSe

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Tables 7.6.2.1D-1, 7.6.2.1D-2 and 7.6.2.1D-3.

For Table 7.6.2.1D-3 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

For Table 7.6.2.1D-3 in frequency range 4, up to $\max(8, \lceil (N_{RB}+2\cdot L_{CRBs})/8 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.6-1) and L_{CRBs} is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

Table 7.6.2.1D-1: Out-of-band blocking parameters for ProSe Direct Discovery

Rx Parameter	Units	Channel bandwidth					
		1.4 3 MHz 5 MHz 10 15 20 MHz					
Power in Transmission	dBm	REFSENS + channel bandwidth specific value below + P _{Interferer, offset}					
Bandwidth Configuration	UDIII			6	6	7	9
P _{Interferer, offset}	dB			[10.9]	[13.9]	[15.7]	[16.9]
NOTE 2: Reference measurement channel is specified in Annex A.6.2.							

Table 7.6.2.1D-2: Out-of-band blocking parameters for ProSe Direct Communication

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFSENS + channel bandwidth specific value below					
Transmission Bandwidth	dBm			6	6	7	9
Configuration				0	0	,	9
NOTE 1: Reference measurement channel is specified in Annex A.6.2.							

Table 7.6.2.1D-3: Out of band blocking for ProSe

E-UTRA band	Parameter	Units	Frequency				
			Range 1	Range 2	Range 3		
	P _{Interferer}	dBm	-44	-30	-15		
			F _{DL_low} -15 to	F _{DL_low} -60 to	F _{DL_low} -85 to		
2,3,4,7,14,	F _{Interferer}	MHz	F_{DL_low} -60	F _{DL_low} -85	1 MHz		
20,26,28,31	(CW)	IVIITZ	F _{DL_high} +15 to	F _{DL_high} +60 to	F _{DL_high} +85 to		
			F _{DL_high} + 60	F _{DL_high} +85	+12750 MHz		
NOTE 1: For th	ne UE which su	pports both	n Band 11 and Band	21 the out of blocking	ng is FFS.		

7.6.3 Narrow band blocking

This requirement is measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

7.6.3.1 Minimum requirements

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1-1

Table 7.6.3.1-1: Narrow-band blocking

Parameter	Unit	Channel Bandwidth							
raiailletei		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
р	dBm	P_R	EFSENS + cha	nnel-bandwid	dth specific	value belo	w		
P _w	UDIII	22	18	16	13	14	16		
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55		
F _{uw} (offset for	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075		
$\Delta f = 15 \text{ kHz}$	IVII IZ	0.9073	1.7025	2.7075	J.Z 1ZJ	1.1023	10.2073		
F _{uw} (offset for	MHz								
$\Delta f = 7.5 \text{ kHz}$	IVII IZ								

NOTE 1: The transmitter shall be set a 4 dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in subclause 6.2.5.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, P_{UW} power defined in Table 7.6.3.1-1 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6.3.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the narrow-band blocking requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier while all downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the narrow-band blocking requirements of subclause 7.6.3.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.6.3.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.6.3.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1A-1.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the narrow band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.6.3.1 and 7.6.3.1A for a single component carrier and intra-band contiguous component carriers per sub-block, respectively. The requirements apply for in-gap and out-of-gap interferers while all downlink carriers are active.

Parameter	Unit	CA Bandwidth Class						
Faranietei	Oilit	В	С	D	E	F		
Power per CC in Aggregated	dBm	REFSEN	S + CA Bandwi	dth Class spe	ecific value b	elow		
Transmission Bandwidth Configuration	UDIII	16	16 ⁴	16				
P _{uw} (CW)	dBm	-55	-55	-55				
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz	/	- F _{offset} - 0.2 / + F _{offset} + 0.2	- F _{offset} - 0.2 / + F _{offset} + 0.2				
F_{uw} (offset for $\Delta f = 7.5 \text{ kHz}$)	MHz							

Table 7.6.3.1A-1: Narrow-band blocking

- NOTE 1: The transmitter shall be set to 4dB below PCMAX L.c or PCMAX L as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: The F_{uw} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the interferer and shall be further adjusted to $\left[F_{interferer}/0.015+0.5\right]0.015+0.0075\,\text{MHz}$ to be offset from the sub-carrier raster.
- NOTE 4: The requirement is applied for the band combinations whose component carriers' BW≥5 MHz.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the narrow-band blocking requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.6.3. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink active in each band capable of UL operation. For these uplink configurations, the UE shall meet the narrow-band blocking requirements for intra-band non-contiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the requirements specified in subclause 7.6.3. The three downlink carriers shall be active throughout the tests.

7.6.3.1D Minimum requirements for ProSe

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Table 7.6.3.1D-1 and Table 7.6.3.1D-2.

Parameter	Unit	Channel Bandwidth						
Parameter	Offic	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
		P _{REFSENS_P}	_{roSe} + channe	el-bandwidth	specific va	lue below	+ P _{Interferer,}	
P _w	dBm	offset						
				16	13	14	16	
P _{uw} (CW)	dBm			-55	-55	-55	-55	
P _{Interferer, offset}	dB			[10.9]	[13.9]	[15.7]	[16.9]	
F _{uw} (offset for	MHz			2.7075	5.2125	7.7025	10.2075	
$\Delta f = 15 \text{ kHz}$	IVII IZ			2.7070	0.2120	7.7020	10.2070	
F _{uw} (offset for	MHz							
$\Delta f = 7.5 \text{ kHz}$	IVITZ							
NOTE 1: Referen	NOTE 1: Reference measurement channel is specified in Annex A.6.2.							

Table 7.6.3.1D-1: Narrow-band blocking for ProSe Direct Discovery

Table 7.6.3.1D-2: Narrow-band blocking for ProSe Direct Communication

Parameter	Unit			Channel Ba	ndwidth			
Farameter	Ollit	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Pw	dBm	P _{REFS}	SENS_ProSe + C	hannel-band	width spec	ific value b	elow	
Fw	-			16	13	14	16	
P _{uw} (CW)	dBm			-55	-55	-55	-55	
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz			2.7075	5.2125	7.7025	10.2075	
F_{uw} (offset for $\Delta f = 7.5 \text{ kHz}$)	MHz							
NOTE 1: Referer	NOTE 1: Reference measurement channel is specified in Annex A.6.2.							

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, P_{UW} power defined in Table 7.6.3.1D-1 and Table 7.6.3.1D-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.6A Void

<Reserved for future use>

7.6B Blocking characteristics for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.6 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in subclause 7.6.2 is not met.

7.7.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

Table 7.7.1-1: Spurious response parameters

Rx parameter	Units	Channel bandwidth						
		1.4 MHz	1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MH					
Power in		REF	REFSENS + channel bandwidth specific value below					
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9	

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2.

N OTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.7.1-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, $P_{interferer}$ power defined in Table 7.7.1-2 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.7.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the spurious response requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The throughput measured in each downlink with $F_{interferer}$ in Table 7.6.2.1A-0 at spurious response frequencies shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2. The UE shall meet these requirements for each component carrier while all downlink carriers are active.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the spurious response requirements applicable specified above shall be met with the transmitter power for the uplink set to 7 dB below $P_{CMAX_L,c}$ for each serving cell c.

For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the spurious response requirements of subclause 7.7.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC. For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.7.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2,

A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1A-1 and 7.7.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the spurious response requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.7.1 and 7.7.1A for a single component carrier and intra-band contiguous component carriers per sub-block, resepctively. The requirements apply with all downlink carriers active.

For intra-band non-contiguous carrier aggregation with one component carrier per operating band and two uplink carriers, the spurious response requirements applicable specified above shall be met with the transmitter powers for the uplinks set to $P_{\rm CMAX\ L,c} - 7$ dBm.

Table 7.7.1A-1: Spurious response parameters

Rx Parameter	Units	CA Bandwidth Class					
		В	С	D	E	F	
Pw in Transmission Bandwidth	dBm	REFSE	NS + CA Bar	ndwidth Class	specific value	e below	
Configuration, per CC	иын	9	9	9			

NOTE 1: The transmitter shall be set to 4dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.

NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern

OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.7.1A-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For each downlink the UE shall meet the spurious-response requirements applicable for inter-band carrier aggregation with one component carrier per operating band but with the sub-block of two component carriers assigned to the same operating band. For the latter sub-block the spurious response parameters in Table 7.7.1-1 are replaced by those specified in Table 7.7.1A-1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For the two component carriers within the same band, P_{wanted} in Table 7.6.2.1A-0 is set using $\Delta R_{IBNC} = 0$ dB for all subblock gaps (Table 7.3.1A-3). For each downlink the UE shall meet the spurious-response requirements applicable for inter-band carrier aggregation with one component carrier per operating band but with two of the component carriers assigned to the same band. The three downlink carriers shall be active throughout the tests.

7.7.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.7.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

7.7.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Tables 7.7.1D-1, 7.7.1D-2, and 7.7.1D-3.

Table 7.7.1D-1: Spurious response parameters for ProSe Direct Discovery

Rx parameter	Units		Channel bandwidth				
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFSENS _F	REFSENS _{ProSe} + channel bandwidth specific value below+ P _{Interferer} ,				
Transmission	dBm		offset				
Bandwidth	ubili	···					9
Configuration				U	U	,	9
P _{Interferer, offset}	dB	[10.9] [13.9] [15.7] [16.9]					
NOTE 1: Reference measurement channel is specified in Annex A.6.2.							

Table 7.7.1D-2: Spurious response parameters for ProSe Direct Communication

Rx parameter	Units		Channel bandwidth				
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFS	ENS _{ProSe} +	channel ba	ndwidth spe	cific value b	elow
Transmission	dBm						
Bandwidth	ubili			6	6	7	9
Configuration							
NOTE 1: Reference measurement channel is specified in Annex A.6.2.							

Table 7.7.1D-3: Spurious response for ProSe

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

For the UE which supports inter-band CA configuration in Table 7.3.1-1A, $P_{interferer}$ power defined in Table 7.7.1D-3 is increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

7.8.1.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals

Table 7.8.1.1-1: Wide band intermodulation

Rx Parameter	Units	Channel bandwidth											
		1.4 MHz	ЛHz	5 MHz	10 MHz	15 MHz	20 MHz						
Power in		REFSENS + channel bandwidth specific value below											
Transmission Bandwidth Configuration	dBm	12		8	6	6	7	9					
P _{Interferer 1} (CW)	dBm				-46								
P _{Interferer 2} (Modulated)	dBm				-46								
BW _{Interferer 2}		1.4	1.4 3 5										
F _{Interferer 1}	MHz	-BW/2 -2.1 -BW/2 -4.5 -BW/2 - 7.5											
(Offset)		/		/			/						
		+BW/2+ 2.1	+BW/2	2 + 4.5		+BW	/2 + 7.5						
F _{Interferer 2} (Offset)	MHz				2*F _{Interfer}	er 1							
		all be set to 4dB				ium uplink c	onfiguration	specified in					
		PCMAX_L as defined in subclause 6.2.5.											
		ement channel is specified in Annex A.3.2 with one sided dynamic OCNG											
	-	/TDD as described in Annex A.5.1.1/A.5.2.1.											
		erferer consists of the Reference measurement channel specified in Annex d dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex											
A.5.1.1/A	4.5.2.1 with	n set-up accordii	ng to An	inex C.3	.1 The inter	tering modu	set-up according to Annex C.3.1The interfering modulated signal is 5MHz E-						

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{interferer1}$ and $P_{interferer2}$ powers defined in Table 7.8.1.1-1 are increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

UTRA signal as described in Annex D for channel bandwidth ≥5MHz

7.8.1A Minimum requirements for CA

For inter-band carrier aggregation with one component carrier per operating band and the uplink assigned to one E-UTRA band the wide band intermodulation requirements are defined with the uplink active on the band(s) other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while all downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the wideband intermodulation requirements of subclause 7.8.1A do not apply.

For intra-band contiguous carrier aggegation the downlink SCC(s) shall be configured at nominal channel spacing to the PCC, For FDD, the PCC shall be configured closest to the uplink band. All downlink carriers shall be active throughout the test. The uplink output power shall be set as specified in Table 7.8.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggreagation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.8.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1A-1

Table 7.8.1A-1: Wide band intermodulation

Rx parameter	Units		CA	A Bandwidth Cl	lass			
		В	С	D	E	F		
Power per CC in		RE	FSENS + CA B	andwidth Class	specific value be	elow		
Aggregated Transmission Bandwidth Configuration	dBm	9	12	13.8				
P _{Interferer 1} (CW)	dBm		-46					
P _{Interferer 2} (Modulated)	dBm			-46				
BW _{Interferer 2}	MHz	5	5	5				
F _{Interferer 1} (Offset)	MHz	-F _{offset} -7.5 / + F _{offset} +7.5	-F _{offset} -7.5 / + F _{offset} +7.5	-F _{offset} -7.5 / + F _{offset} +7.5				
F _{Interferer 2} (Offset)	MHz			2*F _{Interferer 1}		•		

- NOTE 1: The transmitter shall be set to 4dB below Pcmax_L,c or Pcmax_L as defined in subclause 6.2.5A.
- NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1.
- NOTE 4: The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth ≥5MHz;
- NOTE 5: The F_{interferer 1} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the modulated interferer.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink sub-blocks, the wide band intermodulation requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements for each sub-block as specified in subclauses 7.8.1.1 and 7.8.1.1A for a component carrier and intra-band contiguous component carriers per sub-block, respectively. The requirements apply for out-of-gap interferers while all downlink carriers are active.

For combinations of intra-band contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test and a configuration in accordance with Table 7.3.1-2. The downlink PCC carrier center frequency shall be configured closer to the uplink operating band than the downlink SCC center frequency when the uplink is active in the band supporting two component carriers. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the wide-band intermodulation requirements for intra-band contiguous carrier aggregation of two downlink carriers and for the remaining component carrier the requirements specified in subclause 7.8.1. The three downlink carriers shall be active throughout the tests.

For combinations of intra-band non-contiguous and inter-band carrier aggregation with three downlink carriers and one uplink carrier assigned to one E-UTRA band, the requirement is defined with the uplink active in the band other than that supporting the downlink(s) under test. The uplink configuration shall be in accordance with Table 7.3.1A-3 when the uplink is active in the band supporting two component carriers and in accordance with Table 7.3.1-2 when the uplink is active in the other band. For E-UTRA CA configurations including an operating band without uplink band, the requirements for all downlinks shall be met with the single uplink carrier active in each band capable of UL operation. For these uplink configurations, the UE shall meet the wide-band intermodulation requirements for intra-band noncontiguous carrier aggregation of two downlink carriers with $\Delta R_{IBNC} = 0$ dB for all sub-block gaps (Table 7.3.1A-3) and for the remaining component carrier the requirements specified in subclause 7.8.1. The three downlink carriers shall be active throughout the tests.

7.8.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.8.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

7.8.1D Minimum requirements for ProSe

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.6.2 with parameters specified in Table 7.8.1D-1, Table 7.8.1D-2, and Table 7.8.1D-3 for the specified wanted signal mean power in the presence of two interfering signals

Table 7.8.1D-1: Wide band intermodulation parameters for ProSe Direct Discovery

Rx parameter	Units	Channel bandwidth					
		1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz					
P _{Interferer, offset}	dB			[10.9]	[13.9]	[15.7]	[16.9]

Table 7.8.1D-2: Wide band intermodulation for ProSe Direct Communication

Rx parameter	Units	Channel bandwidth					
		1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz					
PInterferer, offset	dB			0	0	0	0

Table 7.8.1D-3: Wide band intermodulation for ProSe

Rx Parameter	Units			С	hannel bar	dwidth		
		1.4 MHz 3 MHz			5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFSEN	S + channe	el bar	ndwidth spe	cific value b	elow+ P _{Interf}	erer, offset
Transmission	dBm							
Bandwidth Configuration	abiii	12		8	6	6	7	9
P _{Interferer 1} (CW)	dBm	-46						
P _{Interferer 2} (Modulated)	dBm				-46			
BW _{Interferer 2}		1.4	3				5	
F _{Interferer 1}	MHz	-BW/2 -2.1	-BW/2 -	4.5		-BW	/2 – 7.5	
(Offset)								
		+BW/2+ 2.1						
F _{Interferer 2} (Offset)	MHz	2*F _{Interferer 1}						

NOTE 1: Reference measurement channel is specified in Annex A.6.2

NOTE 2: The interferer is QPSK modulated PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211

For the UE which supports inter band CA configuration in Table 7.3.1-1A, $P_{interferer1}$ and $P_{interferer2}$ powers defined in Table 7.8.1D-3 are increased by the amount given by $\Delta R_{IB,c}$ in Table 7.3.1-1A.

7.8.2 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

Table 7.9.1-1: General receiver spurious emission requirements

Frequency band	Measurement bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz ≤ f ≤ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	1

NOTE 1: Applies only for Band 22, Band 42 and Band 43

NOTE 2: Unused PDCCH resources are padded with resource element groups with power level given

by PDCCH_RA/RB as defined in Annex C.3.1.

7.10 Receiver image

7.10.1 Void

7.10.1A Minimum requirements for CA

Receiver image rejection is a measure of a receiver's ability to receive the E-UTRA signal on one component carrier while it is also configured to receive an adjacent aggregated carrier. Receiver image rejection ratio is the ratio of the wanted received power on a sub-carrier being measured to the unwanted image power received on the same sub-carrier when both sub-carriers are received with equal power at the UE antenna connector.

For intra-band contiguous carrier aggregation the UE shall fulfil the minimum requirement specified in Table 7.10.1A-1 for all values of aggregated input signal up to -22 dBm.

.

Table 7.10.1A-1: Receiver image rejection

		CA bandwidth class					
Rx parameter	Units	Α	В	С	D	E	F
Receiver image rejection	dB		25	25	25		

8 Performance requirement

This clause contains performance requirements for the physical channels specified in TS 36.211 [4]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

Note: For the requirements in the following sections, similar Release 8 and 9 requirements apply for time domain measurements restriction under colliding CRS.

8.1 General

8.1.1 Receiver antenna capability

The performance requirements are based on UE(s) that utilize one or more antenna receivers.

For all test cases, the SNR is defined as

$$SNR = \frac{\sum_{j=1}^{N_{RX}} \hat{E}_{s}^{(j)}}{\sum_{j=1}^{N_{RX}} N_{oc}^{(j)}}$$

where N_{RX} denotes the number of receiver antenna connectors and the superscript receiver antenna connector j. The above SNR definition assumes that the REs are not precoded. The SNR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SNR requirement applies for the UE categories and CA capabilities given for each test.

For enhanced performance requirements type A, the SINR is defined as

$$SINR = \frac{\sum_{j=1}^{N_{RX}} \hat{E}_{s}^{(j)}}{\sum_{j=1}^{N_{RX}} N_{oc}^{(j)}}$$

where N_{RX} denotes the number of reciver antenna connectors and the superscript receiver antenna connector j. The above SINR definition assumes that the REs are not precoded. The SINR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SINR requirement applies for the UE categories given for each test.

For the performance requirements specified in this clause, it is assumed that N_{RX} =2 unless otherwise stated.

Table 8.1.1-1: Void

8.1.1.1 Simultaneous unicast and MBMS operations

8.1.1.2 Dual-antenna receiver capability in idle mode

8.1.2 Applicability of requirements

8.1.2.1 Applicability of requirements for different channel bandwidths

In Clause 8 the test cases may be defined with different channel bandwidth to verify the same target FRC conditions with the same propagation conditions, correlation matrix and antenna configuration.

Test cases defined for 5MHz channel bandwidth that reference this clause are applicable to UEs that support only Band 31.

8.1.2.2 Definition of CA capability

The definition with respect to CA capabilities for 2CCs is given as in Table 8.1.2.2-1. The definition with respect to CA capabilities for 3CCs is given in Table 8.1.2.2-3.

Table 8.1.2.2-1: Definition of CA capability with 2DL CCs

CA Capability Description Capability				
CA_C	Intra-band contiguous CA			
CA_A_2	Inter-band CA (two bands)			
CA_N	Intra-band non-contiguous CA (with two sub-blocks)			
c U 5	A_C corresponds to E-UTRA CA configurations and bandwidth ombination sets defined in Table 5.6A.1-1. CA_A_2 corresponds to E-TRA CA configurations and bandwidth combination sets defined in Table 6A.1-2. CA_N corresponds to E-UTRA CA configurations and bandwidth ombination sets defined in Table 5.6A.1-3.			

The supported testable aggregated CA bandwidth combinations for 2CCs for each CA capability are listed in Table 8.1.2.2-2.

Table 8.1.2.2-2: Supported testable aggregated CA bandwidth combinations for different CA capability with 2DL CCs

CA Capability	Bandwidth combination for FDD CA	Bandwidth combination for TDD CA	Bandwidth combination for TDD- FDD CA				
CA_C	[5+5MHz, 5+10MHz, 10+10MHz, 20+20MHz]	[20+20MHz, 15+20MHz]	NA				
CA_A_2	[10+10MHz, 10+15MHz, 10+20MHz, 15+20MHz, 20+20MHz]	[20+20MHz]	[10(FDD)+20(TDD)MHz, 15(FDD)+20(TDD)MHz, 20(FDD)+20(TDD)MHz]				
CA_N	[5+10MHz, 10+10MHz, 20+20MHz]	[20+20MHz]	NA				

Table 8.1.2.2-3: Definition of CA capability with 3 DL CCs

CA Capability	CA Capability Description	
CA_C	Intra-band contiguous CA	
CA_A_2	Inter-band CA (two bands)	
CA_A_3	Inter-band CA (three bands)	
CA_N	Intra-band non-contiguous CA (with two sub-blocks)	
con UTI 5.6, bar con	_C corresponds to E-UTRA CA configurations and bandwidth nbination sets defined in Table 5.6A.1-1. CA_A_2 corresponds to E-RA CA configurations and bandwidth combination sets defined in Table A.1-2. CA_A_3 corresponds to E-UTRA CA configurations and adwidth combination sets defined in and Table 5.6A.1-2a. CA_N responds to E-UTRA CA configurations and bandwidth combination is defined in Table 5.6A.1-3.	

The supported largest aggregated CA bandwidth combinations for 3CCs for each CA capability are listed in Table 8.1.2.2-4.

Table 8.1.2.2-4: Supported largest aggregated CA bandwidth combinations for different CA capability with 3 CCs

CA capability	Bandwidth combination for FDD CA	Bandwidth combination for TDD CA	Bandwidth combination for TDD-FDD CA
CA C	NA	[20+20+20MHz]	NA
CA A 2	[5+10+20MHz,		[15(FDD)+20(TDD)+20(TDD)MHz,
	10+10+20MHz,		20(FDD)+20(TDD)+20(TDD)MHz]
	10+20+20MHz,	-	. , , , , , , , ,
	20+20+20MHz]		
CA_A_3	[10+10+20MHz,	NA	NA
	10+15+15MHz,		
	10+20+20MHz,		
	15+15+20MHz,		
	15+20+20MHz,		
	20+20+20MHz]		
CA_N	NA	[20+20+20MHz]	NA
Note 1: This table is or	ly for information and applica	bility and test rules of C	A performance requirements are

Note 1: This table is only for information and applicability and test rules of CA performance requirements are specified in 8.1.2.3 and 9.1.1.2.

For test cases with more than one component carrier, "Fraction of Maximum Throughput" in the performance requirement refers to the ratio of the sum of throughput values of all component carriers to the sum of the nominal maximum throughput values of all component carriers, unless otherwise stated.

8.1.2.2A Definition of dual connectivity capability

The definition with respect to dual connectivity capabilities for configurations with 2CCs is given as in Table 8.1.2.2A-1

Table 8.1.2.2A-1: Definition of dual connectivity capability with 2DL CCs

Dual connectivity Capability		Dual connectivity capability Description		
DC_A_2		Inter-band dual connecitivty (two bands)		
Note 1:		A_2 corresponds to E-UTRA dual connectivity configurations and		
	bandwidth combination sets defined for inter-band dual connecitivty (two			
	ban	ds) in Table 5.6C.1-1.		

The supported testable dual connectivity bandwidth combinations for 2CCs for each dual connectivity capability are listed in Table 8.1.2.2A-2.

Table 8.1.2.2A-2: Supported testable dual connectivity bandwidth combinations for different dual connectivitys capability with 2DL CCs

	connectivity	Bandwidth combination for FDD dual connectivity	Bandwidth combination for TDD dual connectivity		
DC_A_2		[10+10MHz, 10+20MHz, 15+20MHz, 20+20MHz]	[20+20MHz]		
Note 1:	· · · · · · · · · · · · · · · · · · ·				

8.1.2.3 Applicability and test rules for different CA configurations and bandwidth combination sets

The performance requirement for CA UE demodulation tests in Clause 8 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL CCs in Table 8.1.2.3-1 and 3DL CCs in Table 8.2.2.3-2. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 8.1.2.3-1: Applicability and test rules for CA UE demodulation tests with 2 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order	No. of the supported bandwidth combinations to be tested from each selected CA configuration
CA tests with 2CCs in Clause 8.2.1.1.1, 8.2.1.4.3	Any one of the supported CA capabilities	Any one of the supported FDD CA configurations	10+10 MHz, 20+20 MHz, 5+5 MHz, and 10MHz+5MHz.	1
CA tests with 2CCs in Clause 8.2.1.3.1	Each supported CA capability	Any one of the supported FDD CA configurations in each CA capability	10+10 MHz, 20+20 MHz, 5+5 MHz, and 10MHz+5MHz.	1
CA tests with 2CCs in Clause 8.2.1.3.1A, 8.7.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination		1
CA tests with 2CCs in Clause 8.2.1.7.1	CA_C	Supported FDD intra-band contiguous CA configurations covering the lowest and highest operating bands	Largest aggregated CA bandwidth combinations	1
CA tests with 2CCs in Clause 8.2.2.1.1, 8.2.2.4.3	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in Clause 8.2.2.3.1	Each supported CA capability	Any one of the supported TDD CA configurations in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in Clause 8.2.2.3.1A, 8.7.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in 8.2.2.7.1	CA_C	Supported TDD intra-band contiguous CA configurations covering the lowest and highest operating bands	Largest aggregated CA bandwidth combinations	1
CA tests with 2CCs in Clause 8.2.1.8.1 Note 1: The app	CA_N	CA_3A-3A defined in Table 5.6A.1-3	10+10 MHz	1

Table 8.1.2.3-2: Applicability and test rules for CA UE demodulation tests with 3 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order	No. of the supported bandwidth combinations to be tested from each selected CA configuration
CA tests with 3CCs in Clause 8.2.1.1.1, 8.2.1.4.3, 8.7.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 3CCs in Clause 8.2.1.3.1	Each supported CA capability	Any one of the supported FDD CA configurations in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 3CCs in Clause 8.2.2.1.1, 8.2.2.4.3, 8.7.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 3CCs in Clause 8.2.2.3.1	Each supported CA capability	Any one of the supported TDD CA configurations in each CA capability with largest aggregated CA bandwidth combination les are specified in this table, u	Largest aggregated CA bandwidth combination	1

8.1.2.3A Applicability and test rules for different dual connectivity configuration and bandwidth combination set

The performance requirement for dual connectivity UE demodulation tests in Clause 8 are defined independent of dual connectivity configurations and bandwidth combination sets specified in Clause 5.6C.1. For UEs supporting different dual connectivity configurations and bandwidth combination stes, the applicability and test rules are defined for the tests for the configurations with 2CCs in Table 8.1.2.3A-1. For simplicity, dual connectivity configuration below refers to combination of dual connectivity configuration and bandwidth set.

Both CA performance requirements and dual connectivity performance requirements are applied for dual connectivity capable UE.

Table 8.1.2.3A-1: Applicability and test rules for dual connectivity UE demodulation tests with 2DL CCs

	order	connectivity configuration
Any one of the supported FDD dual connectvity configurations with the largest aggregated dual connectivity bandwidth combimation	Largest dual connectivity aggregated bandwidth combination	1
Any one of the supported TDD dual connectvity configurations with the largest aggregated dual connectivity bandwidth	Largest dual connectivity aggregated bandwidth combination	1
la	configurations with the argest aggregated dual connectivity bandwidth combination	configurations with the argest aggregated dual connectivity bandwidth

8.1.2.3B Applicability and test rules for different TDD-FDD CA configurations and bandwidth combination sets

The performance requirement for TDD-FDD CA UE demodulation tests in Clause 8 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL TDD-FDD CA in Table 8.1.2.3B-1 in Table 8.1.2.3B-2 and for 3 DL TDD-FDD CA. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 8.1.2.3B-1: Applicability and test rules for CA UE demodulation tests for TDD-FDD CA with 2 DL CCs

Tests	the tests apply		CA Bandwidth combination to be tested in priority order		
CA tests with 2CCs in Clause 8.2.3.1.1, 8.2.3.2.1A, 8.2.3.3.1, 8.7.5.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD-FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination		
CA tests with 2CCs in Clause 8.2.3.2.1	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with FDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination		
CA tests with 2CCs in Clause 8.2.3.1.2, 8.2.3.2.2A, 8.2.3.3.2, 8.7.5.2	Clause 8.2.3.1.2, 8.2.3.2.2A, 8.2.3.3.2, supported CA capabilities with largest aggregated CA		Largest aggregated CA bandwidth combination		
CA tests with 2CCs in Clause 8.2.3.2.2	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with TDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination		

Table 8.1.2.3B-2: Applicability and test rules for CA UE demodulation tests for TDD-FDD CA with 3 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 3CCs in Clause 8.2.3.1.1, 8.2.3.2.1A, 8.2.3.3.1, 8.7.5.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD-FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.3.2.1	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with FDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.3.1.2, 8.2.3.2.2A, 8.2.3.3.2, 8.7.5.2 Any one of the supported CA capabilities with largest aggregated CA bandwidth combination		Any one of the supported TDD-FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 8.2.3.2.2	Each supported CA capability	Any one of the supported TDD-FDD CA configurations with TDD PCell in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination

8.1.2.4 Test coverage for different number of component carriers

For FDD tests specified in 8.2.1.1.1, 8.2.1.3.1, 8.2.1.4.3, and 8.7.1, if corresponding CA tests are tested, the test coverage can be considered fulfilled without executing single carrier tests.

For TDD tests specified in 8.2.2.1.1, 8.2.2.3.1, 8.2.2.4.3, and 8.7.2, if corresponding CA tests are tested, the test coverage can be considered fulfilled without executing single carrier tests.

For FDD CA tests specified in 8.2.1.1.1, 8.2.1.4.3, and 8.7.1, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For FDD CA tests specified in 8.2.1.3.1, for each supported CA capability, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD CA tests specified in 8.2.2.1.1, 8.2.2.4.3, and 8.7.2, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD CA tests specified in 8.2.2.3.1, for each supported CA capability, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Parameter Unit Value Inter-TTI Distance 1 Number of HARQ 8 **Processes** processes per component carrier Maximum number of 4 HARQ transmission {0,1,2,3} for QPSK and 16QAM Redundancy version {0,0,1,2} for 64QAM and 256QAM coding sequence 4 for 1.4 MHz bandwidth, 3 for 3 MHz and Number of OFDM 5 MHz bandwidths, symbols for PDCCH per OFDM symbols 2 for 10 MHz, 15 MHz and 20 MHz component carrier bandwidths unless otherwise stated Cyclic Prefix Normal Cell_ID 0 Cross carrier scheduling Not configured

Table 8.2.1-1: Common Test Parameters (FDD)

8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.1.1.1 Minimum Requirement

For single carrier, the requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.1.1.1-4, with the addition of the parameters in Table 8.2.1.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

For CA with 3 DL CCs, the requirements are speicifed in Table 8.2.1.1.1-6, based on single carrier requirement speicified in Table 8.2.1.1.1-5, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.1.1.1-1: Test Parameters

Parameter		Unit	Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18	Test 19
Danmlink name	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)				
	σ	dB	0	0	0	0	0
$N_{\scriptscriptstyle oc}$ at antenn	a port	dBm/15kHz	-98	-98	-98	-98	-98
Symbols for unus	ed PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM	QPSK
PDSCH transmiss	ion mode		1	1	1	1	1

Note 1: $P_{p} = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: Void. Note 4: Void.

Table 8.2.1.1.1-2: Minimum performance (FRC)

			Propa-		Correlation	Reference	value	IIE
Test num.	Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate gory
1	10 MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0	≥1
2	10 MHz	R.2 FDD	OP.1 FDD	ETU70	1x2 Low	70	-0.4	≥1
3	10 MHz	R.2 FDD	OP.1 FDD	ETU300	1x2 Low	70	0.0	≥1
4	10 MHz	R.2 FDD	OP.1 FDD	HST	1x2	70	-2.4	≥1
5	1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	0.0	≥1
	10 MHz	R.3 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	≥2
6	5 MHz	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	1
0	5 MHz (Note 4)	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	≥2
	10 MHz	R.3 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	≥2
7	5 MHz	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	1
/	5 MHz (Note 4)	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	≥2
	10 MHz	R.3 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	≥2
	5 MHz	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	1
8	5 MHz (Note 4)	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	≥2
9	3 MHz	R.5 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	≥1
40	5 MHz	R.6 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.4	≥2
10	5 MHz	R.6-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5	1
4.4	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	≥2
11	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
12	10 MHz	R.7 FDD	OP.1 FDD	ETU70	1x2 Low	70	19.0	≥2
12	10 MHz	R.7-1 FDD	OP.1 FDD	ETU70	1x2 Low	70	18.1	1
13	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 High	70	19.1	≥2
13	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 High	70	17.8	1
14	15 MHz	R.8 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	≥2
14	15 MHz	R.8-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.8	1
	20 MHz	R.9 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	≥3
15	20 MHz	R.9-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.3	2
	20 MHz	R.9-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
16	3 MHz	R.0 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
17	10 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
18	20 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
19	10 MHz	R.41 FDD	OP.1 FDD	EVA5	1x2 Low	70	-5.4	≥1

Note 1: Void. Note 2: Void. Note 3: Void.

Note 4: Test case applicability is defined in 8.1.2.1.

Table 8.2.1.1.1-3: Test Parameters for CA

Par	Parameter		Test 1-12
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	0
N_{oc} at a	antenna port	dBm/15kHz	-98
Symbols fo	r unused PRBs		OCNG (Note 2)
Modulation			QPSK
PDSCH tran	nsmission mode		1

Note 1: $P_{p} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs

shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: PUCCH format 1b with channel selection is used to feedback ACK/NACK for Test

1-2, PUCCH format 3 is used to feedback ACK/NACK for Test 3-12.

Note 4: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.1.1-4: Minimum performance (FRC) for CA with 2DL CCs

				Propa	Correlatio	Reference	e value	
Test num.	Band- width	Reference channel	OCNG pattern	gation condi- tion	n matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	2x10 MHz	R.2 FDD	OP.1 FDD (Note 1)	EVA5	1x2 Low	70	-1.1	≥3 (Note 2)
2	2x20 MHz	R.42 FDD	OP.1 FDD (Note 1)	EVA5	1x2 Low	70	-1.3	≥5
3	2x5	5 R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.0]	≥2
3	MHz	N.42-2 FDD	OP.1 FDD	OP.1		70	[-1.0]	22
	10MHz	R.2 FDD for 10MHz CC	OP.1 FDD			70	[-1.7]	
4	+5MHz	R.42-2 FDD for 5MHz CC	OP.1 FDD	EVA5	1x2 Low	70	[-1.0]	≥3

Note 1: The OCNG pattern applies for each CC.

Note 2: 30usec timing difference between two CCs is applied in inter-band CA case.

Note 3: The applicability of requirements for different CA configurations and bandwidth combination

sets is defined in 8.1.2.3.

Table 8.2.1.1.1-5: Single carrier performance for multiple CA configurations

				Correlation	Reference value		
Band- width	Reference channel	OCNG pattern	Propagation condition	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	
1.4MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.3]	
3MHz	R.42-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.1]	
5MHz	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.0]	
10MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.7]	
15MHz	R.42-3 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.6]	
20MHz	R.42 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.7]	

Table 8.2.1.1.1-6: Minimum performance (FRC) based on single carrier performance for CA with 3DL CCs

Test num.	CA Band-width combination	Requirement	UE category				
5	3x20MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
6	20MHz+20MHz+15MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
7	20MHz+20MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
8	20MHz+15MHz+15MHz As specified in Table 8.2.1.1.1-5 per CC		≥5				
9	20MHz+15MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
10	20MHz+10MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
11	15MHz+15MHz+10MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
12	20MHz+10MHz+5MHz	As specified in Table 8.2.1.1.1-5 per CC	≥5				
Note 1:	The applicability of requirements	for different CA configurations and bandwidt	h combination				
sets is defined in 8.1.2.3							
	30usec timing difference betweer where PCell can be assigned on	n PCell and any SCell is applied in inter-band any CC.	d CA case,				

8.2.1.1.2 Void

8.2.1.1.3 Void

8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Table 8.2.1.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)
PDSCH transmission	on mode		1

Note 1: $P_{B} = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the

first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are

not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

Ī	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
	number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
						Antenna	Maximum	(dB)	
						Configuration	Throughput		
							(%)		
ĺ	1	10 MHz	R.29 FDD	OP.3 FDD	ETU70	1x2 Low	30	2.0	≥1

8.2.1.2 Transmit diversity performance

8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.1-2, with the addition of the parameters in Table 8.2.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.1.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		2
Note 1: $P_B = 1$.			

Table 8.2.1.2.1-2: Minimum performance Transmit Diversity (FRC)

Test	st Band- Reference		OCNG	Propagation	Correlation	Reference	value	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughp ut (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Medium	70	6.8	≥2
	5 MHz	R.11-2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9	1
	5 MHz (Note 1)	R.11-2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9	≥2
2	10 MHz	R.10 FDD	OP.1 FDD	HST	2x2	70	-2.3	≥1
Note 1:	Test case a	pplicability is de	efined in 8.1.2.	.1.				

8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.2-2, with the addition of the parameters in Table 8.2.1.2.2-1 and the downlink physical channel setup according Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.1.2.2-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2				
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3				
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98				
PDSCH transmission	on mode		2				
Note 1: $P_B = 1$.							

Table 8.2.1.2.2-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	Reference value	
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 FDD	OP.1 FDD	EPA5	4x2 Medium	70	0.6	≥1
2	10 MHz	R.13 FDD	OP.1 FDD	ETU70	4x2 Low	70	-0.9	≥1

8.2.1.2.3 Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.1.2.3-2, with the addition of parameters in Table 8.2.1.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.1.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.2.3-2	6
$BW_Channel$		MHz	10	10
Subframe Configuration			Non-MBSFN	Non-MBSFN
Time Offset between	Cells	μs	2.5 (synchror	nous cells)
Cell Id			0	1
ABS pattern (Note	5)		N/A	11000100 11000000 11000000 11000000 11000000
RLM/RRM Measurement (Note 6)	Subframe		1000000 1000000 1000000 1000000 1000000	N/A
	C _{CSI,0}		11000100 11000000 11000000 11000000 11000000	N/A
CSI Subframe Sets (Note7)	C _{CSI,1}		00111011 00111111 00111111 00111111 00111111	N/A
Number of control OFDM			2	2
PDSCH transmission	mode		2	N/A
Cyclic prefix			Normal	Normal

Note 1: $P_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.1.2.3-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel		NG tern	Cond	agation ditions ote 1)	Correlation Matrix and Antenna			UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configurati on	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11-4 FDD Note 4	OP.1 FDD	OP.1 FDD	EVA5	EVA 5	2x2 Medium	70	3.4	≥2
Note 1:					Cell2 are	statistically indep	oendent.		
Note 2:	SNR correspo	nds to \widehat{E}	$_{s}/N_{oc2}$	of cell 1.					
Note 3: Note 4:	Cell 1 Referen	ce chann	el is mod	dified: PD	SCH other	ply for Cell 1 and than SIB1/pagir subframe when t	ng and its associ		ed with the

8.2.1.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

The requirements are specified in Table 8.2.1.2.3A-2, with the addition of parameters in Table 8.2.1.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.1.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Cell 1	Cell 2	Cell 3	
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)	
	σ	dB	0	N/A	N/A	
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A	
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A	
\hat{E}_s/N_{oc2}		dB	Reference Value in Table8.2.1.2.3 A-2	12	10	
BW _{Channel}		MHz	10	10	10	
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN	
Time Offset betwee	Time Offset between Cells		N/A	3	-1	
Frequency shift between Cells		Hz	N/A	300	-100	
Cell Id			0	126	1	
ABS pattern (No	ABS pattern (Note 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000	
RLM/RRM Measur Subframe Pattern (I			1000000 1000000 1000000 1000000 1000000	N/A	N/A	
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A	
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A	
Number of control OFDM symbols			2	Note 8	Note 8	
PDSCH transmission mode			2	Note 9	Note 9	
Cyclic prefix			Normal	Normal	Normal	

Note 1: $P_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.

Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.

Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.

Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.1.2.3A-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel	OC	NG Patte	ern	Propagation Conditions (Note1)		Correlation Matrix and	Reference Value		UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11-4 FDD Note 4	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Medium	70	3.4	≥2

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to E_s/N_{oc2} of cell 1.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

8.2.1.2.4 Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.1.2.4-2, with the addition of parameters in Table 8.2.1.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.1.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)	dB	N/A	-2.23	-8.06	
BW _{Channel}	BW _{Channel}			10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission			2	N/A	N/A
Interference mode	el		N/A	As specified in clause B.5.2	As specified in clause B.5.2
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Reporting interva	al	ms	5	N/A	N/A
Reporting mode	·		PUCCH 1-0	N/A	N/A

Note 1: $P_{R} = 1$

Note 2: The respective received power spectral density of each interfering cell relative to $\,N_{oc}^{}\,$ is defined by

its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: Cell 2 transmission is delayed with respect to Cell 1 by 0.33 ms and Cell 3 transmission is delayed

with respect to Cell 1 by 0.67 ms.

Table 8.2.1.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.46 FDD	OP. 1 FD D	N/A	N/A	EV A70	EV A70	EV A70	2x2 Low	70	-1.1	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.3 Open-loop spatial multiplexing performance

8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.1.3.1-2, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CC, the requirements are specified in Table 8.2.1.3.1-4, with the addition of the parameters in Table 8.2.1.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.1.3.1-6, based on single carrier requirement specified in Table 8.2.1.3.1-5, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.1.3.1-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1-4
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna port		dBm/15kHz	-98
PDSCH transmission	on mode		3

Note 1: $P_B = 1$. Note 2: Void. Note 3: Void.

Table 8.2.1.3.1-2: Minimum performance Large Delay CDD (FRC)

Test num	Bandwidt h	Referenc e channel	OCNG pattern	Propa- gation condi- tion	Correlation matrix and antenna config.	Reference of Fraction of maximum Throughput (%)	SNR (dB)	UE cate gory
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.0	≥2
2 (Note 3)	5 MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.7	≥2
3	10 MHz	R.35 FDD	OP.1 FDD	EVA200	2x2 Low	70	20.2	≥2
4	10 MHz	R.35-4 FDD	OP.1 FDD	ETU300	2x2 Low	70	19.7	≥2

Note 1: Void.

Note 2: Test 1 may not be executed for UE-s for which Test 1 or 2 in Table 8.2.1.3.1-4 is applicable.

Note 3: Test case applicability is defined in 8.1.2.1.

Table 8.2.1.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA

Parameter		Unit	Test 1-12
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna port		dBm/15kHz	-98
PDSCH transmission	PDSCH transmission mode		3

Note 1: $P_B = 1$.

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK for Test 1-4, PUCCH format 3 is

used to feedback ACK/NACK for Test 5-12.

Note 3: The same PDSCH transmission mode is applied to each

component carrier.

Table 8.2.1.3.1-4: Minimum performance Large Delay CDD (FRC) for CA with 2DL CCs

				Propa-	Correlation	Referenc	e value	
Test num	Bandwidth	Referenc e channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE category
1 (Note 2)	2x10 MHz	R.11 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.7	≥3
2 (Note 2)	2x20 MHz	R.30 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.2	≥5
3	2x5 MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	12.7	≥2
4	10MHz+5	R.11 FDD for 10MHz CC,	OP.1 FDD (Note 1)	EVA70	2v2 L ow	70	13.0	≥3
4 MHz	R.11-2 FDD for 5MHz CC	OP.1 FDD (Note 1)	EVA/U	2x2 Low	70	12.7] 23	

Note 1: The OCNG pattern applies for each CC.

Note 2: Void

Note 3: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.1.3.1-5: Single carrier performance for multiple CA configurations

			Propa-	Correlation	Reference va	lue
Band- width	Reference channel	OCNG pattern	gation condition	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.11-5 FDD	OP. 1 FDD	EVA70	2x2 Low	70	[13.6]
3MHz	R.11-6 FDD	OP. 1 FDD	EVA70	2x2 Low	70	[12.3]
5MHz	R.11-2 FDD	OP. 1 FDD	EVA70	2x2 Low	70	[12.3]
10 MHz	R.11 FDD	OP. 1 FDD	EVA70	2x2 Low	70	[12.9]
15MHz	R.11-7 FDD	OP. 1 FDD	EVA70	2x2 Low	70	[12.8]
20MHz	R.30 FDD	OP. 1 FDD	EVA70	2x2 Low	70	[12.9]

Table 8.2.1.3.1-6: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.	CA Band-width combination	Requirement	UE category
5	3x20MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
6	20MHz+20MHz+15MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
7	20MHz+20MHz+10MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
8	20MHz+15MHz+15MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
9	20MHz+15MHz+10MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
10	20MHz+10MHz+10MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
11	15MHz+15MHz+10MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5
12	20MHz+10MHz+5MHz	As specified in Table 8.2.1.3.1-5 per CC	≥5

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3

8.2.1.3.1A Soft buffer management test

For CA, the requirements are specified in Table 8.2.1.3.1A-2, with the addition of the parameters in Table 8.2.1.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.2.1.3.1A-3.

Table 8.2.1.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

Parameter		Unit	Test 1-7
Daniel al acces	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98
PDSCH transmission	on mode		3

Note 1: $P_R = 1$.

Note 2: For CA test cases, PUCCH format 1b with channel

selection is used to feedback ACK/NACK.

Note 3: For CA test cases, the same PDSCH transmission mode

is applied to each component carrier.

Table 8.2.1.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

						Reference	ce value
Test num	Bandwi dth	Reference channel	OCNG pattern	Propa- gation condition	Correlation matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)
1	2x20 MHz	R.30 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.2
2	15MHz +	R.35-2 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.1
2	10MHz	R.35-3 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAS	ZXZ LOW	70	15.1
3	20MHz +	R.30 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.5
3	3 10MHz	R.11 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVA/U		70	13.5
4	20MHz +	R.30 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA70	242 Love	70	13.5
4	15MHz	R.30-1 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA/U	2x2 Low	70	13.5
5	2x20 MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.8
6	20MHz +	R.35-1 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.9
0	10MHz	R.35-3 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAS	ZXZ LOW	70	15.9
7	20MHz +	R.35-1 FDD for 20MHz CC	OP.1 FDD (Note 1)	F\/A <i>F</i>	2021 200	70	15.9
7	15MHz	R.35-2 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.9

Note 1: For CA test cases, the OCNG pattern applies for each CC.

Note 2: For Test 2, 3, 4, 6, 7 the Fraction of maximum Throughput applies to each CC.

Note 3: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.1.3.1A-3: Test points for soft buffer management tests for CA

LIE optogory	Bandwidth combination with maximum aggregated bandwidth (Note 1)					
UE category	2x20MHz 15MHz+10MHz		20MHz+10MHz	20MHz+15MHz		
3	1	2	3	4		
4	5	N/A	6	7		
Note 1: Maximum over all supported CA configurations and bandwidth combination sets according to Table 5.6A.1-						
1and Table 5.6A.1-2.						

8.2.1.3.1B Enhanced Performance Requirement Type C –2Tx Antenna Ports

The requirements are specified in Table 8.2.1.3.1B-2, with the addition of the parameters in Table 8.2.1.3.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.1.3.1B-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1
Davinlink navian	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_{R} = 1$.			

Table 8.2.1.3.1B-2: Enhanced Performance Requirement Type C for Large Delay CDD (FRC)

			Propa-	Correlation	Reference value			
Test num	Bandwidt h	Referenc e channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE cate gory
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Medium	70	[17.8]	≥2

8.2.1.3.1C Enhanced Performance Requirement Type C - 2 Tx Antenna Ports with TM1 interference

The requirements are specified in Table 8.2.1.3.1C-2, with the addition of parameters in Table 8.2.1.3.1C-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of open-loop spatial multiplexing performence with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell with transmission mode 1. In Table 8.2.3.1.1C-1, Cell 1 is the serving cell, and Cell 2 is interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2 respectively.

Table 8.2.1.3.1C-1 Test parameters for Larger Delay CDD (FRC) with TM1 interference

Parameter		Unit	Cell 1	Cell 2	
Bandwidth		MHz	10 MHz		
Downlink $\rho_{\scriptscriptstyle A}$			-3	0	
power	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	0	
allocation	σ		0	0	
Cell-spec			Antenna	Antenna	
	reference signals		ports 0,1	port 0	
Cyclic Pr	Cyclic Prefix		Normal	Normal	
Cell IE)		0	1	
Transmission mode			3	Note 2	
$N_{\!\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98	N/A	
\hat{E}_s/N_{oc} (Note 3)		dB	Reference Value in Table 8.2.1.3.1C-2	12.95	
Correlation and antenna configuration			Medium (2x2)	Medium(1x 2)	
Number of OFDM symbols for PDCCH			2	N/A	
Max number of HARQ transmissions			4	N/A	
Redundancy version coding sequence			{0,1,2,3}	N/A	

Note 1: $P_B = 1$

Note 2: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern OP.5 FDD as defined in Annex A.5.1.5.

Note 3: Cell 1 is the serving cell. Cell 2 is the interfering cell.

Note 4: All cells are time-synchronous.

Note 5: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.1.3.1C-2 Enhanced Performance Requirement Type C, Larger Delay CDD (FRC) with TM1 interference

Test Number	Reference Channel		NG tern	Propagation Conditions (Note 1)		Reference Value		UE Categor y	
		Cell 1	Cell 2	Cell 1	Cell 2	Fraction of Maximum Throughpu t (%)	SNR (dB) (Note 2)		
1	R.11-8 FDD	OP.1 FDD	OP.5 FDD	EVA7	EVA7	70	[19.9]	≥2	
	Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.								

8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.2-2, with the addition of the parameters in Table 8.2.1.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.1.3.2-1: Test Parameters for Large Delay CDD (FRC)

Parameter	1	Unit	Test 1
Daniel ale	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_B = 1$			

Table 8.2.1.3.2-2: Minimum performance Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 FDD	OP.1 FDD	EVA70	4x2 Low	70	14.3	≥2

8.2.1.3.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.3-2, with the addition of parameters in Table 8.2.1.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.1.3.3-4, with the addition of parameters in Table 8.2.1.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.1.3.3-1 and 8.2.1.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.1.3.3-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.3.3-2	6
BW _{Channel}		MHz	10	10
Subframe Configura	ation		Non-MBSFN	Non-MBSFN
Cell Id			0	1
Time Offset between	Cells	μs	2.5 (synchro	nous cells)
ABS pattern (Note	÷ 5)		N/A	11000100, 11000000, 11000000, 11000000, 11000000
RLM/RRM Measurement Pattern(Note 6)			1000000 1000000 1000000 1000000 1000000	N/A
CSI Subframe Sets (Note	C _{CSI,0}		11000100 11000000 11000000 11000000 11000000	N/A
7)	C _{CSI,1}		00111011 00111111 00111111 00111111 00111111	N/A
Number of control OFDN			2	2
PDSCH transmission	mode		3	N/A
Cyclic prefix			Normal	Normal

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.1.3.3-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Reference Channel	OCNG	Pattern	Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference \	Reference Value		
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)		
1	R.11 FDD	OP.1	OP.1	EVA 5	EVA 5	2x2 Low	70	13.3	≥2	
	Note 4	FDD	FDD							
Note 1:	The propagation conditions for Cell 1 and Cell2 are statistically independent.									
Note 2:	SNR corresponds to \widehat{E}_s/N_{oc2} of cell 1.									
Note 3:	The correlation	n matrix	and anten	na config	uration ap	oply for Cell 1 and	d Cell 2.			

Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of Note 4: aggressor cell and the subframe is available in the definition of the reference channel.

The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

Note 5:

Table 8.2.1.3.3-3: Test Parameters for Large Delay CDD (FRC) - MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.3.3-4	6
$BW_Channel$		MHz	10	10
Subframe Configura	ation		Non-MBSFN	MBSFN
Cell Id			0	126
Time Offset between	Cells	μs	2.5 (synchro	nous cells)
ABS pattern (Note	÷ 5)		N/A	0001000000 0100000010 0000001000 0000000
RLM/RRM Measurement Pattern (Note 6			0001000000 0100000010 0000001000 0000000	N/A
CSI Subframe Sets (Note	C _{CSI,0}		0001000000 0100000010 0000001000 0000000	N/A
7)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A
MBSFN Subframe Allocation	on (Note 10)		N/A	001000 100001 000100 000000
Number of control OFDN			2	2
PDSCH transmission	mode		3	N/A
Cyclic prefix			Normal	Normal

- Note 1: $P_{\rm B}=1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbol #0 of a subframe overlapping with the aggressor ABS.
- This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS. ABS pattern as defined in [9]. The 4th, 12th, 19th and 27th subframes indicated by ABS pattern are Note 4:
- Note 5: MBSFN ABS subframes.
- Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]. Note 6:
- As configured according to the time-domain measurement resource restriction pattern for CSI Note 7: measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.
- Note 10: MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN subframe allocation.
- The maximum number of uplink HARQ transmission is ≤ 2 so that each PHICH channel Note 11: transmission is in a subframe protected by MBSFN ABS in this test.

Table 8.2.1.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note 2)		Correlation Matrix and Antenna	Reference Value		UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11 FDD Note 4	OP.1 FDD	OP.1 FDD	EVA 5	EVA 5	2x2 Low	70	12.0	≥2

- Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.
- Note 2: SNR corresponds to \hat{E}_s/N_{ac2} of cell 1.
- Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 4 subframes, averaged over 40ms.

8.2.1.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.4-2, with the addition of parameters in Table 8.2.1.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 ad Cell3.

Table 8.2.1.3.4-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.1.3.4-2	Reference Value in Table 8.2.1.3.4-2	Reference Value in Table 8.2.1.3.4-2
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	1	126
ABS pattern (Not	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	Ccsi,0		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control of symbols	Number of control OFDM		2	Note 8	Note 8
PDSCH transmissio			3	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.

Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.

Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.

Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.1.3.4-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Refer ence	$\hat{E}_s/$	N_{oc2}	oc	NG Patt	ern		ropagations (N		Correlation Matrix and			UE Cate
	Chan nel	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughp ut (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 FDD Note 4	9	7	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	70	13.9	≥2
2	R.35 FDD Note 4	9	1	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	70	22.6	≥2

- Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.
- Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

8.2.1.4 Closed-loop spatial multiplexing performance

8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 1A	Test 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98	-98	-98
Precoding granul	arity	PRB	6	4	50
PMI delay (Note	2)	ms	8	8	8
Reporting inter	val	ms	1	1	1
Reporting mod	de		PUSCH 1-2	PUSCH 1-2	PUSCH 3-1
CodeBookSubsetR	estricti		001111	001111	001111
on bitmap					
PDSCH transmission		· · · · · · · · · · · · · · · · · · ·	4	4	4
mode					
1					

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test number	Band- width	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference v Fraction of Maximum Throughput (%)	value SNR (dB)	UE Catego ry
1	10 MHz	R.10 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.5	≥1
1A (Note 1)	5 MHz	R.10-2 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.9	≥1
2	10 MHz	R.10 FDD	OP.1 FDD	EPA5	2x2 High	70	-2.3	≥1
Note 1: Tes	st case appli	cability is defin	ned in 8.1.2.1.	•			•	

8.2.1.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1A-2, with the addition of the parameters in Table 8.2.1.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Danielink names	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna ${ m p}$	ort	dBm/15kHz	-98
Precoding granula	arity	PRB	6
PMI delay (Note	2)	ms	8
Reporting interv	al	ms	1
Reporting mod	е		PUSCH 1-2
CodeBookSubsetRe on bitmap	estricti		0000000000000000 00000000000000000 00000
PDSCH transmiss mode	sion		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

ĺ	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.13 FDD	OP.1 FDD	EVA5	4x2 Low	70	-3.2	≥1

8.2.1.4.1B Enhanced Performance Requirement Type A - Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.1.4.1B-2, with the addition of the parameters in Table 8.2.1.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined

in clause B.5.3. In Table 8.2.1.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.1.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission			6	N/A	N/A
Interference mode	əl		N/A	As specified in clause B.5.3	As specified in clause B.5.3
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Precoding granula	PRB	50	6	6	
PMI delay (Note 4	ms	8	N/A	N/A	
Reporting interva	ms	5	N/A	N/A	
Reporting mode			PUCCH 1-1	N/A	N/A
CodeBookSubsetRestricti	on bitmap		001111	N/A	N/A

Note 1: $P_B = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 5: All cells are time-synchronous.

Table 8.2.1.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.47 FDD	OP. 1 FD D	N/A	N/A	EV A5	EV A5	EV A5	2x2 Low	70	0.8	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.1.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.1.4.1C-2, with the addition of parameters in Table 8.2.1.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.1.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.1.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
anocation	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}	\hat{E}_s/N_{oc2}		Reference Value in Table 8.2.1.4.1C-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
PDSCH transmission mode Precoding granularity PMI delay (Note 10) Reporting interval			6	Note 9	Note 9
		PRB	50	N/A	N/A
		ms	8	N/A	N/A
		ms	1	N/A	N/A
Peporting mode			PUSCH 3-1	N/A	N/A
CodeBookSubsetRestriction bitmap			1111	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

Reference Value

Fraction of

UE

Cate

gory

Correlation

Matrix and

Antenna

Test

Number

Note 5:

Reference

Channel

OCNG Pattern

N	
Note 1:	$P_B = 1$.
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe
	overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the
	aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 5:	ABS pattern as defined in [9].
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined in
	[7]
Note 7:	As configured according to the time-domain measurement resource restriction pattern for CSI
	measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe
	indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying
	OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI
	estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at
	the eNB downlink before SF#(n+4).
	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 12:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.1.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)- Non-MBSFN ABS

Propagation

Conditions (Note1)

Cell 1 | Cell 2 | Cell 3 | Cell 1 | Cell 2 | Cell 3

								Configurati on (Note 2)	Maximum Throughput (%) Note 5	(dB) (Note 3)		
1	R.11 FDD	OP.1	OP.1	OP.1	EPA5	EPA5	EPA5	2x2 High	70	6.1	≥2	
	Note 4	FDD	FDD	FDD								
Note 1:	The propagat	he propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.										
Note 2:	The correlation	on matrix	and ante	nna conf	iguration	apply for	Cell 1, C	Cell 2 and Cell 3.				
Note 3:	SNR correspo	onds to \hat{I}	\hat{E}_s/N_{oc2}	of cell 1.								
Note 4:		the serv	ing cell s	ubframe	when the	subfram	e is overl	lapped with the A	ciated PDCCH/F ABS subframe o			

8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

The requirements are specified in Table 8.2.1.4.2-2, with the addition of the parameters in Table 8.2.1.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter	•	Unit	Test 1-2	Test 2A	Test 3
Danielink name	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0	0
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98	-98	-98
Precoding granu	ularity	PRB	50	25	6
PMI delay (Not	e 2)	ms	8	8	8
Reporting inte	rval	ms	1	1	1
Reporting mo	de		PUSCH 3-1	PUSCH 3-1	PUSCH 1-2
CodeBookSubsetRo bitmap	estriction		110000	110000	110000
PDSCH transmission	on mode		4	4	4
Number of OFDM sy PDCCH per compon		OFDM symbol	2	3	1

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.35 FDD	OP.1 FDD	EPA5	2x2 Low	70	18.9	≥2
2	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.3	≥2
2A (Note 1)	5 MHz	R.11-2 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.0	≥2
3	10MHz	R.aa FDD	OP.1 FDD	EVA5	2x2 Low	70	TBD	11-15
Note 1:	Test case ap	oplicability is de	efined in 8.1.2.	.1.				

8.2.1.4.2A Enhanced Performance Requirement Type C – Multi-layer Spatial Multiplexing 2Tx Antenna Ports

The requirements are specified in Table 8.2.1.4.2A-2,with the addition of the parameters in Table 8.2.1.4.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband precoding.

Table 8.2.1.4.2A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	50
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 3-1
CodeBookSubsetRe	estriction		110000
bitmap			
PDSCH transmission	on mode		4

Note 2: If the UE reports in an available uplink reporting instance

at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.2A-2: Enhanced Performance Requirement Type C for Multi-Layer Spatial Multiplexing with TM4 (FRC)

ſ	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference	/alue	UE
	number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
						Antenna	Maximum	(dB)	
						Configuration	Throughput		
							(%)		
	1	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Medium	70	[18.3]	≥2

8.2.1.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.1.4.3-2, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.1.4.3-4, with the addition of the parameters in Table 8.2.1.4.3-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.1.4.3-6, based on single carrier requirement specified in Table 8.2.1.4.3-5, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.1.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	e 2)	ms	8
Reporting inter	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			000011111111111111111100000000
			0000000
PDSCH transmission	on mode		4

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n

based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Void. Note 4: Void. Note 5: Void.

Table 8.2.1.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

				Brono	Correlation	Reference		
Test num.	Band- width	Reference channel		Propa- gation condi- tion	Correlation matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	10 MHz	R.36 FDD	OP.1 FDD	EPA5	4x2 Low	70	14.7	≥2
Note 1:	: Void.							

Table 8.2.1.4.3-3: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Parameter		Unit	Test 1-12
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	Precoding granularity		4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, 8 for 15MHz and 20MHz CCs
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe bitmap	estriction		00000000000000000000000000000000000000
CSI request field (Note 3)		'10'
PDSCH transmission	on mode		4

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported

PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Multiple CC-s under test are configured as the 1st set of serving cells by higher

layers.

Note 4: ACK/NACK bits are transmitted using PUSCH with PUCCH format 1b with

channel selection configured for Test 1-2, and with PUCCH format 3 for Test 3-

12.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.1.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA with 2DL CCs

				Propa-	Correlation	Reference	e value	
Test num	Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	2x10 MHz	R.14 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.8	≥3
2	2x20 MHz	R.14-3 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.9	≥5
3	2x5 MHz	R.14-6 FDD	OP.1 FDD (Note 1)	P.1 DD ote 1) P.1 DD EVA5 4x2 Low	4.01	70	[9.5]	≥2
3	ZAJ IVII IZ	N.14-01 DD	OP.1 FDD (Note 1)		4XZ LOW	70	[9.5]	22
4	10MHz+5	R.14 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	[10.1]	≥3
4	MHz	R.14-6 FDD for 5MHz CC	OP.1 FDD (Note 1)	EVAS	4XZ LOW	70	[9.5]	23

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.1.4.3-5: Single carrier performance for multiple CA configurations

				Correlation	Reference value		
Band- width	Reference channel	OCNG pattern	Propa- gation condi-tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	
1.4MHz	R.14-4 FDD	OP.1 FDD	EVA5	4x2 Low	70	[TBD]	
3MHz	R.14-5 FDD	OP.1 FDD	EVA5	4x2 Low	70	[9.5]	
5MHz	R.14-6 FDD	OP.1 FDD	EVA5	4x2 Low	70	[9.5]	
10 MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.1]	
15MHz	R.14-7 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.1]	

Table 8.2.1.4.3-6: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.	CA Band-width combination	Requirement	UE category				
5	3x20MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
6	20MHz+20MHz+15MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
7	20MHz+20MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
8	20MHz+15MHz+15MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
9	20MHz+15MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
10	20MHz+10MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
11	15MHz+15MHz+10MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
12	20MHz+10MHz+5MHz	As specified in Table 8.2.1.4.3-5 per CC	≥5				
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3							

8.2.1.4.3A Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port for dual connectivity

For dual connectivity the requirements are specified in Table 8.2.1.4.3A-2, with the addition of the parameters in Table 8.2.1.4.3A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding by using dual connectivity transmission.

Table 8.2.1.4.3A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Parameter	Parameter		Test 1-4
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	Precoding granularity		6 for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, and 8 for 15MHz CCs and 20MHz CCs
PMI delay (Not	e 2)	ms	8
Reporting inte	Reporting interval		1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
			00000000
PDSCH transmission	on mode		4
ACK/NACK transr	nission		Separate ACK/NACK feedbacks
			with PUCCH format 1b on the MCG and SCG
CSI feedback			Separate PUSCH feedbacks on the MCG and SCG
Time offset between	Time offset between MCG CC		0 for synchronous dual connectivity;
and SCG CO			334 for asynchronous dual
			connectivity (Note 4).

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4).

The same PDSCH transmission mode is applied to each component carrier. Note 3:

As defined in TS36.300 [11]. Note 4:

Table 8.2.1.4.3A-2: Single carrier performance for multiple dual connectivity configurations

		Propa- Correlation		Correlation	Reference	value
Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.14-4 FDD	OP. 1 FDD	EVA5	4x2 Low	70	[TBD]
3MHz	R.14-5 FDD	OP. 1 FDD	EVA5	4x2 Low	70	[9.5]
5MHz	R.14-6 FDD	OP. 1 FDD	EVA5	4x2 Low	70	[9.5]
10 MHz	R.14 FDD	OP. 1 FDD	EVA5	4x2 Low	70	[10.1]
15MHz	R.14-7 FDD	OP. 1 FDD	EVA5	4x2 Low	70	[10.1]
20MHz	R.14-3 FDD	OP. 1 FDD	EVA5	4x2 Low	70	[10.3]

Table 8.2.1.4.3A-3: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Test num. Band-width combination		Requirement	UE category					
1	2x10 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥3					
2	2x20 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥5					
3	2x5 MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥2					
4	10MHz+5MHz	As specified in Table 8.2.1.4.3A-2 per CC	≥3					
Note 2: The applicability of requirements for different dual connectvity configurations and bandwidth								
coml	oination sets is defined in 8.1.2	•						

8.2.1.5 MU-MIMO

8.2.1.6 [Control channel performance: D-BCH and PCH]

8.2.1.7 Carrier aggregation with power imbalance

For CA, the requirements in this section verify the ability of an intraband adjacent carrier aggregation UE to demodulate the signal transmitted by the PCell or SCell in the presence of a stronger SCell or PCell signal on an adjacent frequency. Throughput is measured on the PCell or SCell only.

8.2.1.7.1 Minimum Requirement

The requirements are specified in Table 8.2.1.7.1-2, with the addition of the parameters in Table 8.2.1.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.1.7.1-1: Test Parameters for CA

Parameter		Unit	Test 1	Test 2-3
Davinlink navyar	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)
	σ	dB	0	0
N_{oc} at antenna poi	t	dBm/15kHz	Off (Note 2)	Off (Note 2)
Symbols for unused	d PRBs		OCNG (Note 3)	OCNG (Note 3)
Modulation			64 QAM	64 QAM
Maximum number of transmission	of HARQ		1	1
Redundancy versio sequence	n coding		{0}	{0}
PDSCH transmission of PCell	on mode		1	3
PDSCH tramsmissi of SCell	on mode		3	1
OCNG Pattern	PCell		OP.1 FDD	OP.5 FDD
OCING Fallelli	SCell		OP.5 FDD	OP.1 FDD
Propagation	Propagation PCell		AWGN	Clause B.1
Conditions SCell			Clause B.1	AWGN
Correlation Matrix	PCell		1x2	2x2
and Antenna	SCell		2x2	1x2

Note 1: $P_B = 0$.

Note 2: No external noise sources are applied

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated. pseudo random data, which is QPSK modulated.

Note 4: Void

Table 8.2.1.7.1-2: Minimum performance (FRC) for CA

Test Number	Bandwidth (MHz)		Reference channel			antenna n/15KHz)	Referent Fraction of Through		UE Category
	PCell	SCell	PCell	SCell	\hat{E}_{s_PCell}	\hat{E}_{s_SCell}	PCell	SCell	
					for PCell	for Scell			
1	20	20	R.49 FDD	OCNG	-85	-79	85	NA	≥5
2	10	10	OCNG	R.49-1 FDD	-79	TBD	NA	85	≥5
3	5	5	OCNG			TBD	NA	85	≥5
Note 1:	The OCN	NG pattern	for PCell is u	sed to fill the c	ontrol chan	nel. The OC	NG pattern	for SCell is u	used to fill

the control channel and PDSCH.

The applicability of requirements for different CA configurations and bandwidth combination sets is defined Note 2: in 8.1.2.3.

8.2.1.8 Intra-band non-contiguous carrier aggregation with timing offset

The requirements in this section verify the ability of an intraband non-contiguous carrier aggregation UE to demodulate the signal transmitted by the PCell and SCell in the presence of timing offset between the cells. Throughput is measured on both cells.

8.2.1.8.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.1.8.1-2, with the addition of the parameters in Table 8.2.1.8.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.1.8.1-1: Test Parameters for CA

Paramete	r	Unit	Test 1				
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{\it oc}$ at antenna	a port	dBm/15kHz	-98				
Modulatio	n		64 QAM				
Maximum number	of HARQ		4				
transmissio	on						
Redundancy version	on coding		{0,0,1,2}				
sequence)						
PDSCH transmiss	ion mode		3				
of PCell							
PDSCH tramsmiss of SCell	sion mode		3				
Note 1: P - 1							

Note 1:

 $P_{\rm B}=1$.

The OCNG pattern is used to fill unused control Note 2: channel and PDSCH.

Table 8.2.1.8.1-2: Minimum performance (FRC) for CA

Test	Cell	Band-	Referenc	OCNG	Propagati	Correlati	Refence va	alue	Timing	UE
Numbe r		width	e Channel	Patter n	on Condition s	on Matrix and Antenna	Fraction of Maximum Throughput (%)	SNR (dB)	relative to PCell (µs)	Catego ry
1	PCell	10MH z	R.YY FDD	OP.1	EPA200	2x2 Low	70	[21.1 5]	N/A	- ≥3
'	SCell	10MH z	R.35-3 FDD	FDD	EPA200	2x2 Low	60	[15.1 8]	-30.26	23

Note 1: The EPA200 propagation channels applied to PCell and SCell are statistically independent.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3.

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.2.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value				
Uplink downlink configuration (Note 1)		1				
Special subframe configuration (Note 2)		4				
Cyclic prefix		Normal				
Cell ID		0				
Inter-TTI Distance		1				
Number of HARQ processes per component carrier	Processes	7				
Maximum number of HARQ transmission		4				
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM and 256QAM				
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths unless otherwise stated				
Cross carrier scheduling		Not configured				
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].						

8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.4 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.2.1.1 Minimum Requirement

For single carrier, the requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.2.1.1-4, with the addition of the parameters in Table 8.2.2.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.2.1.1-7, based on single carrier requirement specified in Table 8.2.2.1.1-5, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.2.1.1-1: Test Parameters

Parameter		Unit	Test 1- 5	Test 6-8	Test 9- 15	Test 16- 18	Test 19
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0
power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)				
	σ	dB	0	0	0	0	0
$N_{\scriptscriptstyle oc}$ at antenn	a port	dBm/15kHz	-98	-98	-98	-98	-98
Symbols for up PRBs	nused		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulatio	n		QPSK	16QAM	64QAM	16QAM	QPSK
ACK/NACK fee	edback		Multiplexing	Multiplexin	Multiplexin	Multiplexin	Multiplexing
mode				g	g	g	
PDSCH transmission mode			1	1	1	1	1

Note 1: $P_B = \overline{0}$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random

data, which is QPSK modulated.

Note 3: Void Note 4: Void

Table 8.2.2.1.1-2: Minimum performance (FRC)

Test					Correlation	Reference value		UE	
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2	≥1	
2	10 MHz	R.2 TDD	OP.1 TDD	ETU70	1x2 Low	70	-0.6	≥1	
3	10 MHz	R.2 TDD	OP.1 TDD	ETU300	1x2 Low	70	-0.2	≥1	
4	10 MHz	R.2 TDD	OP.1 TDD	HST	1x2	70	-2.6	≥1	
5	1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	0.0	≥1	
6	10 MHz	R.3 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	≥2	
	5 MHz	R.3-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	1	
7	10 MHz	R.3 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	≥2	
	5 MHz	R.3-1 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	1	
8	10 MHz	R.3 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	≥2	
	5 MHz	R.3-1 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	1	
9	3 MHz	R.5 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥1	
10	5 MHz	R.6 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥2	
	5 MHz	R.6-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1	
11	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥2	
	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1	
12	10 MHz	R.7 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	≥2	
	10 MHz	R.7-1 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	1	
13	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	≥2	
	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	1	
14	15 MHz	R.8 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	≥2	
	15 MHz	R.8-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	1	
15	20 MHz	R.9 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	≥3	
	20 MHz	R.9-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	2	
	20 MHz	R.9-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	1	
16	3 MHz	R.0 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	≥1	
17	10 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.0	≥1	
18	20 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	≥1	
19	10 MHz	R.41 TDD	OP.1 TDD	EVA5	1x2 Low	70	-5.3	≥1	
Note 1:	Void.	ı		4.2. Took Dow	ı		1	ı	

Table 8.2.2.1.1-3: Test Parameters for CA

	Parameter	Unit	Test 1-4
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ		0
N	$_{oc}$ at antenna port	dBm/15kHz	-98
Symb	ols for unused PRBs		OCNG (Note 2)
	Modulation		QPSK
ACK/NACK feedback mode			PUCCH format 1b with channel selection for Test 1-2; PUCCH format 3 for Test 3-4
PDSC	H transmission mode		1

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one

PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated

pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.1.1-4: Minimum performance (FRC) for CA with 2DL CCs

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	2x20MHz	R.42 TDD	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	-1.2	≥5
2	20MHz+ 15MHz	R.42 TDD for 20MHz CC	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	[-1.4]	≥5
		R.42-3 TDD for 15MHz CC	OP.1 TDD (Note 1)			70	[-1.4]	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in

8.1.2.3.

Table 8.2.2.1.1-5: Single carrier performance for multiple CA configurations

Band- width	Reference channel	OCNG pattern	Propa- gation condi-tion	Correlation matrix and antenna config.	Reference varieties Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-0.6]
3MHz	R.42-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-0.8]
5MHz	R.42-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.2]
10MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1. 6]
15MHz	R.42-3 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.4]
20MHz	R.42 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1. 4]

Table 8.2.2.1.1-6: Void

Table 8.2.2.1.1-7: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.	CA Band-width combination	Requirement	UE category
-----------	---------------------------	-------------	-------------

3		3x20MHz	As specified in Table 8.2.2.1.1-5 per CC	≥5
4		20MHz+20MHz+15MHz	As specified in Table 8.2.2.1.1-5 per CC	≥5
Note 1:	The 8.1.	, .	nt CA configurations and bandwidth combination s	ets is defined in

8.2.2.1.2 Void

8.2.2.1.3 Void

8.2.2.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	n mode		1
Note 1: $P_R = 0$			

Note 1: $P_B = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the

first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are

not inserted in the MBSFN portion of the MBSFN

subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.29 TDD	OP.3 TDD	ETU70	1x2 Low	30	2.0	≥1

8.2.2.2 Transmit diversity performance

8.2.2.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.1-2, with the addition of the parameters in Table 8.2.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.2.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2		
	$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)		
	σ	dB	0		
N_{oc} at antenna	port	dBm/15kHz	-98		
ACK/NACK feedba	ck mode		Multiplexing		
PDSCH transmission	on mode		2		
Note 1: $P_B = 1$					

Table 8.2.2.2.1-2: Minimum performance Transmit Diversity (FRC)

Test	Bandw	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	idth	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	≥2
Į.	5 MHz	R.11-2 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	1
2	10 MHz	R.10 TDD	OP.1 TDD	HST	2x2	70	-2.3	≥1

8.2.2.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.2-2, with the addition of the parameters in Table 8.2.2.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.2.2.1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	on mode		2
Note 1: $P_B = 1$			

Table 8.2.2.2.2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 TDD	OP.1 TDD	EPA5	4x2 Medium	70	0.2	≥1
2	10 MHz	R.13 TDD	OP.1 TDD	ETU70	4x2 Low	70	-0.5	≥1

8.2.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.2.2.3-2, with the addition of parameters in Table 8.2.2.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.2.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Cell 1	Cell 2
Uplink downlink conf	iguration		1	1
Special subframe con	figuration		4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.2.3-2	6
BW _{Channel}		MHz	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN
Time Offset between	n Cells	μs	2.5 (synch	ronous cells)
Cell Id			0	1
ABS pattern (No	te 5)		N/A	0000010001 0000000001
RLM/RRM Measuremer Pattern (Note			0000000001 0000000001	N/A
CSI Subframe Sets	C _{CSI,0}		0000010001 0000000001	N/A
(Note 7)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OFD	M symbols		2	2
ACK/NACK feedbac	k mode		Multiplexing	N/A
PDSCH transmission	n mode		2	N/A
Cyclic prefix			Normal	Normal

Note 1: $P_B = 1$.

Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.

Note 5: ABS pattern as defined in [9].

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.2.2.3-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Correlation Matrix and Antenna	Reference	Value	UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11-4 TDD Note 4	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Medium	70	3.8	≥2

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.2.3A-2, with the addition of parameters in Table 8.2.2.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.2.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink confi	guration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.2.3A-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	en Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (Not	e 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			0000000001 0000000001	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		000000001 000000001	N/A	N/A
(Note7)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control of symbols	OFDM		2	Note 8	Note 8
ACK/NACK feedbac	k mode		Multiplexing	N/A	N/A
PDSCH transmissio	n mode		2	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

- Note 1: $P_{p} = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
- Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
- Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.2.2.3A-2: Minimum Performance Transmit Diversity (FRC)

Test Number	Reference Channel	oc	NG Patt	ern		ropagationitions (N		Correlation Matrix and	Reference '	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11-4 TDD Note 4	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Medium	70	3.5	≥2
Note 1:	The propagation	on conditi	ons for C	cell 1, Ce	II 2 and C	cell 3 are	statistica	lly independent.			

- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3...
- Note 3: SNR corresponds to \hat{E}_s/N_{ac2} of cell 1.
- Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are Note 4: transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.2.4 Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.2.2.4-2, with the addition of parameters in Table 8.2.2.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.2.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission			2	N/A	N/A
Interference mode	el		N/A	As specified in clause B.5.2	As specified in clause B.5.2
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Reporting interva	I	ms	5	N/A	N/A
Reporting mode			PUCCH 1-0	N/A	N/A
ACK/NACK feedback	mode		Multiplexing	N/A	N/A

Note 1: $P_{B} = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{α} is defined by

its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: All cells are time-synchronous.

Table 8.2.2.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference	Value	UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.46 TDD	OP. 1 TD D	N/A	N/A	EV A70	EV A70	EV A70	2x2 Low	70	-1.4	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.2.5 Minimum Requirement 2 Tx Antenna Port (when *EIMTA-MainConfigServCell-r12* is configured)

The requirements are specified in Table 8.2.2.2.5-2 with the addition of the parameters in Table 8.2.2.2.5-1 and the downlink physical channel setup according to Annex C.3.2. The test purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas in case of using eIMTA TDD UL-DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI on a PCell.

Table 8.2.2.2.5-1: Test Parameters for Transmit diversity Performance (FRC) when EIMTA-MainConfigServCell-r12 is configured

Parameter		Unit	Value
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Uplink downlink configuration in SIE	1 (Note 2)		0
Downlink HARQ reference configurations HarqReferenceConfig-r12) (Note 2)			5
Set of dynamic TDD UL-DL configu	rations (Notes 2,3)		{0, 1, 2, 3, 4, 5, 6}
Periodicity of monitoring the L1 reco (eimta-CommandPeriodicity-r12)	onfiguration DCI	ms	10
Set of subframes to monitor the L1 (eimta-CommandSubframeSet-r12)			{0,1,5,6}
Number of DL HARQ processes		Processes	15
PDSCH transmission mode	·		2
ACK/NACK feedback mode (Note 5)		Multiplexing

 $P_{B} = 1$ Note 1:

as specified in Table 4.2-2 in TS 36.211. Note 2:

UL/DL configuration in PDCCH with eIMTA-RNTI is randomly selected from the given set on a per-DCI basis Note 3:

with equal probability.

The set of subframes to monitor PDCCH with eIMTA-RNTI for frame n includes subframes {1,5,6} in frame n-1 Note 4: and subframe 0 in frame n. Subframes for reconfiguration DCI transmission are chosen in a random way on a per-DCI basis with equal probability.

PUCCH Format 3 is used for DL HARQ feedback. Note 5:

Table 8.2.2.2.5-2: Minimum performance Transmit diversity when EIMTA-MainConfigServCell-r12 is configured

				Correlation	Reference v	alue		
Test	Reference channel	OCNG Pattern	Propagation Conditions	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	UE Category	CA capability
1	[R.XX TDD eIMTA]	OP.1 TDD	EVA5	2x2 Medium	70	[5.0]	≥1	-

8.2.2.3 Open-loop spatial multiplexing performance

8.2.2.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.2.3.1-2, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.2.3.1-4, with the addition of the parameters in Table 8.2.2.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.2.3.1-7, based on single carrier requirement specified in Table 8.2.2.3.1-5, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.2.3.1-1: Test Parameters for Large Delay CDD (FRC)

1	Unit	Test 1-3
$ ho_{\scriptscriptstyle A}$	dB	-3
$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
σ	dB	0
port	dBm/15kHz	-98
ck mode		Bundling
on mode		3
	-	$egin{array}{ccccc} oldsymbol{ ho_A} & ext{dB} \ oldsymbol{ ho_B} & ext{dB} \ oldsymbol{\sigma} & ext{dB} \ oldsymbol{ ho} & ext{dBm/15kHz} \ ext{ck mode} \ \end{array}$

Note 1: $P_B = 1$ Note 2: Void. Note 3: Void.

Table 8.2.2.3.1-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.1	≥2
2	10 MHz	R.35 TDD	OP.1 TDD	EVA200	2x2 Low	70	20.3	≥2
3	10 MHz	R.35-2 TDD	OP.1 TDD	ETU300	2x2 Low	70	20.3	≥2
Note 1:	: Void.							

Table 8.2.2.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA with 2DL CCs

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
allocation $\begin{array}{c cccc} \rho_B & \text{dB} & -3 \text{(Note 1)} \\ \hline \sigma & \text{dB} & 0 \\ \end{array}$
N_{oc} at antenna port dBm/15kHz -98
ACK/NACK feedback mode PUCCH format 1b with channel selection for Test 1-2; PUCCH format 3 for Test 3-4
PDSCH transmission mode 3

Note 1: $P_{R} = 1$

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Table 8.2.2.3.1-4: Minimum performance Large Delay CDD (FRC) for CA

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE		
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Categ ory		
1	2x20 MHz	R.30-1 TDD	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	13.7	≥5		
2	20MHz+15M Hz	R.30-1 TDD for 20MHz CC	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	[13.0]	≥5		
		R.11-9 TDD for 15MHz CC	OP.1 TDD (Note 1)	EVA70		70	[12.9]			
Note 1:	Note 1: The OCNG pattern applies for each CC.									

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.2.3.1-5: Single carrier performance for multiple CA configurations

			Propa-	Correlation	Reference value		
Band- width	Reference channel	OCNG pattern	gation matrix and		Fraction of maximum throughput (%)	SNR (dB)	
1.4MHz	R.11-5 TDD	OP.1 TDD	EVA70	2x2 Low	70	[13.2]	
3MHz	R.11-6 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.8]	
5MHz	R.11-7 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.6]	
10 MHz	R.11-8 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.8]	
15MHz	R.11-9 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.9]	
20MHz	R.30-1 TDD	OP. 1 TDD	EVA70	2x2 Low	70	[13.0]	

Table 8.2.2.3.1-6: Void

Table 8.2.2.3.1-7: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.	CA Band-width combination	Requirement	UE category			
3	3x20MHz	As specified in Table 8.2.2.3.1-5 per CC	≥5			
4	20MHz+20MHz+15MHz	As specified in Table 8.2.2.3.1-5 per CC	≥5			
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3						

8.2.2.3.1A Soft buffer management test

For CA, the requirements are specified in Table 8.2.2.3.1A-2, with the addition of the parameters in Table 8.2.2.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify UE performance with proper instantaneous buffer implementation.

Table 8.2.2.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

Parameter		Unit	Test 1-2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ		0
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98
ACK/NACK feedback mode			- (Note 2)
PDSCH transmission	on mode		3

Note 1: $P_R = 1$

Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK. Note 3: For CA test cases, the same PDSCH transmission mode is applied to each

component carrier.

Table 8.2.2.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory
1	2x20 MHz	R.30-2 TDD	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	13.2	3
2	2x20 MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA5	2x2 Low	70	15.7	4

Note 1: For CA test cases, the OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

8.2.2.3.1B Enhanced Performance Requirement Type C - 2Tx Antenna Ports

The requirements are specified in Table 8.2.2.3.1B-2, with the addition of the parameters in Table 8.2.2.3.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.2.3.1B-1: Test Parameters for Large Delay CDD (FRC)

Parameter	•	Unit	Test 1			
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3			
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98			
ACK/NACK feedba	ck mode		Bundling			
PDSCH transmissi	on mode		3			
Note 1: $P_{B} = 1$						

Table 8.2.2.3.1B-2: Enhanced Performance Requirement Type C for Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Medium	70	[17.4]	≥2

8.2.2.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.2-2, with the addition of the parameters in Table 8.2.2.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.2.3.2-1: Test Parameters for Large Delay CDD (FRC)

Paramete	•	Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-6
	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ick mode		Bundling
PDSCH transmissi	on mode		3
Note 1: $P_B = 1$.			

Table 8.2.2.3.2-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 TDD	OP.1 TDD	EVA70	4x2 Low	70	14.2	≥2

8.2.2.3.3 Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.3-2, with the addition of parameters in Table 8.2.2.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.2.3.3-4, with the addition of parameters in Table 8.2.2.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.2.3.3-1 and 8.2.2.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.2.2.3.3-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
Uplink downlink config			1	1
Special subframe conf	iguration		4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
$N_{\it oc}$ at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3.3-2	6
$BW_Channel$		MHz	10	10
Subframe Configur	ation		Non-MBSFN	Non-MBSFN
Cell Id			0	1
Time Offset between	n Cells	μs	2.5 (synchro	nous cells)
ABS pattern (Not	e 5)		N/A	0000010001, 0000000001
RLM/RRM Measurement Pattern (Note 6			000000001, 000000001	N/A
CSI Subframe Sets	$C_{\text{CSI},0}$		0000010001, 000000001	N/A
(Note 7)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OFDM symbols			2	2
ACK/NACK feedback mode			Multiplexing	N/A
PDSCH transmission	n mode		3	N/A
Cyclic prefix			Normal	Normal

- Note 1: $P_B = 1$
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.2.2.3.3-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Correlation Reference Matrix and Antenna		/alue	UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 2)	
1	R.11 TDD Note 4	OP.1 TDD	OP.1 TDD	EVA 5	EVA 5	2x2 Low	70	14.0	≥2

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

Table 8.2.2.3.3-3: Test Parameters for Large Delay CDD (FRC) - MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
Uplink downlink confi	guration		1	1
Special subframe conf	iguration		4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A
	N_{oc1}	dBm/15kHz	-102 (Note 2)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N_{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3.3-4	6
BW _{Channel}		MHz	10	10
Subframe Configu	ration		Non-MBSFN	MBSFN
Cell Id			0	126
Time Offset between	n Cells	μs	2.5 (synchror	nous cells)
ABS pattern (Not	e 5)		N/A	000000001 000000001
RLM/RRM Measuremen Pattern (Note 6			000000001 000000001	N/A
CSI Subframe Sets	C _{CSI,0}		000000001 000000001	N/A
(Note 7)	C _{CSI,1}		1100111000 1100111000	N/A
MBSFN Subframe Alloc	ation (Note		N/A	000010
	lumber of control OFDM symbols		2	2
ACK/NACK feedbac			Multiplexing	N/A
PDSCH transmission	n mode		3	N/A
Cyclic prefix			Normal	Normal

- Note 1: $P_B = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10,#11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbol #0 of a subframe overlapping with the aggressor ABS
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 5: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes.
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 in this test.
- Note 10: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.

Table 8.2.2.3.3-4: Minimum Performance Large Delay CDD (FRC) - MBSFN ABS

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Correlation Matrix and Antenna	Reference \	/alue	UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5	Maximum (dB) Throughput (Note	
1	R.11 TDD Note 4	OP.1 TDD	OP.1 TDD	EVA 5	EVA 5	2x2 Low	70	12.2	≥2

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.4-2, with the addition of parameters in Table 8.2.2.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.2.3.4-1: Test Parameters for Large Delay CDD (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink confi	guration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.3.4-2	Reference Value in Table 8.2.2.3.4-2	Reference Value in Table 8.2.2.3.4-2
$BW_Channel$		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	1	126
ABS pattern (No	te 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			000000001 000000001	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		0000000001 0000000001	N/A	N/A
(Note7)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
ACK/NACK feedbac	k mode		Multiplexing	N/A	N/A
PDSCH transmissio			3	Note 9	Note 9
Cyclic prefix			Normal	Normal	Normal

- Note 1: $P_{R} = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
- Note 10: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.
- Note 11: SIB-1 will not be transmitted in Cell2 and Cell 3 in this test.

Table 8.2.2.3.4-2: Minimum Performance Large Delay CDD (FRC) - Non-MBSFN ABS

Test Number	Refer ence	$\hat{E}_s/$	N_{oc2}	OC	NG Patt	ern		ropagations (N		Correlation Matrix and	Reference	Value	UE Cate
	Chan nel	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughp ut (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 TDD Note 4	9	7	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	70	14.2	≥2
2	R.35 TDD Note 4	9	1	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	70	22.7	≥2

- Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.
- Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.
- Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.4 Closed-loop spatial multiplexing performance

8.2.2.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1-2, with the addition of the parameters in Table 8.2.2.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
December neces	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
N_{oc} at antenna po	ort	dBm/15kHz	-98	-98
Precoding granula	rity	PRB	6	50
PMI delay (Note 2	2)	ms	10 or 11	10 or 11
Reporting interva	d	ms	1 or 4 (Note 3)	1 or 4 (Note 3)
Reporting mode			PUSCH 1-2	PUSCH 3-1
CodeBookSubsetRest	riction		001111	001111
bitmap				
ACK/NACK feedback	ACK/NACK feedback mode		Multiplexing	Multiplexing
PDSCH transmission	mode		4	4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput	SNR (dB)	Category
						(%)		
1	10 MHz	R.10 TDD	OP.1 TDD	EVA5	2x2 Low	70	-3.1	≥1
2	10 MHz	R.10 TDD	OP.1 TDD	EPA5	2x2 High	70	-2.8	≥1

8.2.2.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1A-2, with the addition of the parameters in Table 8.2.2.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna $_{ m I}$	port	dBm/15kHz	-98
Precoding granul	arity	PRB	6
PMI delay (Note	2)	ms	10 or 11
Reporting interv	/al	ms	1 or 4 (Note 3)
Reporting mod	le		PUSCH 1-2
CodeBookSubsetR on bitmap	estricti		000000000000000000 000000000000000000 0000
ACK/NACK feeds mode	oack		Multiplexing
PDSCH transmis mode	sion		4
Note 1: $P_B = 1$.			link roporting instance

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 TDD	OP.1 TDD	EVA5	4x2 Low	70	-3.5	≥1

8.2.2.4.1B Enhanced Performance Requirement Type A – Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.2.4.1B-2, with the addition of the parameters in Table 8.2.2.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-

one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined in clause B.5.3. In Table 8.2.2.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
N_{oc} at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission			6	N/A	N/A
Interference mod	el		N/A	As specified in clause B.5.3	As specified in clause B.5.3
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Precoding granula	rity	PRB	50	6	6
PMI delay (Note 4	1)	ms	10 or 11	N/A	N/A
Reporting interva	ıl	ms	5	N/A	N/A
	Reporting mode		PUCCH 1-1	N/A	N/A
	CodeBookSubsetRestriction bitmap		001111	N/A	N/A
ACK/NACK feedback	mode		Multiplexing	N/A	N/A

Note 1: $P_B = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.

Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 5: All cells are time-synchronous.

Table 8.2.2.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		Propagation Conditions		Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.47 TDD	OP. 1 TD D	N/A	N/A	EV A5	EV A5	EV A5	2x2 Low	70	1.1	≥1

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{ac} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1, Cell 2 and Cell 3.

8.2.2.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.4.1C-2, with the addition of parameters in Table 8.2.2.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.2.2.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) - Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
Uplink downlink confi			1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.2.2.4.1C-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configuration			Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset between Cells		μs	N/A	3	-1
Frequency shift between Cells		Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			000000001 000000001	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		000000001 000000001	N/A	N/A
(Note7)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
ACK/NACK feeback	k mode		Multiplexing	N/A	N/A
PDSCH transmissio	PDSCH transmission mode		6	Note 9	Note 9
Precoding granularity		PRB	50	N/A	N/A
PMI delay (Note 10)		ms	10 or 11	N/A	N/A
Reporting inter		ms	1 or 4 (Note 11)	N/A	N/A
Peporting mod			PUSCH 3-1	N/A	N/A
CodeBookSubsetRe bitmap	striction		1111	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

- Note 1: $P_B = 1$.
- Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 5: ABS pattern as defined in [9].
- Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
- Note 10: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
- Note 11: For Uplink downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.
- Note 12: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
- Note 13: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.2.2.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)- Non-MBSFN ABS

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note1)		Correlation Matrix and	Reference Value		UE Cate		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 TDD Note 4	OP.1 TDD	OP.1 FDD	OP.1 TDD	EPA5	EPA5	EPA5	2x2 High	70	6.4	≥2

The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. Note 1:

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

SNR corresponds to \hat{E}_s/N_{oc2} of cell 1. Note 3:

Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are Note 4: transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 5: The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms.

8.2.2.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2-2, with the addition of the parameters in Table 8.2.2.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop ranktwo performance with wideband and frequency selective precoding.

Table 8.2.2.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1-2	Test 3
Develialenance	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98	-98
Precoding granu	Precoding granularity		50	8
PMI delay (Note 2)		ms	10 or 11	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)	1 or 4 (Note 3)
Reporting mo	de		PUSCH 3-1	PUSCH 1-2
ACK/NACK feedba	ck mode		Bundling	Bundling
CodeBookSubsetRe	estriction		110000	110000
bitmap				
PDSCH transmission mode			4	4
Number of OFDM symbols for PDCCH per component carrier		OFDM symbol	2	1

Note 1: $P_{\scriptscriptstyle R}=1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate

between 1ms and 4ms.

Table 8.2.2.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	Reference value	
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.35 TDD	OP.1 TDD	EPA5	2x2 Low	70	19.5	≥2
2	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Low	70	13.9	≥2
3	20 MHz	R.aa TDD	OP.1 TDD	EVA5	2x2 Low	70	TBD	11-15

Note 3:

8.2.2.4.2A Enhanced Performance Requirement Type C Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2A-2, with the addition of the parameters in Table 8.2.2.4.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband precoding.

Table 8.2.2.4.2A-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1			
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98			
Precoding granu	larity	PRB	50			
PMI delay (Not	e 2)	ms	10 or 11			
Reporting inte	rval	ms	1 or 4 (Note 3)			
Reporting mo	de		PUSCH 3-1			
ACK/NACK feedba	ck mode		Bundling			
CodeBookSubsetRe	estriction		110000			
bitmap						
PDSCH transmission	on mode		4			
Note 1: $P_B = 1$.						
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF						

not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.2A-2: Enhanced Performance Requirement Type C for Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Medium	70	[17.8]	≥2

8.2.2.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier, the requirements are specified in Table 8.2.2.4.3-2, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2.

For CA with 2 DL CCs, the requirements are specified in Table 8.2.2.4.3-4, with the addition of the parameters in Table 8.2.2.4.3-3 and the downlink physical channel setup according to Annex C.3.2.The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

For CA with 2 DL CCs except for 2x20MHz, the requirements are specified in Table 8.2.2.4.3-6, based on single carrier requirement specified in Table 8.2.2.4.3-5.

For CA with 3 DL CCs, the requirements are specified in Table 8.2.2.4.3-7, based on single carrier requirement specified in Table 8.2.2.4.3-5, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.2.2.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Precoding granularity		PRB	6
PMI delay (Not	e 2)	ms	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
ACK/NACK feedba	ck mode		Bundling
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			000011111111111111111100000000
			0000000
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this Note 2:

reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate

between 1ms and 4ms.

Note 4: Void. Note 5: Void. Note 6: Void.

Table 8.2.2.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagatio	Correlation	Reference	value	UE
number	width	Channel	Pattern	n Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.36 TDD	OP.1 TDD	EPA5	4x2 Low	70	15.7	≥2
Note 1:	Void							

Table 8.2.2.4.3-3: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Parameter	ı	Unit	Test 1-4
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	8
PMI delay (Note 2)		ms	10 or 11
Reporting interval		ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
ACK/NACK feedba	ck mode		PUCCH format 1b with channel
			selection for Test 1-2; PUCCH
			format 3 for Test 3-4
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
·			0000000
CSI request field (Note 4)		'10'
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n

based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Note 4: Multiple CC-s under test are configured as the 1st set of serving cells by high

layers.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.2.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA with 2DL CCs

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	2x20 MHz	R.43 TDD	OP.1 TDD (Note 1)	EVA5	4x2 Low	70	11.1	≥5
2	20MHz +15MH z	R.43 TDD for 20MHz CC	OP.1 TDD (Note 1)	EVA5	4x2 Low	70	[10.7]	≥5
		R.43-5 TDD for 15MHz CC	OP.1 TDD (Note 1)				[10.6]	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

Table 8.2.2.4.3-5: Single carrier performance for multiple CA configurations

			Propa-	Correlation	Referenc	e value
Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	[TBD]
3MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	[9.8]
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.0]
10 MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.5]
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.6]
20MHz	R.43 TDD	OP. 1 TDD	EVA5	4x2 Low	70	[10.7]

Table 8.2.2.4.3-6: Minimum performance (FRC) based on single carrier performance for CA with 2 DL CCs

Test num.	CA Band-width combination	Requirement	UE category	CA capa- bility				
2	20MHz+15MHz	As specified in Table 8.2.2.4.3-5 per CC	≥5	CL_C				
Note 2: The	Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in							
8.1.2.3.								

Table 8.2.2.4.3-7: Minimum performance (FRC) based on single carrier performance for CA with 3 DL CCs

Test num.	CA Band-width combination	Requirement	UE category				
3	3x20MHz	As specified in Table 8.2.2.4.3-5 per CC	≥5				
4	20MHz+20MHz+15MHz	As specified in Table 8.2.2.4.3-5 per CC	≥5				

8.2.2.4.4 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For dual connectivity the requirements are specified in Table 8.2.2.4.4-1, with the addition of the parameters in Table 8.2.2.4.4-2 and the downlink physical channel setup according to Annex C.3.2.The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding by using dual connectivity.

Table 8.2.2.4.4-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Parameter		Unit	Test 1-2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	ılarity	PRB	6 for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, and 8 for 15MHz CCs and 20MHz CCs
PMI delay (Not	e 2)	ms	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
			0000000
PDSCH transmission	on mode		4
ACK/NACK transr	ACK/NACK transmission		Separate ACK/NACK feedbacks with PUCCH format 1b on the MCG and SCG
CSI feedback			Separate PUSCH feedbacks on the MCG and SCG
Time offset between MCG CC and SCG CC		μ\$	0 for synchronous dual connectivity; 334 for asynchronous dual connectivity (Note 5).

Note 1: $P_B = 1$.

If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this Note 2:

reported PMI cannot be applied at the eNB downlink before SF#(n+4)

For Uplink - downlink configuration 1 the reporting interval will alternate Note 3: between 1ms and 4ms.

The same PDSCH transmission mode is applied to each component carrier. Note 4:

Note 5: As defined in TS36.300 [11].

Table 8.2.2.4.4-2: Single carrier performance for multiple dual connectivity configurations

		Propa-		Correlation	Reference value	
Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)
1.4MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	[TBD]
3MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	[9.8]
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.0]
10 MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.5]
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.6]
20MHz	R.43 TDD	OP. 1 TDD	EVA5	4x2 Low	70	[10.7]

Table 8.2.2.4.4-3: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for dual connectivity

Test num.	Band-width combination	Requirement	UE category
-----------	------------------------	-------------	-------------

1	2x20 MHz	As specified in Table 8.2.2.4.4-2 per CC	≥5				
2	20MHz+15MHz	As specified in Table 8.2.2.4.4-2 per CC	≥5				
Note 1:	Note 1: The OCNG pattern applies for each CC.						
Note 2:	Note 2: The applicability of requirements for different dual connectivity configurations and bandwidth combination sets is						
1	defined in 8.1.2						

8.2.2.5 MU-MIMO

8.2.2.6 [Control channel performance: D-BCH and PCH]

8.2.2.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjacent carrier aggregation UE to demodulate the signal transmitted by the PCell or SCell in the presence of a stronger SCell or PCell signal on an adjacent frequency. Throughput is measured on the PCell or SCell only.

8.2.2.7.1 Minimum Requirement

For CA, the requirements are specified in Table 8.2.2.7.1-2, with the addition of the parameters in Table 8.2.2.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.2.7.1-1: Test Parameters for CA

Paramete	r	Unit	Test 1	Test 2
Davinlink navyan	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)
	σ	dB	0	0
$N_{\it oc}$ at antenna poi	rt	dBm/15kHz	Off (Note 2)	Off (Note 2)
Symbols for unused	d PRBs		OCNG (Note 3)	OCNG (Note 3)
Modulation			64 QAM	64 QAM
Maximum number of transmission	of HARQ		1	1
Redundancy version sequence	n coding		{0}	{0}
PDSCH transmission of PCell	on mode		1	3
PDSCH transmission of SCell	on mode		3	1
OCNG Pattern	PCell		OP.1 TDD	OP.5 TDD
OCING Fallern	SCell		OP.5 TDD	OP.1 TDD
Propagation	PCell		AWGN	Clause B.1
Conditions	SCell		Clause B.1	AWGN
Correlation Matrix	PCell		1x2	2x2
and Antenna	SCell		2x2	1x2

Note 1: $P_B = 0$.

Note 2: No external noise sources are applied.

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated

pseudo random data.

Note 4: Void.

Table 8.2.2.7.1-2: Minimum performance (FRC) for CA

Test Number	Bandwid	dth (MHz)	MHz) Reference channel		Power at port (dBr	antenna n/15KHz)		ce value f Maximum	UE Category
					. `	•	Through	nput (%)	0 ,
	PCell	SCell	PCell	SCell	\hat{E}_{s} PCell	$\hat{E}_{s-SCell}$	PCell	SCell	
					-	-			
					for PCell	for Scell			
1	20	20	R.49 TDD	OCNG	-85	-79	85	NA	≥5
2	20	15	OCNG	R.49-1 TDD	-79	TBD	NA	85	≥5

Note 1: The OCNG pattern for PCell is used to fill the control channel. The OCNG pattern for SCell is used to fill the control channel and PDSCH.

Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

8.2.3 TDD FDD CA (Fixed Reference Channel)

The parameters specified in Table 8.2.3-1 are valid for all the TDD FDD CA tests unless otherwise stated.

Table 8.2.3-1: Common Test Parameters

Parameter		Unit	Value		
Uplink downlink configurator TDD CC only	, ,		1		
Special subframe configu 2) for TDD CC only	ration (Note		4		
Inter-TTI Distance			1		
Maximum number of HARQ processes per	FDD PCell	Processes	8 for FDD and TDD CCs		
component carrier	TDD PCell	Processes	11 for FDD CC; 7 for TDD CC		
Maximum number of HAF transmission	ŔQ		4		
Redundancy version codi	ng sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM		
Number of OFDM symbo PDCCH per component of		OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths		
Cyclic Prefix			Normal		
Cell_ID			0		
Cross carrier scheduling			Not configured		
ACK/NACK feedback mo	de		PUCCH format 3		
Downlink HARQ-ACK	FDD PCell		As specified in Clause 7.3.3 in TS36.213 [6]		
timing	TDD PCell		As specified in Clause 7.3.4 in TS36.213 [6]		
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].					

The applicability of ther requirements are specified in Clause 8.1.2.3. The single carrier performance with different bandwidths for multiple CA configurations specified in Clause 8.2.3 cannot be applied for UE single carrier test.

8.2.3.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS.

8.2.3.1.1 Minimum Requirement for FDD PCell

For TDD FDD CA with FDD PCell, the requirements are specified in Table 8.2.3.1.1-4 based on single carrier requirement specified in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3, with the addition of the parameters in Table 8.2.3.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.3.1.1-1: Test Parameters for CA

Par	Parameter		Test 1- 6
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	0
N_{oc} at ϵ	N_{oc} at antenna port		-98
Symbols fo	Symbols for unused PRBs		OCNG (Note 2)
Modulation			QPSK
PDSCH tran	nsmission mode		1

Note 1: $P_{R} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs

shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.1.1-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.3]
3 MHz	R.42-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.1]
5MHz	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.0]
10MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.7]
15MHz	R.42-3 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.6]
20MHz	R.42 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.7]

Table 8.2.3.1.1-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference value	
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-0.6]
3 MHz	R.42-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-0.8]
5MHz	R.42-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.2]
10MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.6]
15MHz	R.42-3 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.4]
20MHz	R.42 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.4]

Table 8.2.3.1.1-4: Minimum performance for multiple CA configurations (FRC)

Test number	CA Bandwidth combination (MHz)		bination	Minimum performance requirement	UE Category		
	Total	FDD CC	TDD CC				
1	2x20	20	20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5		
2	20+10	10	20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5		
3	10+5	5	10	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥3		
4	3x20	20	2x20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5		
5	20+20+15	15	2x20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5		
6	20+20+10	10	2x20	As defined in Table 8.2.3.1.1-2 and Table 8.2.3.1.1-3 per CC	≥5		
Note 1:	The applicability of requirements for different CA configurations and bandwidth combination sets is defined in						

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in

Note 2: 30usec timing difference between PCell and any SCell is applied in inter-band CA case, where PCell can be assigned on any CC.

8.2.3.1.2 Minimum Requirement for TDD PCell

For TDD FDD CA with TDD PCell, the requirements are specified in Table 8.2.3.1.2-4 based on single carrier requirement specified in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3, with the addition of the parameters in Table 8.2.3.1.2-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.3.1.2-1: Test Parameters for CA

Parameter		Test 1- 6
$ ho_{\scriptscriptstyle A}$	dB	0
$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
σ	dB	0
antenna port	dBm/15kHz	-98
r unused PRBs		OCNG (Note 2)
Modulation		QPSK
PDSCH transmission mode		1
	$ ho_A$ $ ho_B$ $ ho$ antenna port r unused PRBs	$ ho_A$ dB $ ho_B$ dB $ ho_B$ dB $ ho_B$ or dB $ ho_B$ antenna port dBm/15kHz r unused PRBs dulation

Note 1: $P_{R} = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.1.2-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.3]
3 MHz	R.42-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.1]
5MHz	R.42-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.0]
10MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.7]
15MHz	R.42-3 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.6]
20MHz	R.42 FDD	OP.1 FDD	EVA5	1x2 Low	70	[-1.7]

Table 8.2.3.1.2-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-0.6]
3 MHz	R.42-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-0.8]
5MHz	R.42-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.2]
10MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.6]
15MHz	R.42-3 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.4]
20MHz	R.42 TDD	OP.1 TDD	EVA5	1x2 Low	70	[-1.4]

Table 8.2.3.1.2-4: Minimum performance for multiple CA configurations (FRC)

Test	33 3 3 4 4 7				UE
number	Total	FDD CC	TDD CC		Category
1	2x20	20	20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5
2	20+10	10	20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5
3	10+5	5	10	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥3
4	3x20	20	2x20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5
5	20+20+15	15	2x20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5
6	20+20+10	10	2x20	As defined in Table 8.2.3.1.2-2 and Table 8.2.3.1.2-3 per CC	≥5

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8 1 2 3

Note 2: 30usec timing difference between PCell and any SCell is applied in inter-band CA case, where PCell can be assigned on any CC.

8.2.3.2 Open-loop spatial multiplexing performance 2Tx Antenna port

8.2.3.2.1 Minimum Requirement for FDD PCell

For TDD FDD CA with FDD PCell, the requirements are specified in Table 8.2.3.2.1-4 based on single carrier requirement specified in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3, with the addition of the parameters in Table 8.2.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.3.2.1-1: Test Parameters for Large Delay CDD (FRC) for CA

Parameter	•	Unit	Test 1-6
D 11 1	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna port		dBm/15kHz	-98
PDSCH transmissi	on mode		3

Note 1: $P_{R} = 0$.

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.1-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 FDD	OP.1 FDD	EVA70	2x2 Low	70	[13.6]
3 MHz	R.11-6 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.3]
5MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.3]
10MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.9]
15MHz	R.11-7 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.8]
20MHz	R.30 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.9]

Table 8.2.3.2.1-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 TDD	OP.1 TDD	EVA70	2x2 Low	70	[13.2]
3 MHz	R.11-6 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.8]
5MHz	R.11-7 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.6]
10MHz	R.11-8 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.8]
15MHz	R.11-9 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.9]
20MHz	R.30-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	[13.0]

Table 8.2.3.2.1-4: Minimum performance for multiple CA configurations (FRC)

Test	33 3 3 4 4 7		dth (MHz)	n (MHz) Minimum performance requirement	
number	Total	FDD CC	TDD CC		Category
1	2x20	20	20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
2	20+10	10	20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
3	10+5	5	10	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥3
4	3x20	20	2x20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
5	20+20+15	15	2x20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
6	20+20+10	10	2x20	As defined in Table 8.2.3.2.1-2 and Table 8.2.3.2.1-3 per CC	≥5
5 6	20+20+10	10	2x20		per CC

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3

8.2.3.2.1A Soft buffer management test for FDD PCell

For TDD-FDD CA, the requirements are specified in Table 8.2.3.2.1A-2, with the addition of the parameters in Table 8.2.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation for FDD as PCell.

Table 8.2.3.2.1A-1: Test Parameters for CA

	Parameter	Unit	Tes	st 1		
			FDD Carrier	TDD Carrier		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	-3		
power	power $\rho_{\scriptscriptstyle R}$		-3 (Note 1)	-3 (Note 1)		
allocation	σ	dB	0	0		
N_{oc}	at antenna port	dBm/15kHz	-98	-98		
ACK/NA	ACK/NACK feedback mode		ACK/NACK feedback mode PUCCH format 1b with ch selection		PUCCH format 1b with channel selection	PUCCH format 1b with channel selection
PDSCH	transmission mode		3	3		

Note 1: $P_B = 1$.

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.1A-2: Minimum performance (FRC) for CA

						Correl	Reference v	alue	
Test num.	Banc	l-width	Reference channel	OCNG pattern	Propa- gation condi-tion	ation matrix and anten na config	Fraction of maximum throughput (%)	SNR (dB)	UE cate gory
1	PCell	20MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA70	2x2	70	[16.4]	3
!	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA/U	Low	70	[16.3]	3
2	PCell	20MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA70	2x2	70	[16.3]	4
2	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA/U	Low	70	[16.3]	4
3	PCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVA5	2x2	70	[16.0]	3
3	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVAS	Low	70	[16.3]	J
4	PCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVA5	2x2	70	[16.0]	4
4	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVAS	Low	70	[16.3]	4
5	PCell	15MHz	R.35-2 FDD	OP.1 FDD (Note 1)	EVA5	2x2	70	[16.0]	3
5	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	_ EVA5	Low	70	[16.3]	3
6	PCell	rell 15MHz R.35-2 FDD OP.1 FDD (Note 1)	EVA5	2x2	70	[16.0]			
6 SCell	SCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	CAS	Low	70	[16.3]	4

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3.

8.2.3.2.2 Minimum Requirement for TDD PCell

For TDD FDD CA with TDD PCell, the requirements are specified in Table 8.2.3.2.2-4 based on single carrier requirement specified in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3, with the addition of the parameters in Table 8.2.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.3.2.2-1: Test Parameters for Large Delay CDD (FRC) for CA

Parameter		Unit	Test 1-6
Danielink name	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3

Note 1: $P_B = 0$.

Note 2: The same PDSCH transmission mode is applied to each

component carrier.

Table 8.2.3.2.2-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 FDD	OP.1 FDD	EVA70	2x2 Low	70	[13.6]
3 MHz	R.11-6 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.3]
5MHz	R.11-2 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.3]
10MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.9]
15MHz	R.11-7 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.8]
20MHz	R.30 FDD	OP.1 FDD	EVA70	2x2 Low	70	[12.9]

Table 8.2.3.2.2-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.11-5 TDD	OP.1 TDD	EVA70	2x2 Low	70	[13.2]
3 MHz	R.11-6 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.8]
5MHz	R.11-7 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.6]
10MHz	R.11-8 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.8]
15MHz	R.11-9 TDD	OP.1 TDD	EVA70	2x2 Low	70	[12.9]
20MHz	R.30-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	[13.0]

Table 8.2.3.2.2-4: Minimum performance for multiple CA configurations (FRC)

Test Aggregated Bandwidth (MHz)		dth (MHz)	Minimum performance requirement	UE	
number	mber Total FDD CC TDD CC		TDD CC		Category
1	2x20	20	20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5
2	20+10	10	20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5
3	10+5	5	10	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥3
4	3x20	20	2x20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5
5	20+20+15	15	2x20	As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5
6	20+20+10	20+20+10 10 2x20		As defined in Table 8.2.3.2.2-2 and Table 8.2.3.2.2-3 per CC	≥5

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3

8.2.3.2.2A Soft buffer management test for TDD PCell

For TDD-FDD CA, the requirements are specified in Table 8.2.3.2.2A-2, with the addition of the parameters in Table 8.2.3.2.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation for TDD as PCell.

Table 8.2.3.2.2A-1: Test Parameters for CA

Parameter		Unit	Test 1			
			FDD Carrier	TDD Carrier		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	-3		
power	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)		
allocation	σ	dB	0	0		
N_{oc}	, at antenna port	dBm/15kHz	-98	-98		
ACK/NACK feedback mode			PUCCH format 1b with channel selection	PUCCH format 1b with channel selection		
PDSCH	I transmission mode		3	3		

Note 1: $P_R = 1$

Note 2: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.2.2A-2: Minimum performance (FRC) for CA

						Correl	Reference v	alue	
Test num.	Band-width		Reference channel	OCNG pattern	Propa- gation condi-tion	ation matrix and anten na config	Fraction of maximum throughput (%)	SNR (dB)	UE cate gory
1	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1))	EVA70	2x2	70	[16.3]	3
'	SCell	20MHz	R.35-1 FDD	OP.1 FDD (Note 1		Low	70	[16.2]	3
2	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA70	2x2	70	[16.2]	4
2	SCell	20MHz	R.35-1 FDD	OP.1 FDD (Note 1)		Low	70	[16.2]	4
2	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	F)/AF	2x2	70	[16.1]	3
3	SCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVA5	Low	70	[16.0]	
4	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA5	2x2	70	[16.2]	4
4	SCell	10MHz	R.35-3 FDD	OP.1 FDD (Note 1)	EVAS	Low	70	[15.8]	4
	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	F)/AF	2x2	70	[16.2]	2
5	SCell	15MHz	R.35-2 FDD	OP.1 FDD (Note 1)		Low	70	[15.8]	3
6	PCell	20MHz	R.35-1 TDD	OP.1 TDD (Note 1)	F\/^E	2x2	2x2 70	[16.2]	4
6	SCell	15MHz	R.35-2 FDD	OP 1 FDD EVAS	EVAS	Low	70	[15.8]	

Note 1: The OCNG pattern applies for each CC.

Note 2: The applicability and test rules of requirements for different CA configurations and bandwidth combination sets are defined in 8.1.2.3.

8.2.3.3 Closed-loop spatial multiplexing performance 4Tx Antenna Port

8.2.3.3.1 Minimum Requirement for FDD PCell

For TDD FDD CA with FDD PCell, the requirements are specified in Table 8.2.3.3.1-4 based on single carrier requirement specified in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3, with the addition of the parameters in Table 8.2.3.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.3.3.1-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Paramete	r	Unit	Test 1-6
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenn	a port	dBm/15kHz	-98
Precoding gran	ularity	PRB	Wideband precoding for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, 8 for 15MHz and 20MHz CCs
DMI dolov (Noto 2)	FDD CC	ms	8
PMI delay (Note 2)	TDD CC	ms	10 or 11
Reporting interval	FDD CC	ms	1
Reporting interval	TDD CC	ms	1 or 4 (Note 3)
Reporting m	ode		PUSCH 1-2
CodeBookSubsetF	Restriction		000000000000000000000000000000000000000
bitmap			00001111111111111111100000000
			0000000
CSI request field	(Note 3)		'10'
PDSCH transmiss	ion mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Multiple CC-s under test are configured as the 1st set of serving cells by higher layers

Note 4: ACK/NACK bits are transmitted using PUSCH with PUCCH format 3.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.3.1-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.14-4 FDD	OP.1 FDD	EVA5	4x2 Low	70	TBD
3 MHz	R.14-5 FDD	OP.1 FDD	EVA5	4x2 Low	70	[9.5]
5MHz	R.14-6 FDD	OP.1 FDD	EVA5	4x2 Low	70	[9.5]
10MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.1]
15MHz	R.14-7 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.1]
20MHz	R.14-3 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.3]

Table 8.2.3.3.1-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	TBD
3 MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	[9.8]
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.0]
10MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.5]
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.6]
20MHz	R.43 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.7]

Table 8.2.3.3.1-4: Minimum performance for multiple CA configurations (FRC)

Test Aggregated Bandwidth (MHz)		dth (MHz)	Minimum performance requirement	UE	
number	number Total FDD CC TDD CC		TDD CC		Category
1	2x20	20	20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5
2	20+10	10	20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5
3	10+5	5	10	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥3
4	3x20	20	2x20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5
5	20+20+15	15	2x20	As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5
6	20+20+10	20+20+10 10 2x20		As defined in Table 8.2.3.3.1-2 and Table 8.2.3.3.1-3 per CC	≥5

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3

8.2.3.3.2 Minimum Requirement for TDD PCell

For TDD FDD CA with TDD PCell, the requirements are specified in Table 8.2.3.3.2-4 based on single carrier requirement specified in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3, with the addition of the parameters in Table 8.2.3.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.3.3.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Paramete	r	Unit	Test 1-
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenn	a port	dBm/15kHz	-98
Precoding gran	ularity	PRB	Widelband pre-coding for 1.4MHz, 4 for 3MHz and 5MHz CCs, 6 for 10MHz CCs, 8 for 15MHz and 20MHz CCs
DMI dolov (Noto 2)	FDD CC	ms	8
PMI delay (Note 2)	TDD CC	ms	10 or 11
Reporting interval	FDD CC	ms	1
Reporting interval	TDD CC	ms	1 or 4 (Note 3)
Reporting m	ode		PUSCH 1-2
CodeBookSubsetRestriction bitmap			00000000000000000000000000000000000000
CSI request field	(Note 3)		'10'
PDSCH transmiss	ion mode		TM4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: Multiple CC-s under test are configured as the 1st set of serving cells by higher

layers.

Note 4: ACK/NACK bits are transmitted using PUSCH with PUCCH format 3.

Note 5: The same PDSCH transmission mode is applied to each component carrier.

Table 8.2.3.3.2-2: Single carrier performance with different bandwidths for multiple CA configurations for FDD SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.14-4 FDD	OP.1 FDD	EVA5	4x2 Low	70	TBD
3 MHz	R.14-5 FDD	OP.1 FDD	EVA5	4x2 Low	70	[9.5]
5MHz	R.14-6 FDD	OP.1 FDD	EVA5	4x2 Low	70	[9.5]
10MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.1]
15MHz	R.14-7 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.1]
20MHz	R.14-3 FDD	OP.1 FDD	EVA5	4x2 Low	70	[10.3]

Table 8.2.3.3.2-3: Single carrier performance with different bandwidths for multiple CA configurations for TDD PCell and SCell (FRC)

Band-	Reference	OCNG	Propagation	Correlation	Reference	value
width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)
1.4 MHz	R.43-1 TDD	OP.1 TDD	EVA5	4x2 Low	70	TBD
3 MHz	R.43-2 TDD	OP.1 TDD	EVA5	4x2 Low	70	[9.8]
5MHz	R.43-3 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.0]
10MHz	R.43-4 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.5]
15MHz	R.43-5 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.6]
20MHz	R.43 TDD	OP.1 TDD	EVA5	4x2 Low	70	[10.7]

Table 8.2.3.3.2-4: Minimum performance for multiple CA configurations (FRC)

Test	Test Aggregated Bandwidth (MHz) number Total FDD CC TDD CC		dth (MHz)	Minimum performance requirement	UE
number			TDD CC		Category
1	2x20	20	20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5
2	20+10	10	20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5
3	10+5	5	10	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥3
4	3x20	20	2x20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5
5	20+20+15	15	2x20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5
6	20+20+10	10	2x20	As defined in Table 8.2.3.3.2-2 and Table 8.2.3.3.2-3 per CC	≥5
Note 1:	The applical	bility of reaui	rements for c	lifferent CA configurations and bandwidth combination sets is def	ined in

Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.3.1 FDD

The parameters specified in Table 8.3.1-1 are valid for FDD unless otherwise stated.

Table 8.3.1-1: Common Test Parameters for User-specific Reference Symbols

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM and 256QAM
Number of OFDM symbols for PDCCH	OFDM symbols	2
Precoder update granularity		Frequency domain: 1 PRG for Transmission modes 9 and 10 Time domain: 1 ms
Note 1: Void. Note 2: Void.		

8.3.1.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.1-1 and 8.3.1.1-2, with the addition of the parameters in Table 8.3.1.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.1.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

parameter		Unit	Unit Test 1 Test 2		Test 3	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	
allocation ρ		dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	
σ		dB	-3	-3	-3	
Beamforming mo	del		Annex B.4.1	Annex B.4.1	Annex B.4.1	
Cell-specific refere	ence					
CSI reference sign	nals		Antenna ports 15,,18	Antenna ports 15,,18	Antenna ports 15, , 18 5 / 2	
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	t S	Subframes	5/2 5/2		5/2	
CSI reference sig configuration	nal		0	3	0	
Zero-power CSI-RS configuration ICSI-RS / ZeroPowerCSI-RS bitmap		Subframes / bitmap	3 / 00010000000000000	3 / 00010000000000000	3 / 00010000000000000	
N_{oc} at antenna p	ort	dBm/15kHz	-98	-98	-98	
Symbols for unus PRBs	ed		OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)	
Number of alloca resource blocks (No		PRB	50	50	100	
Simultaneous transmission	,		No	Yes (Note 3, 5)	No	
PDSCH transmiss mode	sion		9	9	9	
Note 3: Modulation port 7 or 8 port (7 or 8) Note 4: These phone virtual UE OCNG Plomodulate Note 5: The two U	8. on symbol sym	pols of an interfused for the inpesource blocks one PDSCH peshall be uncor	signal under test are mapped out signal under test. It is are assigned to an arter virtual UE; the data to related pseudo randomaties $n_{\rm SCID}$ are set to 0 neous transmission test	ed onto the antenna bitrary number of ransmitted over the n data, which is QPSK for CDM-multiplexed		

Table 8.3.1.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test Bandwidt		Reference	OCNG	Propagation	Correlation	Reference	UE	
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.43 FDD	OP.1 FDD	EVA5	2x2 Low	70	-1	≥1
3	10MHz 256QAM	R.bb FDD	OP.1 FDD	EPA5	2x2 Low	70	TBD	11-15

Table 8.3.1.1-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
2	10 MHz 64QAM 1/2	R.50 FDD	OP.1 FDD	EPA5	2x2 Low	70	21.9	≥2	
Note 1: The reference channel applies to both the input signal under test and the interfering signal.									

8.3.1.1A Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.1.1A-2, with the addition of the parameters in Table 8.3.1.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.1.1A-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

Table 8.3.1.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

parameter		Unit	Cell 1	Cell 2
Downlink newer $ ho_{\scriptscriptstyle A}$		dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
σ		dB	-3	-3
Cell-specific referen	ice signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference s	ignals		Antenna ports 15,,18	N/A
CSI-RS periodic subframe offset T_{CSI}	$_{ m RS}$ / $\Delta_{ m CSI-RS}$	Subframes	5/2	N/A
CSI reference s configuration			0	N/A
N_{oc} at antenna	a port	dBm/15kH z	-98	N/A
DIP (Note 2	2)	dB	N/A	-1.73
BW _{Channel}		MHz	10	10
Cyclic Pref	ix		Normal	Normal
Cell Id			0	126
Number of contro symbols	OFDM		2	2
PDSCH transmiss	ion mode		9	N/A
Beamforming model			As specified in clause B.4.3 (Note 4, 5)	N/A
Interference m	nodel		N/A	As specified in clause B.5.4
Probability of occurrence of	Rank 1		N/A	70
transmission rank in interfering cells	Rank 2		N/A	30
Precoder update g	ranularity	PRB	50	6
PMI delay (No	te 5)	Ms	8	N/A
Reporting inte	erval	Ms	5	N/A
Reporting mo	ode		PUCCH 1-1	N/A
CodeBookSubsetR bitmap	estriction		0000000000000000 0000000000000000 000000	N/A
Symbols for unuse	ed PRBs		OCNG (Note 6)	N/A
Simultaneous tran	smission		No simultaneous transmission on the other antenna port in (7 or 8) not used for the input signal under test	N/A

Note 1: $P_{p} = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} ' is defined by its associated DIP value as specified in clause B.5.1.

Note 3: The modulation symbols of the signal under test in Cell 1 are mapped onto antenna port 7 or 8.

Note 4: The precoder in clause B.4.3 follows UE recommended PMI.

Note 5: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI

cannot be applied at the eNB downlink before SF#(n+4).

Note 6: These physical resource blocks are assigned to an arbitrary number of virtual UEs

with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 7: All cells are time-synchronous.

Table 8.3.1.1A-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

Test Number			OCNG Pattern		gation itions	Correlatio n Matrix	Reference Value		UE Categor
	Channel	Cell 1	Cell 2	Cell 1	Cell 2	and Antenna Configurat ion (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	y
1	R.48 FDD	OP.1 FDD	N/A	EVA5	EVA5	4x2 Low	70	-1.1	≥1

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

8.3.1.1B Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.1.1B -2, with the addition of parameters in Table 8.3.1.1B -1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.1.1B -1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.3.1.1B-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	-3 (Note 1)	-3 (Note 1)
	σ	dB	-3	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
N_{oc3}		dBm/15kHz	-93 (Note 4)	N/A	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN Non-MBS	
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	1	126
Cell-specific reference	e signals		А	ntenna ports 0,1	
CSI reference sig	ınals		Antenna ports 15,16	N/A	N/A
CSI-RS periodicity subframe offso $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	et	Subframes	5/2	N/A	N/A
CSI reference significant configuration			8	N/A	N/A
Zero-power CSI-configuration	-RS	Subframes / 0010000000000 N/A 00]		N/A	N/A
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control OFDM symbols			2	Note 8	Note 8
PDSCH transmissio	n mode		TM9-1layer	Note 9	Note 9
Precoding granul	-		Frequency domain: 1 PRG Time domain: 1 ms	N/A	N/A
Beamforming mo			Annex B.4.1	N/A Normal	N/A Normal
Cyclic prefix		<u> </u>	Normal	Normal	Normal

Ninta 4.

Note 1:	$P_B = 1$.
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a
	subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the

aggressor ABS.

Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 5: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]

Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].

Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.

Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.

Note 10: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 11: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.

Note 12: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Note 13: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Table 8.3.1.1B-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) - Non-MBSFN ABS

Test Number	Reference Channel	OC	OCNG Pattern			ropagations (N		Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	gory
1	R.51 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD		EVA5		2x2 Low	70	7.8	≥2

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

8.3.1.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.2-2, with the addition of the parameters in Table 8.3.1.2-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

Table 8.3.1.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

Parameter		Unit	Tes	st 1
Parameter		Onit	Cell 1	Cell 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	4	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	4 (Note 1)	0
	σ	dB	-3	-3

Cell-specific reference signals		Antenna ports 0 and 1	Antenna ports 0 and 1
Cell ID		0	126
CSI reference signals		Antenna ports 15,16	NA
Beamforming model		Annex B.4.2	NA
CSI-RS periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	5/2	NA
CSI reference signal configuration		8	NA
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	3 / 00100000000000000	NA
$N_{\it oc}$ at antenna port	dBm/15kHz	-98	-98
\hat{E}_s/N_{oc}		Reference Value in Table 8.3.1.2-2	7.25dB
Symbols for unused PRBs		OCNG (Note 2)	NA
Number of allocated resource blocks (Note 2)	PRB	50	NA
Simultaneous transmission		No	NA
PDSCH transmission mode		9	Blanked

Note 1: $P_B = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.2-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test number	Bandwidth and MCS	Reference Channel		NG tern		gation dition	Correlation Matrix and	Reference value		UE Categ
			Cell1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	ory
1	10 MHz 16QAM 1/2	R.51 FDD	OP.1 FDD	N/A	ETU5	ETU5	2x2 Low	70	14.2	≥2

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1.

8.3.1.2A Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing

The requirements are specified in Table 8.3.1.2A-2, with the addition of the parameters in Table 8.3.1.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of this test is to verify rank two performance for full RB allocation upon antenna ports 7 and 8.

Table 8.3.1.2A-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	-3
Cell-specific reference signals	ence		Antenna ports 0 and 1
CSI reference sig	nals		Antenna ports 15,16
Beamforming mo	del		Annex B.4.2
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-R}}$	et	Subframes	5/2
CSI reference sig configuration	gnal		8
Zero-power CSI- configuration I _{CSI-RS} / ZeroPowerCSI- bitmap		Subframes / bitmap	3 / 00100000000000000
$N_{\it oc}$ at antenna $_{\it I}$	oort	dBm/15kHz	-98
Symbols for unus PRBs	sed		OCNG (Note 2)
Number of alloca resource blocks (N		PRB	50
Simultaneous transmission			No
PDSCH transmis mode	sion		9
Note 1: D 1			

Note 1: $P_{R} = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per

virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.2A-2: Enhanced Performance Requirement Type C for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Bandwidth Reference		Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz 16QAM 1/2	R.51 FDD	OP.1 FDD	EPA5	2x2 Medium	70	[17.4]	≥2

8.3.1.3 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

8.3.1.3.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.1.3.1-3, with the additional parameters in Table 8.3.1.3.1-1 and Table 8.3.1.3.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the

'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.1.3.1-2. In Tables 8.3.1.3.1-1 and 8.3.1.3.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2 (TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.1.3.1-1: Test Parameters for quasi co-location type B: same Cell ID

Paramete	r	Unit	TP 1	TP 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	(Note 2)
CSI-RS 0 antenr	na ports		NA	Port {15,16}
qcl-CSI-RS-Configl CSI-RS 0 period subframe offset T_{CSI}	icity and I-RS / ∆csi-RS	Subframes	NA	5/2
qcl-CSI-RS-Configl CSI-RS 0 config	uration		NA	8
csi-RS-ConfigZPId- power CSI-RS 0 co I _{CSI-RS} / ZeroPower CSI-R	nfiguration		NA	2/ 00000100000000000
$N_{\it oc}$ at antenn	a port	dBm/15kH z	-98	-98
\widehat{E}_s/N_{oc}		dB	Reference point in Table 8.3.1.3.1-3	Reference point in Table 8.3.1.3.1-3
BW _{Channe}	ı	MHz	10	10
Cyclic Pref	ix		Normal	Normal
Cell Id			0	0
Number of contro symbols	ol OFDM		2	2
PDSCH transmiss	ion mode		Blanked	10
Number of alloca	ted PRB	PRB	NA	50
qcl-Operation, PD Mapping and Qu Location Indic	ıasi-Co-		Type	B, '00'
Time offset between	een TPs	μs	NA	Reference point in Table 8.3.1.3.1-3
Frequency error between TPs		Hz	NA	0
Beamforming model			NA	As specified in clause B.4.1
Symbols for unus	ed PRBs		NA	OCNG (Note 3)

Note 1: $P_{B} = 1$

Noet 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.3.1-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index		s in each PQI set	hypothesi	smission is for each Set
	NZP CSI-RS Index (For quasi	ZP CSI-RS configuration	TP 1	TP 2

	co-location)			
PQI set 0	CSI-RS 0	ZP CSI-RS 0	Blanked	PDSCH

Table 8.3.1.3.1-3: Minimum performance for quasi co-location type B: same Cell ID

Test Number	Reference Channel		iCN tern	Time offset between	Propag Condi (Not	tions	Correlation Matrix and Antenna	Reference Value		UE Category
		TP 1	TP 2	TPs (μs)	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.52 FDD	NA	OP.1 FDD	2	EPA	EPA	2x2 Low	70	12.1	≥2
2	R.52 FDD	NA	OP.1 FDD	-0.5	EPA	EPA	2x2 Low	70	12.6	≥2

Note 1: The propagation conditions for TP 1 and TP 2 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for TP 1 and TP 2.

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of TP 2 as defined in clause 8.1.1.

8.3.1.3.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.1.3.2-3, with the additional parameters in Tables 8.3.1.3.2-1 and 8.3.1.3.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In Tables 8.3.1.3.2-1 and 8.3.1.3.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.1.3.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.1.3.2-1: Test Parameters for timing offset compensation with DPS transmission

parameter		Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.1
Cell-specific reference signals		Antenna ports 0,1	(Note 2)
CSI reference signals 0		Antenna ports {15,16}	N/A
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	5/2	N/A
CSI reference signal 0 configuration		0	N/A
CSI reference signals 1		N/A	Antenna ports {15,16}
CSI-RS 1 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5/2
CSI reference signal 1 configuration		N/A	8
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	2/ 001000000000000000	N/A
Zero-power CSI-RS1 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap _S	Subframes /bitmap	N/A	2/ 00000100000000000
\hat{E}_s/N_{oc}	dB	Reference Value in Table 8.3.1.3.2-3	Reference Value in Table 8.3.1.3.2-3
$N_{_{oc}}$ at antenna port	dBm/15kH z	-98	-98
BW _{Channel}	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	0
Number of control OFDM symbols		2	2
Timing offset between TPs		N/A	Reference Value in Table 8.3.1.3.2-3
Frequency offset between TPs	Hz	N/A	0
Number of allocated resource blocks	PRB	50	50
PDSCH transmission mode		10	10
Probability of occurrence of PDSCH transmission(Note 3)	%	30	70
Symbols for unused PRBs		OCNG (Note 4)	OCNG (Note 4)

Note 1: $P_{p} = 1$

Note 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.3.2-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index	Parameter	s in each PQI set	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)				
PQI set 0	CSI-RS 0	ZP CSI-RS 0	PDSCH	Blanked	
PQI set 3	CSI-RS 1	Blanked	PDSCH		

Table 8.3.1.3.2-3: Performance Requirements for timing offset compensation with DPS transmission

Test Number	Timing offset(us)	Reference Channel		NG tern		gation litions	Correlation Matrix and	Reference Value		UE Category
			TP 1	TP 2	TP 1	TP 2	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	2	R.53 FDD	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	70	12.2	≥2
2	-0.5	R.53 FDD	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	70	12.5	≥2
Note 1: Note 2:		tion conditions				•	dependent. for each of TP 1 and	TP 2.		

SNR corresponds to \hat{E}_s/N_{oc} of both TP 1 and TP 2 as defined in clause 8.1.1. Note 3:

Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-8.3.1.3.3 RS resource)

The requirements are specified in Table 8.3.1.3.3-2, with the additional parameters in Table 8.3.1.3.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In Table 8.3.1.3.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.1.3.3-1: Test Parameters for quasi co-location type B with different Cell ID and Colliding **CRS**

parameter		Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.2	
Cell-specific reference signals		Antenna ports 0,1	Antenna ports 0,1	
CSI reference signals 0		N/A	Antenna ports {15,16}	
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5/2	
CSI reference signal 0 configuration		N/A	0	
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	N/A	2/ 00100000000000000	
\hat{E}_s/N_{oc}	dB	Reference point in Table 8.3.1.3.3-2 + 4dB	Reference Value in Table 8.3.1.3.3-2	
$N_{\scriptscriptstyle oc}$ at antenna port	dBm/15kH z	-98	-98	
BW _{Channel}	MHz	10	10	
Cyclic Prefix		Normal	Normal	
Cell Id		0	126	
Number of control OFDM symbols		1	2	
Timing offset between TPs	us	N/A	0	
Frequency offset between TPs	Hz	N/A	200	
qcl-Operation, 'PDSCH RE Mapping and Quasi-Co- Location Indicator'		Type B, '00'		
PDSCH transmission mode		Blank	10	
Number of allocated resource block		N/A	50	
Symbols for unused PRBs		N/A	OCNG(Note2)	

Note 1: $P_B = 1$

These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs Note 2: shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.1.3.3-2: Performance Requirements for quasi co-location type B with different Cell ID and **Colliding CRS**

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note1)		Correlation Matrix and Antenna	Reference Value		UE Category
		TP 1	TP 2	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.54 FDD	N/A	OP.1 FDD	EPA5	ETU5	2x2 Low	70	14.4	≥2

Note 1:

The propagation conditions for TP.1 and TP.2 are statistically independent.

Correlation matrix and antenna configuration parameters apply for each of TP.1 and TP.2. Note 2:

SNR corresponds to \hat{E}_{s}/N_{oc} of TP.2 as defined in clause 8.1.1. Note 3:

8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for User-specific Reference Symbols

Parameter	Unit	Value
Uplink downlink configuration (Note 1)		1
Special subframe configuration (Note 2)		4
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes	Processes	7
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	2
Precoder update granularity		Frequency domain: 1 PRB for Transmission mode 8, 1 PRG for Transmission modes 9 and 10 Time domain: 1 ms
ACK/NACK feedback mode		Multiplexing
	Table 4.2-2 in TS 36 Table 4.2-1 in TS 36	

8.3.2.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna port 5, the requirements are specified in Table 8.3.2.1-2, with the addition of the parameters in Table 8.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the demodulation performance using user-specific reference signals with full RB or single RB allocation.

Table 8.3.2.1-1: Test Parameters for Testing DRS

Parameter		Unit	Test 1	Test 2	Test 3	Test 4	
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	
	σ	dB	0	0	0	0	
Cell-specific refere	ence		Antenna port 0				
Beamforming mo	del			Annex	(B.4.1		
$N_{\it oc}$ at antenna p	ort	dB/15kHz	-98	-98	-98	-98	
Symbols for unused	PRBs		OCNG OCNG OCNG OCNG (Note 2) (Note 2) (Note 2)				
PDSCH transmission mode			7	7	7	7	

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.1-2: Minimum performance DRS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.25 TDD	OP.1 TDD	EPA5	2x2 Low	70	-0.8	≥1
2	10 MHz 16QAM 1/2	R.26 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	≥2
	5MHz 16QAM 1/2	R.26-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	1
3	10 MHz 64QAM 3/4	R.27 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	≥2
	10 MHz 64QAM 3/4	R.27-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	1
4	10 MHz 16QAM 1/2	R.28 TDD	OP.1 TDD	EPA5	2x2 Low	30	1.7	≥1

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.1-4 and 8.3.2.1-5, with the addition of the parameters in Table 8.3.2.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port.

Table 8.3.2.1-3: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

Parameter		Unit	Test 1	Test 2	Test 3	Test 4	Test 5	
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0	
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3						
Cell-specific reference signals	е		Antenna port 0 and antenna port 1					
Beamforming mode			Annex B.4.1					
$N_{\it oc}$ at antenna por	t	dBm/15kHz	-98	-98	-98	-98	-98	
Symbols for unused PF	Symbols for unused PRBs					OCNG (Note 4)		
Simultaneous transmission			No	No	No	Yes (Note 3, 5)	Yes (Note 3, 5)	
PDSCH transmission m	ode		8	8	8	8	8	

Note 1: $P_R = 1$.

Note 2: The modulation symbols of the signal under test is mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: The two UEs' scrambling identities $n_{\rm SCID}$ are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.2.1-4: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC)

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	-1.0	≥1
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	≥2
	5MHz 16QAM 1/2	R.32-1 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	1
3	10 MHz 64QAM 3/4	R.33 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	≥2
	10 MHz 64QAM 3/4	R.33-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	1

Table 8.3.2.1-5: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE		
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category		
4	10 MHz	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.9	≥2		
	16QAM 1/2	(Note 1)								
5	10 MHz	R.34 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.0	≥2		
	64QAM 1/2	(Note 1)								
Note 1:	Note 1: The reference channel applies to both the input signal under test and the interfering signal.									

8.3.2.1A Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.1A-2 and 8.3.2.1A-3, with the addition of the parameters in Table 8.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.3.2.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Parameter		Unit	Test 1	Test 2	Test 3
Daniel al access	$ ho_{\scriptscriptstyle A}$	dB	0	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)
	σ	dB	-3	-3	-3
Cell-specific refere	ence			Antenna ports 0,1	
CSI reference sign	nals		Antenna ports 15,,22	Antenna ports 15,,18	Antenna ports 15,,18
Beamforming mo	del		Annex B.4.1	Annex B.4.1	Annex B.4.1
CSI-RS periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$		Subframes	5 / 4	5/4	5 / 4
CSI reference sig configuration			1	3	3
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap		Subframes / bitmap	4 / 0010000100000000	4 / 00100000000000000	001000000000000000
N_{oc} at antenna p	ort	dBm/15kHz	-98	-98	-98
Symbols for unus PRBs	ed		OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)
Number of allocated resource blocks (Note 2)		PRB	50	50	100
Simultaneous transmission			No	Yes (Note 3, 5)	No
PDSCH transmiss mode	sion		9	9	9

Note 1: $P_{R} = 1$.

Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: The two UEs' scrambling identities $n_{\rm SCID}$ are set to 0 for CDM-multiplexed DM RS with interfering simultaneous transmission test cases.

Table 8.3.2.1A-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.50 TDD	OP.1 TDD	EVA5	2x2 Low	70	-0.6	≥1
3	20MHz 256QAM	R.bb TDD	OP.1 TDD	EPA5	2x2 Low	70	TBD	11-15

Table 8.3.2.1A-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE		
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category		
2	10 MHz 64QAM 1/2	R.44 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.1	≥2		
Note 1:	Note 1: The reference channel applies to both the input signal under test and the interfering signal.									

8.3.2.1B Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.2.1B-2, with the addition of the parameters in Table 8.3.2.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed-loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.2.1B-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

Table 8.3.2.1B-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

paramete	r	Unit	Cell 1	Cell 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference s	ignals		Antenna ports 15,,18	N/A
CSI-RS periodic subframe offset T_{CSI}	$_{ ext{RS}}$ / $\Delta_{ ext{CSI-RS}}$	Subframes	5 / 4	N/A
CSI reference s			0	N/A
$N_{\it oc}$ at antenna	a port	dBm/15kH z	-98	N/A
DIP (Note 2	2)	dB	N/A	-1.73
BW _{Channel}		MHz	10	10
Cyclic Pref	ix		Normal	Normal
Cell Id			0	126
Number of contro symbols	I OFDM		2	2
PDSCH transmiss	ion mode		9	N/A
Beamforming r	model		As specified in clause B.4.3 (Note 4, 5)	N/A
Interference m	nodel		N/A	As specified in clause B.5.4
Probability of occurrence of	Rank 1		N/A	70
transmission rank in interfering cells	Rank 2		N/A	30
Precoder update g	ranularity	PRB	50	6
PMI delay (No	ote 5)	ms	10 or 11	N/A
Reporting inte	erval	ms	5	N/A
Reporting me	ode		PUCCH 1-1	N/A
CodeBookSubsetR bitmap	Restriction		0000000000000000 0000000000000000 000000	N/A
Symbols for unus	ed PRBs		OCNG (Note 6)	N/A
Simultaneous tran	smission		No simultaneous transmission on the other antenna port in (7 or 8) not used for the input signal under test	N/A

Note 1: $P_{p} = 1$

Note 2: The respective received power spectral density of each interfering cell relative to N_{oc} ' is defined by its associated DIP value as specified in clause B.5.1.

Note 3: The modulation symbols of the signal under test in Cell 1 are mapped onto antenna port 7 or 8.

Note 4: The precoder in clause B.4.3 follows UE recommended PMI.

Note 5: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI

cannot be applied at the eNB downlink before SF#(n+4).

Note 6: These physical resource blocks are assigned to an arbitrary number of virtual UEs

with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 7: All cells are time-synchronous.

Table 8.3.2.1B-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

Test Number	Referenc e		NG tern	Propagation Conditions		Correlatio n Matrix	Reference V	Reference Value		
	Channel	Cell 1	Cell 2	Cell 1	Cell 2	and Antenna Configurat ion (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	у	
1	R.48 TDD	OP.1 TDD	N/A	EVA5	EVA5	4x2 Low	70	-1.0	≥1	

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Note 3: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

8.3.2.1C Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.2.1.C -2, with the addition of parameters in Table 8.3.2.1.C -1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.2.1.C -1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Table 8.3.2.1.C-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Parameter	Parameter		Cell 1	Cell 2	Cell 3
Uplink downlink Conf	iguration		1	1	1
Special subframe con	figuration		4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	-3 (Note 1)	-3 (Note 1)
a	σ	dB	-3	N/A	N/A
	N_{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N_{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 2	12	10
$BW_Channel$		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	1	126
Cell-specific reference	e signals		A	ntenna ports 0,1	
CSI reference sig	ınals		Antenna ports 15,16	N/A	N/A
CSI-RS periodicity subframe offs $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	et	Subframes	5 / 4	N/A	N/A
CSI reference si configuration	gnal		8	N/A	N/A
Zero-power CSI configuration I _{CSI-RS} / ZeroPower bitmap	-RS	Subframes / bitmap	[4 / 00100000000000 00]	N/A	N/A
ABS pattern (No	te 5)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (000000001 000000001	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		000000001 000000001	N/A	N/A
(Note7)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control OFDM symbols			2	Note 8	Note 8
PDSCH transmissio	n mode		TM9-1layer	Note 9	Note 9
Precoding granularity			Frequency domain: 1 PRG Time domain: 1 ms	N/A	N/A
Beamforming me			Annex B.4.1	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

Note 1:	$P_B = 1$.
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a
	subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 5:	ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 7:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 11:	For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.
Note 12:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 13:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.
Note 14:	The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Table 8.3.2.1.C-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) - Non-MBSFN ABS

ı	Test Number	Reference Channel	OC	NG Patt	ern	Propagation Conditions (Note1)		Correlation Matrix and	Reference	Value	UE Cate	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	gory
	1	R.51 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD		EVA5		2x2 Low	70	8.5	≥2
	Note 1:	The propagat	ion cond	tions for	Cell 1, Ce	ell 2 and	Cell 3 are	e statistic	ally independen	t.		

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

8.3.2.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.2-2, with the addition of the parameters in Table 8.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation.

Table 8.3.2.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Parame	ter	Unit	Test 1	Test 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	
power	$ ho_{\scriptscriptstyle B}$	dB	dB 0 (Note 1)		
allocation	σ	dB	-3	-3	
Cell-specific reference symbols			Antenna port 0 and antenna port		
Beamforming model			Annex B.4.2		
N_{oc} at ant	enna	dBm/15kHz	-98	-98	
Symbols unused P			OCNG (Note 2)	OCNG (Note 2)	
Number of allocated resource blocks		PRB	50	50	
PDSCH transmission mode			8	8	

Note 1: $P_B = 1$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.2-2: Minimum performance for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	4.5	≥2
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.7	≥2

8.3.2.2A Enhanced Performance Requirement Type C - Dual-Layer Spatial Multiplexing

The requirements are specified in Table 8.3.2.2A-2, with the addition of the parameters in Table 8.3.2.2A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation upon antenna ports 7 and 8.

Table 8.3.2.2A-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Parame	ter	Unit	Test 1
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
allocation	σ	dB	-3
Cell-spec reference symbol	ce		Antenna port 0 and antenna port 1
Beamforn model			Annex B.4.2
N_{oc} at ant	enna	dBm/15kHz	-98
Symbols unused P			OCNG (Note 2)
Number allocate resource b	ed	PRB	50
PDSCH transmission mode			8

Note 1: $P_B = 1$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one

PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.2A-2: Enhanced Performance Requirement Type C for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	[17.0]	≥2

8.3.2.3 Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.3-2, with the addition of the parameters in Table 8.3.2.3-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

Table 8.3.2.3-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

Doromotor	Parameter		Test 1			
Parameter		Unit	Cell 1	Cell 2		
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	4	0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	4 (Note 1)	0		
	σ	dB	-3	-3		

Cell-specific reference signals		Antenna ports 0 and 1	Antenna ports 0 and 1
Cell ID		0	126
CSI reference signals		Antenna ports 15,16	NA
Beamforming model		Annex B.4.2	NA
CSI-RS periodicity and subframe offset $T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$	Subframes	5 / 4	NA
CSI reference signal configuration		8	NA
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	4 / 00100000000000000	NA
$N_{\it oc}$ at antenna port	dBm/15kHz	-98	-98
\widehat{E}_s/N_{oc}		Reference Value in Table 8.3.2.3-2	Test specific, 7.25dB
Symbols for unused PRBs		OCNG (Note 2)	NA
Number of allocated resource blocks (Note 2)	PRB	50	NA
Simultaneous transmission		No	NA
PDSCH transmission mode		9	Blanked

Note 1: $P_B = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.3-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test number	Bandwidth and MCS	Reference Channel	OCNG Propagation Correlation Reference value Pattern Condition Matrix and						value	UE Cate
			Cell 1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	gory
1	10 MHz 16QAM 1/2	R.51 TDD	OP.1 TDD	N/A	ETU5	ETU5	2x2 Low	70	14.8	≥2

Note 1: The propagation conditions for Cell 1 and Cell 2 are statistically independent.

Note 2: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of Cell 1.

8.3.2.4 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

8.3.2.4.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.1-3, with the additional parameters in Table 8.3.2.4.1-1 and Table 8.3.2.4.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the

timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.2.4.1-2. In Tables 8.3.2.4.1-1 and 8.3.2.4.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2 (TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.1-1: Test Parameters for quasi co-location type B: same Cell ID

Paramete	r	Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	(Note 2)
CSI-RS 0 anteni	na ports		NA	Port {15,16}
qcl-CSI-RS-ConfigNZPId-r11, CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$		Subframes	NA	5/4
qcl-CSI-RS-Configi CSI-RS 0 config	uration		NA	8
csi-RS-ConfigZPId-r11, Zero- power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap			NA	4/ 0000010000000000
$N_{\it oc}$ at antenn	a port	dBm/15kH z	-98	-98
\widehat{E}_s/N_{oc}		dB	Reference point in Table 8.3.2.4.1-3	Reference point in Table 8.3.2.4.1-3
BW _{Channe}	I	MHz	10	10
Cyclic Pref	ïx		Normal	Normal
Cell Id			0	0
Number of contro symbols	ol OFDM		2	2
PDSCH transmiss	ion mode		Blanked	10
Number of alloca	ted PRB	PRB	NA	50
qcl-Operation, 'PDSCH RE Mapping and Quasi-Co- Location Indicator'			Туре	B, '00'
Time offset between	Time offset between TPs		NA	Reference point in Table 8.3.2.4.1-3
Frequency error be	tween TPs	Hz	NA	0
Beamforming model			NA	As specified in clause B.4.1
Symbols for unus	ed PRBs		NA	OCNG (Note 3)

Note 1: $P_{R} = 1$

Noet 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.4.1-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index	Parameters in each PQI set	DL transmission hypothesis for each PQI Set
------------------	----------------------------	---

	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	ZP CSI-RS 0	Blanked	PDSCH

Table 8.3.2.4.1-3: Minimum performance for quasi co-location type B: same Cell ID

Test Number	Reference Channel	OGCN pattern		Time offset between	Propagation Conditions (Note1)		Correlation Matrix and Antenna	Reference Value		UE Category
		TP 1	TP 2	TPs (μs)	TP 1	ŤP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.52 TDD	NA	OP.1 TDD	2	EPA	EPA	2x2 Low	70	12	≥2
2	R.52 TDD	NA	OP.1 TDD	-0.5	EPA	EPA	2x2 Low	70	12.4	≥2

Note 1: The propagation conditions for TP 1 and TP 2 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for TP 1 and TP 2.

Note 3: SNR corresponds to \hat{E}_s/N_{ac} of TP 2 as defined in clause 8.1.1.

8.3.2.4.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.2.4.2-3, with the additional parameters in Tables 8.3.2.4.2-1 and 8.3.2.4.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In Tables 8.3.2.4.2-1 and 8.3.2.4.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.2.4.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.2-1: Test Parameters for timing offset compensation with DPS transmission

paramete	r	Unit	TP 1	TP 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.1
Cell-specific reference signals		Antenna ports 0,1	(Note 2)
CSI reference signals 0		Antenna ports {15,16}	N/A
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	5 / 4	N/A
CSI reference signal 0 configuration		0	N/A
CSI reference signals 1		N/A	Antenna ports {15,16}
CSI-RS 1 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5 / 4
CSI reference signal 1 configuration		N/A	8
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	4/ 001000000000000000	N/A
Zero-power CSI-RS1 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap _S	Subframes /bitmap	N/A	4/ 0000010000000000
\widehat{E}_s/N_{oc}	dB	Reference Value in Table 8.3.2.4.2-3	Reference Value in Table 8.3.2.4.2-3
$N_{\scriptscriptstyle oc}$ at antenna port	dBm/15kH z	-98	-98
BW _{Channel}	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	0
Number of control OFDM symbols		2	2
Timing offset between TPs		N/A	Reference Value in Table 8.3.2.4.2-3
Frequency offset between TPs	Hz	N/A	0
Number of allocated resource blocks	PRB	50	50
PDSCH transmission mode		10	10
Probability of occurrence of PDSCH transmission(Note 3)	%	30	70
Symbols for unused PRBs		OCNG (Note 4)	OCNG (Note 4)

Note 1: $P_{R} = 1$

Note 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.4.2-2: Configurations of PQI and DL transmission hypothesis for each PQI set

PQI set index	Parameter	s in each PQI set	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)	TP 1	TP 2		
PQI set 0	CSI-RS 0	ZP CSI-RS 0	PDSCH	Blanked	
PQI set 1	CSI-RS 1	Blanked	PDSCH		

Table 8.3.2.4.2-3: Performance Requirements for timing offset compensation with DPS transmission

Test Number	Timing offset(us)	Reference Channel		OCNG Propagation Pattern Conditions		Correlation Matrix and	Reference Value		UE Category		
			TP 1	TP 2	TP 1	TP 2	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)		
1	2	R.53 TDD	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	70	12.3	≥2	
2	-0.5	R.53 TDD	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	70	12.5	≥2	
Note 1: Note 2: Note 3:	Correlation n	The propagation conditions for TP 1 and TP 2 are statistically independent. Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2. SNR corresponds to \hat{E}_{s}/N_{ac} of both TP 1 and TP 2 as defined in clause 8.1.1.									

8.3.2.4.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.3-2, with the additional parameters in Table 8.3.2.4.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In Table 8.3.2.4.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.3-1: Test Parameters for quasi co-location type B with different Cell ID and Colliding CRS

parameter		Unit	TP 1	TP 2	
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0	0	
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0	
	σ	dB	-3	-3	

Beamforming model		N/A	As specified in clause B.4.2	
Cell-specific reference signals		Antenna ports 0,1	Antenna ports 0,1	
CSI reference signals 0		N/A	Antenna ports {15,16}	
CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	Subframes	N/A	5 / 4	
CSI reference signal 0 configuration		N/A	0	
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	N/A	4/ 001000000000000000	
\hat{E}_s/N_{oc}	dB	Reference point in Table 8.3.2.4.3-2 + 4dB	Reference Value in Table 8.3.2.4.3-2	
$N_{\scriptscriptstyle oc}$ at antenna port	dBm/15kH z	-98	-98	
BW _{Channel}	MHz	10	10	
Cyclic Prefix		Normal	Normal	
Cell Id		0	126	
Number of control OFDM symbols		1	2	
Timing offset between TPs	us	N/A	0	
Frequency offset between TPs	Hz	N/A	200	
qcl-Operation, 'PDSCH RE Mapping and Quasi-Co- Location Indicator'		Type B, '00'		
PDSCH transmission mode		Blank	10	
Number of allocated resource block		N/A	50	
Symbols for unused PRBs		N/A	OCNG(Note2)	

Note 1: $P_B = 1$

These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs Note 2: shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.4.3-2: Performance Requirements for quasi co-location type B with different Cell ID and **Colliding CRS**

Test Number	Reference Channel	OCNG Pattern		Cond	gation itions te1)	Correlation Matrix and Antenna	Reference Value		UE Category
		TP 1	TP 2	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.54 TDD	N/A	OP.1 TDD	EPA5	ETU5	2x2 Low	70	14.7	≥2

Note 1:

The propagation conditions for TP 1 and TP 2 are statistically independent.

Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2. Note 2:

SNR corresponds to \hat{E}_{s}/N_{oc} of TP 2 as defined in clause 8.1.1. Note 3:

8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH

8.4.1 FDD

The parameters specified in Table 8.4.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

Parame	Parameter		Single antenna port	Transmit diversity
Number of PDC	CH symbols	symbols	2	2
Number of PHICH	Hgroups (Ng)		1	1
PHICH du	ration		Normal	Normal
Unused RE-s a	and PRB-s		OCNG	OCNG
Cell II)		0	0
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
$N_{\it oc}$ at antenna port		dBm/15kHz	-98	-98
Cyclic pi	efix		Normal	Normal

8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Refer val	
						and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 FDD	OP.1 FDD	ETU70	1x2 Low	1	-1.7

8.4.1.2 Transmit diversity performance

8.4.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration	Pm-dsg (%)	SNR (dB)
						and correlation		
						Matrix		
1	10 MHz	4 CCE	R.16 FDD	OP.1 FDD	EVA70	2 x 2 Low	1	-0.6

8.4.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.2-1: Minimum performance PDCCH/PCFICH

ĺ	Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
	number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
	1	5 MHz	2 CCE	R.17 FDD	OP.1 FDD	EPA5	4 x 2 Medium	1	6.3

8.4.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.4.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.4.1.2.3-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

Paramete		Unit	Cell 1	Cell 2
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\hat{E}_s/N_{oc}	\widehat{E}_s/N_{oc2}		Reference Value in Table 8.4.1.2.3-2	1.5
BW_Channe	ıl	MHz	10	10
Subframe Confi	guration		Non-MBSFN	Non-MBSFN
Time Offset betw	een Cells	μs	2.5 (synchro	nous cells)
Cell Id			0	1
ABS pattern (N	lote 4)		N/A	00000100 00000100 00000100 01000100 00000100
RLM/RRM Measurem Pattern (Not			00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets	C _{CSI,0}		00000100 00000100 00000100 01000100 00000100	N/A
(Note 6)	C _{CSI,1} 11111011 11111011 11111011 10111011	11111011 11111011 11111011	N/A	
Number of control OF			3	3
Number of PHICH			1	N/A
PHICH dura			Extended	N/A
Unused RE-s an			OCNG	OCNG
Cyclic pre	iX	venhala #1 #2 #2 #2	Normal Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging
- are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]:
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.

Table 8.4.1.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Numb er	Aggregati on Level	Referen ce Channel	OCNG	OCNG Pattern		gation itions te 1)	Correlation Matrix and Antenna	Matrix and Value	
			Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	2x2 Low	1	-3.9

The propagation conditions for Cell 1 and Cell 2 are statistically independent. Note 1:

Note 2:

SNR corresponds to \hat{E}_s/N_{oc2} of cell 1. The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Note 3:

Table 8.4.1.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Paramet	er	Unit	Cell 1	Cell 2
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\hat{E}_s/N_{oc}	·2	dB	Reference Value in Table 8.4.1.2.3-	1.5
BW _{Chann}	el	MHz	10	10
Subframe Conf	iguration		Non-MBSFN	MBSFN
Time Offset betw	een Cells	μs	2.5 (synchro	nous cells)
Cell Id			0	126
ABS pattern (Note 4)		N/A	0001000000 0100000010 0000001000 0000000
RLM/RRM Measuren Pattern (No			0001000000 0100000010 0000001000 0000000	N/A
CSI Subframe Sets	C _{CSI,0}		0001000000 0100000010 0000001000 0000000	N/A
(Note 6)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A
MBSFN Subframe Allocation (Note 9)			N/A	001000 100001 000100 000000
Number of control O			3	3
Number of PHICH			1	N/A
PHICH dura			extended	N/A
Unused RE-s ar			OCNG	OCNG
Cyclic pre	etix		Normal	Normal

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 2:	This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in all OFDM symbols of a subframe overlapping with the aggressor NBS.
Note 4:	ABS pattern as defined in [9]. The 4 th , 12 th , 19 th and 27 th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated
	PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 7:	Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 8:	SIB-1 will not be transmitted in Cell2 in this test.
Note 9:	MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN

Note 10: The maximum number of uplink HARQ transmission is ≤ 2 so that each PHICH channel

transmission is in a subframe protected by MBSFN ABS in this test.

Test Numb er	Aggregati on Level	Reference Channel		NG tern	Cond	gation itions te 1)	Correlation Matrix and Antenna	Reference Value	
			Cell 1	Cell 2	Cell 1	Cell 2	Configurati on	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	2x2 Low	1	-4.2

Table 8.4.1.2.3-4: Minimum performance PDCCH/PCHICH – MBSFN ABS

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to E_s/N_{ac2} of cell 1.

subframe allocation.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.4.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-4.

In Tables 8.4.1.2.4-1 and 8.4.1.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell3are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.4.1.2.4-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

Param	eter	Unit	Cell 1	Cell 2	Cell 3	
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3	
	N_{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A	
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A	
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.4.1.2.4-2	5	3	
BW _{Ch}	annel	MHz	10	10	10	
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN	
Time Offset be	etween Cells	μs	N/A	3	-1	
Frequency shift	between Cells	Hz	N/A	300	-100	
Cell	Id		0 126		1	
ABS pattern (Note 4)			N/A	00000100 00000100 00000100 00000100 00000100	00000100 00000100 00000100 00000100 00000100	
RLM/RRM Measurement Subframe Pattern (Note 5)			00000100 00000100 00000100 00000100 00000100	N/A	N/A	
CSI Subframe	C _{CSI,0}		00000100 00000100 00000100 00000100 00000100	N/A	N/A	
Sets (Note 6)	C _{CSI,1}		11111011 11111011 11111011 11111011	N/A	N/A	
Number of control	OFDM symbols		2	Note 7	Note 7	
Number of PHIC			1	N/A	N/A	
PHICH d			Normal	N/A	N/A	
Unused RE-s			OCNG	OCNG	OCNG Normal	
Cyclic		FDM as week alo #4 #4	Normal Normal			

Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.

Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.

Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS

Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.

Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];

Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];

Note 7: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.

Note 8: The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.

Note 9: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Table 8.4.1.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OCNG Pattern			Propagation Conditions (Note 1)			Correlation Matrix and	Reference Value	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.2

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_{s}/N_{oc2} of cell 1.

Table 8.4.1.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Paran	neter	Unit	Cell 1	Cell 2	Cell 3	
Douglink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3	
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3	
	N_{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A	
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A	
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.4.1.2.4-4	5	3	
BW _C	nannel	MHz	10	10	10	
Subframe Co	onfiguration		Non-MBSFN	MBSFN	MBSFN	
Time Offset b	etween Cells	μs	N/A	3	-1	
Frequency shift	between Cells	Hz	N/A	300	-100	
Cell	l ld		0	126	1	
ABS pattern (Note 4)			N/A	0001000000 0100000010 0000001000 0000000	0001000000 0100000010 0000001000 0000000	
RLM/RRM Measu Pattern (0001000000 010000010 000001000 00000000	N/A	N/A	
CSI Subframe	C _{CSI,0}		0001000000 0100000010 0000001000 0000000	N/A	N/A	
Sets (Note 6)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111		N/A	
MBSFN Subframe)		N/A	001000 100001 000100 000000	001000 100001 000100 000000	
Number of contro			2	Note 8	Note 8	
Number of PHIC			1	N/A	N/A	
PHICH o			Normal	N/A	N/A	
Unused RE-s			OCNG	OCNG	OCNG	
Cyclic	prefix		Normal	Normal	Normal	

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 2:	This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. The 4 th , 12 th , 19 th and 27 th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated
	PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped
	with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 7:	MBSFN Subframe Allocation as defined in [7], four frames with 24 bits are chosen for MBSFN subframe allocation.
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 9:	The maximum number of uplink HARQ transmission is ≤ 2 so that each PHICH channel
	transmission is in a subframe protected by MBSFN ABS in this test.
Note 10:	· · · · · · · · · · · · · · · · · · ·
Note 11:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.4.1.2.4-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OCNG Pattern			Propagation Conditions (Note 1)			Correlation Matrix and	Reference Value	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.0
Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent											

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_{s}/N_{oc2} of cell 1.

8.4.2 TDD

The parameters specified in Table 8.4.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.4.2-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Single antenna port	Transmit diversity
Uplink downlink (Note	•		0	0
Special subframe (Note	•		4	4
Number of PDC	CH symbols	symbols	2	2
Number of PHICH	d groups (N _g)		1	1
PHICH du	ration		Normal	Normal
Unused RE-s a	and PRB-s		OCNG	OCNG
Cell ID			0	0
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
N_{oc} at antenna port		dBm/15kHz	-98	-98
Cyclic prefix		_	Normal	Normal
ACK/NACK feed	back mode		Multiplexing	Multiplexing
		2-2 in TS 36.211 [4 2-1 in TS 36.211 [4		

8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 TDD	OP.1 TDD	ETU70	1x2 Low	1	-1.6

8.4.2.2 Transmit diversity performance

8.4.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration	Pm-dsg (%)	SNR (dB)
						and		
						correlation		
						Matrix		
1	10 MHz	4 CCE	R.16 TDD	OP.1 TDD	EVA70	2 x 2 Low	1	0.1

8.4.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.2-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	value
number		level	Channel	Pattern	Condition	configuration	Pm-dsg	SNR
						and correlation	(%)	(dB)
						Matrix		
1	5 MHz	2 CCE	R.17 TDD	OP.1	EPA5	4 x 2 Medium	1	6.5
				TDD				

8.4.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3.. In Table 8.4.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.4.2.2.3-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

Paramete	er	Unit	Cell 1	Cell 2
Uplink downlink co	nfiguration		1	1
Special subframe co	onfiguration		4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port N_{oc2}		dBm/15kHz	-98 (Note 2)	N/A
N_{oc3}		dBm/15kHz	-95.3 (Note 3)	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.4.2.2.3-2	1.5
BW _{Channel}		MHz	10	10
Subframe Config	guration		Non-MBSFN	Non-MBSFN
Time Offset between	een Cells	μS	2.5 (synchro	nous cells)
Cell Id			0	1
ABS pattern (N	lote 4)		N/A	0000010001 0000000001
RLM/RRM Measurem Pattern(Note			000000001 000000001	N/A
CSI Subframe	C _{CSI,0}		0000010001 000000001	N/A
Sets(Note 6)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OFDM symbols			3	3
ACK/NACK feedback mode			Multiplexing	N/A
Number of PHICH groups (N_g)			1	N/A
PHICH duration			extended	N/A
Unused RE-s and			OCNG	OCNG
Cyclic pref	ix		Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.

Table 8.4.2.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Numbe r	Aggregatio n Level	Referenc e Channel	OCNG	Pattern	Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference Value	
			Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Low	1	-3.9

The propagation conditions for Cell 1 and Cell 2 are statistically independent. Note 1:

Note 2:

SNR corresponds to \hat{E}_s/N_{oc2} of cell 1. The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Note 3:

Table 8.4.2.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Paramete	er	Unit	Cell 1	Cell 2
Uplink downlink co	nfiguration		1	1
Special subframe co	onfiguration		4	4
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\widehat{E}_s/N_{oc2}		dB	Reference Value in Table 8.4.2.2.3-4	1.5
BW _{Channe}	BW _{Channel}		10	10
Subframe Confi	guration		Non-MBSFN	MBSFN
Time Offset between	een Cells	μs	2.5 (synchro	onous cells)
Cell Id			0	126
ABS pattern (N	lote 4)		N/A	0000000001 0000000001
RLM/RRM Measurem Pattern(Note			000000001 000000001	N/A
CSI Subframe	C _{CSI,0}		000000001 000000001	N/A
Sets(Note 6)	C _{CSI,1}		1100111000 1100111000	N/A
MBSFN Subframe Allo	MBSFN Subframe Allocation (Note 9)		N/A	000010
Number of control OFDM symbols			3	3
ACK/NACK feedback mode			Multiplexing	N/A
	Number of PHICH groups (N _g)		1	N/A
PHICH dura			extended	N/A
Unused RE-s an			OCNG	OCNG
Cyclic pref	fix		Normal	Normal

- This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 Note 1: of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
- Note 3:
- This noise is applied in OFDM symbols wood a subframe overlapping with the aggressor ABS. This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes.PDSCH other than SIB1/paging and its associated PDCCH/PCFICH Note 4: are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in this test.
- MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN Note 9: subframe allocation.

Table 8.4.2.2.3-4: Minimum performance PDCCH/PCFICH - MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OCNG	Pattern		Propagation Conditions(Note 1)		Reference Value		
			Cell 1	Cell 2	Cell 1			Pm-dsg (%)	SNR (dB) (Note 2)	
1	8 CCE	R15-1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Low	1	-4.1	

Note 1: The propagation conditions for Cell 1 and Cell2 are statistically independent.

Note 2: SNR corresponds to \hat{E}_s/N_{ac2} of cell 1.

Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.

8.4.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-4.

In Tables 8.4.2.2.4-1 and 8.4.2.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.4.2.2.4-1: Test Parameters for PDCCH/PCFICH - Non-MBSFN ABS

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink	configuration		1	1	1
Special subframe	configuration		4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}		-98(Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	port N_{oc3}		-93 (Note 3)	N/A	N/A
\hat{E}_s/N		dB	Reference Value in Table 8.4.2.2.4-2	5	3
BW _{Cha}	annel	MHz	10	10	10
Subframe Co	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset be	tween Cells	μs	N/A	3	-1
Frequency shift I	between Cells	Hz	N/A	300	-100
Cell	ld		0	126	1
ABS pattern	(Note 4)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Me Subframe Patt			0000000001 0000000001	N/A	N/A
CSI Subframe	C _{CSI,0}		000000001 000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of co			2	Note 7	Note 7
ACK/NACK feedback mode			Multiplexing	N/A	N/A
Number of PHICH groups (N_g)			1	N/A	N/A
PHICH duration			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic p	orefix		Normal	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7];
- Note 7: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 8: The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.
- Note 9: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Table 8.4.2.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	oc	NG Patte	ern		ropagations (N		Correlation Matrix and	Reference Value	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.0

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

Table 8.4.2.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink			1	1	1
Special subframe			4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}		-98 (Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\hat{E}_s/N	J oc2	dB	Reference Value in Table 8.4.2.2.4-4	5	3
BW _{Channel}		MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	MBSFN	MBSFN
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
ABS pattern	(Note 4)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Me Subframe Patt			0000000001 0000000001	N/A	N/A
CSI Subframe	C _{CSI,0}		0000000001 0000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
MBSFN Subframe Allocation (Note 7)			N/A	000010	000010
Number of control	OFDM symbols		2	Note 8	Note 8
ACK/NACK feedback mode			Multiplexing	N/A	N/A
Number of PHICH groups (N _g)			1	N/A	N/A
PHICH duration			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic p	orefix		Normal	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
- Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 7: MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation.
- Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
- Note 9: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 10: SIB-1 will not be transmitted in Cell2 in this test.

Table 8.4.2.2.4-4: Minimum performance PDCCH/PCFICH - MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OC	NG Patte	ern		ropagations (N		Correlation Matrix and	Referer	nce Value
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	1	-1.8
Note 1:	The proposition	on conditions f	or Call 1	Call 2 or	74 CVII 3	ara atatic	tically in	danandar	\ +		

Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.

8.5 Demodulation of PHICH

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold delection).

8.5.1 FDD

The parameters specified in Table 8.5.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.5.1-1: Test Parameters for PHICH

Parame	eter	Unit	Single antenna port	Transmit diversity	
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3	
PHICH du	PHICH duration		Normal	Normal	
Number of PHICH	groups (Note 1)		Ng = 1	Ng = 1	
PDCCH C	Content		UL Grant should be included with the proper information aligned with A.3.6.		
Unused RE-s	and PRB-s		OCNG	OCNG	
Cell I	D		0	0	
N_{oc} at ante	nna port	dBm/15kHz	-98	-98	
Cyclic p	refix		Normal	Normal	
Note 1: according	g to Clause 6.9 in	TS 36.211 [4]	_		

8.5.1.1 Single-antenna port performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.1-1: Minimum performance PHICH

Test	Bandwidth	n Reference	OCNG	Propagation	Antenna	Reference value	
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 FDD	ETU70	1 x 2 Low	0.1	5.5
2	10 MHz	R.24	OP.1 FDD	ETU70	1 x 2 Low	0.1	0.6

Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.

Note 3: SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.

8.5.1.2 Transmit diversity performance

8.5.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.1-1: Minimum performance PHICH

number		Channel		Propagation		Reference value	
		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19	OP.1 FDD	EVA70	2 x 2 Low	0.1	4.4
1A 5N	MHz (Note 1)	R.19-1	OP.1 FDD	EVA 70	2x2 Low	0.1	4

8.5.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.2-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value	
numbe	er	Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)	
					and			
					correlation			
					Matrix			
1	5 MHz	R.20	OP.1 FDD	EPA5	4 x 2 Medium	0.1	6.1	

8.5.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.5.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.5.1.2.3-1: Test Parameters for PHICH

Parameter		Unit	Cell 1	Cell 2
Downlink power allocation	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
N_{oc} at antenna port	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\hat{E}_s/N_{oc}	•	dB	Reference Value in Table 8.5.1.2.3-2	1.5
BW _{Channe}	I	MHz	10	10
Subframe Config	guration		Non-MBSFN	Non-MBSFN
Time Offset between	een Cells	μs	2.5 (synchror	nous cells)
Cell Id			0	1
ABS pattern (N	lote 4)		N/A	00000100 00000100 00000100 01000100 00000100
RLM/RRM Measurem Pattern (Not			00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets (Note 6)	C _{CSI,0}		00000100 00000100 00000100 01000100 00000100	N/A
	C _{CSI,1}		11111011 11111011 11111011 10111011 11111011	N/A
Number of control OF			3	3
Number of PHICH (1	N/A
PHICH dura			extended	N/A
Unused RE-s an			OCNG	OCNG
Cyclic pref	IX	L	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26th subframe indicated by the ABS pattern.
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.

Table 8.5.1.2.3-2: Minimum performance PHICH

Test Number	Reference Channel	OCNG	Pattern	Propagation Conditions (Note 1)		Antenna Configuration and	Reference Value	
		Cell 1	Cell 2	Cell 1	Cell 2	Correlation Matrix	Pm-an (%)	SNR (dB) (Note 2)
1	R.19	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	0.1	4.6
Note 1:					ell 2 are s	tatistically indepen	dent.	
Note 2:	SNR corresponds to \hat{E}_s/N_{oc2} of cell 1.							
Note 3:	The correlation	matrix ar	nd antenna	a configur	ation appl	y for Cell 1 and Ce	II 2.	

8.5.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.4-2. In Table 8.5.1.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.5.1.2.4-1: Test Parameters for PHICH

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}	dBm/15kHz	-98 (Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\hat{E}_s/N		dB	Reference Value in Table 8.5.1.2.4-	5	3
BW _{Ch}	annel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
PDCCH (PDCCH Content		UL Grant should be included with the proper information aligned with A.3.6.	N/A	N/A
ABS pattern	n (Note 4)		N/A	00000100 00000100 00000100 00000100 00000100	00000100 00000100 00000100 00000100 00000100
RLM/RRM Me Subframe Patt			00000100 00000100 00000100 00000100 00000100	N/A	N/A
CSI Subframe	C _{CSI,0}		00000100 00000100 00000100 00000100 00000100	N/A	N/A
Sets (Note 6)	C _{CSI,1}		11111011 11111011 11111011 11111011 11111011	N/A	N/A
Number of control			2	Note 7	Note 7
Number of PHIC			1	N/A	N/A
PHICH d			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic p	JIEIIX		Normal	Normal	Normal

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
Note 2:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 3:	This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26 th subframe indicated by the ABS pattern.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
Note 7:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 8:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 9:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in the test.

Table 8.5.1.2.4-2: Minimum performance PHICH

Test Number	Reference Channel	OC	NG Patt	ern	Propagation Conditions (Note 1)		Antenna Configuration	Reference Value		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-an (%)	SNR (dB) (Note 3)
1	R.19	OP.1 FDD	OP.1 FDD	OP.1 FDD	EPA5	EVA5	EVA5	2x2 Low	0.1	5.0
Note 1: Note 2: Note 3:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. SNR corresponds to \hat{E}_s/N_{oc2} of Cell 1.									

8.5.2 TDD

The parameters specified in Table 8.5.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.5.2-1: Test Parameters for PHICH

Parame	eter	Unit	Single antenna port	Transmit diversity
Uplink downlink cor 1)	nfiguration (Note		1	1
Special subframe (Note	•		4	4
	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
PHICH du	uration		Normal	Normal
Number of PHICH	groups (Note 3)		Ng = 1	Ng = 1
PDCCH C	Content			I be included with the on aligned with A.3.6.
Unused RE-s	and PRB-s		OCNG	OCNG
Cell I	D		0	0
$N_{\it oc}$ at ante	nna port	dBm/15kHz	-98	-98
Cyclic p			Normal	Normal
ACK/NACK fee			Multiplexing	Multiplexing
-	ied in Table 4.2-2	-	-	

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]
Note 2: as specified in Table 4.2-1 in TS 36.211 [4]
Note 3: according to Clause 6.9 in TS 36.211 [4]

8.5.2.1 Single-antenna port performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value	
numb	er	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
1	10 MHz	R.18	OP.1 TDD	ETU70	1 x 2 Low	0.1	5.8	
2	10 MHz	R.24	OP.1 TDD	ETU70	1 x 2 Low	0.1	1.3	

8.5.2.2 Transmit diversity performance

8.5.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value	
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)	
					and			
					correlation			
					Matrix			
1	10 MHz	R.19	OP.1 TDD	EVA70	2 x 2 Low	0.1	4.2	

8.5.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.2-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	5 MHz	R.20	OP.1 TDD	EPA5	4 x 2 Medium	0.1	6.2

8.5.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3, In Table 8.5.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Table 8.5.2.2.3-1: Test Parameters for PHICH

Paramete	r	Unit	Cell 1	Cell 2
Uplink downlink cor	nfiguration		1	1
Special subframe co	nfiguration		4	4
Downlink novem	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	N_{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A
N_{oc} at antenna port	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N_{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 8.5.2.2.3-2	1.5
BW _{Channel}	BW _{Channel}		10	10
Subframe Config	Subframe Configuration		Non-MBSFN	Non-MBSFN
Time Offset between	en Cells	μs	2.5 (synchronous cells)	
Cell Id			0	1
ABS pattern (N	ote 4)		N/A	0000010001 0000000001
RLM/RRM Measureme Pattern (Note			000000001 000000001	N/A
CSI Subframe Sets	C _{CSI,0}		0000010001 000000001	N/A
(Note 6)	C _{CSI,1}		1100101000 1100111000	N/A
Number of control OFDM symbols			3	3
ACK/NACK feedback mode			Multiplexing	N/A
Number of PHICH groups (Ng)			1	N/A
PHICH dura			extended	N/A
Unused RE-s and	d PRB-s		OCNG	OCNG
Cyclic pref	ix		Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 8: SIB-1 will not be transmitted in Cell2 in the test.

Table 8.5.2.2.3-2: Minimum performance PHICH

Test Number	Reference Channel	OCNG	Pattern	Propagation Conditions (Note 1)		Antenna Configuration and	Refere	nce Value
		Cell 1	Cell 2	Cell 1	Cell 2	Correlation Matrix	Pm-an (%)	SNR (dB) (Note 2)
1	R.19	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	0.1	4.6
Note 1:					ell 2 are s	tatistically indepen	dent.	
Note 2:	SNR corresponds to \widehat{E}_s/N_{oc2} of cell 1.							
Note 3:	The correlation	matrix ar	nd antenna	a configur	ation appl	y for Cell 1 and Ce	II 2.	

8.5.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.4-2. In Table 8.5.2.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.5.2.2.4-1: Test Parameters for PHICH

Paran	neter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink	configuration		1	1	1
Special subfram	e configuration		4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N_{oc1}	dBm/15kHz	-98 (Note 1)	N/A	N/A
N_{oc} at antenna	N_{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N_{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
\hat{E}_s/N		dB	Reference Value in Table 8.5.2.2.4-2	5	3
BW _{Ct}	nannel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN	Non- MBSFN
Time Offset b	etween Cells	μs	N/A	3	-1
Frequency shift between Cells		Hz	N/A	300	-100
Cell	l ld		0	126	1
PDCCH	Content		UL Grant should be included with the proper information aligned with A.3.6.	N/A	N/A
ABS patter	n (Note 4)		N/A	0000000001 0000000001	0000000001
RLM/RRM Measur Pattern (000000001 000000001	N/A	N/A
CSI Subframe	C _{CSI,0}		000000001 000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control OFDM symbols			2	Note 7	Note 7
ACK/NACK fe	edback mode		Multiplexing	N/A	N/A
Number of PHIC			1	N/A	N/A
PHICH o			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic		DM as was balla #4	Normal	Normal	Normal

- Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the Note 2: aggressor ABS
- This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS Note 3:
- ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the Note 4: subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- As configured according to the time-domain measurement resource restriction pattern for CSI Note 6: measurements defined in [7]
 The number of control OFDM symbols is not available for ABS and is 2 for the subframe
- Note 7: indicated by "0" of ABS pattern.
- The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same. Note 8:
- SIB-1 will not be transmitted in Cell 2 and Cell 3 in the test. Note 9:

Table 8.5.2.2.4-2: Minimum performance PHICH

Test Number	Reference Channel	oc	NG Patt	ern	Propagation Conditions (Note 1)		Antenna Configuration	Reference Value		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-an (%)	SNR (dB) (Note 3)
1	R.19	OP.1 TDD	OP.1 TDD	OP.1 TDD	EPA5	EVA5	EVA5	2x2 Low	0.1	5.7
Note 1: Note 2: Note 3:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. SNR corresponds to \hat{E}_s/N_{oc2} of Cell 1.									

8.6 Demodulation of PBCH

The receiver characteristics of the PBCH are determined by the probability of miss-detection of the PBCH (Pm-bch), which is defined as

$$Pm - bch = 1 - \frac{A}{B}$$

Where A is the number of correctly decoded MIB PDUs and B is the Number of transmitted MIB PDUs (Redundancy versions for the same MIB are not counted separately).

8.6.1 FDD

Table 8.6.1-1: Test Parameters for PBCH

Parame	ter	Unit	Single antenna port	Transmit diversity		
Downlink power	PBCH_RA	dB	0	-3		
allocation	PBCH_RB	dB	0	-3		
$N_{\it oc}$ at anter	nna port	dBm/15kHz	-98	-98		
Cyclic pr	efix		Normal	Normal		
Cell II)		0	0		
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]						
Note 2: as specif	fied in Table 4.2	?-1 in TS 36.211 [4]			

8.6.1.1 Single-antenna port performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detecting PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value	
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.1

8.6.1.2 Transmit diversity performance

8.6.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)
				and		
				correlation		
				Matrix		
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8

8.6.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.2-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value	
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)
				and		
				correlation		
				Matrix		
1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-3.5

8.6.1.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.1.2.3-1 and Table 8.6.1.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, repectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.6.1.2.3-1: Test Parameters for PBCH

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Downlink power	PBCH_RA OCNG_RA	dB	-3	-3	-3
allocation	PBCH_RB OCNG_RB	dB	-3	-3	-3
N_{oc} at ante	enna port	dBm/15kHz	-98	N/A	N/A
$\frac{\hat{E}_3}{N_{ac}}$		dB	Reference Value in Table 8.6.1.2.3-2	4	2
BW _{Ch}	BW _{Channel}		1.4	1.4	1.4
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
ABS Pattern	n (Note 4)		N/A	01000000 01000000 01000000 01000000 01000000	01000000 01000000 01000000 01000000 01000000
Unused RE-s	and PRB-s		OCNG	OCNG	OCNG
Cyclic	orefix		Normal	Normal	Normal

Note 1: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.

Note 2: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Note 3: The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.

Note 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Table 8.6.1.2.3-2: Minimum performance PBCH

Test	Reference	Propagation Conditions (Note 1)		Antenna Configuration	Refe	rence Value								
Number	Channel	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-bch (%)	SNR (dB) (Note 3)							
1	R.22	ETU30	ETU30	ETU30	2x2 Low	1	-3.0							
Note 1:	The propagation	on conditions for	or Cell 1, C	Cell 2 and Cell	3 are statistically independent	i.								
Note 2:	The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.													
Note 3:	SNR correspon	nds to $\hat{E}_s ig/N_o$	$_{c}$ of cell 1.				SNR corresponds to \hat{E}_s/N_{oc} of cell 1.							

8.6.2 TDD

Table 8.6.2-1: Test Parameters for PBCH

Parame	ter	Unit	Single antenna port	Transmit diversity
Uplink downlink o			1	1
Special subframe (Note 2	•		4	4
Downlink power	PBCH_RA	dB	0	-3
allocation	PBCH_RB	dB	0	-3
$N_{\it oc}$ at anter	na port	dBm/15kHz	-98	-98
Cyclic pr	efix		Normal	Normal
Cell II)		0	0
		2-2 in TS 36.211 [4 2-1 in TS 36.211 [4		

8.6.2.1 Single-antenna port performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)
				and		
				correlation		
				Matrix		
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.4

8.6.2.2 Transmit diversity performance

8.6.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value		
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)	
				and			
				correlation			
				Matrix			
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8	

8.6.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.2-1: Minimum performance PBCH

ſ	Test	Bandwidth	Reference	Propagation	Antenna	Reference value		
	number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)	
					and			
					correlation			
L					Matrix			
	1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-4.1	

8.6.2.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.2.2.3-1 and Table 8.6.2.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 8.6.2.2.3-1: Test Parameters for PBCH

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Downlink power	PBCH_RA OCNG_RA	dB	-3	-3	-3
allocation	PBCH_RB OCNG_RB	dB	-3	-3	-3
N_{oc} at ante	enna port	dBm/15kHz	-98	N/A	N/A
$\frac{\widehat{E}_s}{N_{o\sigma}}$		dB	Reference Value in Table 8.6.2.2.3-2	4	2
BW _{Ch}	annel	MHz	1.4	1.4	1.4
Time Offset be	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	ld		0	126	1
ABS Pattern (Note 4)			N/A	0000000001 0000000001	0000000001 0000000001
Unused RE-s	and PRB-s		OCNG	OCNG	OCNG
Cyclic p	orefix		Normal	Normal	Normal

Note 1: The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.

Note 2: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.

Note 3: The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.

Note 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.

Table 8.6.2.2.3-2: Minimum performance PBCH

Test	Reference	Propagatio	n Conditio	ons (Note 1)	Antenna Configuration	Reference Value		
Number	Channel	Cell 1	Cell 2	Cell 3	and Correlation Matrix	Pm-bch	SNR (dB) (Note	
					(Note 2)	(%)	3)	
1	R.22	ETU30	ETU30	ETU30	2x2 Low	1	-3.0	
Note 1:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.							
Note 2:	The correlation	n matrix and ar	ntenna con	figuration appl	y for Cell 1, Cell 2 and Cell 3			

Note 3: SNR corresponds to \hat{E}_s/N_{oc} of cell 1.

8.7 Sustained downlink data rate provided by lower layers

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available.

Test case is selected according to table 8.7-1 depending on UE capability for CA and EPDCCH.

Single carrier UE Single carrier UE CA UE not **CA UE supporting** not supporting supporting supporting **EPDCCH EPDCCH EPDCCH EPDCCH FDD** 8.7.1 8.7.1 8.7.3 8.7.1, 8.7.3 **TDD** 8.7.2 8.7.2 8.7.4 8.7.2, 8.7.4

Table 8.7-1: SDR test applicability

8.7.1 FDD

The parameters specified in Table 8.7.1-1 are valid for all FDD tests unless otherwise stated.

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes per component carrier	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1
Cross carrier scheduling		Not configured
Propagation condition		Static propagation condition No external noise sources are applied

Table 8.7.1-1: Common Test Parameters (FDD)

The requirements are specified in Table 8.7.1-3, with the addition of the parameters in Table 8.7.1-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.1-4. The TB success rate shall be sustained during at least 300 frames.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.7.1-2: test parameters for sustained downlink data rate (FDD)

Test	Bandwidth	SIIDSOF		nlink pocation ($\hat{E}_{\scriptscriptstyle S}$ at	Symbols for		
Test	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	antenna port (dBm/15kHz)	unused PRBs
1	10	1	1 x 2	N/A	0	0	0	-85	OP.6 FDD
2	10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3,4,6	20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3A	10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3B, 4A	2x10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3C, 4B	15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6A	2x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6B	10+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6C	10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6D	15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6E	2x15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7	3x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7A	15+20+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7B	10+20+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7C	15+15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7D	10+15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7E	10+10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7F	10+15+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
7G	5+10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD

Note 1: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK for Test 1-6E, and PUCCH format 3 is used to feedback ACK/NACK for Test 7-7G.

Table 8.7.1-3: Minimum requirement (FDD)

Test	Number of bits of a DL-SCH transport	Measurement channel	Reference value
	block received within a TTI		TB success rate [%]
1	10296	R.31-1 FDD	95
2	25456	R.31-2 FDD	95
3	51024	R.31-3 FDD	95
3A	36696 (Note 2)	R.31-3A FDD	85
3B	25456	R.31-2 FDD	95
3C	51024	R.31-3C FDD	85
4	75376 (Note 3)	R.31-4 FDD	85
4A	36696 (Note 2)	R.31-3A FDD	85
4B	55056 (Note 5)	R.31-4B FDD	85
6	75376 (Note 3)	R.31-4 FDD	85
6A	75376 (Note 3)	R.31-4 FDD	85
6B	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85
	55056 for 15MHz CC	R.31-5 FDD for 15MHz CC	
6C	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
6D	55056 for 15MHz CC	R.31-5 FDD for 15MHz CC	85
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
6E	55056 (Note 5) for two 15MHz CCs	R.31-4B FDD for two 15MHz CCs	85
7	75376 (Note 3)	R.31-4 FDD	[85]
7A	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC	[85]
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
7B	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	[85]
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
7C	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC	85
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
7D	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	[85]
	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC	
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
7E	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	[85]
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
7F	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	[85]
	55056 (Note 5) for 15MHz CC	R.31-5 FDD for 15MHz CC	
7G	18336 (Note 6) for 5MHz CC	R.31-6 FDD for 5MHz CC	[85]
	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 35160 bits for sub-frame 5.

Note 3: 71112 bits for sub-frame 5.

Note 4: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

Note 5: 52752bits for sub-frame 5.

Note 6: 15840bits for sub-frame 0 and 5.

Table 8.7.1-4: Test points for sustained data rate (FRC)

CA config	Maximum supported Bandwidth/ Bandwidth combination (MHz)	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 6,7	Cat. 9,10
Cinala	10	1	2	3A	3A	-	-
Single carrier	15		-	3C	4B		-
Carrier	20	ı	ı	3	4	6	-
	10+10	ı	ı	3B	4A	4A	4A
	10+15	-	-	3B	4A	6B	6B
CA	10+20	-	-	3B	4A	6C	6C
with	15+15			3B	4A	6E	6E
2CCs	15+20	15+20 -		3B	4A	6D	6D
	20+20	1	3B or 3 4A or 4 (Note 4) (Note 4)		6A	6A	
	3x20	-	-	-	-	6A	7
	15+20+20	-	-	-	-	6A	7A
C 1	10+20+20	-	-	-	-	6A	7B
CA with	15+15+20					6D	7C
3CCs	10+15+20		1	-	-	6D	7D
3003	10+10+20		-	-	-	7E	7E
	10+15+15		-	-	-	7F	7F
Nata 4:	5+10+20	-	-	-	-	7G	7G

Note 1: Void.

Note 2: For non-CA UE, test is selected for maximum supported bandwidth.

Note 3: Void

Note 4: If the intra-band contiguous CA is the only CA configuration supported by category 3 or 4 UE, the single carrier test is selecte, i.e., Test 3 for UE category 3 and Test 4 for UE category 4. Otherwise, Test 3B applies for category 3 UE and Test 4A applies for category 4 UE.

Note 5: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.

8.7.2 TDD

The parameters specified in Table 8.7.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.2-1: Common Test Parameters (TDD)

Unit	Value
	4
	Normal
	0
	1
	4
	{0,0,1,2} for 64QAM
OFDM symbols	1
	Not configured
	Static propagation condition No external noise sources are applied

Note 1: as specified in Table 4.2-1 in TS 36.211 [4].

The requirements are specified in Table 8.7.2-3, with the addition of the parameters in Table 8.7.2-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.2-4. The TB success rate shall be sustained during at least 300 frames.

The test coverage for different number of component carriers is defined in 8.1.2.4.

Table 8.7.2-2: test parameters for sustained downlink data rate (TDD)

Test	Bandwidth	Transmission	Antenna	Codebook subset		ownlin power cation ($\hat{E}_{\scriptscriptstyle s}$ at antenna	ACK/NACK feedback	Symbols for unused	
1000	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	port (dBm/15 kHz)	mode	PRBs	
1	10	1	1 x 2	N/A	0	0	0	-85	Bundling	OP.6 TDD	
2	10	3	2 x 2	10	-3	-3	0	-85	Bundling	OP.1 TDD	
3	20	3	2 x 2	10	-3	-3	0	-85	Bundling	OP.1 TDD	
3A	15	3	2 x 2	10	-3	-3	0	-85	Muliplexing	OP.2 TDD	
4,6	20	3	2 x 2	10	-3	-3	0	-85	Multiplexing	OP.1 TDD	
6A	2x20	3	2 x 2	10	-3	-3	0	-85	- (Note 1)	OP.1 TDD	
6B	20+15	3	2 x 2	10	-3	-3	0	-85	(Note 1)	OP.1 TDD	
7	3x20	3	2 x 2	10	-3	-3	0	-85	(Note 2)	OP.1 TDD	
7A	15+20+20	3	2 x 2	10	-3	-3	0	-85	(Note 2)	OP.1 TDD	

Note 1: PUCCH format 1b with channel selection is used to feedback ACK/NACK.

Note 2: PUCCH format 3 is used to feedback ACK/NACK.

Table 8.7.2-3: Minimum requirement (TDD)

Test	Number of bits of a DL-SCH	Measurement channel	Reference value
	transport block received within		TB success rate [%]
	a TTI for normal/special sub-		
	frame		
1	10296/0	R31-1 TDD	95
2	25456/0	R31-2 TDD	95
3	51024/0	R31-3 TDD	95
3A	51024/0	R31-3A TDD	85
4	75376/0 (Note 2)	R31-4 TDD	85
6	75376/0 (Note 2)	R.31-4 TDD	85
6A	75376/0 (Note 2)	R.31-4 TDD	85
6B	55056/0 for 15MHz CC	R31-5 TDD for 15MHz CC	[85]
	75376/0 for 20MHz CC (Note 2)	R.31-4 TDD for 20MHz CC	
7	75376/0 (Note 2)	R.31-4 TDD	[85]
7.0	55056/0 for 15MHz CC	R.31-5 TDD for 15MHz CC	[05]
7A	75376/0 for 20MHz CC (Note 2)	R.31-4 TDD for 20MHz CC	[85]

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 71112 bits for sub-frame 5.

Note 3: The TB success rate is defined as TB success rate = $100\%*N_{DL_correct_rx}/(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and $N_{DL_correct_rx}$ is the number of correctly received DL transport blocks.

Table 8.7.2-4: Test points for sustained data rate (FRC)

CA config	Bandwidth/ Bandwidth combination (MHz)	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 6,7	Cat. 9, 10
Cinalo	10	1	2	-	-	-	-
Single carrier	15	-	-	3A	3A	-	-
Carrier	20	-	-	3	4	6	-
CA with	20+20	-		3(Note 4)	4 (Note 4)	6A	6A
2CCs	15+20	-	-	3(Note 4)	4 (Note 4)	6B	6B
CA with 3	3x20	-	-	-	-	6A	7
CCs	15+20+20	ı	1	-	-	6A	7A

Note 1: Void.

Note 2: For non-CA UE, test is selected for maximum supported bandwidth.

Note 3: Void.

Note 4: If the intra-band contiguous CA is the only CA configuration supported by category 3 or 4

UE, single carrier test is selected.

Note 5: The applicability of requirements for different CA configurations and bandwidth

combination sets is defined in 8.1.2.3.

8.7.3 FDD (EPDCCH scheduling)

The parameters specified in Table 8.7.3-1 are valid for all FDD tests unless otherwise stated.

Table 8.7.3-1: Common test parameters (FDD)

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ		
processes per	Processes	8
component carrier		
Maximum number of		4
HARQ transmission		4
Redundancy version		(0.0.4.0) (
coding sequence		{0,0,1,2} for 64QAM
Number of OFDM		
symbols for PDCCH per	OFDM symbols	1
component carrier	Í	
Cross carrier scheduling		Not configured
Number of EPDCCH		
sets		1
EPDCCH transmission		l a salissa d
type		Localized
Number of PRB per		2 PRB pairs
EPDCCH set and		10MHz BW: Resource blocks n _{PRB} = 48, 49
EPDCCH PRB pair		15MHz BW: Resource blocks n _{PRB} = 70, 71
allocation		20MHz BW: Resource blocks n _{PRB} = 98, 99
EPDCCH Starting		Derived from CFI (i.e. default behaviour)
Symbol		Derived from CFI (i.e. default benaviour)
ECCE Aggregation		2 ECCEs
Level		2 ECCES
Number of EREGs per		4
ECCE		4
EDDCCH cohoduling		EPDCCH candidate is randomly assigned
EPDCCH scheduling		in each subframe
EPDCCH precoder		Fixed PMI 0
(Note 1)		
EPDCCH monitoring SF		1111111111 0000000000
pattern		1111111111 0000000000
Timing advance	μs	100
Propagation condition		Static propagation condition
		No external noise sources are applied
	oder parameters are	defined for tests with 2 x 2 antenna
configuration		

The requirements are specified in Table 8.7.3-3, with the addition of the parameters in Table 8.7.3-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.3-4. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.3-2: Test parameters for SDR test for PDSCH scheduled by EPDCCH (FDD)

Test	Bandwidth	Transmission	Antenna	Codebook subset		ownlin Illocati	-		$\hat{E}_{\scriptscriptstyle S}$ at	Symbols for
Test	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	δ	antenna port (dBm/15kHz)	unused PRBs
1	10	1	1 x 2	N/A	0	0	0	0	-85	OP.6 FDD
2	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
3,4,6	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
ЗА	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
3C, 4B	15	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD

Table 8.7.3-3: Minimum requirement (FDD)

Test	Number of bits of a DL-SCH transport	Measurement channel	Reference value	
	block received within a TTI		TB success rate [%]	
1	10296	R.31E-1 FDD	95	
2	25456	R.31E-2 FDD	95	
3	51024	R.31E-3 FDD	95	
3A	36696 (Note 2)	R.31E-3A FDD	85	
3C	51024	R.31E-3C FDD	85	
4	75376 (Note 3)	R.31E-4 FDD	85	
4B	55056 (Note 5)	R.31E-4B FDD	85	
6	75376 (Note 3)	R.31E-4 FDD	85	

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 35160 bits for sub-frame 5. Note 3: 71112 bits for sub-frame 5.

Note 4: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport

blocks, and $N_{DL_correct_rx}$ is the number of correctly received DL transport blocks.

Note 5: 52752 bits for sub-frame 5.

Table 8.7.3-4: Test points for sustained data rate (FRC)

CA config	Bandwidth (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7		
Cinalo	10	1	2	3A	3A	-	-		
Single	15	-	-	3C	4B	-	-		
carrier	20	-	-	3	4	6	6		
Note 1: 7	Note 1: The test is selected for maximum supported bandwidth.								

8.7.4 TDD (EPDCCH scheduling)

The parameters specified in Table 8.7.4-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.4-1: Common test parameters (TDD)

Parameter	Unit	Value				
Special subframe		4				
configuration (Note 1)		·				
Cyclic prefix		Normal				
Cell ID		0				
Inter-TTI Distance		1				
Maximum number of HARQ transmission		4				
Redundancy version coding sequence		{0,0,1,2} for 64QAM				
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1				
Cross carrier scheduling		Not configured				
Number of EPDCCH sets		1				
EPDCCH transmission type		Localized				
Number of PRB per EPDCCH set and EPDCCH PRB pair allocation		2 PRB pairs 10MHz BW: Resource blocks n _{PRB} = 48, 49 15MHz BW: Resource blocks n _{PRB} = 70, 71 20MHz BW: Resource blocks n _{PRB} = 98, 99				
EPDCCH Starting Symbol		Derived from CFI (i.e. default behaviour)				
ECCE Aggregation Level		2 ECCEs				
Number of EREGs per ECCE		4 for normal subframe and 8 for special subframe				
EPDCCH scheduling		EPDCCH candidate is randomly assigned in each subframe				
EPDCCH precoder (Note 2)		Fixed PMI 0				
EPDCCH monitoring SF pattern		UL-DL configuration 1: 1101111111 000000000 UL-DL configuration 5: 1100111001 000000000				
Timing advance	μs	100				
Propagation condition		Static propagation condition No external noise sources are applied				
Note 1: As specified in Table 4.2-1 in TS 36.211 [4]. Note 2: EPDCCH precoder parameters are defined for tests with 2 x 2 antenna configuration						

The requirements are specified in Table 8.7.4-3, with the addition of the parameters in Table 8.7.4-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.4-4. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.4-2: Test parameters for SDR test for PDSCH scheduled by EPDCCH (TDD)

Test	Bandwidth (MHz)	Transmission mode	Antenna configuration	Codebook subset	ownlink power allocation (dB)			$\hat{E}_{_{s}}$ at antenna port	Symbols for unused	ACK/NACK feedback	
	(1411 12)	· · · restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	δ	(dBm/15kHz)	PRBs	mode		
1	10	1	1 x 2	N/A	0	0	0	0	-85	OP.6 TDD	Bundling
2	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Bundling
3	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Bundling
ЗА	15	3	2 x 2	10	-3	-3	0	3	-85	OP.2 TDD	Multiplexing
4,6	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Multiplexing

Table 8.7.4-3: Minimum requirement (TDD)

Test	Number of bits of a DL-SCH	Measurement channel	Reference value	
	transport block received within a TTI for normal/special sub-		TB success rate [%]	
	frame			
1	10296/0	R.31E-1 TDD	95	
2	25456/0	R.31E-2 TDD	95	
3	51024/0	R.31E-3 TDD	95	
3A	51024/0	R.31E-3A TDD	85	
4	75376/0 (Note 2)	R.31E-4 TDD	85	
6	75376/0 (Note 2)	R.31E-4 TDD	85	

Note 1: For 2 layer transmissions, 2 transport blocks are received within a TTI.

Note 2: 71112 bits for sub-frame 5.

Note 3: The TB success rate is defined as TB success rate = $100\%*N_{DL_correct_rx}/(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and $N_{DL_correct_rx}$ is the number of correctly received DL transport blocks.

Table 8.7.4-4: Test points for sustained data rate (FRC)

CA config	Bandwidth/ Bandwidth combination (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7		
Cinalo	10	1	2	-	-	-	-		
Single	15	-	-	3A	3A	-	-		
carrier	20	-	-	3	4	6	6		
Note 1: T	Note 1: The test is selected for maximum supported bandwidth.								

8.7.5 TDD FDD CA

The parameters specified in Table 8.7.5-1 are valid for all TDD FDD CA tests unless otherwise stated.

Table 8.7.5-1: Common Test Parameters (TDD FDD CA)

Parameter		Unit	Value
Uplink downlink configurati TDD CC	,		1
Special subframe configur for TDD CC	ation (Note 2)		4
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
	σ	dB	0
Cyclic prefix			Normal
Cell ID			0
Inter-TTI Distar	nce		1
Maximum number of HARQ processes per	FDD PCell	Processes	8 for FDD and TDD CCs
component carrier	TDD PCell	Processes	11 for FDD CC; 7 for TDD CC
Maximum number of HARO	2 transmission		4
Redundancy version codi			{0,0,1,2} for 64QAM
Number of OFDM symbol per component ca		OFDM symbols	1
Cross carrier sche	duling		Not configured
Propagation cond	dition		Static propagation condition No external noise sources are applied
Transmission m	ode		ТМ3
Codebook subset re	striction		10
Antenna configur	ation		2 x 2
$\hat{E}_{\scriptscriptstyle s}$ at antenna port (dE	Bm/15kHz)		-85
Symbols for unused	d PRBs		OP.1 FDD for FDD CC, OP.1 TDD for TDD CC
ACK/NACK feedback mode			PUCCH format 3
Downlink HARQ-ACK	FDD PCell		As specified in Clause 7.3.3 in TS36.213 [6]
timing	TDD PCell	36.211 [4].	As specified in Clause 7.3.4 in TS36.213 [6]

Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.7.5.1 Minimum Requirement FDD PCell

The requirements for TDD FDD CA with FDD PCell are specified in Table 8.7.5.1-1 with the additional parameters specified in Table 8.7.5-1, and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.5.1-2 and Table 8.7.5.1-3. The TB success rate shall be sustained during at least 300 frames.

The applicability of ther requirements are specified in Clause 8.1.2.3.

Table 8.7.5.1-1: test parameters for sustained downlink data rate (TDD FDD CA)

Test number	Bar	Bandwidth (MHz)		Number of bits of a DL- SCH transport block received within a TTI (for normal/special subframe for TDD, except for subframe #5)		Measureme	Reference value	
	Total	FDD CC	TDD CC	FDD CC	TDD CC	FDD CC	TDD CC	TB success rate [%]
1	2x20	20	20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	[85]
2	10+20	10	20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	[85]
3	10+10	10	10	36696	36696/0	R.31-3A FDD	R.31-6 TDD	[85]
4	5+10	5	10	18336	36696/0	R.31-6 FDD	R.31-6 TDD	[85]
5	3x20	20	2x20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	[85]
6	15+20+20	15	2x20	55056	75376/0	R.31-5 FDD	R.31-4 TDD	[85]
7	10+20+20	10	2x20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	[85]

Table 8.7.5.1-2: Test points for sustained data rate (FRC)

CA config	Maximum supported Bandwidth/ Bandwidth combination (MHz)			Cat. 1	Cat. 2	Cat. 3 (Note 4)	Cat. 4	Cat. 6	Cat. 7
coming	Total	FDD CC	TDD CC			(Note 4)	(Note 4)		
C 4	2x20	20	20	-	-	3	3	1	1
CA with	10+20	10	20	-	-	3	3	2	2
2CCs	10+10	10	10			3	3	3	3
2005	5+10	5	10	-	-	4	4	4	4
CA	3x20	20	2x20	-	-	-	-	1	1
with	15+20+20	15	2x20	-	-	-	-	1	1
3CCs	10+20+20	10	2x20	-	-	-	-	1	1

Note 1: For CA UE, test is selected for bandwidth combination corresponding to maximum aggregated bandwidth and the largest number of CCs among all the CA configurations supported by UE.

Note 2: If CA UE under test cannot support the assigned test case, the sustained data rate test for FDD CA and TDD CA with the single carrier is selected according to largest bandwidth supported by UE.

Table 8.7.5.1-3: Test points for sustained data rate (FRC)

CA config	Maximum su Bandwidth	ipported Ba		Cat. 9	Cat. 10
coming	Total	FDD CC	TDD CC		
CA	2x20	20	20	1	1
	10+20	10	20	2	2
with 2CCs	10+10	10	10	3	3
2008	5+10	5	10	4	4
CA	3x20	20	2x20	5	5
with	15+20+20	15	2x20	6	6
3CCs	10+20+20	10	2x20	7	7

Note 1: For CA UE, test is selected for bandwidth combination corresponding to maximum aggregated bandwidth and the largest number of CCs among all the CA configurations supported by UE.

8.7.5.2 Minimum Requirement TDD PCell

The requirements for TDD FDD CA with TDD PCell are specified in Table 8.7.5.2-1 with the additional parameters specified in Table 8.7.5-1, and the downlink physical channel setup according to Annex C.3.2. The test points are

applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.5.2-2 and Table 8.7.5.2-3. The TB success rate shall be sustained during at least 300 frames.

The applicability of ther requirements are specified in Clause 8.1.2.3.

Table 8.7.5.2-1: test parameters for sustained downlink data rate (TDD FDD CA)

Test number	Bandwidth (MHz)		Number of bits of a DL- SCH transport block received within a TTI (for normal/special subframe for TDD, except for subframe #5)		Measuremo	Reference value		
	Total	FDD CC	TDD CC	FDD CC	TDD CC	FDD CC	TDD CC	TB success rate [%]
1	2x20	20	20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	[85]
2	10+20	10	20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	[85]
3	10+10	10	10	36696	36696/0	R.31-3A FDD	R.31-6 TDD	[85]
4	5+10	5	10	18336	36696/0	R.31-6 FDD	R.31-6 TDD	[85]
5	3x20	20	2x20	75376	75376/0	R.31-4 FDD	R.31-4 TDD	[85]
6	15+20+20	15	2x20	55056	75376/0	R.31-5 FDD	R.31-4 TDD	[85]
7	10+20+20	10	2x20	36696	75376/0	R.31-3A FDD	R.31-4 TDD	[85]

Table 8.7.5.2-2: Test points for sustained data rate (FRC)

CA config	Maximum supported Bandwidth/ Bandwidth combination (MHz)			Cat. 1	Cat. 2	Cat. 3 (Note 4)	Cat. 4 (Note 4)	Cat. 6	Cat. 7
coming	Total	FDD CC	TDD CC			(Note 4)	(Note 4)		
C A	2x20	20	20	-	-	3	3	1	1
CA with	10+20	10	20	-	-	3	3	2	2
2CCs	10+10	10	10			3	3	3	3
2008	5+10	5	10	-	-	4	4	4	4
CA	3x20	20	2x20	-	-	-	-	1	1
with	15+20+20	15	2x20	-	1	-	-	1	1
3CCs	10+20+20	10	2x20	-	-	-	-	1	1

Note 1: For CA UE, test is selected for bandwidth combination corresponding to maximum aggregated bandwidth and the largest number of CCs among all the CA configurations supported by UE.

Note 2: If CA UE under test cannot support the assigned test case, the sustained data rate test for FDD CA and TDD CA with the single carrier is selected according to largest bandwidth supported by UE.

Table 8.7.5.2-3: Test points for sustained data rate (FRC)

CA config	Maximum su Bandwidth	ipported Bai combination		Cat. 9	Cat. 10
coming	Total	FDD CC	TDD CC		
CA with	2x20	20	20	1	1
	10+20	10	20	2	2
2CCs	10+10	10	10	3	3
2008	5+10	5	10	4	4
CA	3x20	20	2x20	5	5
with	15+20+20	15	2x20	6	6
3CCs	10+20+20	10	2x20	7	7

Note 1: For CA UE, test is selected for bandwidth combination corresponding to maximum aggregated bandwidth and the largest number of CCs among all the CA configurations supported by UE.

8.8 Demodulation of EPDCCH

The receiver characteristics of the EPDCCH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). For the distributed transmission tests in 8.8.1, EPDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of EPDCCH. For other tests, EPDCCH and PCFICH are not tested jointly.

8.8.1 Distributed Transmission

8.8.1.1 FDD

The parameters specified in Table 8.8.1.1-1 are valid for all FDD distributed EPDCCH tests unless otherwise stated.

Table 8.8.1.1-1: Test Parameters for Distributed EPDCCH

Param	eter	Unit	Value		
Number of PDCCH sy	mbols	symbols	2 (Note 1)		
PHICH duration			Normal		
Unused RE-s and PR	B-s		OCNG		
Cell ID			0		
	$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	-3		
allocation	σ	dB	0		
	δ	dB	3		
$N_{\it oc}$ at antenna port		dBm/15 kHz	-98		
Cyclic prefix			Normal		
Subframe Configurati		Non-MBSFN			
Precoder Update Gra	nularity	PRB	1		
		ms	1		
Beamforming Pre-Co			Annex B. 4.4		
Cell Specific Reference			Port 0 and 1		
Number of EPDCCH	Sets Configured		2 (Note 2)		
Number of PRB per E	PDCCH Set		4 (1 st Set) 8 (2 nd Set)		
EPDCCH Subframe N	/lonitoring		NA		
PDSCH TM			TM3		
DCI Format			2A		
	g symbol for EPDCC RC signalling <i>epdcc</i>				
Note 2: The two sets are distributed EPDCCH sets and non-overlapping with PRB = {3, 17, 31, 45} for the first set and PRB = {0, 7, 14, 21, 28, 35, 42, 49} for the second set. EPDCCH is scheduled in the first set for Test 1 and second set for Test 2, respectively. Both sets are always configured.					

For the parameters specified in Table 8.8.1.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.1-2. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.1.1-2: Minimum performance Distributed EPDCCH

I	Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
	number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
	1	10 MHz	4 ECCE	R.55 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	2.60
	2	10 MHZ	16 ECCE	R.56 FDD	OP.7 FDD	EVA70	2 x 2 Low	1	-3.20

8.8.1.1.1 Void

Table 8.8.1.1.1-1: Void

8.8.1.2 TDD

The parameters specified in Table 8.8.1.2-1 are valid for all TDD distributed EPDCCH tests unless otherwise stated.

Table 8.8.1.2-1: Test Parameters for Distributed EPDCCH

Parame	eter	Unit	Value		
Number of PDCCH syr	nbols	symbols	2 (Note 1)		
PHICH duration			Normal		
Unused RE-s and PRB	-s		OCNG		
Cell ID			0		
	$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3		
allocation	σ	dB	0		
	δ	dB	3		
$N_{\it oc}$ at antenna port		dBm/15 kHz	-98		
Cyclic prefix			Normal		
Subframe Configuration		Non-MBSFN			
Precoder I Indate Gran	Precoder Update Granularity				
	ms	1			
Beamforming Pre-Code		Annex B. 4.4			
Cell Specific Reference		Port 0 and 1			
Number of EPDCCH S	ets Configured		2 (Note 2)		
Number of PRB per EF	PDCCH Set		4 (1 st Set) 8 (2 nd Set)		
EPDCCH Subframe Mo	onitoring		`NA		
PDSCH TM	- U		TM3		
DCI Format			2A		
TDD UL/DL Configurat	ion		0		
TDD Special Subframe			1 (Note 3)		
	symbol for EPDCCI RC signalling <i>epdccl</i>				
Note 2: The two sets are distributed EPDCCH sets and non- overlapping with PRB = {3, 17, 31, 45} for the first set and PRB = {0, 7, 14, 21, 28, 35, 42, 49} for the second set. EPDCCH is scheduled in the first set for Test 1 and second set for Test 2, respectively. Both sets are always configured. Note 3: Demodulation performance is averaged over normal and					
special subf	rame.				

For the parameters specified in Table 8.8.1.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.2-2. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.1.2-2: Minimum performance Distributed EPDCCH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 ECCE	R.55 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	2.80
2	10 MHZ	16 ECCE	R.56 TDD	OP.7 TDD	EVA70	2 x 2 Low	1	-3.10

8.8.1.2.1 Void

Table 8.8.1.2.1-1: Void

8.8.2 Localized Transmission with TM9

8.8.2.1 FDD

The parameters specified in Table 8.8.2.1-1 are valid for all FDD TM9 localized ePDCCH tests unless otherwise stated.

Table 8.8.2.1-1: Test Parameters for Localized EPDCCH with TM9

Paran	neter	Unit	Value
Number of PDCCH s	ymbols	symbols	1 (Note 1)
EPDCCH starting syr	nbol	symbols	2 (Note 1)
PHICH duration			Normal
Unused RE-s and PR	B-s		OCNG
Cell ID			0
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	σ	dB	-3
	δ	dB	0
N at antenna port		dBm/15 kHz	-98
Cyclic prefix			Normal
Subframe Configurati	on		Non-MBSFN
Precoder Update Gra	nularity	PRB	1
Frecoder Opdate Gra	питанту	ms	1
Beamforming Pre-Co			Annex B.4.5
Cell Specific Referen			Port 0 and 1
CSI-RS Reference Si			Port 15 and 16
CSI-RS reference sig configuration	nal resource		0
CSI reference signal configuration I _{CSI-RS}	subframe		2
ZP-CSI-RS configura	tion bitmap		000001000000000
ZP-CSI-RS subframe			2
Number of EPDCCH	Soto		2 (Note 2)
			2 (NOTE 2) 1111111110 1111111101 1111111011
EPDCCH Subframe I subframePatternCon			1111110111 (Note 3)
PDSCH TM	<u> </u>		TM9

Note 1: The starting symbol for EPDCCH is signalled with *epdcch-StartSymbol-r11*. However, CFI is set to 1.

For the parameters specified in Table 8.8.2.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.2.1-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of 99.9%.

The downlink physical setup is in accordance with Annex C.3.2.

Note 2: The first set is distributed transmission with PRB = {0, 49} and the second set is localized transmission with PRB = {0, 7, 14, 21, 28, 35, 42, 49}. ePDCCH is scheduled in the second set for all tests

Note 3: EPDCCH is scheduled in every SF. UE is required to monitor ePDCCH for UE-specific search space only in SFs configured by *subframePatternConfig-r11*. Legacy PDCCH is not scheduled.

Table 8.8.2.1-2: Minimum performance Localized EPDCCH with TM9

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	eference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)	
1	10 MHz	2 ECCE	R.57 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	12.2	
2	10 MHZ	8 ECCE	R.58 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	2.5	

8.8.2.1.1 Void

Table 8.8.2.1.1-1: Void

8.8.2.1.2 Void

Table 8.8.2.1.2-1: Void

Table 8.8.2.1.2-2: Void

Table 8.8.2.1.2-3: Void

8.8.2.2 TDD

The parameters specified in Table 8.8.2.2-1 are valid for all TDD TM9 localized ePDCCH tests unless otherwise stated.

Table 8.8.2.2-1: Test Parameters for Localized EPDCCH with TM9

Parameter	Unit	Value
Number of PDCCH symbols	symbols	1 (Note 1)
EPDCCH starting symbol	symbols	2 (Note 1)
PHICH duration		Normal
Unused RE-s and PRB-s		OCNG
Cell ID		0
$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power $ ho_{\scriptscriptstyle B}$	dB	0
allocation σ	dB	-3
δ	dB	0
N_{oc} at antenna port	dBm/15 kHz	-98
Cyclic prefix		Normal
Subframe Configuration		Non-MBSFN
Precoder Update Granularity	PRB	1
	ms	1
Beamforming Pre-Coder		Annex B.4.5
Cell Specific Reference Signa	l e	Port 0 and 1
CSI-RS Reference Signal		Port 15 and 16
CSI-RS reference signal reso configuration	urce	0
CSI reference signal subframe configuration <i>I</i> _{CSI-RS}		0
ZP-CSI-RS configuration bitm	ар	000001000000000
ZP-CSI-RS subframe configur	ration I _{ZP} .	0
Number of EPDCCH Sets		2 (Note 2)
EPDCCH Subframe Monitorin subframePatternConfig-r11	g pattern	1100011000 1100010000 1100011000 110001000
PDSCH TM		TM9 `
TDD UL/DL Configuration		0
TDD Special Subframe		1 (Note 4)

- Note 1: The starting symbol for EPDCCH is signalled with *epdcch-StartSymbol-r11*. However, CFI is set to 1.
- Note 2: The first set is distributed transmission with PRB = {0, 49} and the second set is localized transmission with PRB = {0, 7, 14, 21, 28, 35, 42, 49}. ePDCCH is scheduled in the second set for all tests.
- Note 3: EPDCCH is scheduled in every SF. UE is required to monitor ePDCCH for UE-specific search space only in SFs configured by *subframePatternConfig-r11*. Legacy PDCCH is not scheduled.

 Note 4: Demodulation performance is averaged over normal and special subframe.

For the parameters specified in Table 8.8.2.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.2.2.2-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of 99.9%.

The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.2.2-2: Minimum performance Localized EPDCCH with TM9

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	2 ECCE	R.57 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	12.8
2	10 MHZ	8 ECCE	R.58 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	2.0

8.8.2.2.1 Void

Table 8.8.2.2.1-1: Void

8.8.2.2.2 Void

Table 8.8.2.2.2-1: Void

Table 8.8.2.2.2: Void

Table 8.8.2.2.2-3: Void

8.8.3 Localized transmission with TM10 Type B quasi co-location type

8.8.3.1 FDD

For the parameters specified in Table 8.8.3.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.1-2. In Table 8.8.3.1-1, transmission point 1 (TP 1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.3.1-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

Parameter		l losis	Te	est 1	Test 2		
		Unit	TP 1	TP 2	TP 1	TP 2	
PHICH durati					rmal		
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0		
power	$ ho_{\scriptscriptstyle B}$	dB			0		
allocation	σ	dB			3		
	δ	dB	OdD power		0		
\hat{E}_s/N_{oc}		dB dBm/	0dB power imbalance is considered between TP 1 and TP 2,	Reference value in Table 8.8.3.1-	Reference value in Table 8.8.3.1-	Reference value in Table 8.8.3.1-	
$N_{\it oc}$ at anten	$N_{\it oc}$ at antenna port			-	98		
Bandwidth		z MHz	10	10	10	10	
Number of co EPDCCH Set	S		2 (N	lote 1)	2 (No	ote1)	
EPDCCH-PR (setConfigld)			0	1	0	1	
PRB-set	type of EPDCCH-		Localized	Localized	Localized	Localized	
Number of PF EPDCCH-PR	B-set	PRB	8	8	8	8	
	amforming model		Annex B.4.5	Annex B.4.5	Annex B.4.5	Annex B.4.5	
PDSCH trans	mission mode		TM10	TM10	TM10	TM10	
PDSCH trans scheduling	PDSCH transmission scheduling		Blanked in all the subframes	Transmit in all the subframes	Probability of occurrence of PDSCH transmission is 30% (Note 3)	Probability of occurrence of PDSCH transmission is 70% (Note 3)	
Non-zero power CSI	CSI reference signal configuration		N/A	0	N/A	0	
reference signal (NZPId=1)	CSI reference signal subframe configuration $I_{\text{CSI-RS}}$		N/A	2	N/A	2	
Non-zero power CSI	CSI reference signal configuration		N/A	N/A	10	N/A	
reference signal (NZPId=2)	CSI reference signal subframe configuration $I_{\text{CSI-RS}}$		N/A	N/A	2	N/A	
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI-RS bitmap)	Bitma p	N/A	0000010000000 000	N/A	1000010000000 000	
signal (ZPId=1)	CSI-RS subframe configuration $I_{\text{CSI-RS}}$		N/A	2	N/A	2	
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI-RS bitmap)	Bitma p	N/A	N/A	1000010000000	N/A	
signal (ZPId=2)	CSI-RS subframe configuration $I_{\text{CSI-RS}}$		N/A	N/A	2	N/A	
PQI set 0 (Note 4)	Non-Zero power CSI RS Identity (NZPId)		N/A	1	N/A	1	

	Zero power CSI RS Identity (ZPId)		N/A	1	N/A	1
Non-Zero por CSI RS Ident PQI set 1 (NZPId)			N/A	N/A	2	N/A
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	N/A	2	N/A
Number of P	DCCH symbols	Symb ols		1 (N	lote 2)	
EPDCCH sta	arting position		pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)
Subframe co	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Time offset b	Time offset between TPs		N/A	2	N/A	2
Frequency shift between TPs		Hz	N/A	200	N/A	200
Cell ID	·		0	126	0	126

Note 1: Resource blocks n_{PRB} =0, 7, 14, 21, 28, 35, 42, 49 are allocated for both the first set and the second set.

Note 2: The starting OFDM symbol for EPDCCH is determined from the higher layer signalling pdsch-Start-r11.

And CFI is set to 1.

Note 3: The TP from which PDSCH is transmitted shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TP 1 and TP 2 are specified.

Note 4: For PQI set 0, PDSCH and EPDCCH are transmitted from TP 2. For PQI set 1, PDSCH and EPDCCH are transmitted from TP1. EPDCCH and PDSCH are transmitted from same TP.

Table 8.8.3.1-2: Minimum Performance

Test	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
number	level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	2 ECCE	R.59 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	13.4
2	2 ECCE	R.59 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	13.4

8.8.3.2 TDD

For the parameters specified in Table 8.8.3.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.2-2. In Table 8.8.3.2-1, transmission point 1 (TP1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.3.2-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

Parameter		1111	Te	est 1	Tes	st 2
		Unit	TP 1	TP 2	TP 1	TP 2
PHICH durati					rmal	
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0	
power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	σ	dB			-3	
	δ	dB	0 ID		0	
\hat{E}_s/N_{oc}		dB	0dB power imbalance is considered between TP 1 and TP 2,	Reference value in Table 8.8.3.2-	Reference value in Table 8.8.3.2-	Reference value in Table 8.8.3.2-
$N_{\it oc}$ at anten	na port	dBm/ 15kH z		-	98	
Bandwidth		MHz	10	10	10	10
Number of El			2 (N	ote 1)	2 (No	ote1)
EPDCCH-PR (setConfigld)			0	1	0	1
PRB-set	type of EPDCCH-		Localized	Localized	Localized	Localized
EPDCCH-PR	Number of PRB pair per EPDCCH-PRB-set		8	8	8	8
	EPDCCH beamforming model		Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10
	PDSCH transmission mode PDSCH transmission scheduling		Blanked in all the subframes	Transmit in all the subframes	Probability of occurrence of PDSCH transmission is 30% (Note 3)	Probability of occurrence of PDSCH transmission is 70% (Note 3)
CSI reference configuration	s		Antenna ports 15,16	Antenna ports 15,16	Antenna ports 15,16	Antenna ports 15,16
Non-zero power CSI	CSI reference signal configuration		N/A	0	N/A	0
reference signal (NZPId=1)	CSI reference signal subframe configuration $I_{\text{CSI-RS}}$		N/A	0	N/A	0
Non-zero power CSI	CSI reference signal configuration		N/A	N/A	10	N/A
reference signal (NZPId=2)	CSI reference signal subframe configuration $I_{\text{CSI-RS}}$		N/A	N/A	0	N/A
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	0000010000000 000	N/A	1000010000000
signal (ZPId=1)	CSI-RS subframe configuration $I_{\text{CSI-RS}}$		N/A	0	N/A	0
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	N/A	1000010000000	N/A
signal (ZPId=2)	CSI-RS subframe configuration I _{CSI-RS}		N/A	N/A	0	N/A

PQI set 0	Non-Zero power CSI RS Identity (NZPId)		N/A	1	N/A	1
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	1	N/A	1
PQI set 1	Non-Zero power CSI RS Identity (NZPId)		N/A	N/A	2	N/A
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	N/A	2	N/A
Number of Pl	DCCH symbols	Symb ols		1 (N	ote 2)	
EPDCCH sta	rting position		pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)
Subframe con	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Time offset b	etween TPs	μs	N/A	2	N/A	2
Frequency sh	nift between TPs	Hz	N/A	200	N/A	200
Cell ID	Cell ID		0	126	0	126
TDD UL/DL o	configuration		_		0	_
TDD special	TDD special subframe 1					

- Note 1: Resource blocks $n_{PRB} = 0, 7, 14, 21, 28, 35, 42, 49$ are allocated for both the first set and the second set.
- Note 2: The starting OFDM symbol for EPDCCH is determined from the higher layer signalling pdsch-Start-r11.

 And CFI is set to 1.
- Note 3: The TP from which PDSCH is transmitted shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TP 1 and TP 2 are specified.
- Note 4: For PQI set 0, PDSCH and EPDCCH are transmitted from TP 2. For PQI set 1, PDSCH and EPDCCH are transmitted from TP1. EPDCCH and PDSCH are transmitted from same TP.

Table 8.8.3.2-2: Minimum Performance

Test	Aggregation	Reference	OCNG	Propagation	Antenna Referen		e value
number	level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	2 ECCE	R.59 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	13.6
2	2 ECCE	R.59 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	13.6

8.9 Demodulation performance (Single receiver antenna and for FDD, half-duplex FDD and TDD)

The SNR deifintion is given in Clause 8.1.1 where the number of receiver antennas N_{RX} assumed for the minimum performance requirement in this clause is 1.

8.9.1 PDSCH

8.9.1.1 FDD and half-duplex FDD (Fixed Reference Channel)

The parameters specified in Table 8.9.1.1-1 are valid for FDD and half-duplex FDD tests unless otherwise stated.

Parameter Unit Value Inter-TTI Distance 1 Number of HARQ processes per **Processes** 8 component carrier Maximum number of 4 HARQ transmission {0,1,2,3} for QPSK and 16QAM Redundancy version coding sequence {0,0,1,2} for 64QAM 4 for 1.4 MHz bandwidth, 3 for 3 MHz and Number of OFDM 5 MHz bandwidths, symbols for PDCCH per OFDM symbols 2 for 10 MHz, 15 MHz and 20 MHz component carrier bandwidths Cyclic Prefix Normal Frequency domain: 1 PRG for Precoder update Transmission modes 9 and 10 granularity Time domain: 1 ms

Table 8.9.1.1-1: Common Test Parameters (FDD and half-duplex FDD)

8.9.1.1.1 Transmit diversity performance (Cell-Specific Reference Symbols)

8.9.1.1.1.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.1.1.1-2, with the addition of the parameters in Table 8.9.1.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.9.1.1.1.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		2
Note 1: $P_B = 1$.			

Table 8.9.1.1.1.1-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughp ut (%)	SNR (dB)	Category
1	10 MHz 16QAM 1/2	R.xx FDD	OP.1 FDD	EPA5	2x1 Low	70	TBD	0

8.9.1.1.2 Closed-loop spatial multiplexing performance (Cell-Specific Reference Symbols)

8.9.1.1.2.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.1.2.1-2, with the addition of the parameters in Table 8.9.1.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with frequency selective precoding.

Table 8.9.1.1.2.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granul	Precoding granularity		6
PMI delay (Note	2)	ms	8
Reporting interv	/al	ms	[8]
Reporting mod	le		PUSCH 1-2
CodeBookSubsetR	estricti		001111
on bitmap			
PDSCH transmis	sion	· · · · · · · · · · · · · · · · · · ·	4
mode			

Note 1: $P_{R} = 1$.

Note 2: If the UE reports in an available uplink reporting instance at

subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 8.9.1.1.2.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band- Reference		nce OCNG Pro	Propagation	Correlation	Reference value		UE
number	width and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Catego ry
1	10 MHz 64QAM 1/2	R.yy FDD	OP.1 FDD	EPA5	2x1Low	70	TBD	0

8.9.1.1.3 Closed-loop spatial multiplexing performance (User-Specific Reference Symbols)

8.9.1.1.3.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.9.1.1.3.1-2 with the addition of the parameters in Table 8.9.1.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.9.1.1.3.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple **CSI-RS** configurations

parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	-3
Beamforming mo	del		Annex B.4.1
Cell-specific refere signals	ence		Antenna ports 0,1
CSI reference sign	nals		Antenna ports 15,,18
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	t s	Subframes	5/2
CSI reference sig configuration	nal		0
Zero-power CSI-l configuration I _{CSI-RS} / ZeroPowerCSI-F bitmap		Subframes / bitmap	3 / 0001000000000000
$N_{\it oc}$ at antenna p	ort	dBm/15kHz	-98
Symbols for unus PRBs	ed		OCNG (Note 4)
Number of allocar resource blocks (No	ote 2)	PRB	6
PDSCH transmiss mode	sion		9
Note 1: $P_B = 1$.			

Note 2: The modulation symbols of the signal under test are mapped

onto antenna port 7 or 8.

These physical resource blocks are assigned to an arbitrary Note 3: number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated

pseudo random data, which is QPSK modulated.

Table 8.9.1.1.3.1-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test	Bandwidth		OCNG	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.zz FDD	OP.1 FDD	EPA5	2x1 Low	70	TBD	0

8.9.1.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.9.1.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.9.1.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value				
Uplink downlink configuration (Note 1)		1				
Special subframe configuration (Note 2)		4				
Cyclic prefix		Normal				
Cell ID		0				
Inter-TTI Distance		1				
Number of HARQ processes per component carrier	Processes	7				
Maximum number of HARQ transmission		4				
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM				
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths				
Precoder update granularity		Frequency domain: 1 PRG for Transmission modes 9 and 10 Time domain: 1 ms				
ACK/NACK feedback mode		Multiplexing				
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].						

Transmit diversity performance (Cell-Specific Reference Symbols) 8.9.1.2.1

8.9.1.2.1.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.2.1.1-2, with the addition of the parameters in Table 8.9.1.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.9.1.2.1.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	on mode		2
Note 1: $P_B = 1$			

Table 8.9.1.2.1.1-2: Minimum performance Transmit Diversity (FRC)

Test	Bandw	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	idth	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz 16QAM 1/2	R.xx TDD	OP.1 TDD	EPA5	2x1 Low	70	TBD	0

8.9.1.2.2 Closed-loop spatial multiplexing performance (Cell-Specific Reference Symbols)

8.9.1.2.2.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.9.1.2.2.1-2, with the addition of the parameters in Table 8.9.1.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with frequency selective precoding.

Table 8.9.1.2.2.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
N_{oc} at antenna po	ort	dBm/15kHz	-98
Precoding granula	rity	PRB	6
PMI delay (Note 2	2)	ms	10 or 11
Reporting interva	ıl	ms	1 or 4 (Note 3)
Reporting mode	!		PUSCH 1-2
CodeBookSubsetRest	riction		001111
bitmap			
ACK/NACK feedback	mode		Multiplexing
PDSCH transmission	mode		4
Note 1: D = 1			

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at

subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will

alternate between 1ms and 4ms.

Table 8.9.1.2.2.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz 64QAM 1/2	R.yy TDD	OP.1 TDD	EPA5	2x1 Low	70	TBD	0

8.9.1.2.3 Closed-loop spatial multiplexing performance (User-Specific Reference Symbols)

8.9.1.2.3.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.9.1.2.3.1-2 with the addition of the parameters in Table 8.9.1.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the

antenna ports 7 or 8, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Table 8.9.1.2.3.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Parameter		Unit	Test 1		
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0		
Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB	0 (Note 1)		
	σ	dB	-3		
Cell-specific refere	ence		Antenna ports 0,1		
CSI reference sign	nals		Antenna ports 15,,18		
Beamforming mo	del		Annex B.4.1		
CSI-RS periodicity subframe offse $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	t	Subframes	5/4		
CSI reference sig configuration	nal		1		
Zero-power CSI- configuration I _{CSI-RS} / ZeroPowerCSI-F bitmap		Subframes / bitmap	4 / 0010000100000000		
$N_{\it oc}$ at antenna p	ort	dBm/15kHz	-98		
Symbols for unus PRBs	ed		OCNG (Note 4)		
Number of alloca resource blocks (No		PRB	6		
Simultaneous transmission			No		
PDSCH transmission mode			9		
Note 1: $P_B = 1$. Note 2: The mode	ulation	symbols of the	signal under test are		
Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8. Note 3: These physical resource blocks are assigned to an					

Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data,

which is QPSK modulated.

Table 8.9.1.2.3.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.zz TDD	OP.1 TDD	EPA5	2x1 Low	70	TBD	0

8.9.2 PHICH

8.9.2.1 FDD and half-duplex FDD

8.9.2.1.1 Transmit diversity performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.9.2.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.2.1.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
numbe	r	Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	10 MHz	R.19	OP.1 FDD	EPA5	2 x 1 Low	0.1	TBD

8.9.2.2 TDD

8.9.2.2.1 Transmit diversity performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.9.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.2.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	10 MHz	R.19	OP.1 TDD	EPA5	2 x 1 Low	0.1	TBD

8.9.3 PBCH

8.9.3.1 FDD and half-duplex FDD

8.9.3.1.1 Transmit diversity performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.9.3.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.3.1.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value	
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)	
				and			
				correlation			
				Matrix			
1	1.4 MHz	R.22	EPA5	2 x 1 Low	1	TBD	

8.9.3.2 TDD

8.9.3.2.1 Transmit diversity performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.9.3.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.9.3.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	nce value	
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)	
1	1.4 MHz	R.22	EPA5	2 x 1 Low	1	TBD	

9 Reporting of Channel State Information

9.1 General

This section includes requirements for the reporting of channel state information (CSI). For all test cases in this section,

the definition of SNR is in accordance with the one given in clause 8.1.1, where
$$SNR = \frac{\sum \hat{I}_{or}^{(j)}}{\sum N_{oc}^{(j)}}$$
.

9.1.1 Applicability of requirements

9.1.1.1 Applicability of requirements for different channel bandwidths

In Clause 9 the test cases may be defined with different channel bandwidth to verify the same CSI requirement.

Test cases defined for 5MHz channel bandwidth that reference this clause are applicable to UEs that support only Band 31.

9.1.1.2 Applicability and test rules for different CA configurations and bandwidth combination sets

The performance requirement for CA CQI tests in Clause 9 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL CCs in Table 9.1.1.2-1 and 3 DL CCs in Table 9.1.1.2-2. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 9.1.1.2-1: Applicability and test rules for CA UE CQI tests with 2 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order	No. of the supported bandwidth combinations to be tested from each selected CA configuration
CA tests with 2CCs in Clause 9.6.1.1	Any of one of the supported CA capabilities	Any one of the supported FDD CA configurations	10+10 MHz, 20+20 MHz, 5+5 MHz, and 10MHz+5MHz.	1
CA tests with 2CCs in Clause 9.6.1.2	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
Note 1: The app	olicability and test ru	ules are specified in this table,	unless otherwise stated.	

Table 9.1.1.2-2: Applicability and test rules for CA UE CQI tests with 3 DL CCs

CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order	No. of the supported bandwidth combinations to be tested from each selected CA configuration
Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination Any of one of the supported FDD CA configurations with largest aggregated CA bandwidth combination Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination Any of one of the supported FDD CA configurations with largest aggregated CA bandwidth combination Any of one of the supported FDD CA configurations with largest aggregated CA bandwidth combination Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination Largest aggregated CA bandwidth combination Largest aggregated CA bandwidth combination

9.1.1.2A Applicability and test rules for different TDD-FDD CA configurations and bandwidth combination sets

The performance requirement for TDD-FDD CA CQI tests in Clause 9 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL TDD-FDD CA in Table 9.1.1.2A-1 and for 3 DL TDD-FDD CA in Table 9.1.1.2A-2. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Table 9.1.1.2A-1: Applicability and test rules for CA UE CQI tests for TDD-FDD CA with 2 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 2CCs in Clause 9.6.1.3	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 2CCs in Clause 9.6.1.4	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination

Table 9.1.1.2A-2: Applicability and test rules for CA UE CQI tests for TDD-FDD CA with 3 DL CCs

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order
CA tests with 3CCs in Clause 9.6.1.3	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with FDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination
CA tests with 3CCs in Clause 9.6.1.4	Any of one of the supported CA capabilities	Any one of the supported TDD- FDD CA configurations with TDD PCell with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination

9.1.1.3 Test coverage for different number of component carriers

For FDD CA tests specified in 9.6.1.1, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

For TDD CA tests specified in 9.6.1.2, among all supported CA capabilities, if corresponding CA tests with the largest number of CCs supported by the UE are tested, the test coverage can be considered fulfilled without executing the CA tests with less than the largest number of CCs supported by the UE.

9.2 CQI reporting definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.213 [6]. To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)

9.2.1.1 FDD

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.1-1 and Table 9.2.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1 FDD / RC.14 FDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

The applicability of the requirement with 5MHz bandwidth as specificed in Table 9.2.1.1-2 is defined in 9.1.1.1.

Table 9.2.1.1-1: PUCCH 1-0 static test (FDD)

Parameter		Unit	Tes	st 1	Те	st 2	
Bandwidth		MHz			10		
PDSCH transmission	n mode		1				
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	(0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0				
	σ	dB	0				
Propagation condit antenna configur				AWGN (1 x 2)			
SNR (Note 2	SNR (Note 2)		0	1	6	7	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97	-92	-91	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-	-98	
Max number of H transmission			1				
Physical channel f reporting	or CQI		PUCCH Format 2				
PUCCH Report Type					4		
Reporting periodicity		ms	$N_{pd} = 5$				
cqi-pmi-Configurati	onIndex	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6		

Reference measurement channel RC.1 FDD according to Table A.4-1 with one sided dynamic Note 1: OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) Note 2:

and the respective wanted signal input level.

Table 9.2.1.1-2: PUCCH 1-0 static test (FDD 5MHz)

Parameter		Unit	Tes	st 1	Te	st 2	
Bandwidth		MHz			5		
PDSCH transmission	mode		1				
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB		0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	C		0		
	σ	dB	0				
Propagation condition antenna configuration			AWGN (1 x 2)				
SNR (Note 2	2)	dB	[0]	[1]	[6]	[7]	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	[-98]	[-97]	[-92]	[-91]	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	98	-6	98	
Max number of HARO transmissions	Q				1		
Physical channel for reporting	CQI			PUCCH	Format 2		
PUCCH Report Type					4		
Reporting periodicity		ms	$N_{\rm pd} = 5$				
cqi-pmi-Configuration	nIndex		•		6		
N. (4. D. () I I I DO (4. EDD) I' (T. I I A 4.4 M)							

Reference measurement channel RC.14 FDD according to Table A.4-1 with one sided Note 1: dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s)

and the respective wanted signal input level.

9.2.1.2 **TDD**

The following requirements apply to UE Category ≥1. For the parameters specified in Table 9.2.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1 TDD in Table A.4-1 shall be in the range of ±1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the

median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI -1) shall be less than or equal to 0.1.

Parameter		Unit	Tes	st 1	Tes	st 2	
Bandwidth		MHz			10		
PDSCH transmission	on mode		1				
Uplink downlink conf	figuration				2		
Special subframe configuration			4				
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0		0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0				
	σ	dB			0		
Propagation condition and antenna configuration			AWGN (1 x 2)				
SNR (Note 2	2)	dB	0	1	6	7	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97	-92	-91	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	18	-9	98	
Max number of H transmission					1		
Physical channel f reporting	or CQI			PUSCH	I (Note 3)		
PUCCH Report	Туре				4		
Reporting period	dicity	ms		N _p	_d = 5		
cqi-pmi-Configurati	onIndex		3				
ACK/NACK feedback	ck mode			Multi	plexing		

Table 9.2.1.2-1: PUCCH 1-0 static test (TDD)

9.2.1.3 FDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to RC.2 FDD / RC.6 FDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},1}$ shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Note 1: Reference measurement channel RC.1 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

Table 9.2.1.3-1: PUCCH 1-0 static test (FDD)

Donomotor	_	Heit		Tes	st 1	Test 2			
Parameter		Unit	Ce	II 1	Cell 2	Ce	ell 1	Cell 2	
Bandwidth		MHz		10				0	
PDSCH transmission	on mode		2	2	Note 10	:	2	Note 10	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	3		-	3	
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3		-3		3	
	σ	dB		C)		(0	
Propagation condition and antenna configuration			(Clause E	3.1 (2x2)		Clause I	3.1 (2x2)	
\widehat{E}_s/N_{oc2} (No	te 1)	dB	4	5	6	4	5	-12	
(;)	$N_{oc1}^{(j)}$	dBm/15kHz	-102 (1	Note 7)	N/A	-98(N	lote 7)	N/A	
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98(N	lote 8)	N/A	
port	$N_{oc3}^{(j)}$	dBm/15kHz	-94.8 (Note 9)	N/A	-98(N	lote 9)	N/A	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-92	-94	-93	-110	
Subframe Config	uration		Non-N	IBSFN	Non-MBSFN	Non-M	BSFN	Non-MBSFN	
Cell Id			,)	1	,	0	1	
Time Offset between	en Cells	μs	2.5	(synchro	onous cells)	2.5	s (synchr	onous cells)	
ABS pattern (Note 2)			N/A		01010101 01010101 01010101 01010101 01010101	N/A		01010101 01010101 01010101 01010101 01010101	
RLM/RRM Measu Subframe Pattern			0000 0000 0000	0100 0100 0100 0100 0100	00 00 0000100 00000100 00000100 00000100		N/A		
CSI Subframe Sets	C _{CSI,0}		0101 0101 0101 0101 0101	0101 0101 0101 0101	N/A	01010101 01010101 01010101 01010101 01010101 10101010 10101010 10101010 10101010		N/A	
(Note 3)	C _{CSI,1}		1010 1010 1010	1010 1010 1010 1010 1010	N/A			N/A	
Number of control symbols	OFDM			3	3		;	3	
Max number of h transmission				1			,	1	
Physical channel for reporting			F	PUCCH I	Format 2		PUCCH	Format 2	
Physical channel for reporting	C _{CSI,1} CQI		F	PUSCH (Note 12)	ı	PUSCH	(Note 12)	
PUCCH Report	Туре			4				4	
Reporting perio	dicity	Ms		N_{pd}	= 5		N _{pd}	= 5	
cqi-pmi-Configurati C _{CSI,0} (Note 1	3)		6	6	N/A		6	N/A	
cqi-pmi-Configuration	onIndex2		5	5	N/A		5	N/A	

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
- Note 11: Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and RC.6 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cgi-pmi-ConfigurationIndex is applied for C_{CSL0}.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for C_{CSI,1}.

9.2.1.4 TDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category ≥ 1 . For the parameters specified in Table 9.2.1.4-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to RC.2 TDD / RC.6 TDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets $C_{CSI,0}$ minus the median CQI obtained by reports in CSI subframe sets $C_{CSI,1}$ shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Table 9.2.1.4-1: PUCCH 1-0 static test (TDD)

Parameter		Unit		Tes	st 1			Test 2		
			Ce			Cell 2	Ce	II 1	Cell 2	
Bandwidth		MHz			0				0	
PDSCH transmission			2	2	1	Note 10	2	2	Note 10	
Uplink downlink conf Special subfrai					1				1	
configuration				4	4				4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3			-	3			
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3				-	3	
	σ	dB		(0			()	
Propagation condit antenna configur				Clause E	B.1	(2x2)		Clause I	3.1 (2x2)	
\widehat{E}_s/N_{oc2} (Not	e 1)	dB	4	5		6	4	5	-12	
(;)	$N_{oc1}^{(j)}$	dBm/15kHz	-102 (1	Note 7)		N/A	-98 (N	lote 7)	N/A	
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)			N/A	-98 (N	lote 8)	N/A	
port -	$N_{oc3}^{(j)}$	dBm/15kHz	-94.8 (Note 9)			N/A	-98 (N	lote 9)	N/A	
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		-94	-93		-92	-94	-93	-110	
Subframe Configu	ıration		Non-M	IBSFN	N	on-MBSFN	Non-M	IBSFN	Non-MBSFN	
Cell Id			(,		1	(,	1	
Time Offset between	en Cells	μs	2.5	(synchr			2.5	(synchr	onous cells)	
ABS pattern (No	=		N/A			100010001 100010001	N/A		0100010001 0100010001	
RLM/RRM Measur Subframe Pattern (000000001 000000001			N/A	0000000001 0000000001		N/A	
CSI Subframe Sets	C _{CSI,0}		01000 01000	10001		N/A	0100010001 0100010001		N.A	
(Note 3)	C _{CSI,1}		10001 10001	01000		N/A		01000	N/A	
Number of control	OFDM				3				3	
symbols				`	ა 			•		
Max number of H transmission				,	1				1	
Physical channel for (C _{CSI,0} CQI		1	PUCCH	For	mat 2	-	PUCCH	Format 2	
Physical channel for (C _{CSI,1} CQI		ı	PUSCH	(Not	te 12)		PUS	SCH	
PUCCH Report Type					4				4	
Reporting periodicity		ms			= 5				= 5	
cqi-pmi-Configuration			3			N/A	3	•	N/A	
cqi-pmi-Configuration	nIndex2		4			N/A	4		N/A	
ACK/NACK feedbac				Multip	olexi	ng		Multip	lexing	

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
- Note 11: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 for UE Category ≥2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1, and RC.6 TDD according to Table A.4-1 for Category 1 with one/two sided dynami OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1 and Annex A.5.2.2.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cqi-pmi-ConfigurationIndex is applied for C_{CSI,0}.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for C_{CSI.1}.

9.2.1.5 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category ≥ 2 . For the parameters specified in Table 9.2.1.5-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to RC.2 FDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},0}$ is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.5-1: PUCCH 1-0 static test (FDD)

_			Te	st 1	Te	st 2
Parameter	•	Unit	Cell 1	Cell 2 and 3	Cell 1	Cell 2 and 3
Bandwidth		MHz		0		0
PDSCH transmission	on mode		2	Note 10	2	Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-	-3	-	3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3		3
	σ	dB		0	(0
Propagation condi- antenna configu	ration		Clause	B.1 (2x2)	Clause I	3.1 (2x2)
\widehat{E}_s/N_{oc2} (No	te 1)	dB	4 5	Cell 2: 12 Cell 3: 10	13 14	Cell 2: 12 Cell 3: 10
• (i)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (Note 7)	N/A	-98 (Note 7)	N/A
$N_{oc}^{(j)}$ at antenna port	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)	N/A	-98 (Note 8)	N/A
	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (Note 9)	N/A	-93 (Note 9)	N/A
Subframe Config	uration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0	Cell 2: 6 Cell 3: 1	0	Cell 2: 6 Cell 3: 1
Time of Office to be a true	0-11-		Cell 2:	3 usec	Cell 2:	3 usec
Time Offset between	en Cells	μs		-1usec		-1usec
Frequency Shift between Cells		Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz	
ABS pattern (Note 2)			N/A	01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101
RLM/RRM Measu Subframe Pattern			00000100 00000100 00000100 00000100 00000100	N/A	00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets	C _{CSI,0}		01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101	N/A
(Note 3)	C _{CSI,1}		10101010 10101010 10101010 10101010 10101010	N/A	10101010 10101010 10101010 10101010 10101010	N/A
Number of control symbols	OFDM			3	;	3
Max number of h				1		1
Physical channel for reporting			PUCCH	Format 2	PUCCH	Format 2
Physical channel for reporting	C _{CSI,1} CQI		PUSCH	(Note 12)	PUSCH	(Note 12)
PUCCH Report Type				4		4
Reporting perio	dicity	Ms	N _{pc}	1 = 5	N _{pd}	= 5
cqi-pmi-Configurati C _{CSI,0} (Note 1	3)		6	N/A	6	N/A
cqi-pmi-Configuration C _{CSI,1} (Note 1	onIndex2		5	N/A	5	N/A

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
- Note 11: Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cqi-pmi-ConfigurationIndex is applied for C_{CSI,0}.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for C_{CSI,1}.

9.2.1.6 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category \geq 2. For the parameters specified in Table 9.2.1.6-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to RC.2 TDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of ± 1 of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},0}$ is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets $C_{\text{CSI},1}$ is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.2.1.6-1: PUCCH 1-0 static test (TDD)

Parameter	,	Unit		Tes	st 1	Test 2		
			Cell		Cell 2 and 3	Ce		Cell 2 and 3
Bandwidth		MHz		1	•			0
PDSCH transmission			2		Note 10		2	Note 10
Uplink downlink con								1
Special subfra configuration			4			4	4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-:	3		-	3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-:	3		-	3
σ		dB		()		(0
Propagation condit antenna configu			(Clause E	3.1 (2x2)		Clause I	3.1 (2x2)
\widehat{E}_s/N_{oc2} (Not	te 1)	dB	4	5	Cell 2: 12 Cell 3: 10	13	14	Cell 2: 12 Cell 3: 10
(:)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (No	ote 7)	N/A	-98 (N	lote 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (No	ote 8)	N/A	-98 (N	lote 8)	N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (No	ote 9)	N/A	-93 (N	lote 9)	N/A
Subframe Configuration			Non-MI	BSFN	Non-MBSFN	Non-N	1BSFN	Non-MBSFN
Cell Id			0		Cell 2: 6 Cell 3: 1	0		Cell 2: 6 Cell 3: 1
Time Offset between Cells		μs		Cell 2: Cell 3:	3 usec -1usec			3 usec -1usec
Frequency shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz			Cell 2: 300Hz Cell 3: -100Hz		
ABS pattern (No	ote 2)		N/A	A	0100010001 0100010001	N	/A	0100010001 0100010001
RLM/RRM Measu Subframe Pattern			000000		N/A	00000	00001	N/A
CSI Subframe Sets	C _{CSI,0}		010001 010001		N/A	01000 01000	10001 10001	N.A
(Note 3)	C _{CSI,1}		100010 100010	1000	N/A	10001	01000 01000	N/A
Number of control symbols	OFDM			3	3		;	3
Max number of F	-			,	1			1
Physical channel for reporting			P	UCCH	Format 2		PUCCH	Format 2
Physical channel for reporting	C _{CSI,1} CQI		Р	USCH ((Note 12)		PUSCH	(Note 12)
PUCCH Report Type					1			4
Reporting periodicity		ms		N _{pd}	= 5		N _{pd}	= 5
cqi-pmi-Configurati C _{CSI,0} (Note 1	ionIndex		3		N/A	;	3	N/A
cqi-pmi-Configuration C _{CSI,1} (Note 1	onIndex2		4		N/A	4	4	N/A
ACK/NACK feedba				Multip	lexing		Multip	lexing

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
- Note 11: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 13: cqi-pmi-ConfigurationIndex is applied for C_{CSI,0}.
- Note 14: cqi-pmi-ConfigurationIndex2 is applied for C_{CSI,1}.

9.2.2 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.2.1 FDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.2.1-1: PUCCH 1-1 static test (FDD)

Parameter		Unit	Test 1		Te	Test 2	
Bandwidth		MHz	10				
PDSCH transmission	on mode				4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3				
allocation	$ ho_{\scriptscriptstyle B}$	dB			-3		
	σ	dB	0				
Propagation condition and antenna configuration				Clause B.1 (2 x 2)			
CodeBookSubsetRestriction bitmap			010000				
SNR (Note 2	2)	dB	dB 10 11 16		17		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-82 -81		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-98		
Max number of F transmission	1						
Physical channel for CQI/PMI reporting			PUCCH Format 2				
PUCCH Report Type for CQI/PMI			2				
PUCCH Report Type for RI			3				
Reporting periodicity		ms	$N_{pd} = 5$				
cqi-pmi-ConfigurationIndex			6				
ri-ConfigInde	ex		1 (Note 3)				

- Note 1: Reference measurement channel RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: It is intended to have UL collisions between RI reports and HARQ-ACK, since the RI reports shall not be used by the eNB in this test.

9.2.2.2 TDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.2.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Parameter		Unit	Test 1 Test 2			st 2		
Bandwidth		MHz		10				
PDSCH transmission	on mode		4					
Uplink downlink conf	figuration			2				
Special subfra configuration					4			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3					
allocation	$ ho_{\scriptscriptstyle B}$	dB			4 2 4 -3 -3 0 e B.1 (2 x 2) 010000 16 -82 -98 1 CH (Note 3)			
	σ	dB			0			
	Propagation condition and antenna configuration		Clause B.1 (2 x 2)					
CodeBookSubsetRestriction bitmap			010000					
SNR (Note 2	2)	dB	10	11	16 17			
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-82 -81			
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-98			
Max number of HARQ transmissions				1				
Physical channel for CQI/PMI reporting			PUSCH (Note 3)					
PUCCH Report Type			2					
Reporting periodicity		ms	$N_{pd} = 5$					
cqi-pmi-ConfigurationIndex			3					
ri-ConfigInde			805 (Note 4)					
ACK/NACK feedbac	ck mode		Multiplexing					

Table 9.2.2.2-1: PUCCH 1-1 static test (TDD)

- Note 1: Reference measurement channel RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.3 Minimum requirement PUCCH 1-1 (CSI Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.3.1 FDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.3.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median $CQI_1 - 1$ shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER

using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

Table 9.2.3.1-1: PUCCH 1-1 static test (FDD)

Parameter	•	Unit	Test 1 Test 2			t 2	
Bandwidth		MHz	10				
PDSCH transmissi	on mode				9		
	$ ho_{\scriptscriptstyle A}$	dB			10 9 0 0 -3 -3 na ports 0, 1 ports 15,,18 5/1 0 B.1 (4 x 2) d in Section B.4.3 000 0100 0000 13 -85 -98 1 CH (Note3) 2 CH Format 2 3 Npd = 5 8 2 1		
Downlink power	$ ho_{\scriptscriptstyle B}$	dB					
allocation	P_c	dB			-3		
	σ	dB			9 0 -3 -3 -3 nna ports 0, 1 a ports 15,,18 5/1 0 se B.1 (4 x 2) ed in Section B.4.3 0000 0100 0000 13 -85 -98 1 sCH (Note3) 2 CH Format 2 3 Npd = 5 8		
Cell-specific reference	ce signals		Antenna ports 0, 1				
CSI reference si	CSI reference signals		Antenna ports 15,,18				
CSI-RS periodicity an	d subframe						
offset					5/1		
$T_{ ext{CSI-RS}}$ / $\Delta_{ ext{CSI-}}$	RS						
CSI reference signal c	onfiguration		0				
	Propagation condition and antenna		Clause B 1 (4 x 2)				
configuration			` '				
Beamforming M			As specified in Section B.4.3		3		
CodeBookSubsetRestriction bitmap			0x0000 0000 0100 0000				
SNR (Note 2	2)	dB	7	8	13	14	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-91	-90	-85	-84	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	98	-98		
Max number of HARQ t	ransmissions				1		
Physical channel for	· CQI/PMI		DUCCLI (Note 2)				
reporting			PUSCH (Note3)				
PUCCH Report Type for CQI/PMI			2				
Physical channel for RI reporting			PUCCH Format 2				
PUCCH Report Type for RI							
Reporting periodicity		ms	$N_{\text{pd}} = 5$				
CQI delay		ms					
cqi-pmi-ConfigurationIndex			-				
ri-ConfigInde					1		
		annel RC 7 FDD acc	ording to Ta	hle A 4-1 with	n one sided dyr	amic OCNG	

Note 1: Reference measurement channel RC.7 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

9.2.3.2 TDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.3.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI₁ = wideband CQI₀ - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.3.2-1: PUCCH 1-1 submode 1 static test (TDD)

Parameter		Unit	Test 1		Test 2			
Bandwidth		MHz	10					
PDSCH transmission					9			
Uplink downlink confi	guration				2			
Special subframe conf	iguration		4					
	$ ho_{\scriptscriptstyle A}$	dB	0					
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0			
allocation	P_c	dB			-6			
	σ	dB	-3					
CRS reference sig	nals			Antenna ports 0, 1 Antenna ports 15 22				
CSI reference sig	nals		Antenna ports 15,,22					
CSI-RS periodicity and	subframe			•				
offset				5	5/ 3			
$T_{ exttt{CSI-RS}}$ / $\Delta_{ exttt{CSI-RS}}$	S							
CSI reference signal co	nfiguration		0					
Propagation condition as	nd antenna		Clause B.1 (8 x 2)					
configuration			` '					
Beamforming Model			As specified in Section B.4.3					
CodeBookSubsetRestriction bitmap			0x0000 0000 0020 0000 0000 0001 0000					
SNR (Note 2)		dB	4	5	10 11			
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-88	-87		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98			
Max number of HARQ tra	ansmissions				1			
Physical channel for (CQI/PMI			DUISCL	I (Note 3)			
reporting				FUSCE	i (Note 3)			
PUCCH Report Type for CQI/second PMI			2b					
Physical channel for RI reporting			PUSCH					
PUCCH Report Type for RI/ first PMI			5					
Reporting periodicity		ms	N _{Pd} = 5					
CQI delay		ms	10 or 11					
cqi-pmi-Configuratio	cqi-pmi-ConfigurationIndex				3			
ri-ConfigIndex			805 (Note 4)					
ACK/NACK feedback mode								

- Note 1: Reference measurement channel RC.7 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
- Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.4 Minimum requirement PUCCH 1-1 (With Single CSI Process)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.4.1 FDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.4.1-1, and using the downlink physical channels specified in Tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial

differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.4.1-1: PUCCH 1-1 static test (FDD)

	ter Unit Test 1		Test 2					
Paramet	Parameter		TP1 TP2		TP1		2	
Bandwidth		MHz		•	1	0	•	
PDSCH transmission	n mode					0		
	$ ho_{\scriptscriptstyle A}$	dB	0	0		0 0)
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0	0		0)
allocation (Note 1)	P _c	dB	-3	-3		-3		3
	σ	dB	-3	N/	A	-3	N,	/A
Cell ID			С)		()	
Cell-specific referer	nce signals		Antenna ports 0, 1	(Note	e 2)	Antenna ports 0, 1	(Not	te 2)
CSI reference signa	als		Antenna ports 15,,18	N/	A	Antenna ports 15,,18	N	/A
CSI-RS periodicity a subframe offset T_C			5/1	N/	A	5/1	N.	/A
CSI-RS configuration			0	N/	A	0	N.	/A
Zero-Power CSI-RS configuration I _{CSI-RS} / ZeroPower bitmap	ion 1/ 1/		00000	1 / 00100000000 0000	1 / 1000000000 00000			
I _{CSI-RS} / ZeroPower0 bitmap	CSI-IM configuration csi-RS / ZeroPowerCSI-RS		1 / 001000000000 0000	N/A		1 / 001000000000 0000 N/A		/A
CSI process configu Signal/Interference/ mode		CSI-RS/CSI-IM/PUCCH 1-1		l 1-1	CSI-RS/CSI-II	M/PUCCI	1 1-1	
Propagation conditi antenna configurati			Clause B.1 (4 x 2)	Clause (2 x		Clause B.1 (4 x 2)	Claus (2)	
CodeBookSubsetRobitmap			0x0000 0000 0100 0000	1000	000	0x0000 0000 0100 0000	100	000
SNR (Note 3)		dB	20	6	7	20	14	15
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-78	-92	-91	-78	-84	-83
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	8		-9	8	
Modulation / Inform payload	ation bit		(Note4)	QPSK /	4392	(Note4)	QPSK	/ 4392
Max number of HAF transmissions	RQ		1	N/A		1	N	/A
Physical channel fo reporting			PUSCH (Note5)	N/A		PUSCH (Note5)	N,	/A
PUCCH Report Typ CQI/PMI	e for		2	N/A		2	N	/A
PUCCH Report Typ			3	N/A		3		/A
Reporting periodicit	У	ms	$N_{pd} = 5$ N/A		$N_{pd} = 5$		/A	
CQI Delay		ms	8 N/A			8		/A
cqi-pmi-Configuration	onIndex		2	N/		2		/A
ri-ConfigIndex			1	N/	Α	1	N.	/A
PDSCH scheduled			1,2,3,4,	6,7,8,9		1,2,3,4	6,7,8,9	
Timing offset betwe	en TPs	us	C)	
Frequency offset be	etween TPs	Hz	C)	
Note1: Deference		nt channel BC 10 I	CDD t - 1	T-1-1- A 4	4	and a selection of the second section	COMO	3 - 44 - ····

Note1: Reference measurement channel RC.10 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: REs for antenna ports 0 and 1 CRS have zero transmission power.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: N/A.

Note 5: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

9.2.4.2 TDD

The following requirements apply to UE Category ≥2. For the parameters specified in table 9.2.4.2-1, and using the downlink physical channels specified in Tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 , median CQI_1+1 } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0-1 and median CQI_1-1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0+1 and median CQI_1+1 shall be greater than or equal to 0.1.

Table 9.2.4.2-1: PUCCH 1-1 static test (TDD)

Paramet	Parameter Unit TP1		Tes			Tes	st 2	
			TP1	TP		TP1	TI	2
Bandwidth		MHz				10		
PDSCH transmissio						10		
Uplink downlink cor Special subframe co						<u>2</u> 4		
Special Subframe of	Ŭ	dB	0	0		0)
Downlink nower	$ ho_{\scriptscriptstyle A}$	_		_				
Downlink power allocation (Note 1)	$\rho_{\scriptscriptstyle B}$	dB	0	0		0)
	Pc	dB	-6	-6		-6		6
	σ	dB	-3	N/	A	-3		/A
Cell ID			С)		()	
Cell-specific referer	nce signals		Antenna ports 0, 1	(Not	e 2)	Antenna ports 0, 1	(No	te 2)
CSI reference signa	ıls		Antenna ports 15,,22	N/	A	Antenna ports 15,,22	N.	/A
CSI-RS periodicity a subframe offset $T_{\rm CS}$			5/3	N/	A	5/3	N.	/A
CSI-RS configuration			0	N/	A	0	N.	/A
Zero-Power CSI-RS configuration I _{CSI-RS} / ZeroPower Color bitmap	ration 3/ 3/		00000	3 / 001000000000 0000	10000	/ 100000 000		
CSI-IM configuration I _{CSI-RS} / ZeroPower(bitmap	CSI-RS		3 / 001000000000 0000	N/A		/A 00100000000 0000		/A
CSI process configu Signal/Interference/ mode			CSI-RS/CSI-IN	M/PUCCH			M/PUCCI	┨ 1-1
Propagation condition antenna configuration			Clause B.1 (8 x 2)	Claus (2 x		Clause B.1 (8 x 2)	Claus (2:	
CodeBookSubsetRobitmap	estriction	0x0000 0000 0020 0000 0000 0001 0000		000	0x0000 0000 0020 0000 0000 0001 0000	100	000	
SNR (Note 3)		dB	17	6	7	17	14	15
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-81	-92	-91	-81	-84	-83
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	8		-9	8	
Modulation / Information			(Note4)	QPSK.	/ 4392	(Note4)	QPSK	/ 4392
Max number of HAF transmissions			1	N/	Α	1	N.	/A
Physical channel fo reporting			PUSCH (Note5)	N/A		PUSCH (Note5)	N.	/A
PUCCH Report Typ CQI/second PMI			2b	N/A		2b		/A
Physical channel for RI reporting			PUSCH	N/	A	PUSCH	N	/A
PUCCH Report Typ PMI			5	N/A		5		/A
Reporting periodicity		ms	$N_{\text{pd}} = 5$	N/		$N_{\rm pd} = 5$		/A
CQI Delay cqi-pmi-ConfigurationIndex		ms	10 or 11 3	N/		10 or 11 3		/A /^
ri-ConfigIndex	JIIIIUUU		805 (Note 6)	N/		805 (Note 6)		<u>/A</u> /A
ACK/NACK feedback	ck mode		Multiplexing	N/		Multiplexing		/A /A
PDSCH scheduled			3,4,		, :	3,4,		
Timing offset betwe		us	0, 1,			(
Frequency offset be		Hz	C)		()	

- Note1: Reference measurement channel RC.10 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 2: REs for antenna ports 0 and 1 CRS have zero transmission power.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: N/A.
- Note 5: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
- Note 6: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.3 CQI reporting under fading conditions

9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands can be used for frequently-selective scheduling. To account for sensitivity of the input SNR the sub-band CQI reporting under frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.1.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)

9.3.1.1.1 FDD

For the parameters specified in Table 9.3.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.1-1 Sub-band test for single antenna transmission (FDD)

Parai	Parameter		Test 1 Test :			st 2
Band	Bandwidth		10 MHz			
Transmiss	sion mode			1 (p	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB		(0	
allocation	σ	dB		(0	
SNR (Note 3)	dB	9	10	14	15
	(j) or	dB[mW/15kHz]	-89	-88	-84	-83
N	$N_{oc}^{(j)}$		-98 -98		98	
Propagation	Propagation channel		Clause B.2.4 with $\tau_d = 0.45 \mu$ a = 1, $f_D = 5 \mathrm{Hz}$			
Antenna co	onfiguration			1:	x 2	
Reportin	g interval	ms			5	
CQI delay		ms			8	
Reporting mode				PUSCH 3-0		
Sub-band size		RB		6 (full size)		
	er of HARQ iissions		1			

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.1.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE Category	≥1	≥1

9.3.1.1.2 TDD

For the parameters specified in Table 9.3.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.2-1 Sub-band test for single antenna transmission (TDD)

Parameter		Unit	Test 1 Test 2			t 2
Bandwidth		MHz		10 MHz		
Transmiss	Transmission mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0	
power	$ ho_{\scriptscriptstyle B}$	dB		(0	
allocation	σ	dB		(0	
Uplink d configu				:	2	
Special s configu					4	
SNR (N	Note 3)	dB	9	10	14	15
$\hat{I}_{o}^{(}$	$\hat{I}_{or}^{(j)}$		-89	-88	-84	-83
N_{c}	$N_{oc}^{(j)}$		-98 -98			8
Propagation channel			7	$\tau_d = 0.45$	3.2.4 with 5 <i>μ</i> s, <i>a</i> = = 5 Hz	
Antenna co	nfiguration			1 x 2		
Reporting	g interval	ms			5	
CQI d		ms			or 11	
Reportin				PUSC	CH 3-0	
Sub-band size		RB		6 (full size)		
Max number of HARQ transmissions				1		
	ACK/NACK feedback mode				lexing	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subhand or widehand CQI cannot be applied.						

SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.3 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.1.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE Category	≥1	≥1

9.3.1.1.3 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band:
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to ε .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.3-1 Sub-band test for single antenna transmission (FDD)

D		1124		Tes	t 1		Tes	st 2
Parameter		Unit	Cell 1 Cell 2 and 3				Cell 2 and 3	
Bandwidth		MHz		10			1	0
PDSCH transmission	on mode		1		Note 10	1		Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0		0)
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	1		()
	σ	dB		0)
Propagation con	dition		Clause with Td us, a =	= 0.45 1, fd =	EVA5 Low antenna correlation	Clause I with To 0.45 us 1, fd = 5	d = , a =	EVA5 Low antenna correlation
Antenna configu	ration			1x			1)	
\widehat{E}_s/N_{oc2} (Not	e 1)	dB	4	5	Cell 2: 12 Cell 3: 10	14	15	Cell 2: 12 Cell 3: 10
(:)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (N	ote 7)	N/A	-98 (No	te 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	ote 8)	N/A	-98 (No	te 8)	N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (N	ote 9)	N/A	-93 (No	te 9)	N/A
Subframe Configu	uration		Non-M	IBSFN	Non-MBSFN	Non-MB	SFN	Non-MBSFN
Cell Id			C)	Cell 2: 6	0		Cell 2: 6
					Cell 3: 1	Cell 3:		
Time Offset between	en Cells	μs	Cell 2: 3 usec Cell 3: -1usec		Cell 2: 3 usec Cell 3: -1usec		-1usec	
Frequency Shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz			
ABS pattern (No	ote 2)		N/	/A	01010101 01010101 01010101 01010101 01010101	N/A		01010101 01010101 01010101 01010101 01010101
RLM/RRM Measu Subframe Pattern			0000 0000 0000 0000	0100 0100 0100	N/A	00000° 00000° 00000° 00000°	100 100 100	N/A
CSI Subframe Sets	C _{CSI,0}		0101 0101 0101 0101 0101	0101 0101 0101 0101	N/A	01010 ² 01010 ² 01010 ² 01010 ²	101 101 101	N/A
(Note 3)	C _{CSI,1}		1010 1010 1010 1010 1010	1010 1010 1010	N/A	101010 101010 101010 101010 101010	010 010 010	N/A
Number of control OFDM symbols				3				3
Max number of HARQ transmissions				1		1		1
CQI delay		ms				3		
Reporting interval (Note 13)	ms				0		
Reporting mo		-			PUSC			
Sub-band siz		RB			6 (full			

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
- Note 11: Reference measurement channel in Cell 1 RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 12: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 13: The CSI reporting is such that reference subframes belong to Ccsi,0.

Table 9.3.1.1.3-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
3	0.01	0.01
UE Category	≥1	≥1

9.3.1.1.4 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.4-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to ε .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Table 9.3.1.1.4-1: Sub-band test for single antenna transmission (TDD)

Parameter		Unit	Test 1			Test 2		
Parameter			Се	II 1	Cell 2 and 3	Ce	Cell 1 Cell 2 and	
Bandwidth		MHz			10			0
PDSCH transmission				1	Note 10		1	Note 10
Uplink downlink con					1			1
Special subfra configuration				4	4		4	4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		()		()
allocation	$ ho_{\scriptscriptstyle B}$	dB			0			0
	σ	dB))
Propagation con	dition				EVA5 Low antenna correlation	With 1d = 0.45 Low ante		EVA5 Low antenna correlation
Antenna configu	ration			1)	x2		1:	x2
\widehat{E}_s/N_{oc2} (Not	te 1)	dB	4	5	Cell 2: 12 Cell 3: 10	14	15	Cell 2: 12 Cell 3: 10
(;)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (N	lote 7)	N/A	-98 (N	lote 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98 (Note 8)		N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (Note 9) N/A		-93 (Note 9)		N/A	
Subframe Configu	uration		Non-M	1BSFN	Non-MBSFN	Non-MBSFN		Non-MBSFN
Cell Id			()	Cell 2: 6 Cell 3: 1	0 Cell 2: 6 Cell 3: 1		Cell 3: 1
Time Offset between	en Cells	μs			3 usec -1usec			3 usec -1usec
Frequency shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz					
ABS pattern (No	•		N.	/A	0100010001 0100010001	N,	/A	0100010001 0100010001
RLM/RRM Measu Subframe Pattern			00000	00001 00001	N/A	00000	00001 00001	N/A
CSI Subframe Sets	C _{CSI,0}		01000 01000		N/A	01000 01000	10001	N.A
(Note 3)	C _{CSI,1}		10001	01000 01000	N/A	10001	01000 01000	N/A
Number of control OFDM						12201		2
symbols					3		·	3
Max number of HARQ					1			1
transmissions					•	4		•
CQI delay	Note 12\	ms				4		
Reporting interval (Reporting mo		ms				0 CH 3-0		
Sub-band siz		RB			6 (full			
		ועט	 	Multip	·	3126)	Multin	lexing
ACK/NACK feedback mode			<u> </u>	ινιαιαρ	no Alling	l	iviuitip	noning

- Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 2: ABS pattern as defined in [9].
- Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 6: Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.
- Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
- Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
- Note 10: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
- Note 11: Reference measurement channel in Cell 1 RC.3 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 12: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 13: The CSI reporting is such that reference subframes belong to Ccsi,0.

UE Category

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
ε	0.01	0.01

≥1

Table 9.3.1.1.4-2 Minimum requirement (TDD)

9.3.1.2 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

9.3.1.2.1 FDD

For the parameters specified in Table 9.3.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $> \gamma$.
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.1.2.1-1 Sub-band test for FDD

Parameter		Unit	Te	st 1	Tes	st 2
Band	MHz		10	MHz		
Transmission mode				!	9	
	$ ho_{\scriptscriptstyle A}$	dB			0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	P_c	dB			0	
	σ	dB			0	
SNR (Note 3)	dB	4	5	11	12
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-87	86
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			98
Propagation channel			Clause	B.2.4 wi a = 1. <i>f</i>	th $\tau_d = 0$ $T_D = 5 \text{Hz}$	
Antenna co	onfiguration				<u>в</u> 2	
	ing Model		As si	pecified in		B 4 3
	nce signals		7 10 0		a ports 0	D. 1.0
	nce signals		Α	ntenna p	_	16
CSI-RS periodicity a	and subframe offset				/ 1	
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$ CSI-RS reference signal configuration					4	
CodeBookSubsetRestriction bitmap				000001		
Reporting interval (Note 4)		ms			5	
CQI delay		ms		8		
Reportir	ng mode			PUSC	CH 3-1	
Sub-ba	nd size	RB		6 (ful	l size)	
	RQ transmissions				1	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.8 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.3.1.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	40	40
γ	1.1	1.1
UE Category	≥1	≥1

9.3.1.2.2 TDD

For the parameters specified in Table 9.3.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.1.2.2-1 Sub-band test for TDD

Parai	meter	Unit	Те	st 1	Tes	st 2
Band	lwidth	MHz		10 MHz		
Transmiss	sion mode				9	
Uplink downlin	k configuration				2	
Special subfran	ne configuration				4	
	$ ho_{\scriptscriptstyle A}$	dB		-	0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0	
allocation	P_c	dB			0	
	σ	dB			0	
SNR (I	Note 3)	dB	4	5	11	12
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-94	-93	-87	-86
N	(j) oc	dB[mW/15kHz]	-9	98	-9	98
			Clause	B.2.4 wi	th $\tau_d = 0$).45 μs,
Propagation channel			$a = 1, f_D = 5 \text{ Hz}$			
Antenna co	onfiguration			2	x2	
Beamforming Model			As sp	pecified in	n Section	B.4.3
CRS reference signals				Antenn	a port 0	
	CSI reference signals		Antenna port 15,16		6	
CSI-RS periodicity	and subframe offset			5	/ 3	
$T_{\mathrm{CSI-RS}}$	$/\Delta_{ extsf{CSI-RS}}$			5,	7 3	
CSI-RS reference :	signal configuration				4	
CodeBookSubset	Restriction bitmap			000	0001	
Reporting into	erval (Note 4)	ms			5	
CQI delay		ms	10			
Reporting mode				PUSC	CH 3-1	
Sub-ba	RB	6 (full size)				
Max number of HARQ transmissions 1						
ACK/NACK feedback mode Multiplexing						
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based or			ed on			
CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband				bband		
or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)						
Note 2: Reference measurement channel RC.8 TDD according to Table A.4-1 with one/two			'two			
	sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.					
	For each test, the minimum requirements shall be fulfilled for at least one of the two			two		
	nd the respective wan					
	OCI format 0 with a trig					
SF#3 and	#8 to allow aperiodic	CQI/PMI/RI to be tran	nsmitted	on uplink	SF#2 an	id #7.

Table 9.3.1.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	2	2
β[%]	40	40
γ	1.1	1.1
UE Category	≥1	≥1

9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by the reporting variance, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. The purpose is to verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

9.3.2.1.1 FDD

For the parameters specified in Table 9.3.2.1.1-1 and Table 9.3.2.1.1-3, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.1-2 and Table 9.3.2.1.1-4 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The applicability of the requirement with 5MHz bandwidth as specificed in Table 9.3.2.1.1-3 and Table 9.3.2.1.1-4 is defined in 9.1.1.1.

Table 9.3.2.1.1-1 Fading test for single antenna (FDD)

Parameter		Unit	Test 1 Test		st 2	
Band	width	MHz		10 l	ИНz	
Transmiss	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
SNR (I	Note 3)	dB	6	7	12	13
	(j) or	dB[mW/15kHz]	-92	-91	-86	-85
	(j) oc	dB[mW/15kHz]	-98 -98		98	
Propagation	on channel		EPA5			
	tion and onfiguration		High (1 x 2)			
	ng mode		PUCCH 1-0			
	periodicity	ms	$N_{\rm pd} = 2$			
CQI	delay	ms	8			
	channel for porting		PUSCH (Note 4)			
PUCCH Report Type				4		
cqi-pmi- ConfigurationIndex				,	1	
Max number	er of HARQ issions			1		

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.1 FDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.4 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Table 9.3.2.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

Table 9.3.2.1.1-3 Fading test for single antenna (FDD)

meter	Unit	Tes	st 1	Tes	st 2
	MHz	5 MHz			
on mode		1 (port 0)			
$ ho_{\scriptscriptstyle A}$	dB		()	
$ ho_{\scriptscriptstyle B}$	dB		()	
σ	dB		()	
3)	dB	6	7	12	13
	dB[mW/15kHz]	-92	-91	-86	-85
	dB[mW/15kHz]	-(98	-9	8
n channel		EPA5			
		High (1 x 2)			
		, , ,			
periodicity	ms				
	ms	8			
	PUSCH (Note 4)				
				·	
ероп туре				}	
onIndex			1	1	
transmissions 1					
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.14 FDD according to Table A.4-1 for Category ≥ 2 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.15 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.Note 3: For					
	ρ _B σ 3) n channel and infiguration mode periodicity hannel for ng eport Type fonIndex er of HARQ ens lif the UE repo subframe SF# than SF#(n-4) eNB downlink Reference me A.4-1 for Cate FDD as descr Table A.4-1 for Pattern OP.1/	on mode P _A dB P _B dB σ σ σ σ σ σ σ σ	on mode P _A dB P _B dB S on mode	on mode	

Table 9.3.2.1.1-4 Minimum requirement (FDD)

in uplink subframe SF#5, #7, #1 and #3.

one of the two SNR(s) and the respective wanted signal input level.

To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

9.3.2.1.2 TDD

Note 4:

For the parameters specified in Table 9.3.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.2-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Table 9.3.2.1.2-1 Fading test for single antenna (TDD)

Parai	meter	Unit	Test 1 Test 2		st 2	
Band	lwidth	MHz		10 [MHz	
Transmiss	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
	downlink uration			2	2	
config	subframe uration			4	4	
SNR (I	Note 3)	dB	6	7	12	13
10	(j) or	dB[mW/15kHz]	-92 -91		-86	-85
N	oc (j)	dB[mW/15kHz]	-98 -98		98	
Propagation	on channel		EPA5			
	tion and			High	(1 x 2)	
	onfiguration				` '	
	ng mode		PUCCH 1-0			
	periodicity	ms	$N_{\rm pd} = 5$			
	delay	ms	10 or 11			
	channel for porting		PUSCH (Note 4)			
PUCCH R	eport Type		4			
cqi-	pmi- ationIndex		3			
	er of HARQ issions		1			
	K feedback ode			Multip	lexing	
Note 1: If the UE reports in an available uplink reporting instance at						

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.1 TDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and RC.4 TDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

Table 9.3.2.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

9.3.2.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.3.2.2.1 FDD

For the parameters specified in Table 9.3.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.1-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time:
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Table 9.3.2.2.1-1 Fading test for FDD

Parar	meter	Unit	nit Test 1		Test 2	
Band	width	MHz		10 l	ИНz	
Transmission mode				(9	
	$ ho_{\scriptscriptstyle A}$	dB		()	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	P_c	dB		-	3	
	σ	dB		-	3	
SNR (I	Note 3)	dB	2	3	7	8
\hat{I}_a^i	(j) or	dB[mW/15kHz]	-96	-95	-91	-90
N	(<i>j</i>) oc	dB[mW/15kHz]	-9	8	-6	8
Propagation	on channel		EPA5			
	tenna configuration		ULA High (4 x 2)			
Beamforming Model			As specified in Section B.4.3			B.4.3
Cell-specific reference signals				Antenna ports 0,1		
	CSI reference signals		Antenna ports 15,,18			18
	and subframe offset			5,	/1	
T _{CSI-RS} /	$T_{ extsf{CSI-RS}}$ / $\Delta_{ extsf{CSI-RS}}$					
	RS reference signal configuration		2			
	Restriction bitmap		0x0000 0000 0000 0001		001	
Reportir	<u> </u>		PUCCH 1-1			
Reporting periodicity		ms	$N_{\rm pd} = 5$			
CQI delay		ms	8			
Physical channel for CQI/ PMI				PUSCH	(Note 4)	
reporting PUCCH Report Type for CQI/PMI					>	
PUCCH channel for RI reporting					<u>²</u> Format 2	
PUCCH report type for RI					3	
cqi-pmi-ConfigurationIndex					2	
	igIndex				<u>-</u> 1	
	ARQ transmissions				<u>. </u>	

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.7 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.

Table 9.3.2.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

9.3.2.2.2 TDD

For the parameters specified in Table 9.3.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.2-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Table 9.3.2.2.2-1 Fading test for TDD

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter		Unit	Test 1 Test 2		st 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Band	width	MHz		10 MHz		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transmiss	sion mode					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Special subframe configuration				4	4	
allocation P_c Q_c		$ ho_{\scriptscriptstyle A}$	dB		()	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ ho_{\scriptscriptstyle B}$	dB		()	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	allocation	P_{c}	dB		-	6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		σ	dB		-	3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNR (N	Note 3)	dB	1	2	7	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{I}_o^{(i)}$	(j) r	dB[mW/15kHz]	-97	-96	-91	-90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N_{c}			-9	18	-6	98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Propagation channel						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Correlation and antenna configuration			XP High (8 x 2)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Beamforming Model						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŭ						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Antenna ports 15,,22			,22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5/	' 3	
CodeBookSubsetRestriction bitmap 0x0000 0000 0000 0000 0000 0000 0000 0							
CodeBookSubsetRestriction bitmap 0000 0001 Reporting mode PUCCH 1-1 (Sub-mode: 2) Reporting periodicity ms Npd = 5 CQI delay ms 10 Physical channel for CQI/ PMI reporting PUSCH (Note 4) PUCCH Report Type for CQI/ PMI 2c	CSI-RS reference s	signal configuration					
	CodeBookSubset	Restriction bitmap		0000 0001			
CQI delay ms 10 Physical channel for CQI/ PMI reporting PUSCH (Note 4) PUCCH Report Type for CQI/ PMI 2c				PUCCH 1-1 (Sub-mode: 2)		le: 2)	
Physical channel for CQI/ PMI reporting PUSCH (Note 4) PUCCH Report Type for CQI/ PMI 2c	Reporting periodicity		ms				
reporting PUSCH (Note 4) PUCCH Report Type for CQI/ PMI 2c			ms	10			
	_				PUSCH	(Note 4)	
					_	-	
					PUCCH	Format 2	
PUCCH report type for RI 3	PUCCH report type for RI						
cqi-pmi-ConfigurationIndex 3	cqi-pmi-ConfigurationIndex					_	
ri-ConfigIndex 805 (Note 5)	ri-Conf	igIndex			805 (N	lote 5)	
Max number of HARQ transmissions 1					•	1	
ACK/NACK feedback mode Multiplexing							

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.7 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.
- Note 5: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

Table 9.3.2.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
<i>α</i> [%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

9.3.3.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)

9.3.3.1.1 FDD

For the parameters specified in Table 9.3.3.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.1-2 and by the following

- a) a sub-band differential CQI offset level of +2 shall be reported at least $\alpha\%$ for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.3.1.1-1 Sub-band test for single antenna transmission (FDD)

Parameter		Unit	Test 1	Test 2
Band	width	MHz	10 MHz	10 MHz
Transmiss	sion mode		1 (port 0)	1 (port 0)
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0	0
allocation	σ	dB	0	0
$I_{ot}^{(j)}$ for	RB 05	dB[mW/15kHz]	-102	-93
$I_{ot}^{(j)}$ for F	RB 641	dB[mW/15kHz]	-93 -93	
$I_{ot}^{(j)}$ for R	B 4249	dB[mW/15kHz]	-93 -102	
\hat{I}_{c}^{0}	(j) or	dB[mW/15kHz]	-94 -94	
	er of HARQ issions			1
			Clause B.2.4 wi	th $\tau_d = 0.45 \mu\text{s}$,
Propagation	on channel		$a = 1, f_D = 5 \text{ Hz}$	
Reportin	g interval	ms	5	
Antenna co	onfiguration		1 x 2	
	delay	ms	8	
	ng mode		PUSCH 3-0	
Sub-ba	nd size	RB	6 (full size)	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Table 9.3.3.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	≥1	≥1

9.3.3.1.2 TDD

For the parameters specified in Table 9.3.3.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.2-2 and by the following

- a) a sub-band differential CQI offset level of +2 shall be reported at least $\alpha\%$ for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.3.1.2-1 Sub-band test for single antenna transmission (TDD)

Parameter		Unit	Test 1	Test 2
Band	width	MHz	10 MHz	10 MHz
Transmiss	ion mode		1 (port 0)	1 (port 0)
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0	0
allocation	σ	dB	0	0
Uplink d configu			2	
Special s configu			4	
$I_{ot}^{(j)}$ for ${\sf I}$	RB 05	dB[mW/15kHz]	-102	-93
$I_{ot}^{(j)}$ for R	RB 641	dB[mW/15kHz]	-93 -93	
$I_{ot}^{(j)}$ for R	B 4249	dB[mW/15kHz]	-93 -102	
\hat{I}_o	j) r	dB[mW/15kHz]	-94	-94
Max numbe transmi			1	
			Clause B.2.4 with	h $ au_d=0.45\mu\mathrm{s},$
Propagatio	n channel		$a = 1, f_D = 5 \text{ Hz}$	
Antenna co	nfiguration		1 x 2	
Reporting		ms	5	
CQI		ms	10 or 11	
Reportin			PUSC	
Sub-ba		RB	6 (full	size)
ACK/NACk mo	de	orts in an available i	Multipl	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel RC.3 TDD according to table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Table 9.3.3.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	≥1	≥1

9.3.3.2 Void

9.3.3.2.1 Void

9.3.3.2.2 Void

9.3.4 UE-selected subband CQI

The accuracy of UE-selected subband channel quality indicator (CQI) reporting under frequency-selective fading conditions is determined by the relative increase of the throughput obtained when transmitting on the UE-selected subbands with the corresponding transport format compared to the case for which a fixed format is transmitted on any subband in set *S* of TS 36.213 [6]. The purpose is to verify that correct subbands are accurately reported for frequency-selective scheduling. To account for sensitivity of the input SNR the subband CQI reporting under frequency-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.4.1 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)

9.3.4.1.1 FDD

For the parameters specified in Table 9.3.4.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.1.1-1 Subband test for single antenna transmission (FDD)

Para	meter	Unit	Tes	st 1	Tes	st 2
Band	dwidth	MHz		10 N	ИНz	
Transmis	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
SNR (Note 3)	dB	9	10	14	15
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-89	-88	-84	-83
N	oc (j)	dB[mW/15kHz]	-9)8	-6	98
			Clause	B.2.4 wit	th $\tau_d = 0$).45 <i>μ</i> s,
Propagati	on channel		$a = 1, f_D = 5 \text{ Hz}$			
Reportin	g interval	ms	5 8			
CQI	delay	ms			_	
	ng mode		PUSCH 2-0			
	er of HARQ				1	
	nissions					
	d size (k)	RBs	3 (full size)			
	of preferred nds (<i>M</i>)			į	5	
Note 1:	Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)					
/	Reference measurement channel RC.5 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.					
	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input					

Table 9.3.4.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
γ	1.2	1.2
UE Category	≥1	≥1

9.3.4.1.2 TDD

level.

For the parameters specified in Table 9.3.4.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.1.2-1 Sub-band test for single antenna transmission (TDD)

Para	meter	Unit	Tes	st 1	Tes	st 2
Band	dwidth	MHz		10 N	ИНz	
Transmis	sion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
	downlink uration			2	2	
	subframe uration			4	4	
SNR (Note 3)	dB	9	10	14	15
\hat{I}	(j) or	dB[mW/15kHz]	-89	-88	-84	-83
N	(j) oc	dB[mW/15kHz]	-6	98	-6)8
Propagati	on channel		Clause B.2.4 with $\tau_d = 0.45 \mu$		0.45μ s,	
. 0			$a = 1, f_D = 5 \text{ Hz}$			
Reportin	g interval	ms		į	5	
CQI	delay	ms		10 c	or 11	
	ng mode			PUSC	CH 2-0	
	er of HARQ				1	
	nissions		0 (()			
	d size (k)	RBs	3 (full size)			
	of preferred nds (<i>M</i>)			Ę	5	
	K feedback		Multiplexing			
	ode	rta in an available i	ınlink ron	orting inc	tongo ot	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.5 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as						
A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2. Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.				r at		

Table 9.3.4.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
γ	1.2	1.2
UE Category	≥1	≥1

9.3.4.2 Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)

9.3.4.2.1 FDD

For the parameters specified in Table 9.3.4.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting

from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.2.1-1 Subband test for single antenna transmission (FDD)

	ameter	Unit	Те	st 1		st 2
	dwidth	MHz			MHz	
Transmi	ssion mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
SNR	(Note 3)	dB	8	9	13	14
j	$\hat{f}^{(j)}_{or}$	dB[mW/15kHz]	-90	-89	-85	-84
1	$V_{oc}^{(j)}$	dB[mW/15kHz]	-9	98	-9	98
			Clause	B.2.4 wit	th $\tau_d = 0$).45 μs
Propagat	ion channel				$\frac{1}{D} = 5 \text{ Hz}$ $= 2$	
Reporting	periodicity	ms		N _P	= 2	
	delay	ms		3		
	channel for eporting		PUSCH (Note 4)			
PUCCH I	Report Type band CQI		4			
PUCCH I	Report Type band CQI		1			
	per of HARQ				,	
	nissions			•	1	
Subbar	nd size (k)	RBs		6 (full	l size)	
	of bandwidth				3	
	K				1	
cqi-pmi-(ConfigIndex			•	1	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2. Note 3: For each test, the minimum requirements shall be fulfilled for at						
NOTE 3:		the minimum requine two SNR(s) and t				

- Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.
- Note 5: CQI reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and data scheduling according to the most recent subband CQI report for bandwidth part
- Note 6: In the case where wideband CQI is reported, data is to be scheduled according to the most recently used subband CQI report.

Table 9.3.4.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
γ	1.15	1.15
UE Category	≥1	≥1

9.3.4.2.2 TDD

For the parameters specified in Table 9.3.4.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Table 9.3.4.2.2-1 Sub-band test for single antenna transmission (TDD)

	meter	Unit	Test 1 Test 2		st 2	
	dwidth	MHz			MHz	
Transmis	sion mode			1 (pc		
Downlink	$ ho_{\scriptscriptstyle A}$	dB		()	
power allocation	$ ho_{\scriptscriptstyle B}$	dB)	
	σ	dB		()	
config	downlink guration			2	2	
	subframe guration			4	4	
	(Note 3)	dB	8	9	13	14
	F(j) or	dB[mW/15kHz]	-90	-89	-85	-84
	$I_{oc}^{(j)}$	dB[mW/15kHz]	-9	98	-9	98
_			Clause	B.2.4 wit	$\tau_d = 0$.45 <i>μ</i> s,
Propagati	ion channel			a = 1, f	$_{D} = 5 \text{ Hz}$	
Reporting	periodicity	ms			= 5	
CQI	delay	ms		10 c		
	channel for			PUSCH	(Note 4)	
	eporting Report Type					
	band CQI		4			
	Report Type		1			
	oand CQI er of HARQ		'			
	nissions			1	1	
	d size (k)	RBs		6 (full	size)	
	f bandwidth			3	3	
раг	ts (J) K				1	
cqi-pmi-C	ConfigIndex			3		
ACK/NAC	K feedback			Multip	lexina	
	ode		l		-	
		rts in an available u n based on CQI es				rame
		SF#(n-4), this report				
		olied at the eNB dov				
		easurement channe				
		e/two sided dynamio Annex A.5.2.1/2.	COUNG	Pallem C	P. 1/2 1D	D as
Note 3:	For each test,	the minimum requi				
		of the two SNR(s) and the respective wanted signal input			al input	
	level. To avoid collis	id collisions between CQI reports and HARQ-ACK it is				
	necessary to report both on PUSCH instead of PUCCH. PDCCH					
	DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow					
	periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.					
	subframe SF#7 and #2. CQI reports for the short subband (having 2RBs in the last					
	bandwidth part) are to be disregarded and data scheduling					
	according to the most recent subband CQI report for bandwidth part				dth part	
	with j=1. In the case wh	nere wideband CQI	is reporte	ed, data i	s to be	
		cording to the most				I
	report.					

Table 9.3.4.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
γ	1.15	1.15
UE Category	≥1	≥1

9.3.5 Additional requirements for enhanced receiver Type A

The purpose of the test is to verify that the reporting of the channel quality is based on the receiver of the enhanced Type A. Performance requirements are specified in terms of the relative increase of the throughput obtained when the transport format is that indicated by the reported CQI subject to an interference model compared to the case with a white Gaussian noise model, and a requirement on the minimum BLER of the transmitted transport formats indicated by the reported CQI subject to an interference model.

9.3.5.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

9.3.5.1.1 FDD

For the parameters specified in Table 9.3.5.1.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.1.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Table 9.3.5.1.1-1 Fading test for single antenna (FDD)

	ameter	Unit	Cell 1	Cell 2
Bandwidth		MHz	10 MHz	
Transmission mode				ort 0)
Cyclic Prefix			Normal	Normal
C	ell ID		0	1
	R (Note 8)	dB	-2	N/A
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	N/A
Propaga	tion channel		EPA5	Static (Note 7)
	lation and configuration		Low (1 x 2)	(1 x 2)
DIP	(Note 4)	dB	N/A	-0.41
Ref	erence ment channel		Note 2	R.2 FDD
	ting mode		PUCCH 1-0	N/A
Reportin	g periodicity	ms	$N_{\rm pd} = 2$	N/A
	l delay	ms	8	N/A
Physica	I channel for reporting		PUSCH (Note 3)	N/A
PUCCH	Report Type		4	N/A
cq	ni-pmi- urationIndex		1	N/A
Max num	ber of HARQ missions		1	N/A
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel RC.1 FDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.4 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2. Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3. Note 4: The respective received power spectral density of each interfering cell relative to Nocal part of the subframe and the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of each interfering cell relative to Nocal part of the subframe spectral density of the subf				
Note 5: Note 6: Note 7:	specified in clause B.5.1. Note 5: Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded. Note 6: Both cells are time-synchronous.			

Table 9.3.5.1.1-2 Minimum requirement (FDD)

SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause

γ	1.8
UE Category	≥1

9.3.5.1.2 TDD

Note 8:

For the parameters specified in Table 9.3.5.1.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.1.2-2 and by the following

a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;

b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%

Table 9.3.5.1.2-1 Fading test for single antenna (TDD)

Parameter	Unit	Cell 1	Cell 2
Bandwidth	MHz	10 MHz	
Transmission mode		1 (port 0)	
Uplink downlink		2	
configuration		2	
Special subframe		4	
configuration		·	
Cyclic Prefix		Normal	Normal
Cell ID		0	1
SINR (Note 8)	dB	-2	N/A
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98
Propagation channel		EPA5	Static (Note 7)
Correlation and antenna configuration		Low (1 x 2)	(1 x 2)
DIP (Note 4)	dB	N/A	-0.41
Reference		Note 2	R.2A TDD
measurement channel		11010	K.ZA IDD
Reporting mode		PUCCH 1-0	N/A
Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A
CQI delay	ms	10 or 11	N/A
Physical channel for CQI reporting		PUSCH (Note 3)	N/A
PUCCH Report Type		4	N/A
cqi-pmi- ConfigurationIndex		3	N/A
Max number of HARQ transmissions		1	N/A
ACK/NACK feedback mode		Multiplexing	N/A

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.1 TDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and RC.4 TDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- Note 4: The respective received power spectral density of each interfering cell relative to N_{oc} ' is defined by its associated DIP value as specified in clause B.5.1.
- Note 5: Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded.
- Note 6: Both cells are time-synchronous.
- Note 7: Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.
- Note 8: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Table 9.3.5.1.2-2 Minimum requirement (TDD)

γ	1.8
UE Category	≥1

9.3.5.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.3.5.2.1 FDD

For the parameters specified in Table 9.3.5.2.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.2.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Table 9.3.5.2.1-1 Fading test for single antenna (FDD)

Parameter	Unit	Cell 1	Cell 2
Bandwidth	MHz	10 MHz	
Transmission mode		9	
Cyclic Prefix		Normal	Normal
Cell ID		0	1
SINR (Note 8)	dB	-2	N/A
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	N/A
Propagation channel		EPA5	Static (Note 7)
Correlation and antenna configuration		Low (2 x 2)	(1 x 2)
DIP (Note 4)	dB	N/A	-0.41
Cell-specific reference signals	-	Antenna ports 0,1	Antenna port 0
CSI reference signals		Antenna ports 15,16	N/A
CSI-RS periodicity and subframe offset		5/1	N/A
CSI-RS reference signal configuration		2	N/A
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	N/A	1 / 0010000000000 000
CodeBookSubsetRestr iction bitmap		001111	N/A
Reference measurement channel		Note 2	R.2 FDD
Reporting mode		PUCCH 1-1	N/A
Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A
CQI delay	ms	8	N/A
Physical channel for CQI/PMI reporting		PUSCH (Note 3)	N/A
PUCCH Report Type for CQI/PMI		2	N/A
PUCCH channel for RI reporting		PUCCH Format 2	N/A
PUCCH Report Type for RI		3	N/A
cqi-pmi- ConfigurationIndex		2	N/A
ri-ConfigIndex		1	N/A
Max number of HARQ transmissions		1	N/A

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.11 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.
- Note 4: The respective received power spectral density of each interfering cell relative to N_{oc} is defined by its associated DIP value as specified in clause B.5.1.
- Note 5: Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. Intefering cell is fully loaded.
- Note 6: Both cells are time-synchronous.
- Note 7: Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.

Note 8: SINR corresponds to \hat{E}_s/N_{oc} of Cell 1 as defined in clause 8.1.1.

Table 9.3.5.2.1-2 Minimum requirement (FDD)

γ	1.8
UE Category	≥1

9.3.5.2.2 TDD

For the parameters specified in Table 9.3.5.2.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.2.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be $\geq \gamma$;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Table 9.3.5.2.2-1 Fading test for single antenna (TDD)

Parameter	Unit	Cell 1	Cell 2
Bandwidth	MHz	10 MHz	
Transmission mode		9	
Uplink downlink			2
configuration		2	
Special subframe		4	
configuration		4	
Cyclic Prefix		Normal	Normal
Cell ID		0	1
SINR (Note 8)	dB	-2	N/A
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98
Propagation channel		EPA5	Static (Note 7)
Correlation and		Low (2 x 2)	(1 x 2)
antenna configuration DIP (Note 4)	dB	N/A	-0.41
	UD		
Cell-specific reference signals		Antenna ports 0,1	Antenna port 0
CSI reference signals		Antenna ports 15,16	N/A
CSI-RS periodicity and subframe offset		5/3	N/A
CSI-RS reference signal configuration		2	N/A
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	N/A	3 / 001000000000 0000
CodeBookSubsetRestr iction bitmap		001111	N/A
Reference measurement channel		Note 2	R.2A TDD
Reporting mode		PUCCH 1-1 (Sub-mode: 2)	N/A
Reporting periodicity	ms	$N_{pd} = 5$	N/A
CQI delay	ms	10	N/A
Physical channel for CQI/PMI reporting		PUSCH (Note 3)	N/A
PUCCH Report Type for CQI/PMI		2c	N/A
Physical channel for RI reporting		PUCCH Format 2	N/A
PUCCH Report Type for RI		3	N/A
cqi-pmi- ConfigurationIndex		3	N/A
ri-ConfigIndex		805 (Note 9)	N/A
Max number of HARQ transmissions		1	N/A
ACK/NACK feedback mode		Multiplexing	N/A
Note 1: If the UE reports in an available uplink reporting instance at			

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.11 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.

Note 4: The respective received power spectral density of each interfering

	cell relative to $N_{oc}^{}$ is defined by its associated DIP value as
	specified in clause B.5.1.
Note 5:	Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. Intefering cell is fully loaded.
Note 6:	Both cells are time-synchronous.
Note 7:	Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.
Note 8:	SINR corresponds to \widehat{E}_s/N_{oc} of Cell 1 as defined in clause
Note 9:	8.1.1. RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

Table 9.3.5.2.2-2 Minimum requirement (TDD)

γ	1.8
UE Category	≥1

9.3.6 Minimum requirement (With multiple CSI processes)

The purpose of the test is to verify the reporting accuracy of the CQI and the UE processing capability for multiple CSI processes. Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.3.6-1. For UE supports one CSI process, CSI process 2 is configured and the corresponding requirements shall be fulfilled. For UE supports three CSI processes, CSI processes 0, 1 and 2 are configured and the corresponding requirements shall be fulfilled. For UE supports four CSI processes, CSI processes 0, 1, 2 and 3 are configured and the corresponding requirements shall be fulfilled.

Table 9.3.6-1: Configuration of CSI processes

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
CSI-RS resource	CSI-RS signal 0	CSI-RS signal 1	CSI-RS signal 0	CSI-RS signal 1
CSI-IM resource	CSI-IM resource 0	CSI-IM resource 0	CSI-IM resource 1	CSI-IM resource 2

9.3.6.1 FDD

For the parameters specified in Table 9.3.6.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least δ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.1-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.6.1-1: Fading test for FDD

Paramet Bandwid Transmission		Unit	TD									
	dth	MHz	TP1		TP2		TP1 TP2		22			
I ransmissior	Bandwidth				MHz		10 MHz					
			10		1	0	10 10		0			
	$ ho_{\scriptscriptstyle A}$	dB		(0							
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		(0			()			
allocation	P_c	dB	-3	3	()	-	3	()		
	σ	dB		-:	3			-	3			
SNR (Not	te 7)	dB	10	11	7	8	14	15	9	10		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-91	-90	-84	-85	-89	-88		
$N_{oc}^{(j)}$		dB[mW/15kHz]		-6	98			-6	98			
Propagation of	channel		EPA 5 Low Clause B.2.4.1 with $\tau_d = 0.45 \mu \text{s},$ $a = 1,$ $f_D = 5 \text{Hz}$		EPA 5 Low $ au_{c}$		Clause wi $ au_d = 0$ $a = f_D = 0$	th .45 <i>μ</i> s, :1,				
Antenna confi			4x	2	2)		4:	x2	2>	(2		
Beamforming	Model		As spe		Section	B.4.3	As sp		Section	B.4.3		
Timing offset bet		US			<u>) </u>)			
Frequency offset b		Hz		`	0 ports 0,1) ports 0,1			
CSI-RS sig	Ğ		Antenna 15,	a ports	ĺ	/A	Antenr	na ports	N _i			
CSI-RS 0 periodicity and $T_{\text{CSI-RS}}$ / Δ_{C}			5/1		N,	/A	5	/1	N/	'A		
CSI-RS 0 confi	iguration		0		N,		0		N/			
CSI-RS sig			N/A		Antenna ports 15,16		N	/A	Antenn 15,			
CSI-RS 1 periodicity and $T_{\text{CSI-RS}}$ / Δ_{C}			N/A		5/1		N/A		5/	′1		
CSI-RS 1 confi	iguration		N/A		5				N/A		5	
Zero-power CSI-RS (I _{CSI-RS} / ZeroPowerC			N/A		0000			/A	1 111000 00	000000		
Zero-power CSI-RS			1 / 00100110000 00000		00100110000 N/A		00100	/ 110000 000	N/	'A		
CSI-IM 0 periodicity and $T_{\text{CSI-RS}}$ / Δ_{O}	CSI-RS		5/	5/1 5/1		′1	5	/1	5/	′1		
CSI-IM 0 confi	iguration		2		2	2	2	2	2	2		
CSI-IM 1 periodicity and $T_{\text{CSI-RS}}$ / Δ_{C}			5/	1	N,	/A	5	/1	N/	'A		
CSI-IM 1 confi	iguration		6		N.	/A	(6	N/	'A		
CSI-IM 2 periodicity and $T_{\text{CSI-RS}}$ / Δ_{C}	CSI-RS		N/	A	5/	′1	N	/A	5/	′1		
CSI-IM 2 confi	iguration		N/		,		N	/A	1			
	CSI-RS				RS 0				RS 0			
 	CSI-IM Reporting mode				-IM 0 CH 1-1			PUCC	IM 0			
C	odeBookSubsetR estriction bitmap		0x0		0 0000 0	001	0x0		0 0000 00	001		
	Reporting periodicity	ms		$N_{\rm pd} = 5$ $N_{\rm p}$		N_{pd}	= 5					
CSI process 0 CQI delay		ms		1	0			1	0			
F	Physical channel for CQI/ PMI reporting				(Note 6)				(Note 6)			
	PUCCH Report Type for CQI/PMI			2	2			2	2			
	PUCCH channel		l l	PUCCH	Format 2			PUCCH	Format 2			

	for RI reporting												
	PUCCH report												
	type for RI		;	3	3	3							
	cqi-pmi-			_		_							
	ConfigurationIndex			2	2	<u>)</u>							
	ri-ConfigIndex		,	1	,								
	CSI-RS		CSI-	RS 1	CSI-	RS 1							
	CSI-IM		CSI-	-IM 0	CSI-	IM 0							
	Reporting mode		PUSC	CH 3-1	PUSC	:H 3-1							
	CodeBookSubsetR												
CSI process 1	estriction bitmap		000	0001	000	001							
•	Reporting interval (Note 9)	ms		5	Ę	5							
	CQI delay	ms	1	0	1	Λ							
	Sub-band size	RB	6 (ful		6 (full								
	CSI-RS	ND		RS 0	CSI-								
	CSI-IM			-IM 1	CSI-								
	Reporting mode			CH 3-1	PUSC								
	CodeBookSubsetR												
CSI process 2	estriction bitmap		0x0000 000	0 0000 0000 0001		0 0000 0001							
COI PIOCESS 2	Reporting interval												
	(Note 9)	ms	5		5								
	CQI delay	ms	10		10								
	Sub-band size	RB	6 (full size) (Note 8)		6 (full size) (Note 8)								
	CSI-RS	IND.			CSI-RS 1 CSI-RS 1								
	CSI-IM			·IM 2	CSI-IM 2								
	Reporting mode			CH 3-1	PUSCH 3-1								
	CodeBookSubsetR												
CSI process 3	estriction bitmap		000	0001	000	001							
CC1 P100000 0	Reporting interval			_		_							
	(Note 9)	ms		5	Į.	5							
	CQI delay	ms	1	0	1	0							
	Sub-band size	RB	6 (ful	l size)	6 (full	size)							
CSI process for F	PDSCH scheduling			ocess 2	CSI pro								
	ell ID		0	6	0	6							
	cated CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1							
			Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID							
Quasi-co-located CRS			as Cell 1	as Cell 2	as Cell 1	as Cell 2							
PMI for subframe 2, 3, 4, 7, 8 and 9			0x0000 0000 0000 0001	100000	0x0000 0000 0000 0001	100000							
PMI for subframe 1 and 6			0x0000 0000 0001 0000	100000	0x0000 0000 0001 0000	100000							
Max number of H	ARQ transmissions		1	N/A	1	N/A							
		unlink reporting insta	ance at subframe S		I estimation at a	lote 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not							

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: 3 symbols allocated to PDCCH

Note 3: Reference measurement channel RC.12 FDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.

Note 4: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.

Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.

Table 9.3.6.1-2: Minimum requirement (FDD)

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
α[%]	N/A	2	2	2
β[%]	N/A	40	40	40
δ [%]	10	N/A	N/A	N/A
γ	N/A	N/A	1.02	N/A
UE Category		Š	≥1	

Table 9.3.6.1-3: Minimum median CQI difference between configured CSI processes (FDD)

	CSI process 1	CSI process 2	CSI process 3
CSI process 0	N/A	1	3
UE Category		≥1	

9.3.6.2 TDD

For the parameters specified in Table 9.3.6.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least δ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.2-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;
- e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.6.2-1: Fading test for TDD

Parameter		l lmit	Test 1				Test 2			
		Unit MHz	TF		TP2		TP1 TP2			
Bandwidth					MHz		10 MHz			
Transmission mode			_	0	10			0		0
Uplink downlink cor				2		2	2			2
Special subframe co		ID.		1		1		4	<u> </u>	4
	$ ho_{\scriptscriptstyle A}$	dB			0					
Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB			0)	
anocation	P_c	dB dB		3	3)	-	3	3	0
SNR (Note 7)	σ	dВ	10	11	3 7	8	14	15	9	10
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-91	-90	-84	-85	-89	-88
$N_{oc}^{(j)}$		dB[mW/15kHz]		_(l 98			-9	l 98	
1 voc		GD[, 101(112)	1			1100				NICO
Propagation channe	el		EPA (5 Low	$B.2.4.$ $\tau_d = 0$ $a = 0$	Clause 3.2.4.1 with $a = 0.45 \mu\text{s}$, $a = 1$, $f_D = 5 \text{Hz}$		5 Low	Clause B.2.4.1 with $ au_d = 0.45 \mu \text{s},$ $a = 1,$ $f_D = 5 \text{Hz}$	
Antenna configurati			4)			κ2		x2		x2
Beamforming Mode			As sp		Section	B.4.3	As sp	ecified in		B.4.3
Timing offset betwe		US Uz	1		<u>) </u>				<u>) </u>	
Frequency offset be Cell-specific referen		Hz	Antonno		ports 0,1			Antenna		
CSI-RS signal 0	ice digitals		Antenna ports 15,, 18		<u> </u>	/A	Anteni	na ports		/A
CSI-RS 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	y and subframe offset		5/3		N	/A	15,, 18 5/3		N	/A
CSI-RS 0 configura	tion		0		N	/A	0		N/A	
CSI-RS signal 1			N/A			Antenna ports 15, 16 N/A		//A		na ports , 16
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	y and subframe offset		N/A			5/3 N/A				/3
CSI-RS 1 configura	tion		N,	N/A 5				/A		5
Zero-power CSI-RS I _{CSI-RS} / ZeroPower(N/A		3 / 11100000000 00000			//A	11100	3 / 000000 000
Zero-power CSI-RS I _{CSI-RS} / ZeroPower(3 / 00100110000 00000		N/A		00100	3 / 110000 000	N	/A
CSI-IM 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5,	/3	5.	/3	5	/3	5	/3
CSI-IM 0 configurat	ion		2	2	2	2		2	2	2
CSI-IM 1 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/	/3	N	/A	5	/3	N	/A
CSI-IM 1 configurat			(6	N	/A	(6	N	/A
CSI-IM 2 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		N,	/A	5	/3	N	/A	5	/3
CSI-IM 2 configurat	ion		N,	/A	,	1	N	/A		1
<u></u>	CSI-RS			CSI-	RS 0			CSI-	RS 0	
	CSI-IM				-IM 0				·IM 0	
	Reporting mode			PUCC	CH 1-1			PUCC	CH 1-1	
	CodeBookSubsetR estriction bitmap		0x0	000 000	0 0000 0	001	0x0000 0000 0000 0001		001	
CSI process 0	Reporting periodicity	ms			= 5		N _{pd} = 5			
	CQI delay	ms		1	2			1	2	
	Physical channel for CQI/ PMI			PUSCH	(Note 6)			PUSCH	(Note 6)	
	reporting PUCCH Report				2		2			

	-					
	Type for CQI/PMI					
	PUCCH channel		PUCCH	Format 2	PUCCH	Format 2
	for RI reporting					
	PUCCH report			3	3	3
	type for RI					
	cqi-pmi-			3	3	3
	ConfigurationIndex					
	ri-ConfigIndex			lote 10)	805 (N	
	CSI-RS			RS 1	CSI-	
	CSI-IM			-IM 0	CSI-	
	Reporting mode		PUSC	CH 3-1	PUSC	3H 3-1
001	CodeBookSubsetR		000	0001	000	001
CSI process 1	estriction bitmap					
	Reporting interval	ms		5	5	5
	(Note 9)					
	CQI delay	ms		2	1	
	Sub-band size	RB	6 (ful		6 (full	
	CSI-RS			RS 0	CSI-	
	CSI-IM			-IM 1	CSI-	
	Reporting mode		PUSC	PUSCH 3-1		CH 3-1
	CodeBookSubsetR	0x0000 0000 0001 0x0000		0x0000 0000	0 0000 0001	
CSI process 2	estriction bitmap					
	Reporting interval (Note 9)	ms	5		5	
	CQI delay	ms	1	12		2
	Sub-band size	RB	6 (full size	e) (Note 8)	6 (full size) (Note 8)	
	CSI-RS		CSI-	RS 1	CSI-RS 1	
	CSI-IM		CSI-	-IM 2	CSI-IM 2	
	Reporting mode		PUSC	CH 3-1	PUSC	CH 3-1
	CodeBookSubsetR		000	0001	000	001
CSI process 3	estriction bitmap		000	J00 I	000	001
	Reporting interval (Note 9)	ms		5	Ę	5
	CQI delay	ms	1	2	1	2
	Sub-band size	RB		l size)	6 (full	
CSI process for PE	1	, , ,		ocess 2	CSI pro	
Cell ID	COTT COTTCOMING		0	6	0	6
Quasi-co-located C	SI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
			Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID
Quasi-co-located C	CRS		as Cell 1	as Cell 2	as Cell 1	as Cell 2
PMI for subframe 4	l and 9		0x0000 0000 0000 0001	100000	0x0000 0000 0000 0001	100000
PMI for subframe 3	3 and 8		0x0000 0000 0001 0000	100000	0x0000 0000 0001 0000	100000
Max number of HA	RQ transmissions		1	N/A	1	N/A
ACK/NACK feedba			Multiplexing	N/A	Multiplexing	N/A
	E roporte in an available	unlink roporting inc				

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: 3 symbols allocated to PDCCH
- Note 3: Reference measurement channel RC.12 TDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 4 and 9 from TP1.
- Note 4: TM10 OCNG is transmitted as specified in A.5.2.8 on subframe 3 and 8 from TP1.
- Note 5: TM10 OCNG is transmitted as specified in A.5.2.8 on subframe 3, 4, 8 and 9 from TP2
- Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
- Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3 and #8 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#7 and #2.
- Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.
- Note 10: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

Table 9.3.6.2-2: Minimum requirement (TDD)

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
<i>α</i> [%]	N/A	2	2	2
β[%]	N/A	40	40	40
δ[%]	10	N/A	N/A	N/A
γ	N/A	N/A	1.02	N/A
UE Category			<u>-</u> ≥1	

Table 9.3.6.2-3: Minimum median CQI difference between configured CSI processes (TDD)

	CSI process 1	CSI process 2	CSI process 3
CSI process 0	N/A	1	3
UE Category		≥1	

9.3.7 Minimum requirement PUSCH 3-2

9.3.7.1 FDD

For the parameters specified in Table 9.3.7.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.7.1-2 and by the following.

- a) the ratio of the throughput obtained when transmitting based on UE PUSCH 3-2 reported wideband CQI and subband PMI and that obtained when transmitting based on PUSCH 3-1 reported wideband CQI and wideband PMI shall be $> \alpha$;
- b) The ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS based on UE PUSCH3-2 reported subband CQI and subband PMI and that obtained when transmitting on a randomly selected sub-band in set S based on PUSCH 1-2 reported wideband CQI and subband PMI shall be $\geq \beta$;

The transport block sizes TBS for wideband CQI and subband CQI are selected according to RC.16 FDD for test 1 and according to RC.17 FDD for test 2.

Table 9.3.7.1-1 Sub-band test for FDD

Parameter		Unit	Test 1		Test 2	
Bandy	width	MHz	101		MHz	
PDSCH resou	rce allocation	RB	50PRB		a subbar	nd, 6PRB
Transmiss	ion mode		Т	M6	TM9	
	$ ho_{\scriptscriptstyle A}$	dB		-6	()
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		-6	()
allocation	P_c	dB		-	-:	3
	σ	dB		3	-:	3
SNR (N	lote 3)	dB	[0]	[1]	[5]	[6]
$\hat{I}_{oi}^{()}$	j) r	dB[mW/15kHz]	[-98]	[-97]	[-93]	[-92]
N_a°	(j) oc	dB[mW/15kHz]	-98 -98		-98	-98
Propagatio	n channel		EVA5		EVA5	
Antenna co	nfiguration		4x2 ULA low		4x2 XP high (Note 4)	
Beamform	ing Model			-	B.4.3	
CRS referer	nce signals		Antenna ports 0, 1, 2, 3		Antenna ports 0, 1	
Time offset between	n TX antenna (Note)	ns	65		-	
CSI referen	ice signals				Antenna ports 15, 16, 17, 18	
CSI-RS periodicity a T _{CSI-RS} /	and subframe offset		-		5/ 1	
CSI-RS reference s	ignal configuration			-	4	1
alternativeCodeboo			١	No	Ye	es
CodeBookSubsetF	Restriction bitmap		0x0000 000	0 0000 FFFF	0x0000 0000 0000	
Reporting inte	erval (Note 6)	ms		5	Ę	5
CQI c		ms		8	8	,
Reportin				, PUSCH 3-1		PUSCH 1-2
Sub-bar		RB	6 (fu	ll size)	6 (full	size)
Max number of HA				1		l
Note 1: If the UE	reports in an availabl	e uplink reporting in	stance at subfr	ame SF#n base	d on CQI estimat	ion at a

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel according to Table A.4-4a with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.
- Note 5: The values of time offset are [0ns 65ns 0ns 65ns] for antenna port [0, 1, 2, 3] respectively.
- Note 6: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.3.7.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α	[1.05]	-
β	-	[1.15]
UE Category	≥1	≥1

9.3.7.2 TDD

For the parameters specified in Table 9.3.7.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.7.2-2 and by the following.

a) the ratio of the throughput obtained when transmitting based on UE PUSCH 3-2 reported wideband CQI and subband PMI and that obtained when transmitting based on PUSCH 3-1 reported wideband CQI and wideband PMI shall be >\alpha.

b) The ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS based on UE PUSCH3-2 reported subband CQI and subband PMI and that obtained when transmitting on a randomly selected sub-band in set S based on PUSCH 1-2 reported wideband CQI and subband PMI shall be $\geq \beta$;

The transport block sizes TBS for wideband CQI and subband CQI are selected according to RC.14 TDD for test 1 and RC.15 TDD for test 2.

Table 9.3.7.2-1 Sub-band test for TDD

Parameter		Unit	Test 1		Test 2	
Bandwidth		MHz	10MHz			
PDSCH resou	rce allocation	RB	50PRB		a subband, 6PRB	
Transmiss	sion mode		TM6		TM9	
Uplink downlin	k configuration			1	•	1
Special subfram	ne configuration			4	4	4
	$ ho_{\scriptscriptstyle A}$	dB	•	-6	()
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		-6	()
allocation	P_c	dB		-	-	3
	σ	dB		3	-	3
SNR (N	Note 3)	dB	[0]	[1]	[5]	[6]
$\hat{I}_o^{(}$	j) r	dB[mW/15kHz]	[-98]	[-97]	[-93]	[-92]
N _c	(j) oc	dB[mW/15kHz]	-98	-98	-98	-98
Propagatio	n channel		E/	/A5	EV	'A5
Antenna configuration			4x2 U	LA low	4x2 XP hig	gh (Note 4)
Beamforming Model				-	B.4	4.3
CRS reference signals			Antenna po	orts 0, 1, 2, 3	Antenna	ports 0, 1
Time offset between TX antenna (Note 5)		ns	6	65		-
CSI reference signals					Antenna ports	15, 16, 17, 18
CSI-RS periodicity a $T_{\text{CSI-RS}}$ /				-	5/	4
CSI-RS reference s			-		4	
alternativeCodebookEnabledFor4TX			No		Yes	
CodeBookSubsetRestriction bitmap			0x0000 000	0 0000 FFFF		0 0000 FFFF FFFF
Reporting interval (Note 6)		ms		5	!	5
CQI delay		ms		8		3
Reportin				, PUSCH 3-1		PUSCH 1-2
Sub-band size		RB	6 (fu	ll size)	6 (full	size)
Max number of HA	RQ transmissions			1	,	1

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel according to Table A.4-4a with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 4: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.
- Note 5: The values of time offset are [0ns 65ns 0ns 65ns] for antenna port [0, 1, 2, 3] respectively.
- Note 6: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#3 and #8.

Table 9.3.7.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α	[1.05]	-
β	-	[1.15]
UE Category	≥1	≥1

9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated and applied to the PDSCH. A fixed transport format (FRC) is configured for all requirements.

The requirements for transmission mode 6 with 1 TX and transmission mode 9 with 4 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ue}}{t_{rnd}}$$
.

In the definition of γ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements, t_{rnd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding, and t_{ue} the throughput measured at SNR_{rnd} with precoders configured according to the UE reports;

For the PUCCH 2-1 single PMI requirement, t_{rmd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ue} the throughput measured at SNR_{rnd} with both the precoder and the preferred full-size subband applied according to the UE reports;

For PUSCH 2-2 multiple PMI requirements, t_{rnd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ue} the throughput measured at SNR_{rnd} with both the subband precoder and a randomly selected full-size subband (within the preferred subbands) applied according to the UE reports.

The requirements for transmission mode 9 with 8 TX and transmission mode 9 with 4TX enhanced codebook are specified in terms of the ratio

$$\gamma = \frac{t_{ue, follow1, follow2}}{t_{rnd1, rnd2}}$$

In the definition of γ , for PUSCH 3-1 single PMI, PUCCH 1-1 single PMI and PUSCH 1-2 multiple PMI requirements, $t_{follow1,follow2}$ is 70% of the maximum throughput obtained at $SNR_{follow1,follow2}$ using the precoders configured according to the UE reports, and $t_{rnd1,rnd2}$ is the throughput measured at $SNR_{follow1,follow2}$ with random precoding.

9.4.1 Single PMI

9.4.1.1 Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)

9.4.1.1.1 FDD

For the parameters specified in Table 9.4.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.1.1-2.

Table 9.4.1.1.1-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmiss	sion mode		6
Propagation			EVA5
Precoding	granularity	PRB	50
Correlat antenna co			Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting mode			PUSCH 3-1
Reporting	g interval	ms	1
PMI delay	y (Note 2)	ms	8
Measurement channel			R. 10 FDD
OCNG Pattern			OP.1 FDD
Max number of HARQ			4
transmissions			7
Redundancy version coding sequence		recoder colection, th	{0,1,2,3}

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.1.1.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.1
UE Category	≥1

9.4.1.1.2 TDD

For the parameters specified in Table 9.4.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.1.1.2-2.

Table 9.4.1.1.2-1: PMI test for single-layer (TDD)

Parameter		Unit	Test 1	
Bandwidth		MHz	10	
Transmiss			6	
	lownlink		1	
configu			'	
	subframe		4	
configu			E) / A E	
	on channel	555	EVA5	
	granularity	PRB	50	
Correlate antenna co	nfiguration		Low 2 x 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	
power	$ ho_{\scriptscriptstyle B}$	dB	-3	
allocation	σ	dB	0	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	
Reportir	ng mode		PUSCH 3-1	
Reporting	g interval	ms	1	
PMI delay	/ (Note 2)	ms	10 or 11	
Measureme	ent channel		R.10 TDD	
OCNG			OP.1 TDD	
Max number of HARQ			4	
transmissions			-	
Redundancy version coding sequence			{0,1,2,3}	
ACK/NACK feedback mode			Multiplexing	
Note 1: For random precoder selection, the precoder				

shall be updated in each available downlink

transmission instance.

If the UE reports in an available uplink reporting Note 2:

instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4)

Table 9.4.1.1.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.1
UE Category	≥1

Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols) 9.4.1.2

9.4.1.2.1 **FDD**

For the parameters specified in Table 9.4.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.1-2.

Table 9.4.1.2.1-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1	
Bandwidth		MHz	10	
Transmission mode			6	
Propagation channel			EVA5	
	tion and onfiguration		Low 4 x 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6	
power	$ ho_{\scriptscriptstyle B}$	dB	-6	
allocation	σ	dB	3	
N	c(j) oc	dB[mW/15kHz]	-98	
PMI	delay	ms	8 or 9	
	ng mode		PUCCH 2-1 (Note 6)	
Reporting	periodicity	ms	$N_{\rm pd} = 2$	
	hannel for porting		PUSCH (Note 3)	
	eport Type nd CQI/PMI		2	
	eport Type and CQI		1	
Measureme	ent channel		R.14-1 FDD	
OCNG	Pattern		OP.1/2 FDD	
Precoding	granularity	PRB	6 (full size)	
	bandwidth s (<i>J</i>)		3	
ŀ	<		1	
cqi-pmi-C	onfigIndex		1	
	er of HARQ		4	
	issions			
	icy version equence		{0,1,2,3}	
		racador calaction th	ne precoder shall be updated	
		(2 ms granularity).	le precoder shall be updated	
Note 2:	f the UE repo	orts in an available u	plink reporting instance at imation at a downlink SF not later	
t	han SF#(n-4) downlink befo	, this reported PMI ore SF#(n+4).	cannot be applied at the eNB	
S F	subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the			
Note 4: F				
part) are to be disregarded and instead data is to be transmitted of				
the most recently used subband for bandwidth part with j=1. Note 5: In the case where wideband PMI is reported, data is to be			is reported, data is to be	
Note 6:	The bit field fo		in DCI format 1B shall be mapped	
to "0" and TPMI information shall indicate the codebook index us in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI				
	eport on PUC			
-	•			

Table 9.4.1.2.1-2: Minimum requirement (FDD)

	Test 1
γ	1.2
UE Category	≥1

TDD 9.4.1.2.2

For the parameters specified in Table 9.4.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.2-2.

Table 9.4.1.2.2-1: PMI test for single-layer (TDD)

	Table 5.4.1.2.2-1. Fivil test for single-layer (100)				
Para	meter	Unit	Test 1		
	lwidth	MHz	10		
	sion mode		6		
	downlink		1		
	uration		, I		
	subframe		4		
	uration				
	on channel		EVA5		
	tion and		Low 4 x 2		
antenna co	onfiguration				
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6		
power	$ ho_{\scriptscriptstyle B}$	dB	-6		
allocation	σ	dB	3		
N	oc (j)	dB[mW/15kHz]	-98		
PMI	delay	ms	10		
Reportir	ng mode		PUCCH 2-1 (Note 6)		
Reporting	periodicity	ms	$N_{P} = 5$		
	hannel for porting		PUSCH (Note 3)		
PUCCH R	eport Type		2		
	nd CQI/PMI				
	eport Type and CQI		1		
			R.14-1 TDD		
Measurement channel			OP.1/2 TDD		
OCNG Pattern Precoding granularity		PRB	6 (full size)		
Number of	bandwidth	FRD	o (iuii size)		
	s (<i>J</i>)		3		
•	3 (0) <		1		
•	onfigIndex		4		
	er of HARQ				
	issions		4		
Redundancy version			(0.4.0.0)		
coding sequence			{0,1,2,3}		
ACK/NACK fedback			Multiplexing		
mode					
Note 1: For random precoder selection, the precoder shall be updated in each available downlink transmission instance.					
5	subrame SF#n based on PMI estimation at a downlink SF not later				
			cannot be applied at the eNB		
downlink before SE#(n+4)					

- downlink before SF#(n+4).
- To avoid collisions between HARQ-ACK and wideband CQI/PMI or Note 3: subband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.
- In the case where wideband PMI is reported, data is to be Note 5: transmitted on the most recently used subband.
- Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.

Table 9.4.1.2.2-2: Minimum requirement (TDD)

	Test 1
γ	1.2
UE Category	≥1

9.4.1.3 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

9.4.1.3.1 FDD

For the parameters specified in Table 9.4.1.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.1-2.

Table 9.4.1.3.1-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmiss	sion mode		9
Propagation	on channel		EPA5
	granularity	PRB	50
Correlat			Low
antenna co			ULA 4 x 2
Cell-specifi			Antenna ports
sigr	nals		0,1
CSI referer			Antenna ports 15,,18
Beamform			Annex B.4.3
CSI-RS per subfram T _{CSI-RS} /			5/ 1
CSI-RS r	eference		6
signal cor	figuration		б
CodeBookS			0x0000 0000
iction l	oitmap		0000 FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	Pc	dB	-3
	σ	dB	-3
N_{c}	(j) oc	dB[mW/15kHz]	-98
Reporting mode			PUSCH 3-1
Reporting interval		ms	5
PMI delay (Note 2)		ms	8
Measurement channel			R.44 FDD
OCNG Pattern			OP.1 FDD
Max number of HARQ			4
transm			'
Redundan			{0,1,2,3}
coding s	equence		,

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.

Table 9.4.1.3.1-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.1.3.2 TDD

For the parameters specified in Table 9.4.1.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.2-2.

Table 9.4.1.3.2-1: PMI test for single-layer (TDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			9
Uplink downlink			1
	uration		
	subframe uration		4
	on channel		EVA5
Precoding	granularity	PRB	50
Antenna co	onfiguration		8 x 2
Correlation	n modeling		High, Cross polarized
Cell-specifi sigr	c reference nals		Antenna ports 0,1
	nce signals		Antenna ports 15,,22
Beamform	ning model		Annex B.4.3
	riodicity and		7 (111OX B. 1.0
subfram	ne offset		5/ 4
CSI-RS	$\Delta_{ extsf{CSI-RS}}$		
signal cor			0
CodeBookS	SubsetRestr bitmap		0x0000 0000 001F FFE0 0000 0000 FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink	$\rho_{\scriptscriptstyle B}$	dB	0
power allocation	Pc	dB	-6
	σ	dB	-3
N	(j) oc	dB[mW/15kHz]	-98
Reportir	ng mode		PUSCH 3-1
Reportin	g interval	ms	5
PMI dela	y (Note 2)	ms	10
Measurement channel			R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2
OCNG	Pattern		OP.1 TDD
	er of HARQ		4
Redundancy version coding sequence			{0,1,2,3}
ACK/NACK feedback mode			Multiplexing
Note 1: For random precoder selection, the precoder			
Note 2:	shall be updated in each TTI (1 ms granularity). If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-		
Note 3: F	4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#3 and #8.		
Note 4: F	·		

Table 9.4.1.3.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	3
UE Category	≥1

9.4.1.4 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

9.4.1.4.1 FDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.1.4.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.4.1-2.

Table 9.4.1.4.1-1 PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			9
Propagation channel			EPA5
Precoding gra		PRB	50
Correlation and configura			High XP 4 x 2
Beamforming			Annex B.4.3
Cell-specific re	eference		Antenna ports 0,1
CSI reference			Antenna ports 15,,18
CSI-RS period subframe offset	T _{CSI-RS}		5/ 1
CSI-RS referer configura			6
CodeBookSubse bitmap	tRestriction		0x0000 0000 0000 FFFF 0000 00FF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	Pc	dB	-3
	σ	dB	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting I	mode		PUCCH 1-1 submode1
Reporting in		ms	5
PMI delay (I		ms	10
Physical char CQI/PMI rep			PUSCH (Note 3)
PUCCH Repor	t Type for		2b
Physical channel for RI			PUSCH
reporting PUCCH Report Type for RI/			F
first PMI			5
cqi-pmi-ConfigurationIndex			4
ri-ConfigIndex			1
Measurement channel			R.60 FDD
OCNG Pattern			OP.1 FDD
Max number of HARQ transmissions			4
Redundancy vers	sion coding		{0,1,2,3}
Note 1. For random proceder colorion, the proceder shall be undeted			

- Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

 Note 2: If the UE reports in an available uplink reporting instance at
- Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH.
- Note 4: PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.
- Note 5: Randomization of the principle beam direction shall be used as specified in B.2.3A.4

Table 9.4.1.4.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.8
UE Category	≥1

9.4.1.4.2 TDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.1.4.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.4.2-2.

Table 9.4.1.4.2-1 PMI test for single-layer (TDD)

Paramet	er	Unit	Test 1
Bandwidth		MHz	10
Transmission mode			9
Uplink downlink			1
configuration			I
Special sub			4
configurat			•
Propagation of			EPA5
Precoding gra		PRB	50
Correlation and			High XP 4 x 2
configura			-
Beamforming			Annex B.4.3
Cell-specific re			Antenna ports 0,1
signals	<u> </u>		Antonno norto
CSI reference	signals		Antenna ports
CSI-RS period	icity and		15,,18
subframe offset	T _{CSI-RS}		5/ 4
/ I _{CSI-RS}			5, 1
CSI-RS referen			_
configuration			6
CodeBookSubset			0x0000 0000 0000
bitmap			FFFF 0000 00FF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0
power allocation	Pc	dB	-3
allocation		dB	-3
(;)	σ	αБ	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting r			PUCCH 1-1 submode1
Reporting in		ms	5
PMI delay (N		ms	15
Physical char			PUSCH (Note 3)
CQI/PMI rep			, ,
PUCCH Report CQI/second			2b
Physical chann	nel for RI		
reportin			PUSCH
PUCCH Report T	ype for RI/		-
first PM			5
cqi-pmi-Configur			4
ri-ConfigIndex			1
Measurement channel			R.60 TDD
OCNG Pattern			OP.1 TDD
Max number of HARQ			4
transmissions Pedundancy version coding			
Redundancy version coding sequence			{0,1,2,3}
ACK/NACK feedback mode			Multiplexing
Note 1: For random precoder selection, the precoder			
in each TTI (1 ms granularity) Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).			reporting instance at on at a downlink SF not

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH.

PDCCH DCI format 0 with a trigger for aperiodic CQI shall be Note 4: transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#3 and #8.

Randomization of the principle beam direction shall be used as Note 5: specified in B.2.3A.4.

Table 9.4.1.4.2-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.8
UE Category	≥1

9.4.1a Void

9.4.1a.1 Void

9.4.1a.1.1 Void

9.4.1a.1.2 Void

9.4.2 Multiple PMI

9.4.2.1 Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)

9.4.2.1.1 FDD

For the parameters specified in Table 9.4.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.1-2.

Table 9.4.2.1.1-1: PMI test for single-layer (FDD)

<u></u>			
Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmis	sion mode		6
Propagati	on channel		EPA5
(only for re	granularity porting and ng PMI)	PRB	6
	tion and onliguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporti	ng mode		PUSCH 1-2
Reportin	g interval	ms	1
PMI	delay	ms	8
Measurement channel			R.11-3 FDD for UE Category 1, R.11 FDD for UE Category ≥2
OCNG	Pattern		OP.1/2 FDD
	er of HARQ nissions		4
Redundancy version coding sequence			{0,1,2,3}
Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity). Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)			

eNB downlink before SF#(n+4).

Note 3: One/two sided dynamic OCNG Pattern OP.1/2

FDD as described in Annex A.5.1.1/2 shall be used.

Table 9.4.2.1.1-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.2.1.2 **TDD**

For the parameters specified in Table 9.4.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.2-2.

Table 9.4.2.1.2-1: PMI test for single-layer (TDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
Uplink downlink			1
	uration		-
	subframe uration		4
	on channel		EPA5
	granularity		
(only for re followir	porting and ng PMI)	PRB	6
	tion and onfiguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
N	oc (j)	dB[mW/15kHz]	-98
	ng mode		PUSCH 1-2
	g interval	ms	1
PMI	delay	ms	10 or 11
Measurement channel			R.11-3 TDD for UE Category 1 R.11 TDD for UE Category ≥2
OCNG	Pattern		OP.1/2 TDD
	er of HARQ		4
	issions		•
	icy version equence		{0,1,2,3}
ACK/NACK feedback mode			Multiplexing
Note 1:	or random p	recoder selection, th	ne precoders
Note 2:	shall be updated in each available downlink transmission instance.		
4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). Note 3: One/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2 shall be used.			attern OP.1/2

Table 9.4.2.1.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.2.2 Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)

9.4.2.2.1 FDD

For the parameters specified in Table 9.4.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.1-2.

Table 9.4.2.2.1-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Band	width	MHz	10
Transmiss	sion mode		6
Propagation	on channel		EVA5
	tion and enfiguration		Low 4 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power	$ ho_{\scriptscriptstyle B}$	dB	-6
allocation	σ	dB	3
N	(j) oc	dB[mW/15kHz]	-98
PMI (delay	ms	8
	ng mode		PUSCH 2-2
Reporting	g interval	ms	1
Measureme	ent channel		R.14-2 FDD
OCNG	Pattern		OP.1/2 FDD
Subband	d size (<i>k</i>)	RBs	3 (full size)
	f preferred nds (<i>M</i>)		5
Max number of HARQ transmissions			4
	cy version equence		{0,1,2,3}

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 9.4.2.2.1-2: Minimum requirement (FDD)

	Test 1
γ	1.2
UE Category	≥1

9.4.2.2.2 TDD

For the parameters specified in Table 9.4.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.2-2.

Table 9.4.2.2.2-1: PMI test for single-layer (TDD)

Para	meter	Unit	Test 1
Bandwidth		MHz	10
Transmiss	sion mode		6
	downlink		1
	uration		'
	subframe		4
	uration		·
	on channel		EVA5
	tion and onfiguration		Low 4 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power	$ ho_{\scriptscriptstyle B}$	dB	-6
allocation	σ	dB	3
N	oc (j)	dB[mW/15kHz]	-98
PMI	delay	ms	10
Reportir	ng mode		PUSCH 2-2
Reportin	g interval	ms	1
Measureme	ent channel		R.14-2 TDD
OCNG	Pattern		OP.1/2 TDD
	d size (<i>k</i>)	RBs	3 (full size)
	f preferred		5
	nds (M)		
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}
ACK/NACK feedback mode			Multiplexing
			· · ·

Note 1: For random precoder selection, the precoders shall be updated in each available downlink transmission instance.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.2.2.2-2 Minimum requirement (TDD)

	Test 1
γ	1.15
UE Category	≥1

9.4.2.3 Minimum requirement PUSCH 1-2 (CSI Reference Symbol)

9.4.2.3.1 FDD

For the parameters specified in Table 9.4.2.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.1-2.

Table 9.4.2.3.1-1: PMI test for single-layer (FDD)

Para	meter	Unit	Test 1
Bandwidth		MHz	10
	sion mode		9
Propagation channel			EVA5
Precoding granularity			
	porting and	PRB	6
followi	ng PMI)	1110	Ü
	tion and		Low
	onfiguration		ULA 4 x 2
	c reference		Antenna ports
	nals		0,1
ŭ	nce signals		Antenna ports 15,,18
Beamforn	ning model		Annex B.4.3
	riodicity and		7 (11110X D. 1.0
	ne offset		5/ 1
	$/\Delta_{\text{CSI-RS}}$		σ, .
CSI-RS	reference		
	nfiguration		8
	SubsetRestr		0x0000 0000
	bitmap		0000 FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink		dB	_
power	$ ho_{\scriptscriptstyle B}$		0
allocation	Pc	dB	-3
	σ	dB	-3
N	oc (j)	dB[mW/15kHz]	-98
	ng mode		PUSCH 1-2
Reportin	g interval	ms	5
PMI	delay	ms	8
			R.45-1 FDD for UE
Measurem	ent channel		Category 1,
Wododiom	one onamion		R.45 FDD for
			UE Category
			≥2
	Pattern		OP.1 FDD
Max number of HARQ			4
	issions		•
Redundancy version			{0,1,2,3}
	equence	1 1 2 2	
Note 1: For random precoder selection, the precoders			
shall be updated in each TTI (1 ms granularity). Note 2: If the UE reports in an available uplink reporting			
		orts in an avallable u Ibrame SF#n based	
		a downlink SF not la	
4), this reported PMI cannot be applied at the			

eNB downlink before SF#(n+4).
One/two sided dynamic OCNG Pattern OP.1/2 Note 3: FDD as described in Annex A.5.1.1/2 shall be used.

Note 4: PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.

Table 9.4.2.3.1-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.3
UE Category	≥1

9.4.2.3.2 TDD

For the parameters specified in Table 9.4.2.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.2-2.

Table 9.4.2.3.2-1: PMI test for single-layer (TDD)

Dame		lle!4	Toct 4	
	neter	Unit MHz	Test 1	
	width	IVI□∠	10 9	
Transmission mode Uplink downlink			-	
configuration			1	
	subframe uration		4	
Propagation	on channel		EVA5	
	granularity			
	porting and	PRB	6	
followin			0 0	
Antenna co	onfiguration		8 x 2	
Correlation	n modeling		High, Cross polarized	
	c reference nals		Antenna ports 0,1	
CSI refere	nce signals		Antenna ports 15,,22	
Beamform	ning model		Annex B.4.3	
	iodicity and			
subfram	ne offset $/$ $\Delta_{\text{CSI-RS}}$		5/ 4	
	eference		4	
	figuration		4	
	<u> </u>		0x0000 0000	
	SubsetRestr		001F FFE0	
iction I	bitmap		0000 0000 FFFF	
	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0	
allocation	Pc	db	-6	
	σ	dB	-3	
N	(j) oc	dB[mW/15kHz]	-98	
	ng mode		PUSCH 1-2	
Reportin	g interval	ms	5 (Note 4)	
PMI	delay	ms	8	
Measurement channel			R.45-1 TDD for UE Category 1, R.45 TDD for UE Category ≥2	
OCNG	Pattern		OP.1 TDD	
	er of HARQ		4	
	issions		4	
	cy version		{0,1,2,3}	
	equence		(0,1,2,0)	
	K feedback ode		Multiplexing	
Note 1: For random precoder selection, the precoders				
shall be updated in each TTI (1 ms granularity). Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).			plink reporting on PMI iter than SF#(n-	
Note 3: 0				
Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted				

on uplink SF#3 and #8.

Note 5: Randomization of the principle beam direction

shall be used as specified in B.2.3A.4.

Table 9.4.2.3.2-2: Minimum requirement (TDD)

Parameter	Test 1
γ	3.5
UE Category	≥1

9.4.2.3.3 FDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.2.3.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.3-2.

Table 9.4.2.3.3-1 PMI test for dual-layer (FDD)

Parameter		Unit	Test 1	
Bandwidth		MHz	10	
Transmission mode			9	
Propagation channel			EVA5	
Precoding granularity (only for reporting and following PMI)		PRB	6	
Correlation and			High XP 4 x 2	
configura			-	
Beamforming			Annex B.4.3	
Cell-specific re signals			Antenna ports 0,1	
CSI reference	signals		Antenna ports 15,,18	
CSI-RS period subframe offset / I _{CSI-RS}	T _{CSI-RS}		5/ 1	
CSI-RS referen			8	
CodeBookSubse bitmap	tRestriction		0x0000 0000 FFFF 0000 FFFF 0000	
	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0	
allocation	Pc	dB	-3	
	σ	dB	-3	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	
Reporting r	node		PUSCH1-2	
Reporting in	terval	ms	5	
PMI delay (N	Note 2)	ms	8	
Measurement	channel		R.45-1 FDD for UE Category 1, R.45 FDD for UE Category 2-8	
Rank Number of	f PDSCH		2	
OCNG Par	ttern		OP.1 FDD	
Max number o			4	
Redundancy vers	-		{0,1,2,3}	
		er selection, the pro	ecoder shall be updated	
in each TTI (1 ms granularity) Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the				
eNB downlink before SF#(n+4). Note 3: One/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2 shall be used.				
Note 4: PDSCH _RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the received				
Note 5: Randomization of the principle beam direction shall be used as specified in B.2.3A.4				

Table 9.4.2.3.3-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.2.3.4 TDD (with 4Tx enhanced codebook)

For the parameters specified in Table 9.4.2.3.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.4-2.

Table 9.4.2.3.4-1 PMI test for dual-layer (TDD)

Parameter		Unit	Test 1	
Bandwidth		MHz	10	
Transmission mode			9	
Uplink downlink			1	
configura			·	
Special sub configura			4	
Propagation			EVA5	
Precoding gra			LV/IO	
(only for repor		PRB	6	
following I			-	
Correlation and			XP High 4 x 2	
configura				
Beamforming			Annex B.4.3	
Cell-specific re signals			Antenna ports 0,1	
CSI reference	signals		Antenna ports	
CSI-RS period			15,,18	
subframe offset	T _{CSI-RS}		5/ 4	
/ I _{CSI-R}			0/ 1	
CSI-RS referen			1	
configura			4	
CodeBookSubse			0x0000 0000 FFFF	
bitmap)		0000 FFFF 0000	
	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0	
allocation	Pc	dB	-3	
	σ	dB	-3	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	
Reporting r	node		PUSCH1-2	
Reporting in	iterval	ms	5	
PMI delay (I	Note 2)	ms	10	
			R.61-1 TDD for UE	
Measurement	channel		Category 1, R.61 TDD	
D I N I CDDOOL			for UE Category 2-8	
Rank Number of PDSCH			OP.1 TDD	
OCNG Pattern Max number of HARQ			טר.ו וטט	
transmissions			4	
Redundancy vers			(0.4.0.0)	
sequen			{0,1,2,3}	
ACK/NACK feed			Multiplexing	
Note 1: For random precoder selection, the precoder shall be updated				

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note3: One/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.1.1/2 shall be used.

Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #9 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#3 and #8.

Note 5: Randomization of the principle beam direction shall be used as specified in B.2.3A.4.

Table 9.4.2.3.4-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

9.4.3 Void 9.4.3.1 Void 9.4.3.1.1

9.4.3.1.2

9.5 Reporting of Rank Indicator (RI)

Void

Void

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction in section 9.5.1, transmission mode 9 is used with the specified CodebookSubSetRestriction in section 9.5.2 and transmission mode 3 is used with the specified CodebookSubSetRestriction in section 9.5.3, and transmission mode 10 is used with the specified CodebookSubSetRestriction in section 9.5.5.

For fixed rank 1 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to two singlelayer precoders, For fixed rank 2 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to one two-layer precoder, For follow RI transmission in sections 9.5.1 and 9.5.2, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

For fixed rank 1 transmission in section 9.5.3, the RI reporting is restricted to single-layer, for fixed rank 2 transmission in section 9.5.3, the RI reporting is restricted to two-layers. For follow RI transmission in section 9.5.3, the RI reporting is either one or two layers.

9.5.1 Minimum requirement (Cell-Specific Reference Symbols)

9.5.1.1 **FDD**

The minimum performance requirement in Table 9.5.1.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.1-2.

Table 9.5.1.1-1: RI Test (FDD)

Parameter		Unit	Test 1	Test 2	Test 3	
Bandwidth		MHz	10			
PDSCH transmission mode			4			
Devertials never	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3			
	σ	dB	0			
Propagation condit antenna configur				2 x 2 EPA5		
CodeBookSubsetRe bitmap	estriction		000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI		2	
Antenna correla	ation		Low	Low	High	
RI configuration	on		Fixed RI=2 and follow RI	Fixed RI=1 and follow RI	Fixed RI=1 and follow RI	
SNR		dB	0	20	20	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78	
Maximum number o				1		
Reporting mod	de		PUC	CH 1-1 (Note 4)		
Physical channel for reporting			PL	JCCH Format 2		
PUCCH Report Type for CQI/PMI			2			
Physical channel reporting		PUSCH (Note 3)				
PUCCH Report Type for RI			3			
Reporting periodicity		ms	N_{pd} = 5			
PMI and CQI delay		ms		8		
cqi-pmi-ConfigurationIndex				6		
ri-Configuration			1 (Note 5)			

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between RI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: The bit field for precoding information in DCI format 2 shall be mapped as:
 - For reported RI = 1 and PMI = 0 >> precoding information bit field index = 1
 - For reported RI = 1 and PMI = 1 >> precoding information bit field index = 2
 - For reported RI = 2 and PMI = 0 >> precoding information bit field index = 0
- Note 5: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.

Table 9.5.1.1-2: Minimum requirement (FDD)

	Test 1	Test 2	Test 3
29	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.1.2 TDD

The minimum performance requirement in Table 9.5.1.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.2-2.

Table 9.5.1.2-1: RI Test (TDD)

Parameter		Unit	Test 1 Test 2 Test 3		
Bandwidth	Bandwidth		10		
PDSCH transmission	on mode		4		
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB		-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	
	σ	dB		0	
Uplink downlink conf				2	
Special subfra configuration	า			4	
Propagation condit antenna configur				2 x 2 EPA5	
CodeBookSubsetRe bitmap	estriction		000011 for fixed RI = 1 010000 for fixed RI = 2		2
Antenna correla	ation		010011 for UE reported RI Low Low High		High
RI configuration			Fixed RI=2 and Fixed RI=1 Fixed R		Fixed RI=1 and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98 -98		-98
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		-98 -78 -78		-78
Maximum number of transmission			1		
Reporting mo	de		PUSCH 3-1 (Note 3)		_
Reporting inter	rval	ms	5		
PMI and CQI de	elay	ms	10 or 11		
ACK/NACK feedbac	ck mode		Bundling		

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: Reported wideband CQI and PMI are used and sub-band CQI is discarded.

Table 9.5.1.2-2: Minimum requirement (TDD)

	Test 1	Test 2	Test 3
24	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.2 Minimum requirement (CSI Reference Symbols)

9.5.2.1 FDD

The minimum performance requirement in Table 9.5.2.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.1-2.

Table 9.5.2.1-1: RI Test (FDD)

Parameter		Unit	Test 1	Test 2	Test 3
Bandwidth		MHz	10		
PDSCH transmission	on mode			9	
	$ ho_{\scriptscriptstyle A}$	dB	0		
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		0	
allocation	Pc	dB		0	
	σ	dB		0	
Propagation condit				2 x 2 EPA5	
antenna configur					
Cell-specific reference				ntenna ports 0	
Beamforming M				ified in Section B.	4.3
CSI reference sign			Ante	nna ports 15, 16	
CSI-RS periodicit					
subframe offs				5/1	
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-II}}$					
CSI reference s				6	
configuration	า				
CodeBookSubsetRe	estriction		000011 for fixed RI = 1		
bitmap			010000 for fixed RI = 2		
-				for UE reported	
Antenna correla	ation				High
RI configuration	on				Fixed RI=1
		in.			and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98 -78 -78		-78
Maximum number o				1	
transmission Reporting mo				PUCCH 1-1	
Physical channel for				PUCCH 1-1	
	CQI/PIVII		Pl	JSCH (Note 3)	
reporting	ma for		` ,		
PUCCH Report Ty CQI/PMI			2		
Physical channel	for RI		PUCCH Format 2		
reporting			PUCCH Format 2		
PUCCH Report Typ			3		
Reporting period		ms	$N_{\rm pd} = 5$		
PMI and CQI de		ms	8		
cqi-pmi-Configurati	onIndex		6		
ri-Configuration	nInd			1 (Note 4)	
Note 1: If the LIE reports in an available unlink reporting instance at subframe SE#n based on PMI and				ed on DMI and	

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel RC.9 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.
- Note 4: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.

Table 9.5.2.1-2: Minimum requirement (FDD)

	Test 1	Test 2	Test 3
21	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.2.2 TDD

The minimum performance requirement in Table 9.5.2.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

For the parameters specified in Table 9.5.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.2-2.

Table 9.5.2.2-1: RI Test (TDD)

Parameter	Parameter Unit Test 1 Test 2 Te			Test 3	
Bandwidth		MHz	10		
PDSCH transmission	on mode			9	
	$ ho_{\scriptscriptstyle A}$	dB		0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0		
allocation	Pc	dB		0	
	σ	dB		0	
Uplink downlink con	figuration			1	
Special subfra configuration				4	
Propagation condit antenna configur	ration			2 x 2 EPA5	
Cell-specific reference	ce signals		Ai	ntenna ports 0	
CSI reference si			Ante	enna ports 15, 16	
Beamforming M			As spec	ified in Section B.	4.3
CSI reference s configuration	n			4	
CSI-RS periodicit subframe offs $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-I}}$	set		5/4		
CodeBookSubsetRe bitmap	estriction		000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI		2
Antenna correla	ation		Low	Low	High
RI configuration	on		Fixed RI=2 and Fixed RI=1 Fixed RI=		Fixed RI=1 and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98 -98		-98
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78
Maximum number of transmission				1	
Reporting mo	de			PUCCH 1-1	
Physical channel for reporting	CQI/ PMI		PUSCH (Note 3)		
PUCCH report type PMI			2		
Physical channel reporting			PUCCH Format 2		
Reporting period		ms	$N_{\rm pd} = 5$		
PMI and CQI d		ms	10		
ACK/NACK feedback				Bundling	
cqi-pmi-Configurati				4	
ri-ConfigurationInd				1	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel RC.9 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#3 and #8.

Table 9.5.2.2-2: Minimum requirement (TDD)

	Test 1	Test 2	Test 3
71	N/A	1.05	0.9
72	1	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.3 Minimum requirement (CSI measurements in case two CSI subframe sets are configured)

9.5.3.1 FDD

The minimum performance requirement in Table 9.5.3.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$

For the parameters specified in Table 9.5.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.1-2.

Table 9.5.3.1-1: RI Test (FDD)

Parameter		Unit	10	est 1	res	st 2
			Cell 1	Cell 2	Cell 1	Cell 2
Bandwidth		MHz		10	1	
PDSCH transmissio		4D	3	Note 10	3	Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	-:	
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	-:	
Dropogation conditi	σ	dB		0	C	
Propagation conditi antenna configura			2 x 2	2 EPA5	2 x 2	EPA5
CodeBookSubsetRe bitmap	striction		01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported	N/A	01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A
A	·:		RI			
Antenna correla RI configuratio			Fixed RI=1 and	_ow N/A	Fixed RI=1 and follow RI	N/A
			follow RI		and follow RI	
\widehat{E}_s/N_{oc2}		dB	0	-12	20	6
	$N_{oc1}^{(j)}$		-98 (Note 3)	N/A	-102 (Note 3)	N/A
$N_{oc}^{(j)}$	$N_{\rm oc2}^{(j)}$	dBmW/15kH z	-98 (Note 4)	N/A	-98 (Note 4)	N/A
	$N_{\text{oc}3}^{(j)}$		-98 (Note 5)	N/A	-94.8 (Note 5)	N/A
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		-98	-110	-78	-92
Subframe Configu	ration		Non- MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0	1	0	1
Time Offset betwee	n Cells	μs	2.5 (synch	ronous cells)	2.5 (synchro	
ABS Pattern (No	te 6)		N/A	1000000 1000000 1000000 1000000 1000000	N/A	1000000 1000000 1000000 1000000 1000000
RLM/RRM Measur Subframe Pattern (I			1000000 1000000 1000000 1000000 1000000	N/A	1000000 1000000 1000000 1000000 1000000	N/A
CSI Subframe Sets (Note 8)	C _{CSI,0}		10000000 10000000 10000000 10000000 1000000	N/A	10000000 10000000 10000000 10000000 1000000	N/A
Number of control Symbols	OFDM		3	3	3	3
Maximum number of transmissions				1	1	
Reporting mod			PUC	CH 1-0	PUCC	H 1-0
Physical channel for reporting				l Format 2	PUCCH Format 2	
PUCCH Report Type	for CQI			4	4	l

Physica	Physical channel for RI reporting		PUCCH Format 2		PUCCH Format 2	
PUC	CH Report Type for RI		3		3	
R	eporting periodicity	ms	N _{pd} =	= 10	N _{pd} =	= 10
cqi-p	omi-ConfigurationIndex		1	1	1	1
	ri-ConfigurationInd			5	5	5
cqi-p	mi-ConfigurationIndex2		1	0	1	0
r	i-ConfigurationInd2		2	2	2	2
	Cyclic prefix		Normal	Normal	Normal	Normal
Note 1: Note 2: Note 3:	OCNG Pattern OP.1 FDD as described in Annex A.5.1.1. Note 3: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe					
Note 4:	ABS.					
Note 6: Note 7: Note 8:	Note 6: ABS pattern as defined in [9]. Note 7: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].					ned in [7].

Table 9.5.3.1-2: Minimum requirement (FDD)

Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as

Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2

	Test 1	Test 2
21	0.9	1.05
UE Category	≥2	≥2

9.5.3.2 TDD

Note 9:

The minimum performance requirement in Table 9.5.3.2-2 is defined as

measurements defined in [7].

defined in Annex A.5.1.5.

is the same.

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$.

For the parameters specified in Table 9.5.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.2-2.

Table 9.5.3.2-1: RI Test (TDD)

Doromotor		Unit	Tes	st1	Tes	st2
Parameter			Cell 1	Cell 2	Cell 1	Cell 2
Bandwidth	n mada	MHz	3	0 Note 11	3	
PDSCH transmission Uplink downlink conf			3		<u> </u>	Note 11
Special subfra	me					
configuration		15				
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-(-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-:		-3	
Propagation condit	σ ion and	dB	C		0	
antenna configur			2 x 2 l	EPA5	2 x 2 l	EPA5
CodeBookSubsetRe bitmap	estriction		01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A	01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A
Antenna correla	ation		Lo)W	Lo	W
RI configuration			Fixed RI=1 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
\widehat{E}_s/N_{oc2}		dB	0	-12	20	6
	$N_{oc1}^{(j)}$		-98 (Note 4)	N/A	-102 (Note 4)	N/A
$N_{oc}^{(j)}$	$N_{\rm oc2}^{(j)}$	dB[mW/15k Hz]	-98 (Note 5)	N/A	-98 (Note 5)	N/A
	$N_{oc3}^{(j)}$		-98 (Note 6)	N/A	-94.8 (Note 6)	N/A
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	-98	-110	-78	-92
Subframe Configu	ıration		Non- MBSFN	Non- MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			2.5 (sync	hronous	0	1
Time Offset between	en Cells	μs	2.5 (synchronous cells)		2.5 (synchronous cells)	
ABS Pattern (No	ote 7)		N/A	0000000 001 0000000 001	N/A	000000001 000000001
RLM/RRM Measur Subframe Pattern (00000000 01 00000000 01	N/A	0000000001 0000000001	N/A
CSI Subframe Sets	C _{CSI,0}		00000000 01 00000000 01	N/A	0000000001 0000000001	N/A
(Note 9)	C _{CSI,1}		11001110 00 11001110 00		1100111000 1100111000	IVA
Number of control Symbols	OFDM		3	3	3	3
Maximum number of			1	1	1	<u> </u>
transmission						
Reporting mo			PUCC		PUCCH 1-0	
and RI reporti	ng		PUCCH		PUCCH	
PUCCH Report Type for CQI					4	

Physical channel for C _{CSI,1} CQI and RI reporting		PUSCH (Note 3)		PUSCH	(Note 3)
PUCCH Report Type for RI		;	3		3
Reporting periodicity	ms	N _{pd} :	= 10	N _{pd} = 10	
ACK/NACK feedback mode		Multiplexing		Multiplexing	
cqi-pmi-ConfigurationIndex		8		w.	3
ri-ConfigurationInd		5		Ų	5
cqi-pmi-ConfigurationIndex2		9		O,	9
ri-ConfigurationInd2		0		()
Cyclic prefix		Normal	Normal	Normal	Normal

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 3: To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
- Note 5: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 6: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 7: ABS pattern as defined in [9].
- Note 8: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
- Note 9: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 10: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2 is the same.
- Note 11: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5.

Table 9.5.3.2-2: Minimum requirement (TDD)

	Test 1	Test 2
2/1	0.9	1.05
UE Category	≥2	≥2

9.5.4 Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS assistance information are configured)

9.5.4.1 FDD

For the parameters specified in Table 9.5.4.1-1, the minimum performance requirement in Table 9.5.4.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_{1}$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

In Table 9.5.4.1-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 9.5.4.1-1: RI Test (FDD)

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth		MHz	10	10	10
PDSCH transmissio	n mode		3	As defined in Note 1	As defined in Note 1
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	-3	-3
	σ	dB	0	N/A	N/A
Propagation conditi antenna configur			2x2 EPA5 (Note 2)	2×2 EPA5 (Note 2)	2x2 EPA5 (Note 2)
CodeBookSubsetRe bitmap			01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	As defined in Note 1	As defined in Note 1
	N_{oc1}	dB[mW/15k Hz]	-98 (Note 3)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dB[mW/15k Hz]	-98 (Note 4)	N/A	N/A
	N_{oc3}	dB[mW/15k Hz]	-93 (Note 5)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 9.5.4.1-2 for each test	12	10
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	Reference Value in Table 9.5.4.1-2 for each test	-86	-88
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 6)		N/A	10000000 10000000 10000000 10000000 1000000	1000000 1000000 1000000 1000000 1000000
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		10000000 10000000 10000000 10000000 1000000	N/A	N/A
(Note 8)	C _{CSI,1}		01111111 01111111 01111111 01111111 0111111	N/A	N/A
Number of control symbols	OFDM		3	Note 9	Note 9
Maximum number of HARQ transmissions			1	N/A	N/A
Reporting mod			PUCCH 1-0	N/A	N/A
Physical channel for reporting			PUCCH format 2	N/A	N/A
PUCCH Report Type	for COI		4	N/A	N/A
Physical channel for R			PUCCH Format 2	N/A	N/A
PUCCH Report Typ			3	N/A	N/A
Reporting period		ms	<i>N_{pd}</i> = 10	N/A	N/A

cqi-pn	ni-ConfigurationIndex		11	N/A	N/A
ri-ConfigurationInd			5	N/A	N/A
cqi-pm	i-ConfigurationIndex2		10	N/A	N/A
ri-0	ConfigurationInd2		2	N/A	N/A
	Cyclic prefix		Normal	Normal	Normal
Note 1:	Downlink physical chan pattern OP.5 FDD as de			Annex C.3.3 app	lying OCNG
Note 2:	The propagation conditi			tatistically indeper	ndent.
Note 3:	This noise is applied in				
	overlapping with the age		, , -, -, -,	-, -, -, ,	
Note 4:	This noise is applied in		#0, #4, #7, #11 of a s	subframe overlapp	ing with the
	aggressor ABS.	•	, , ,		· ·
Note 5:	This noise is applied in	all OFDM symbo	ols of a subframe ove	rlapping with aggi	ressor non-ABS
Note 6:	ABS pattern as defined				
	PDCCH/PCFICH are tra	ansmitted in the	serving cell subframe	when the subfrai	me is
	overlapped with the ABS	S subframe of a	ggressor cell and the	subframe is availa	able in the
	definition of the reference	ce channel.			
Note 7:	Time-domain measuren	nent resource re	striction pattern for P	Cell measuremen	ts as defined in
	[7]				
Note 8:	As configured according	to the time-don	nain measurement re	source restriction	pattern for CSI
	measurements defined				
Note 9:	The number of control C	DFDM symbols is	s not available for AB	SS and is 3 for the	subframe
	indicated by "0" of ABS				
Note 10:	If the UE reports in an a				
	estimation at a downlink			is reported wideb	and CQI cannot
	be applied at the eNB downlink before SF#(n+4).				
Note 11:	3				
	dynamic OCNG Pattern				
Note 12:				e same.	
Note 13:	SIB-1 will not be transm	itted in Cell2 an	d Cell 3 in this test.		

Table 9.5.4.1-2: Minimum requirement (FDD)

	Test 1	Test 2	Test 3
\hat{E}_s/N_{oc2} for Cell 1 (dB)	4	20	20
$\hat{I}_{or}^{(j)}$ for Cell 1 (dB[mW/15kHz])	-94	-78	-78
Antenna correlation	High for Cell 1, low for Cell 2 and Cell 3	Low for Cell 1, Cell 2 and Cell 3	High for Cell 1, low for Cell 2 and Cell 3
21	N/A	1.05	0.9
72	1.05	N/A	N/A
UE Category	≥2	≥2	≥2

9.5.4.2 TDD

For the parameters specified in Table 9.5.4.2-1, the minimum performance requirement in Table 9.5.4.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_{I:}$
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

In Table 9.5.4.2-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Table 9.5.4.2-1: RI Test (TDD)

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth		MHz	10	10	10
PDSCH transmissio	n mode		3	As defined in Note 1	As defined in Note 1
Uplink downlink conf	nuration		1	1	1
Special subframe con			4	4	4
	$\rho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	-3	-3
anodaton	σ	dB	0	N/A	N/A
Propagation conditi antenna configur			2×2 EPA5 (Note 2)	2x2 EPA5 (Note 2)	2x2 EPA5 (Note 2)
CodeBookSubsetRe bitmap			01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	As defined in Note 1	As defined in Note 1
	N_{oc1}	dB[mW/15k Hz]	-98 (Note 3)	N/A	N/A
N_{oc} at antenna port	N_{oc2}	dB[mW/15k Hz]	-98 (Note 4)	N/A	N/A
	N_{oc3}	dB[mW/15k Hz]	-93 (Note 5)	N/A	N/A
\hat{E}_s/N_{oc2}		dB	Reference Value in Table 9.5.4.2-2 for each test	12	10
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		Reference Value in Table 9.5.4.2-2 for each test	-86	-88
Subframe Configu	Subframe Configuration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	Time Offset between Cells		N/A	3	-1
Frequency shift between	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 6)		N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (l			0000000001 0000000001	N/A	N/A
CSI Subframe Sets	$C_{\text{CSI,0}}$		0000000001 0000000001	N/A	N/A
(Note 8)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control symbols	OFDM		3	Note 9	Note 9
Maximum number o transmissions			1	N/A	N/A
Reporting mod	le		PUCCH 1-0	N/A	N/A
Physical channel for 0 and RI reporting			PUCCH format 2	N/A	N/A
Physical channel for C _{CSI,1} CQI and RI reporting			PUSCH (Note 14)	N/A	N/A
PUCCH Report Type	PUCCH Report Type for CQI		4	N/A	N/A
	PUCCH Report Type for RI		3	N/A	N/A
Reporting period		ms	<i>N_{pd}</i> = 10	N/A	N/A
ACK/NACK feedbac			Multiplexing	N/A	N/A
cqi-pmi-Configuration			8	N/A	N/A
ri-Configuration			5	N/A	N/A
cqi-pmi-Configuratio			9	N/A N/A	N/A N/A
Cyclic prefix			Normal	Normal	Normal
Cyclic prefix			INOIIIIAI	inoilliai	inoilliai

- Note 1: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern OP.5 TDD as defined in Annex A.5.2.5.
- Note 2: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
- Note 3: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
- Note 4: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
- Note 5: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
- Note 6: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
- Note 7: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
- Note 8: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
- Note 9: The number of control OFDM symbols is not available for ABS and is 3 for the subframe indicated by "0" of ABS pattern.
- Note 10: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 11: Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
- Note 12: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.
- Note 13: SIB-1 will not be transmitted in Cell2 and Cell 3 in this test.
- Note 14: To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.

Test 2 Test 1 Test 3 E_s/N_{ac2} for Cell 1 (dB) 20 4 20 $\hat{I}_{cr}^{(j)}$ for Cell 1 (dB[mW/15kHz]) -94 -78 -78 High for Cell 1, low for Low for Cell 1, Cell 2 High for Cell 1, low for Antenna correlation and Cell 3 Cell 2 and Cell 3 Cell 2 and Cell 3 N/A 1.05 0.9 1.05 N/A N/A

≥2

≥2

Table 9.5.4.2-2: Minimum requirement (TDD)

9.5.5 Minimum requirement (with CSI process)

UE Category

Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.5.5-1.

≥2

For UE supports one CSI process, CSI process 0 is configured for Test 1 and Test 2, but CSI process 1 is not configured for Test 2. The corresponding γ requirements for Test 1 and Test 2 shall be fulfilled. The requirement on reported RI for CSI process 1 in Test 2 is not applicable.

For UE supports multiple CSI processes, CSI process 0 is configured for Test 1 and CSI processes 0 and 1 are configured for Test 2. The corresponding γ requirements for Test 1 and Test 2 shall be fulfilled, and also the requirement on reported RI for CSI process 1 in Test 2.

Table 9.5.5-1: Configuration of CSI processes

	CSI process 0	CSI process 1
CSI-RS resource	CSI-RS signal 0	CSI-RS signal 1
CSI-IM resource	CSI-IM resource 0	CSI-IM resource 1

9.5.5.1 FDD

The minimum performance requirement in Table 9.5.5.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

For the parameters specified in Table 9.5.5.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.1-2.

Table 9.5.5.1-1: RI Test (FDD)

			To	st 1	To	st 2
Para	meter	Unit	TP1	TP2	TP1	TP2
Bandwidth	Bandwidth			MHz		MHz
Transmission mode			10	10	10	10
	$ ho_{\scriptscriptstyle A}$	dB		0	()
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	(0	()
allocation	P_c	dB	0	0	0	0
	σ	dB	(<u> </u>	()
SNR		dB	0	0	20	20
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-98	-78	-78
$N_{oc}^{(j)}$		dB[mW/15kHz]	-(98	-9	98
Propagation channe)l		EPA 5 Low	EPA 5 Low	EPA 5 Low	EPA 5 High
Antenna configuration	on		2x2	2x2	2x2	2x2
Beamforming Model				Section B.4.3	•	Section B.4.3
Timing offset between Frequency offset be		us Hz		<u>0</u> 0))
Cell-specific referen		I IZ		a ports 0		a ports 0
CSI-RS signal 0	o e e e g		Antenna ports 15,16	N/A	Antenna ports 15,16	N/A
	and subframe offset		5/1	N/A	5/1	N/A
$T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$ CSI-RS 0 configurat	ion		0	N/A	0	N/A
_	.1011		·	Antenna ports	•	Antenna ports
CSI-RS signal 1			N/A	15,16	N/A	15,16
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	CSI-RS 1 periodicity and subframe offset $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$		N/A	5/1	N/A	5/1
CSI-RS 1 configurat	ion		N/A	3	N/A	3
Zero-power CSI-RS I _{CSI-RS} / ZeroPowerC			N/A	1 / 10000010000 00000	N/A	1] / 10000010000 00000
Zero-power CSI-RS I _{CSI-RS} / ZeroPowerC	CSI-RS bitmap		1 / 00110000000 00000	N/A	1 / 00110000000 00000	N/A
CSI-IM 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/1	N/A	5/1	N/A
CSI-IM 0 configurati			2	N/A	2	N/A
CSI-IM 1 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		N/A	5/1	N/A	5/1
CSI-IM 1 configuration	on		N/A	6	N/A	6
RI configuration			Fixed RI=2	N/A	Fixed RI=1	N/A
g			and follow RI PUSCH (Note		and follow RI PUSCH (Note	PUSCH (Note
Physical channel for			6)	N/A	6)	6)
PUCCH Report Type	e for CQI/PMI		2	N/A	2	2
Physical channel for	RI reporting		PUCCH Format 2	N/A	PUCCH Format 2	PUCCH Format 2
PUCCH Report Type			Format 2	N/A	Format 2	3
. ccarriopon ryp	CSI-RS		CSI-RS 0	N/A	CSI-RS 0	N/A
	CSI-IM		CSI-IM 0	N/A	CSI-IM 0	N/A
	Reporting mode		PUCCH 1-1	N/A	PUCCH 1-1	N/A
CSI process 0 (Note 7)	Reporting periodicity	ms	$N_{pd} = 5$	N/A	$N_{\rm pd} = 5$	N/A
(NOTE 1)	CQI delay	ms	8	N/A	10	N/A
	cqi-pmi- ConfigurationIndex		6	N/A	6	N/A
	ri-ConfigIndex		1	N/A	1	N/A
	CSI-RS		N/A	N/A	N/A	CSI-RS 1
CSI process 1	CSI-IM		N/A	N/A	N/A	CSI-IM 1
(Note 7, Note 9)	Reporting mode Reporting		N/A	N/A	N/A	PUCCH 1-1
	periodicity	ms	N/A	N/A	N/A	$N_{\rm pd} = 5$

CQI delay	ms	N/A	N/A	N/A	10
cqi-pmi- ConfigurationIndex		N/A	N/A	N/A	4
ri-ConfigIndex		N/A	N/A	N/A	1
CSI process for PDSCH scheduling		CSI pro	ocess 0	CSI pro	ocess 0
Cell ID		0	6	0	6
Quasi-co-located CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
Quasi-co-located CRS		Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID
Quasi-co-located CN3		as Cell 1	as Cell 2	as Cell 1	as Cell 2
PMI for subframe 2, 3, 4, 7, 8 and 9		010000 for fixed RI = 2 010011 for UE reported RI	100000	000011 for fixed RI = 1 010011 for UE reported RI	N/A
PMI for subframe 1 and 6		100000	100000	100000	N/A
Max number of HARQ transmissions		1	N/A	1	N/A

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: 3 symbols allocated to PDCCH
- Note 3: Reference measurement channel RC.13 FDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.
- Note 4: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.
- Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test 2.
- Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.
- Note 7: If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.
- Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.
- Note 9: If UE supports one CSI process, CSI process 1 is not configured in Test 2.

Table 9.5.5.1-2: Minimum requirement (FDD)

	Test 1	Test 2
71	N/A	1.0
72	1.0	N/A
UE Category	≥2	≥2

9.5.5.2 TDD

The minimum performance requirement in Table 9.5.5.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

For the parameters specified in Table 9.5.5.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.2-2.

Table 9.5.5.2-1: RI Test (TDD)

_			Tes	st 1	Tes	st 2
Para	meter	Unit	TP1	TP2	TP1	TP2
Bandwidth		MHz		MHz		ИHz
Transmission mode			10	10	10	10
	$ ho_{\scriptscriptstyle A}$	dB	(0	(
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	(0	()
allocation	P_c	dB	0	0	0	0
	σ	dB	(0	()
Uplink downlink con			2	2	2	2
Special subframe co	onfiguration		4	4	4	4
SNR		dB	0	0	20	20
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-98	-78	-78
$N_{oc}^{(j)}$		dB[mW/15kHz]		98		98
Propagation channe			EPA 5 Low	EPA 5 Low	EPA 5 Low	EPA 5 High
Antenna configuration			2x2	2x2	2x2	2x2
Beamforming Mode Timing offset between		us		n Section B.4.3	As specified in	Section B.4.3
Frequency offset be		Hz		0	(
Cell-specific referen			Antenna	a ports 0	Antenna	a ports 0
CSI-RS signal 0	· ·		Antenna ports 15,16	N/A	Antenna ports 15,16	N/A
CSI-RS 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/3	N/A	5/3	N/A
CSI-RS 0 configurat	ion		0	N/A	0	N/A
CSI-RS signal 1			N/A	Antenna ports 15,16	N/A	Antenna ports 15,16
CSI-RS 1 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	CSI-RS 1 periodicity and subframe offset		N/A	5/3	N/A	5/3
CSI-RS 1 configurat	ion		N/A	3	N/A	3
Zero-power CSI-RS I _{CSI-RS} / ZeroPowerC	0 configuration		N/A	3 / 10000010000 00000	N/A	3 / 10000010000 00000
Zero-power CSI-RS I _{CSI-RS} / ZeroPowerC			3 / 00110000000 00000	N/A	3 / 00110000000 00000	N/A
CSI-IM 0 periodicity $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	and subframe offset		5/3	N/A	5/3	N/A
CSI-IM 0 configurati	on		2	N/A	2	N/A
•	and subframe offset		N/A	5/3	N/A	5/3
$T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$ CSI-IM 1 configurati	on		N/A	6	N/A	6
RI configuration	011		Fixed RI=2 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
-	CSI-RS		CSI-RS 0	N/A	CSI-RS 0	N/A
001 0	CSI-IM		CSI-IM 0	N/A	CSI-IM 0	N/A
CSI process 0	Reporting mode		PUSCH 3-1	N/A	PUSCH 3-1	N/A
(Note 6, 7)	Reporting Interval	ms	5	N/A	5	N/A
	CQI delay	ms	11	N/A	11	N/A
	CSI-RS		N/A	N/A	N/A	CSI-RS 1
CSI process 1	CSI-IM		N/A	N/A	N/A	CSI-IM 1
(Note 6, 7, 8)	Reporting mode Reporting Interval	ma	N/A N/A	N/A N/A	N/A N/A	PUSCH 3-1 5
	CQI delay	ms ms	N/A N/A	N/A N/A	N/A N/A	11
CSI process for PDS		1113		ocess 0		ocess 0
Cell ID			0	6	0	6
Quasi-co-located CS	SI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
Quasi-co-located CF			Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID
			as Cell 1	as Cell 2	as Cell 1	as Cell 2
PMI for subframe 4	and 9		010000 for	100000	000011 for	N/A

	fixed RI = 2		fixed RI = 1	
	010011 for UE		010011 for UE	
	reported RI		reported RI	
PMI for subframe 3 and 8	100000	100000	100000	N/A
Max number of HARQ transmissions	1	N/A	1	N/A
ACK/NACK feedback mode	Multiplexing	N/A	Multiplexing	N/A

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: 3 symbols allocated to PDCCH
- Reference measurement channel RC.13 TDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 4 Note 3: and 9 from TP1.
- TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3 and 8 from TP1. Note 4:
- Note 5: TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3, 4, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test
- Reported wideband CQI and PMI are used and sub-band CQI is discarded. Note 6:
- Note 7: If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.
- Note 8: If UE supports one CSI process, CSI process 1 is not configured in Test 2.
- PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3and #8 to allow aperiodic Note 9:

CQI/PMI/RI to be transmitted in uplink SF#7 and #2.

Table 9.5.5.2-2: Minimum requirement (TDD)

	Test 1	Test 2
71	N/A	1.0
72	1.0	N/A
UE Category	≥2	≥2

9.6 Additional requirements for carrier aggregation

This clause includes requirements for the reporting of channel state information (CSI) with the UE configured for carrier aggregation. The purpose is to verify that the channel state for each cell is correctly reported with multiple cells configured for periodic reporting.

Periodic reporting on multiple cells (Cell-Specific Reference 9.6.1 Symbols)

The applicability of requirements are specified in Clause 9.1.1.2.

9.6.1.1 **FDD**

The following requirements apply to UE Category ≥3. For CA with 2 DL CC, for the parameters specified in Table 9.6.1.1-1 and Table 9.6.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported shall be such that

wideband CQI_{Pcell} – wideband $CQI_{Scell} \ge 2$

Table 9.6.1.1-1: Parameters for PUCCH 1-0 static test on multiple cells (FDD, 2 DL CA)

Parameter Unit Pcell		Scell			
PDSCH transmission	n mode		1		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	
Propagation condit antenna configur			AWGN (1 x 2)		
SNR		dB	10	4	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88 -94		
$N_{oc}^{(j)}$	$N_{oc}^{(j)}$		-98	-98	
Physical channel f reporting	or CQI		PUCCH Format 2		
PUCCH Report Type			4		
Reporting period	Reporting periodicity		$N_{\rm pd} = 10$		
cqi-pmi-ConfigurationIndex			11	16 [shift of 5 ms relative to Pcell]	

Table 9.6.1.1-2: PUCCH 1-0 static test (FDD, 2 DL CA)

Test n	umber	Bandwidth combination		
1		10MHz for both cells		
2	2	20MHz for both cells		
3		5MHz for both cells		
4		5MHz for PCell and 10MHz for SCell		
Note 1:	Note 1: The applicability of requirements for different CA configurations and			
bandwidth combination sets is defined in 9.1.1.2.				

The following requirements apply to UE Category \geq 6. For CA with 3 DL CC, for the parameters specified in Table 9.6.1.1-3 and Table 9.6.1.1-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell 1 and SCell2 reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell1} \ge 2$

 $wideband \ CQI_{SCell1} - wideband \ CQI_{SCell2} \geq 2$

Table 9.6.1.1-3: Parameters for PUCCH 1-0 static test on multiple cells (FDD, 3 DL CA)

Parameter		Unit	Pcell	Scell1	Scell2
PDSCH transmission	PDSCH transmission mode		1		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB		0	
Propagation condition and antenna configuration			AWGN (1 x 2)		
SNR			12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms	$N_{\rm pd} = 20$		
cqi-pmi-ConfigurationIndex			21	26 [shift of 5 ms relative to Pcell]	31 [shift of 10 ms relative to Pcell]

Table 9.6.1.1-4: PUCCH 1-0 static test (FDD, 3 DL CA)

Test number	Bandwidth combination (MHz)			
1	3x20			
2	20+20+15			
3	20+20+10			
4	20+15+15			
5	20+15+10			
6	20+10+10			
7	15+15+10			
8	20+10+5			
Note 1: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 9.1.1.2.				

9.6.1.2 TDD

The following requirements apply to UE Category \geq 3. For CA with 2 DL CC, for the parameters specified in Table 9.6.1.2-1 and Table 9.6.1.2-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported shall be such that

 $wideband \ CQI_{Pcell} - wideband \ CQI_{Scell} \geq 2$

Table 9.6.1.2-1: PUCCH 1-0 static test on multiple cells (TDD, 2 DL CA)

Parameter	Parameter		Pcell	Scell		
PDSCH transmission mode			1			
Uplink downlink con	figuration			2		
Special subfra configuration				4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0		
allocation	$ ho_{\scriptscriptstyle B}$	dB		0		
Propagation condition and antenna configuration			AWGN (1 x 2)			
SNR		dB	10	4		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-94		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98		
Physical channel f reporting	or CQI		PUCCH Format 2			
PUCCH Report Type			4			
Reporting periodicity		ms	$N_{\rm pd} = 10$			
cqi-pmi-ConfigurationIndex			8	13 [shift of 5 ms relative to Pcell]		
Note 1: 2 symbols are allocated to DDCCH. No DDCCH for user data is askeduled for the LIE with one						

Table 9.6.1.2-2: PUCCH 1-0 static test (TDD, 2 DL CA)

Test number	Bandwidth combination			
1	20MHz for both cells			
2	15MHz for PCell and 20MHz for SCell			
	The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 9.1.1.2.			

The following requirements apply to UE Category \geq 6. For CA with 3 DL CC, for the parameters specified in Table 9.6.1.2-3 and Table 9.6.1.2-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell 1 and SCell2 reported shall be such that

 $wideband \ CQI_{PCell} - wideband \ CQI_{SCell1} \geq 2$

 $wideband \ CQI_{SCell1} - wideband \ CQI_{SCell2} \geq 2$

Table 9.6.1.2-3: PUCCH 1-0 static test on multiple cells (TDD, 3 DL CA)

Parameter		Unit	Pcell	Scell1	Scell2	
PDSCH transmission mode			1			
Uplink downlink conf	iguration			2		
Special subfra configuration				4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0		
allocation	$ ho_{\scriptscriptstyle B}$	dB		0		
Propagation condit antenna configur				AWGN (1 x 2)		
SNR		dB	12	6	0	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98	
Physical channel for CQI reporting			PUCCH Format 2			
PUCCH Report	PUCCH Report Type		4			
Reporting periodicity		ms	$N_{\rm pd} = 20$			
cqi-pmi-ConfigurationIndex					28 [shift of 10 ms relative to Pcell]	
Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.						

Table 9.6.1.2-4: PUCCH 1-0 static test (TDD, 3 DL CA)

Test number		Bandwidth combination (MHz)		
1		3x20		
2		20+20+15		
Note 1:		ability of requirements for different CA ons and bandwidth combination sets is 9.1.1.2.		

9.6.1.3 TDD-FDD CA with FDD PCell

The following requirements apply to UE Category \geq 3. For TDD-FDD CA with FDD PCell with 2 DL CC, for the parameters specified in Table 9.6.1.3-1 and Table 9.6.1.3-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell} \ge 2$

Table 9.6.1.3-1: Parameters for PUCCH 1-0 static test on multiple cells (TDD-FDD CA with FDD PCell, 2 DL CA)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter		Unit	PCell	SCell
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PDSCH transmission	on mode			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uplink downlink con	figuration		N/A	2
allocation ρ_B dB ρ_B dB ρ_B dB ρ_B AWGN (1 x 2) Propagation condition and antenna configuration ρ_B dB ρ_B 10 ρ_B 4 $\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -88 -94 $N_{oc}^{(j)}$ dB[mW/15kHz] -98 -98 Physical channel for CQI reporting PUCCH Format 2 PUCCH Report Type 4 Reporting periodicity ms ρ_B 10				N/A	4
Propagation condition and antenna configuration SNR $\hat{I}_{or}^{(j)}$ $\hat{I}_{or}^{(j)}$ $\hat{I}_{oc}^{(j)}$ $\hat{I}_{oc}^{(j)$	Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0
antenna configuration SNR dB 10 4 $\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -88 -94 $N_{oc}^{(j)}$ Physical channel for CQI reporting PUCCH Report Type Reporting periodicity ms AWGN (1 x 2) 4 PUCCH Format 2	allocation	$ ho_{\scriptscriptstyle B}$	dB		0
$ \hat{I}_{or}^{(j)} \qquad \text{dB[mW/15kHz]} \qquad -88 \qquad -94 $ $ N_{oc}^{(j)} \qquad \text{dB[mW/15kHz]} \qquad -98 \qquad -98 $ $ Physical channel for CQI reporting $				AWGN (1 x 2)	
$N_{oc}^{(j)}$ dB[mW/15kHz] -98 -98 Physical channel for CQI reporting PUCCH Format 2 PUCCH Report Type 4 Reporting periodicity ms $N_{pd} = 10$	SNR		dB	10	4
Physical channel for CQI reporting PUCCH Format 2 PUCCH Report Type Reporting periodicity ms Npd = 10	$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-94
reporting PUCCH Format 2 PUCCH Report Type Reporting periodicity ms $N_{pd} = 10$	$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98
Reporting periodicity ms $N_{pd} = 10$				PUCCI	H Format 2
14 Ishift of 5 ms rolative	PUCCH Report	Туре		4	
agi pmi Configuration Index	Reporting periodicity		ms	$N_{\rm pd} = 10$	
to Pcell]	cqi-pmi-ConfigurationIndex			9	14 [shift of 5 ms relative to Pcell]

Table 9.6.1.3-2: PUCCH 1-0 static test (TDD-FDD CA with FDD PCell, 2 DL CA)

Test number		Bandwidth combination		
1		20MHz for FDD cell and 20MHz for TDD cell		
2		10MHz for FDD cell and 20MHz for TDD cell		
3		5MHz for FDD cell and 10MHz for TDD cell		
Note 1: The app		olicability of requirements for different CA configurations and		
bandwidth combination sets is defined in 9.1.1.2.				

The following requirements apply to UE Category \geq 6. For TDD-FDD CA with FDD PCell with 3 DL CC, for the parameters specified in Table 9.6.1.3-3 and Table 9.6.1.3-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell1 and SCell2 reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell1} \ge 2$

 $wideband \ CQI_{SCell1} - wideband \ CQI_{SCell2} \geq 2$

Table 9.6.1.3-3: PUCCH 1-0 static test on multiple cells (TDD-FDD CA with FDD PCell, 3 DL CA)

Parameter	Parameter		PCell	SCell1	SCell2
PDSCH transmission	PDSCH transmission mode		1		
Uplink downlink configuration			N/A	2 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell	2
Special subframe configuration			4 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell		4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0		
	Propagation condition and antenna configuration		AWGN (1 x 2)		
SNR		dB	12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel for CQI reporting			PUCCH Format 2		
PUCCH Report Type			4		
Reporting periodicity		ms		$N_{\rm pd} = 20$	
cqi-pmi-Configurati	onIndex		19	24 [shift of 5 ms relative to Pcell]	29 [shift of 10 ms relative to Pcell]

Table 9.6.1.3-4: PUCCH 1-0 static test (TDD-FDD CA with FDD PCell, 3 DL CA)

	Test number	Bandwidth combination (MHz)			
	1	20MHz for FDD cell and 2x20MHz for TDD cell			
	2	15MHz for FDD cell and 2x20MHz for TDD cell			
	3	10MHz for FDD cell and 2x20MHz for TDD cell			
Note 1:	te 1: The applicability of requirements for different CA configurations and bandwidth				
	combination sets is defined in 9.1.1.2.				

9.6.1.4 TDD-FDD CA with TDD PCell

The following requirements apply to UE Category \geq 3. For TDD-FDD CA with TDD PCell with 2 DL CC, for the parameters specified in Table 9.6.1.4-1 and Table 9.6.1.4-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell} \ge 2$

Table 9.6.1.4-1: Parameters for PUCCH 1-0 static test on multiple cells (TDD-FDD CA with TDD PCell, 2 DL CA)

Parameter		Unit	PCell	SCell
PDSCH transmission mode				1
Uplink downlink conf			2	N/A
Special subfra configuration			4	N/A
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0
allocation	$ ho_{\scriptscriptstyle B}$	dB		0
Propagation condition and antenna configuration			AWGN (1 x 2)	
SNR		dB	10	4
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-94
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98
Physical channel for CQI reporting			PUCCH Format 2	
PUCCH Report	Туре		4	
Reporting period	dicity	ms	$N_{\rm pd} = 10$	
cqi-pmi-ConfigurationIndex			8	13 [shift of 5 ms relative to Pcell]

Table 9.6.1.4-2: PUCCH 1-0 static test (TDD-FDD CA with TDD PCell, 2 DL CA)

Test number		Bandwidth combination			
1		20MHz for TDD cell and 20MHz for FDD cell			
2		20MHz for TDD cell and 10MHz for FDD cell			
3		10MHz for TDD cell and 5MHz for FDD cell			
Note 1: The app		olicability of requirements for different CA configurations and			
	bandwidth combination sets is defined in 9.1.1.2.				

The following requirements apply to UE Category \geq 6. For TDD-FDD CA with TDD PCell with 3 DL CC, for the parameters specified in Table 9.6.1.4-3 and Table 9.6.1.4-4, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of PCell and SCell1 reported, and the difference between the wideband CQI indices of SCell1 and SCell2 reported shall be such that

wideband CQI_{PCell} – wideband $CQI_{SCell1} \ge 2$

 $wideband \ CQI_{SCell1} - wideband \ CQI_{SCell2} \geq 2$

Table 9.6.1.4-3: PUCCH 1-0 static test on multiple cells (TDD-FDD CA with TDD PCell, 3 DL CA)

Parameter		Unit	PCell	SCell1	SCell2
PDSCH transmission	n mode			1	
Uplink downlink conf	figuration		2 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell		
Special subframe configuration			4 if Scell1 is TDD Cell N/A if Scell1 is FDD Cell		N/A
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0		
Propagation condit antenna configur			AWGN (1 x 2)		
SNR		dB	12	6	0
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-86	-92	-98
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
Physical channel f reporting	or CQI		PUCCH Format 2		
PUCCH Report	Туре			4	
Reporting period	Reporting periodicity		·	$N_{pd} = 20$	·
cqi-pmi-Configurati	onIndex		18	23 [shift of 5 ms relative to Pcell]	28 [shift of 10 ms relative to Pcell]

Table 9.6.1.3-4: PUCCH 1-0 static test (TDD-FDD CA with FDD PCell, 3 DL CA)

	Test number	Bandwidth combination (MHz)			
	1	2x20MHz for TDD cell and 20MHz for FDD cell			
	2	2x20MHz for TDD cell and 15MHz for FDD cell			
	3	2x20MHz for TDD cell and 10MHz for FDD cell			
Note 1: The applicability of requirements for different CA configurations and bandwidtl					
	combination sets is defined in 9.1.1.2.				

9.7 CSI reporting (Single receiver antenna and for FDD, half-duplex FDD and TDD)

The number of receiver antennas N_{RX} assumed for the minimum performance requirement in this clause is 1.

9.7.1 CQI reporting definition under AWGN conditions

9.7.1.1 FDD and half-duplex FDD

The following requirements apply to UE Category 0. For the parameters specified in Table 9.7.1.1-1 and Table 9.7.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.16 FDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Table 9.7.1.1-1: PUCCH 1-0 static test (FDD and half-duplex FDD)

Parameter		Unit	Test 1 Test 2		st 2		
Bandwidth		MHz	10				
PDSCH transmission	n mode		1				
$ ho_{\scriptscriptstyle A}$		dB	0				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0				
	σ	dB			0		
Propagation condit antenna configur			AWGN (1 x 1)				
SNR (Note 2	SNR (Note 2)		TBD	TBD	TBD	TBD	
$\hat{I}_{or}^{(j)}$			TBD	TBD	TBD	TBD	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98		
Max number of H transmission			1				
Physical channel for CQI reporting			PUCCH Format 2				
PUCCH Report Type			4				
Reporting periodicity		ms	$N_{pd} = [40]$				
cqi-pmi-Configurati	onIndex	1.1.1.1.00.40			41]		

Note 1: Reference measurement channel RC.16 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

9.7.1.2 TDD

The following requirements apply to UE Category 0. For the parameters specified in Table 9.7.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.16 TDD in Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Parameter Unit Test 1 Test 2 Bandwidth MHz 10 PDSCH transmission mode 1 Uplink downlink configuration 2 Special subframe configuration 4 dB 0 $\rho_{\scriptscriptstyle A}$ Downlink power dB 0 $\rho_{\scriptscriptstyle B}$ allocation dB 0 σ Propagation condition and AWGN (1 x 1) antenna configuration SNR (Note 2) dB TBD TBD TBD TBD $\hat{\boldsymbol{I}}^{(j)}$ dB[mW/15kHz] **TBD TBD TBD TBD** $N^{(j)}$ dB[mW/15kHz] -98 -98 Max number of HARQ 1 transmissions Physical channel for CQI PUSCH (Note 3) reporting PUCCH Report Type $N_{pd} = 5$ Reporting periodicity ms cgi-pmi-ConfigurationIndex

Table 9.7.1.2-1: PUCCH 1-0 static test (TDD)

Note 1: Reference measurement channel RC.16 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Multiplexing

- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

9.7.2 Frequency-selective scheduling mode

9.7.2.1 FDD and half-duplex FDD

ACK/NACK feedback mode

For the parameters specified in Table 9.7.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.7.2.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to [0.05].

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD and in each available downlink transmission instance for half-duplex FDD.

Table 9.7.2.1-1 Sub-band test for single antenna transmission (FDD and half-duplex FDD)

Parai	Parameter		Test 1 Test		st 2		
Band	width	MHz	10 MHz				
Transmiss	Transmission mode			1 (po	ort 0)		
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0		
power	$ ho_{\scriptscriptstyle B}$	dB	0				
allocation	σ	dB		(0		
SNR (Note 3)	dB	TBD	TBD	TBD	TBD	
	(j) or	dB[mW/15kHz]	TBD TBD TBD TE] TBD TBD TBD		TBD
N	(j) oc	dB[mW/15kHz]	-98 -98		98		
D .:			Clause B.2.4 with $\tau_d = 0.45 \mu$		0.45μ s,		
Propagation	on channel		$a = 1, f_D = 5 \text{ Hz}$				
Antenna co	onfiguration			1:	x 1		
Reportin	Reporting interval		8				
CQI	delay	ms	8				
Reporting mode				PUSCH 3-0			
Sub-band size		RB		6 (ful	l size)		
	Max number of HARQ transmissions		1				

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel RC.16 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.7.2.1-2 Minimum requirement (FDD)

	Test 1	Test 2
<i>α</i> [%]	TBD	TBD
β[%]	TBD	TBD
γ	TBD	TBD
UE Category	0	0

9.7.2.2 TDD

For the parameters specified in Table 9.7.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.7.2.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to [0.05].

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each available downlink transmission instance for TDD.

Table 9.7.2.2-1 Sub-band test for single antenna transmission (TDD)

Parar	Parameter		Те	Test 1 Test 2		
Band	width	MHz		10	MHz	
Transmiss	Transmission mode			1 (p	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB	0			
allocation	σ	dB		(0	
Uplink o configu	lownlink uration				2	
Special s configu					4	
SNR (Note 3)	dB	TBD TBD TBD		TBD	
\hat{I}_{a}^{0}	(j) r	dB[mW/15kHz]	TBD TBD TBD TE		TBD	
N_{c}	(j) oc	dB[mW/15kHz]	-98 -98		8	
Propagatio	on channel		Clause B.2.4 with $\tau_d = 0.45\mu\text{s, } a = 1,$ $f_D = 5\text{Hz}$			
Antenna co	nfiguration			1 :	x 1	
Reporting	g interval	ms	5			
CQI	delay	ms	10 or 11			
Reporting mode				PUSCH 3-0		
Sub-band size		RB		6 (full size)		
Max number of HARQ transmissions				1		
ACK/NACK fe				Multir	olexing	
		an available uplink	reportin			rame

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)
- Note 2: Reference measurement channel RC.16 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
- Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.7.2.2-2 Minimum requirement (TDD)

	Test 1	Test 2
<i>α</i> [%]	TBD	TBD
β [%]	TBD	TBD
γ	TBD	TBD
UE Category	0	0

10 Performance requirement (MBMS)

10.1 FDD (Fixed Reference Channel)

The parameters specified in Table 10.1-1 are valid for all FDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Unit **Parameter** Value Number of HARQ **Processes** None processes 15 kHz kHz Subcarrier spacing Allocated subframes per 6 subframes Radio Frame (Note 1) Number of OFDM 2 symbols for PDCCH Cyclic Prefix Extended For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, Note1:

Table 10.1-1: Common Test Parameters (FDD)

in line with TS 36.331.

10.1.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.1-1 and Table 10.1.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.1-2.

Table 10.1.1-1: Test Parameters for Testing

Parameter		Unit	Test 1-4		
	$ ho_{\scriptscriptstyle A}$	dB	0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)		
	σ	dB	0		
N_{oc} at antenna	port	dBm/15kHz	-98		
Note 1: $P_B = 0$.					

Table 10.1.1-2: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and	BLER	SNR(dB)	UE
					antenna	(%)		Category
1	10 MHz	R.37 FDD	OP.4				4.1	≥1
			FDD					
2	10 MHz	R.38 FDD	OP.4				11.0	≥1
			FDD	MBSFN				
3	10 MHz	R.39 FDD	OP.4	channel	1x2 low	1	20.1	≥2
			FDD	model (Table	1 XZ 10W	Ī		
	5.0MHz	R.39-1 FDD	OP.4	B.2.6-1)			20.5	1
			FDD					
4	1.4 MHz	R.40 FDD	OP.4				6.6	≥1
			FDD					

TDD (Fixed Reference Channel) 10.2

The parameters specified in Table 10.2-1 are valid for all TDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Table 10.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value			
Number of HARQ processes	Processes	None			
Subcarrier spacing	kHz	15 kHz			
Allocated subframes per Radio Frame (Note 1)	r	5 subframes			
Number of OFDM symbols for PDCCH		2			
Cyclic Prefix		Extended			
Note1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.					

10.2.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.2-1 and Table 10.2.1-1 and Annex A.3.8.2, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.1-2.

Table 10.2.1-1: Test Parameters for Testing

Parameter	•	Unit	Test 1-4			
	$ ho_{\scriptscriptstyle A}$	dB	0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
anocation	σ	dB	0			
N_{oc} at antenna port		dBm/15kHz	-98			
Note 1: $P_B = 0$.						

Table 10.2.1-2: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and	BLER	SNR(dB)	UE
					antenna	(%)		Category
1	10 MHz	R.37 TDD	OP.4				3.4	≥1
			TDD					
2	10 MHz	R.38 TDD	OP.4				11.1	≥1
			TDD	MBSFN				
3a	10 MHz	R.39 TDD	OP.4	channel	1x2 low	1	20.1	≥2
			TDD	model (Table	1XZ IOW	1		
3b	5MHz	R.39-1 TDD	OP.4	B.2.6-1)			20.5	1
			TDD					
4	1.4 MHz	R.40 TDD	OP.4				5.8	≥1
			TDD					

Annex A (normative): Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits $N_{\rm ch}$ that can be transmitted during the first transmission of a given sub-frame.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24*(N_{CB} + 1))/N_{ch}|, where N_{CB} = \begin{cases} 0, & \text{if } C = 1\\ C, & \text{if } C > 1 \end{cases}$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.
- 3. If there is more than one A that minimises the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

A.2.1.3 Overview of UL reference measurement channels

In Table A.2.1.3-1 are listed the UL reference measurement channels specified in annexes A.2.2 and A.2.3 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.2.2 and A.2.3 as appropriate.

Table A.2.1.3-1: Overview of UL reference measurement channels

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD, Full RB allocation, QPSK									
FDD	Table A.2.2.1.1-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.1.1-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.1.1-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.1.1-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.2.2.1.1-1		15	QPSK	1/5	75		≥ 1	
FDD	Table A.2.2.1.1-1		20	QPSK	1/6	100		≥ 1	
FDD	Table A.2.2.1.1-1a		1.4	QPSK	1/3	6		0	
FDD	Table A.2.2.1.1-1a		3	QPSK	1/5	15		0	
FDD	Table A.2.2.1.1-1a		5	QPSK	1/8	25		0	
FDD	Table A.2.2.1.1-1a		10	QPSK	[1/10	[36]		0	
FDD	Table A.2.2.1.1-1a		15	QPSK	[1/10	[36]		0	
FDD	Table A.2.2.1.1-1a		20	QPSK	[1/10	[36]		0	
FDD, Ful	I RB allocation, 16-	QAM							
FDD	Table A.2.2.1.2-1		1.4	16QAM	3/4	6		≥ 1	
FDD	Table A.2.2.1.2-1		3	16QAM	1/2	15		≥ 1	
FDD	Table A.2.2.1.2-1		5	16QAM	1/3	25		≥ 1	
FDD	Table A.2.2.1.2-1		10	16QAM	3/4	50		≥ 2	
FDD	Table A.2.2.1.2-1		15	16QAM	1/2	75		≥ 2	
FDD	Table A.2.2.1.2-1		20	16QAM	1/3	100		≥ 2	
FDD	Table A.2.2.1.2-1a		1.4	16QAM	1/3	5		0	
FDD	Table A.2.2.1.2-1a		3	16QAM	1/3	5		0	
FDD	Table A.2.2.1.2-1a		5	16QAM	1/3	5		0	
FDD	Table A.2.2.1.2-1a		10	16QAM	1/3	5		0	
FDD	Table A.2.2.1.2-1a		15	16QAM	1/3	5		0	
FDD	Table A.2.2.1.2-1a		20	16QAM	1/3	5		0	
FDD, Partial RB allocation, QPSK									
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	1		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	2		≥ 1	
FDD	Table A.2.2.2.1-1	-	1.4 - 20	QPSK	1/3	3		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	4		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	5		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	8		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	9		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	10		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	12		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	16		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	18		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	20		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	24		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	27		≥ 1	

FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	30	≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	32	≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	36	≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	40	≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	45	≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	48	≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/3	50	≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/3	54	≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	60	≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	64	≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	72	≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	75	≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	80	≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	81	≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/6	90	≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/6	96	≥ 1	
FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	1	0	
FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	2	0	
FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	3	0	
FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	4	0	
FDD	Table A.2.2.2.1-1a		1.4 - 20	QPSK	1/3	5	0	
FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	6	0	
FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	8	0	
FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	9	0	
FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/3	10	0	
FDD	Table A.2.2.2.1-1a		3-20	QPSK	1/4	12	0	
FDD	Table A.2.2.2.1-1a		5-20	QPSK	1/5	15	0	
FDD	Table A.2.2.2.1-1a		5-20	QPSK	1/5	16	0	
FDD	Table A.2.2.2.1-1a		5-20	QPSK	1/6	18	0	
FDD	Table A.2.2.2.1-1a		5-20	QPSK	1/6	20	0	
FDD	Table A.2.2.2.1-1a		5-20	QPSK	1/8	24	0	
FDD	Table A.2.2.2.1-1a		10-20	QPSK	1/8	25	0	
FDD	Table A.2.2.2.1-1a		10-20	QPSK	1/8	27	0	
FDD	Table A.2.2.2.1-1a		10-20	QPSK	1/10	30	0	
	rtial RB allocation,	16-QAM						
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	2	≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	3	≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	4	≥ 1	
FDD	Table A.2.2.2.2-1		1.4 - 20	16QAM	3/4	5	<u>- ·</u> ≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	6	≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	8	≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	9	≥ 1	
FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	10	≥ 1	
FDD	Table A.2.2.2.2		3 - 20	16QAM	3/4	12	≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	15	≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	16	≥ 1	
FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	18	≥ 1	
רטט	1 abic M.Z.Z.Z.Z-1		J - ZU	IOCIAIVI	1/2	10	<u>- 1</u>	

EDD	T.I. A.O.O.O.A			400 414	4 /0				
FDD	Table A.2.2.2.1		5 - 20	16QAM	1/3	20		≥ 1	
FDD	Table A.2.2.2.1		5 - 20	16QAM	1/3	24		≥ 1	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	1/3	25		≥ 1	
FDD	Table A.2.2.2.1		10 - 20	16QAM	1/3	27		≥ 1	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	30		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	32		≥ 2	
FDD	Table A.2.2.2.1		10 - 20	16QAM	3/4	36		≥ 2	
FDD	Table A.2.2.2.1		10 - 20	16QAM	3/4	40		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	45		≥ 2	
FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	48		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	3/4	50		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	3/4	54		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	2/3	60		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	2/3	64		≥ 2	
FDD	Table A.2.2.2.2-1		15 - 20	16QAM	1/2	72		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	1/2	75		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	1/2	80		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	1/2	81		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	2/5	90		≥ 2	
FDD	Table A.2.2.2.2-1		20	16QAM	2/5	96		≥ 2	
FDD	Table A.2.2.2.1a		1.4 - 20	16QAM	3/4	1		0	
FDD	Table A.2.2.2.1a		1.4 - 20	16QAM	3/4	2		0	
FDD	Table A.2.2.2.1a		1.4 - 20	16QAM	2/5	4		0	
TDD, Ful	I RB allocation, QP	SK							
TDD	Table A.2.3.1.1-1		1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.2.3.1.1-1		3	QPSK	1/3	15		≥ 1	
TDD	Table A.2.3.1.1-1		5	QPSK	1/3	25		≥ 1	
TDD	Table A.2.3.1.1-1		10	QPSK	1/3	50		≥ 1	
TDD	Table A.2.3.1.1-1		15	QPSK	1/5	75		≥ 1	
TDD	Table A.2.3.1.1-1		20	QPSK	1/6	100		≥ 1	
TDD	Table A.2.3.1.1-1a		1.4	QPSK	1/3	6		0	
TDD	Table A.2.3.1.1-1a		3	QPSK	1/5	15		0	
TDD	Table A.2.3.1.1-1a		5	QPSK	1/8	25		0	
TDD	Table A.2.3.1.1-1a		10	QPSK	[1/10	[36]		0	
TDD	Table A.2.3.1.1-1a		15	QPSK	[1/10	[36]		0	
TDD	Table A.2.3.1.1-1a		20	QPSK	[1/10	[36]		0	
TDD, Ful	I RB allocation, 16-	QAM				I .	<u> </u>		
TDD	Table A.2.3.1.2-1		1.4	16QAM	3/4	6		≥ 1	
TDD	Table A.2.3.1.2-1		3	16QAM	1/2	15		≥ 1	
TDD	Table A.2.3.1.2-1		5	16QAM	1/3	25		≥ 1	
TDD	Table A.2.3.1.2-1		10	16QAM	3/4	50		≥ 2	
TDD	Table A.2.3.1.2-1		15	16QAM	1/2	75		≥ 2	
TDD	Table A.2.3.1.2-1		20	16QAM	1/3	100		≥ 2	
TDD	Table A.2.3.1.2-1a		1.4	16QAM	1/3	5		0	
TDD	Table A.2.3.1.2-1a		3	16QAM	1/3	5		0	
TDD	Table A.2.3.1.2-1a		5	16QAM	1/3	5		0	
TDD	Table A.2.3.1.2-1a		10	16QAM	1/3	5		0	
	. 33.0 /2.0 / / / / /						l	, ,	

TDD	TDD	Table A.2.3.1.2-1a		15	16QAM	1/3	5	0	
TOD. Table A.2.3.2.1-1							5		
TDD			PSK		10001111	170		•	
TDD	•			4 - 20	OPSK	1/3	1	> 1	
TDD									
TDD									
TDD									
TDD									
TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 8 ≥ 1 TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 9 ≥ 1 TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 10 ≥ 1 TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 12 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 15 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 24 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 9 ≥ 1 TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 10 ≥ 1 TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 12 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 16 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 24 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD									
TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 10 ≥ 1 TDD Table A2.3.2.1-1 3 - 20 QPSK 1/3 12 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 15 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 16 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A2.3.2.1-1 5 - 20 QPSK 1/3 20 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 20 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 24 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD									
TDD Table A.2.3.2.1-1 3 - 20 QPSK 1/3 12 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 15 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 16 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 27 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD									
TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 15 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 16 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 20 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD									
TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 16 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 20 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TD									
TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 18 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 20 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 T									
TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 20 ≥ 1 TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1									
TDD Table A.2.3.2.1-1 5 - 20 QPSK 1/3 24 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 27 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 32 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 25 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 27 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 32 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 27 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 32 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 30 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 32 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/5 75 ≥ 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 32 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 36 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 40 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD									
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 45 ≥ 1 TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD				10 - 20		1/3	36	≥ 1	
TDD Table A.2.3.2.1-1 10 - 20 QPSK 1/3 48 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 72 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 81 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD <t< td=""><td>TDD</td><td>Table A.2.3.2.1-1</td><td>,</td><td>10 - 20</td><td>QPSK</td><td>1/3</td><td>40</td><td>≥ 1</td><td></td></t<>	TDD	Table A.2.3.2.1-1	,	10 - 20	QPSK	1/3	40	≥ 1	
TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 50 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/4 72 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 81 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Tabl	TDD	Table A.2.3.2.1-1	,	10 - 20	QPSK	1/3	45	≥ 1	
TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/3 54 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 72 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 81 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD	TDD	Table A.2.3.2.1-1	,	10 - 20	QPSK	1/3	48	≥ 1	
TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 60 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 72 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 81 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD <t< td=""><td>TDD</td><td>Table A.2.3.2.1-1</td><td>,</td><td>15 - 20</td><td>QPSK</td><td>1/3</td><td>50</td><td>≥ 1</td><td></td></t<>	TDD	Table A.2.3.2.1-1	,	15 - 20	QPSK	1/3	50	≥ 1	
TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 64 ≥ 1 TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 72 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD<	TDD	Table A.2.3.2.1-1	•	15 - 20	QPSK	1/3	54	≥ 1	
TDD Table A.2.3.2.1-1 15 - 20 QPSK 1/4 72 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD	TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	60	≥ 1	
TDD Table A.2.3.2.1-1 20 QPSK 1/5 75 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD	TDD	Table A.2.3.2.1-1	,	15 - 20	QPSK	1/4	64	≥ 1	
TDD Table A.2.3.2.1-1 20 QPSK 1/5 80 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/5 81 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD	TDD	Table A.2.3.2.1-1	,	15 - 20	QPSK	1/4	72	≥ 1	
TDD Table A.2.3.2.1-1 20 QPSK 1/5 81 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1a 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD	TDD	Table A.2.3.2.1-1		20	QPSK	1/5	75	≥ 1	
TDD Table A.2.3.2.1-1 20 QPSK 1/6 90 ≥ 1 TDD Table A.2.3.2.1-1 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD	TDD	Table A.2.3.2.1-1		20	QPSK	1/5	80	≥ 1	
TDD Table A.2.3.2.1-1a 20 QPSK 1/6 96 ≥ 1 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1		20	QPSK	1/5	81	≥ 1	
TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 1 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1		20	QPSK	1/6	90	≥ 1	
TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 2 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1		20	QPSK	1/6	96	≥ 1	
TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 3 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a	1	.4 - 20	QPSK	1/3	1	0	
TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 4 0 TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a	1	.4 - 20	QPSK	1/3	2	0	
TDD Table A.2.3.2.1-1a 1.4 - 20 QPSK 1/3 5 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a	1	.4 - 20	QPSK	1/3	3	0	
TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 6 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a	1	1.4 - 20	QPSK	1/3	4	0	
TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 8 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a	1	.4 - 20	QPSK	1/3	5	0	
TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 9 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	6	0	
TDD Table A.2.3.2.1-1a 3-20 QPSK 1/3 10 0 TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	8	0	
TDD Table A.2.3.2.1-1a 3-20 QPSK 1/4 12 0 TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/3	9	0	
TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a		3-20		1/3	10	0	
TDD Table A.2.3.2.1-1a 5-20 QPSK 1/5 15 0	TDD	Table A.2.3.2.1-1a		3-20	QPSK	1/4	12	0	
	TDD	Table A.2.3.2.1-1a		5-20	QPSK	1/5	15	0	
	TDD	Table A.2.3.2.1-1a		5-20	QPSK	1/5	16	0	

_						1	1		
TDD	Table A.2.3.2.1-1a		5-20	QPSK	1/6	18		0	
TDD	Table A.2.3.2.1-1a		5-20	QPSK	1/6	20		0	
TDD	Table A.2.3.2.1-1a		5-20	QPSK	1/8	24		0	
TDD	Table A.2.3.2.1-1a		10-20	QPSK	1/8	25		0	
TDD	Table A.2.3.2.1-1a		10-20	QPSK	1/8	27		0	
TDD	Table A.2.3.2.1-1a		10-20	QPSK	1/10	30		0	
TDD, Pai	rtial RB allocation, 1	6-QAM							
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	1		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	2		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	3		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	4		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	5		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	6		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	8		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	9		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	10		≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	12		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	15		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	16		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	18		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/3	20		≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/3	24		≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	1/3	25		≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	1/3	27		≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	30		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	32		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	36		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	40		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	45		≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	48		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	3/4	50		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	3/4	54		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	2/3	60		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	2/3	64		≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	1/2	72		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	75		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	80		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	81		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	2/5	90		≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	2/5	96		≥ 2	
TDD	Table A.2.3.2.2-1a		1.4 - 20	16QAM	3/4	1		0	
TDD	Table A.2.3.2.2-1a		1.4 - 20	16QAM	3/4	2		0	
TDD	Table A.2.3.2.2-1a		1.4 - 20	16QAM	2/5	4		0	

Reference measurement channels for FDD A.2.2

A.2.2.1 Full RB allocation

A.2.2.1.1 **QPSK**

Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6	
Payload size	Bits	600	1544	2216	5160	4392	4584	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of code blocks per Sub-Frame		1	1	1	1	1	1	
(Note 1)								
Total number of bits per Sub-Frame	Bits	1728	4320	7200	14400	21600	28800	
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400	
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	
Note 1: If more than one Code Block is	present, a	n addition	al CRC s	equence	of $L = 24$	Bits is a	ttached	
to each Code Block (otherwise L = 0 Bit)								

Table A.2.2.1.1-1a Reference Channels for QPSK with full/maximum RB allocation for UE category 0

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	[36]	[36]	[36]		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK		
Target Coding rate		1/3	1/5	1/8	[1/10]	[1/10]	[1/10]		
Payload size	Bits	600	872	904	[1000]	[1000]	[1000]		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame		1	1	1	1	1	1		
Total number of bits per Sub-Frame	Bits	1728	4320	7200	[1036	[1036	[1036		
					8]	8]	8]		
Total symbols per Sub-Frame		864	2160	3600	[5184]	[5184]	[5184]		
UE Category 0 0 0 0 0 0									
NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached									

to each Code Block (otherwise L = 0 Bit)

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM		
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3		
Payload size	Bits	2600	4264	4968	21384	21384	19848		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame (Note 1)		1	1	1	4	4	4		
Total number of bits per Sub-Frame	Bits	3456	8640	14400	28800	43200	57600		
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400		
UE Category		≥1	≥ 1	≥ 1	≥ 2	≥2	≥ 2		
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)									

Table A.2.2.1.2-1a Reference Channels for 16-QAM with maximum RB allocation for UE category 0

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		5	5	5	5	5	5
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	872	872	872	872	872	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	2880	2880	2880	2880	2880	2880
Total symbols per Sub-Frame		720	720	720	720	720	720
UE Category		0	0	0	0	0	0

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.3 64-QAM

[FFS]

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.2.2.1 QPSK

Table A.2.2.2.1-1 Reference Channels for QPSK with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payload size	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Category
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	QPSK	1/3	72	24	1	288	144	≥ 1
	1.4 - 20	2	12	QPSK	1/3	176	24	1	576	288	≥ 1
	1.4 - 20	3	12	QPSK	1/3	256	24	1	864	432	≥ 1
	1.4 - 20	4	12	QPSK	1/3	392	24	1	1152	576	≥ 1
	1.4 - 20	5	12	QPSK	1/3	424	24	1	1440	720	≥ 1
	3-20	6	12	QPSK	1/3	600	24	1	1728	864	≥ 1
	3-20	8	12	QPSK	1/3	808	24	1	2304	1152	≥ 1
	3-20	9	12	QPSK	1/3	776	24	1	2592	1296	≥ 1
	3-20	10	12	QPSK	1/3	872	24	1	2880	1440	≥ 1
	3-20	12	12	QPSK	1/3	1224	24	1	3456	1728	≥ 1
	5-20	15	12	QPSK	1/3	1320	24	1	4320	2160	≥ 1
	5-20	16	12	QPSK	1/3	1384	24	1	4608	2304	≥ 1
	5-20	18	12	QPSK	1/3	1864	24	1	5184	2592	≥ 1
	5-20	20	12	QPSK	1/3	1736	24	1	5760	2880	≥ 1
	5-20	24	12	QPSK	1/3	2472	24	1	6912	3456	≥ 1
	10-20	25	12	QPSK	1/3	2216	24	1	7200	3600	≥ 1
	10-20	27	12	QPSK	1/3	2792	24	1	7776	3888	≥ 1
	10-20	30	12	QPSK	1/3	2664	24	1	8640	4320	≥ 1
	10-20	32	12	QPSK	1/3	2792	24	1	9216	4608	≥ 1
	10-20	36	12	QPSK	1/3	3752	24	1	10368	5184	≥ 1
	10-20	40	12	QPSK	1/3	4136	24	1	11520	5760	≥ 1
	10-20	45	12	QPSK	1/3	4008	24	1	12960	6480	≥ 1
	10-20	48	12	QPSK	1/3	4264	24	1	13824	6912	≥ 1
	15 - 20	50	12	QPSK	1/3	5160	24	1	14400	7200	≥ 1
	15 - 20	54	12	QPSK	1/3	4776	24	1	15552	7776	≥ 1
	15 - 20	60	12	QPSK	1/4	4264	24	1	17280	8640	≥ 1
	15 - 20	64	12	QPSK	1/4	4584	24	1	18432	9216	≥ 1
	15 - 20	72	12	QPSK	1/4	5160	24	1	20736	10368	≥ 1
	20	75	12	QPSK	1/5	4392	24	1	21600	10800	≥ 1
	20	80	12	QPSK	1/5	4776	24	1	23040	11520	≥ 1
	20	81	12	QPSK	1/5	4776	24	1	23328	11664	≥ 1
	20	90	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
	20	96	12	QPSK	1/6	4264	24	1	27648	13824	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.1-1a Reference Channels for QPSK with partial RB allocation for UE category 0

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbols per Sub- Frame	Mod'n	Target Coding rate	Payload size	Trans- port block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Category
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	QPSK	1/3	72	24	1	288	144	0
	1.4 - 20	2	12	QPSK	1/3	176	24	1	576	288	0
	1.4 - 20	3	12	QPSK	1/3	256	24	1	864	432	0
	1.4 - 20	4	12	QPSK	1/3	392	24	1	1152	576	0
	1.4 - 20	5	12	QPSK	1/3	424	24	1	1440	720	0
	3-20	6	12	QPSK	1/3	600	24	1	1728	864	0
	3-20	8	12	QPSK	1/3	808	24	1	2304	1152	0
	3-20	9	12	QPSK	1/3	776	24	1	2592	1296	0
	3-20	10	12	QPSK	1/3	872	24	1	2880	1440	0
	3-20	12	12	QPSK	1/4	840	24	1	3456	1728	0
	5-20	15	12	QPSK	1/5	872	24	1	4320	2160	0
	5-20	16	12	QPSK	1/5	904	24	1	4608	2304	0
	5-20	18	12	QPSK	1/6	776	24	1	5184	2592	0
	5-20	20	12	QPSK	1/6	872	24	1	5760	2880	0
	5-20	24	12	QPSK	1/8	872	24	1	6912	3456	0
	10-20	25	12	QPSK	1/8	904	24	1	7200	3600	0
	10-20	27	12	QPSK	1/8	968	24	1	7776	3888	0
	10-20	30	12	QPSK	1/10	808	24	1	8640	4320	0
Note 1:	If more t	han one C	ode Block is	s nresent	an additio	nal CRC sec	nuence of	I - 24 Rits i	s attached	to each Co	nde Block

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2.2 16-QAM

Table A.2.2.2-1 Reference Channels for 16-QAM with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbols per Sub- Frame	Mod'n	Target Coding rate	Payload size	Trans- port block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Category
Unit	MHz					Bits	Bits	(11010 1)	Bits		
	1.4 - 20	1	12	16QAM	3/4	408	24	1	576	144	≥ 1
	1.4 - 20	2	12	16QAM	3/4	840	24	1	1152	288	≥ 1
	1.4 - 20	3	12	16QAM	3/4	1288	24	1	1728	432	≥ 1
	1.4 - 20	4	12	16QAM	3/4	1736	24	1	2304	576	≥ 1
	1.4 - 20	5	12	16QAM	3/4	2152	24	1	2880	720	≥ 1
	3-20	6	12	16QAM	3/4	2600	24	1	3456	864	≥ 1
	3-20	8	12	16QAM	3/4	3496	24	1	4608	1152	≥ 1
	3-20	9	12	16QAM	3/4	3880	24	1	5184	1296	≥ 1
	3-20	10	12	16QAM	3/4	4264	24	1	5760	1440	≥ 1
	3-20	12	12	16QAM	3/4	5160	24	1	6912	1728	≥ 1
	5-20	15	12	16QAM	1/2	4264	24	1	8640	2160	≥ 1
	5-20	16	12	16QAM	1/2	4584	24	1	9216	2304	≥ 1
	5-20	18	12	16QAM	1/2	5160	24	1	10368	2592	≥ 1
	5-20	20	12	16QAM	1/3	4008	24	1	11520	2880	≥ 1
	5-20	24	12	16QAM	1/3	4776	24	1	13824	3456	≥ 1
	10-20	25	12	16QAM	1/3	4968	24	1	14400	3600	≥ 1
	10-20	27	12	16QAM	1/3	4776	24	1	15552	3888	≥ 1
	10-20	30	12	16QAM	3/4	12960	24	3	17280	4320	≥ 2
	10-20	32	12	16QAM	3/4	13536	24	3	18432	4608	≥ 2
	10-20	36	12	16QAM	3/4	15264	24	3	20736	5184	≥ 2
	10-20	40	12	16QAM	3/4	16992	24	3	23040	5760	≥ 2
	10-20	45	12	16QAM	3/4	19080	24	4	25920	6480	≥ 2
	10-20	48	12	16QAM	3/4	20616	24	4	27648	6912	≥ 2
	15 - 20	50	12	16QAM	3/4	21384	24	4	28800	7200	≥ 2
	15 - 20	54	12	16QAM	3/4	22920	24	4	31104	7776	≥ 2
	15 - 20	60	12	16QAM	2/3	23688	24	4	34560	8640	≥ 2
	15 - 20	64	12	16QAM	2/3	25456	24	4	36864	9216	≥ 2
	15 - 20	72	12	16QAM	1/2	20616	24	4	41472	10368	≥ 2
	20	75	12	16QAM	1/2	21384	24	4	43200	10800	≥ 2
	20	80	12	16QAM	1/2	22920	24	4	46080	11520	≥ 2
	20	81	12	16QAM	1/2	22920	24	4	46656	11664	≥ 2
	20	90	12	16QAM	2/5	20616	24	4	51840	12960	≥ 2
	20	96	12	16QAM	2/5	22152	24	4	55296	13824	≥ 2

Table A.2.2.2-1a Reference Channels for 16-QAM with partial RB allocation for UE category 0

Parame ter	Ch BW	Allocat ed RBs	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payload size	Transp ort block CRC	Numbe r of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbol s per Sub- Frame	UE Catego ry
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	16QAM	3/4	408	24	1	576	144	0
	1.4 - 20	2	12	16QAM	3/4	840	24	1	1152	288	0
	1.4 - 20	4	12	16QAM	2/5	904	24	1	2304	576	0

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2.3 64-QAM

[FFS]

A.2.2.3 Void

Table A.2.2.3-1: Void

A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

A.2.3.1 Full RB allocation

A.2.3.1.1 QPSK

Table A.2.3.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	Value				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK		
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6		
Payload size									
For Sub-Frame 2,3,7,8	Bits	600	1544	2216	5160	4392	4584		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame									
(Note 1)									
For Sub-Frame 2,3,7,8		1	1	1	1	1	1		
Total number of bits per Sub-Frame									
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	14400	21600	28800		
Total symbols per Sub-Frame									
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400		
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1		

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.1.1-1a Reference Channels for QPSK with full/maximum RB allocation for UE category 0

Parameter	Unit	t Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	[36]	[36]	[36]	
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1	
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding rate		1/3	1/5	1/8	[1/10]	[1/10]	[1/10]	
Payload size								
For Sub-Frame 2,3,7,8	Bits	600	872	904	[1000]	[1000]	[1000]	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of code blocks per Sub-Frame (Note 1)								
For Sub-Frame 2,3,7,8		1	1	1	1	1	1	
Total number of bits per Sub-Frame								
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	[1036 8]	[1036 8]	[1036 8]	
Total symbols per Sub-Frame					1			
For Sub-Frame 2,3,7,8		864	2160	3600	[5184]	[5184]	[5184]	
UE Category		0	0	0	0	0	0	

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.1.2 16-QAM

Table A.2.3.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM		
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3		
Payload size									
For Sub-Frame 2,3,7,8	Bits	2600	4264	4968	21384	21384	19848		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame (Note 1)									
For Sub-Frame 2,3,7,8		1	1	1	4	4	4		
Total number of bits per Sub-Frame									
For Sub-Frame 2,3,7,8	Bits	3456	8640	14400	28800	43200	57600		
Total symbols per Sub-Frame									
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400		
UE Category		≥ 1	≥ 1	≥ 1	≥ 2	≥ 2	≥ 2		

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Note 1: Code Block (otherwise L = 0 Bit) As per Table 4.2-2 in TS 36.211 [4]

Note 2:

NOTE 2: As per Table 4.2-2 in TS 36.211

Table A.2.3.1.2-1a Reference Channels for 16-QAM with maximum RB allocation for UE category 0

Parameter	Unit	it Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		5	5	5	5	5	5		
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM		
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3		
Payload size									
For Sub-Frame 2,3,7,8	Bits	872	872	872	872	872	872		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame									
(Note 1)									
For Sub-Frame 2,3,7,8		1	1	1	1	1	1		
Total number of bits per Sub-Frame									
For Sub-Frame 2,3,7,8	Bits	2880	2880	2880	2880	2880	2880		
Total symbols per Sub-Frame									
For Sub-Frame 2,3,7,8		720	720	720	720	720	720		
UE Category		0	0	0	0	0	0		

NOTE 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 2: As per Table 4.2-2 in TS 36.211[4]

A.2.3.1.3 64-QAM

[FFS]

A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.3.2.1 QPSK

Table A.2.3.2.1-1 Reference Channels for QPSK with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	UDL Configu ration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Categor y
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	QPSK	1/3	72	24	1	288	144	≥ 1
	1.4 - 20	2	1	12	QPSK	1/3	176	24	1	576	288	≥ 1
	1.4 - 20	3	1	12	QPSK	1/3	256	24	1	864	432	≥ 1
	1.4 - 20	4	1	12	QPSK	1/3	392	24	1	1152	576	≥ 1
	1.4 - 20	5	1	12	QPSK	1/3	424	24	1	1440	720	≥ 1
	3-20	6	1	12	QPSK	1/3	600	24	1	1728	864	≥ 1
	3-20	8	1	12	QPSK	1/3	808	24	1	2304	1152	≥ 1
	3-20	9	1	12	QPSK	1/3	776	24	1	2592	1296	≥ 1
	3-20 3-20	10 12	1	12 12	QPSK QPSK	1/3 1/3	872 1224	24 24	1	2880 3456	1440 1728	≥ 1
	5-20 5-20	15	1	12	QPSK	1/3	1320	24	1	4320	2160	≥ 1 ≥ 1
	5-20	16	1	12	QPSK	1/3	1384	24	1	4608	2304	≥ 1
	5-20	18	1	12	QPSK	1/3	1864	24	1	5184	2592	≥ 1
	5-20	20	1	12	QPSK	1/3	1736	24	1	5760	2880	≥ 1
	5-20	24	1	12	QPSK	1/3	2472	24	1	6912	3456	≥ 1
	10-20	25	1	12	QPSK	1/3	2216	24	1	7200	3600	≥ 1
	10-20	27	1	12	QPSK	1/3	2792	24	1	7776	3888	≥ 1
	10-20	30	1	12	QPSK	1/3	2664	24	1	8640	4320	≥ 1
	10-20	32	1	12	QPSK	1/3	2792	24	1	9216	4608	≥ 1
	10-20	36	1	12	QPSK	1/3	3752	24	1	10368	5184	≥ 1
<u> </u>	10-20	40	1	12	QPSK	1/3	4136	24	1	11520	5760	≥ 1
<u> </u>	10-20 10-20	45 48	1	12 12	QPSK QPSK	1/3 1/3	4008 4264	24 24	1	12960 13824	6480 6912	≥ 1 ≥ 1
-	15 - 20	50	1	12	QPSK	1/3	5160	24	1	14400	7200	≥ 1
 	15 - 20	54	1	12	QPSK	1/3	4776	24	1	15552	7776	≥ 1
	15 - 20	60	1	12	QPSK	1/4	4264	24	1	17280	8640	≥ 1
	15 - 20	64	1	12	QPSK	1/4	4584	24	1	18432	9216	≥ 1
	15 - 20	72	1	12	QPSK	1/4	5160	24	1	20736	10368	≥ 1
	20	75	1	12	QPSK	1/5	4392	24	1	21600	10800	≥ 1
	20	80	1	12	QPSK	1/5	4776	24	1	23040	11520	≥ 1
	20	81	1	12	QPSK	1/5	4776	24	1	23328	11664	≥ 1
	20	90	1	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
	20	96	1	12	QPSK	1/6	4264	24	1	27648	13824	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block

(otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-1a Reference Channels for QPSK with partial RB allocation for UE category 0

Parame ter	Ch BW	Allocat ed RBs	UDL Config uration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Numbe r of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Catego ry
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	QPSK	1/3	72	24	1	288	144	0
	1.4 - 20	2	1	12	QPSK	1/3	176	24	1	576	288	0
	1.4 - 20	3	1	12	QPSK	1/3	256	24	1	864	432	0
	1.4 - 20	4	1	12	QPSK	1/3	392	24	1	1152	576	0
	1.4 - 20	5	1	12	QPSK	1/3	424	24	1	1440	720	0
	3-20	6	1	12	QPSK	1/3	600	24	1	1728	864	0
	3-20	8	1	12	QPSK	1/3	808	24	1	2304	1152	0
	3-20	9	1	12	QPSK	1/3	776	24	1	2592	1296	0
	3-20	10	1	12	QPSK	1/3	872	24	1	2880	1440	0
	3-20	12	1	12	QPSK	1/4	840	24	1	3456	1728	0
	5-20	15	1	12	QPSK	1/5	872	24	1	4320	2160	0
	5-20	16	1	12	QPSK	1/5	904	24	1	4608	2304	0
	5-20	18	1	12	QPSK	1/6	776	24	1	5184	2592	0
	5-20	20	1	12	QPSK	1/6	872	24	1	5760	2880	0
	5-20	24	1	12	QPSK	1/8	872	24	1	6912	3456	0
	10-20	25	1	12	QPSK	1/8	904	24	1	7200	3600	0
	10-20	27	1	12	QPSK	1/8	968	24	1	7776	3888	0
	10-20	30	1	12	QPSK	1/10	808	24	1	8640	4320	0

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0Note 1: Bit)
As per Table 4.2-2 in TS 36.211 [4]

Note 2:

A.2.3.2.2 16-QAM

Table A.2.3.2.2-1 Reference Channels for 16QAM with partial RB allocation

Parame ter	Ch BW	Allocat ed RBs	UDL Configu ration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Categor y
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	16QAM	3/4	408	24	1	576	144	≥ 1
	1.4 - 20	2	1	12	16QAM	3/4	840	24	1	1152	288	≥ 1
	1.4 - 20	3	1	12	16QAM	3/4	1288	24	1	1728	432	≥ 1
	1.4 - 20	4	1	12	16QAM	3/4	1736	24	1	2304	576	≥ 1
	1.4 - 20	5	1	12	16QAM	3/4	2152	24	1	2880	720	≥ 1
	3-20	6	1	12	16QAM	3/4	2600	24	1	3456	864	≥ 1
	3-20	8	1	12	16QAM	3/4	3496	24	1	4608	1152	≥ 1
	3-20	9	1	12	16QAM	3/4	3880	24	1	5184	1296	≥ 1
	3-20	10	1	12	16QAM	3/4	4264	24	1	5760	1440	≥ 1
	3-20	12	1	12	16QAM	3/4	5160	24	1	6912	1728	≥ 1
	5-20	15	1	12	16QAM	1/2	4264	24	1	8640	2160	≥ 1
	5-20	16	1	12	16QAM	1/2	4584	24	1	9216	2304	≥ 1
	5-20	18	1	12	16QAM	1/2	5160	24	1	10368	2592	≥ 1
	5-20	20	1	12	16QAM	1/3	4008	24	1	11520	2880	≥ 1
	5-20	24	1	12	16QAM	1/3	4776	24	1	13824	3456	≥ 1
	10-20	25	1	12	16QAM	1/3	4968	24	1	14400	3600	≥ 1
	10-20	27	1	12	16QAM	1/3	4776	24	1	15552	3888	≥ 1
	10-20	30	1	12	16QAM	3/4	12960	24	3	17280	4320	≥ 2
	10-20	32	1	12	16QAM	3/4	13536	24	3	18432	4608	≥ 2
	10-20	36	1	12	16QAM	3/4	15264	24	3	20736	5184	≥ 2
	10-20	40	1	12	16QAM	3/4	16992	24	3	23040	5760	≥ 2
	10-20	45	1	12	16QAM	3/4	19080	24	4	25920	6480	≥ 2
	10-20	48	1	12	16QAM	3/4	20616	24	4	27648	6912	≥ 2
	15 - 20	50	1	12	16QAM	3/4	21384	24	4	28800	7200	≥ 2
	15 - 20	54	1	12	16QAM	3/4	22920	24	4	31104	7776	≥ 2
	15 - 20	60	1	12	16QAM	2/3	23688	24	4	34560	8640	≥ 2
	15 - 20	64	1	12	16QAM	2/3	25456	24	4	36864	9216	≥ 2
	15 - 20	72	1	12	16QAM	1/2	20616	24	4	41472	10368	≥ 2
	20	75	1	12	16QAM	1/2	21384	24	4	43200	10800	≥ 2
	20	80	1	12	16QAM	1/2	22920	24	4	46080	11520	≥ 2
	20	81	1	12	16QAM	1/2	22920	24	4	46656	11664	≥ 2
	20	90	1	12	16QAM	2/5	20616	24	4	51840	12960	≥ 2
	20	96	1	12	16QAM	2/5	22152	24	4	55296	13824	≥ 2

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.2-1a Reference Channels for 16QAM with partial RB allocation UE category 0

Parame ter	Ch BW	Allocat ed RBs	UDL Config uration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Numbe r of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Catego ry
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	16QAM	3/4	408	24	1	576	144	0
	1.4 - 20	2		12	16QAM	3/4	840	24	1	1152	288	0
	1.4 - 20	4		12	16QAM	2/5	904	24	1	2304	576	0

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

A.2.3.2.3 64-QAM

[FFS]

A.2.3.3 Void

Table A.2.3.3-1: Void

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RR}

- 1. Calculate the number of channel bits $N_{\rm ch}$ that can be transmitted during the first transmission of a given sub-frame.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24 * (N_{CB} + 1)) / N_{ch}|, where N_{CB} = \begin{cases} 0, & \text{if } C = 1 \\ C, & \text{if } C > 1 \end{cases}$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- 3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

A.3.1.1 Overview of DL reference measurement channels

In Table A.3.1.1-1 are listed the DL reference measurement channels specified in annexes A.3.2 to A.3.10 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.3.2 to A.3.10 as appropriate.

Table A.3.1.1-1: Overview of DL reference measurement channels

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD, Rece	eiver requirements	<u> </u>	•						
FDD	Table A.3.2-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.2-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.3.2-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.2-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.2-1		15	QPSK	1/3	75		≥ 1	
FDD	Table A.3.2-1		20	QPSK	1/3	100		≥ 1	
FDD	Table A.3.2-1a		1.4	QPSK	1/3	6		0	
FDD	Table A.3.2-1a		3	QPSK	1/3	14		0	
FDD	Table A.3.2-1a		5	QPSK	1/3	14		0	
FDD	Table A.3.2-1a		10	QPSK	1/3	14		0	
FDD	Table A.3.2-1a		15	QPSK	1/3	14		0	
FDD	Table A.3.2-1a		20	QPSK	1/3	14		0	
	eiver requirements		4.4	OPOK	4/0		I		
TDD	Table A.3.2-2		1.4	QPSK	1/3	6		≥1	
TDD	Table A.3.2-2		3	QPSK	1/3	15		≥1	
TDD	Table A.3.2-2		5	QPSK	1/3	25		≥1	
TDD	Table A.3.2-2		10	QPSK	1/3	50		≥1	
TDD	Table A.3.2-2		15	QPSK QPSK	1/3	75		≥1	
TDD TDD	Table A.3.2-2		1.4	QPSK	1/3	100		≥ 1	
TDD	Table A.3.2-2a		3	QPSK		14		0	
TDD	Table A.3.2-2a		5	QPSK	1/3	14		0	
TDD	Table A.3.2-2a Table A.3.2-2a		10	QPSK	1/3	14		0	
TDD	Table A.3.2-2a		15	QPSK	1/3	14		0	
TDD	Table A.3.2-2a		20	QPSK	1/3	14		0	
	eiver requirements	Maximum inr	_		l				
FDD	Table A.3.2-3	l l l l l l l l l l l l l l l l l l l	1.4	64QAM	3/4	6		_	
FDD	Table A.3.2-3		3	64QAM	3/4	15		_	
FDD	Table A.3.2-3		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3		10	64QAM	3/4	50		-	
FDD	Table A.3.2-3		15	64QAM	3/4	75		-	
FDD	Table A.3.2-3		20	64QAM	3/4	100		-	
FDD, Rece	eiver requirements,	Maximum inp	out level	for UE Ca	tegories	1			
FDD	Table A.3.2-3a		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3a		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3a		5	64QAM	3/4	18		-	
FDD	Table A.3.2-3a		10	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		15	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		20	64QAM	3/4	17		-	
FDD, Rece	eiver requirements	Maximum inp	out level	for UE Ca	tegories	2			
FDD	Table A.3.2-3b		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3b		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3b		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3b		10	64QAM	3/4	50		-	

FDD	Table A.3.2-3b		15	64QAM	3/4	75			
FDD	Table A.3.2-3b			64QAM	3/4				
		Maxima uma imm	20			83		-	
	eiver requirements,	waximum inp							
FDD	Table A.3.2-3c		1.4	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		3	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		5	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		10	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		15	64QAM	3/4	2		-	
FDD	Table A.3.2-3c		20	64QAM	3/4	2		-	
	eiver requirements,	Maximum inp		ı					
TDD	Table A.3.2-4		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4		10	64QAM	3/4	50		-	
TDD	Table A.3.2-4		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4		20	64QAM	3/4	100		-	
TDD, Rece	eiver requirements,	Maximum inp	ut level	for UE Ca	tegories	1			
TDD	Table A.3.2-4a		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4a		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4a		5	64QAM	3/4	18		-	
TDD	Table A.3.2-4a		10	64QAM	3/4	17		-	
TDD	Table A.3.2-4a		15	64QAM	3/4	17		-	
TDD	Table A.3.2-4a		20	64QAM	3/4	17		-	
TDD, Rece	eiver requirements,	Maximum inp	ut level	for UE Ca	tegories	2			
TDD	Table A.3.2-4b		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4b		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4b		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4b		10	64QAM	3/4	50		-	
TDD	Table A.3.2-4b		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4b		20	64QAM	3/4	83		-	
TDD, Rece	eiver requirements,	Maximum inp	ut level	for UE Ca	tegories	0			
TDD	Table A.3.2-4c		1.4	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		3	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		5	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		10	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		15	64QAM	3/4	2		-	
TDD	Table A.3.2-4c		20	64QAM	3/4	2		-	
FDD, Rece	eiver requirements,	Maximum inp	ut level	for UE Ca	tegories	11/12	/13/14/	15	
FDD	Table A.3.2-5		1.4	256QAM	4/5	6		-	
FDD	Table A.3.2-5		3	256QAM	4/5	15		-	
FDD	Table A.3.2-5		5	256QAM	4/5	25		-	
FDD	Table A.3.2-5		10	256QAM	4/5	50		-	
FDD	Table A.3.2-5		15	256QAM	4/5	75		-	
FDD	Table A.3.2-5		20	256QAM	4/5	100		-	
	eiver requirements,	Maximum inp	ut level			11/12	/13/14/	15	
TDD	Table A.3.2-6		1.4	256QAM	4/5	6		-	
TDD	Table A.3.2-6		3	256QAM	4/5	15		-	
TDD	Table A.3.2-6		5	256QAM	4/5	25		-	
	<u> </u>	l		<u> </u>		l			İ

TDD	T.I. A.O.O.O.		40	0500444	4/5		1		
TDD	Table A.3.2-6		10	256QAM	4/5	50		-	
TDD	Table A.3.2-6		15	256QAM	4/5	75		-	
TDD	Table A.3.2-6		20	256QAM	4/5	100		-	
FDD, PDS	CH Performance, S		transmi		(S)				
FDD	Table A.3.3.1-1	R.4 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.3.1-1	R.42 FDD	20	QPSK	1/3	100		≥ 1	
FDD	Table A.3.3.1-1	R.42-1 FDD	3	QPSK	1/3	15		≥ 1	
FDD	Table A.3.3.1-1	R.42-2 FDD	5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.3.1-1	R.42-3 FDD	15	QPSK	1/3	75		≥ 1	
FDD	Table A.3.3.1-1	R.2 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.1-2	R.3-1 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.1-2	R.3 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.1-3	R.5 FDD	3	64QAM	3/4	15		≥ 1	
FDD	Table A.3.3.1-3	R.6 FDD	5	64QAM	3/4	25		≥ 2	
FDD	Table A.3.3.1-3	R.7 FDD	10	64QAM	3/4	50		≥ 2	
FDD	Table A.3.3.1-3	R.8 FDD	15	64QAM	3/4	75		≥ 2	
FDD	Table A.3.3.1-3	R.9 FDD	20	64QAM	3/4	100		≥ 3	
FDD	Table A.3.3.1-3a	R.6-1 FDD	5	64QAM	3/4	18		≥ 1	
FDD	Table A.3.3.1-3a	R.7-1 FDD	10	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.8-1 FDD	15	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.9-1 FDD	20	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.9-2 FDD	20	64QAM	3/4	83		≥ 2	
FDD	Table A.3.3.1-6	R.41 FDD	10	QPSK	1/10	50		≥ 1	
FDD. PDS	CH Performance, S	inglo-antonna	tranami	iccion (CD	C) Cima	lo DDE	/Chai	anal ac	dae)
,	och Feriorillance, 3	iligie-alitellila	transiii	ission (CK	ع), Sing	IE PKE	o (Chai	mer ec	age <i>)</i>
FDD	Table A.3.3.1-4	R.0 FDD	3	16QAM	1/2	1	o (Chai	≥ 1	19e)
•	1		3				o (Chai		19e)
FDD FDD	Table A.3.3.1-4 Table A.3.3.1-4	R.0 FDD R.1 FDD	3 10 / 20	16QAM 16QAM	1/2	1		≥ 1 ≥ 1	
FDD FDD	Table A.3.3.1-4	R.0 FDD R.1 FDD	3 10 / 20	16QAM 16QAM	1/2	1		≥ 1 ≥ 1	
FDD FDD, PDS FDD	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5	R.0 FDD R.1 FDD ingle-antenna R.29 FDD	3 10 / 20 transm	16QAM 16QAM ission (CR 16QAM	1/2 1/2 S), Sing	1 1 1e PRE 1		≥ 1 ≥ 1 FN Co	
FDD FDD, PDS FDD, PDS	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega	3 10 / 20 transm 10	16QAM 16QAM ission (CR 16QAM	1/2 1/2 S), Sing	1 1 1e PRE 1		≥ 1 ≥ 1 3FN Co ≥ 1	
FDD FDD, PDS FDD	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5	R.0 FDD R.1 FDD ingle-antenna R.29 FDD	3 10 / 20 transm	16QAM 16QAM ission (CR 16QAM	1/2 1/2 (S), Sing 1/2 mbalanc 0.84- 0.87	1 1 1e PRE 1		≥ 1 ≥ 1 FN Co	
FDD FDD, PDS FDD, PDS	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega	3 10 / 20 transm 10	16QAM 16QAM ission (CR 16QAM	1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.87	1 1 1e PRE 1		≥ 1 ≥ 1 3FN Co ≥ 1	
FDD FDD, PDS FDD, PDS FDD, PDS	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD	3 10 / 20 transm 10 ation wit	16QAM 16QAM ission (CR 16QAM th power in	1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.87	1 1 1 1 1 1 1 1 1		≥ 1 ≥ 1 EFN Co ≥ 1 ≥ 5	
FDD FDD, PDS FDD, PDS FDD FDD, FDD FDD	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD	3 10 / 20 transmi 10 ation wit 20 10	16QAM 16QAM ission (CR 16QAM th power in 64QAM 64QAM	1/2 1/2 1/2 1/2 mbaland 0.84- 0.87 0.84- 0.87 0.84- 0.86	1 1 1 1 1 1 1 1 1 0 50 25	3 (MBS	≥ 1 ≥ 1 EFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2	
FDD FDD, PDS FDD, PDS FDD FDD, FDD FDD	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD	3 10 / 20 transmi 10 ation wit 20 10	16QAM 16QAM ission (CR 16QAM th power in 64QAM 64QAM	1/2 1/2 1/2 1/2 mbaland 0.84- 0.87 0.84- 0.87 0.84- 0.86	1 1 1 1 1 1 1 1 1 0 50 25	3 (MBS	≥ 1 ≥ 1 EFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 CCH Performance, N	R.0 FDD R.1 FDD ingle-antenna R.29 FDD carrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD	3 10 / 20 transm 10 ation wit 20 10 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM sion (CRS	1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.87 0.84- 0.86 s), Two a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 CCH Performance, N Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD carrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD lulti-antenna t R.10 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM Sion (CRS	1/2 1/2 1/2 1/2 mbaland 0.84- 0.87 0.84- 0.87 0.84- 0.86 5), Two a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 2	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD lulti-antenna t R.10 FDD R.10-2 FDD	3 10 / 20 transm 10 ation wit 20 10 5 ransmis	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM Sion (CRS	1/2 1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.86 0.86 5), Two a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 2 ≥ 1	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CH Performance, S Table A.3.3.1-5 CH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD lulti-antenna t R.10 FDD R.10-2 FDD R.11 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis 10 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM Sion (CRS QPSK QPSK 16QAM	1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.86 s), Two a 1/3 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD lulti-antenna t R.10 FDD R.10-2 FDD R.11 FDD R.11 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis 10 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM QPSK QPSK 16QAM 16QAM	1/2 1/2 1/2 S), Sing 1/2 mbalanc 0.84- 0.87 0.84- 0.86 s), Two a 1/3 1/3 1/2 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CH Performance, S Table A.3.3.1-5 CH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD carrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.10-2 FDD R.11 FDD R.11-2 FDD R.11-3 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis 10 5 10	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 16QAM 16QAM	1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.87 0.84- 0.86), Two a 1/3 1/3 1/2 1/2 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 CCH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD carrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.10-2 FDD R.11 FDD R.11-2 FDD R.11-3 FDD R.11-4 FDD R.30 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis 10 5 10 5	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 16QAM 16QAM 16QAM 16QAM	1/2 1/2 1/2 1/2 1/2 mbalance 0.84- 0.87 0.84- 0.86 0.86 1/3 1/3 1/2 1/2 1/2 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
FDD FDD, PDS FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CH Performance, S Table A.3.3.1-5 CH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.10-2 FDD R.11-2 FDD R.11-3 FDD R.11-4 FDD R.30 FDD R.30-1 FDD	3 10 / 20 transm 10 ation wit 20 10 5 ransmis 10 5 10 5 10 20	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 16QAM 16QAM 16QAM 16QAM	1/2 1/2 1/2 S), Sing 1/2 mbaland 0.84- 0.87 0.84- 0.86 s), Two a 1/3 1/2 1/2 1/2 1/2 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CCH Performance, S Table A.3.3.1-5 CCH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.10-2 FDD R.11 FDD R.11-3 FDD R.11-3 FDD R.11-4 FDD R.30 FDD R.30 FDD R.30 FDD	3 10 / 20 transm 10 ation wit 20 10 5 ransmis 10 5 10 5 10 10 20 15 10	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM SION (CRS QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1/2 1/2 1/2 1/2 mbalance 0.84- 0.87 0.84- 0.86 0.87 1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FFN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 2 ≥ 2 ≥ 2	
FDD FDD, PDS FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CH Performance, S Table A.3.3.1-5 CH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.10-2 FDD R.11-2 FDD R.11-3 FDD R.11-4 FDD R.30 FDD R.30-1 FDD R.35-1 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis 10 5 10 10 20 15 10 20	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM Sion (CRS QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1/2 1/2 1/2 S), Sing 1/2 mbalance 0.84- 0.87 0.84- 0.86 1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0.39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1	
FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 Table A.3.3.1-4 Table A.3.3.1-5 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.11-2 FDD R.11-3 FDD R.11-4 FDD R.30 FDD R.30-1 FDD R.35-1 FDD R.35-2 FDD	3 10 / 20 transmi 10 ation wit 20 10 5 ransmis 10 5 10 10 20 15 10 20 15	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 64QAM	1/2 1/2 1/2 1/2 mbalance 0.84- 0.87 0.84- 0.86 0.87 1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0.39 0.39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 2 2 4 ≥ 2	
FDD FDD, PDS FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD F	Table A.3.3.1-4 Table A.3.3.1-4 CH Performance, S Table A.3.3.1-5 CH Performance: C Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.1-7 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.0 FDD R.1 FDD ingle-antenna R.29 FDD arrier aggrega R.49 FDD R.49-1 FDD R.49-2 FDD Iulti-antenna t R.10 FDD R.10-2 FDD R.11-2 FDD R.11-3 FDD R.11-4 FDD R.30 FDD R.30-1 FDD R.35-1 FDD	3 10 / 20 transmi 10 20 10 5 ransmis 10 5 10 5 10 10 20 15 10 20	16QAM 16QAM 16QAM 16QAM 16QAM 64QAM 64QAM 64QAM Sion (CRS QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM 16QAM	1/2 1/2 1/2 S), Sing 1/2 mbalance 0.84- 0.87 0.84- 0.86 1/3 1/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0.39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 (MBS	≥ 1 ≥ 1 FN Co ≥ 1 ≥ 5 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1	

FDD	Table A.3.3.2.1-2	R.46 FDD	10	QPSK		50		≥ 1	
FDD	Table A.3.3.2.1-2	R.47 FDD	10	16QAM		50		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-5 FDD	1.4	16QAM	1/2	6		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-6 FDD	3	16QAM	1/2	15		≥ 1	
FDD	Table A.3.3.2.1-2	R.11-7 FDD	15	16QAM	1/2	75		≥ 2	
FDD	Table A.3.3.2.1-3	R.xx FDD	10	16QAM	1/2	3		0	
FDD	Table A.3.3.2.1-3	R.yy FDD	10	64QAM	1/2	1		0	
FDD, PDS	CH Performance, M	lulti-antenna t	ransmis	sion (CRS), Four	antenn	a ports	5	
FDD	Table A.3.3.2.2-1	R.12 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.3.2.2-1	R.13 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.2.2-1	R.14 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.2-1	R.14-1 FDD	10	16QAM	1/2	6		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-2 FDD	10	16QAM	1/2	3		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-3 FDD	20	16QAM	1/2	100		≥ 2	
FDD	Table A.3.3.2.2-1	R.36 FDD	10	64QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.2-1	R.14-4 FDD	1.4	16QAM	1/2	6		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-5 FDD	3	16QAM	1/2	15		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-6 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.2.2-1	R.14-7 FDD	15	16QAM	1/2	75		≥ 2	
FDD, PDS	CH Performance (U	E specific RS) Two ar	ntenna por	ts (CSI-	RS)			
FDD	Table A.3.3.3.1-1	R.51 FDD	10	16QAM	1/2	50		≥ 2	
FDD, PDS	CH Performance (U	E specific RS) Two ar	ntenna por	ts (CSI-	RS, no	n Qua	si Co-l	ocated)
FDD	Table A.3.3.3.1-2	R.52 FDD	10	64QAM	1/2	50		≥ 2	
FDD	Table A.3.3.3.1-2	R.53 FDD	10	64QAM	1/2	50		≥2	
FDD	Table A.3.3.3.1-2	R.54 FDD	10	16QAM	1/2	50		≥2	
FDD, PDS	CH Performance (U	E specific RS) Four a	ntenna po	rts (CSI	-RS)			
FDD	Table A.3.3.3.2-1	R.43 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.3.2-1	R.50 FDD	10	64QAM	1/2	50		≥ 2	
FDD	Table A.3.3.3.2-2	R.44 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.3.2-2	R.45 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.3.2-2	R.45-1 FDD	10	16QAM	1/2	39		≥ 1	
FDD	Table A.3.3.3.2-1	R.48 FDD	10	QPSK		50		≥ 1	
FDD	Table A.3.3.3.2-2	R.60 FDD	10	QPSK	1/2	50		≥ 1	
FDD	Table A.3.3.3.2-3	R.zz FDD	10	QPSK	1/3	6		0	
TDD, PDS	CH Performance, S	ingle-antenna	transmi	ission (CR	S)				
TDD	Table A.3.4.1-1	R.4 TDD	1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.4.1-1	R.42 TDD	20	QPSK	1/3	100		≥ 1	
TDD	Table A.3.4.1-1	R.2 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.1-1	R.2A TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.1-1	R.42-1 TDD	3	QPSK	1/3	15		≥ 1	
TDD	Table A.3.4.1-1	R.42-2 TDD	5	QPSK	1/3	25		≥ 1	
TDD	Table A.3.4.1-1	R.42-3 TDD	15	QPSK	1/3	75		≥ 1	
TDD	Table A.3.4.1-2	R.3-1 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.1-2	R.3 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.1-3	R.5 TDD	3	64QAM	3/4	15		≥ 1	
TDD	Table A.3.4.1-3	R.6 TDD	5	64QAM	3/4	25		≥ 2	
TDD	Table A.3.4.1-3	R.7 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.1-3	R.8 TDD	15	64QAM	3/4	75		≥ 2	

TDD	Table A.3.4.1-3	R.9 TDD	20	64QAM	3/4	100		≥ 3	
TDD	Table A.3.4.1-3a	R.6-1 TDD	5	64QAM	3/4	18		≥ 1	
TDD	Table A.3.4.1-3a	R.7-1 TDD	10	64QAM	3/4	17		≥ 1	
TDD	Table A.3.4.1-3a	R.8-1 TDD	15	64QAM	3/4	17		≥ 1	
TDD	Table A.3.4.1-3a	R.9-1 TDD	20	64QAM	3/4	17		≥ 1	
TDD	Table A.3.4.1-3a	R.9-2 TDD	20	64QAM	3/4	83		≥ 2	
TDD	Table A.3.4.1-6	R.41 TDD	10	QPSK	1/10	50		≥ 1	
TDD, PDS	CH Performance, S	ingle-antenna	transmi	ission (CR	S), Sing	le PRE	3 (Chai	nnel ed	dge)
TDD	Table A.3.4.1-4	R.0 TDD	3	16QAM	1/2	1		≥ 1	
TDD	Table A.3.4.1-4	R.1 TDD	10 /	16QAM	1/2	1		≥ 1	
TDD. PDS	L SCH Performance, S	ingle-antenna	20 transmi	ission (CR	S). Sinc	le PRF	B (MBS	FN Co	nfiguration)
TDD	Table A.3.4.1-5	R.29 TDD	10	16QAM	1/2	1	(20	≥ 1	
	CH Performance: C				<u> </u>				
					0.81-				T
TDD	Table A.3.4.1-7	R.49 TDD	20	64QAM	087	100		≥ 5	
TDD	Table A.3.4.1-7	R.49-1 TDD	15	64QAM	0.80- 0.86	75		≥ 3	
TDD. PDS	CH Performance, N	l Iulti-antenna t	ransmis	sion (CRS		ntenn	a ports		
TDD	Table A.3.4.2.1-1	R.10 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.1-1	R.11 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-1 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-2 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.2.1-1	R.11-3 TDD	10	16QAM	1/2	40		≥ 1	
TDD	Table A.3.4.2.1-1	R.11-4 TDD	10	QPSK	1/2	50		≥ 1	
TDD	Table A.3.4.2.1-1	R.30 TDD	20	16QAM	1/2	100		≥ 2	
TDD	Table A.3.4.2.1-1	R.30-1 TDD	20	16QAM	1/2	100		≥ 2	
TDD	Table A.3.4.2.1-1	R.30-2 TDD	20	16QAM	1/2	100		3	
TDD	Table A.3.4.2.1-1	R.35 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.35-1 TDD	20	64QAM	0.39	100		4	
TDD	Table A.3.4.2.1-2	R.35-2 TDD	10	64QAM	0.47	50		≥ 2	
TDD	Table A.3.4.2.1-2	R.46 TDD	10	QPSK	0.17	50		≥ 1	
TDD	Table A.3.4.2.1-2	R.47 TDD	10	16QAM		50		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-5 TDD	1.4	16QAM	1/2	6		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-6 TDD	3	16QAM	1/2	15		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-7 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.2.1-2	R.11-8 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-2	R.11-9 TDD	15	16QAM	1/2	75		≥ 2	
TDD	Table A.3.4.2.1-3	R.xx TDD	10	16QAM	1/2	3		0	
TDD	Table A.3.4.2.1-3	R.yy TDD	10	64QAM	1/2	1		0	
		[R.XX TDD							
TDD	Table A.3.4.2.1-5	eIMTA]	10	16QAM	0.4	50		≥ 1	
TDD, PDS	CH Performance, N	lulti-antenna t	ransmis	sion (CRS), Four	antenn	a ports	S	
TDD	Table A.3.4.2.2-1	R.12 TDD	1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.13 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.2-1	R.14 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.2-1	R.14-1 TDD	10	16QAM	1/2	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.14-2 TDD	10	16QAM	1/2	3		≥ 1	
TDD	Table A.3.4.2.2-1	R.43 TDD	20	16QAM	1/2	100		≥2	
TDD	Table A.3.4.2.2-1	R.36 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.2-1	R.43-1 TDD	1.4	16QAM	1/2	6		≥ 1	

TDD	Toble A 2 4 2 2 4	D 42 2 TDD	2	160AM	1/0	15		> 1	
TDD	Table A.3.4.2.2-1	R.43-2 TDD	3	16QAM	1/2	15		≥1	
TDD	Table A.3.4.2.2-1	R.43-3 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.2.2-1	R.43-4 TDD	10	16QAM	1/2	50		≥ 2	
TDD DDG	Table A.3.4.2.2-1	R.43-5 TDD	15	16QAM	1/2	75		≥ 2	
	CH Performance, S		<u> </u>		4 /0				T T
TDD	Table A.3.4.3.1-1	R.25 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.1-1	R.26 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.26-1 TDD	5	16QAM	1/2	25		≥1	
TDD	Table A.3.4.3.1-1	R.27 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.27-1 TDD	10	64QAM	3/4	18		≥ 1	
TDD DDG	Table A.3.4.3.1-1	R.28 TDD	10	16QAM	1/2	1		≥ 1	
	CH Performance, T		1	1	4 /0				
TDD	Table A.3.4.3.2-1	R.31 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.2-1	R.32 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.2-1	R.32-1 TDD	5	16QAM	1/2	[25]		≥ 1	
TDD	Table A.3.4.3.2-1	R.33 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.2-1	R.33-1 TDD	10	64QAM	3/4	[18]		≥ 1	
TDD DDG	Table A.3.4.3.2-1	R.34 TDD	10	64QAM	1/2	50		≥ 2	
	CH Performance (U	I	1	1		ī		٠. ٥	
TDD DDG	Table A.3.4.3.3-1	R.51 TDD	10	16QAM	1/2	50		≥2	
	CH Performance (U		1	1	-	1	n Quas		ocated)
TDD	Table A.3.4.3.3-2	R.52 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.3-2	R.53 TDD	10	64QAM	1/2	50		≥ 2	
TDD DDG	Table A.3.4.3.3-2	R.54 TDD	10	16QAM	1/2	50		≥ 2	
	CH Performance (U	R.44 TDD) Four a		1/2	1		٠. ٥	
TDD				64QAM		50		≥ 2	
	Table A.3.4.3.4-1		-		1/2				
TDD	Table A.3.4.3.4-1	R.48 TDD	10	QPSK		50		≥ 1	
TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2	R.48 TDD R.60 TDD	10	QPSK QPSK	1/2	50		≥ 1	
TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2	R.48 TDD R.60 TDD R.61 TDD	10 10 10	QPSK QPSK 16QAM	1/2	50 50		≥ 1 ≥ 2	
TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD	10 10 10 10	QPSK QPSK 16QAM 16QAM	1/2 1/2 1/2	50 50 39		≥ 1 ≥ 2 ≥ 1	
TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD	10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK	1/2 1/2 1/2 1/3	50 50 39 6		≥ 1 ≥ 2	
TDD TDD TDD TDD TDD TDD, PDS	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS	10 10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK	1/2 1/2 1/2 1/3 orts (CS	50 50 39 6		≥ 1 ≥ 2 ≥ 1 0	
TDD TDD TDD TDD TDD TDD TDD TDD, PDS	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD	10 10 10 10 10 10) Eight a	QPSK QPSK 16QAM 16QAM QPSK antenna pc	1/2 1/2 1/2 1/3 orts (CS)	50 50 39 6 I-RS)		≥ 1 ≥ 2 ≥ 1 0	
TDD TDD TDD TDD TDD TDD, PDS TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD	10 10 10 10 10 10) Eight a	QPSK QPSK 16QAM 16QAM QPSK antenna po QPSK 16QAM	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD TDD TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD	10 10 10 10 10 10) Eight a	QPSK QPSK 16QAM 16QAM QPSK antenna pc	1/2 1/2 1/2 1/3 orts (CS)	50 50 39 6 I-RS)		≥ 1 ≥ 2 ≥ 1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 CCH / PCFICH Performance	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD	10 10 10 10 10 10 10 10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK antenna po QPSK 16QAM 16QAM	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.4.3.5-2	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD rmance R.15 FDD	10 10 10 10 10 10 10 10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD rmance R.15 FDD R.15-1 FDD	10 10 10 10 10 10 10 10 10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK ntenna po QPSK 16QAM 16QAM PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD FDD, PDC	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD TMANCE R.15 FDD R.15-1 FDD R.15-2 FDD	10 10 10 10 10 10 10 10 10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD FDD, PDC FDD FDD FDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD rmance R.15 FDD R.15-1 FDD R.15-2 FDD R.16 FDD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD FMANCE R.15 FDD R.15-1 FDD R.15-2 FDD R.16 FDD R.17 FDD	10 10 10 10 10 10 10 10 10 10 10 10 10	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD TMANCE R.15 FDD R.15-1 FDD R.15-2 FDD R.16 FDD R.17 FDD	10 10 10 10 10 10 10 10 10 10 10 10 10 5	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM PDCCH PDCCH PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD FMANCE R.15-1 FDD R.15-2 FDD R.16 FDD R.17 FDD FMANCE R.17 FDD FMANCE R.17 FDD FMANCE R.15 TDD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM 16QAM PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD TDD FDD FDD FDD FDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD TMANCE R.15-1 FDD R.15-2 FDD R.16 FDD R.17 FDD TMANCE R.15 TDD R.17 FDD TMANCE R.15 TDD R.15-1 TDD TMANCE R.17 FDD TMANCE R.17 FDD TMANCE R.15 TDD TMANCE R.15 TDD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM 16QAM PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD FDD, PDC FDD FDD FDD TDD TDD TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD R.15-1 FDD R.16 FDD R.17 FDD R.15 TDD R.15 TDD R.15 TDD R.15 TDD R.16 FDD R.17 FDD R.15 TDD R.15-1 TDD R.15-1 TDD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK QPSK 16QAM 16QAM QPSK ntenna po QPSK 16QAM 16QAM 16QAM PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD, PDS TDD FDD, PDC FDD FDD TDD TDD TDD TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD R.15-1 FDD R.16 FDD R.17 FDD R.15-1 TDD R.15-1 TDD R.15-1 TDD R.16 FDD R.16 FDD R.16 TDD R.15-1 TDD R.16 TDD R.15-1 TDD R.15-1 TDD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK QPSK 16QAM 16QAM QPSK Intenna po QPSK 16QAM 16QAM 16QAM PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	
TDD TDD TDD TDD, PDS TDD FDD, PDC FDD FDD TDD TDD TDD TDD TDD TDD TDD TDD	Table A.3.4.3.4-1 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-2 Table A.3.4.3.4-3 CH Performance (U Table A.3.4.3.5-1 Table A.3.4.3.5-2 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1 Table A.3.5.1-1	R.48 TDD R.60 TDD R.61 TDD R.61-1 TDD R.zz TDD E specific RS R.50 TDD R.45 TDD R.45-1 TDD R.15-1 FDD R.16 FDD R.15 TDD R.15-1 TDD R.16 FDD R.15-1 TDD R.16 TDD R.15-1 TDD R.17 TDD R.15-1 TDD R.16 TDD R.17 TDD R.17 TDD R.17 TDD R.17 TDD R.16 TDD R.17 TDD	10 10 10 10 10 10 10 10 10 10 10 10 10 1	QPSK QPSK 16QAM 16QAM QPSK ntenna po QPSK 16QAM 16QAM 16QAM PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH PDCCH	1/2 1/2 1/2 1/3 orts (CS) 1/3 1/2	50 50 39 6 -RS) 50		≥1 ≥2 ≥1 0	

FDD / TDD	Table A.3.6-1	R.18	10	PHICH				
FDD / TDD	Table A.3.6-1	R.19	10	PHICH				
FDD	Table A.3.6.1	R.19-1	5	PHICH				
FDD / TDD	Table A.3.6-1	R.20	5	PHICH				
FDD / TDD	Table A.3.6-1	R.24	10	PHICH				
), PBCH Performan	ce						
FDD / TDD	Table A.3.7-1	R.21	1.4	QPSK	40/ 1920			
FDD / TDD	Table A.3.7-1	R.22	1.4	QPSK	40/ 1920			
FDD / TDD	Table A.3.7-1	R.23	1.4	QPSK	40/ 1920			
	H Performance				1920			
FDD	Table A.3.8.1-1	R.40 FDD	1.4	QPSK	1/3	6	≥ 1	
FDD	Table A.3.8.1-1	R.37 FDD	10	QPSK	1/3	50	≥ 1	
FDD	Table A.3.8.1-2	R.38 FDD	10	16QAM	1/2	50	≥ 1	
FDD	Table A.3.8.1-3	R.39-1 FDD	5	64QAM	2/3	25	≥ 1	
FDD	Table A.3.8.1-3	R.39 FDD	10	64QAM	2/3	50	≥ 2	
TDD, PMC	H Performance							
TDD	Table A.3.8.2-1	R.40 TDD	1.4	QPSK	1/3	6	≥ 1	
TDD	Table A.3.8.2-1	R.37 TDD	10	QPSK	1/3	50	≥ 1	
TDD	Table A.3.8.2-2	R.38 TDD	10	16QAM	1/2	50	≥ 1	
TDD	Table A.3.8.2-3	R.39-1 TDD	5	64QAM	2/3	25	≥ 1	
TDD	Table A.3.8.2-3	R.39 TDD	10	64QAM	2/3	50	≥ 2	
FDD, Sust	tained data rate (CR	(S)						
FDD	Table A.3.9.1-1	R.31-1 FDD	10	64QAM	0.40		≥ 1	
FDD	Table A.3.9.1-1	R.31-2 FDD	10	64QAM	0.59- 0.64		≥ 2	
FDD	Table A.3.9.1-1	R.31-3 FDD	20	64QAM	0.59- 0.62		≥ 2	
FDD	Table A.3.9.1-1	R.31-3A FDD	10	64QAM	0.85- 0.90		≥ 2	
FDD	Table A.3.9.1-1	R.31-3C FDD	15	64QAM	0.87- 0.91		≥ 3	
FDD	Table A.3.9.1-1	R.31-4 FDD	20	64QAM	0.87- 0.90		≥ 3	
FDD	Table A.3.9.1-1	R.31-4B FDD	15	64QAM	0.85- 0.88		≥ 4	
FDD	Table A.3.9.1-1	R.31-5 FDD	15	64QAM	0.85- 0.91		≥ 3	
FDD	Table A.3.9.1-2	R.31-6 FDD	15	64QAM	0.83- 0.85		≥ 2	
TDD, Sust	tained data rate (CR	(S)						
TDD	Table A.3.9.2-1	R.31-1 TDD	10	64QAM	0.40		≥ 1	
TDD	Table A.3.9.2-1	R.31-2 TDD	10	64QAM	0.59- 0.64		≥ 2	
TDD	Table A.3.9.2-1	R.31-3 TDD	20	64QAM	0.59- 0.62		≥ 2	
TDD	Table A.3.9.2-1	R.31-3A TDD	15	64QAM	0.87- 0.90		≥ 2	
TDD	Table A.3.9.2-1	R.31-4 TDD	20	64QAM	0.87- 0.90		≥ 3	
TDD	Table A.3.9.2-1	R.31-5 TDD	15	64QAM	0.85- 0.88		≥ 3	
FDD, Sust	tained data rate tes	t with EPDCCI	d sched	uling (CRS	5)			
FDD	Table A.3.9.3-1	R.31E-1 FDD	10	64QAM	0.40- 0		≥ 1	
FDD	Table A.3.9.3-1	R.31E-2 FDD	10	64QAM	0.59- 0.66		≥ 2	

FDD	Table A.3.9.3-1	R.31E-3 FDD	20	64QAM	0.59- 0.63		≥ 2	
FDD	Table A.3.9.1-1	R.31E-3C FDD	15	64QAM	0.87- 0.92		≥ 3	
FDD	Table A.3.9.3-1	R.31E-3A FDD	10	64QAM	0.85- 0.92		≥ 2	
FDD	Table A.3.9.3-1	R.31E-4 FDD	20	64QAM	0.87- 0.91		≥ 3	
FDD	Table A.3.9.1-1	R.31E-4B FDD	15	64QAM	0.87- 0.90		≥ 4	
TDD, Sust	tained data rate test	with EPDCCI	d sched	uling (CRS	5)			
TDD	Table A.3.9.4-1	R.31E-1 TDD	10	64QAM	0.40- 0.41		≥ 1	
TDD	Table A.3.9.4-1	R.31E-2 TDD	10	64QAM	0.59- 0.65		≥ 2	
TDD	Table A.3.9.4-1	R.31E-3 TDD	20	64QAM	0.59- 0.63		≥2	
TDD	Table A.3.9.4-1	R.31E-3A TDD	15	64QAM	0.87- 0.92		≥2	
TDD	Table A.3.9.4-1	R.31E-4 TDD	20	64QAM	0.87- 0.90		≥ 3	
FDD, ePD	CCH performance							
FDD	Table A.3.10.1-1	R.55 FDD	10	EPDCC H				
FDD	Table A.3.10.1-1	R.56 FDD	10	EPDCC H				
FDD	Table A.3.10.1-1	R.57 FDD	10	EPDCC H				
FDD	Table A.3.10.1-1	R.58 FDD	10	EPDCC H				
FDD	Table A.3.10.1-1	R.59 FDD	10	EPDCC H				
TDD, ePD	CCH performance							
TDD	Table A.3.10.2-1	R.55 TDD	10	EPDCC H				
TDD	Table A.3.10.2-1	R.56 TDD	10	EPDCC H				
TDD	Table A.3.10.2-1	R.57 TDD	10	EPDCC H				
TDD	Table A.3.10.2-1	R.58 TDD	10	EPDCC H				
TDD	Table A.3.10.2-1	R.59 TDD	10	EPDCC H				

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4 (Maximum input level).

Tables A.3.2-3, A.3.2-3a, A.3.2-3b, A.3.2-4, A.3.2-4a and A.3.2-4b are applicable for subclause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		9	9	9	9	9	9	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	2	2	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	1	1	1	1	2	2	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760	
Max. Throughput averaged over 1 frame	kbps	341.6	1143.	1952.	3952.	6040.	7884	
			2	8	8	8		
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 2:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 3: each Code Block (otherwise L = 0 Bit)

Table A.3.2-1a Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	14	14	14	14	14	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		9	9	9	9	9	9	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	
Number of HARQ Processes	Processes	[8]	[8]	[8]	[8]	[8]	[8]	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1000	1000	1000	1000	1000	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0 (Note 3)	Bits	152	840	840	904	904	904	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	1	1	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	1	1	1	1	1	1	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3528	3528	3864	3864	3864	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0 (Note 3)	Bits	528	2688	2688	3024	3024	3024	
Max. Throughput averaged over 1 frame	kbps	341.6	884	884	890.4	890.4	890.4	
UE Category		0	0	0	0	0	0	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211.

Note 3: For Sub-Frame 0, it is assumed the 6PRBs are allocated in the centre of the channel where some REs of the same PRBs are occupied by PBCH and synchronization signals.

Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit			Va	lue		
Channel Bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3	3+2	3+2	3+2	3+2	3+2
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmission		1	1	1	1	1	1
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload per Sub-Frame	Bits						
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760
For Sub-Frame 1, 6		N/A	968	1544	3240	4968	6712
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		208	1064	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frame 4, 9		1	1	1	1	2	2
For Sub-Frame 1, 6		N/A	1	1	1	1	2
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame	Bits						
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600
For Sub-Frame 1, 6		N/A	3276	5556	11256	16956	22656
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		672	3084	5604	13104	20004	26904
Max. Throughput averaged over 1 frame	kbps	102.4	564	932	1965.	3007.	3970.
					6	2	4
UE Category	<u> </u>	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz Note 1: channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with

Note 2: insufficient PDCCH performance

Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 4: each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-2a Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit	Value						
Channel Bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	14	14	14	14	14	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)		3	3+2	3+2	3+2	3+2	3+2	
Number of HARQ Processes	Processes	[7]	[7]	[7]	[7]	[7]	[7]	
Maximum number of HARQ transmission		1	1	1	1	1	1	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3	
Information Bit Payload per Sub-Frame	Bits							
For Sub-Frame 4, 9		408	1000	1000	1000	1000	1000	
For Sub-Frame 1, 6		N/A	872	872	872	872	872	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		208	1000	1000	1000	1000	1000	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frame 4, 9		1	1	1	1	1	1	
For Sub-Frame 1, 6		N/A	1	1	1	1	1	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		1	1	1	1	1	1	
Binary Channel Bits Per Sub-Frame	Bits							
For Sub-Frame 4, 9		1368	3528	3528	3864	3864	3864	
For Sub-Frame 1, 6		N/A	3048	3048	3048	3048	3048	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		672	2832	2832	3168	3168	3168	
Max. Throughput averaged over 1 frame	kbps	102.4	474.4	474.4	474.4	474.4	474.4	
UE Category		0	0	0	0	0	0	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-3 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	9	9	9	9	9	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6456	12576	28336	45352	61664	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame (Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	11	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	11	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	8820	16380	38880	59580	80280	
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-3a Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	18	17	17	17		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		8	9	9	9	9	9		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	8	8	8	8	8	8		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	10296	10296	10296	10296		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	6456	8248	10296	10296	10296		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame (Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	2	2	2	2		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	2	2	2	2		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	13608	14076	14076	14076		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	8820	11088	14076	14076	14076		
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	9079.6	9266.4	9266.4	9266.4		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-3b Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	83	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	9	9	9	9	9	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	51024	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6456	12576	28336	45352	51024	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame (Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	9	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	9	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	68724	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	8820	16380	38880	59580	66204	
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	45922	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-3c Fixed Reference Channel for Maximum input level for UE Category 0 (FDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		2	2	2	2	2	2		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		8	9	9	9	9	9		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	[8]	[8]	[8]	[8]	[8]	[8]		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1000	1000	1000	1000	1000	1000		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0 (Note 3)	Bits	N/A	1000	1000	1000	1000	1000		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	1	1	1	1		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	1	1	1	1	1		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	1512	1512	1656	1656	1656		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0 (Note 3)	Bits	N/A	1512	1512	1656	1656	1656		
Max. Throughput averaged over 1 frame	kbps	800	900	900	900	900	900		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211.

Note 3: For Sub-Frame 0, it is assumed that the allocated 2PRBs are scheduled on the RBs other than the center 6PRBs as most of the symbols are occupied by PBCH and synchronization signals.

Table A.3.2-4 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (TDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1		
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	61664		
For Sub-Frames 1,6	Bits	N/A	6968	11448	23688	35160	46888		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	6968	12576	30576	45352	61664		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9		1	2	3	5	8	11		
For Sub-Frames 1,6		N/A	2	2	4	6	8		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	3	5	8	11		
Binary Channel Bits per Sub-Frame									
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	82800		
For Sub-Frames 1,6		N/A	9828	16668	33768	50868	67968		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	9252	16812	39312	60012	80712		
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	27877		

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-4a Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	18	17	17	17	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	10296	10296	10296	10296	
For Sub-Frames 1,6	Bits	N/A	6968	8248	7480	7480	7480	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6968	8248	10296	10296	10296	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	2	2	2	2	2	
For Sub-Frames 1,6		N/A	2	2	2	2	2	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	2	2	2	2	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	13608	14076	14076	14076	
For Sub-Frames 1,6		N/A	9828	11880	11628	11628	11628	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9252	11520	14076	14076	14076	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	4533.6	4584.8	4584.8	4584.8	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-4b Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	83	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	51024	
For Sub-Frames 1,6	Bits	N/A	6968	11448	23688	35160	39232	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6968	12576	30576	45352	51024	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	2	3	5	8	9	
For Sub-Frames 1,6		N/A	2	3	5	7	7	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	9	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	68724	
For Sub-Frames 1,6		N/A	9828	16668	33768	50868	56340	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9252	16380	39312	60012	66636	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	23154	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-4c Fixed Reference Channel for Maximum input level for UE Category 0 (TDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		2	2	2	2	2	2	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	[7]	[7]	[7]	[7]	[7]	[7]	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	1000	1000	1000	1000	1000	1000	
For Sub-Frames 1,6	Bits	N/A	712	712	712	712	712	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	1000	1000	1000	1000	1000	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	1	1	1	1	1	
For Sub-Frames 1,6		N/A	1	1	1	1	1	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	1	1	1	1	1	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	1368	1512	1512	1656	1656	1656	
For Sub-Frames 1,6		N/A	1224	1224	1368	1368	1368	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	1512	1512	1656	1656	1656	
Max. Throughput averaged over 1 frame	kbps	200	442.4	442.4	442.4	442.4	442.4	

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

Table A.3.2-5 Fixed Reference Channel for Maximum input level for UE Categories 11/12/13/14/15 (FDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		8	9	9	9	9	9		
Modulation		256QAM	256QAM	256QAM	256QAM	256QAM	256QAM		
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5		
Number of HARQ Processes	Processes	8	8	8	8	8	8		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	12216	19848	42368	63776	84760		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	9912	17568	40576	63776	84760		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	4	7	11	14		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	3	7	11	14		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	5472	15120	25200	55200	82800	110400		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	12210	22290	51840	79440	107040		
Max. Throughput averaged over 1 frame	kbps	3513.6	10764	17635.2	37952	57398.4	76284		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.2-6 Fixed Reference Channel for Maximum input level for UE Categories 11/12/13/14/15 (TDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1		
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2		
Modulation		256QAM	256QAM	256QAM	256QAM	256QAM	256QAM		
Target Coding Rate		4/5	4/5	4/5	4/5	4/5	4/5		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 4,9	Bits	4392	12216	19848	42368	63776	84760		
For Sub-Frames 1,6	Bits	N/A	10680	17568	36696	55056	75376		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	9912	17568	42368	63776	84760		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9		1	2	4	7	11	14		
For Sub-Frames 1,6		N/A	2	3	6	9	13		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	3	7	11	14		
Binary Channel Bits per Sub-Frame									
For Sub-Frames 4,9	Bits	5472	15120	25200	55200	82800	110400		
For Sub-Frames 1,6		N/A	13104	22224	45024	67824	90624		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	12336	22416	52416	80016	107616		
Max. Throughput averaged over 1 frame	kbps	878.4	5570.4	9240	20049.6	30144	40503.2		

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4].

A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value						
Reference channel		R.4	R.42	R.42-1	R.42-2	R.42-3	R.2	
		FDD	FDD	FDD	FDD	FDD	FDD	
Channel bandwidth	MHz	1.4	20	3	5	15	10	
Allocated resource blocks (Note 4)		6	100	15	25	75	50	
Allocated subframes per Radio Frame		9	9	9	9	9	9	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	
Information Bit Payload (Note 4)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	8760	1320	2216	6712	4392	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	152	8760	1064	1800	6712	4392	
Number of Code Blocks								
(Notes 3 and 4)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	1	1	2	1	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		1	2	1	1	2	1	
Binary Channel Bits (Note 4)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	27600	3780	6300	20700	13800	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	528	26760	2940	5460	19860	12960	
Max. Throughput averaged over 1 frame	Mbps	0.342	7.884	1.162	1.953	6.041	3.953	
(Note 4)								
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.

Table A.3.3.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit			٧	alue		
Reference channel				R.3-1	R.3		
				FDD	FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Allocated subframes per Radio Frame				9	9		
Modulation				16QAM	16QAM		
Target Coding Rate				1/2	1/2		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			6456	14112		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			5736	12960		
Number of Code Blocks per Sub-Frame							
(Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9				2	3		
For Sub-Frame 5				N/A	N/A		
For Sub-Frame 0				1	3		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			12600	27600		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			10920	25920		
Max. Throughput averaged over 1 frame	Mbps			5.738	12.586		
UE Category				≥ 1	≥2		

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Va	lue		
Reference channel			R.5	R.6	R.7	R.8	R.9 FDD
			FDD	FDD	FDD	FDD	
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Allocated subframes per Radio Frame			9	9	9	9	9
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		8504	14112	30576	46888	61664
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		6456	12576	28336	45352	61664
Number of Code Blocks per Sub-Frame							
(Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9			2	3	5	8	11
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0			2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		11340	18900	41400	62100	82800
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	Mbps		7.449	12.547	27.294	42.046	55.498
UE Category			≥ 1	≥ 2	≥ 2	≥ 2	≥ 3

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-3a: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Va	lue		
Reference channel		R.	3-1	R.7-1	R.8-1	R.9-1	R.9-2
		F	DD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz		5	10	15	20	20
Allocated resource blocks (Note 3)		1	8	17	17	17	83
Allocated subframes per Radio Frame		Ç	9	9	9	9	9
Modulation		64C	(MA)	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3.	/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	102	296	10296	10296	10296	51024
For Sub-Frame 5	Bits	N.	/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	82	48	10296	10296	10296	51024
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 1,2,3,4,6,7,8,9			2	2	2	2	9
For Sub-Frame 5		N.	/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		4	2	2	2	2	9
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	136	808	14076	14076	14076	68724
For Sub-Frame 5	Bits	N.	/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	110	088	14076	14076	14076	66204
Max. Throughput averaged over 1 frame	Mbps	9.0	62	9.266	9.266	9.266	45.922
UE Category		≥	1	≥1	≥ 1	≥1	≥ 2

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: Localized allocation started from RB #0 is applied.
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

Parameter	Unit	Value							
Reference channel			R.0 FDD		R.1 FDD				
Channel bandwidth	MHz	1.4	3	5	10/20	15	20		
Allocated resource blocks			1		1				
Allocated subframes per Radio Frame			9		9				
Modulation			16QAM		16QAM				
Target Coding Rate			1/2		1/2				
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256				
For Sub-Frame 5	Bits		N/A		N/A				
For Sub-Frame 0	Bits		224		256				
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9			1		1				
For Sub-Frame 5			N/A		N/A				
For Sub-Frame 0			1		1				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552				
For Sub-Frame 5	Bits		N/A	_	N/A	_			
For Sub-Frame 0	Bits		504		552				
Max. Throughput averaged over 1 frame	Mbps		0.202		0.230				
UE Category			≥ 1		≥ 1	_			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

	Parameter	Unit	Value
Reference	e channel		R.29 FDD
			(MBSFN)
Channel	bandwidth	MHz	10
Allocated	resource blocks		1
MBSFN (Configuration (Note 4)		111111
Allocated	I subframes per Radio Frame		3
Modulation	on		16QAM
Target C	oding Rate		1/2
Informati	on Bit Payload		
For Sub	-Frames 4,9	Bits	256
For Sub	-Frame 5	Bits	N/A
For Sub	-Frame 0	Bits	256
For Sub	-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)
Number	of Code Blocks per Sub-Frame		
(Note 3)			
For Sub	-Frames 4,9		1
For Sub	-Frame 5		N/A
	-Frame 0		1
For Sub	-Frame 1,2,3,6,7,8		0 (MBSFN)
Binary Cl	hannel Bits Per Sub-Frame		
For Sub	-Frames 4,9	Bits	552
For Sub	-Frame 5	Bits	N/A
	-Frame 0	Bits	552
For Sub	-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)
Max. Thr	oughput averaged over 1 frame	kbps	76.8
UE Cate	≥ 1		
Note 1:	2 symbols allocated to PDCCH.		
Note 2:	Reference signal, synchronization	n signals a	and PBCH
	allocated as per TS 36.211 [4].		
Note 3:	If more than one Code Block is p		
	CRC sequence of $L = 24$ Bits is a	attached to	each Code

CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation Note 4:

Table A.3.3.1-6: Fixed Reference Channel QPSK R=1/10

Parameter	Unit	Unit Value							
Reference channel					R.41 FDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks					50				
Allocated subframes per Radio Frame					9				
Modulation					QPSK				
Target Coding Rate					1/10				
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				1384				
For Sub-Frame 5	Bits				N/A				
For Sub-Frame 0	Bits				1384				
Number of Code Blocks per Sub-Frame (Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9					1				
For Sub-Frame 5					N/A				
For Sub-Frame 0					1				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				13800				
For Sub-Frame 5	Bits				N/A	•			
For Sub-Frame 0	Bits				12960				
Max. Throughput averaged over 1 frame	Mbps				1.246	•			
UE Category					≥ 1	•			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to

each Code Block (otherwise L = 0 Bit).

Table A.3.3.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

Parameter	Unit		Value	
Reference channel		R.49 FDD	R.49-1 FDD	R.49-2 FDD
Channel bandwidth	MHz	20	10	5
Allocated resource blocks		100	50	25
Allocated subframes per Radio Frame		9	9	9
Modulation		64QAM	64QAM	64QAM
Coding Rate				
For Sub-Frame 1,2,3,4,6,7,8,9,		0.84	0.84	0.84
For Sub-Frame 5		N/A	N/A	N/A
For Sub-Frame 0		0.87	0.87	0.86
Information Bit Payload				
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	63776	31704	15840
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0		63776	30576	14112
Number of Code Blocks per Sub-Frame (Note 3)				
For Sub-Frames 0,1,2,3,4,6,7,8,9	Code	11	6	3
	Blocks			
For Sub-Frame 5	Code	N/A	N/A	N/A
	Blocks			
Binary Channel Bits Per Sub-Frame			5	3
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	75600		
For Sub-Frame 5	Bits	N/A	37800	18900
For Sub-Frame 0	Bits	73080	N/A	N/A
Max. Throughput averaged over 1 frame	Mbps	57.398	35280	16380
UE Category		≥5	≥2	≥2

Note 1: 3 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit						Va	lue					
Reference channel		R.10 FDD	R.11 FDD	R.11- 1 FDD	R.11- 2 FDD	R.11- 3 FDD Note 5	R.11- 4 FDD	R.30 FDD	R.30- 1 FDD	R.35- 1 FDD	R.35 FDD	R.35- 2 FDD	R.35- 3 FDD
Channel bandwidth	MHz	10	10	10	5	10	10	20	15	20	10	15	10
Allocated resource blocks (Note 4)		50	50	50	25	40	50	100	75	100	50	75	50
Allocated subframes per Radio Frame		9	9	9	9	9	9	9	8	8	9	8	8
Modulation		QPSK	16QA M	16QA M	16QA M	16QA M	QPSK	16QA M	16QA M	64QA M	64QA M	64QA M	64QA M
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	0.39	1/2	0.39	0.39
Information Bit Payload (Note 4)													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	12960	12960	5736	10296	6968	25456	19080	30576	19848	22920	15264
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame	Bits	4392	12960	N/A	4968	10296	6968	25456	N/A	N/A	18336	N/A	N/A
Number of Code Blocks (Notes 3 and 4)													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	3	3	1	2	2	5	4	5	4	4	3
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame	Bits	1	3	N/A	1	2	2	5	N/A	N/A	3	N/A	N/A
Binary Channel Bits (Note 4)													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	26400	12000	21120	13200	52800	39600	79200	39600	59400	39600
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12384	24768	N/A	10368	19488	12384	51168	N/A	N/A	37152	N/A	N/A
Max. Throughput averaged over 1 frame (Note 4)	Mbps	3.953	11.66 4	10.36 8	5.086	9.266	6.271	22.91 0	15.26 4	24.46 1	17.71 2	18.33 6	12.21 1
UE Category Note 1: 2 symbo		≥ 1	≥2	≥ 2	≥ 1	≥ 1	≥ 1	≥ 2	≥ 2	4	≥ 2	≥ 2	≥ 2

² symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and Note 1: 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2:

Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block Note 3: (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.

For R.11-3 resource blocks of RB6–RB45 are allocated. Note 5:

Table A.3.3.2.1-2: Fixed Reference Channel two antenna ports

Parameter	Unit				Va	lue			
Reference channel		R.46	R.47	R.35-4	R.11-5	R.11-6	R.11-7	R.11-8	R.aa
		FDD	FDD	FDD	FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz	10	10	10	1.4	3	15	10	10
Allocated resource blocks (Note 4)		50	50	50	6	15	75	50	50
Allocated subframes per Radio Frame		9	9	9	9	9	9	9	9
Modulation		QPSK	16QA	64QA	16QA	16QA	16QA	QPSK	256QA
			M	M	М	М	М		M
Target Coding Rate				0.47	1/2	1/2	1/2	3/5	0.6
Information Bit Payload (Note 4)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	5160	8760	18336	1352	3368	19080	7992	31704
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	5160	8760	16416	N/A	2664	19080	6968	N/A
Number of Code Blocks									
(Notes 3 and 4)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	2	3	1	1	4	2	6
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	1	2	3	1	1	4	2	N/A
Binary Channel Bits (Note 4)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	39600	2592	7200	39600	13200	52800
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12384	24768	37152	N/A	5568	37968	12384	N/A
Max. Throughput averaged over 1	Mbps	4.644	7.884	16.310	1.082	2.961	17.172	7.0904	25.363
frame (Note 4)									
UE Category		≥ 1	≥ 1	≥ 2	≥1	≥ 1	≥ 2	≥2	11-15

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For 256QAM reference channel, 1 OFDM symbol is allocated for PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 4: Given per component carrier per codeword.

Table A.3.3.2.1-3: Fixed Reference Channel two antenna ports

Parameter	Unit	Va	lue
Reference channel		R.xx	R.yy
		FDD	FDD
Channel bandwidth	MHz	10	10
Allocated resource blocks (Note 4)		3	1
Allocated DL subframes per 4 Radio Frames		15	15
(Note 3)			
Modulation		16QAM	64QAM
Target Coding Rate		1/2	1/2
Information Bit Payload			
For Sub-Frames 0,1,2,3,4,5,6,7,8,9	Bits	744	408
Number of Code Blocks			
For Sub-Frames 0,1,2,3,4,5,6,7,8,9	Code	1	1
	blocks		
Binary Channel Bits			
For Sub-Frames 0,1,2,3,4,5,6,7,8,9	Bits	1584	792
Max. Throughput averaged over 4 frames	Mbps	0.279	0.153
UE Category		0	0
Nata 4: O asserbala allegate de DDOOLL			

Note 1: 2 symbols allocated to PDCCH

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: The downlink subframes are scheduled at the 0th, 1st, 2nd, 8th, 9th, 10th, 16th, 17th, 18th, 24th, 25th, 26th, 32nd, 33rd, 34th subframes every 40ms. Information bit payload is available if downlink subframe is scheduled.

Note 4: Allocated PRB positions start from {10, 11, ..., 10+N-1}, where N is the number of allocated resource blocks.

A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit						Value					
Reference channel		R.12	R.13	R.14	R.14-	R.14-	R.14-	R.36	R.14-	R.14-	R.14-	R.14-
		FDD	FDD	FDD	1	2	3	FDD	4	5	6	7
					FDD	FDD	FDD		FDD	FDD	FDD	FDD
Channel bandwidth	MHz	1.4	10	10	10	10	20	10	1.4	3	5	15
Allocated resource		6	50	50	6	3	100	50	6	15	25	75
blocks (Note 4)												
Allocated subframes		9	9	9	8	8	9	9	9	9	9	9
per Radio Frame												
Modulation		QPS	QPS	16Q	16QA	16QA	16QA	64Q	16QA	16QA	16QA	16QA
		K	K	AM	М	М	M	AM	М	M	M	М
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit Payload												
(Note 4)												
For Sub-Frames	Bits	408	4392	1296	1544	744	[2545	1833	1192	3368	5736	19080
1,2,3,4,6,7,8,9				0			6]	6				
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	n/a	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	152	3624	1144	N/A	N/A	[2292	1833	N/A	2664	4968	19080
				8			0]	6				
Number of Code												
Blocks												
(Notes 3 and 4)				_				_				
For Sub-Frames		1	1	3	1	1	5	3	1	1	1	4
1,2,3,4,6,7,8,9												
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	n/a	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	1	2	N/A	N/A	4	3	N/A	1	1	4
Binary Channel Bits												
(Note 4)						. = = =						
For Sub-Frames	Bits	1248	1280	2560	3072	1536	51200	3840	2496	6960	11600	38400
1,2,3,4,6,7,8,9			0	0				0				
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	n/a	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	480	1203	2406	N/A	N/A	49664	3609	N/A	5424	10064	36864
			2	4				6				
Max. Throughput	Mbp	0.34	3.87	11.5	1.235	0.595	[22.65	16.5	0.954	2.961	5.086	17.17
averaged over 1 frame	S	2	6	13			6]	02				2
(Note 4)										.		
UE Category	L	≥ 1	≥1	≥2	≥ 1	≥1	≥ 2	≥ 2	≥ 1	≥ 1	≥ 1	≥2

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.

A.3.3.3 Reference Measurement Channel for UE-Specific Reference Symbols

A.3.3.3.1 Two antenna port (CSI-RS)

The reference measurement channels in Table A.3.3.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Given per component carrier per codeword.

Table A.3.3.3.1-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

	Parameter	Unit	Value					
Referenc	e channel		R.51 FDD					
Channel	bandwidth	MHz	10					
Allocated	resource blocks		50 (Note 3)					
	subframes per Radio Frame		9					
Modulatio	on		16QAM					
Target Co	oding Rate		1/2					
Information	on Bit Payload							
For Sub	-Frames 1,4,6,9	Bits	11448					
For Sub	-Frames 2,3,7,8	Bits	11448					
For Sub	-Frame 5	Bits	N/A					
For Sub	-Frame 0	Bits	9528					
Number of	of Code Blocks (Note 4)							
For Sub	-Frames 1,4,6,9	Code	2					
		blocks						
For Sub	-Frames 2,3,7,8	Code	2					
		blocks						
	-Frame 5	Bits	N/A					
	-Frame 0	Bits	2					
	nannel Bits							
	-Frames 1,4,6,9	Bits	24000					
	-Frames 2,7		23600					
	-Frames 3,8		23200					
	-Frame 5	Bits	N/A					
	-Frame 0	Bits	19680					
	oughput averaged over 1	Mbps	10.1112					
frame								
UE Categ			≥ 2					
Note 1:	2 symbols allocated to PDCCH							
Note 2:	Reference signal, synchroniza		s and PBCH					
allocated as per TS 36.211 [4].								
Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3,								
4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.								
Note 4:	,							
Note 4: If more than one Code Block is present, an addition CRC sequence of L = 24 Bits is attached to each C								
	Block (otherwise $L = 0$ Bit).	s allacited	i to each Code					
	DIOOK (OUIEI WISE L = 0 DIL).							

The reference measurement channels in Table A3.3.3.1-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

Table A.3.3.3.1-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

Parameter	Unit		Value	
Reference channel		R.52 FDD	R.53 FDD	R.54 FDD
Channel bandwidth	MHz	10	10	10
Allocated resource blocks		50 (Note 3)	50 (Note 3)	50 (Note 3)
Allocated subframes per Radio Frame		9	9	9
Modulation		64QAM	64QAM	16QAM
Target Coding Rate		1/2	1/2	1/2
Information Bit Payload				
For Sub-Frames 1,3,4,6,8,9	Bits	18336	18336	11448
For Sub-Frames 2,7	Bits	16416	16416	11448
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	14688	14688	9528
Number of Code Blocks (Note 4)				
For Sub-Frames 1,3,4,6,8,9	Code	3	3	2
	blocks			
For Sub-Frames 2, 7	Code	3	3	2
	blocks			
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	3	3	2
Binary Channel Bits				
For Sub-Frames 1,3,4,6,8,9	Bits	36000	36000	24000
For Sub-Frames 2,7		34200	33600	22800
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	29520	29520	19680
Max. Throughput averaged over 1	Mbps	15.7536	15.7536	10.1112
frame				

Note 1: 2 symbols allocated to PDCCH.

A.3.3.3.2 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.3.3.2-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.3.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit	Value						
Reference channel		R.43 FDD	R.50 FDD	R.48 FDD	R.bb FDD			
Channel bandwidth	MHz	10	10	10	10			
Allocated resource blocks		50 (Note 3)	50 (Note 3)	50 (Note	50 (Note			
				3)	3)			
Allocated subframes per Radio Frame		9	9	9	9			
Modulation		QPSK	64QAM	QPSK	256QAM			
Target Coding Rate		1/3	1/2					
Information Bit Payload								
For Sub-Frames 1,4,6,9	Bits	3624	18336	6200	36696			
For Sub-Frames 2,3,7,8	Bits	3624	16416	6200	35160			
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits	2984	14688	4968	30576			
Number of Code Blocks (Note 4)								
For Sub-Frames 1,4,6,9	Code	1	3	2	6			
	blocks							
For Sub-Frames 2,3,7,8	Code	1	3	2	6			
	blocks							
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits	1	3	1	5			
Binary Channel Bits								
For Sub-Frames 1,4,6,9	Bits	12000	36000	12000	48000			
For Sub-Frames 2,7		11600	34800	11600	46400			
For Sub-Frames 3,8		11600	34800	12000	46400			
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits	9840	29520	9840	39360			
Max. Throughput averaged over 1	Mbps	3.1976	15.3696	5.4568	31,800			
frame								
UE Category		≥ 1	≥ 2	≥ 1	11-15			

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: For R.31-1 and R.34-1, 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.3.3.2-2 apply for verifying FDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.

Table A.3.3.3.2-2: Fixed Reference Channel for four antenna ports (CSI-RS)

Parameter	Unit		Value	Value					
Reference channel		R.44	R.45	R.45-1	R.60				
		FDD	FDD	FDD	FDD				
Channel bandwidth	MHz	10	10	10	10				
Allocated resource blocks		50 ³	50 ³	39	50 ³				
Allocated subframes per Radio Frame		10	10	10	10				
Modulation		QPSK	16QAM	16QAM	QPSK				
Target Coding Rate		1/3	1/2	1/2	1/2				
Information Bit Payload									
For Sub-Frames (Non CSI-RS subframe)	Bits	3624	11448	8760	6200				
For Sub-Frames (CSI-RS subframe)	Bits	3624	11448	8760	6200				
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A	N/A				
subframe)									
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A				
For Sub-Frame 0	Bits	2984	9528	8760	N/A				
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames (Non CSI-RS subframe)		1	2	2	2				
For Sub-Frames (CSI-RS subframe)		1	2	2	2				
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A	N/A				
subframe)									
For Sub-Frame 5		N/A	N/A	N/A	N/A				
For Sub-Frame 0		1	2	2	N/A				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames (Non CSI-RS subframe)	Bits	12000	24000	18720	12000				
For Sub-Frames (CSI-RS subframe)	Bits	11600	23200	18096	11600				
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A	N/A				
subframe)									
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A				
For Sub-Frame 0	Bits	9840	19680	18720	N/A				
Max. Throughput averaged over 1 frame	Mbps	3.1976	10.1112	7.884	4.96				
UE Category		≥ 1	≥ 2	≥ 1	≥ 1				
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols									

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

The reference measurement channels in Table A.3.3.3.2-3 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: For R. 44, R.45 and R.60, 50 resource blocks are allocated in sub-frames 1,2,3,4,6,7,8,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.3.3.2-3: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit	Value				
Reference channel		R.zz				
		FDD				
Channel bandwidth	MHz	10				
Allocated resource blocks (Note 4)		6				
Allocated subframes per 4 Radio Frames		15				
Modulation		QPSK				
Target Coding Rate		1/3				
Information Bit Payload						
For Sub-Frames 0,1,4,5,6,9 (Note 3)	Bits	504				
For Sub-Frames 2,3,7,8 (Note 3)	Bits	504				
Number of Code Blocks						
For Sub-Frames 0,1,4,5,6,9	Code	1				
	blocks					
For Sub-Frames 2,3,7,8	Code	1				
	blocks					
Binary Channel Bits						
For Sub-Frames 0,1,4,5,6,9	Bits	1440				
For Sub-Frames 2,3,7,8	Bits	1392				
Max. Throughput averaged over 4 frames	Mbps	0.189				
UE Category		0				
Note 1: 2 symbols allocated to PDCCH.						
Note 2: Reference signal, synchronization signals and PRCH						

Reference signal, synchronization signals and PBCH Note 2:

allocated as per TS 36.211 [4].
The downlink subframes are scheduled at the 0th, 1st, 2nd, 8th, 9th, 10th, 16th, 17th, 18th, 24th, 25th, 26th, 32nd, 33rd, 34th subframes every 40ms. Information bit Note 3: payload is availabe if downlink subframe is scheduled.

Allocated PRB positions start from {10, 11, ..., 10+N-1}, Note 4: where N is the number of allocated resource blocks.

A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit				Value			
Reference channel		R.4	R.42	R.2A	R.2	R.42-1	R.42-2	R.42-3
		TDD	TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	1.4	20	10	10	3	5	15
Allocated resource blocks (Note 6)		6	100	50	50	15	25	75
Uplink-Downlink Configuration (Note 4)		1	1	2	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3	3+2	5+2	3+2	3+2	3+2	3+2
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload (Note 6)								
For Sub-Frames 4,9	Bits	408	8760	4392	4392	1320	2216	6712
For Sub-Frames 1,6	Bits	N/A	7736	3240	3240	1128	1864	5992
For Sub-Frames 3,8	Bits	N/A	N/A	4392	N/A	N/A	N/A	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	208	8760	4392	4392	1064	1800	6712
Number of Code Blocks								
(Notes 5 and 6)								
For Sub-Frames 4,9		1	2	1	1	1	1	2
For Sub-Frames 1,6		N/A	2	1	1	1	1	1
For Sub-Frames 3,8		N/A	N/A	1	N/A	N/A	N/A	N/A
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	1	1	1	2
Binary Channel Bits (Note 6)								
For Sub-Frames 4,9	Bits	1368	27600	13800	13800	3780	6300	20700
For Sub-Frames 1,6	Bits	N/A	22656	11256	11256	3276	5556	16956
For Sub-Frames 3,8		N/A	N/A	13800	N/A	N/A	N/A	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	672	26904	13104	13104	3084	5604	20004
Max. Throughput averaged over 1 frame	Mbps	0.102	4.175	2.844	1.966	0.596	0.996	3.212
(Note 6)								
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: As per Table 4.2-2 in TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Given per component carrier per codeword.

Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value						
Reference channel				R.3-1	R.3			
				TDD	TDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks				25	50			
Uplink-Downlink Configuration (Note 3)				1	1			
Allocated subframes per Radio Frame (D+S)				3+2	3+2			
Modulation				16QAM	16QAM			
Target Coding Rate				1/2	1/2			
Information Bit Payload								
For Sub-Frames 4,9	Bits			6456	14112			
For Sub-Frames 1,6	Bits			5160	11448			
For Sub-Frame 5	Bits			N/A	N/A			
For Sub-Frame 0	Bits			5736	12960			
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9				2	3			
For Sub-Frames 1,6				1	2			
For Sub-Frame 5				N/A	N/A			
For Sub-Frame 0				1	3			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits			12600	27600			
For Sub-Frames 1,6	Bits			11112	22512			
For Sub-Frame 5	Bits			N/A	N/A			
For Sub-Frame 0	Bits			11208	26208			
Max. Throughput averaged over 1 frame	Mbps			2.897	6.408			
UE Category				≥ 1	≥ 2			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Val	ue		
Reference channel			R.5	R.6 TDD	R.7	R.8	R.9
			TDD		TDD	TDD	TDD
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1
Allocated subframes per Radio Frame (D+S)			3+2	3+2	3+2	3+2	3+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate			3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664
For Sub-Frames 1,6	Bits		6968	11448	23688	35160	46888
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 4,9			2	3	5	8	11
For Sub-Frames 1,6			2	2	4	6	8
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0			2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits		11340	18900	41400	62100	82800
For Sub-Frames 1,6	Bits		9828	16668	33768	50868	67968
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits		9252	16812	39312	60012	80712
Max. Throughput averaged over 1 frame	Mbps		3.791	6.370	13.910	20.945	27.877
UE Category			≥1	≥ 2	≥2	≥ 2	≥ 3

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-3a: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value					
Reference channel		R.6-1	R.7-1	R.8-1	R.9-1	R.9-2	
		TDD	TDD	TDD	TDD	TDD	
Channel bandwidth	MHz	5	10	15	20	20	
Allocated resource blocks (Note 3)		18	17	17	17	83	
Uplink-Downlink Configuration (Note 4)		1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	
Information Bit Payload							
For Sub-Frames 4,9	Bits	10296	10296	10296	10296	51024	
For Sub-Frames 1,6	Bits	8248	7480	7480	7480	39232	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	8248	10296	10296	10296	51024	
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9		2	2	2	2	9	
For Sub-Frames 1,6		2	2	2	2	7	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		2	2	2	2	9	
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	13608	14076	14076	14076	68724	
For Sub-Frames 1,6	Bits	11880	11628	11628	11628	56340	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	11520	14076	14076	14076	66636	
Max. Throughput averaged over 1 frame	Mbps	4.534	4.585	4.585	4.585	23.154	
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 2	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: Localized allocation started from RB #0 is applied.

Note 4: As per Table 4.2-2 TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-4: Fixed Reference Channel Single PRB

Parameter	Unit		Value					
Reference channel			R.0		R.1 TDD			
			TDD		1.5/5.5			
Channel bandwidth	MHz	1.4	3	5	10/20	15	20	
Allocated resource blocks			1		1			
Uplink-Downlink Configuration (Note 3)			1		1			
Allocated subframes per Radio Frame (D+S)			3+2		3+2			
Modulation			16QAM		16QAM			
Target Coding Rate			1/2		1/2			
Information Bit Payload								
For Sub-Frames 4,9	Bits		224		256			
For Sub-Frames 1,6	Bits		208		208			
For Sub-Frame 5	Bits		N/A		N/A			
For Sub-Frame 0	Bits		224		256			
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9			1		1			
For Sub-Frames 1,6			1		1			
For Sub-Frame 5			N/A		N/A			
For Sub-Frame 0			1		1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits		504		552			
For Sub-Frames 1,6	Bits		456		456			
For Sub-Frame 5	Bits		N/A		N/A			
For Sub-Frame 0	Bits		504		552			
Max. Throughput averaged over 1 frame	Mbps		0.109		0.118			
UE Category	-		≥ 1		≥ 1			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value
Reference channel		R.29 TDD
		(MBSFN)
Channel bandwidth	MHz	10
Allocated resource blocks		1
MBSFN Configuration (Note 5)		010010
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		1+2
Modulation		16QAM
Target Coding Rate		1/2
Information Bit Payload		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	208
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	256
Number of Code Blocks per Sub-Frame		
(Note 4)		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	1
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	1
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	456
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	552
Max. Throughput averaged over 1 frame	kbps	67.2
UE Category		≥ 1
Note 1: 2 symbols allocated to PDCCH		

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

as per Table 4.2-2 in TS 36.211 [4]. Note 3:

If more than one Code Block is present, an additional CRC Note 4:

sequence of L = 24 Bits is attached to each Code Block (otherwise

L = 0 Bit).

MBSFN Subframe Allocation as defined in [7], one frame with 6 bits is chosen for MBSFN subframe allocation Note 5:

Table A.3.4.1-6: Fixed Reference Channel QPSK R=1/10

Parameter	Unit	Value					
Reference channel					R.41		
					TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Uplink-Downlink Configuration (Note 4)					1		
Allocated subframes per Radio Frame (D+S)					3+2		
Modulation					QPSK		
Target Coding Rate					1/10		
Information Bit Payload							
For Sub-Frames 4,9	Bits				1384		
For Sub-Frames 1,6	Bits				1032		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				1384		
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9					1		
For Sub-Frames 1,6					1		
For Sub-Frame 5					N/A		
For Sub-Frame 0					1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits				13800		
For Sub-Frames 1,6	Bits				11256		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				13104		
Max. Throughput averaged over 1 frame	Mbps				0.622		
UE Category					≥1		

- 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated Note 1: to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:
- Note 4:
- As per Table 4.2-2 in TS 36.211 [4]. If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to Note 5: each Code Block (otherwise L = 0 Bit).

Table A.3.4.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

Parameter	Unit	Value		
Reference channel		R.49 TDD	R.49-1	
			TDD	
Channel bandwidth	MHz	20	15	
Allocated resource blocks		100	75	
Uplink-Downlink Configuration (Note 1)		1	1	
Allocated subframes per Radio Frame		3+2	3+2	
(D+S)				
Modulation		64QAM	64QAM	
Number of OFDM symbols for PDCCH				
per component carrier				
For Sub-Frames 0,4,5,9	OFDM	3	3	
	symbols			
For Sub-Frames 1,6	OFDM	2	2	
	symbols			
Target Coding Rate				
For Sub-Frames 4,9		0.84	0.83	
For Sub-Frames 1,6		0.81	0.80	
For Sub-Frames 5		N/A	N/A	
For Sub-Frames 0		0.87	0.86	
Information Bit Payload				
For Sub-Frames 0, 4, 9	Bits	63776	46888	
For Sub-Frame 1,6	Bits	55056	40576	
For Sub-Frame 5	Bits	N/A	N/A	
Number of Code Blocks per Sub-Frame				
(Note 2)				
For Sub-Frames 0, 4, 9	Code	11	8	
	Blocks			
For Sub-Frame 1,6	Code	9	7	
	Blocks			
For Sub-Frame 5	Code	N/A	N/A	
	Blocks			
Binary Channel Bits Per Sub-Frame				
For Sub-Frames 4,9	Bits	75600	56700	
For Sub-Frame 1,6	Bits	67968	50868	
For Sub-Frame 5	Bits	N/A	N/A	
For Sub-Frame 0	Bits	73512	54612	
Max. Throughput averaged over 1 frame	Mbps	30.144	22.182	
UE Category		≥5	≥ 3	

Note 1: Reference signal, synchronization signals and PBC allocated as per TS 36.211 [4].

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.4.2 Multi-antenna transmission (Common Reference Signals)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

Parameter			Uı	nit					Va	lue
Reference channel		R.10 TDD	R.11 TDD	R.11-1 TDD	R.11-2 TDD	R.11-3 TDD Note 6	R.11-4 TDD	R.30 TDD	R.30-1 TDD	R.30-2 TDD
Channel bandwidth	MHz	10	10	10	5	10	10	20	20	20
Allocated resource blocks (Note 5)		50	50	50	25	40	50	100	100	100
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	2+2	3+2	3+2	2	3+2	2+2	2
Modulation		QPSK	16QAM	16QAM	16QAM	16QAM	QPSK	16QAM	16QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit Payload (Note 5)										
For Sub-Frames 4,9	Bits	4392	12960	12960	5736	10296	6968	25456	25456	25456
For Sub-Frames 1,6		3240	9528	9528	5160	9144	N/A	22920	21384	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	4392	12960	N/A	4968	10296	N/A	25456	N/A	N/A
Number of Code Blocks (Notes 4 and 5)										
For Sub-Frames 4,9		1	3	3	1	2	2	5	5	5
For Sub-Frames 1,6		1	2	2	1	2	N/A	4	4	N/A
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	3	N/A	1	2	N/A	5	N/A	N/A
Binary Channel Bits (Note 5)										
For Sub-Frames 4,9	Bits	13200	26400	26400	12000	21120	13200	52800	52800	52800
For Sub-Frames 1,6	_	10656	21312	21312	10512	16992	10656	42912	42912	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12528	25056	N/A	10656	19776	12528	51456	N/A	N/A
Max. Throughput averaged over 1 frame (Note 5)	Mbps	1.966	5.794	4.498	2.676	4.918	1.39	12.221	9.368	5.091
UE Category		≥ 1	≥ 2	≥2	≥1	≥ 1	≥ 1	≥ 2	≥ 2	3

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (other

Note 5: Given per component carrier per codeword.

Note 6: For R.11-3 resource blocks of RB6-RB45 are allocated.

Table A.3.4.2.1-2: Fixed Reference Channel two antenna ports

Parameter	Unit				Va	lue			
Reference channel		R.46 TDD	R.47 TDD	R.35-2	R.11-5	R.11-6	R.11-7	R.11-8	R.11-
				TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	10	1.4	3	5	10	15
Allocated resource		50	50	50	6	15	25	50	75
blocks (Note 5)									
Uplink-Downlink		1	1	1	1	1	1	1	1
Configuration (Note									
3)									
Allocated subframes		3+2	3+2	2+2	2+2	2+2	2+2	2+2	2+2
per Radio Frame									
(D+S)									
Modulation		QPSK	16QAM	64QAM	16QAM	16QAM	16QAM	16QAM	16QA
Target Coding Rate				0.47	1/2	1/2	1/2	1/2	1/2
Information Bit									
Payload (Note 5)									
For Sub-Frames 4,9	Bits	5160	8760	18336	1352	3368	5736	12960	1908
For Sub-Frames 1,6		3880	7480	14688	1128	3112	5160	10680	1584
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	5160	8760	N/A	N/A	N/A	N/A	N/A	N/A
Number of Code									
Blocks									
(Notes 4 and 5)								_	
For Sub-Frames 4,9		1	2	3	1	1	1	3	3
For Sub-Frames 1,6		1	2	3	1	1	1	2	3
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	N/A	N/A	N/A	N/A	N/A	N/A
Binary Channel Bits									
(Note 5)									
For Sub-Frames 4,9	Bits	13200	26400	39600	2592	7200	12000	26400	3960
For Sub-Frames 1,6		10656	21312	31968	2304	6192	10512	21312	3211
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12528	25056	N/A	N/A	N/A	N/A	N/A	N/A
Max. Throughput	Mbps	2.324	4.124	6.604	0.496	1.296	2.179	4.498	6.984
averaged over 1									
frame (Note 5)		ļ							_
UE Category		≥ 1	≥ 1	≥ 2	≥ 1	≥ 1	≥ 1	≥ 2	≥ 2

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCC

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: Given per component carrier per codeword

Table A.3.4.2.1-3: Fixed Reference Channel two antenna ports

Parameter	Unit	Va	lue
Reference channel		R.xx TDD	R.yy TDD
Channel bandwidth	MHz	10	10
Allocated resource blocks (Note 4)		3	1
Uplink-Downlink Configuration (Note 3)		1	1
Allocated subframes per Radio Frame		4+2	4+2
(D+S)			
Modulation		16QAM	64QAM
Target Coding Rate		1/2	1/2
Information Bit Payload			
For Sub-Frames 0,4,5,9	Bits	744	408
For Sub-Frames 1,6	Bits	440	280
Number of Code Blocks			
For Sub-Frames 0,4,5,9	Code	1	1
	blocks		
For Sub-Frames 1,6	Clode	1	1
	blocls		
Binary Channel Bits			
For Sub-Frames 0,4,5,9	Bits	1584	792
For Sub-Frames 1,6		1296	648
Max. Throughput averaged over 1 frame	Mbps	0.3856	0.2192
UE Category		0	0

Note 1:

2 symbols allocated to PDCCH.
Reference signal, synchronization signals and PBCH allocated as per Note 2: TS 36.211 [4].

Note 3:

As per Table 4.2-2 in TS 36.211 [4]. Allocated PRB positions start from {10, 11, ..., 10+N-1}, where N is the Note 4: number of allocated resource blocks.

Table A.3.4.2.1-4: Fixed Reference Channel two antenna ports

Parameter	Unit	Va	lue				
Reference channel		R.aa TDD					
Channel bandwidth	MHz	20					
Allocated resource blocks (Note 5)		100					
Uplink-Downlink Configuration (Note 3)		1					
Allocated subframes per Radio Frame		2+2					
(D+S)							
Modulation		256QAM					
Target Coding Rate		0.6					
Information Bit Payload (Note 5)							
For Sub-Frames 4,9	Bits	63776					
For Sub-Frames 1,6		43816					
For Sub-Frame 5	Bits	N/A					
For Sub-Frame 0	Bits	N/A					
Number of Code Blocks							
(Notes 4 and 5)							
For Sub-Frames 4,9		11					
For Sub-Frames 1,6		8					
For Sub-Frame 5		N/A					
For Sub-Frame 0		N/A					
Binary Channel Bits (Note 5)							
For Sub-Frames 4,9	Bits	105600					
For Sub-Frames 1,6		85824					
For Sub-Frame 5	Bits	N/A					
For Sub-Frame 0	Bits	N/A					
Max. Throughput averaged over 1 frame	Mbps	21,518					
(Note 5)							
UE Category		11-15					
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. For 256QAM reference channel 1 symbol is allocated.							
Note 2: Reference signal, synchronization TS 36.211 [4].		PBCH allocat	ted as per				
Note 3: As per Table 4.2-2 in TS 36.211 [4							
Note 4: If more than one Code Block is pre L = 24 Bits is attached to each Cod	de Block (ot						
Note 5: Given per component carrier per co	odeword						

Table A.3.4.2.1-5: Fixed Reference Channel two antenna ports when *EIMTA-MainConfigServCell-r12* is configured

Parameter	Unit				Value			
Reference channel		[R.XX TDD eIMTA]						
Channel bandwidth	MHz	10						
Allocated resource blocks (Note 5)					50			
Modulation					16QAM			
Target Coding Rate					0.4			
Dynamic Uplink-Downlink Configuration (Note 3)		0	1	2	3	4	5	6
Allocated subframes per Radio Frame (D+S)		1+2	3+2	5+2	5+1	6+1	7+1	2+2
Information Bit Payload (Note 5)								
For Sub-Frame 0	Bits	9912	9912	9912	9912	9912	9912	9912
For Sub-Frame 1	Bits	7480	7480	7480	7480	7480	7480	7480
For Sub-Frame 2	Bits	NA	NA	NA	NA	NA	NA	NA
For Sub-Frame 3	Bits	NA	NA	9912	NA	NA	9912	NA
For Sub-Frame 4	Bits	NA	9912	9912	NA	9912	9912	NA
For Sub-Frame 5	Bits	NA	NA	NA	NA	NA	NA	NA
For Sub-Frame 6	Bits	7480	7480	7480	9912	9912	9912	7480
For Sub-Frame 7	Bits	NA	NA	NA	9912	9912	9912	NA
For Sub-Frame 8	Bits	NA	NA	9912	9912	9912	9912	NA
For Sub-Frame 9	Bits	NA	9912	9912	9912	9912	9912	9912
Number of Code Blocks (Notes 4 and 5)								

For Sub-Frame 0		2	2	2	2	2	2	2
For Sub-Frame 1		2	2	2	2	2	2	2
For Sub-Frame 2		NA						
For Sub-Frame 3		NA	NA	2	NA	NA	2	NA
For Sub-Frame 4		NA	2	2	NA	2	2	NA
For Sub-Frame 5		NA						
For Sub-Frame 6		2	2	2	2	2	2	2
For Sub-Frame 7		NA	NA	NA	2	2	2	NA
For Sub-Frame 8		NA	NA	2	2	2	2	NA
For Sub-Frame 9		NA	2	2	2	2	2	2
Binary Channel Bits (Note 5)								
For Sub-Frame 0	Bits	25056	25056	25056	25056	25056	25056	25056
For Sub-Frame 1	Bits	21312	21312	21312	21312	21312	21312	21312
For Sub-Frame 2	Bits	NA	NA	NA	NA	NA	NA	NA
For Sub-Frame 3	Bits	NA	NA	26400	NA	NA	26400	NA
For Sub-Frame 4	Bits	NA	26400	26400	NA	26400	26400	NA
For Sub-Frame 5	Bits	NA	NA	NA	NA	NA	NA	NA
For Sub-Frame 6	Bits	21312	21312	21312	26112	26112	26112	21312
For Sub-Frame 7	Bits	NA	NA	NA	26400	26400	26400	NA
For Sub-Frame 8	Bits	NA	NA	26400	26400	26400	26400	NA
For Sub-Frame 9	Bits	NA	26400	26400	26400	26400	26400	26400
Max. Throughput averaged over 1 frame (Note 5)	Mbps	2.49	4.47	6.45	5.70	6.70	7.69	3.48
Max. Throughput averaged over 1 frame and Mbps 5.28					•			
over all dynamic UL-DL configurations (Note 5)		5.20						
UE Category		≥1						

2 OFDM symbols are allocated to PDCCH in all subframes Note 1:

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3:

As per Table 4.2-2 in TS 36.211 [4].

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Note 4: Block (otherwise L = 0 Bit).

Note 5: Given per component carrier per codeword.

A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit						1	/alue					
Reference channel		R.12	R.13	R.14	R.14-	R.14-	R.43	R.36	R.43-	R.43-	R.43-	R.43-	R.43-
		TDD	TDD	TDD	1 TDD	2 TDD	TDD	TDD	1 TDD	2 TDD	3 TDD	4 TDD	5 TDD
Channel bandwidth	MHz	1.4	10	10	10	10	20	10	1.4	3	5	10	15
Allocated resource		6	50	50	6	3	100	50	6	15	25	50	75
blocks (Note 6)													
Uplink-Downlink		1	1	1	1	1	1	1	1	1	1	1	1
Configuration (Note													
4)													
Allocated subframes		3	3+2	2+2	2	2	2+2	2+2	2	2+2	2+2	2+2	2+2
per Radio Frame													
(D+S)													
Modulation		QPS	QPS	16Q	16QA	16QA	16Q	64Q	16QA	16QA	16QA	16QA	16QA
		K	K	AM	M	M	AM	AM	М	M	M	M	М
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit													
Payload (Note 6)													
For Sub-Frames 4,9	Bits	408	4392	1296	1544	744	2545	1833	1192	3368	5736	12960	19080
				0			6	6					
For Sub-Frames 1,6	Bits	N/A	3240	9528	N/A	N/A	2138	1584	N/A	2856	5160	10680	15840
							4	0					
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	208	4392	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Number of Code													
Blocks													
(Notes 5 and 6)													
For Sub-Frames 4,9		1	1	3	1	1	5	3	1	1	1	3	4
For Sub-Frames 1,6		N/A	1	2	N/A	N/A	4	3	N/A	1	1	2	3
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Binary Channel Bits													
(Note 6)													
For Sub-Frames 4,9	Bits	1248	1280	2560	3072	1536	5120	3840	2496	6960	11600	25600	38400
•			0	0			0	0					
For Sub-Frames 1,6		N/A	1025	2051	N/A	N/A	4131	3076	N/A	5952	10112	20512	30912
,,,			6	2			2	8					
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	624	1217	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		_	6						•	-			
Max. Throughput	Mbp	0.10	1.96	4.49	0.309	0.149	9.36	6.83	0.238	1.245	2.179	4.728	6.984
averaged over 1	S	2	6	8			8	5				5	
frame (Note 6)		_		Ĭ									
UE Category		≥ 1	≥ 1	≥ 2	≥ 1	≥ 1	≥ 2	≥ 2	≥ 1	≥ 1	≥ 1	≥ 2	≥ 2
Note 1: O average also						- I							

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.

Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 4: As per Table 4.2-2 in TS 36.211 [4].

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Given per component carrier per codeword.

A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols

A.3.4.3.1 Single antenna port (Cell Specific)

The reference measurement channels in Table A.3.4.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with one cell-specific antenna port.

Table A.3.4.3.1-1: Fixed Reference Channel for DRS

Parameter	Unit			Val	ue		
Reference channel		R.25	R.26	R.26-1	R.27	R.27-1	R.28
		TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	5	10	10	10
Allocated resource blocks		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	1
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2	3+2	3+2	3+2
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2
Information Bit Payload							
For Sub-Frames 4,9	Bits	4392	12960	5736	28336	10296	224
For Sub-Frames 1,6	Bits	3240	9528	4584	22920	8248	176
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	2984	9528	3880	22152	10296	224
Number of Code Blocks per Sub-Frame (Note 5)							
For Sub-Frames 4,9		1	3	1	5	2	1
For Sub-Frames 1,6		1	2	1	4	2	1
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	4	2	1
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	12600	25200	11400	37800	13608	504
For Sub-Frames 1,6	Bits	10356	20712	10212	31068	11340	420
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	10332	20664	7752	30996	13608	504
Max. Throughput averaged over 1 frame	Mbps	1.825	5.450	2.452	12.466	4.738	0.102
UE Category		≥ 1	≥ 2	≥ 1	≥ 2	≥ 1	≥ 1

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: as per Table 4.2-2 in TS 36.211 [4].
- Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.26-1, 25 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0.
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 6: Localized allocation started from RB #0 is applied.

A.3.4.3.2 Two antenna ports (Cell Specific)

The reference measurement channels in Table A.3.4.3.2-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports.

Table A.3.4.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS

Reference channel		R.31	R.32	R.32-1	R.33	R.33-1	R.34	
		TDD	TDD	TDD	TDD	TDD	TDD	
Channel bandwidth	MHz	10	10	5	10	10	10	
Allocated resource		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	50 ⁴	
blocks			_					
Uplink-Downlink		1	1	1	1	1	1	
Configuration (Note 3)								
Allocated subframes		3+2	3+2	3+2	3+2	3+2	3+2	
per Radio Frame (D+S)								
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	64QAM	
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2	
Information Bit Payload								
For Sub-Frames 4,9	Bits	3624	11448	5736	27376	9528	18336	
For Sub-Frames 1,6		2664	7736	3112	16992	7480	11832	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	2984	9528	3496	22152	9528	14688	
Number of Code Blocks								
per Sub-Frame								
(Note 5)								
For Sub-Frames 4,9		1	2	1	5	2	3	
For Sub-Frames 1,6		1	2	1	3	2	2	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		1	2	1	4	2	3	
Binary Channel Bits Per								
Sub-Frame								
For Sub-Frames 4,9	Bits	12000	24000	10800	36000	12960	36000	
For Sub-Frames 1,6		7872	15744	6528	23616	10368	23616	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	9840	19680	7344	29520	12960	29520	
Max. Throughput	Mbps	1.556	4.79	2.119	11.089	4.354	7.502	
averaged over 1 frame								
UE Category		≥ 1	≥2	≥ 1	≥2	≥ 1	≥ 2	
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols								
allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.								
For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].								
			gnals and	PBCH allo	cated as pe	er TS 36.211	l [4].	
Note 3: as per Table 4.	.2-2 in TS 3	36.211 [4].						

For R.31, R.32, R.33and R.34, 50 resource blocks are allocated in sub-frames 4,9 and 41 Note 4: resource blocks (RB0-RB20 and RB30-RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6. For R.32-1, 25 resouce blocks are allocated in sub-frames 4,9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1, 6.

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is Note 5: attached to each Code Block (otherwise L = 0 Bit).

Localized allocation started from RB #0 is applied.

A.3.4.3.3 Two antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.3-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

Table A.3.4.3.3-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

	Parameter	Unit	Value					
Reference	e channel		R.51 TDD					
	bandwidth	MHz	10					
Allocated	resource blocks		50 (Note 5)					
Uplink-Do	ownlink Configuration (Note 3)		1					
Allocated	subframes per Radio Frame		3+2					
(D+S)	•							
Modulation	on		16QAM					
Target Co	oding Rate		1/2					
	on Bit Payload							
For Sub	-Frames 4,9 (non CSI-RS	Bits	11448					
subframe	2)							
For Sub	Frame 4,9	Bits	11448					
	-Frames 1,6	Bits	7736					
	-Frame 5	Bits	N/A					
	-Frame 0	Bits	9528					
	of Code Blocks							
(Note 4)								
For Sub	-Frames 4, 9 (non CSI-RS	Code	2					
subframe	2)	blocks						
For Sub	-Frames 4,9	Code	2					
		blocks						
For Sub	-Frames 1,6	Code	2					
		blocks						
For Sub	-Frame 5		N/A					
For Sub	-Frame 0	Code	2					
		blocks						
	nannel Bits							
	-Frames 4, 9 (non CSI-RS	Bits	24000					
subframe								
	-Frames 4,9		22800					
	-Frames 1,6		15744					
	-Frame 5	Bits	N/A					
	-Frame 0	Bits	19680					
Max. Thr	oughput averaged over 1	Mbps	4.7896					
frame								
UE Cate			≥ 2					
Note 1:	2 symbols allocated to PDCCH							
Note 2:	Reference signal, synchronizat		s and PBCH					
	allocated as per TS 36.211 [4].							
	Note 3: as per Table 4.2-2 in TS 36.211 [4].							
Note 4: If more than one Code Block is present, an additional								
CRC sequence of L = 24 Bits is attached to each Code								
Note 5	Block (otherwise L = 0 Bit).							
Note 5:	Note 5: 50 resource blocks are allocated in sub-frames 4,9 and							
	41 resource blocks (RB0–RB2)	o and KB3	ou-KB49) are					
	allocated in sub-frame 0 and th	ie DWP IS	ροπιοή οτ					
	sub-frames 1,6.							

The reference measurement channels in Table A3.4.3.3-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

Table A.3.4.3.3-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

Parameter	Unit		Value	
Reference channel		R.52 TDD	R.53 TDD	R.54 TDD
Channel bandwidth	MHz	10	10	10
Allocated resource blocks		50 (Note 5)	50 (Note 5)	50 (Note 5)
Uplink-Downlink Configuration (Note 3)		1	1	1
Allocated subframes per Radio Frame		3+2	3+2	3+2
(D+S)				
Modulation		64QAM	64QAM	16QAM
Target Coding Rate		1/2	1/2	1/2
Information Bit Payload				
For Sub-Frame 4,9	Bits	16416	16416	11448
For Sub-Frames 1,6	Bits	11832	11832	7736
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	14688	14688	9528
Number of Code Blocks				
(Note 4)				
For Sub-Frames 4,9	Code	3	3	2
	blocks			
For Sub-Frames 1,6	Code	2	2	2
	blocks			
For Sub-Frame 5		n/a	n/a	n/a
For Sub-Frame 0	Code	3	3	2
	blocks			
Binary Channel Bits				
For Sub-Frames 4,9		34200	33600	22800
For Sub-Frames 1,6		23616	23616	15744
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	29520	29520	19680
Max. Throughput averaged over 1	Mbps	7.1184	7.1184	4.7896
frame				
UE Category		≥ 2	≥ 2	≥ 2

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: 50 resource blocks are allocated in sub-frames 4, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1, 6.

A.3.4.3.4 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.4-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Table A.3.4.3.4-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit		Value	
Reference channel		R.44 TDD	R.48 TDD	R.bb TDD
Channel bandwidth	MHz	10	10	20
Allocated resource blocks		50 (Note 4)	50 (Note 4)	100
Uplink-Downlink Configuration (Note 3)		1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2
Modulation		64QAM	QPSK	256QAM
Target Coding Rate		1/2		
Information Bit Payload				
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	18336	N/A	N/A
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	16416	6200	71112
For Sub-Frames 1,6		11832	4264	51024
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0	Bits	14688	4968	66592
Number of Code Blocks per Sub- Frame (Note 5)				
For Sub-Frames 4,9 (non CSI-RS subframe)		3	2	12
For Sub-Frames 4,9 (CSI-RS subframe)		3	2	12
For Sub-Frames 1,6		2	1	N/A
For Sub-Frame 5		N/A	N/A	N/A
For Sub-Frame 0		3	1	N/A
Binary Channel Bits Per Sub- Frame				
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	36000	12000	96000
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	33600	11600	89600
For Sub-Frames 1,6		23616	7872	69888
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0	Bits	29520	9840	87360
Max. Throughput averaged over 1 frame	Mbps	7.1184	2.5896	31.086
UE Category		≥ 2	≥ 1	11-15

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.4.3.4-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.

Table A.3.4.3.4-2: Fixed Reference Channel for four antenna ports (CSI-RS)

Parameter	Unit	Value			
Reference channel		R.60	R.61	R.61-1	
		TDD	TDD	TDD	
Channel bandwidth	MHz	10	10	10	
Allocated resource blocks		50 ⁴	50⁴	39 ⁵	
Uplink-Downlink Configuration (Note 3)		1	1	1	
Allocated subframes per Radio Frame		4+2	4+2	4+2	
(D+S)					
Allocated subframes per Radio Frame		10	10	10	
Modulation		QPSK	16QAM	16QAM	
Target Coding Rate		1/2	1/2	1/2	
Information Bit Payload					
For Sub-Frames 4 and 9	Bits	N/A	N/A	N/A	
(Non CSI-RS subframe)					
For Sub-Frames 4 and 9	Bits	6200	11448	8760	
(CSI-RS subframe)					
For Sub-Frames 1,6	Bits	N/A	7736	7480	
For Sub-Frame 5	Bits	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9528	8760	
Number of Code Blocks per Sub-Frame					
(Note 6)					
For Sub-Frames 4 and 9		N/A	N/A	N/A	
(Non CSI-RS subframe)					
For Sub-Frames 4 and 9		2	2	2	
(CSI-RS subframe)			_	_	
For Sub-Frames 1,6		N/A	2	2	
For Sub-Frame 5		N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	2	
Binary Channel Bits Per Sub-Frame		21/2			
For Sub-Frames 4 and 9	Bits	N/A	N/A	N/A	
(Non CSI-RS subframe)					
For Sub-Frames 4 and 9	Bits	11600	23200	18096	
(CSI-RS subframe)	D.,	N1/A	45744	4.4070	
For Sub-Frames 1,6	Bits	N/A	15744	14976	
For Sub-Frame 5	Bits	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	19680	18720	
Max. Throughput averaged over 1 frame	Mbps	1.24	4.7896	4.1240	
UE Category		≥ 1	≥ 2	≥ 1	

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: As per Table 4.2-2 in TS 36.211 [4].
- Note 4: For R. 60 and R.61, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.
- Note 5: For R. 61-1, 39 resource blocks (RB0–RB20 and RB30–RB47) are allocated in subframe 0, 1, 4, 6 and 9.
- Note 6: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 7: Localized allocation started from RB #0 is applied.

The reference measurement channels in Table A.3.4.3.4-3 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports. Table A.3.4.3.4-3: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

Parameter	Unit	Value
Reference channel		R.zz TDD
Channel bandwidth	MHz	10
Allocated resource blocks (Note 4)		6
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		4+2
Modulation		QPSK
Target Coding Rate		1/3
Information Bit Payload		
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	504
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	504
For Sub-Frames 1,6		256
For Sub-Frames 0,5	Bits	504
Number of Code Blocks per Sub-Frame		
For Sub-Frames 4,9 (non CSI-RS subframe)	Code	1
	blocks	
For Sub-Frames 4,9 (CSI-RS subframe)	Code	1
	blocks	
For Sub-Frames 1,6	Code	1
	blocks	
For Sub-Frames 0,5	Code	1
	blocks	
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9 (non CSI-RS subframe)	Bits	1440
For Sub-Frames 4,9 (CSI-RS subframe)	Bits	1352
For Sub-Frames 1,6		1152
For Sub-Frames 0,5	Bits	1440
Max. Throughput averaged over 1 frame	Mbps	0.2528
UE Category		0

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH

allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: Allocated PRB positions start from {10, 11, ..., 10+N-1},

where N is the number of allocated resource blocks.

A.3.4.3.5 Eight antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.5-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports and eight CSI-RS antenna ports.

Table A.3.4.3.5-1: Fixed Reference Channel for CDM-multiplexed DM RS with eight CSI-RS antenna ports

Parameter	Unit	Value
Reference channel		R.50 TDD
Channel bandwidth	MHz	10
Allocated resource blocks		50 (Note 4)
Uplink-Downlink Configuration (Note		1
3)		
Allocated subframes per Radio		3+2
Frame (D+S)		
Modulation		QPSK
Target Coding Rate		1/3
Information Bit Payload		
For Sub-Frames 4,9 (non CSI-RS	Bits	3624
subframe)		
For Sub-Frames 4,9 (CSI-RS	Bits	3624
subframe)		
For Sub-Frames 1,6		2664
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	2984
Number of Code Blocks per Sub-		
Frame		
(Note 5)		
For Sub-Frames 4,9 (non CSI-RS		1
subframe)		
For Sub-Frames 4,9 (CSI-RS		1
subframe)		
For Sub-Frames 1,6		1
For Sub-Frame 5		N/A
For Sub-Frame 0		1
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9 (non CSI-RS	Bits	12000
subframe)		
For Sub-Frames 4,9 (CSI-RS	Bits	10400
subframe)		
For Sub-Frames 1,6		7872
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	9840
Max. Throughput averaged over 1	Mbps	1.556
frame		
UE Category		≥ 1
Note 1: 2 symbols allocated to PDC	CH.	

Note 1: 2 symbols allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: as per Table 4.2-2 in TS 36.211 [4].

Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-

frames 1,6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to each Code

Block (otherwise L = 0 Bit).

The reference measurement channels in Table A.3.4.3.5-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and eight CSI-RS antenna ports.

Table A.3.4.3.5-2: Fixed Reference Channel for eight antenna ports (CSI-RS)

Parameter	Unit	Val	ue
Reference channel		R.45	R.45-1
		TDD	TDD
Channel bandwidth	MHz	10	10
Allocated resource blocks		50 ⁴	39
Uplink-Downlink Configuration (Note 3)		1	1
Allocated subframes per Radio Frame		4+2	4+2
(D+S)			
Allocated subframes per Radio Frame		10	10
Modulation		16QAM	16QAM
Target Coding Rate		1/2	1/2
Information Bit Payload			
For Sub-Frames 4 and 9	Bits	N/A	N/A
(Non CSI-RS subframe)			
For Sub-Frames 4 and 9	Bits	11448	8760
(CSI-RS subframe)			
For Sub-Frames 1,6	Bits	7736	7480
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	9528	8760
Number of Code Blocks per Sub-Frame			
(Note 5)			
For Sub-Frames 4 and 9		N/A	N/A
(Non CSI-RS subframe)			
For Sub-Frames 4 and 9		2	2
(CSI-RS subframe)			
For Sub-Frames 1,6		2	2
For Sub-Frame 5		N/A	N/A
For Sub-Frame 0		2	2
Binary Channel Bits Per Sub-Frame			
For Sub-Frames 4 and 9	Bits	N/A	N/A
(Non CSI-RS subframe)			
For Sub-Frames 4 and 9	Bits	22400	17472
(CSI-RS subframe)			
For Sub-Frames 1,6	Bits	15744	14976
For Sub-Frame 5	Bits	N/A	N/A
For Sub-Frame 0	Bits	19680	18720
Max. Throughput averaged over 1 frame	Mbps	4.7896	4.1240
UE Category		≥ 2	≥ 1

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: for For R. 45, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to each Code Block (otherwise L=0 Bit).

Note 6: Localized allocation started from RB #0 is applied.

A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

Table A.3.5.1-1: Reference Channel FDD

Parameter	Unit	Value				
Reference channel		R.15 FDD	R.15-1 FDD	R.15-2 FDD	R.16 FDD	R.17 FDD
Number of transmitter antennas		1	2	2	2	4
Channel bandwidth	MHz	10	10	10	10	5
Number of OFDM symbols for PDCCH	symbols	2	3	2	2	2
Aggregation level	CCE	8	8	8	4	2
DCI Format		Format 1	Format 1	Format 1	Format 2	Format 2
Cell ID		0	0	0	0	0
Payload (without CRC)	Bits	31	31	31	43	42

A.3.5.2 TDD

Table A.3.5.2-1: Reference Channel TDD

Parameter	Unit	Value				
Reference channel		R.15 TDD	R.15-1 TDD	R.15-2 TDD	R.16 TDD	R.17 TDD
Number of transmitter antennas		1	2	2	2	4
Channel bandwidth	MHz	10	10	10	10	5
Number of OFDM symbols for PDCCH	symbols	2	3	2	2	2
Aggregation level	CCE	8	8	8	4	2
DCI Format		Format 1	Format 1	Format 1	Format 2	Format 2
Cell ID		0	0	0	0	0
Payload (without CRC)	Bits	34	34	34	46	45

A.3.6 Reference measurement channels for PHICH performance requirements

Table A.3.6-1: Reference Channel FDD/TDD

Parameter	Unit					
Reference channel		R.18	R.19	R.19-1	R.20	R.24
Number of transmitter antennas		1	2	2	4	1
Channel bandwidth	MHz	10	10	5	5	10
User roles (Note 1)		W I1 I2	W I1 I2	W I1 I2	W I1 I2	W I1
Resource allocation (Note 2)		(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1)
Power offsets (Note 3)	dB	-4 0 -3	-40-3	-40-3	-40-3	+3 0
Payload (Note 4)		ARR	ARR	ARR	ARR	AR

Note 1: W=wanted user, I1=interfering user 1, I2=interfering user 2.

Note 2: The resource allocation per user is given as (N_group_PHICH, N_seq_PHICH).

Note 3: The power offsets (per user) represent the difference of the power of BPSK modulated symbol per PHICH relative to the first interfering user.

Note 4: A=fixed ACK, R=random ACK/NACK.

Reference measurement channels for PBCH performance A.3.7 requirements

Table A.3.7-1: Reference Channel FDD/TDD

Parameter	Unit	Value					
Reference channel		R.21	R.22	R.23			
Number of transmitter antennas		1	2	4			
Channel bandwidth	MHz	1.4	1.4	1.4			
Modulation		QPSK	QPSK	QPSK			
Target coding rate		40/1920	40/1920	40/1920			
Payload (without CRC)	Bits	24	24	24			

Reference measurement channels for MBMS performance A.3.8 requirements

A.3.8.1 FDD

Table A.3.8.1-1: Fixed Reference Channel QPSK R=1/3

Parameter			Р	МСН			
	Unit	Value					
Reference channel		R.40 FDD			R.37 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Allocated subframes per Radio		6			6		
Frame (Note 1)							
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits	408			3624		
For Sub-Frames 0,4,5,9	Bits	N/A			N/A		
Number of Code Blocks per		1			1		
Subframe (Note 3)							
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits	1224			10200		
For Sub-Frames 0,4,5,9	Bits	N/A			N/A		
MBMS UE Category		≥ 1			≥ 1		

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS

2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS Note 2:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is Note 3:

Table A.3.8.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter				PMC	CH		
	Unit	Value					
Reference channel					R.38 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Allocated subframes per Radio Frame (Note 1)					6		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits				9912		
For Sub-Frames 0,4,5,9	Bits				N/A		
Number of Code Blocks per Subframe (Note 3)					2		
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits				20400		
For Sub-Frames 0,4,5,9	Bits				N/A		
MBMS UE Category					≥ 1		

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.1-3: Fixed Reference Channel 64QAM R=2/3

Parameter				PMCH					
	Unit		Value						
Reference channel				R.39-1 FDD	R.39 FDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks				25	50				
Allocated subframes per Radio Frame(Note1)				6	6				
Modulation				64QAM	64QAM				
Target Coding Rate				2/3	2/3				
Information Bit Payload (Note 2)						•	•		
For Sub-Frames 1,2,3,6,7,8	Bits			9912	19848				
For Sub-Frames 0,4,5,9	Bits			N/A	N/A				
Number of Code Blocks per Sub-Frame (Note 3)				2	4				
Binary Channel Bits Per Subframe							,		
For Sub-Frames 1,2,3,6,7,8	Bits			15300	30600				
For Sub-Frames 0,4,5,9	Bits			N/A	N/A				
MBMS UE Category				≥ 1	≥ 2				

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.8.2 TDD

Table A.3.8.2-1: Fixed Reference Channel QPSK R=1/3

Parameter				РМСН				
	Unit	Value						
Reference channel		R.40 TDD			R.37 TDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6			50			
Uplink-Downlink Configuration(Note 1)		5			5			
Allocated subframes per Radio Frame		5			5			
Modulation		QPSK			QPSK			
Target Coding Rate		1/3			1/3			
Information Bit Payload (Note 2)								
For Sub-Frames 3,4,7,8,9	Bits	408			3624			
For Sub-Frames 0,1,2,5,6	Bits	N/A			N/A			
Number of Code Blocks per Subframe		1			1			
(Note 3)								
Binary Channel Bits Per Subframe								
For Sub-Frames 3,4,7,8,9	Bits	1224			10200			
For Sub-Frames 0,1,2,5,6	Bits	N/A			N/A			
MBMS UE Category		≥ 1			≥ 1			

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.2-2: Fixed Reference Channel 16QAM R=1/2

Parameter				PMC	CH		
	Unit	Value					
Reference channel					R.38 TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Uplink-Downlink Configuration(Note 1)					5		
Allocated subframes per Radio Frame					5		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload (Note 2)							
For Sub-Frames 3,4,7,8,9	Bits				9912		
For Sub-Frames 0,1,2,5,6	Bits				N/A		
Number of Code Blocks per Subframe (Note 3)					2		
Binary Channel Bits Per Subframe							
For Sub-Frames 3,4,7,8,9	Bits				20400		
For Sub-Frames 0,1,2,5,6	Bits				N/A		
MBMS UE Category					≥ 1		

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211. Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is

attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.2-3: Fixed Reference Channel 64QAM R=2/3

Parameter				PMCH				
	Unit	Value						
Reference channel				R.39-1TDD	R.39 TDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks				25	50			
Uplink-Downlink Configuration(Note 1)				5	5			
Allocated subframes per Radio Frame				5	5			
Modulation				64QAM	64QAM			
Target Coding Rate				2/3	2/3			
Information Bit Payload (Note 2)				•				
For Sub-Frames 3,4,7,8,9	Bits			9912	19848			
For Sub-Frames 0,1,2,5,6	Bits			N/A	N/A			
Number of Code Blocks per Sub-Frame (Note 3)				2	4			
Binary Channel Bits Per Subframe								
For Sub-Frames 3,4,7,8,9	Bits			15300	30600			
For Sub-Frames 0,1,2,5,6	Bits			N/A	N/A			
MBMS UE Category				≥ 1	≥ 2			

For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 Note 1: subframes (#3/4/7/8/9) are available for MBMS. 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 2:

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers

A.3.9.1 FDD

Table A.3.9.1-1: Fixed Reference Channel for sustained data-rate test (FDD)

Parameter	Unit	Value								
Reference channel		R.31-1	R.31-2	R.31-3	R.31-	R.31-3C	R.31-4	R.31-4B	R.31-5	
		FDD	FDD	FDD	3A FDD	FDD	FDD	FDD	FDD	
Channel bandwidth	MHz	10	10	20	10	15	20	15	15	
Allocated resource blocks (Note 8)		Note 5	Note 6	Note 7	Note 6	Note 10	Note 7	Note 11	Note 9	
Allocated subframes per Radio Frame		10	10	10	10	10	10	10	10	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Coding Rate										
For Sub-Frame 1,2,3,4,6,7,8,9,		0.40	0.59	0.59	0.85	0.87	0.88	0.85	0.85	
For Sub-Frame 5		0.40	0.64	0.62	0.89	0.88	0.87	0.87	0.91	
For Sub-Frame 0		0.40	0.63	0.61	0.90	0.91	0.90	0.88	0.88	
Information Bit Payload (Note 8)										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	51024	75376	55056	55056	
For Sub-Frame 5	Bits	10296	25456	51024	35160	51024	71112	52752	52752	
For Sub-Frame 0	Bits	10296	25456	51024	36696	51024	75376	55056	55056	
Number of Code Blocks										
(Notes 3 and 8)										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	9	13	9	9	
For Sub-Frame 5	Bits	2	5	9	6	9	12	9	9	
For Sub-Frame 0	Bits	2	5	9	6	9	13	9	9	
Binary Channel Bits (Note 8)										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	26100	43200	86400	43200	58752	86400	64800	64800	
For Sub-Frame 5	Bits	26100	39744	82080	39744	57888	82080	60480	60480	
For Sub-Frame 0	Bits	26100	40752	83952	40752	56304	83952	62352	62352	
Number of layers		1	2	2	2	2	2	2	2	
Max. Throughput averaged over 1 frame (Note 8)	Mbps	10.296	25.456	51.024	36.542	51.024	74.950	54.826	54.826	
UE Categories		≥ 1	≥2	≥2	≥ 2	≥3	≥ 3	≥ 4	≥ 3	

- Note 1: 1 symbol allocated to PDCCH for all tests.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 4: Resource blocks $n_{PRB} = 0..2$ are allocated for SIB transmissions in sub-frame 5 for all bandwidths.
- Note 5: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all sub-frames.
- Note 6: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 7: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 8: Given per component carrier per codeword.
- Note 9: Resource blocks nPRB = 4..74 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..74 in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 10: Resource blocks $n_{PRB} = 4..71$ are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.
- Note 11: Resource blocks $n_{PRB} = 4..74$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..74$ in sub-frames 0.1,2,3,4,6,7,8,9.

Table A.3.9.1-2: Fixed Reference Channel for sustained data-rate test (FDD)

Parameter	Unit	t Value							
Reference channel		R.31-6							
		FDD							
Channel bandwidth	MHz	5							
Allocated resource blocks (Note 8)		Note 4							
Allocated subframes per Radio Frame		10							
Modulation		64QAM							
Coding Rate									
For Sub-Frame 1,2,3,4,6,7,8,9,		0.85							
For Sub-Frame 5		0.83							
For Sub-Frame 0		0.83							
Information Bit Payload (Note 8)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	18336							
For Sub-Frame 5	Bits	15840							
For Sub-Frame 0	Bits	15840							
Number of Code Blocks									
(Notes 3 and 8)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	3							
For Sub-Frame 5	Bits	3							
For Sub-Frame 0	Bits	3							
Binary Channel Bits (Note 8)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	21600							
For Sub-Frame 5	Bits	19008							
For Sub-Frame 0	Bits	19152							
Number of layers		2							
Max. Throughput averaged over 1 frame (Note 8)	Mbps	17.837							
UE Categories		≥ 2							

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Resource blocks $n_{PRB} = 2..24$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..24$ in sub-frames 0,1,2,3,4,6,7,8,9.

A.3.9.2 TDD

Table A.3.9.2-1: Fixed Reference Channel for sustained data-rate test (TDD)

Parameter	Unit				Value			
Reference channel		R.31-1	R.31-2	R.31-3	R.31-3A	R.31-4	R.31-5	R.31-6
		TDD	TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	20	15	20	15	10
Allocated resource blocks		Note 6	Note 7	Note 8	Note 9	Note 8	Note 11	Note 7
Uplink-Downlink Configuration (Note 3)		5	5	5	1	1	1	1
Number of HARQ Processes per	Proces	15	15	15	7	7	7	15
component carrier	ses							
Allocated subframes per Radio Frame		8+1	8+1	8+1	4	4	4	4
(D+S)								
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate								
For Sub-Frames 4,9		0.40	0.59	0.59	0.87	0.88	0.85	0.85
For Sub-Frames 3,7,8		0.40	0.59	0.59	N/A	N/A	N/A	N/A
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.40	0.64	0.62	0.88	0.87	0.87	0.88
For Sub-Frames 6		0.40	0.60	0.60	N/A	N/A	N/A	N/A
For Sub-Frames 0		0.40	0.62	0.61	0.90	0.90	0.88	0.90
Information Bit Payload								
For Sub-Frames 4,9	Bits	10296	25456	51024	51024	75376	55056	36696
For Sub-Frames 3,7,8	Bits	10296	25456	51024	0	0	0	0
For Sub-Frame 1	Bits	0	0	0	0	0	0	0
For Sub-Frame 5	Bits	10296	25456	51024	51024	71112	52752	35160
For Sub-Frame 6	Bits	10296	25456	51024	0	0	0	0
For Sub-Frame 0	Bits	10296	25456	51024	51024	75376	55056	36696
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		2	5	9	9	13	9	6
For Sub-Frames 3,7,8		2	5	9	N/A	N/A	N/A	N/A
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 5		2	5	9	9	12	9	6
For Sub-Frame 6	Bits	2	5	9	n/a	N/A	N/A	N/A
For Sub-Frame 0		2	5	9	9	13	9	6
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	26100	43200	86400	58752	86400	64800	43200
For Sub-Frames 3,7,8	Bits	26100	43200	86400	0	0	0	0
For Sub-Frame 1	Bits	0	0	0	0	0	0	0
For Sub-Frame 5	Bits	26100	40176	82512	58320	82512	60912	40176
For Sub-Frame 6	Bits	26100	42768	85968	N/A	N/A	N/A	0
For Sub-Frame 0	Bits	26100	41184	84384	56736	84384	62784	41184
Number of layers		1	2	2	2	2	2	2
Max. Throughput averaged over 1 frame	Mbps	8.237	20.365	40.819	20.409	29.724	25.330	14.525
(Note 10)								
UE Category		≥ 1	≥ 2	≥ 2	≥ 2	≥ 3	≥ 3	≥2
Note 1: 1 symbol allocated to PDCCH for	r all tacte							

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 6: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all subframes.

Note 7: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in the available downlink sub-frames according to uplink downlink configurations used .

Note 8: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,3,4,6,7,8,9.

Note 9: Resource blocks $n_{PRB} = 4..71$ are allocated for the user data in all sub-frames

Note10: Given per component carrier per codeword.

Note11: Resource blocks $n_{PRB} = 4..74$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..74$ in other downlink sub-frames.

A.3.9.3 FDD (EPDCCH scheduling)

Table A.3.9.3-1: Fixed Reference Channel for sustained data-rate test with EPDCCH scheduling (FDD)

Parameter	Unit				Value			
Reference channel		R.31E-	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-
		1 FDD	2 FDD	3 FDD	3A FDD	3C FDD	4 FDD	4B FDD
Channel bandwidth	MHz	10	10	20	10	15	20	15
Allocated resource blocks (Note 8)		Note 5	Note 6	Note 7	Note 6	Note 9	Note 7	Note 10
Allocated subframes per Radio		10	10	10	10	10	10	10
Frame								
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Coding Rate								
(subframes with PDCCH USS								
monitoring)								
For Sub-Frame 1,2,3,4,6,7,8,9,		0.3972	0.5926	0.5933	0.8533	0.8725	0.8763	0.8533
For Sub-Frame 5		0.3972	0.6441	0.6246	0.8889	0.8855	0.8702	0.8762
For Sub-Frame 0		0.3972	0.6282	0.6106	0.9046	0.9105	0.9018	0.8868
Coding Rate								
(subframes with EPDCCH USS								
monitoring)								
For Sub-Frame 1,2,3,4,6,7,8,9,		0.4114	0.6047	0.5993	0.8707	0.8855	0.8851	0.8649
For Sub-Frame 5		0.4114	0.6584	0.6312	0.9086	0.8990	0.8794	0.8889
For Sub-Frame 0		0.4114	0.6418	0.6170	0.9242	0.9246	0.9112	0.8993
Information Bit Payload (Note 8)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	51024	75376	55056
For Sub-Frame 5	Bits	10296	25456	51024	35160	51024	71112	52752
For Sub-Frame 0	Bits	10296	25456	51024	36696	51024	75376	55056
Number of Code Blocks								
(Notes 3 and 8)		_						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	9	13	9
For Sub-Frame 5	Bits	2	5	9	6	9	12	9
For Sub-Frame 0	Bits	2	5	9	6	9	13	9
Binary Channel Bits (Note 8)								
(subframes with PDCCH USS								
monitoring)	Dito	26100	43200	86400	43200	58752	86400	64800
For Sub-Frames 1,2,3,4,6,7,8,9	Bits							
For Sub-Frame 5	Bits Bits	26100	39744 40752	82080	39744 40752	57888	82080	60480 62352
For Sub-Frame 0 Binary Channel Bits (Note 8)	Bits	26100	40752	83952	40752	56304	83952	02332
(subframes with EPDCCH USS								
monitoring)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	25200	42336	85536	42336	57888	85536	63936
For Sub-Frame 5	Bits	25200	38880	81216	38880	57024	81216	59616
For Sub-Frame 0	Bits	25200	39888	83088	39888	55440	83088	61488
Number of layers	Dita	1	2	2	2	2	2	2
Max. Throughput averaged over 1	Mbps	10.296	25.456	51.024	36.542	51.024	74.950	54.826
frame (Note 8)	IVIDPS	10.230	20.700	J1.027	JU.J72	31.027	74.300	J4.020
UE Categories		≥ 1	≥ 2	≥ 2	≥ 2	≥ 3	≥ 3	≥ 4
Note 1: 1 symbol allocated to PD	CCH for					_ 5	_ 5	<u>-</u> -

- Note 1: 1 symbol allocated to PDCCH for all tests.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211.
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 4: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.
- Note 5: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all sub-frames.
- Note 6: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 7: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,1,2,3,4,6,7,8,9.
- Note 8: Given per component carrier per codeword.
- Note 9: Resource blocks n_{PRB} = 4..71 are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.
- Note 10: Resource blocks $n_{PRB} = 4..74$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..74$ in sub-frames 0,1,2,3,4,6,7,8,9.

A.3.9.4 TDD (EPDCCH scheduling)

Table A.3.9.4-1: Fixed Reference Channel for sustained data-rate with EPDCCH scheduling (TDD)

Parameter	Unit			Value		
Reference channel		R.31E-1	R.31E-2	R.31E-3	R.31E-3A	R.31E-4
		TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	20	15	20
Allocated resource blocks		Note 6	Note 7	Note 8	Note 9	Note 8
Uplink-Downlink Configuration (Note 3)		5	5	5	1	1
Number of HARQ Processes per	Processes	15	15	15	7	7
component carrier Allocated subframes per Radio		8+1	8+1	8+1	4	4
Frame (D+S)		0+1	0+1	0+1	4	4
Coding Rate						
(subframes with PDCCH USS						
monitoring)						
For Sub-Frames 4,9		0.3972	0.5926	0.5933	0.8725	0.8763
For Sub-Frames 3,7,8		0.3972	0.5926	0.5933	N/A	N/A
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.3972	0.6372	0.6213	0.8790	0.8656
For Sub-Frames 6		0.3972	0.5986	0.5963	N/A	N/A
For Sub-Frames 0		0.3972	0.6216	0.6075	0.9036	0.8972
Coding Rate						
(subframes with EPDCCH USS						
monitoring)						
For Sub-Frames 4,9		0.4114	0.6047	0.5993	0.8856	0.8851
For Sub-Frames 3,7,8		0.4114	0.6047	0.5993	N/A	N/A
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.4114	0.6512	0.6279	0.8922	0.8748
For Sub-Frames 6		0.4114	0.6109	0.6024	N/A	N/A
For Sub-Frames 0		0.4114	0.6349	0.6138	0.9175	0.9065
Information Bit Payload						
For Sub-Frames 4,9	Bits	10296	25456	51024	51024	75376
For Sub-Frames 3,7,8	Bits	10296	25456	51024	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	10296	25456	51024	51024	71112
For Sub-Frame 6	Bits	10296	25456	51024	N/A	N/A
For Sub-Frame 0	Bits	10296	25456	51024	51024	75376
Number of Code Blocks per Sub- Frame (Note 4)						
For Sub-Frames 4,9		2	5	9	9	13
For Sub-Frames 3,7,8		2	5	9	N/A	N/A
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 5		2	5	9	9	12
For Sub-Frame 6	Bits	2	5	9	N/A	N/A
For Sub-Frame 0		2	5	9	9	13
Binary Channel Bits per Sub-Frame (subframes with PDCCH USS monitoring)						
For Sub-Frames 4,9	Bits	26100	43200	86400	58752	86400
For Sub-Frames 3,7,8	Bits	26100	43200	86400	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	26100	40176	82512	58320	82512
For Sub-Frame 6	Bits	26100	42768	85968	N/A	N/A
For Sub-Frame 0	Bits	26100	41184	84384	56736	84384
Binary Channel Bits per Sub-Frame	5.10	20.00		5 100 -1	307.00	5 100 -1
(subframes with EPDCCH USS						
monitoring)						
For Sub-Frames 4,9	Bits	25200	42336	85536	57888	85536
For Sub-Frames 3,7,8	Bits	25200	42336	85536	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	25200	39312	81648	57456	81648
For Sub-Frame 6	Bits	25200	41904	85104	N/A	N/A

For Sub-Frame 0	Bits	25200	40320	83520	55872	83520
Number of layers		1	2	2	2	2
Max. Throughput averaged over 1 frame (Note 10)	Mbps	8.237	20.365	40.819	20.409	29.724
UE Category		≥ 1	≥ 2	≥ 2	≥ 2	≥ 3

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 5: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 6: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all subframes.

Note 7: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0,3,4,6,7,8,9.

Note 8: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,3,4,6,7,8,9.

Note 9: Resource blocks $n_{PRB} = 4..71$ are allocated for the user data in all sub-frames

Note10: Given per component carrier per codeword.

A.3.10 Reference Measurement Channels for EPDCCH performance requirements

A.3.10.1 FDD

Table A.3.10.1-1: Reference Channel FDD

Parameter	Unit	Value					
Reference channel		R.55 FDD	R.56 FDD	R.57 FDD	R.58 FDD	R.59 FDD	
Number of transmitter antennas		2	2	2	2	2	
Channel bandwidth	MHz	10	10	10	10	10	
Number of OFDM symbols for PDCCH	symbols	2	2	1	1	1	
Aggregation level	ECCE	4	16	2	8	2	
DCI Format		2A	2A	2C	2C	2D	

A.3.10.2 TDD

Table A.3.10.2-1: Reference Channel TDD

Parameter	Unit	Value					
Reference channel		R.55 TDD	R.56 TDD	R.57 TDD	R.58 TDD	R.59 TDD	
Number of transmitter antennas		2	2	2	2	2	
Channel bandwidth	MHz	10	10	10	10	10	
Number of OFDM symbols for PDCCH	symbols	2	2	1	1	1	
Aggregation level	CCE	4	16	2	8	2	
DCI Format		2A	2A	2C	2C	2D	

A.4 CSI reference measurement channels

This section defines the DL signal applicable to the reporting of channel status information (Clause 9.2, 9.3 and 9.5).

In Table A.4-1 are specified the reference channels. Table A.4-13 specifies the mapping of CQI index to modulation coding scheme, which complies with the CQI definition specified in Section 7.2.3 of [6].

Table A.4-0: Void

Table A.4-1: CSI reference measurement channels

RMC Name	Duplex	CH-BW	Alloc. RB-s	UL/DL Config	Alloc. SF-s	MCS Scheme	Nr. HARQ Proc.	Max. nr HARQ Trans.	Notes
1 CRS Port									
RC.1 FDD	FDD	10	50	-		MCS.1	8	1	
RC.1 TDD	TDD	10	50	Note 3		MCS.1	10	1	
RC.3 FDD	FDD	10	6	-		MCS.10	8	1	
RC.3 TDD	TDD	10	6	Note 3		MCS.10	10 or 7 (Note 8)	1	
RC.4 FDD	FDD	10	15	-		MCS.15	(Note 8)	1	Note 6
RC.4 TDD	TDD	10	15	Note 3		MCS.15	10	1	Note 6
RC.5 FDD	FDD	10	3	_		MCS.17	8	1	
RC.5 TDD	TDD	10	3	Note 3		MCS.17	10	1	
RC.14 FDD	FDD	5	25	-		MCS.14	8	1	
RC.15 FDD	FDD	5	15	-		MCS.15	8	1	Note 6
RC.16 FDD	FDD	10	2			MCS.20	8	1	Note 8
RC.16 TDD	TDD	10	2	Note 3		MCS.20	10	1	Note 8
2 CRS Ports	S								
RC.2 FDD	FDD	10	50	-		MCS.2	8	1	
RC.2 TDD	TDD	10	50	Note 3		MCS.2	7	1	
RC.6 FDD	FDD	10	15	-		MCS.16	8	1	Note 6
RC.6 TDD	TDD	10	15	Note 3		MCS.16	7	1	Note 6
4 CRS Ports	S								
RC.16 FDD	FDD	10	50	-		MCS.18	8	1	
RC.14 TDD	TDD	10	50	Note 3		MCS.18	7	1	
1 CRS Port	+ CSI-RS								
RC.8 FDD	FDD	10	6	-	Non CSI-RS	MCS.11	8	1	
					2 CSI-RS Non	MCS.12			
RC.8 TDD	TDD	10	6	Note 3	CSI-RS	MCS.11	10	1	
					2 CSI-RS	MCS.12			
RC.9 FDD	FDD	10	50	_	Non CSI-RS	MCS.3	8	1	
		. •			2 CSI-RS	MCS.4	·	·	
RC.9 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.3	7	1	
					2 CSI-RS	MCS.4			
2 CRS Port	+ CSI-RS								
DC 7 FDD	EDD	10	50		Non CSI-RS	MCS.5	0	4	
RC.7 FDD	FDD	10	50	-	4 CSI-RS	MCS.7	8	1	
RC.7 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.5	10	1	
NO.7 TOD	100	10	30	Note 5	8 CSI-RS	MCS.8	10	'	
RC.11 FDD	FDD	10	50		Non CSI-RS	MCS.5	8	1	
וויס.וו דטט	טטיו	10	50	-	2 CSI-RS	MCS.6	O	'	
RC.11 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.5	10	1	
					2 CSI-RS	MCS.6			
RC.17 FDD	FDD	10	6	-	Non CSI-RS	MCS.13	8	1	

					4 CSI-RS	MCS.19			
RC.15 TDD	TDD	10	6	Note 3	Non CSI-RS	MCS.13	7	1	
				4		MCS.19	-		
1 CRS Port	+ CSI-RS	+ CSI-IM							
RC.13 FDD	FDD	10	50	-	Non CSI- RS/IM	MCS.3	8	1	
KC.13 FDD	TOO	10	30		CSI- RS/IM	N/A	0	'	
RC.13 TDD	TDD	10	50	Note 3	Non CSI- RS/IM	MCS.3	10	1	
NO.13 100	100	10	30	Note 3	CSI- RS/IM	N/A	10	'	
2 CRS Port	+ CSI-RS	+ CSI-IM							
					Non CSI-RS	MCS.5			
RC.10 FDD	FDD	10	50	-	4 CSI- RS, 1 CSI	MCS.8	8	1	
					process				
					Non CSI-RS	MCS.5			
RC.10 TDD	TDD	10	50	Note 3	8 CSI- RS, 1 CSI process	MCS.9	10	1	
DO 40 EDD		40			Non CSI- RS/IM	MCS.13		4	
RC.12 FDD	FDD	10	6	-	CSI- RS/IM	N/A	8	1	
RC.12 TDD	TDD	10	6	Note 3	Non CSI- RS/IM	MCS.13	10	1	
RC.12 1DD		-	0	NOIG 3	CSI- RS/IM	N/A	10	1	

Note 1: 3 symbols allocated to PDCCH.

Note 2: For FDD only subframes 1, 2, 3, 4, 6, 7, 8 and 9 are allocated to avoid PBCH and synchronization signal overhead.

Note 3: TDD UL-DL configuration as specified in the individual tests.

Note 4: For TDD when UL-DL configuration 1 is used only subframes 4 and 9 are allocated to avoide PBCH and synchronizaiton signal overhead.

Note 5: For TDD when UL-DL configuration 2 is used only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

Note 6: Centered within the Transmission Bandwidth Configuration (Figure 5.6-1).

Note 7: Only subframes 2, 3, 4, 7, 8 and 9 are allocated to avoid PBCH and synchronization signal overhead.

Note 8: Allocate PDSCH on 5th and 6th PRBs within a subband.

Note 9: The number of HARQ processes is 10 for TDD UL/DL configuration 2 and 7 for TDD UL/DL configuration 1.

Table A.4-1a: Void

Table A.4-1b: Void

Table A.4-1c: Void

Table A.4-1d: Void

Table A.4-1e: Void

Table A.4-2: Void

Table A.4-2a: Void

Table A.4-2b: Void

Table A.4-2c: Void

Table A.4-2d: Void

Table A.4-2e: Void

Table A.4-3: Void

Table A.4-3a: Void

Table A.4-3b: Void

Table A.4-3c: Void

Table A.4-3d: Void

Table A.4-3e: Void

Table A.4-3f: Void

Table A.4-3g: Void

Table A.4-3h: Void

Table A.4-3i: Void

Table A.4-3j: Void

Table A.4-3k: Void

Table A.4-3I: Void

Table A.4-3m: Void

Table A.4-4: Void

Table A.4-4a: Void

Table A.4-4b: Void

Table A.4-5: Void

Table A.4-5a: Void

Table A.4-5b: Void

Table A.4-6: Void

Table A.4-6a: Void

Table A.4-6b: Void

Table A.4-6c: Void

Table A.4-6d: Void

Table A.4-6e: Void

Table A.4-6f: Void

Table A.4-7: Void

Table A.4-8: Void

Table A.4-9: Void

Table A.4-10: Void

Table A.4-11: Void

Table A.4-12: Void

Table A.4-13: Mapping of CQI Index to Modulation coding scheme (MCS)

CQI	Index		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Target C	oding R	tate	OOR	0.0762	0.1172	0.1885	0.3008	0.4385	0.5879	0.3691	0.4785	0.6016	0.4551	0.5537	0.6504	0.7539	0.8525	0.9258	Notes
Mod	ulation		OOR		,	QF	PSK				16QAM				640	QAM			
MCS Scheme	PRB	Available RE-s									Imcs	3							
MCS.1	50	6300	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.2	50	6000	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.3	50	5700	DTX	0	0	2	4	6	8	10	13	15	17	19	21	23	25	26	
MCS.4	50	5600	DTX	0	0	2	4	6	7	10	12	14	17	19	21	23	25	26	
MCS.5	50	5400	DTX	0	0	2	3	5	7	10	12	14	17	19	21	23	24	25	
MCS.6	50	5300	DTX	0	0	1	3	5	7	10	12	14	17	19	21	22	24	25	
MCS.7	50	5200	DTX	0	0	1	3	5	7	10	12	14	17	18	20	22	24	25	
MCS.8	50	5000	DTX	0	0	1	3	5	7	10	12	13	17	18	20	22	23	24	
MCS.9	50	4800	DTX	0	0	1	3	5	7	10	12	13	17	18	20	22	23	24	
MCS.10	6	756	DTX	0	0	2	4	6	8	11	13	16	19	21	23	25	27	27	
MCS.11	6	684	DTX	0	0	2	4	6	8	11	13	14	17	20	21	23	25	27	
MCS.12	6	672	DTX	0	0	1	4	6	8	10	12	14	17	19	21	23	25	26	
MCS.13	6	648	DTX	0	0	1	3	5	7	10	12	14	17	19	21	22	24	25	
MCS.14	25	3150	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.15	15	1890	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.16	15	1800	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.17	3	378	DTX	0	1	2	5	7	9	12	13	16	19	21	23	25	27	27	
MCS.18	50	5800	DTX	0	0	2	4	6	8	11	13	15	17	20	22	23	26	27	
MCS.19	6	624	DTX	0	0	1	3	5	7	10	12	14	17	18	20	22	24	25	
MCS.20	2	252	DTX	0	0	2	4	6	8	11	13	16	19	21	23	23	23	23	

Note 1: Mapping between Imcs and TBS according to Tables 7.1.7.1-1 and 7.1.7.2.1-1 in TS 36.213 [6].

Note 2: 3 symbols allocated to PDCCH.

Note 3: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for potential retransmissions.

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test) and/or allocations used for MBSFN. The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i _RA / OCNG _RA = PDSCH_i _RB / OCNG _RB$$

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a constant transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For the performance requirements of UE with the CA capability, the OCNG patterns apply for each CC.

A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Table A.5.1.1-1: OP.1 FDD: One sided dynamic OCNG FDD Pattern

Relative power level γ_{PRB} [dB] Subframe

0 5 1 - 4, 6 - 9**PDSCH** Data Allocation First unallocated PRB First unallocated PRB First unallocated PRB Last unallocated PRB Last unallocated PRB Last unallocated PRB

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{\it PRB}$ is used to scale the power of PDSCH.
- Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRR} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{_{\it PR}}-1$.

Table A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

F			
	Subframe		
0	5	1 – 4, 6 – 9	
	Allocation		PDSCH Data
0 – (First allocated PRB-1)	0 – (First allocated PRB-1)	0 – (First allocated PRB-1)	i boon bata
and	and	and	
(Last allocated PRB+1) -	(Last allocated PRB+1) –	(Last allocated PRB+1) –	
$(N_{RB}-1)$			
0	0	0	Note 1

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

A11	Re	Relative power level $\gamma_{\it PRB}$ [dB]						
Allocation		Subframe						
$n_{\it PRB}$	0	5	4, 9	1 – 3, 6 – 8	Data	Data		
1 – 49	0	0 (Allocation: all empty PRB-s)	0	N/A	Note 1	N/A		
0 – 49	N/A	N/A	N/A	0	N/A	Note 2		

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter γ_{PRB} is used to scale the power of PMCH.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

A.5.1.4 OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

Table A.5.1.4-1: OP.4 FDD: One sided dynamic OCNG FDD Pattern for MBMS transmission

		Re	lative power	level $\gamma_{\it PRB}$ [dB]			
Allocation $n_{\it PRB}$			Subfi	rame	PDSCH Data	PMCH Data	
PI	RB	0, 4, 9	5	5 1-3,6-8		Dutu	
First unal PR – Last unal PR	B	0	0 (Allocation: all empty PRB-s)	N/A	Note 1	N/A	
First unal PR – Last unal PR	B	N/A	N/A	N/A	N/A	Note 2	
Note 1:				ssigned to an arbitrary numb ransmitted over the OCNG F			
	uncorrel	related pseudo random data, which is QPSK modulated. The parameter $\gamma_{{\scriptscriptstyle PRB}}$ is					
Note 2:	used to scale the power of PDSCH.						

contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter γ_{PRB} is used to scale the power of PMCH.

Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The

the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

A.5.1.5 OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of DL sub-frames, when the unallocated area is continuous in the frequency domain (one sided).

Table A.5.1.5-1: OP.5 FDD: One sided dynamic 16QAM modulated OCNG FDD Pattern

		Relative power level $\gamma_{{\scriptscriptstyle PRB}}$ [di	3]					
Subframe								
	0 5 1-4,6-9							
		Allocation		Data				
First	First unallocated PRB First unallocated PRB First unallocated PRB							
Last	unallocated PRB	Last unallocated PRB	Last unallocated PRB					
	0	0	0	Note 1				
Note 1:			arbitrary number of virtual UEs wit PDSCHs shall be uncorrelated ps					
data, which is 16QAM modulated. The parameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale the power of PDSCH.								
Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large								
	Delay CDD). The pa	arameter $\gamma_{\scriptscriptstyle PRB}$ applies to each a	intenna port separately, so the tra	nsmit power is				

A.5.1.6 OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks

equal between all the transmit antennas with CRS used in the test. The antenna transmission

modes are specified in section 7.1 in 3GPP TS 36.213.

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB $N_{RB}-1$.

Table A.5.1.6-1: OP.6 FDD: OCNG FDD Pattern when user data is in 2 non-contiguous blocks

F	Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]							
0	5	1 – 4, 6 – 9						
	Allocation							
0 – (First allocated PRB of	0 – (First allocated PRB of	0 – (First allocated PRB of	PDSCH Data					
first block -1)	first block -1)	first block -1)						
and	and and and							
(Last allocated PRB of first	(Last allocated PRB of first	(Last allocated PRB of first						
block +1) - (First allocated	block +1) - (First allocated	block +1) – (First allocated						
PRB of second block -1)	PRB of second block -1)	PRB of second block -1)						
0	0	0	Note 1					
Note 1: These physical res	s with one PDSCH per virtual							
UE; the data transi	s shall be uncorrelated pseudo	random data, which is QPSK						
modulated. The pa	rameter $\gamma_{{\scriptscriptstyle PRB}}$ is used to scale t	he power of PDSCH.						

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.7 OCNG FDD pattern 7: dynamic OCNG FDD pattern when user data is in multiple non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in

multiple parts by the M allocated blocks for data transmission). The m-th allocated block starts with RPB $N_{Start,m}$ and ends with PRB $N_{End,m}-1$, where $m=1,\ldots,M$. The system bandwidth starts with RPB 0 and ends with $N_{RR}-1$.

Table A.5.1.7-1: OP.7 FDD: OCNG FDD Pattern when user data is in multiple non-contiguous blocks

F	Relative power level $\gamma_{\it PRB}$ [dE	3]	
	Subframe		
0	5	1 – 4, 6 – 9	
	Allocation		
$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	
$(PRBN_{End,(m-1)}) - (PRB$	$(PRBN_{End,(m-1)}) - (PRB$	$(PRBN_{End,(m-1)}) - (PRB$	PDSCH Data
$N_{Start,m}-1$	$N_{Start,m}-1$	$N_{Start,m}-1$	
$(PRB N_{End,M}) - (PRB$	 (PRB N _{End,M}) – (PRB	 (PRB N _{End,M}) – (PRB	
$N_{RB}-1$)	$N_{RB}-1$)	$N_{RB}-1$)	
0	0	0	Note 1

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.1.8 OCNG FDD pattern 8: One sided dynamic OCNG FDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Table A.5.1.1-1: OP.8 FDD: One sided dynamic OCNG FDD Pattern

	Relative power level $\gamma_{\it PRB}$ [c	B]		
Subframe				
0 5		1 – 4, 6 – 9	PDSCH Data	
Allocation				
First unallocated PRB	First unallocated PRB	First unallocated PRB		
– Last unallocated PRB	 Last unallocated PRB 	Last unallocated PRB		
0	0	0	Note 1,2,3	

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

Note 3: The detailed test set-up for TM10 transmission i.e PMI configuration is specified to each test case.

A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i _RA / OCNG _RA = PDSCH_i _RB / OCNG _RB$$

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

Table A.5.2.1-1: OP.1 TDD: One sided dynamic OCNG TDD Pattern

Relative power level $\gamma_{\it PRB}$ [dB]						
Subframe (only if available for DL)						
0		5	3, 4, 7, 8, 9 and 6 (as normal subframe) ^{Note 2}	1 and 6 (as special subframe) ^{Note 2}	PDSCH Data	
		Allo	cation			
First unal	llocated PRB	First unallocated PRB	First unallocated PRB -	First unallocated PRB -		
Last unal	llocated PRB	Last unallocated PRB	Last unallocated PRB	Last unallocated PRB		
	0	0	0	0	Note 1	
Note 1:			ssigned to an arbitrary num ne OCNG PDSCHs shall be			
	which is QPS	SK modulated. The param	neter $\gamma_{\it PRB}$ is used to scale	the power of PDSCH.		
Note 2:	Subframes a 3GPP TS 36		ion depends on the Uplink-	Downlink configuration in	Table 4.2-2 in	
Note 3:	Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The					
	parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is equal between all the					
	transmit ante 7.1 in 3GPP		ne test. The antenna transr	nission modes are specifi	ed in section	

A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is

discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{\rm RB}$ –1.

Table A.5.2.2-1: OP.2 TDD: Two sided dynamic OCNG TDD Pattern

0 5	3, 4, 6, 7, 8, 9 (6 as normal subframe)	1,6 (6 as special subframe)	Data				
Alloc	(6 as normal subframe)	, -					
		(6 as special subframe)					
	<u> </u>						
	cation	Allocation					
0 – 0 –	0 –	0 –					
(First allocated PRB-1) (First allocated PRB-1)	(First allocated PRB-1)	(First allocated PRB-1)					
and and	and	and					
(Last allocated PRB+1) – (Last allocated PRB+1) –	(Last allocated PRB+1) -	(Last allocated PRB+1) –					
$(N_{RB}-1) \qquad (N_{RB}-1)$	$(N_{RB}-1)$	$(N_{RB}-1)$					
0 0	0	0	Note 1				

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36 211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.2.3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5ms downlink-to-uplink switch-point periodicity

		Relative power					
Allocation		Subf	PDSCH Data	PMCH Data			
$n_{{\scriptscriptstyle PRB}}$	0	5	4, 9 ^{Note 2}	1, 6			
1 – 49	0	0 (Allocation: all empty PRB-s)	N/A	0	Note 1	N/A	
0 – 49	N/A	N/A	0	N/A	N/A	Note 3	

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.
- Note 3: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.
- Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- N/A Not Applicable

A.5.2.4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

Table A.5.2.4-1: OP.4 TDD: One sided dynamic OCNG TDD Pattern for MBMS transmission

		Relative power	level γ_{PRB} [dB]				
Allocation		Subframe (PDSCH Data	PMCH Data			
$n_{\it PRB}$	0 and 6 (as normal subframe)	1 (as special subframe)	5	3, 4, 7 – 9	1 DOON Data	i mori bata	
First unallocate d PRB - Last unallocate d PRB	0	0 (Allocation: all empty PRB-s of DwPTS)	0 (Allocation: all empty PRB-s)	N/A	Note 1	N/A	
First unallocate d PRB - Last unallocate d PRB	N/A	N/A	N/A	N/A	N/A	Note2	
vi		ource blocks are a transmitted over t	•	ls shall be uncorre		•	

- which is QPSK modulated. The parameter $\gamma_{\it PRB}$ is used to scale the power of PDSCH.
- Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be Note 2: uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.
- Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- N/A Not Applicable

A.5.2.5 OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the sub-frames available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

Table A.5.2.5-1: OP.5 TDD: One sided dynamic 16QAM modulated OCNG TDD Pattern

		Relative power	level $\gamma_{\it PRB}$ [dB]			
Subframe (only if available for DL)						
	0	5	3, 4, 7, 8, 9 and 6 (as normal subframe) ^{Note 2}	1 and 6 (as special subframe) ^{Note 2}	PDSCH Data	
		Allo	cation			
First una	llocated PRB	First unallocated PRB -	First unallocated PRB -	First unallocated PRB -		
Last una	llocated PRB	Last unallocated PRB	Last unallocated PRB	Last unallocated PRB		
	0	0	0	0	Note 1	
Note 1:			ssigned to an arbitrary num ne OCNG PDSCHs shall b			
	which is 16Q	AM modulated. The para	meter $\gamma_{\it PRB}$ is used to scale	e the power of PDSCH.		
Note 2:	Subframes a 3GPP TS 36		ion depends on the Uplink-	Downlink configuration in	Table 4.2-2 in	
Note 3:	Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large Delay					
	CDD). The p	arameter $\gamma_{\scriptscriptstyle PRB}$ applies to	each antenna port separa	tely, so the transmit power	er is equal	
		he transmit antennas with section 7.1 in 3GPP TS 36	n CRS used in the test. The 3.213.	e antenna transmission m	odes are	

A.5.2.6 OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB $N_{RB}-1$.

Table A.5.2.6-1: OP.6 TDD: OCNG TDD Pattern when user data is in 2 non-contiguous blocks

Relative power level $\gamma_{{\scriptscriptstyle PRB}}$ [dB]				
	Subframe (only if	f available for DL)		Data
0	5	3, 4, 6, 7, 8, 9	1,6	
		(6 as normal subframe)	(6 as special subframe)	
	Alloc	ation		
0 – (First allocated PRB	0 – (First allocated PRB	0 – (First allocated PRB	0 – (First allocated PRB	
of first block -1)	of first block -1)	of first block -1)	of first block -1)	
and	and	and	and	
(Last allocated PRB of	(Last allocated PRB of	(Last allocated PRB of	(Last allocated PRB of	
first block +1) - (First	first block +1) – (First	first block +1) – (First	first block +1) - (First	
allocated PRB of second	allocated PRB of second	allocated PRB of second	allocated PRB of second	
block -1)	block -1)	block -1)	block -1)	
0	0	0	0	Note 1

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.7 OCNG TDD pattern 7: dynamic OCNG TDD pattern when user data is in multiple non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in multiple parts by the M allocated blocks for data transmission). The m-th allocated block starts with RPB $N_{Start,m}$ and ends with PRB $N_{End,m}-1$, where m=1,...,M. The system bandwidth starts with RPB 0 and ends with $N_{RB}-1$.

Table A.5.2.7-1: OP.7 TDD: OCNG TDD Pattern when user data is in multiple non-contiguous blocks

Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]					
	Subframe (only it	available for DL)		Data	
0 5 3, 4, 6, 7, 8, 9 1,6 (6 as normal subframe) (6 as special subfram			1,6 (6 as special subframe)		
	Alloc	ation			
$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$		
$(PRB N_{End,(m-1)}) -$	$(PRB N_{End,(m-1)}) -$	$(PRB N_{End,(m-1)}) -$	$(PRB N_{End,(m-1)}) -$		
(PRB $N_{Start,m} - 1$)	(PRB $N_{Start,m} - 1$)	(PRB $N_{Start,m} - 1$)	(PRB $N_{Start,m} - 1$)		
			•••		
$(PRB N_{End,M}) - (PRB$	$(PRB N_{End,M}) - (PRB$	$(PRB N_{End,M}) - (PRB$	$(PRB N_{End,M}) - (PRB$		
$N_{RB}-1$)	$N_{RB}-1$)	$N_{RB}-1)$	$N_{RB}-1)$		
0	0	0	0	Note 1	

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.8 OCNG TDD pattern 8: One sided dynamic OCNG TDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Table A.5.1.1-1: OP.8	TDD: One sided dynamic	OCNG TDD Pattern

Relative power level $\gamma_{\it PRB}$ [d	B]			
Subframe				
0 5 1-4,6-9				
Allocation				
First unallocated PRB	First unallocated PRB	1		
Last unallocated PRB	– Last unallocated PRB			
0	0	Note 1,2,3		
	Subframe 5 Allocation First unallocated PRB —	5 1 - 4, 6 - 9 Allocation First unallocated PRB First unallocated PRB Last unallocated PRB Last unallocated PRB		

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is 16QAM modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.
- Note 3: The detailed test set-up for TM10 transmission i.e PMI configuration is specified to each test case.

A.6 Sidelink reference measurement channels

A.6.1 General

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RR}

- 1. Calculate the number of channel bits $N_{\rm ch}$ that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min \left| R - (A + 24*(N_{CB} + 1)) / N_{ch} \right|, where \ N_{CB} = \begin{cases} 0, if \ C = 1 \\ C, if \ C > 1 \end{cases},$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of $N_{\rm RB}$ resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- 3. If there is more than one *A* that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

A.6.2 Reference measurement channel for receiver characteristics

For ProSe Direct Discovery, Table A.6.2-1 is applicable for measurements on the Receiver Characteristics (clause 7) including the requirements of subclause 7.4D (Maximum input level).

For ProSe Direct Communication, Table A.6.2-2 is applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4D (Maximum input level). Tables A.6.2-3, A.6.2-4, are applicable for subclause 7.4D (Maximum input level).

Table A.6.2-1: Fixed Reference measurement channel for ProSe Direct Discovery receiver requirements and maximum input level

Parameter	Unit			Val	ue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				2	2	2	2
Subcarriers per resource block				12	12	12	12
Allocated subframes per Discovery period				1	1	1	1
DFT-OFDM Symbols per subframe (see				11	11	11	11
note)							
Modulation				QPSK	QPSK	QPSK	QPSK
Transport Block Size				232	232	232	232
Transport block CRC	Bits			24	24	24	24
Maximum number of HARQ transmissions				1	1	1	1
Binary Channel Bits (see note)	Bits			528	528	528	528
Max. Throughput averaged over 1 Discovery	kbps			NOTE	NOTE	NOTE	NOTE
period	•			2	2	2	2
UE Category				≥ 1	≥ 1	≥ 1	≥ 1

NOTE1: PSDCH transmissions are rate-matched for 12 DFT-OFDM symbols per subframe, and the last

symbol shall be punctured as per TS 36.211.

NOTE2: Throughput is 232 bits per Discovey period. Throughput in kbps will depend on discovery period

configuration.

Table A.6.2-2: Fixed Reference measurement channel for ProSe Direct Communication receiver requirements

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Subcarriers per resource block				12	12		
Packets per SA period				[TBD]	[TBD]		
Modulation				QPSK	QPSK		
Transport Block Size				2216	4392		
Transport block CRC	Bits			24	24		
Maximum number of HARQ transmissions				4	4		
Binary Channel Bits	Bits			7200	14400		
Max. Throughput averaged over 1 SA period	kbps			[TBD]	[TBD]		
UE Category	•			≥ 1	≥ 1		

NOTE 1: For PSSCH transmission, the last symbol shall be punctured as per TS 36.211.

NOTE 2: Throughput (in kbps) will depend on SA period configuration

Table A.6.2-3: Fixed Reference measurement channel for ProSe Direct Communication for maximum input power for UE categories 2-8

Parameter	Unit Value									
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks				25	50					
Subcarriers per resource block				12	12					
Packets per SA period				TBD	[TBD]					
Modulation				16QAM	16QAM					
Transport Block Size				9912	18336					
Transport block CRC	Bits			24	24					
Maximum number of HARQ				4	4					
transmissions										
Binary Channel Bits	Bits			14400	28800					
Max. Throughput averaged over 1 SA period	kbps			[TBD]	[TBD]					

NOTE 1: For PSSCH transmission, the last symbol shall be punctured as per TS 36.211.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: Throughput (in kbps) will depend on SA period configuration

Table A.6.2-4: Fixed Reference measurement channel for ProSe Direct Communication for maximum input power for UE category 1

Parameter Unit Value									
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks				25	24				
Subcarriers per resource block				12	12				
Packets per SA period				[TBD]	[TBD]				
Modulation				16QAM	16QAM				
Transport Block Size				9912	10296				
Transport block CRC	Bits			24	24				
Maximum number of HARQ transmissions				4	4				
Binary Channel Bits	Bits			14400	13824				
Max. Throughput averaged over 1 SA period	kbps			[TBD]	[TBD]				

NOTE 1: For PSSCH transmission, the last symbol shall be punctured as per TS 36.211.

NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

NOTE 3: Throughput (in kbps) will depend on SA period configuration

Annex B (normative): Propagation conditions

B.1 Static propagation condition

For 1 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}.$$

For 4 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & j & j \\ 1 & 1 - j & -j \end{bmatrix}$$

For 8 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 & j & j & j \\ 1 & 1 & 1 & 1 - j - j - j - j \end{bmatrix}$$

B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency
- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multi-antenna systems.
- Additional multi-path models used for CQI (Channel Quality Indication) tests

B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Table B.2.1-1 Delay profiles for E-UTRA channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)
Extended Pedestrian A (EPA)	7	45 ns	410 ns
Extended Vehicular A model (EVA)	9	357 ns	2510 ns
Extended Typical Urban model (ETU)	9	991 ns	5000 ns

Table B.2.1-2 Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-3 Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2.1-4 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

B.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as EVA[number], EPA[number] or ETU[number] where 'number' indicates the maximum Doppler frequency (Hz).

Table B.2.2-1 Void

B.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in B.2.3 apply for the antenna configuration using uniform linear arrays at both eNodeB and UE.

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

Table B.2.3.1-1 eNodeB correlation matrix

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 \end{pmatrix}$

Table B.2.3.1-2 defines the correlation matrix for the UE:

Table B.2.3.1-2 UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^*} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^*} & \beta^{\frac{1}{9}^*} & 1 & \beta^{\frac{1}{9}} \\ \beta^* & \beta^{\frac{4}{9}^*} & \beta^{\frac{1}{9}^*} & 1 \end{pmatrix}$

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

 $R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$ 2x1 case $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix}$ 2x2 case $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$ 4x2 case $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha & \alpha^{1/9} & \alpha^{1/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & \alpha^{1/9} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^*\beta^* & \alpha^*\beta^* & 1 & \beta \\ \beta^* & 1 \end{bmatrix}$ 4x4 case $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{1/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{1/9} & \alpha^{1/9} &$

Table B.2.3.1-3: R_{spat} correlation matrices

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

Table B.2.3.2-1

Low cor	relation	Medium C	orrelation	High Correlation			
α	β	α	β	α	β		
0	0	0.3	0.9	0.9	0.9		

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in Table B.2.3.2-2 have been adjusted for the 4x2 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 4x2 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

Table B.2.3.2-2: MIMO correlation matrices for high correlation

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$							
2x1 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$							
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$							
4x2 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 & 0.8999 & 0.8099 \\ 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 & 0.8099 & 0.8999 \\ 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 \\ 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 \\ 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 \\ 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 \\ 0.8999 & 0.8099 & 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 \end{bmatrix}$							
4x4 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 0.9541 & 0.9430 & 0.9105 & 0.8587 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9541 & 0.9882 & 1.0000 & 0.9882 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.9541 & 0.9882 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.9882 & 0.9767 & 0.9430 & 0.8894 & 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8587 \\ 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9430 & 0.9430 & 0.9541 & 0.9430 & 0.9105 \\ 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9541 & 0.9882 & 1.0000 & 0.9882 & 0.9767 & 0.9482 & 0.8587 & 0.9105 & 0.9430 & 0.9541 \\ 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.8999 & 0.9541 & 0.9882 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.8894 \\ 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9541 & 0.8999 & 0.8882 & 0.9767 & 0.9430 & 0.9882 & 0.9541 & 0.8999 & 0.8882 & 0.9767 & 0.9430 & 0.9882 & 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.9767 \\ 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 0.8999 & 0.8894 & 0.8587 & 0.8999 & 0.8894 & 0.8587 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9430 & 0.9105 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.8894 & 0.8587 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.8894 & 0.8587 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.8899 & 0.8587 & 0.8894 & 0.8999 & 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.89430 & 0.976$							

Table B.2.3.2-3: MIMO correlation matrices for medium correlation

1x2		N/A															
case		·															
2x1 case		N/A															
		(1 0.9 0.3 0.27)															
00		0.9 1 0.27 0.3															
2x2 case							R_{mediun}	_	.3 0.27		0.9						
Just								0									
								(0.	27 0.3	0.9	1)						
				(1.	.0000	0.900	00 0.	8748	0.787	3 0	5856	0.527	1 0.3	000	0.2700)	
				0.	.9000	1.000	00 0.	7873	0.874	8 0	5271	0.5856	5 0.2	700	0.3000)	
				0	.8748	0.783	73 1.	0000	0.900	0 0.3	8748	0.787	3 0.5	856	0.5271		
4x2				0	.7873	0.874	48 O.	9000	1.000	0 0.	7873	0.8748	8 0.5	271	0.5856	5	
case		R_{me}	$_{dium} =$.5856	0.527		8748	0.787			0.9000			0.7873		
					.5271	0.585		7873	0.874		9000	1.0000			0.7673		
				0	.3000	0.270		.5856	0.527		8748	0.787			0.9000		
				0	.2700	0.300	00 0.	.5271	0.585	6 0.	7873	0.874	8 0.9	9000	1.0000)	
		(1.0000 (0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872	0.5855	0.5787	0.5588	0.5270	0.3000	0.2965	0.2862	0.2700
		0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347	0.5787	0.5855	0.5787	0.5588	0.2965	0.3000	0.2965	0.2862
		0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645	0.5588	0.5787	0.5855	0.5787	0.2862	0.2965	0.3000	0.2965
		0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747	0.5270	0.5588	0.5787	0.5855	0.2700	0.2862	0.2965	0.3000
		0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872	0.5855	0.5787	0.5588	0.5270
		0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347	0.5787	0.5855	0.5787	0.5588
		0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645	0.5588	0.5787	0.5855	0.5787
4x4	D -	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747	0.5270	0.5588	0.5787	0.5855
case	R_{medium} =	0.5855 (0.5787	0.5588	0.5270	0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872
		0.5787	0.5855	0.5787	0.5588	0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347
		0.5588 (0.5787	0.5855	0.5787	0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645
		0.5270	0.5588	0.5787	0.5855	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747
		0.3000	0.2965	0.2862	0.2700	0.5855	0.5787	0.5588	0.5270	0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999
		0.2965 (0.3000	0.2965	0.2862	0.5787	0.5855	0.5787	0.5588	0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541
		0.2862															
		0.2700															
		(3.2700 (0.2002	5.2703	3.2000	5.5210	5.5500	0.5707	3.2023	5.7072	0.0577	0.00-3	5.0777	0.0777	0.7571	5.7002	1.0000

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x1 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4, \mathbf{I}_d is the $d \times d$ identity matrix.

B.2.3A MIMO Channel Correlation Matrices using cross polarized antennas

The MIMO channel correlation matrices defined in B.2.3A apply for the antenna configuration using cross polarized antennas at both eNodeB and UE. The cross-polarized antenna elements with ± 45 degrees polarization slant angles are deployed at eNB and cross-polarized antenna elements with ± 90 0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of transmit or receive antennas.

B.2.3A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{spat} = P(R_{eNB} \otimes \Gamma \otimes R_{UE})P^{T}$$

where

- R_{UE} is the spatial correlation matrix at the UE with same polarization,
- R_{eNB} is the spatial correlation matrix at the eNB with same polarization,
- Γ is a polarization correlation matrix, and
- $(\bullet)^T$ denotes transpose.

The matrix Γ is defined as

$$\Gamma = \begin{bmatrix}
1 & 0 & -\gamma & 0 \\
0 & 1 & 0 & \gamma \\
-\gamma & 0 & 1 & 0 \\
0 & \gamma & 0 & 1
\end{bmatrix}$$

A permutation matrix P elements are defined as

$$P(a,b) = \begin{cases} 1 & \text{for } a = (j-1)Nr + i & \text{and } b = 2(j-1)Nr + i, & i = 1, \dots, Nr, j = 1, \dots Nt/2 \\ 1 & \text{for } a = (j-1)Nr + i & \text{and } b = 2(j-Nt/2)Nr - Nr + i, & i = 1, \dots, Nr, j = Nt/2 + 1, \dots, Nt + i, \\ 0 & \text{otherwise} \end{cases}$$

where N_t and N_r is the number of transmitter and receiver respectively. This is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.2.3A.

B.2.3A.2 Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides

B.2.3A.2.1 Spatial Correlation Matrices at eNB side

For 2-antenna transmitter using one pair of cross-polarized antenna elements, $R_{\scriptscriptstyle eNR}=1$.

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$.

For 8-antenna transmitter using four pairs of cross-polarized antenna elements, $R_{eNB} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix}$.

B.2.3A.2.2 Spatial Correlation Matrices at UE side

For 2-antenna receiver using one pair of cross-polarized antenna elements, $R_{UE} = 1$.

For 4-antenna receiver using two pairs of cross-polarized antenna elements, $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$.

B.2.3A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters α , β and γ for high spatial correlation are given in Table B.2.3A.3-1.

Table B.2.3A.3-1

High spatial correlation		
0.9	0.9	0.3
Note 1: Value of α applies when more than one pair of cross-polarized antenna elements at eNB side. Note 2: Value of β applies when more than one pair of cross-polarized antenna elements at UE side.		

The correlation matrices for high spatial correlation are defined in Table B.2.3A.3-2 as below.

The values in Table B.2.3A.3-2 have been adjusted to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spat} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 8x2 high spatial correlation case, a=0.00010.

Table B.2.3A.3-2: MIMO correlation matrices for high spatial correlation

B.2.3A.4 Beam steering approach

Given the channel spatial correlation matrix in B.2.3A.1, the corresponding random channel matrix \mathbf{H} can be calculated. The signal model for the k-th subframe is denoted as

$$y = HD_{\theta_{h}}Wx + n$$

Where

- H is the Nr xNt channel matrix per subcarrier.

- $D_{\theta_{k}}$ is the steering matrix,

For 8 transmission antennas,
$$D_{\theta_k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{j\theta_k} & 0 & 0 \\ 0 & 0 & e^{j2\theta_k} & 0 \\ 0 & 0 & 0 & e^{j3\theta_k} \end{bmatrix};$$

For 4 transmission antennas,
$$D_{\theta_k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & e^{j\theta_k} \end{bmatrix}$$
.

- θ_k controls the phase variation, and the phase for k-th subframe is denoted by $\theta_k = \theta_0 + \Delta\theta \cdot k$, where θ_0 is the random start value with the uniform distribution, i.e., $\theta_0 \in [0,2\pi]$, $\Delta\theta$ is the step of phase variation, which is defined in Table B.2.3A.4-1, and k is the linear increment of 1 for every subframe throughout the simulation,
- W is the precoding matrix for Nt transmission antennas,
- y is the received signal, x is the transmitted signal, and n is AWGN.

Table B.2.3A.4-1: The step of phase variation

Variation Step	Value (rad/subframe)
$\Delta heta$	1.2566×10 ⁻³

B.2.4 Propagation conditions for CQI tests

For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t)\delta(\tau - \tau_d),$$

in continuous time (t, τ) representation, with τ_d the delay, a a constant and f_D the Doppler frequency. The same $h(t, \tau)$ is used to describe the fading channel between every pair of Tx and Rx.

B.2.4.1 Propagation conditions for CQI tests with multiple CSI processes

For CQI tests with multiple CSI processes, the following additional multi-path profile is used for 2 port transmission:

$$H = \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \circ H_{MP}$$

Where \circ represents Hadamard product, H_{MP} indicates the 2x2 propagation channel generated in the manner defined in Clause B.2.4.

B.2.5 Void

B.2.6 MBSFN Propagation Channel Profile

Table B.2.6-1 shows propagation conditions that are used for the MBSFN performance requirements in multi-path fading environment in an extended delay spread environment.

Table B.2.6-1: Propagation Conditions for Multi-Path Fading Environments for MBSFN Performance Requirements in an extended delay spread environment

Extended Delay Spread			
Maximum Doppler frequency [5Hz]			
Relative Delay [ns]	Relative Mean Power [dB]		
0	0		
30	-1.5		
150	-1.4		
310	-3.6		
370	-0.6		
1090	-7.0		
12490	-10		
12520	-11.5		
12640	-11.4		
12800	-13.6		
12860	-10.6		
13580	-17.0		
27490	-20		
27520	-21.5		
27640	-21.4		
27800	-23.6		
27860	-20.6		
28580	-27.0		

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where $D_s/2$ is the initial distance of the train from eNodeB, and D_{\min} is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

Parameter	Value
D_s	300 m
$D_{ m min}$	2 m
v	300 km/h
$f_{\mathcal{A}}$	750 Hz

Table B.3-1: High speed train scenario

NOTE 1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figure B.3-1 were derived from Band 7 and are applied for performance verification in all frequency bands.

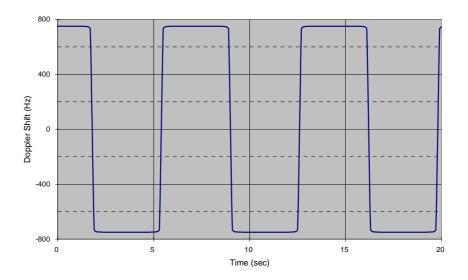


Figure B.3-1: Doppler shift trajectory

For 1x2 antenna configuration, the same $h(t,\tau)$ is used to describe the channel between every pair of Tx and Rx.

For 2x2 antenna configuration, the same $h(t,\tau)$ is used to describe the channel between every pair of Tx and Rx with phase shift according to $\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}$.

B.4 Beamforming Model

B.4.1 Single-layer random beamforming (Antenna port 5, 7, or 8)

Single-layer transmission on antenna port 5 or on antenna port 7 or 8 without a simultaneous transmission on the other antenna port, is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M_{\mathrm{symb}}^{\mathrm{ap}}-1$, for antenna port $p\in\{5,7,8\}$, with $M_{\mathrm{symb}}^{\mathrm{ap}}$ the number of modulation symbols including the

user-specific reference symbols (DRS), and generates a block of signals $y_{bf}(i) = [y_{bf}(i) \ \tilde{y}_{bf}(i)]^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i)$$

Single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port, is defined by using a pair of precoder vectors $W_1(i)$ and $W_2(i)$ each of size 2×1 , which are not identical and randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in [4], as beamforming weights, and normalizing the transmit power as follows:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = \frac{1}{\sqrt{2}} (W_1(i)y^{(7)}(i) + W_2(i)y^{(8)}(i))$$

The precoder update granularity is specific to a test case.

The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 1$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $y_{bf}(i)$. The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 0$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $\widetilde{y}_{bf}(i)$.

B.4.2 Dual-layer random beamforming (antenna ports 7 and 8)

Dual-layer transmission on antenna ports 7 and 8 is defined by using a precoder matrix W(i) of size 2×2 randomly selected with the number of layers v=2 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input a block of signals for antenna ports 7 and 8, $y(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) \end{bmatrix}^T$, $i=0,1,...,M_{\text{symb}}^{\text{ap}}-1$, with $M_{\text{symb}}^{\text{ap}}$ being the number of modulation symbols per antenna port including the user-specific reference symbols, and generates a block of signals $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \widetilde{y}_{bf}(i) \end{bmatrix}^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \end{bmatrix},$$

The precoder update granularity is specific to a test case.

The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 1$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $y_{bf}(i)$. The CSI reference symbols $a_{k,l}^{(p)}$ satisfying $p \mod 2 = 0$, $p \in \{15,16,...,22\}$, are transmitted on the same physical antenna element as the modulation symbols $\widetilde{y}_{bf}(i)$.

B.4.3 Generic beamforming model (antenna ports 7-14)

The transmission on antenna port(s) p=7,8,...,v+6 is defined by using a precoder matrix W(i) of size $N_{CSI} \times v$, where N_{CSI} is the number of CSI reference signals configured per test and v is the number of spatial layers. This precoder takes as an input a block of signals for antenna port(s) p=7,8,...,v+6, $y^{(p)}(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) & \cdots & y^{(6+v)}(i) \end{bmatrix}$, $i=0,1,...,M_{\text{symb}}^{\text{ap}}-1$, with $M_{\text{symb}}^{\text{ap}}$ being the number of modulation symbols per antenna port including the user-specific reference symbols (DM-RS), and generates a block of signals $y_{bf}^{(q)}(i) = \begin{bmatrix} y_{bf}^{(0)}(i) & y_{bf}^{(1)}(i) & \cdots & y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix}^T$ the elements of which are to be mapped onto the same time-frequency index pair (k,l) but transmitted on different physical antenna elements:

$$\begin{bmatrix} y_{bf}^{(0)}(i) \\ y_{bf}^{(1)}(i) \\ \vdots \\ y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \\ \vdots \\ y^{(6+\nu)}(i) \end{bmatrix}$$

The precoder matrix W(i) is specific to a test case.

The physical antenna elements are identified by indices $j = 0,1,...,N_{ANT}-1$, where $N_{ANT}=N_{CSI}$ is the number of physical antenna elements configured per test.

Modulation symbols $y_{bf}^{(q)}(i)$ with $q \in \{0,1,...,N_{CSI}-1\}$ (i.e. beamformed PDSCH and DM-RS) are mapped to the physical antenna index j=q.

Modulation symbols $y^{(p)}(i)$ with $p \in \{0,1,...,P-1\}$ (i.e. PBCH, PDCCH, PHICH, PCFICH) are mapped to the physical antenna index j=p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols $a_{k,l}^{(p)}$ with $p \in \{0,1,...,P-1\}$ (i.e. CRS) are mapped to the physical antenna index j=p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols $a_{k,l}^{(p)}$ with $p \in \{15,16,...,14+N_{CSI}\}$ (i.e. CSI-RS) are mapped to the physical antenna index j=p-15, where N_{CSI} is the number of CSI reference signals configured per test.

B.4.4 Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)

EPDCCH distributed transmission on antenna port 107 and antenna port 109 is defined by using a pair of precoder vectors $W_1(i)$ and $W_2(i)$ each of size 2×1 , which are not identical and randomly selected per EPDCCH PRB pair with the number of layers v=1 from Table 6.3.4.2.3-1 in [4], as beamforming weights. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M_{\text{symb}}^{\text{ap}}-1$, for antenna port $p\in\{107,109\}$, with $M_{\text{symb}}^{\text{ap}}$ the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a block of signals $y_{bf}(i)=\begin{bmatrix} y_{bf}(i) & \widetilde{y}_{bf}(i) \end{bmatrix}^T$. When EPDCCH is associated with port 107, the transmitted block of signals is deonted as

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W_1(i) y^{(107)}(i).$$

When EPDCCH is associated with port 109, the transmitted block of signals is denoted as

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W_2(i)y^{(109)}(i).$$

B.4.5 Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)

EPDCCH localized transmission on antenna port 107, 108, 109 or 110 is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M_{\mathrm{symb}}^{\mathrm{ap}}-1$, for antenna port $p\in\{107,108,109,110\}$, with

 $M_{\text{symb}}^{\text{ap}}$ the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a

block of signals $y_{bf}(i) = [y_{bf}(i) \ \tilde{y}_{bf}(i)]^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i).$$

B.5 Interference models for enhanced performance requirements Type-A

This clause provides a description for the modelling of interfering cell transmissions for enhanced performance requirements Type-A including: definition of dominant interferer proportion, transmission mode 3, 4 and 9 type of interference modelling.

B.5.1 Dominant interferer proportion

Each interfering cell involved in enhanced performance requirements Type-A is characterized by its associated dominant interferer proportion (DIP) value:

$$DIP_i = \frac{\hat{I}_{or(i+1)}}{N_{oc}}$$

where is $\hat{I}_{or(i+1)}$ is the average received power spectral density from the i-th strongest interfering cell involved in the requirement scenario ($\hat{I}_{or(1)}$ is assumed to be the power spectral density associated with the serving cell) and

 $N_{oc}' = \sum_{j=2}^{N} \hat{I}_{or(j)} + N_{oc}$ where N_{oc} is the average power spectral density of a white noise source consistent with the

definition provided in subclause 3.2 and N is the total number of cells involved in a given requirement scenario.

B.5.2 Transmission mode 3 interference model

This subclause provides transmission mode 3 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For rank-1 transmission over a subband, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4].

For rank-2 transmission over a subband, precoding for spatial multiplexing with large delay CDD over two layers for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.2 of [4].

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.5.3 Transmission mode 4 interference model

This subclause provides transmission mode 4 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-1 of [4]. Note that codebook index 0 shall be excluded from random precoder selection when the number of layers is v = 2.

Precoding for spatial multiplexing with cell-specific reference signals for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.1 of [4] with the selected precoding matrices for each subframe and each CQI subband.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

B.5.4 Transmission mode 9 interference model

This subclause provides transmission mode 9 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and each CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-2 of [4].

The generic beamforming model in subclause B.4.3 shall be applied assuming cell-specific reference signals and CSI reference signals as specified in the requirement scenario. Random precoding with selected rank and precoding matrices for each subframe and each CQI subband shall be applied to 16QAM randomly modulated layer symbols including the user-specific reference symbols over antenna port 7 when the rank is one and antenna ports 7, 8 when the rank is two.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

Annex C (normative): Downlink Physical Channels

C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PCFICH
PDCCH
EPDCCH
PHICH
PDSCH

C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = 0 dB
	PBCH_RB = 0 dB
PSS	$PSS_RA = 0 dB$
SSS	$SSS_RA = 0 dB$
PCFICH	PCFICH_RB = 0 dB
PDCCH	PDCCH_RA = 0 dB
	PDCCH_RB = 0 dB
PDSCH	PDSCH_RA = 0 dB
	PDSCH_RB = 0 dB
OCNG	OCNG_RA = 0 dB
	OCNG_RB = 0 dB

NOTE 1: No boosting is applied.

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Transmitted power spectral density I_{or}	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\it RS}$ / $I_{\it or}$			

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = ρ_A + σ
	PBCH_RB = ρ_B + σ
PSS	PSS_RA = 0 (Note 3)
SSS	SSS_RA = 0 (Note 3)
PCFICH	PCFICH_RB = ρ_B + σ
PDCCH	PDCCH_RA = ρ_A + σ
	PDCCH_RB = ρ_B + σ
EPDCCH	EPDCCH_RA = ρ_A + δ
	EPDCCH_RB = $\rho_B + \delta$
PDSCH	PDSCH_RA = ρ_A
	PDSCH_RB = ρ_B
PMCH	$PMCH_RA = \rho_A$
	$PMCH_RB = \rho_B$
MBSFN RS	MBSFN RS_RA = ρ_A
	MBSFN RS_RB = ρ_B
OCNG	OCNG_RA = ρ_A + σ
	OCNG_RB = ρ_B + σ

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: MBSFN RS and OCNG are not defined downlink physical channels in [4].

NOTE 3: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 4: ρ_A , ρ_B , σ , and δ are test specific.

NOTE 5: For TM 8, TM 9 and TM10 ρ_A , ρ_B are used for the purpose of the test set up only.

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Total transmitted power	dBm/15 kHz	Test specific	1. I_{or} shall be kept
spectral density $I_{\it or}$			constant throughout all OFDM symbols
Cell-specific reference		Test specific	1. Applies for antenna
signal power ratio $E_{\it RS}$ / $I_{\it or}$			port p
Energy per resource element EPRE		Test specific	1. The complex-valued symbols $y^{(p)}(i)$ and
			$a_{k,l}^{(p)}$ defined in [4] shall
			conform to the given EPRE value. 2. For TM8, TM9 and TM10 the reference point for EPRE is before the precoder in Annex B.4.

C.3.3 Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured

For the performance requirements and channel state information reporting when ABS is configured, the power allocation for the physical channels of the aggressor cell in non-ABS and ABS is listed in Table C.3.3-1.

Table C.3.3-1: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell

Physical Channel	Parameters	Unit	EP	RE Ratio
Filysical Chainlei			Non-ABS	ABS
PBCH	PBCH_RA	dB	ρΑ	Note 1
FBCIT	PBCH_RB	dB	ρв	Note 1
PSS	PSS_RA	dB	ρΑ	Note 1
SSS	SSS_RA	dB	ρΑ	Note 1
PCFICH	PCFICH_RB	dB	ρв	Note 1
PHICH	PHICH_RA	dB	ρΑ	Note 1
PHICH	PHICH_RB	dB	ρв	Note 1
PDCCH	PDCCH_RA	dB	ρΑ	Note 1
FBCCIT	PDCCH_RB	dB	ρв	Note 1
PDSCH	PDSCH_RA	dB	N/A	Note 1
FDSCIT	PDSCH_RB	dB	N/A	Note 1
OCNG	OCNG_RA	dB	ρΑ	Note 1
CONG	OCNG_RB	dB	ρв	Note 1
Note 1: -∞ dB is allocated for	or this channel in this test.			

Table C.3.3-2: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell when the CRS assistance information is provided

Dhysical Channel	Parameters	Unit	EPRE Ratio	
Physical Channel		Unit	Non-ABS	ABS
PBCH	PBCH_RA	dB	ρΑ	ρΑ
PBCH	PBCH_RB	dB	ρв	ρ_{B}
PSS	PSS_RA	dB	ρΑ	ρ_{A}
SSS	SSS_RA	dB	ρΑ	ρΑ
PCFICH	PCFICH_RB	dB	ρв	Note 1
PHICH	PHICH_RA	dB	ρΑ	Note 1
PHICH	PHICH_RB	dB	ρв	Note 1
PDCCH	PDCCH_RA	dB	ρΑ	Note 1
PDCCH	PDCCH_RB	dB	ρв	Note 1
PDSCH	PDSCH_RA	dB	N/A	Note 1
PDSCH	PDSCH_RB	dB	N/A	Note 1
OCNG	OCNG_RA	dB	ρΑ	Note 1
CONG	OCNG_RB	dB	ρв	Note 1
Note 1: -∞ dB is allocated f	or this channel in this test.			

C.3.4 Power Allocation for Measurement of Performance Requirements when Quasi Co-location Type B: same Cell ID

For the performance requirements related to quasi-colocation type B behaviour when transmission points share the same Cell ID, the power allocation for the physical channels of the serving cell is listed in Table C.3.4-1 and the power allocation for the physical channels of the cell transmitting PDSCH is listed in Table C.3.4-2

Table C.3.4-1: Downlink physical channels transmitted in the serving cell (TP1)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = ρ_A + σ
	PBCH_RB = ρ_B + σ
PSS	$PSS_RA = 0 (Note 2)$
SSS	$SSS_RA = 0 $ (Note 2)
PDSCH	PDSCH_RA = ρ_A
	PDSCH_RB = ρ_B
PCFICH	PCFICH_RB = ρ_B + σ
PDCCH	PDCCH_RA = ρ_A + σ
	PDCCH_RB = ρ_B + σ

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 3: ρ_A , ρ_B and σ are test specific.

Table C.3.4-2: Downlink physical channels for the transmission point transmitting PDSCH (TP2)

Physical Channel	Value
PDSCH	Test Specific

Annex D (normative): Characteristics of the interfering signal

D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

Table D.2-1: Description of modulated E-UTRA interferer

	Channel bandwidth						
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
BW _{Interferer}	1.4 MHz	3 MHz	5 MHz	5 MHz	5 MHz	5 MHz	
RB	6	15	25	25	25	25	

Annex E (normative): Environmental conditions

E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table E.2.1-1

+15°C to +35°C	for normal conditions (with relative humidity of 25 % to 75 %)
-10°C to +55°C	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table E.2.2-1

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0,9 * nominal	1,1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1,3 * nominal	1,1 * nominal
Non regulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

Table E.2.3-1

Frequency	ASD (Acceleration Spectral Density) random vibration			
5 Hz to 20 Hz	$0.96 \text{ m}^2/\text{s}^3$			
20 Hz to 500 Hz	0,96 m ² /s ³ at 20 Hz, thereafter –3 dB/Octave			

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.

Annex F (normative): Transmit modulation

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

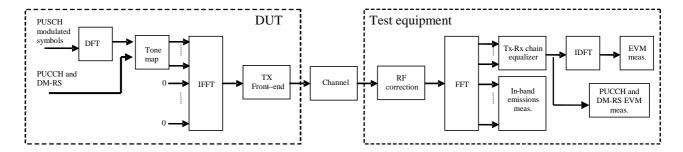


Figure F.1-1: EVM measurement points

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}},$$

where

 T_m is a set of $|T_m|$ modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{\max(f_{\min}, f_{l} + 12 \cdot \Delta_{RB} * \Delta f) \\ \min(f_{\max}, f_{h} + 12 \cdot \Delta_{RB} * \Delta f)}} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{f_{h} + (12 \cdot \Delta_{RB} - 11) * \Delta f \\ f_{h} + (12 \cdot \Delta_{RB} - 11) * \Delta f}} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

 T_s is a set of $|T_s|$ SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB),

 f_{\min} (resp. f_{\max}) is the lower (resp. upper) edge of the UL system BW,

 f_l and f_h are the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot N_{RB}} \sum_{t \in T_{s}}^{f_{t} + (12 \cdot N_{RB} - 1) \Delta f} \left|Y(t, f)\right|^{2}}$$

where

 N_{RR} is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to $\Delta \tilde{t} = \Delta \tilde{c}$, where sample time offsets $\Delta \tilde{t}$ and $\Delta \tilde{c}$ are defined in subclause F.4.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The PUSCH data or PRACH signal under test is modified and, in the case of PUSCH data signal, decoded according to::

$$Z'(t,f) = IDFT \left\{ \frac{FFT \left\{ z(v - \Delta \widetilde{t}) \cdot e^{-j2\pi\Delta \widetilde{f}v} \right\} e^{j2\pi j\Delta \widetilde{t}}}{\widetilde{a}(t,f) \cdot e^{j\widetilde{\varphi}(t,f)}} \right\}$$

where

z(v) is the time domain samples of the signal under test.

The PUCCH or PUSCH demodulation reference signal or PUCCH data signal under test is equalised and, in the case of PUCCH data signal decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi \Delta \tilde{f}v}\right\} e^{j2\pi j\Delta \tilde{t}}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}} e^{j2\pi j\Delta \tilde{t}}}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \tilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(t,f)$ is the phase response of the TX chain.

 $\tilde{a}(t, f)$ is the amplitude response of the TX chain.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in the next subsections) or the last sample of the first window half if W is even.

The EVM analyser shall

- ightharpoonup detect the start of each slot and estimate $\Delta \widetilde{t}$ and $\Delta \widetilde{f}$,
- \blacktriangleright determine $\Delta \tilde{c}$ so that the EVM window of length W is centred
 - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of 30.72MHz was assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.
 - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to $\Delta \widetilde{c}$ is corrected from the signal under test. The EVM analyser shall then

- ightharpoonup correct the RF frequency offset $\Delta \widetilde{f}$ for each time slot, and
- > apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The IQ origin offset shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative IQ origin offset power (relative carrier leakage power) also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients $\tilde{a}(t,f)$ and $\tilde{\varphi}(t,f)$ used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients $\widetilde{a}(t)$ and $\widetilde{\varphi}(t)$ used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e. $\widetilde{a}(t,f) = \widetilde{a}(t)$ and $\widetilde{\varphi}(t,f) = \widetilde{\varphi}(t)$. The TX chain coefficient are chosen independently for each preamble transmission and for each $\Delta \widetilde{t}$.

At this stage estimates of $\Delta \widetilde{f}$, $\widetilde{\alpha}(t,f)$, $\widetilde{\varphi}(t,f)$ and $\Delta \widetilde{c}$ are available. $\Delta \widetilde{t}$ is one of the extremities of the window W, i.e. $\Delta \widetilde{t}$ can be $\Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$ or $\Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$, where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even. The EVM analyser shall then

- ightharpoonup calculate EVM₁ with $\Delta \widetilde{t}$ set to $\Delta \widetilde{c} + \alpha \left| \frac{W}{2} \right|$,
- ightharpoonup calculate EVM_h with $\Delta \widetilde{t}$ set to $\Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$.

F.5 Window length

F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of $\Delta \tilde{t}$, which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the $\Delta \tilde{t}$ range within which the error vector is close to its minimum.

F.5.2 Window length

The window length W affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

Table F.5.3-1 EVM window length for normal CP

Channel Bandwidth MHz	Cyclic prefix length 1 N_{cp} for symbol 0	Cyclic prefix length 1 N_{cp} for symbols 1 to 6	Nominal FFT size	Cyclic prefix for symbols 1 to 6 in FFT samples	EVM window length W in FFT samples	Ratio of W to CP for symbols 1 to 6 ²
1.4			128	9	5	55.6
3			256	18	12	66.7
5	160	144	512	36	32	88.9
10	100	144	1024	72	66	91.7
15			1536	108	102	94.4
20			2048	144	136	94.4

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.

Note 2: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.

F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

Table F.5.4-1 EVM window length for extended CP

Channel Bandwidth MHz	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length}^1 N_{cp} \end{array}$	Nominal FFT size	Cyclic prefix in FFT samples	EVM window length W in FFT samples	Ratio of W to CP ²
1.4		128	32	28	87.5
3		256	64	58	90.6
5	512	512	128	124	96.9
10	512	1024	256	250	97.4
15		1536	384	374	97.4
20		2048	512	504	98.4

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.

Note 2: These percentages are informative

F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats 0-4.

Table F.5.5-1 EVM window length for PRACH

Preamble format	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length}^1 \ N_{cp} \end{array}$	Nominal FFT size ²	EVM window length W in FFT samples	Ratio of <i>W</i> to CP*
0	3168	24576	3072	96.7%
1	21024	24576	20928	99.5%
2	6240	49152	6144	98.5%
3	21024	49152	20928	99.5%
4	448	4096	432	96.4%

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed

Note 2: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied

Note 3: These percentages are informative

F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for 20 slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_1$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ in the expressions above and $\overline{\text{EVM}}_h$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$.

Thus we get:

$$EVM = \max(\overline{EVM}_1, \overline{EVM}_h)$$

The calculation of the EVM for the demodulation reference signal, EVM_{DMRS} , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set T_m defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic EVM_{DMRS} measurements are first averaged over 20 slots in the time domain to obtain an intermediate average EVM_{DMRS} .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS,i}^2}$$

In the determination of each $EVM_{DMRS,i}$, the timing is set to $\Delta \tilde{t} = \Delta \tilde{t}_l$ if $\overline{EVM}_l > \overline{EVM}_h$, and it is set to $\Delta \tilde{t} = \Delta \tilde{t}_l$ otherwise, where \overline{EVM}_l and \overline{EVM}_h are the general average EVM values calculated in the same 20 slots over which the intermediate average \overline{EVM}_{DMRS} is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM_{DMRS} ,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^{2}}$$

The PRACH EVM, EVM_{PRACH} , is averaged over two preamble sequence measurements for preamble formats 0, 1, 2, 3, and it is averaged over 10 preamble sequence measurements for preamble format 4.

The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{PRACH,1}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t}_l$ and $\overline{\text{EVM}}_{\text{PRACH,h}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t}_h$.

Thus we get:

$$EVM_{PRACH} = \max(\overline{EVM}_{PRACH,1}, \overline{EVM}_{PRACH,h})$$

F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

Annex G (informative): Reference sensitivity level in lower SNR

This annex contains information on typical receiver sensitivity when HARQ transmission is enabled allowing operation in lower SNR regions (HARQ is disabled in conformance testing), thus representing the configuration normally used in live network operation under noise-limited conditions.

G.1 General

The reference sensitivity power level P_{SENS} with HARQ retransmission enabled (operation in lower SNR) is the minimum mean power applied to both the UE antenna ports at which the residual BLER after HARQ shall meet the requirements for the specified reference measurement channel. The residual BLER after HARQ transmission is defined as follows:

$$BLER_{residual} = 1 - \frac{A}{B}$$

A: Number of correctly decoded MAC PDUs

B: Number of transmitted MAC PDUs (Retransmitted MAC PDUs are not counted)

G.2 Typical receiver sensitivity performance (QPSK)

The residual BLER after HARQ shall be lower than 1% for the reference measurement channels as specified in Annexes G.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table G.2-1 and Table G.2-2

Table G.2-1: Reference sensitivity QPSK PSENS

	Channel bandwidth						
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
1				[-102]			FDD
2				TBD			FDD
3				TBD			FDD
4				TBD			FDD
5				TBD			FDD
6				TBD			FDD
7				TBD			FDD
8				TBD			FDD
9				TBD			FDD
10				TBD			FDD
11				TBD			FDD
12				TBD			FDD
13				TBD			FDD
14				TBD			FDD
17				TBD			FDD
18				TBD			FDD
19				TBD			FDD
20				TBD			FDD
21				TBD			FDD
22				TBD			FDD
23				TBD			FDD
26				TBD			FDD
27				TBD			FDD
28				TBD			FDD
30				TBD			FDD
31			TBD				FDD
33				[-102]			TDD
34				[-102]			TDD
35				[-102]			TDD
36				[-102]			TDD
37				[-102]			TDD
38				[-102]			TDD
39				[-102]			TDD
40				[-102]			TDD
42				[-102]			TDD
43				[-102]			TDD
44				[-102]			TDD
Note 1: Th	a transmitter	shall be set	to D	aa dafinad	in alauga 6	`	

Note 1: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.5

Note 2: Reference measurement channel is G.3 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Note 3: The signal power is specified per port

Note 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

Note 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

Table G.2-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement in lower SNR must be met.

Table G.2-2: Minimum uplink configuration for reference sensitivity

E-UTRA	E-UTRA B	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex
Band							Mode
1				[6] ¹			FDD
2				[6] ¹			FDD
3				[6] ¹			FDD
4				[6] ¹			FDD
5				[6] ¹			FDD
6				[6] ¹			FDD
7				[6] ¹			FDD
8				[6] ¹			FDD
9				[6] ¹			FDD
10				[6] ¹			FDD
11				[6] ¹			FDD
12				[6] ¹			FDD
13				[6] ¹			FDD
14				[6] ¹			FDD
17				[6] ¹			FDD
18				[6] ¹			FDD
19				[6] ¹			FDD
20				[6] ¹			FDD
22				[6] ¹			FDD
21				[6] ¹			FDD
23				[6] ¹			FDD
26				[6] ¹			FDD
27				[6] ¹			FDD
28				[6] ¹			FDD
30				[6] ¹			FDD
31			[5] ⁴				FDD
33				50			TDD
34				50			TDD
35				50			TDD
36				50			TDD
37				50			TDD
38				50			TDD
39				50			TDD
40				50			TDD
42				50			TDD
43				50			TDD
44	The UL reso	ource bloo	ks shall b	50	s close as	possible to	TD

downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).
For the UE which supports both Band 11 and Band 21 the minimum

Note 2: uplink configuration for reference sensitivity is FFS.

For Band 20; in the case of 15MHz channel bandwidth, the UL resource Note 3: blocks shall be located at RBstart _11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RBstart _16

For Band 31; in the case of 5MHz channel bandwidth, the UL resource Note 4: blocks shall be located at RBstart _10

Unless given by Table G.2-3, the minimum requirements specified in Tables G.2-1 and G.2-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table G.2-3: Network Signalling Value for reference sensitivity

E-UTRA Band	Network Signalling value
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09
23	NS_03
30	NS_21
35	NS_03
36	NS_03

G.3 Reference measurement channel for REFSENSE in lower SNR

Tables G.3-1 and G.3-2 are applicable for Annex G.2 (Reference sensitivity level in lower SNR).

Table G.3-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit		Va	lue		
Channel bandwidth	MHz		5	10		
Allocated resource blocks			25	50		
Subcarriers per resource block			12	12		
Allocated subframes per Radio Frame			9	9		
Modulation			QPSK	QPSK		
Target Coding Rate			1/3	1/3		
Number of HARQ Processes	Processes		8	8		
Maximum number of HARQ transmissions			[4]	[4]		
Information Bit Payload per Sub-Frame						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		2216	4392		
For Sub-Frame 5	Bits		N/A	N/A		
For Sub-Frame 0	Bits		1800	4392		
Transport block CRC	Bits		24	24		
Number of Code Blocks per Sub-Frame						
(Note 4)						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		1	1		
For Sub-Frame 5	Bits		N/A	N/A		
For Sub-Frame 0	Bits		1	1		
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		6300	13800		
For Sub-Frame 5	Bits		N/A	N/A		
For Sub-Frame 0	Bits		5460	12960		
Max. Throughput averaged over 1 frame	kbps		1952.	3952.	_	
			8	8		
UE Category			1-8	1-8		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 4: Redundancy version coding sequence is {0, 1, 2, 3} for QPSK.

Table G.3-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit	Value
Channel Bandwidth	MHz	10
Allocated resource blocks		50
Uplink-Downlink Configuration (Note 5)		1 1
Allocated subframes per Radio Frame		4+2
(D+S)		
Number of HARQ Processes	Processes	7
Maximum number of HARQ transmission		[4]
Modulation		QPSK
Target coding rate		1/3
Information Bit Payload per Sub-Frame	Bits	
For Sub-Frame 4, 9		4392
For Sub-Frame 1, 6		3240
For Sub-Frame 5		N/A
For Sub-Frame 0		4392
Transport block CRC	Bits	24
Number of Code Blocks per Sub-Frame		
(Note 5)		
For Sub-Frame 4, 9		1 1
For Sub-Frame 1, 6		1
For Sub-Frame 5		N/A
For Sub-Frame 0		1 1
Binary Channel Bits Per Sub-Frame	Bits	
For Sub-Frame 4, 9		13800
For Sub-Frame 1, 6		11256
For Sub-Frame 5		N/A
For Sub-Frame 0		13104
Max. Throughput averaged over 1 frame	kbps	1965.
		6
UE Category		1-5

- For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz Note 1: channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with Note 2: insufficient PDCCH performance
- Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:
- If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 4: each Code Block (otherwise L = 0 Bit). As per Table 4.2-2 in TS 36.211 [4]
- Note 5:
- Redundancy version coding sequence is {0, 1, 2, 3} for QPSK. Note 6:

Annex H (normative): Modified MPR behavior

H.1 Indication of modified MPR behavior

This annex contains the definitions of the bits in the field *modifiedMPRbehavior* indicated in the IE UE Radio Access Capability [7] by a UE supporting an MPR or A-MPR modified in a later release of this specification.

Table H.1-1: Definitions of the bits in the field modifiedMPRbehavior

Index of field	Definition	Notes
(bit number)	(description of the supported functionality if indicator	
	set to one)	
0 (leftmost bit)	- The MPR for intra-band contiguous carrier	- This bit shall be set to 1 by
	aggregation bandwidth class C with non-contiguous	a UE supporting intra-band
	resource allocation specified in Clause 6.2.3A in	contiguous CA bandwidth
	version 12.5.0 of this specification	class C

Annex I (informative): Change history

Table I.1: Change History

Date	TSG#	TSG Doc.	CR	Subject	Old	New
11-2007	R4#45	R4-72206		TS36.101V0.1.0 approved by RAN4	-	
12-2007	RP#38	RP-070979		Approved version at TSG RAN #38	1.0.0	8.0.0
03-2008	RP#39	RP-080123	3	TS36.101 - Combined updates of E-UTRA UE requirements	8.0.0	8.1.0
05-2008	RP#40	RP-080325	4	TS36.101 - Combined updates of E-UTRA UE requirements	8.1.0	8.2.0
09-2008	RP#41	RP-080638	5r1	Addition of Ref Sens figures for 1.4MHz and 3MHz Channel bandwiidths	8.2.0	8.3.0
09-2008	RP#41	RP-080638	7r1	Transmitter intermodulation requirements	8.2.0	8.3.0
09-2008	RP#41	RP-080638	10	CR for clarification of additional spurious emission requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080638	15	Correction of In-band Blocking Requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080638	18r1	TS36.101: CR for section 6: NS_06	8.2.0	8.3.0
09-2008	RP#41	RP-080638	19r1	TS36.101: CR for section 6: Tx modulation	8.2.0	8.3.0
09-2008	RP#41	RP-080638	20r1	TS36.101: CR for UE minimum power	8.2.0	8.3.0
09-2008	RP#41	RP-080638	21r1	TS36.101: CR for UE OFF power	8.2.0	8.3.0
09-2008	RP#41	RP-080638	24r1	TS36.101: CR for section 7: Band 13 Rx sensitivity	8.2.0	8.3.0
09-2008	RP#41	RP-080638	26	UE EVM Windowing	8.2.0	8.3.0
09-2008	RP#41	RP-080638	29	Absolute ACLR limit	8.2.0	8.3.0
09-2008	RP#41	RP-080731	23r2	TS36.101: CR for section 6: UE to UE co-existence	8.2.0	8.3.0
09-2008	RP#41	RP-080731	30	Removal of [] for UE Ref Sens figures	8.2.0	8.3.0
09-2008	RP#41	RP-080731	31	Correction of PA, PB definition to align with RAN1 specification	8.2.0	8.3.0
09-2008	RP#41	RP-080731	37r2	UE Spurious emission band UE co-existence	8.2.0	8.3.0
09-2008	RP#41	RP-080731	44	Definition of specified bandwidths	8.2.0	8.3.0
09-2008	RP#41	RP-080731	48r3	Addition of Band 17	8.2.0	8.3.0
09-2008	RP#41	RP-080731	50	Alignment of the UE ACS requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080731	52r1	Frequency range for Band 12	8.2.0	8.3.0
09-2008	RP#41	RP-080731	54r1	Absolute power tolerance for LTE UE power control	8.2.0	8.3.0
09-2008	RP#41	RP-080731	55	TS36.101 section 6: Tx modulation	8.2.0	8.3.0
09-2008	RP#41	RP-080732	6r2	DL FRC definition for UE Receiver tests	8.2.0	8.3.0
09-2008	RP#41	RP-080732	46	Additional UE demodulation test cases	8.2.0	8.3.0
09-2008	RP#41	RP-080732	47	Updated descriptions of FRC	8.2.0	8.3.0
09-2008	RP#41	RP-080732	49	Definition of UE transmission gap	8.2.0	8.3.0
09-2008	RP#41	RP-080732	51	Clarification on High Speed train model in 36.101	8.2.0	8.3.0
09-2008	RP#41	RP-080732	53	Update of symbol and definitions	8.2.0	8.3.0
09-2008	RP#41	RP-080743	56	Addition of MIMO (4x2) and (4x4) Correlation Matrices	8.2.0	8.3.0
12-2008	RP#42	RP-080908	94r2	CR TX RX channel frequency separation	8.3.0	8.4.0
12-2008	RP#42	RP-080909	105r1	UE Maximum output power for Band 13	8.3.0	8.4.0
12-2008	RP#42	RP-080909	60	UL EVM equalizer definition	8.3.0	8.4.0
12-2008	RP#42	RP-080909	63	Correction of UE spurious emissions	8.3.0	8.4.0
12-2008	RP#42	RP-080909	66	Clarification for UE additional spurious emissions	8.3.0	8.4.0
12-2008	RP#42	RP-080909	72	Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803	8.3.0	8.4.0
12-2008	RP#42	RP-080909	75	Removal of [] from Section 6 transmitter characteristcs	8.3.0	8.4.0
12-2008	RP#42	RP-080909	81	Clarification for PHS band protection	8.3.0	8.4.0
12-2008	RP#42	RP-080909	101	Alignement for the measurement interval for transmit signal quality	8.3.0	8.4.0
12-2008	RP#42	RP-080909	98r1	Maximum power	8.3.0	8.4.0
12-2008	RP#42	RP-080909	57r1	CR UE spectrum flatness	8.3.0	8.4.0
12-2008	RP#42	RP-080909	71r1	UE in-band emission	8.3.0	8.4.0
12-2008	RP#42	RP-080909	58r1	CR Number of TX exceptions	8.3.0	8.4.0
12-2008	RP#42	RP-080951	99r2	CR UE output power dynamic	8.3.0	8.4.0
12-2008	RP#42	RP-080951	79r1	LTE UE transmitter intermodulation	8.3.0	8.4.0
12-2008	RP#42	RP-080910	91	Update of Clause 8	8.3.0	8.4.0
12-2008	RP#42	RP-080950	106r1	Structure of Clause 9 including CSI requirements for PUCCH mode 1-0	8.3.0	8.4.0
12-2008	RP#42	RP-080911	59	CR UE ACS test frequency offset	8.3.0	8.4.0
12-2008	RP#42	RP-080911	65	Correction of spurious response parameters	8.3.0	8.4.0
12-2008	RP#42	RP-080911	80	Removal of LTE UE narrowband intermodulation	8.3.0	8.4.0
12-2008	RP#42	RP-080911	90r1	Introduction of Maximum Sensitivity Degradation	8.3.0	8.4.0

05-2009	RP#44	RP-090540	169	Editorial correction to in-band blocking table. (Technically Endorsed CR in R4-50bis - R4-091238)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	168	EARFCN correction for TDD DL bands. (Technically Endorsed CR in R4-50bis - R4-091206)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	167	for 1.4 MHz and 3 MHz bandwiths. (Technically Endorsed CR in R4-50bis - R4-091205)	8.5.1	8.6.0
		DD 000540	407	Boundary between E-UTRA fOOB and spurious emission domain		
03-2009	RP#44			Editorial correction in Table 6.2.4-1	8.5.0	8.5.1
03-2009	RP#43	RP-090369	111	Reference Measurement Channel for TDD	8.4.0	8.5.0
03-2009	RP#43	RP-090369	164	PUCCH 1-1 Static Test Case	8.4.0	8.5.0
03-2009	RP#43	RP-090369	161	CQI reference measurement channels	8.4.0	8.5.0
03-2009	RP#43	RP-090369		Clarification on OCNG	8.4.0	8.5.0
03-2009	RP#43	RP-090369	138r1	Update of Clause 9	8.4.0	8.5.0
			125			
03-2009	RP#43	RP-090369	121	Correction of 36.101 DL RMC table notes	8.4.0	8.5.0
03-2009	RP#43	RP-090369	114	Addition of MIMO (4x4, medium) Correlation Matrix	8.4.0	8.5.0
03-2009	RP#43	RP-090369	110	Correction to UL Reference Measurement Channel	8.4.0	8.5.0
03-2009	RP#43	RP-090173	162	Clarification of EARFCN for 36.101	8.4.0	8.5.0
03-2009	RP#43	RP-090172	163r1	MBSFN-Unicast demodulation test case for TDD	8.4.0	8.5.0
03-2009	RP#43	RP-090172	160r1	MBSFN-Unicast demodulation test case	8.4.0	8.5.0
03-2009	RP#43	RP-090172	145	Number of information bits in DwPTS	8.4.0	8.5.0
03-2009	RP#43	RP-090172	142r1	Performance requirements and reference measurement channels for TDD PDSCH demodulation with UE-specific reference symbols	8.4.0	8.5.0
03-2009	RP#43	RP-090172	139r1	Performance requirement structure for TDD PDSCH	8.4.0	8.5.0
03-2009	RP#43	RP-090172	124	Update of Clause 8: additional test cases	8.4.0	8.5.0
03-2009	RP#43	RP-090172	109	AWGN level for UE DL demodulation performance tests	8.4.0	8.5.0
03-2009	RP#43	RP-090171	141	Correction of reference sensitivity power level of Band 9	8.4.0	8.5.0
03-2009	RP#43	RP-090171	137r1	Wide band intermodulation	8.4.0	8.5.0
03-2009	RP#43	RP-090171	127	In-band blocking and sensitivity requirement for band 17	8.4.0	8.5.0
03-2009	RP#43	RP-090171	113	In-band blocking	8.4.0	8.5.0
03-2009	RP#43	RP-090170	140	Removal of ACLR2bis requirements	8.4.0	8.5.0
03-2009	RP#43	RP-090170	134	UL DM-RS EVM	8.4.0	8.5.0
03-2009	RP#43	RP-090170	132r2	PUCCH EVM	8.4.0	8.5.0
03-2009	RP#43	RP-090170 RP-090170	130	Spectrum flatness	8.4.0	8.5.0
03-2009 03-2009	RP#43 RP#43	RP-090170 RP-090170	126 128	UE uplink power control Transmission BW Configuration	8.4.0 8.4.0	8.5.0 8.5.0
03-2009	RP#43	RP-090170	120	heading	8.4.0	8.5.0
03-2009	RP#43	RP-090170	119	Spectrum emission mask for 1.4 MHz and 3 MHz bandwidhts Removal of "Out-of-synchronization handling of output power"	8.4.0	8.5.0
03-2009	RP#43	RP-090170	116	Clarification of PHS band including the future plan	8.4.0	8.5.0
03-2009	RP#43	RP-090170	155	E-UTRA ACLR for below 5 MHz bandwidths	8.4.0	8.5.0
03-2009	RP#43	RP-090170	108	Removal of [] from Transmitter Intermodulation	8.4.0	8.5.0
03-2009	RP#43	RP-090170	170	Corrections of references (References to tables and figures)	8.4.0	8.5.0
03-2009	RP#43	RP-090170	156r2	A-MPR table for NS_07	8.4.0	8.5.0
12-2008 12-2008	RP#42 RP#42	RP-080919 RP-080927	102 84r1	Introduction of Bands 12 and 17 in 36.101 Clarification of HST propagation conditions	8.3.0	8.4.0
12-2008	RP#42	RP-080917 RP-080919	85r1	New Clause 5 outline Introduction of Bands 12 and 17 in 36.101	8.3.0 8.3.0	8.4.0 8.4.0
12-2008	RP#42	RP-080916	77	Modification to EARFCN	8.3.0	8.4.0
12-2008	RP#42	RP-080915	67	Correction to the figure with the Transmission Bandwidth configuration	8.3.0	8.4.0
12-2008	RP#42	RP-080913	68	MIMO Correlation Matrix Corrections	8.3.0	8.4.0
12-2008	RP#42	RP-080912	104	Reference measurement channels for PDSCH performance requirements (TDD)	8.3.0	8.4.0
12-2008	RP#42	RP-080912	74r1	Addition of UL Reference Measurement Channels	8.3.0	8.4.0
12-2008	RP#42	RP-080912	73r1	Addition of 64QAM DL referenbce measurement channel	8.3.0	8.4.0
12-2008	RP#42	RP-080912 RP-080912	78	TDD Reference Measurement channel for RX characterisctics	8.3.0	8.4.0
12-2008	RP#42		62	Alignement of TB size n Ref Meas channel for RX characteristics	8.3.0	8.4.0

09-2009 09-2009 09-2009 09-2009 09-2009 09-2009	RP#45 RP#45 RP#45 RP#45 RP#45	RP-090877 RP-090877 RP-090877 RP-090877 RP-090877	261 263R1 286 320 324	Correction of LTE UE ACS test parameter Correction of LTE UE ACLR test parameter Uplink power and RB allocation for receiver tests CR Sensitivity relaxation for small BW Correction of Band 3 spurious emission band UE co-existence	9.0.0 9.0.0 9.0.0 9.0.0 9.0.0	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0
09-2009 09-2009 09-2009	RP#45 RP#45 RP#45	RP-090877 RP-090877 RP-090877	263R1 286	Correction of LTE UE ACLR test parameter Uplink power and RB allocation for receiver tests	9.0.0 9.0.0	9.1.0 9.1.0
09-2009 09-2009	RP#45 RP#45	RP-090877 RP-090877	263R1	Correction of LTE UE ACLR test parameter	9.0.0	9.1.0
09-2009	RP#45	RP-090877				
00-2000	DD#/E	NF-090022	240	bandwidths on bands 13 and 17	3.0.0	3.1.0
		RP-090822	245	Removal of unnecessary requirements for 1.4 and 3 MHz	9.0.0	9.1.0
09-2009	RP#45	RP-090822	238	Band 18 and 19 Addition of 5MHz channel bandwidth for Band 40	9.0.0	9.1.0
09-2009	RP#45	RP-090822	236	Operating band edge relaxation of maximum output power for	9.0.0	9.1.0
09-2009	RP#45	RP-090822	229	Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths	9.0.0	9.1.0
09-2009	RP#45	RP-090822	227	Harmonization of text for LTE Carrier leakage	9.0.0	9.1.0
09-2009	RP#45	RP-090822	225	BW	9.0.0	9.1.0
				LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz	1	+
09-2009	RP#45	RP-090826	239	Endorsed CR in R4-50bis - R4-091432) A-MPR for Band 19	9.0.0	9.1.0
05-2009	RP#44	RP-090559	180	Introduction of Extended LTE800 requirements. (Technically	8.6.0	9.0.0
05-2009	RP#44	RP-090543	216	Addition of 15 MHz and 20 MHz bandwidths into band 38	8.5.1	8.6.0
05-2009	RP#44	RP-090543	221r1	Correction to DL RMC-s for Maximum input level for supporting more UE-Categories	8.5.1	8.6.0
05-2009	RP#44	RP-090543	185r1	Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510)	8.5.1	8.6.0
05-2009	RP#44	RP-090543	184r1	Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506)	8.5.1	8.6.0
05-2009	RP#44	RP-090543	193r1	channels	8.5.1	8.6.0
05-2009	RP#44	RP-090543	188r1	Adaptation of UL-RMC-s for supporting more UE categories Correction of the LTE UE downlink reference measurement	8.5.1	8.6.0
05-2009	RP#44	RP-090543	199	CQI requirements under AWGN conditions	8.5.1	8.6.0
05-2009	RP#44	RP-090543	183	Endorsed CR in R4-50bis - R4-091505)	8.5.1	8.6.0
05-2009	RP#44	RP-090542	170r1	CR in R4-50bis - R4-091275) Requirements for frequency-selective fading test. (Technically	8.5.1	8.6.0
05-2009	RP#44	RP-090542	182	(Technically Endorsed CR in R4-50bis - R4-091504) Update of Clause 8: PHICH and PMI delay. (Technically Endorsed	8.5.1	8.6.0
05-2009	RP#44	RP-090542	175	requirements. (Technically Endorsed CR in R4-50bis - R4- 091406) OCNG Patterns for Single Resource Block FRC Requirements.	8.5.1	8.6.0
				091180) Adding AWGN levels for some TDD DL performance		
05-2009	RP#44	RP-090542	166	Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-	8.5.1	8.6.0
05-2009	RP#44	RP-090541	198r1	Maximum output power relaxation	8.5.1	8.6.0
05-2009	RP#44 RP#44	RP-090540 RP-090540	19712 196r2	CR: Rx IP2 performance	8.5.1	8.6.0
05-2009 05-2009	RP#44 RP#44	RP-090540 RP-090540	220r1 197r2	Spectrum emission requirements for band 13 CR on aggregate power tolerance	8.5.1	8.6.0 8.6.0
05-2009	RP#44	RP-090540	178r2	CR in R4-50bis - R4-091421)	8.5.1 8.5.1	8.6.0
05-2009	RP#44	RP-090540	200r1	No additional emission mask indication. (Technically Endorsed		
05-2009	RP#44	RP-090540	205r1	CR In-band emissions in shortened subframes CR PUCCH EVM	8.5.1 8.5.1	8.6.0 8.6.0
05-2009	RP#44	RP-090540	218r1	A-MPR table for NS_07	8.5.1	8.6.0
05-2009	RP#44	RP-090540	207	CR UL DM-RS EVM	8.5.1	8.6.0
05-2009	RP#44	RP-090540	206	CR Minimum Rx exceptions	8.5.1	8.6.0
05-2009	RP#44	RP-090540	204	CR In-band emissions timing	8.5.1	8.6.0
05-2009	RP#44	RP-090540 RP-090540	203	CR EVM exclusion period	8.5.1	8.6.0
05-2009 05-2009	RP#44 RP#44	RP-090540 RP-090540	223 201	CR: 64 QAM EVM CR In-band emissions	8.5.1 8.5.1	8.6.0 8.6.0
05-2009	RP#44	RP-090540	192	and 17.	8.5.1	8.6.0
05-2009	RP#44	RP-090540	191	Completion of band17 requirements Removal of 1.4 MHz and 3 MHz bandwidths from bands 13. 14	8.5.1	8.6.0
05-2009	RP#44	RP-090540	187	frequencies	8.5.1	8.6.0
05-2009	RP#44	RP-090540	186	Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4-091512) Removal of [] from band 17 Refsens values and ACS offset	8.5.1	8.6.0
05-2009	RP#44	RP-090540	179	Correction of SRS requirements. (Technically Endorsed CR in R4-50bis - R4-091426)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	177	CR power control accuracy. (Technically Endorsed CR in R4-50bis - R4-091418)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	172	CR EVM correction. (Technically Endorsed CR in R4-50bis - R4-091309)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	171	CR PRACH EVM. (Technically Endorsed CR in R4-50bis - R4-091308)	8.5.1	8.6.0

09-2009	RP#45	RP-090877	249R1	CR Pcmax definition (working assumption)	9.0.0	9.1.0
09-2009	RP#45	RP-090877	330	Spectrum flatness clarification	9.0.0	9.1.0
09-2009	RP#45	RP-090877	332	Transmit power: removal of TC and modification of REFSENS note	9.0.0	9.1.0
09-2009	RP#45	RP-090877	282R1	Additional SRS relative power requirement and update of measurement definition	9.0.0	9.1.0
09-2009	RP#45	RP-090877	284R1	Power range applicable for relative tolerance	9.0.0	9.1.0
09-2009	RP#45	RP-090878	233	TDD UL/DL configurations for CQI reporting	9.0.0	9.1.0
09-2009	RP#45	RP-090878	235	Further clarification on CQI test configurations	9.0.0	9.1.0
09-2009	RP#45	RP-090878	243	Corrections to UL- and DL-RMC-s	9.0.0	9.1.0
09-2009	RP#45	RP-090878	247	Reference measurement channel for multiple PMI requirements	9.0.0	9.1.0
09-2009	RP#45	RP-090878	290	CQI reporting test for a scenario with frequency-selective interference	9.0.0	9.1.0
09-2009	RP#45	RP-090878	265R2	CQI reference measurement channels	9.0.0	9.1.0
09-2009	RP#45	RP-090878	321R1	CR RI Test	9.0.0	9.1.0
09-2009	RP#45	RP-090875	231	Correction of parameters for demodulation performance requirement	9.0.0	9.1.0
09-2009	RP#45	RP-090875	241R1	UE categories for performance tests and correction to RMC references	9.0.0	9.1.0
09-2009	RP#45	RP-090875	333	Clarification of Es definition in the demodulation requirement	9.0.0	9.1.0
09-2009	RP#45	RP-090875	326	Editorial corrections and updates to PHICH PBCH test cases.	9.0.0	9.1.0
09-2009	RP#45	RP-090875	259R3	Test case numbering in section 8 Performance tests	9.0.0	9.1.0
12-2009	RP-46	RP-091264	335	Test case numbering in TDD PDSCH performance test (Technically endorsed at RAN 4 52bis in R4-093523)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	337	Adding beamforming model for user-specfic reference signal (Technically endorsed at RAN 4 52bis in R4-093525)	9.1.0	9.2.0
12-2009	RP-46	RP-091263	339R1	Adding redundancy sequences to PMI test (Technically endorsed at RAN 4 52bis in R4-093581)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	341	Throughput value correction at FRC for Maximum input level (Technically endorsed at RAN 4 52bis in R4-093660)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	343	Correction to the modulated E-UTRA interferer (Technically endorsed at RAN 4 52bis in R4-093662)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	345R1	OCNG: Patterns and present use in tests (Technically endorsed at RAN 4 52bis in R4-093664)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	347	OCNG: Use in receiver and performance tests (Technically endorsed at RAN 4 52bis in R4-093666)	9.1.0	9.2.0
12-2009	RP-46	RP-091263	349	Miscellaneous corrections on CSI requirements (Technically endorsed at RAN 4 52bis in R4-093676)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	351	Removal of RLC modes (Technically endorsed at RAN 4 52bis in R4-093677)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	353	CR Rx diversity requirement (Technically endorsed at RAN 4 52bis in R4-093703)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	355	A-MPR notation in NS_07 (Technically endorsed at RAN 4 52bis in R4-093706) Single- and multi-PMI requirements (Technically endorsed at RAN	9.1.0	9.2.0
12-2009	RP-46	RP-091263	359	4 52bis in R4-093846) CQI reference measurement channel (Technically endorsed at	9.1.0	9.2.0
12-2009	RP-46	RP-091263	363	RAN 4 52bis in R4-093970) LTE MBSFN Channel Model (Technically endorsed at RAN 4	9.1.0	9.2.0
12-2009	RP-46	RP-091292	364	52bis in R4-094020) Numbering of PDSCH (User-Specific Reference Symbols)	9.1.0	9.2.0
12-2009 12-2009	RP-46 RP-46	RP-091264 RP-091264	367 369	Demodulation Tests Numbering of PDCCH/PCFICH, PHICH, PBCH Demod Tests	9.1.0	9.2.0
12-2009	RP-46	RP-091261	371	Remove [] from Reference Measurement Channels in Annex A	9.1.0	9.2.0
12-2009	RP-46	RP-091264	373R1	Corrections to RMC-s for Maximum input level test for low UE categories	9.1.0	9.2.0
12-2009	RP-46	RP-091261	377	Correction of UE-category for R.30	9.1.0	9.2.0
12-2009	RP-46	RP-091286	378	Introduction of Extended LTE1500 requirements for TS36.101	9.1.0	9.2.0
12-2009	RP-46	RP-091262	384	CR: Removal of 1.4 MHz and 3 MHz channel bandwidths from additional spurious emissions requirements for Band 1 PHS protection	9.1.0	9.2.0
12-2009	RP-46	RP-091262	386R3	Clarification of measurement conditions of spurious emission requirements at the edge of spurious domain	9.1.0	9.2.0
12-2009	RP-46	RP-091262	390	Spurious emission table correction for TDD bands 33 and 38.	9.1.0	9.2.0
12-2009 12-2009	RP-46 RP-46	RP-091262 RP-091262	392R2 394	36.101 Symbols and abreviations for Pcmax UTRAACLR1 requirement definition for 1.4 and 3 MHz BW	9.1.0 9.1.0	9.2.0
12-2009	RP-46	RP-091263	396	completed Introduction of the ACK/NACK feedback modes for TDD	9.1.0	9.2.0
				requirements		
12-2009	RP-46	RP-091262 RP-091262	404R3 416R1	CR Power control exception R8 Relative power tolerance: special case for receiver tests	9.1.0 9.1.0	9.2.0 9.2.0
12 2000		スピーロタ レクリノ	1 4 IOK I	r neiguve dower tolerance, special case for feceiver tests	i 9. i.U	J.∠.U
12-2009 12-2009	RP-46 RP-46	RP-091263	420R1	CSI reporting: test configuration for CQI fading requirements	9.1.0	9.2.0

		T	ı			1
12-2009	RP-46	RP-091264	425	Editorial corrections and updates to Clause 8.2.1 FDD	9.1.0	9.2.0
12-2009	RP-46	RP-091262	427	demodulation test cases CR: time mask	9.1.0	9.2.0
				Correction of the payload size for PDCCH/PCFICH performance		
12-2009	RP-46	RP-091264	430	requirements	9.1.0	9.2.0
12-2009	RP-46	RP-091263	432	Transport format and test point updates to RI reporting test cases	9.1.0	9.2.0
12-2009	111 -40	1031203		Transport format and test point updates to fit reporting test cases Transport format and test setup updates to frequency-selective		
12-2009	RP-46	RP-091263	434	interference CQI tests	9.1.0	9.2.0
12-2009	RP-46	RP-091263	436	CR RI reporting configuration in PUCCH 1-1 test	9.1.0	9.2.0
12-2009	RP-46	RP-091261	438	Addition of R.11-1 TDD references	9.1.0	9.2.0
12-2009	RP-46	RP-091201	439	Performance requirements for LTE MBMS	9.1.0	9.2.0
12-2009	RP-46	RP-091292 RP-091262	442R1	In Band Emissions Requirements Correction CR	9.1.0	9.2.0
12-2009	RP-46	RP-091262	444R1	PCMAX definition	9.1.0	9.2.0
03-2010	RP-47	RP-100246	453r1	Corrections of various errors in the UE RF requirements	9.1.0	9.2.0
03-2010	RP-47	RP-100246	462r1	UTRA ACLR measurement bandwidths for 1.4 and 3 MHz	9.2.0	9.3.0
03-2010	RP-47	RP-100246	493	Band 8 Coexistence Requirement Table Correction	9.2.0	9.3.0
03-2010	RP-47	RP-100246	489r1	Rel 9 CR for Band 14	9.2.0	9.3.0
03-2010	RP-47	RP-100246	485r1	CR Band 1- PHS coexistence	9.2.0	9.3.0
03-2010	RP-47	RP-100247	501	Fading CQI requirements for FDD mode	9.2.0	9.3.0
03-2010	RP-47	RP-100247	499	CR correction to RI test	9.2.0	9.3.0
03-2010	RP-47	RP-100249	451	Reporting mode, Reporting Interval and Editorial corrections for demodulation	9.2.0	9.3.0
03-2010	RP-47	RP-100249	464r1	Corrections to 1PRB PDSCH performance test in presence of	9.2.0	9.3.0
				MBSFN.		
03-2010	RP-47	RP-100249	458r1	OCNG corrections	9.2.0	9.3.0
03-2010	RP-47	RP-100249	467	Addition of ONCG configuration in DRS performance test	9.2.0	9.3.0
03-2010	RP-47	RP-100249	465r1	PDSCH performance tests for low UE categories	9.2.0	9.3.0
03-2010	RP-47	RP-100250	460r1	Use of OCNG in CSI tests	9.2.0	9.3.0
03-2010	RP-47	RP-100250	491r1	Corrections to CQI test configurations	9.2.0	9.3.0
03-2010	RP-47	RP-100250	469r1	Corrections of some CSI test parameters	9.2.0	9.3.0
03-2010	RP-47	RP-100251	456r1	TBS correction for RMC UL TDD 16QAM full allocation BW 1.4	9.2.0	9.3.0
00.0040	DD 47	DD 400000	440	MHz	0.00	0.00
03-2010	RP-47	RP-100262	449	Editorial corrections on Band 19 REFSENS	9.2.0	9.3.0
03-2010	RP-47	RP-100263	470r1	Band 20 UE RF requirements	9.2.0	9.3.0
03-2010	RP-47	RP-100264	446r1	A-MPR for Band 21	9.2.0	9.3.0
03-2010	RP-47	RP-100264	448	RF requirements for UE in later releases	9.2.0	9.3.0
03-2010	RP-47	RP-100268	445	36.101 CR: Editorial corrections on LTE MBMS reference	9.2.0	9.3.0
				measurement channels		
03-2010	RP-47	RP-100268	454	The definition of the Doppler shift for LTE MBSFN Channel Model	9.2.0	9.3.0
03-2010	RP-47	RP-100239	478r3	Modification of the spectral flatness requirement and some	9.2.0	9.3.0
				editorial corrections		
06-2010	RP-48	RP-100619	559	Corrections of tables for Additional Spectrum Emission Mask	9.3.0	9.4.0
06-2010	RP-48	RP-100619	538	Correction of transient time definition for EVM requirements	9.3.0	9.4.0
06-2010	RP-48	RP-100619	557r2	CR on UE coexistence requirement	9.3.0	9.4.0
06-2010				Correction of antenna configuration and beam-forming model for	9.3.0	9.4.0
	RP-48	RP-100619	547r1	DRS	3.3.0	3.4.0
06-2010				CR: Corrections on MIMO demodulation performance	9.3.0	9.4.0
	RP-48	RP-100619	536r1	requirements		
06-2010	RP-48	RP-100619	528r1	Corrections on the definition of PCMAX	9.3.0	9.4.0
06-2010	l			Relaxation of the PDSCH demodulation requirements due to	9.3.0	9.4.0
	RP-48	RP-100619	568	control channel errors		
06-2010	RP-48	RP-100619	566	Correction of the UE output power definition for RX tests	9.3.0	9.4.0
06-2010	RP-48	RP-100620	505r1	Fading CQI requirements for TDD mode	9.3.0	9.4.0
06-2010	RP-48	RP-100620	521	Correction to FRC for CQI index 0	9.3.0	9.4.0
06-2010	RP-48	RP-100620	516r1	Correction to CQI test configuration	9.3.0	9.4.0
06-2010	RP-48	RP-100620	532	Correction of CQI and PMI delay configuration description for TDD	9.3.0	9.4.0
06-2010	RP-48	RP-100620	574	Correction to FDD and TDD CSI test configurations	9.3.0	9.4.0
06-2010	RP-48	RP-100620	571	Minimum requirements for Rank indicator reporting	9.3.0	9.4.0
06-2010	RP-48	RP-100628	563	LTE MBMS performance requirements (FDD)	9.3.0	9.4.0
06-2010	RP-48	RP-100628	564	LTE MBMS performance requirements (TDD)	9.3.0	9.4.0
06-2010	RP-48	RP-100629	553r2	Performance requirements for dual-layer beamforming	9.3.0	9.4.0
06-2010	RP-48	RP-100630	524r2	CR: low Category CSI requirement	9.3.0	9.4.0
06-2010	RP-48	RP-100630	519	Correction of FRC reference and test case numbering	9.3.0	9.4.0
06-2010	<u> </u>			Correction of carrier frequency and EARFCN of Band 21 for		
	RP-48	RP-100630	526	TS36.101	9.3.0	9.4.0
06-2010	1			Addition of PDSCH TDD DRS demodulation tests for Low UE	030	0.4.0
	RP-48	RP-100630	508r1	categories	9.3.0	9.4.0
06-2010				Specification of minimum performance requirements for low UE	020	0.4.0
	RP-48	RP-100630	539	category	9.3.0	9.4.0
06-2010				Addition of minimum performance requirements for low UE	0.2.0	0.4.0
	RP-48	RP-100630	569	category TDD CRS single-antenna port tests	9.3.0	9.4.0
06-2010				Introduction of sustained downlink data-rate performance	0.2.0	0.4.0
	RP-48	RP-100631	549r3	requirements	9.3.0	9.4.0
06-2010	RP-48	RP-100683	530r1	Band 20 Rx requirements	9.3.0	9.4.0

	DD 40	DD 100020	61.4r2	Add OCNC to MPMS requirements	0.40	0.5.0
09-2010 09-2010	RP-49 RP-49	RP-100920 RP-100916	614r2 599	Add OCNG to MBMS requirements Correction of PDCCH content for PHICH test	9.4.0 9.4.0	9.5.0 9.5.0
09-2010	RP-49	RP-100910	597r1	Beamforming model for transmission on antenna port 7/8	9.4.0	9.5.0
09-2010	RP-49	RP-100920	600r1	Correction of full correlation in frequency-selective CQI test	9.4.0	9.5.0
	111 45	100320	00011	Correction on single-antenna transmission fixed reference	3.4.0	3.3.0
09-2010	RP-49	RP-100920	601	channel	9.4.0	9.5.0
	1	111 100020		Reference sensitivity requirements for the 1.4 and 3 MHz	01.110	0.0.0
09-2010	RP-49	RP-100914	605	bandwidths	9.4.0	9.5.0
09-2010	RP-49	RP-100920	608r1	CR for DL sustained data rate test	9.4.0	9.5.0
09-2010				Correction of references in section 10 (MBMS performance		
1	RP-49	RP-100919	611	requirements)	9.4.0	9.5.0
09-2010	RP-49	RP-100914	613	Band 13 and Band 14 spurious emission corrections	9.4.0	9.5.0
09-2010	RP-49	RP-100919	617r1	Rx Requirements	9.4.0	9.5.0
09-2010	RP-49	RP-100926	576r1	Clarification on DL-BF simulation assumptions	9.4.0	9.5.0
09-2010	RP-49	RP-100920	582r1	Introduction of additional Rel-9 scenarios	9.4.0	9.5.0
09-2010	RP-49	RP-100925	575r1	Correction to band 20 ue to ue Co-existence table	9.4.0	9.5.0
09-2010	RP-49	RP-100916	581r1	Test configuration corrections to CQI reporting in AWGN	9.4.0	9.5.0
09-2010	RP-49	RP-100916	595	Corrections to RF OCNG Pattern OP.1 and 2	9.4.0	9.5.0
09-2010	RP-49	RP-100919	583	Editorial corrections of 36.101	9.4.0	9.5.0
09-2010	DD 40	DD 400000	E06	Addition of minimum performance requirements for low UE	0.4.0	0.5.0
00 2010	RP-49	RP-100920	586	category TDD tests	9.4.0	9.5.0
09-2010 09-2010	RP-49 RP-49	RP-100914 RP-100920	590r1 591	Downlink power for receiver tests OCNG use and power in beamforming tests	9.4.0	9.5.0 9.5.0
09-2010	RP-49	RP-100920 RP-100916	593	Throughput for multi-datastreams transmissions	9.4.0	9.5.0
09-2010	RP-49	RP-100916 RP-100914	588	Missing note in Additional spurious emission test with NS_07	9.4.0	9.5.0
09-2010	RP-49	RP-100914	596r2	CR LTE_TDD_2600_US spectrum band definition additions to TS	9.5.0	10.0.0
09-2010	1(1 -43	100327	39012	36.101	9.5.0	10.0.0
12-2010	RP-50	RP-101309	680	Demodulation performance requirements for dual-layer	10.0.0	10.1.0
12-2010	111 30	101303	000	beamforming	10.0.0	10.1.0
12-2010	RP-50	RP-101325	672	Correction on the statement of TB size and subband selection in	10.0.0	10.1.0
1				CSI tests		
12-2010	RP-50	RP-101327	652	Correction to Band 12 frequency range	10.0.0	10.1.0
12-2010	RP-50	RP-101329	630	Removal of [] from TDD Rank Indicator requirements	10.0.0	10.1.0
12-2010	RP-50	RP-101329	635r1	Test configuration corrections to CQI TDD reporting in AWGN	10.0.0	10.1.0
I				(Rel-10)		
12-2010	RP-50	RP-101330	645	EVM window length for PRACH	10.0.0	10.1.0
12-2010	RP-50	RP-101330	649	Removal of NS signalling from TDD REFSENS tests	10.0.0	10.1.0
12-2010	RP-50	RP-101330	642r1	Correction of Note 4 In Table 7.3.1-1: Reference sensitivity QPSK	10.0.0	10.1.0
<u> </u>				PREFSENS		
12-2010	RP-50	RP-101341	627	Add 20 RB UL Ref Meas channel	10.0.0	10.1.0
12-2010	RP-50	RP-101341	654r1	Additional in-band blocking requirement for Band 12	10.0.0	10.1.0
12-2010	RP-50	RP-101341	678	Further clarifications for the Sustained Downlink Data Rate Test	10.0.0	10.1.0
12-2010 12-2010	RP-50 RP-50	RP-101341 RP-101349	673r1 667r3	Correction on MBMS performance requirements CR Removing brackets of Band 41 reference sensitivity to TS	10.0.0	10.1.0
12-2010	KF-50	KF-101349	00/13	36.101	10.0.0	10.1.0
12-2010	RP-50	RP-101356	666r2	Band 42 and 43 parameters for UMTS/LTE 3500 (TDD) for TS	10.0.0	10.1.0
12-2010	111 30	101000	00012	36.101	10.0.0	10.1.0
12-2010	RP-50	RP-101359	646r1	CR for CA, UL-MIMO, eDL-MIMO, CPE	10.0.0	10.1.0
12-2010	RP-50	RP-101361	620r1	Introduction of L-band in TS 36.101	10.0.0	10.1.0
12-2010	RP-50	RP-101379	670r1	Correction on the PMI reporting in Multi-Laye Spatial Multiplexing	10.0.0	10.1.0
<u> </u>			1	performance test	2.2.0	
12-2010	RP-50	RP-101380	679r1	Adding antenna configuration in CQI fading test case		10.1.0
		111 101000			10.0.0	
01-2011		141 101000		Clause numbering correction	10.0.0	10.1.1
01-2011 03-2011	RP-51	RP-110359	695	Clause numbering correction Removal of E-UTRA ACLR for CA		10.1.1 10.2.0
01-2011 03-2011 03-2011	RP-51 RP-51	RP-110359 RP-110338		Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings	10.1.0	
01-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336	695 699 706r1	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty	10.1.0 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352	695 699 706r1 707r1	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338	695 699 706r1 707r1 710	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338 RP-110359	695 699 706r1 707r1 710 715r2	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338	695 699 706r1 707r1 710	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338 RP-110359 RP-110359	695 699 706r1 707r1 710 715r2 717	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338 RP-110359 RP-110359	695 699 706r1 707r1 710 715r2 717	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338 RP-110359 RP-110359	695 699 706r1 707r1 710 715r2 717	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343	695 699 706r1 707r1 710 715r2 717 719	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343	695 699 706r1 707r1 710 715r2 717 719 723	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343 RP-110343 RP-110343	695 699 706r1 707r1 710 715r2 717 719 723	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removing the square bracket for TS36.101	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110338 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343	695 699 706r1 707r1 710 715r2 717 719 723	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removing the square bracket for TS36.101 Removal of square brackets for dual-layer beamforming	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343 RP-110343 RP-110348	695 699 706r1 707r1 710 715r2 717 719 723 726r1 730 739	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removal of square bracket for TS36.101 Removal of square brackets for dual-layer beamforming demodulation performance requirements	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343 RP-110343 RP-110349 RP-110359	695 699 706r1 707r1 710 715r2 717 719 723 726r1 730 739	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removing the square bracket for TS36.101 Removal of square brackets for dual-layer beamforming demodulation performance requirements CR: Maximum input level for intra band CA	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343 RP-110343 RP-110349 RP-110349	695 699 706r1 707r1 710 715r2 717 719 723 726r1 730 739	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removing the square bracket for TS36.101 Removal of square brackets for dual-layer beamforming demodulation performance requirements CR: Maximum input level for intra band CA UE category coverage for dual-layer beamforming	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343 RP-110343 RP-110349 RP-110349 RP-110349 RP-110343	695 699 706r1 707r1 710 715r2 717 719 723 726r1 730 739 751 754r2 756r1	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removing the square bracket for TS36.101 Removal of square brackets for dual-layer beamforming demodulation performance requirements CR: Maximum input level for intra band CA UE category coverage for dual-layer beamforming Further clarifications for the Sustained Downlink Data Rate Test	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0
01-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011 03-2011	RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51 RP-51	RP-110359 RP-110338 RP-110336 RP-110352 RP-110359 RP-110359 RP-110343 RP-110343 RP-110343 RP-110343 RP-110349 RP-110349	695 699 706r1 707r1 710 715r2 717 719 723 726r1 730 739	Clause numbering correction Removal of E-UTRA ACLR for CA PDCCH and PHICH performance: OCNG and power settings Spurious emissions measurement uncertainty REFSENSE in lower SNR PMI performance: Power settings and precoding granularity Definition of configured transmitted power for Rel-10 Introduction of requirement for adjacent intraband CA image rejection Minimum requirements for the additional Rel-9 scenarios Corrections to power settings for Single layer beamforming with simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10 Removing the square bracket for TS36.101 Removal of square brackets for dual-layer beamforming demodulation performance requirements CR: Maximum input level for intra band CA UE category coverage for dual-layer beamforming	10.1.0 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1 10.1.1	10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0 10.2.0

00.004:	DD 5:	DD 440010	705	Madfragation from small for BUROULO On 1 BUROULO 1	40.4.	40.0.0
03-2011	RP-51	RP-110343	765	Verification framework for PUSCH 2-2 and PUCCH 2-1 reporting	10.1.1	10.2.0
04-2011	DD 50	DD 440004	700	Editorial: Spec Title correction, removal of "Draft"	10.2.0	10.2.1
06-2011	RP-52	RP-110804	766	Add Expanded 1900MHz Band (Band 25) in 36.101	10.2.1	10.3.0
06-2011	RP-52 RP-52	RP-110795 RP-110788	768 772	Fixing Band 24 inclusion in TS 36.101	10.2.1 10.2.1	10.3.0
06-2011				CR: Corrections for UE to UE co-existence requirements of Band 3		
06-2011	RP-52	RP-110812	774	Add 2GHz S-Band (Band 23) in 36.101	10.2.1	10.3.0
06-2011	RP-52	RP-110789	782	CR: Band 19 A-MPR refinement	10.2.1	10.3.0
06-2011	RP-52	RP-110796	787	REFSENS in lower SNR	10.2.1	10.3.0
06-2011	RP-52	RP-110789	805	Clarification for MBMS reference signal levels	10.2.1	10.3.0
06-2011	RP-52	RP-110792	810	FDD MBMS performance requirements for 64QAM mode	10.2.1	10.3.0
06-2011	RP-52	RP-110787	814	Correction on CQI mapping index of RI test	10.2.1	10.3.0
06-2011	RP-52	RP-110789	824	Corrections to in-band blocking table	10.2.1	10.3.0
06-2011	RP-52	RP-110794	826	Correction of TDD Category 1 DRS and DMRS RMCs	10.2.1	10.3.0
06-2011	RP-52	RP-110794	828	TDD MBMS performance requirements for 64QAM mode	10.2.1	10.3.0
06-2011 06-2011	RP-52 RP-52	RP-110796 RP-110796	829 830	Correction of TDD RMC for Low SNR Demodulation test Informative reference sensitivity requirements for Low SNR for	10.2.1 10.2.1	10.3.0
				TDD		
06-2011	RP-52	RP-110787	778r1	Minor corrections to DL-RMC-s for Maximum input level	10.2.1	10.3.0
06-2011	RP-52	RP-110789	832	PDCCH and PHICH performance: OCNG and power settings	10.2.1	10.3.0
06-2011	RP-52	RP-110789	818r1	Correction on 2-X PMI test for R10	10.2.1	10.3.0
06-2011	RP-52	RP-110791	816r1	Addition of performance requirements for dual-layer beamforming category 1 UE test	10.2.1	10.3.0
06-2011	RP-52	RP-110789	834	Performance requirements for PUCCH 2-0, PUCCH 2-1 and PUSCH 2-2 tests	10.2.1	10.3.0
06-2011	RP-52	RP-110807	835r1	CR for UL MIMO and CA	10.2.1	10.3.0
09-2011	RP-53	RP-111248	862r1	Removal of unnecessary channel bandwidths from REFSENS	10.2.1	10.3.0
				tables		
09-2011	RP-53	RP-111248	869r1	Clarification on BS precoding information field for RI FDD and PUCCH 2-1 PMI tests	10.3.0	10.4.0
09-2011	RP-53	RP-111248	872r1	CR for B14Rx requirement Rrel 10	10.3.0	10.4.0
09-2011	RP-53	RP-111248	890r1	CR to TS36.101: Correction on the accuracy test of CQI.	10.3.0	10.4.0
09-2011	RP-53	RP-111248	893	CR to TS36.101: Correction on CQI mapping index of TDD RI test	10.3.0	10.4.0
09-2011	RP-53	RP-111248	904	Correction of code block numbers for some RMCs	10.3.0	10.4.0
09-2011	RP-53	RP-111248	907	Correction to UL RMC for FDD and TDD	10.3.0	10.4.0
09-2011	RP-53	RP-111248	914r1	Adding codebook subset restriction for single layer closed-loop spatial multiplexing test	10.3.0	10.4.0
09-2011	RP-53	RP-111251	883	Sustained data rate: Correction of the ACK/NACK feedback mode	10.3.0	10.4.0
09-2011	RP-53	RP-111251	929	36.101 CR on MBSFN FDD requirements(R10)	10.3.0	10.4.0
09-2011 09-2011	RP-53 RP-53	RP-111251 RP-111252	938 895	TDD MBMS performance requirements for 64QAM mode Further clarification for the dual-layer beamforming demodulation	10.3.0 10.3.0	10.4.0 10.4.0
09-2011	RP-53	RP-111255	908r1	requirements Introduction of Band 22	10.3.0	10.4.0
09-2011	RP-53	RP-111255	939	Modifications of Band 42 and 43	10.3.0	10.4.0
09-2011	RP-53	RP-111260	944	CR for TS 36.101 Annex B: Static channels for CQI tests	10.3.0	10.4.0
09-2011	RP-53	RP-111262	878r1	Correction of CSI reference channel subframe description	10.3.0	10.4.0
09-2011	RP-53	RP-111262	887	Correction to UL MIMO	10.3.0	10.4.0
09-2011	RP-53	RP-111262	926r1	Power control accuracy for intra-band carrier aggregation	10.3.0	10.4.0
09-2011	RP-53	RP-111262	927r1	In-band emissions requirements for intra-band carrier aggregation	10.3.0	10.4.0
09-2011	RP-53	RP-111262	930r1	Adding the operating band for UL-MIMO	10.3.0	10.4.0
09-2011	RP-53	RP-111265	848	Corrections to intra-band contiguous CA RX requirements	10.3.0	10.4.0
09-2011	RP-53	RP-111265	863	Intra-band contiguos CA MPR requirement refinement	10.3.0	10.4.0
09-2011	RP-53	RP-111265	866r1	Intra-band contiguous CA EVM	10.3.0	10.4.0
09-2011	RP-53	RP-111266	935	Introduction of the downlink CA demodulation requirements	10.3.0	10.4.0
09-2011	RP-53	RP-111266	936r1	Introduction of CA UE demodulation requirements for TDD	10.3.0	10.4.0
12-2011	RP-54	RP-111684	947	Corrections of UE categories of Rel-10 reference channels for RF requirements	10.4.0	10.5.0
12-2011	RP-54	RP-111684	948	Alternative way to define channel bandwidths per operating band	10.4.0	10.5.0
12-2011	RP-54	RP-111684 RP-111686	948	for CR for TS36.101: Adding note to the function of MPR	10.4.0	10.5.0
12-2011	RP-54			Clarification on applying CSI reports during rank switching in RI	10.4.0	10.5.0
12-2011	RP-54	RP-111680 RP-111734	950 953r1	FDD test - Rel-10 Corrections for Band 42 and 43 introduction	10.4.0	10.5.0
12-2011	RP-54	RP-111680	956	UE spurious emissions	10.4.0	10.5.0
12-2011	RP-54	RP-111682	959	Add scrambling identity n_SCID for MU-MIMO test	10.4.0	10.5.0
12-2011	RP-54	RP-111690	960r1	P-MPR definition	10.4.0	10.5.0
12-2011	RP-54	RP-111693	962	Pcmax,c Computation Assumptions	10.4.0	10.5.0
12-2011	RP-54	RP-111733	963r1	Correction of frequency range for spurious emission requirements	10.4.0	10.5.0
12-2011	RP-54	RP-111680	966	General review of the reference measurement channels	10.4.0	10.5.0
12-2011	RP-54	RP-111691	945	Corrections of Rel-10 demodulation performance requirements This CR is only partially implemented due to confliction with CR	10.4.0	10.5.0
				966		

				This CR is only partially implemented due to confliction with CR 966		
12-2011	RP-54	RP-111691	982r2	Introduction of SDR TDD test scenario for CA UE demodulation This CR is only partially implemented due to confliction with CR 966	10.4.0	10.5.0
12-2011	RP-54	RP-111693	971r1	CR on Colliding CRS for non-MBSFN ABS	10.4.0	10.5.0
12-2011	RP-54	RP-111693	972r1	Introduction of elCIC demodulation performance requirements for FDD and TDD	10.4.0	10.5.0
12-2011	RP-54			Adding missing UL configuration specification in some UE	10.4.0	10.5.0
12-2011	RP-54	RP-111686	985	receiver requirements for case of 1 CC UL capable UE Correction and maintenance on CQI and PMI requirements (Rel-	10.4.0	10.5.0
		RP-111684	998	10)		
12-2011	RP-54	RP-111735	1004	MPR for CA Multi-cluster	10.4.0	10.5.0
12-2011	RP-54	RP-111691	1005	CA demodulation performance requirements for LTE FDD	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1006	CQI reporting accuracy test on frequency non-selective scheduling on eDL MIMO	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1007	CQI reporting accuracy test on frequency-selective scheduling on eDL MIMO	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1008	PMI reporting accuracy test for TDD on eDL MIMO	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1009r1	CR for TS 36.101: RI performance requirements	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1010r1	CR for TS 36.101: Introduction of static CQI tests (Rel-10)	10.4.0	10.5.0
03-2012	RP-55	RP-120291	1014	RF: Updates and corrections to the RMC-s related annexes (Rel-10)	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1015r1	On elCIC ABS pattern	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1016r1	On eICIC interference models	10.5.0	10.6.0
03-2012	RP-55	RP-120299	1017r1	TS36.101 CR: on eDL-MIMO channel model using cross- polarized antennas	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1020r1	TS36.101 CR: Correction to MBMS Performance Test Parameters	10.5.0	10.6.0
03-2012	RP-55	RP-120304	102011	Harmonic exceptions in LTE UE to UE co-ex tests	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1023	Unified titles for Rel-10 CSI tests	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1023 1033r1	Introduction of reference channel for eICIC demodulation	10.5.0	10.6.0
03-2012	RP-55	RP-120300	103311 1040r1	Correction of Actual code rate for CSI RMCs	10.5.0	10.6.0
03-2012	RP-55	RP-120304	104011 1041r1	Definition of synchronized operation	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1048r1	Intra band contiguos CA Ue to Ue Co-ex	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1049r1	REL-10 CA specification editorial consistency	10.5.0	10.6.0
03-2012	RP-55	RP-120299	1053	Beamforming model for TM9	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1054	Requirement for CA demodulation with power imbalance	10.5.0	10.6.0
03-2012	RP-55	RP-120298	1057	Updating Band 23 duplex specifications	10.5.0	10.6.0
03-2012	RP-55	RP-120298	1058r1	Correcting UE Coexistence Requirements for Band 23	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1059r1	CA demodulation performance requirements for LTE TDD	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1061	Requirement for CA SDR FDD test scenario	10.5.0	10.6.0
03-2012	RP-55	RP-120293	1064r1	TS36.101 RF editorial corrections Rel 10	10.5.0	10.6.0
03-2012	RP-55	RP-120299	1067r1	Introduction of TM9 demodulation performance requirements	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1071r1	Introduction of a CA demodulation test for UE soft buffer management testing	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1072	MPR formula correction For intra-band contiguous CA Bandwidth Class C	10.5.0	10.6.0
03-2012	RP-55	RP-120303	1077r1	CR for 36.101: B41 REFSENS and MOP changes to accommodate single filter architecture	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1082	TM3 tests for elCIC	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1083r1	Introduction of requirements of CQI reporting definition for eclCIC	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1084	eDL MIMO CSI requirements	10.5.0	10.6.0
03-2012	RP-55	RP-120306	1070r1	Introduction of Band 26/XXVI to TS 36.101	10.6.0	11.0.0
03-2012	RP-55	RP-120310	1074	Band 41 CA CR for TS36.101, section 5	10.6.0	11.0.0
03-2012	RP-55	RP-120310	1075r1	Band 41 CA CR for TS36.101, section 6	10.6.0	11.0.0
03-2012	RP-55	RP-120310	1076	Band 41 CA CR for TS36.101, section 7	10.6.0	11.0.0
06-2012	RP-56	RP-120795	1085r2	Modulator specification tightening	11.0.0	11.1.0
06-2012	RP-56	RP-120777	1087r1	Carrier aggregation Relative power tolerance, removal of TBD.	11.0.0	11.1.0
06-2012	RP-56	RP-120783	1089	UE spurious emissions for Band 7 and Band 38 coexistence	11.0.0	11.1.0
06-2012	RP-56	RP-120780	1092	Deleting square brackets in Reference Measurement Channels CR to TS36.101: Correction on parameters for the eDL-MIMO	11.0.0	11.1.0
06-2012	RP-56	RP-120779	1097	CQI and PMI tests CR to TS36.101: Fixed reference channel for PDSCH	11.0.0	11.1.0
			40	demodulation performance requirements on eDL-MIMO – NOT		
06-2012	RP-56	RP-120780	1098r1	implemented as it is based on a wrong version of the spec	11.0.0	11.1.0
06-2012	RP-56	RP-120774	1107	RMC correction on eDL-MIMO RI test	11.0.0	11.1.0
06-2012	RP-56	RP-120774	1108r1	FRC correction on frequency selective CQI and PMI test (Rel-11)	11.0.0	11.1.0
06-2012	RP-56	RP-120774	1111	Correction on test point for PMI test (ReI-11)	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1114r1	Corrections and clarifications on eICIC demodulation test	11.0.0	11.1.0
	RP-56	RP-120784	1117r1	Corrections and clarifications on elCIC CSI tests	11.0.0	11.1.0
06-2012						1 44 4 0
06-2012 06-2012	RP-56	RP-120783	1119r1	Corrections on UE performance requirements	11.0.0	11.1.0
06-2012			1119r1 1120	Corrections on UE performance requirements Introduction of CA band combination Band1 + Band19 to TS 36.101 Addition of ETU30 channel model	11.0.0	11.1.0

06-2012	RP-56	RP-120773	1140	Addition of Maximum Throughput for R.30-1 TDD RMC	11.0.0	11.1.0
06-2012	RP-56	RP-120779	1141	CR for 36.101: The clarification of MPR and A-MPR for CA	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1142	Corrections for eICIC demod test case with MBSN ABS	11.0.0	11.1.0
06-2012	RP-56	RP-120785	1144	Removing brackets of contiguous allocation A-MPR for CA_NS_04	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1149r1	Introduction of PDCCH test with colliding RS on MBSFN-ABS	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1153r1	Some clarifications and OCNG pattern for elCIC demodulation requirements	11.0.0	11.1.0
06-2012	RP-56	RP-120773	1155	Introduction of TDD CA Soft Buffer Limitation	11.0.0	11.1.0
06-2012	RP-56	RP-120795	1156	B26 and other editorial corrections	11.0.0	11.1.0
06-2012	RP-56	RP-120779	1161	Corrections on CQI and PMI test	11.0.0	11.1.0
06-2012	RP-56	RP-120780	1163	FRC for TDD PMI test	11.0.0	11.1.0
06-2012	RP-56	RP-120778	1165r1	Clean-up of UL-MIMO for TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120782	1171	Removal of unnecessary references to single carrier requirements from Interband CA subclauses	11.0.0	11.1.0
06-2012	RP-56	RP-120781	1174	PDCCH wrong detection in receiver spurious emissions test	11.0.0	11.1.0
06-2012	RP-56	RP-120776	1184	Corrections to 3500 MHz	11.0.0	11.1.0
06-2012	RP-56	RP-120793	1189r2	Introduction of Band 44	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1193r1	Target SNR setting for eICIC demodulation requirement	11.0.0	11.1.0
06-2012	RP-56	RP-120780	1196	Editorial simplification to CA REFSENS UL allocation table	11.0.0	11.1.0
06-2012	RP-56	RP-120778	1199	Correction of wrong table refernces in CA receiver tests	11.0.0	11.1.0
06-2012	RP-56	RP-120791	1200r1	Introduction of e850_LB (Band 27) to TS 36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120764	1212	Correction of PHS protection requirements for TS 36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120793	1213r1	Introduction of Band 28 into TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120781	1215r1	Proposed revision of subclause 4.3A for TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120781	1217r1	Proposed revision on subclause 6.3.4A for TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120795	1219r1	Aligning requirements between Band 18 and Band 26 in TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120782	1221	SNR definition	11.0.0	11.1.0
06-2012	RP-56	RP-120778	1223	Correction of CSI configuration for CA TM4 tests R11	11.0.0	11.1.0
06-2012	RP-56	RP-120773	1225	CR on CA UE receiver timing window R11	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1226	Extension of static elCIC CQI test	11.0.0	11.1.0
09-2012	RP-57	RP-121294	1230	Correct Transport Block size in 9RB 16QAM Uplink Reference Measurement Channel	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1233r1	RF: Corrections to power allocation parameters for transmission mode 8 (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1235	RF-CA: non-CA notation and applicability of test points in scenarios without and with CA operation (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121305	1237	ACK/NACK feedback modes for FDD and TDD TM4 CA demodulation requirements (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121305	1239	Correction of feedback mode for CA TDD demodulation requirements (resubmission of R4-63AH-0194 for Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1241	ABS pattern setup for MBSFN ABS test (resubmission of R4-63AH-0204 for Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1243	CR on eICIC CQI definition test (resubmission of R4-63AH-0205 for Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1245	Transmission of CQI feedback and other corrections (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1247	Target SNR setting for eICIC MBSFN-ABS demodulation requirements (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121335	1248	Introduction of CA_1_21 RF requirements into TS36.101	11.1.0	11.2.0
09-2012	RP-57	RP-121300	1251	Corrections of spurious emission band UE co-existence applicable in Japan	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1253	Correction on RMC for frequency non-selective CQI test	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1255	Requirements for the eDL-MIMO CQI test	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1257	Clarification on PDSCH test setup under MBSFN ABS	11.1.0	11.2.0
09-2012	RP-57	RP-121316	1258	Update of Band 28 requirements	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1262	Applicabilty of statement allowing RBW < Meas BW for spurious	11.1.0	11.2.0
09-2012	RP-57	RP-121298	1265	Clarification of RB allocation for DRS demodulation tests	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1267	Removal of brackets for CA Tx	11.1.0	11.2.0
09-2012	RP-57	RP-121337	1268r1	TS 36.101 CR for CA_38	11.1.0	11.2.0
09-2012	RP-57	RP-121327	1269	Introduction of CA_B7_B20 in 36.101	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1271	Corrections of FRC subframe allocations and other minor problems	11.1.0	11.2.0
09-2012	RP-57	RP-121305	1274	Introduction of requirements for TDD CA Soft Buffer Limitation	11.1.0	11.2.0
09-2012	RP-57	RP-121307	1276	Correction of eDL-MIMIO CSI RMC tables and references	11.1.0	11.2.0
09-2012	RP-57	RP-121307	1278	Correction of MIMO channel model for polarized antennas	11.1.0	11.2.0
09-2012	RP-57	RP-121303	1280	Addition of 15 and 20MHz Bandwidths for Band 23 to TS 36.101 (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121334	1283r1	Add requirements for inter-band CA of B_1-18 and B_11-18 in TS36.101	11.1.0	11.2.0
	RP-57	RP-121304	1285r1	CR for MPR mask for multi-clustered simultaneous transmission in single CC in Rel-11	11.1.0	11.2.0
09-2012						
09-2012	RP-57	RP-121447	1288r2	Introduction of Japanese Regulatory Requirements to LTE Band 8(R11)	11.1.0	11.2.0

09-2012 F						
	RP-57	RP-121315	1290	CR for Band 27 A-MPR	11.1.0	11.2.0
09-2012 F	RP-57	RP-121316	1291	CR to replace protected frequency range with new band number	11.1.0	11.2.0
09-2012 F				27		
	RP-57	RP-121215	1292r1	Introduction of CA band combination Band3 + Band5 to TS	11.1.0	11.2.0
				36.101		
09-2012 F	RP-57	RP-121306	1300r1	Requirements for eDL-MIMO RI test	11.1.0	11.2.0
	RP-57	RP-121306	1304	Corrections to TM9 demodulation tests	11.1.0	11.2.0
	RP-57	RP-121313	1306	Correction to PCFICH power parameter setting	11.1.0	11.2.0
	RP-57		1310r1			
		RP-121306		Correction on frequency non-selective CQI test	11.1.0	11.2.0
	RP-57	RP-121306	1313r1	eDL-MIMO CQI/PMI test	11.1.0	11.2.0
	RP-57	RP-121313	1316	Correction of the definition of unsynchronized operation	11.1.0	11.2.0
09-2012 F	RP-57	RP-121304	1320r1	Correction to Transmit Modulation Quality Tests for Intra-Band CA	11.1.0	11.2.0
09-2012 F	RP-57	RP-121338	1324r2	36.101 CR for LTE_CA_B7	11.1.0	11.2.0
09-2012 F	RP-57	RP-121331	1325	Introduction of CA_3_20 RF requirements into TS36.101	11.1.0	11.2.0
09-2012 F	RP-57	RP-121316	1326	A-MPR table correction for NS_18	11.1.0	11.2.0
	RP-57	RP-121304	1332r1	Bandwidth combination sets for intra-band and inter-band carrier	11.1.0	11.2.0
	0.		.002	aggregation		
09-2012 F	RP-57	RP-121325	1339	Introduction of LTE Advanced Carrier Aggregation of Band 4 and	11.1.0	11.2.0
09-2012	KF-31	KF-121323	1339	Band 13	11.1.0	11.2.0
00.0040	DD 57	DD 404000	40.40-4		44.4.0	44.0.0
	RP-57	RP-121326	1340r1	Introduction of CA configurations CA-12A-4A and CA-17A-4A	11.1.0	11.2.0
	RP-57	RP-121324	1341	Introduction of CA_B3_B7 in 36.101	11.1.0	11.2.0
09-2012 F	RP-57	RP-121328	1343	Introduction of Band 2 + Band 17 inter-band CA configuration into	11.1.0	11.2.0
		<u> </u>		36.101		<u></u>
09-2012 F	RP-57	RP-121306	1351	FRC for TM9 FDD	11.1.0	11.2.0
	RP-57	RP-121295	1352	Random precoding granularity in PMI tests	11.1.0	11.2.0
	RP-57	RP-121302	1358	Introduction of RI test for eICIC	11.1.0	11.2.0
	RP-57	RP-121304	1360		11.1.0	11.2.0
				Notes for deltaTib and deltaRib tables		
	RP-57	RP-121304	1361	CR for A-MPR masks for NS_CA_1C	11.1.0	11.2.0
	RP-58	RP-121884	1362	Introduction of CA_3_8 RF requirements to TS 36.101	11.2.0	11.3.0
	RP-58	RP-121870	1363	Removal of square brackets for Band 27 in Table 5.6.1-1	11.2.0	11.3.0
12-2012 F	RP-58	RP-121861	1366	Some changes related to CA tests and overview table of DL	11.2.0	11.3.0
				measurement channels		
12-2012 F	RP-58	RP-121860	1368	Correction of elCIC CQI tests	11.2.0	11.3.0
	RP-58	RP-121860	1370	Correction of elCIC demodulation tests	11.2.0	11.3.0
	RP-58	RP-121862	1374	Correction on CSI-RS subframe offset parameter	11.2.0	11.3.0
			1374			
	RP-58	RP-121862		Correction on FRC table in CSI test	11.2.0	11.3.0
	RP-58	RP-121862	1382	Correction of reference channel table for TDD eDL-MIMIO RI test	11.2.0	11.3.0
	RP-58	RP-121850	1386	OCNG patterns for Sustained Data rate testing	11.2.0	11.3.0
12-2012 F	RP-58	RP-121867	1388r1	Introduction of one periodic CQI test for CA deployments	11.2.0	11.3.0
12-2012 F	RP-58	RP-121894	1396	Introduction of CA_B5_B12 in 36.101	11.2.0	11.3.0
	RP-58	RP-121850	1401	Introducing the additional frequency bands of 5 MHz x 2 in 1.7	11.2.0	11.3.0
			-	GHz in Japan to Band 3		
12-2012 F	RP-58	RP-121887	1406r1	Reference sensitivity for the small bandwidth of CA_4-12	11.2.0	11.3.0
	RP-58	RP-121860	1407	CR on elCIC RI test	11.2.0	11.3.0
	RP-58	RP-121862	1409	Cleaning of 36.101 Performance sections Rel-11	11.2.0	11.3.0
12-2012 F	RP-58	RP-121861	1416	Out-of-band blocking requirements for inter-band carrier	11.2.0	11.3.0
				aggregation		
	RP-58	RP-121861	1418	Adding missed SNR reference values for CA soft buffer tests	11.2.0	11.3.0
	RP-58	RP-121890	1422	Introduction of CA_4A-5A into 36.101	11.2.0	11.3.0
	RP-58	RP-121867	1431	Clean up of specification R11	11.2.0	11.3.0
	RP-58	RP-121867	1436	Band 1 to Band 33 and Band 39 UE coexistence requirements	11.2.0	11.3.0
12-2012 F	RP-58	RP-121871	1437r1	Editorial corrections for Band 26	11.2.0	11.3.0
	RP-58	RP-121896	1438	Introduction of Band 5 + Band 17 inter-band CA configuration into	11.2.0	11.3.0
12-2012 F	111 -00	11 121030	1730	36.101	11.2.0	11.5.0
12-2012 F		ı		00.101		11.3.0
12-2012 F 12-2012 F	DD E0	DD 101060	1///2	Correction of aDL MIMO DI toot and DMC table for the CCI table	11 2 0	
12-2012 F 12-2012 F 12-2012 F	RP-58	RP-121862	1442	Correction of eDL-MIMO RI test and RMC table for the CSI test	11.2.0	
12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58	RP-121861	1444	Minor correction to ceiling function example - rel11	11.2.0	11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58	RP-121861 RP-121862	1444 1449	Minor correction to ceiling function example - rel11 Correction of SNR definition	11.2.0 11.2.0	11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58	RP-121861	1444	Minor correction to ceiling function example - rel11	11.2.0	11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58	RP-121861 RP-121862	1444 1449 1450	Minor correction to ceiling function example - rel11 Correction of SNR definition	11.2.0 11.2.0	11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860	1444 1449	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11)	11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862	1444 1449 1450 1455 1459	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879	1444 1449 1450 1455 1459 1461r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1)	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862	1444 1449 1450 1455 1459 1461r1 1464	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11)	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898	1444 1449 1450 1455 1459 1461r1 1464 1465r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1468r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898	1444 1449 1450 1455 1459 1461r1 1464 1465r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of advanced receivers demodulation performance	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1468r1 1472r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD)	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1468r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of advanced receivers demodulation performance	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1468r1 1472r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1468r1 1472r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD)	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903 RP-121903 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1472r1 1473r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD) CR to remove the square bracket of A-MPR in TS36.101	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1468r1 1472r1	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD) CR to remove the square bracket of A-MPR in TS36.101 Correction of some errors in reference sensitivity for CA in TS	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903 RP-121903 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1472r1 1473r1 1474 1476	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD) CR to remove the square bracket of A-MPR in TS36.101 Correction of some errors in reference sensitivity for CA in TS 36.101 (R11)	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903 RP-121903 RP-121903 RP-121961 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1472r1 1473r1 1474 1476	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD) CR to remove the square bracket of A-MPR in TS36.101 Correction of some errors in reference sensitivity for CA in TS 36.101 (R11) Introduction of Advanced Receivers Test Cases for TDD	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F 12-2012 F	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121861 RP-121862 RP-121860 RP-121860 RP-121862 RP-121879 RP-121862 RP-121898 RP-121882 RP-121903 RP-121903 RP-121903	1444 1449 1450 1455 1459 1461r1 1464 1465r1 1472r1 1473r1 1474 1476	Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation CR on elCIC RI testing (Rel-11) Correction on FRC table CR for LTE B14 HPUE (Power Class 1) Adding references to the appropriate beamforming model (Rel-11) Introduction of CA_8_20 RF requirements into TS36.101 Introduction of inter-band CA_11-18 into TS36.101 Introduction of advanced receivers demodulation performance (FDD) Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD) CR to remove the square bracket of A-MPR in TS36.101 Correction of some errors in reference sensitivity for CA in TS 36.101 (R11)	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0

12-2012	RP-58	RP-121861	1498r1	Completion of the tables of bandwidth combinations specified for	11.2.0	11.3.0
12-2012	RP-58	RP-121861	1499r1	CA Exceptions to REFSENS requirements for class A2 CA	11.2.0	11.3.0
				combinations	_	
12-2012	RP-58	RP-121892	1500	Introduction of carrier aggregation configuration CA_4-7	11.2.0	11.3.0
12-2012	RP-58	RP-121870	1504	Editorial corrections to Band 27 specifications	11.2.0	11.3.0
12-2012 12-2012	RP-58	RP-121878 RP-121852	1505 1509r1	Band 28 AMPR for DTV protection UE-UE coexistence between bands with small frequency	11.2.0 11.2.0	11.3.0 11.3.0
				separation		
12-2012	RP-58	RP-121911	1510	Adding UE-UE Coexistence Requirement for Band 3 and Band 26	11.2.0	11.3.0
12-2012 12-2012	RP-58 RP-58	RP-121866 RP-121851	1513 1515	Maintenance of Band 23 UE Coexistence Corrections to TM4 rank indicator Test 3	11.2.0 11.2.0	11.3.0 11.3.0
12-2012	RP-58	RP-121861	1517	Correction of test configurations and FRC for CA demodulation	11.2.0	11.3.0
12-2012	RP-58	RP-121860	1518	with power imbalance Applicable OFDM symbols of Noc_2 for PDCCH/PCFICH ABS-	11.2.0	11.3.0
				MBSFN test cases		
03-2013	RP-59	RP-130279	1519	OCNG patterns for Enhanced Performance Requirements Type A	11.3.0	11.4.0
03-2013	RP-59	RP-130277	1520	Corrections on in-band blocking for Band 29 for carrier aggregation	11.3.0	11.4.0
03-2013	RP-59	RP-130268	1523	Brackets removal in Rel-11 TM4 rank indicator Test 3	11.3.0	11.4.0
03-2013	RP-59	RP-130279	1524r1	Cleanup of Advanced Receivers requirement scenarios for demodulation and CSI (FDD/TDD)	11.3.0	11.4.0
03-2013	RP-59	RP-130258	1528	Corrections to CQI reporting	11.3.0	11.4.0
03-2013	RP-59	RP-130262	1536	Corrections for elCIC performance requirements (rel-11)	11.3.0	11.4.0
03-2013	RP-59	RP-130264	1539	Correction of CA power imbalance performance requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1543	Correction of a symbol for MPR in single carrier for TS 36.101(R11)	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1544r1	Correction of some inter-band CA requiements for TS 36.101 (R11)	11.3.0	11.4.0
03-2013	RP-59	RP-130276	1546	Correction of contigous allocation A-MPR for CA_NS_05	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1547r1	Clarification of spurious emission domain for CA in TS 36.101 (R11)	11.3.0	11.4.0
03-2013	RP-59	RP-130264	1548	CR for CA performance requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130284	1553r1	Introduction of downlink non-contiguous CA into REL -11 TS 36.101	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1557	CA_1C: CA_NS_02 and CA_NS_03 A-MPR REL-11	11.3.0	11.4.0
03-2013 03-2013	RP-59 RP-59	RP-130287 RP-130267	1560 1562	Editorial corrections to subclause 5 Addition of UE Regional Requirements to Band 23 Based on New	11.3.0 11.3.0	11.4.0 11.4.0
03-2013	RP-59	RP-130272	1567	Regulatory Order in the US Band 26: modification of A-MPR for 'NS_15'	11.3.0	11.4.0
03-2013	RP-59	RP-130272	1507 1571r1	Band 41 requirements for operation in China and Japan	11.3.0	11.4.0
03-2013	RP-59	RP-130260	1574	Remove [] from CSI test case parameters	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1575	Corrections to UE co-existence	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1579	UE-UE co-existence between Band 1 and Band 33/39	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1580	Correction on reference to note for Band 7 and 38 co-existence	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1584r1	Cleanup for CA UE RF requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1586	Corrections on UL configuration for CA UE receiver requirements	11.3.0	11.4.0
03-2013 03-2013	RP-59 RP-59	RP-130263 RP-130268	1588 1590	Correction of Transmit modulation quality requirements for CA Revision of Common Test Parameters for User-specific Demodulation Tests	11.3.0	11.4.0
03-2013	RP-59	RP-130278	1595	Correction for a Band 27 A-MPR table	11.3.0	11.4.0
03-2013	RP-59	RP-130264	1597	Correction of CA CQI test setup	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1600r1	Correction of B12 DL Specification in Table 5.5A-2	11.3.0	11.4.0
03-2013 06-2013	RP-59 RP-60	RP-130263 RP-130765	1602 1604r1	Correction of table reference Complementary description for definition of MIMO Correlation Matrices using cross polarized antennas	11.3.0 11.4.0	11.4.0 11.5.0
06-2013	RP-60	RP-130763	1607	Correction of transport format parameters for CQI index 10 (15 RBs) - Rel 11	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1610	Maintenance of Band 23 A-MPR (NS_11) in TS 36.101 (Rel-11)	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1613	CR for 36.101 : Adding the definition of CA_NS_05 and CA_NS_06 for additional spurious emissions for CA	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1619	CR for introducing UE TM3 demodulation performance requirements under high speed	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1623	Correction of test parameters for elCIC performance requirements	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1625	Correction of test parameters for elCIC CSI requirements	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1627	Correction of resource allocation for the multiple PMI Cat 1 UE test	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1629	Removal of note 2 from band 28	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1641	Correction of the CSI-RS parameter configuration	11.4.0	11.5.0
06-2013 06-2013	RP-60 RP-60	RP-130770 RP-130770	1650r1 1654r1	Addition of Band 41 for intra-band non-contiguous CA for 36.101 MPR for intra-band non-contiguous CA	11.4.0 11.4.0	11.5.0 11.5.0
06-2013	RP-60	RP-130770	1656	Modification of configured output power to account for larger	11.4.0	11.5.0
06-2013	RP-60	RP-130769	1658r1	tolerance Missing symbols in the NS_15 table	11.4.0	11.5.0
00 2013	131 -00	131 130708	100011	I minoring symbols in the MO_13 table	11.4.0	11.0.0

06-2013	RP-60	RP-130766	1673	Corrections to Rx requirements for inter-band CA configurations with REFSENS exceptions	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1681r1	Correction for TS 36.101	11.4.0	11.5.0
06-2013	RP-60	RP-130763	1684	RF: Corrections to RMC-s for sustained data rate test	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1685	Non-contiguous intraband CA channel spacing	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1689	Carrier aggregation in multi RAT and multiple band combination terminals	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1691	Completion of out-of-band blocking requirements for inter-band CA with one UL	11.4.0	11.5.0
06-2013	RP-60	RP-130767	1695r1	CR on the bandwidth coverage issue of CA demodulation performance (Rel-11)	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1697	Correction on UE maximum output power for intra-band CA (R11)	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1698r1	CR for introduction of FeICIC demodulation performance requirements	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1701	Removing bracket from CA_11A-18A requirments	11.4.0	11.5.0
06-2013	RP-60	RP-130767	1703	CR on the bandwidth coverage issue of CA CQI performance (Rel-11)	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1705	Corrections to ACLR for Rel-11 CA	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1716	Corrections to NS_11 A-MPR Table	11.4.0	11.5.0
06-2013	RP-60	RP-130769	1717	Corrections to NS_12 A-MPR Table	11.4.0	11.5.0
06-2013	RP-60	RP-130771	1532r1	Introduction of CA 1+8 into TS36.101(Rel-12)	11.5.0	12.0.0
06-2013	RP-60	RP-130781	1545r1	Introduction of LTE Advanced inter-band Carrier Aggregation of Band 3 and Band 28 to TS 36.101	11.5.0	12.0.0
06-2013	RP-60	RP-130785	1608r1	Introduction of LTE Advanced inter-band Carrier Aggregation of Band 23 and Band 29 to TS 36.101	11.5.0	12.0.0
06-2013	RP-60	RP-130777	1642r1	Introduction of CA B3+19 into TS36.101(Rel-12)	11.5.0	12.0.0
06-2013	RP-60	RP-130787	1687	Introduction of CA_4A-4A into 36.101	11.5.0	12.0.0
06-2013	RP-60	RP-130795	1712	Adding 5MHz CBW for B3 of Inter band CA of B3+26	11.5.0	12.0.0
06-2013	RP-60	RP-130775	1713r1	Introduction of LTE Advanced Inter-Band Carrier Aggregation of Band 2 and Band 13	11.5.0	12.0.0
06-2013	RP-60	RP-130790	1723r1	Introduction of the LTE 450 band to TS 36.101	11.5.0	12.0.0
06-2013	RP-60	RP-130791	1724r1	Introduction of the WCS band to TS 36.101	11.5.0	12.0.0
06-2013	RP-60	RP-130784	1707r1	Introduction of CA 19+21 into TS36.101(Rel-12)	11.5.0	12.0.0
09-2013	RP-61	RP-131300	1730r1	36.101 CR for LTE_CA_C_B3	12.0.0	12.1.0
09-2013	RP-61	RP-131285	1732	CR on performance requirements of CA soft buffer managemen (Rel-12)	12.0.0	12.1.0
09-2013	RP-61	RP-131303	1733r1	CR to introdue TM3 and TM4 test for 5MHz channel bandwidth	12.0.0	12.1.0
09-2013	RP-61	RP-131281	1736	CR on applicability of CA sustained data rate tests (Rel-12)	12.0.0	12.1.0
09-2013	RP-61	RP-131293	1739	Performance requirement for UE under EVA200	12.0.0	12.1.0
09-2013	RP-61	RP-131290	1743	CR for introduction of FelCIC PBCH performance requirement	12.0.0	12.1.0
09-2013	RP-61	RP-131290	1745	CR for introduction of FelCIC RI reporting requirements	12.0.0	12.1.0
09-2013	RP-61	RP-131292	1747	Beamforming model for EPDCCH test	12.0.0	12.1.0
09-2013 09-2013	RP-61 RP-61	RP-131303 RP-131303	1748 1749	CR to introduce CSI tests for LTE450 CR to extend UE category of the existing 5MHz performance	12.0.0 12.0.0	12.1.0 12.1.0
00 2012	DD 64	RP-131281	1707	requirements	12.00	12.1.0
09-2013 09-2013	RP-61 RP-61	RP-131279	1767 1772	UE REFSENS when supporting intra-band CA and inter-band CA Correlation matrix for high speed train demodulation scenarios (Rel-12)	12.0.0 12.0.0	12.1.0 12.1.0
09-2013	RP-61	RP-131280	1776	Corrections to sustained data rate test (Rel-12)	12.0.0	12.1.0
09-2013	RP-61	RP-131200	1776	CR to introduce a new PHICH test based on 5MHz	12.0.0	12.1.0
09-2013		RP-131303 RP-131303	1781	CR placeholder for applicability of new 5MHz tests	12.0.0	
09-2013	RP-61 RP-61	RP-131303 RP-131303	1782 1783r1	CR : Proposal of applicability of new 5MHz tests	12.0.0	12.1.0 12.1.0
09-2013	RP-61	RP-131303 RP-131303	178311	CR: PHICH tests for 5MHz	12.0.0	12.1.0
09-2013	RP-61	RP-131303 RP-131290	1786	CR for introduction of FelCIC CQI requirements	12.0.0	12.1.0
09-2013	RP-61	RP-131290	1794	Clarification of multi-cluster transmission	12.0.0	12.1.0
09-2013	RP-61	RP-131294	1800r1	CA UE Coexistence Table update (Release 12)	12.0.0	12.1.0
09-2013	RP-61	RP-131302	1802	Coexistence between Band 27 and Band 38 (Release 12)	12.0.0	12.1.0
09-2013	RP-61	RP-131285	1803	Addional requirement for CA_1A-18A into TS36.101	12.0.0	12.1.0
09-2013	RP-61	RP-131296	1804	Add requirements for CA_1A-26A into TS36.101	12.0.0	12.1.0
09-2013	RP-61	RP-131281	1807	Incorrect REFSENS UL allocation for CA_1C	12.0.0	12.1.0
09-2013	RP-61	RP-131297	1808r1	Introduction of CA_2A-4A into 36.101	12.0.0	12.1.0
09-2013	RP-61	RP-131281	1811	Contiguous intraband CA REFSENS with one UL	12.0.0	12.1.0
09-2013	RP-61	RP-131281	1822	The Pcmax clauses restructured: This CR was NOT implemented as it was based on the wrong version of the spec	12.0.0	12.1.0
09-2013	RP-61	RP-131298	1824	Introduction of inter-band CA Band 2+5	12.0.0	12.1.0
09-2013	RP-61	RP-131285	1831	MPR for intra-band non-contiguous CA	12.0.0	12.1.0
09-2013	RP-61	RP-131281	1832	Correction to Rel-10 A-MPR for CA_NS_04	12.0.0	12.1.0
09-2013	RP-61	RP-131285	1834	CR for 36.101 : Add the definition of 5+20MHz for spectrum	12.0.0	12.1.0
30 2010				emission mask for CA		
	DD 04	RP-131303	1839	CR to introduce CSI tests for LTE450	12.0.0	12.1.0
09-2013 09-2013	RP-61 RP-61	RP-131293	1840	Remianed Transmitter requirements for intra-band non-contiguous	12.0.0	12.1.0

12-2013	RP-62	RP-131928	1847r1	Corrections to the notes in the band UE co-existence requirements table (Rel-12)	12.1.0	12.2.0
12-2013	RP-62	RP-131924	1852	Clean-up of uplink reference measurement channels (Rel-12)	12.1.0	12.2.0
12-2013	RP-62	RP-131946	1857	Introduction of CA band combination Band2 + Band12 to TS 36.101	12.1.0	12.2.0
12-2013	RP-62	RP-131954	1858	Introduction of CA band combination Band12 + Band25 to TS 36.101	12.1.0	12.2.0
12-2013	RP-62	RP-131931	1867	CA_NS_05 Emissions	12.1.0	12.2.0
12-2013	RP-62	RP-131939	1869	NS signaling for CA refsens	12.1.0	12.2.0
12-2013	RP-62	RP-131965	1870	Introduction of CA_23A-23A RF requirements into 36.101	12.1.0	12.2.0
12-2013	RP-62	RP-131928	1877r2	Intraband CA channel bandwidth combination table restructuring	12.1.0	12.2.0
12-2013	RP-62	RP-131940	1878	Addition of CA_3C missing UE to UE co-existence requirement and corection to SEM	12.1.0	12.2.0
12-2013	RP-62	RP-131959	1885	Introduction of LTE_CA_C_B27 to 36.101	12.1.0	12.2.0
12-2013	RP-62	RP-131939	1887	CR on correction of definition on Fraction of Maximum Throughput for CA	12.1.0	12.2.0
12-2013	RP-62	RP-131939	1889	CR on correction of test configurations of CA soft buffer tests	12.1.0	12.2.0
12-2013	RP-62	RP-131936	1893	CR for FelCIC demodulation performance requirements	12.1.0	12.2.0
12-2013	RP-62	RP-131936	1895r1	CR on FelCIC PBCH performance requirement	12.1.0	12.2.0
12-2013	RP-62	RP-131936	1897r1	CR on RI reporting requirement	12.1.0	12.2.0
12-2013	RP-62	RP-131938	1899	Beamforming model for EPDCCH localized test	12.1.0	12.2.0
12-2013	RP-62	RP-131938	1901	Downlink physical setup for EPDCCH test	12.1.0	12.2.0
12-2013	RP-62	RP-131926	1904	Correction on the UE category for elCIC CQI test	12.1.0	12.2.0
12-2013	RP-62	RP-131931	1906	CR for receiver type verification test of CSI-RS based advanced receivers (Rel-12)	12.1.0	12.2.0
12-2013	RP-62	RP-131956	1910r1	Spurious emission band UE co-existence requirements for cross- region issue	12.1.0	12.2.0
12-2013	RP-62	RP-131928	1916r2	Allowed power reductions for multiple transmissions in a subframe	12.1.0	12.2.0
12-2013	RP-62	RP-131967	1917r1	The coexistence requirements between Band 39 and Band 3	12.1.0	12.2.0
12-2013	RP-62	RP-131967	1918r1	The Pcmax clauses restructured and removal of addition of ΔTc to P-MPR	12.1.0	12.2.0
12-2013	RP-62	RP-131956	1919	Configured maximum output power for multiple TAG transmission	12.1.0	12.2.0
12-2013	RP-62	RP-131936	1927r1	Configured maximum output power for multiple TAG transmission	12.1.0	12.2.0
12-2013	RP-62	RP-131927	1934	CR on correction of FRC of power imbalance test	12.1.0	12.2.0
12-2013	RP-62	RP-131927	1937	UE-UE coexistence for Band 40	12.1.0	12.2.0
12-2013	RP-62	RP-131957	1955r1	Introduction of LTE Advanced intra-band contiguous Carrier Aggregation in Band 23 to TS 36.101	12.1.0	12.2.0
12-2013	RP-62	RP-131961	1956r1	Introduction of CA_3A-3A into TS 36.101	12.1.0	12.2.0
12-2013	RP-62	RP-131937	1957	CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)	12.1.0	12.2.0
12-2013	RP-62	RP-131937	1958	CR Minimum requirement with Same Cell ID (with multiple NZP CSI-RS resources)	12.1.0	12.2.0
12-2013	RP-62	RP-131936	1962	Introduction of reference SNR-s for FeICIC demodulation performance requirements	12.1.0	12.2.0
12-2013	RP-62	RP-131938	1964	OCNG pattern for EPDCCH test	12.1.0	12.2.0
12-2013	RP-62	RP-131931	1965	CA performance requirements for TDD intra-band NC CA	12.1.0	12.2.0
12-2013	RP-62	RP-131958	1966r1	CA performance requirements for TDD intra-band NC CA	12.1.0	12.2.0
12-2013	RP-62	RP-131939	1968	Introduction of UE TM3 demodulation performance requirements under ETU300	12.1.0	12.2.0
12-2013	RP-62	RP-131937	1970	Introduction of test 1-A for CoMP	12.1.0	12.2.0
12-2013	RP-62	RP-131939	1972	Modification of TM9 test to verify correct SNR estimation	12.1.0	12.2.0

12-2013 RP-62 RP-131937 1996 CR to Introduction of CA band combination Band5 + Band25 to TS 12.10 12.							
12-2013 RP-62 RP-131937 1996 CR to Introduce fading CQI test for CoMP (TDD)	12-2013	RP-62	RP-131928	1984	Correction to blocking requirements and use of Delta_RIB	12.1.0	12.2.0
12-2013 RP-62 RP-131939 1998 CR on test point clarification for CA demodulation test 12.1.0 12.	12-2013	RP-62	RP-131950	1985		12.1.0	12.2.0
RP-62 RP-131937 1996	12-2013	RP-62	RP-131939	1988r1		12.1.0	12.2.0
RP-62 RP-131937 1998 CR to Introduce RI test for CoMP (FDD) 12.1.0 12. 13. 1	12-2013	RP-62	RP-131937	1994	CR to Introduce fading CQI test for CoMP (TDD)	12.1.0	12.2.0
12-2013 RP-62 RP-131938 2001rl Distributed EPDCCH Demodulation Test 12.10 12. 12. 12. 12. 12. 12. 12. 12. 13. 13. 13. 14	12-2013	RP-62	RP-131937	1996	CR to Introduce channel model for CoMP fading CQI tests	12.1.0	12.2.0
12-2013 RP-62 RP-131938 2003r1 Localized EPDCCH Demodulation Test 12.1.0 12.	12-2013	RP-62	RP-131937	1998	CR to Introduce RI test for CoMP (FDD)	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2007 Introduction of DL CoMP FDD static CQI test 12.1.0 12. 12. 12. 12. 12. 12. 12. 12. 13. 13. 14. 14. 14. 15	12-2013	RP-62	RP-131938	2001r1	Distributed EPDCCH Demodulation Test	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2009 Introduction of DL CoMP FDD static CQI test 12.1.0 12. 12. 12. 12. 12. 12. 13. 12. 13. 13. 14	12-2013	RP-62	RP-131938	2003r1	Localized EPDCCH Demodulation Test	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2009 Introduction of DL CoMP TDD static CQI test 12.1.0 12.	12-2013	RP-62	RP-131938	2005r1	Localized EPDCCH Demodulation Test	12.1.0	12.2.0
12-2013 RP-62 RP-131924 2014 P-max for Band 38 to Band 7 coexistence 12.1.0 12.	12-2013	RP-62	RP-131937	2007	Introduction of DL CoMP FDD static CQI test	12.1.0	12.2.0
12-2013 RP-62 RP-131948 2015 Introduction of CA band combination B5 + B7 to TS 36.101 12.1.0 12. 12-2013 RP-62 RP-131937 2024 Minimum requirement with Same Cell ID (with multiple NZP CSI-RS resources) TDD 12-2013 RP-62 RP-131937 2026 RMinimum requirement with Different Cell ID and Colliding CRS 12.1.0 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 13. 13. 14. 14. 14. 14. 14. 15. 1	12-2013	RP-62	RP-131937	2009	Introduction of DL CoMP TDD static CQI test	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2024 Minimum requirement with Same Cell ID (with multiple NZP CSI-RS resources) TDD 12-2013 RP-62 RP-131937 2026 CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resources) TDD 12-2013 RP-62 RP-131936 2028 Editoral change on FeICIC PBCH Noc setup 12.1.0 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 13. 14.	12-2013	RP-62	RP-131924	2014	P-max for Band 38 to Band 7 coexistence	12.1.0	12.2.0
12-2013	12-2013	RP-62	RP-131948	2015	Introduction of CA band combination B5 + B7 to TS 36.101	12.1.0	12.2.0
RS resources] TDD	12-2013	RP-62	RP-131952	2017	Introduction of CA band combination B7 + B28 to TS 36.101	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2026 CR Minimum requirement with Different Cell ID and Colliding CRS 12.1.0 12.	12-2013	RP-62	RP-131937	2024	RS resources) TDD	12.1.0	12.2.0
12-2013 RP-62 RP-131936 2028 Editoral change on FelCIC PBCH Noc setup 12.1.0 12.	12-2013	RP-62	RP-131937	2026		12.1.0	12.2.0
12-2013 RP-62 RP-131931 2035r1 Correction of nominal guard bands for bandwidth classes A, B and C	12-2013	RP-62	RP-131936	2028	Editoral change on FelCIC PBCH Noc setup	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2042 CR to Introduce RI test for CoMP (TDD) 12.1.0 12. 12. 12-2013 RP-62 RP-131937 2043 CR to Introduce fading CQI test for CoMP (FDD) 12.1.0 12. 12	12-2013	RP-62	RP-131937	2032	Introduction of test 1-A for CoMP	12.1.0	12.2.0
12-2013 RP-62 RP-131937 2043 CR to Introduce fading CQI test for CoMP (FDD) 12.1.0 12. 12. 12-2013 RP-62 RP-131931 2045 Correction of TDD PCFICH/PDCCH test parameter table 12.1.0 12. 13. 14. 14. 15. 1	12-2013	RP-62	RP-131931	2035r1		12.1.0	12.2.0
12-2013 RP-62 RP-131931 2045 Correction of TDD PCFICH/PDCCH test parameter table 12.1.0 12.	12-2013	RP-62	RP-131937	2042	CR to Introduce RI test for CoMP (TDD)	12.1.0	12.2.0
12-2013 RP-62 RP-131939 2047 Add EVA200 to table of channel model parameters 12.1.0 12. 12-2013 RP-62 RP-131963 2050r1 Introduction of CA_7A-7A into TS 36.101 12.1.0 12. 12-2013 RP-62 RP-131967 2057 Band 41 deployment in Japan 12.1.0 12. 12-2013 RP-62 RP-131926 2059 CA_1C: Correction on CA_NS_02 A-MPR table 12.1.0 12. 12-2013 RP-62 RP-131924 2060 Simplification of Band 12/17 in-band blocking test cases 12.1.0 12. 12-2013 RP-62 RP-131967 2064 Correction of duplicated notes on table 7.3.1A-3 12.1.0 12. 12-2013 RP-62 RP-131938 2066 Introduction of EPDCCH TM10 localized test R-12 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 12-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12. 03-2014	12-2013	RP-62	RP-131937	2043	CR to Introduce fading CQI test for CoMP (FDD)	12.1.0	12.2.0
12-2013 RP-62 RP-131963 2050r1 Introduction of CA_7A-7A into TS 36.101 12.1.0	12-2013	RP-62	RP-131931	2045	Correction of TDD PCFICH/PDCCH test parameter table	12.1.0	12.2.0
12-2013 RP-62 RP-131967 2057 Band 41 deployment in Japan 12.1.0 12. 12-2013 RP-62 RP-131926 2059 CA_1C: Correction on CA_NS_02 A-MPR table 12.1.0 12. 12-2013 RP-62 RP-131924 2060 Simplification of Band 12/17 in-band blocking test cases 12.1.0 12. 12-2013 RP-62 RP-131967 2064 Correction of duplicated notes on table 7.3.1A-3 12.1.0 12. 12-2013 RP-62 RP-131938 2066 Introduction of EPDCCH TM10 localized test R-12 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 12-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12. 03-2014 RP-63 RP-140371 2108 UL-DL configuration and other parameters for FeICIC TDD CQI 12.2.0 12. 03	12-2013	RP-62	RP-131939	2047	Add EVA200 to table of channel model parameters	12.1.0	12.2.0
12-2013 RP-62 RP-131926 2059 CA_1C: Correction on CA_NS_02 A-MPR table 12.1.0 12. 12-2013 RP-62 RP-131924 2060 Simplification of Band 12/17 in-band blocking test cases 12.1.0 12. 12-2013 RP-62 RP-131967 2064 Correction of duplicated notes on table 7.3.1A-3 12.1.0 12. 12-2013 RP-62 RP-131938 2066 Introduction of EPDCCH TM10 localized test R-12 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 12-2013 RP-62 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12. 03-2014 RP-63 RP-140371 2108 UL-DL configuration and other parameters for FelClC TDD CQI facing test (Rel-12) 12.2.0 12	12-2013	RP-62	RP-131963	2050r1	Introduction of CA_7A-7A into TS 36.101	12.1.0	12.2.0
12-2013 RP-62 RP-131924 2060 Simplification of Band 12/17 in-band blocking test cases 12.1.0 12. 12-2013 RP-62 RP-131967 2064 Correction of duplicated notes on table 7.3.1A-3 12.1.0 12. 12-2013 RP-62 RP-131938 2066 Introduction of EPDCCH TM10 localized test R-12 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH 12.1.0 12. 03-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12. 03-2014 RP-63 RP-140371 2108 UL-DL configuration and other parameters for FeICIC TDD CQI fading test (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140374 2097 CR on TM9 localized ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140374 2101 CR for TS36.101 COMP demodulation requirements 12.2.0 12. 03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12.	12-2013	RP-62	RP-131967	2057	Band 41 deployment in Japan	12.1.0	12.2.0
12-2013 RP-62 RP-131967 2064 Correction of duplicated notes on table 7.3.1A-3 12.1.0 12. 12-2013 RP-62 RP-131938 2066 Introduction of EPDCCH TM10 localized test R-12 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH scheduling 12.1.0 12. 03-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12. 03-2014 RP-63 RP-140371 2108 UL-DL configuration and other parameters for FelClC TDD CQI fading test (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140374 2097 CR on TM9 localized ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140374 2101 CR on reference measurement channel for ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140371 2110 CR for TS36.101 COMP demodulation requirements 12.2.0 12. 03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12. </td <td>12-2013</td> <td>RP-62</td> <td>RP-131926</td> <td>2059</td> <td>CA_1C: Correction on CA_NS_02 A-MPR table</td> <td>12.1.0</td> <td>12.2.0</td>	12-2013	RP-62	RP-131926	2059	CA_1C: Correction on CA_NS_02 A-MPR table	12.1.0	12.2.0
12-2013 RP-62 RP-131938 2066 Introduction of EPDCCH TM10 localized test R-12 12.1.0 12. 12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH scheduling 12.1.0 12. 03-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12. 03-2014 RP-63 RP-140371 2108 UL-DL configuration and other parameters for FelCIC TDD CQI fading test (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140374 2097 CR on TM9 localized ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140374 2101 CR on reference measurement channel for ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140371 2110 CR for TS36.101 COMP demodulation requirements 12.2.0 12. 03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12. 03-2014 RP-63 RP-140374 2114 CR for EPDCCH power allocation (Rel-12) 12.2.0 12. <	12-2013	RP-62	RP-131924	2060	Simplification of Band 12/17 in-band blocking test cases	12.1.0	12.2.0
12-2013 RP-62 RP-131938 2068 Introduction of SDR test for PDSCH with EPDCCH scheduling 12.1.0 12.	12-2013	RP-62	RP-131967	2064	Correction of duplicated notes on table 7.3.1A-3	12.1.0	12.2.0
Scheduling Scheduling O3-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0 12.	12-2013	RP-62					12.2.0
03-2014 RP-63 RP-140377 2115 Editorial Correction for TS36.101 Rel-12 12.2.0	12-2013	RP-62	RP-131938	2068		12.1.0	12.2.0
03-2014 RP-63 RP-140371 2108 UL-DL configuration and other parameters for FeICIC TDD CQI fading test (Rel-12) 12.2.0 12.2	03-2014	RP-63	RP-140377	2115		12.2 0	12.3.0
gading test (Rel-12) fading test (Rel-12) 03-2014 RP-63 RP-140374 2097 CR on TM9 localized ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140374 2101 CR on reference measurement channel for ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140371 2110 CR for TS36.101 COMP demodulation requirements 12.2.0 12. 03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12. 03-2014 RP-63 RP-140374 2114 CR for EPDCCH power allocation (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140371 2106 Cleanup of the specification for FelClC (Rel-12) 12.2.0 12.							12.3.0
03-2014 RP-63 RP-140374 2101 CR on reference measurement channel for ePDCCH test 12.2.0 12. 03-2014 RP-63 RP-140371 2110 CR for TS36.101 COMP demodulation requirements 12.2.0 12. 03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12. 03-2014 RP-63 RP-140374 2114 CR for EPDCCH power allocation (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140371 2106 Cleanup of the specification for FeICIC (Rel-12) 12.2.0 12.					fading test (Rel-12)		
03-2014 RP-63 RP-140371 2110 CR for TS36.101 COMP demodulation requirements 12.2.0 12. 03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12. 03-2014 RP-63 RP-140374 2114 CR for EPDCCH power allocation (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140371 2106 Cleanup of the specification for FeICIC (Rel-12) 12.2.0 12.							12.3.0
03-2014 RP-63 RP-140371 2113 CR for Combinations of channel model parameters 12.2.0 12. 03-2014 RP-63 RP-140374 2114 CR for EPDCCH power allocation (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140371 2106 Cleanup of the specification for FeICIC (Rel-12) 12.2.0 12.							12.3.0
03-2014 RP-63 RP-140374 2114 CR for EPDCCH power allocation (Rel-12) 12.2.0 12. 03-2014 RP-63 RP-140371 2106 Cleanup of the specification for FeICIC (Rel-12) 12.2.0 12.							12.3.0
03-2014 RP-63 RP-140371 2106 Cleanup of the specification for FelCIC (Rel-12) 12.2.0 12.							12.3.0
	03-2014	RP-63	RP-140374		CR for EPDCCH power allocation (Rel-12)	12.2.0	12.3.0
	03-2014	RP-63				12.2.0	12.3.0
	03-2014	RP-63	RP-140375	2089	CR for introduction of 15MHz based single carrier and CA SDR	12.2.0	12.3.0
tests in Rel-12					tests in Rel-12		
							12.3.0
	03-2014	RP-63	RP-140371	2086		12.2.0	12.3.0
demodulation test				245		15 -	15 -
03-2014 RP-63 RP-140241 2174 Introduction of 3MHz in Band 8 for CA_8_20 RF requirements into 12.2.0 12.	03-2014	RP-63	RP-140241	2174	Introduction of 3MHz in Band 8 for CA_8_20 RF requirements into	12.2.0	12.3.0

				TS26 404	ı	
03-2014	RP-63	RP-140417	2173r1	TS36.101 Addition of bandwidth combination set for CA_2A-29A and	12.2.0	12.3.0
00 2011	111 00	10111	217011	CA_4A-29A	12.2.0	12.0.0
03-2014	RP-63	RP-140387	2071r1	Introduction of TDD inter-band CA_B39_B41 into 36.101	12.2.0	12.3.0
03-2014	RP-63	RP-140378	2069	CA_3C is adding 100RB+75RB uplink configuration for reference sensitivity	12.2.0	12.3.0
03-2014	RP-63	RP-140388	2070	CR for TS36.101 on CA_C_B39	12.2.0	12.3.0
03-2014	RP-63	RP-140386	2072	Introduction of CA band B3+B27 to TS36.101	12.2.0	12.3.0
03-2014	RP-63	RP-140374	2074	CR of EPDCCH localzied test with TM10 QCL Type-B configuration (Rel-12)	12.2.0	12.3.0
03-2014	RP-63	RP-140371	2142	Clarification of contiguous and non-contiguous intra-band UE capabilities in the same band	12.2.0	12.3.0
03-2014	RP-63	RP-140385	2161	Inrtroduction of additional bandwidth combination set for CA_2A-4A	12.2.0	12.3.0
03-2014	RP-63	RP-140371	2131r1	CR to finalize RI test for CoMP	12.2.0	12.3.0
03-2014	RP-63	RP-140368	2147	Correction of coding rate for 18RBs in UL RMC table	12.2.0	12.3.0
03-2014	RP-63	RP-140371	2144	Channel spacing for non-contiguous intra-band carrier aggregation	12.2.0	12.3.0
03-2014	RP-63	RP-140374	2163	Distributed EPDCCH Demodulation Test	12.2.0	12.3.0
03-2014	RP-63	RP-140368 RP-140368	2137 2122	Configured transmitted power for CA	12.2.0 12.2.0	12.3.0
03-2014 03-2014	RP-63 RP-63	RP-140366 RP-140370	2160	CR for 36.101. Editorial correction on OCNG pattern Correction of table notes for NS_12-NS_15 spurious emissions	12.2.0	12.3.0 12.3.0
		RP-140370		requirements		
03-2014 03-2014	RP-63 RP-63	RP-140371 RP-140375	2129r1 2119	CR to finalize fading CQI test for CoMP Introduction of requirements for SNR test for TM9	12.2.0 12.2.0	12.3.0 12.3.0
03-2014	RP-63	RP-140373	2125	CR on correction of downlink SDR tests with EPDCCH scheduling	12.2.0	12.3.0
03-2014	RP-63	RP-140371	2127	Correction on DL CoMP static CQI tests (Rel 12)	12.2.0	12.3.0
06-2014	RP-64	RP-140909	2177r3	RF: Corrections to spurious emission requirements with NS different than NS_01 (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140932	2187r1	Additional bandwidth combination set for LTE Advanced interband Carrier Aggregation of Band 3 and Band 20	12.3.0	12.4.0
06-2014	RP-64	RP-140934	2188	Additional bandwidth combination set for LTE Advanced interband Carrier Aggregation of Band 7 and Band 20	12.3.0	12.4.0
06-2014	RP-64	RP-140943	2195r1	CR for TS 36.101 on introduction CA_41D	12.3.0	12.4.0
06-2014	RP-64	RP-140943	2196r3	CR to TS 36.101 on introduction of CA BW class D requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2198	CR on correction on TDD IRC CQI test	12.3.0	12.4.0
06-2014	RP-64	RP-140917	2207	CR of EPDCCH localzied test with TM10 QCL Type-B configuration (Rel-12): correction of CSI-RS configurations	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2209	Clean up of TM9 SNR tests	12.3.0	12.4.0
06-2014	RP-64	RP-140933	2210r1	Introduction of band B4+B27 CA to TS36.101	12.3.0	12.4.0
06-2014 06-2014	RP-64 RP-64	RP-140942 RP-140917	2213 2216	Introduction of CA band combination B1+B20 to TS 36.101 CR for EPDCCH test (Rel-12)	12.3.0 12.3.0	12.4.0 12.4.0
06-2014	RP-64	RP-140914	2218	CR of modification on FelCIC rank testing (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2220	CR on FelCIC PBCH performance requirement (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2222	Correction on out-of-band blocking for CA	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2226	Update demodualtion performance requirements with new UE categories	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2228	Correction for CA sustained data rate test (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140945	2229	Correction on wrong annotation for close- loop spatial multiplexing performance	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2233	Clarification of Intra-band contiguous CA class C Narrow band blocking requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2239	Correction for CA soft buffer test (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2241	CR on OCNG and propagation conditions for dual layer TM9 test (Rel-12)	12.3.0	12.4.0
06-2014 06-2014	RP-64 RP-64	RP-140911 RP-140914	2247 2256	Remove [] from elCIC TDD RI requirement Verification of exceptions of REFSENS requirements for carrier aggregation	12.3.0 12.3.0	12.4.0 12.4.0
06-2014	RP-64	RP-140914	2258	Applicability of exceptions to reference sensitivity requirements for CA	12.3.0	12.4.0
06-2014	RP-64	RP-140909	2269	In-band blocking case numbering re-establisment	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2273	CR for TS36.101 FRC tables for COMP demodulation requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140945	2277	Editorial correction of note in clause 4.4	12.3.0	12.4.0
06-2014	RP-64	RP-140926	2282r1	Editorial correction of note in clause 4.4	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2283	Introduction of new bandwidth combination set for CA_1A-5A UE	12.3.0	12.4.0
06-2014 06-2014	RP-64 RP-64	RP-140914 RP-140914	2286 2288	CR for finalizing DL COMP CSI reporting requirements CR for adding DL CoMP CSI RMC tables (Rel-12)	12.3.0 12.3.0	12.4.0 12.4.0
06-2014	RP-64	RP-140914	2291	Simplification of 36.101 Table 5.6A.1-1 for LTE_CA_C_B27	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2293	Finalization of CoMP demodulation test cases	12.3.0	12.4.0
06-2014	RP-64	RP-140918	2294	Editorial corrections for UE performance requirements for R12	12.3.0	12.4.0
06-2014	RP-64	RP-140937	2295	Introduction of CA performance requirements for Band 27 CA	12.3.0	12.4.0
06-2014 06-2014	RP-64	RP-140931	2296	Introduction of CA 1+11 to 36.101 (Rel-12)	12.3.0	12.4.0
	RP-64	RP-140994	2309	Inclusion of the out of band emission limit concluded in CEPT into	12.3.0	12.4.0

00.0044	DD 64	DD 440044	0044	band 28	40.00	40.40
06-2014	RP-64	RP-140911	2314	UE to UE co-existence between B42/B43	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2318	Perf: Corrections to CA (Class C) performance with power imbalance (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140920	2319	Introduction of CA performance requirements for Band 23 CA	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2321	CR of modification on FelCIC rank testing (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2323	CR of introducing FelCIC TM9 testing (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140917	2325	CR for EPDCCH SDR test (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2328	Clean-up CR for demodulation requirements (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140945	2330r1	Additional updates of UE categories for demodualtion performance requirements (Rel-12)	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2333	Throughput calculation for eICIC demodulation requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2335r1	Introduction of Band 28 requirements for flexible operation in Japan	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2337r1	Add missing Uplink downlink configuration to elCIC TDD RI requirement	12.3.0	12.4.0
06-2014	RP-64	RP-140945	2338	Add static propagation condition matrix for 1 x 2	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2341	Cleanup of terminology for Rx requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140945	2344	CR on separating CA UE demodulation tests from single carrier	12.3.0	12.4.0
				tests in Rel-12 Test configuration for intra-band contiguous carrier aggregation		
06-2014	RP-64	RP-140911	2351	power control	12.3.0	12.4.0
06-2014	RP-64	RP-140935	2358	Addition of bandwidth combination sets for CA_2A-29A, CA_3A-5A, CA_4A-5A, CA_4A-12A, and CA_4A-29A into 36.101	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2362	Correction of test configurations for intra-band non-contiguous aggregation	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2365	Clarification on CA bandwidth classes	12.3.0	12.4.0
06-2014	RP-64	RP-140917	2374	CR on correction of downlink SDR tests with EPDCCH scheduling	12.3.0	12.4.0
06-2014	RP-64	RP-140922	2377	Correction on LTE_CA_C_B39	12.3.0	12.4.0
06-2014	RP-64	RP-140911	2378	Corrections on CA CQI tests	12.3.0	12.4.0
06-2014	RP-64	RP-140930	2381r1	Introduction of LTE-Advanced CA of Band 8 and Band 40 to TS36.101	12.3.0	12.4.0
06-2014	RP-64	RP-140927	2382r1	FRC for DL MIMO enahncement PMI requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140603	2384r2	CR for TS 36.101 on introduction CA_40D	12.3.0	12.4.0
06-2014	RP-64	RP-140944	2385r1	CR to TS 36.101 on introduction of 3DL intra-band non- contiguous CA requirements	12.3.0	12.4.0
06-2014	RP-64	RP-140938	2387	Introduction of CA_2A-2A into TS 36.101	12.3.0	12.4.0
06-2014	RP-64	RP-140936	2392	Introduction of 4Tx beam steering model	12.3.0	12.4.0
	RP-64	RP-140927 RP-140914				12.4.0
06-2014 06-2014	RP-64	RP-140914 RP-140936	2394 2395r2	CA_7C A-MPR Corrections	12.3.0 12.3.0	12.4.0
				Introduction of a new CA_7C bandwidth combination set into 36.101		
06-2014	RP-64	RP-140918	2398	CR for TS36.101 CSI RMC table	12.3.0	12.4.0
06-2014	RP-64	RP-140940	2413	Introduction of LTE_CA_NC_B42 into 36.101	12.3.0	12.4.0
06-2014	RP-64	RP-140942	2420	Introduction of CA band combination B1+B20 to TS 36.101	12.3.0	12.4.0
06-2014	RP-64	RP-140919	2422	CA_3C is deleting 75RB+75RB uplink configuration for reference sensitivity	12.3.0	12.4.0
06-2014	RP-64	RP-140914	2425	CR on correction for TM10 CSI reporting requirements	12.3.0	12.4.0
09-2014	RP-65	RP-141197	2458r1	Introduction of CA_B1_B3_B19 into TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141428	2568	Updated REFSENS requirements for band combinations with Band 4 and Band 12	12.4.0	12.5.0
09-2014	RP-65	RP-141468	2508r1	Introduction of 3 DL CA for Band 1+3+20	12.4.0	12.5.0
09-2014	RP-65	RP-141469	2571	Correction to CA in Band 1+20	12.4.0	12.5.0
09-2014	RP-65	RP-141525	2504r1	Perf: Cleanup and better description of DL-RMC-s with dynamic coding rate for CSI requirements (Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141525	2565	Corrections to UE coex table	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2434	Correction on support of a bandwidth combination set	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2452r1	Remove the redundant table for FDD 4Tx multi-layer tests and correct the test case number (Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2466	Unequal DL CC RB allocations in Maximum input level	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2469	Intra-band contiguous CA ACS case 2 test clarification	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2484	Corrections on delta Tc for UE MOP for intra-band contiguous CA	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2487	Removal of Class B in UE TX requirement	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2516r1	CR for CA applicability rule in 36.101 in Rel-12	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2519r1	Editorial CR for CA performance tests in 36.101 in Rel-12	12.4.0	12.5.0
09-2014	RP-65	RP-141527	2548	Correction to NS_20 A-MPR for Band 23	12.4.0	12.5.0
09-2014	RP-65	RP-141530	2447	CR of introducing FelCIC TM9 testing (Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141530	2454	Maintenance of CoMP demodulation performance requirements (Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141530	2456	Clean-up CR for EPDCCH and FelCIC PBCH (Rel-12)	12.4.0	12.5.0
JU _U I T	RP-65	RP-141530	2471	Throughput calculation for felCIC demodulation requirements	12.4.0	12.5.0
09-2014		111 171000	4711	I moughput calculation for follow demodulation requirements	12.7.0	
09-2014 09-2014	RP-65	RP-141532	2439	CR on correction on CQI reporting TDD CSI meas in case two CSI subframe sets with CRS test (Rel-12)	12.4.0	12.5.0

00.007	DD ==	DD / // 5	04::	subframe sets with CRS tests (Rel-12)	46	46.5.
09-2014	RP-65	RP-141532	2444	Clarification of high speed train scenario in 36.101 (Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141532	2478	CQI reporting under fading: CQI indices in set	12.4.0	12.5.0
09-2014 09-2014	RP-65 RP-65	RP-141532 RP-141532	2490 2499	Correction on A-MPR table RF: Corrections to spurious emission band co-existence	12.4.0 12.4.0	12.5.0 12.5.0
				requirement for Band 44		
09-2014	RP-65	RP-141535	2559	Addition of E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA for Band 4 and 27	12.4.0	12.5.0
09-2014	RP-65	RP-141537	2541	Band 42 contiguous CA channel bandwidth correction	12.4.0	12.5.0
09-2014	RP-65	RP-141546	2463r1	Introduction of PMI reporting requirements for DL MIMO enhancement	12.4.0	12.5.0
09-2014	RP-65	RP-141548	2457r2	Introduction of CA_B1_B3 into TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141549	2556	Addition of bandwidth combination set for CA_2A-4A	12.4.0	12.5.0
09-2014	RP-65	RP-141550	2566	Addition of 3MHz bandwidth for Band 12 , in the B2+B12 CA combination	12.4.0	12.5.0
09-2014	RP-65	RP-141551	2445	Introduction of CA 8+11 to 36.101 (Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141553	2491r1	Introduction of a new bandwidth combination set for CA_25A-25A into 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141554	2533r1	Introduction of requirements for 3DL inter-band carrier aggregation (FDD)	12.4.0	12.5.0
09-2014	RP-65	RP-141554	2534	Introduction of requirements for 3DL combinations with Band 30 (FDD)	12.4.0	12.5.0
09-2014	RP-65	RP-141557	2461r1	Introduction of CA_B19_B42_B42 into TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141559	2460r1	Introduction of CA_B1_B42_B42 into TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141560	2427	Adding 15MHz channel BW to B40 3DL and new bandwidth combination set for the 2DL	12.4.0	12.5.0
09-2014	RP-65	RP-141561	2488r1	Corrections on Maximum input level for intra-band non-contiguous 3DL	12.4.0	12.5.0
09-2014	RP-65	RP-141562	2436	Corrections on Maximum input level and ACS for intra-band CA	12.4.0	12.5.0
09-2014	RP-65	RP-141562	2481r1	Introduction of CA band combination B41+ B42 to TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141562	2522	CR on CA power imbalance tests in Rel-12	12.4.0	12.5.0
09-2014	RP-65	RP-141562	2560	CR Reducing MPR for Contiguous CA with Non-Contiguous Resource Allocations	12.4.0	12.5.0
09-2014	RP-65	RP-141563	2555r1	UL configuration for CA_4A-12A reference sensitivity	12.4.0	12.5.0
09-2014	RP-65	RP-141563	2557	Addition of bandwidth combination set for CA_4A-12A	12.4.0	12.5.0
09-2014	RP-65	RP-141612	2494r2	Introduction of inter-band CA_18-28 into TS36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141635	2552r2	Introduction of CA_1A-7A into 36.101(Rel-12)	12.4.0	12.5.0
09-2014	RP-65	RP-141636	2480r2	Introduction of 3DLs CA band combination of Band1 +5 + 7 to TS 36.101 Rel-12	12.4.0	12.5.0
09-2014	RP-65	RP-141653	2435r3	Introduction of 3 Band Carrier Aggregation (3DL/1UL) of Band 1, Band 3 and Band 8 to TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141682	2570r1	Introduction of CA band combination B1+B7+B20 to TS 36.101	12.4.0	12.5.0
09-2014	RP-65	RP-141708	2492r3	Introduction of 3 Band Carrier Aggregation of Band 1,Band 3 and Band 5 to TS 36.101	12.4.0	12.5.0
12-2014	RP-66	RP-142147	2671	Correction of CoMP TDD CSI tests (Rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2574	CR for REFSENSE in lower SNR and change history	12.5.0	12.6.0
12-2014	RP-66	RP-142173	2581	CR on 4Tx codebook PMI testing	12.5.0	12.6.0
12-2014	RP-66	RP-142142	2587	CR for 1 PRB allocation performance in presence of MBSFN (rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2590	Maintenance of CA demodulation performance requirements (Rel- 12)	12.5.0	12.6.0
12-2014	RP-66	RP-142147	2592	Clean up for FelCIC demodulation performance requirements (Rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142166	2600	Correction of placement of CA_40D in Table	12.5.0	12.6.0
12-2014 12-2014	RP-66 RP-66	RP-142162 RP-142162	2601 2602	CQI test for TDD CL_C 20MHz+15MHz in Rel-12 Sustained downlink data rate test for TDD CL_C 20MHz+15MHz	12.5.0 12.5.0	12.6.0 12.6.0
10.007	DD 55	DD / 10:	0011	in Rel-12	46	46.5.
12-2014	RP-66	RP-142165	2611	Removal of square brackets for CA_B1_B3 and CA_B1_B3_B19	12.5.0	12.6.0
12-2014 12-2014	RP-66 RP-66	RP-142147 RP-142147	2620 2629	CQI reporting in AWGN: CQI indices in set CR to fix error of CA capability for CA performance tests in 36.101	12.5.0 12.5.0	12.6.0 12.6.0
12-2014	RP-66	RP-142144	2637	in Rel-12 Definition of the bits in the bitmap for indication of modified MPR	12.5.0	12.6.0
12-2014	RP-66	RP-142147	2641	behavior Applicability of in-gap and out-of-gap measurements for intra-band	12.5.0	12.6.0
12-2014	RP-66	RP-142183	2642	NC CA Introduction of additional bandwidth combination set for CA_2A-	12.5.0	12.6.0
				5A		
12-2014	RP-66	RP-142164	2643	Corrections for 3DL inter-band CA band combinations	12.5.0	12.6.0
12-2014	RP-66	RP-142147	2661	Maintenance of TM10 demodulation test configurations on PQI set and ZP-CSIRS (Rel-12 test 8.3.1.3.2, 8.3.2.4.2)	12.5.0	12.6.0
12-2014	RP-66	RP-142173	2582r1	Introduction of PUSCH 3-2 requirements into TS36.101	12.5.0	12.6.0
12-2014	RP-66	RP-142162	2603r1	Normal demodulation test for TDD CL_C 20MHz+15MHz in Rel- 12	12.5.0	12.6.0
12-2014	RP-66	RP-142164	2576r1	Corrections on Out-of-band blocking requirements for CA Class B	12.5.0	12.6.0

	1			and D		
12-2014	RP-66	RP-142149	2678	CR to specify applicability of CoMP RI test (Rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2688	Removal of bracket for UL MIMO	12.5.0	12.6.0
12-2014	RP-66	RP-142164	2689	Corection of B29 REFSENS for CA_2A-29A-30A and CA_4A-29A-30A	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2700	Delete the incorrect notes for FDD DMRS demodulation tests (Rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142160	2594r3	Correcting requirements for inter-band CA_18-28 in TS36.101	12.5.0	12.6.0
12-2014	RP-66	RP-142173	2705	CR of modification on PMI reporting requirements for DL MIMO enhancement	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2720	Band 22 correction in UE to UE co-existance table.	12.5.0	12.6.0
12-2014	RP-66	RP-142147	2722	Correction to non-contiguous downlink intraband CA receiver requirements	12.5.0	12.6.0
12-2014	RP-66	RP-142159	2752	Removal of dRib from CA_1A-7A	12.5.0	12.6.0
12-2014	RP-66	RP-142147	2723	Correction to table format of allowed channel bandwidths of non- contiguous intraband CA	12.5.0	12.6.0
12-2014	RP-66	RP-142164	2643r1	Corrections for 3DL inter-band CA band combinations	12.5.0	12.6.0
12-2014	RP-66	RP-142146	2731	Modifications for NS_12 and NS_13	12.5.0	12.6.0
12-2014	RP-66	RP-142189	2739	Introduction of CA_5-13 into 36.101	12.5.0	12.6.0
12-2014	RP-66	RP-142173	2706r1	CR of reference measurement channel for PUSCH3-2 test	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2727r1	CR for CA applicability rule in 36.101 in Rel-12	12.5.0	12.6.0
12-2014	RP-66	RP-142188	2676r1	CR to remove CA capability column in CA performance test tables (Rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142173	r3	Introduction of PUSCH 3-2 requirements into TS36.101	12.5.0	12.6.0
12-2014	RP-66	RP-142187	2690r1	CR on sustained data rate test for 3DL CA	12.5.0	12.6.0
12-2014	RP-66	RP-142187	2681r2	CR on normal demodulation test for 3DL CA	12.5.0	12.6.0
12-2014	RP-66	RP-142147	2747r1	TS36.101 removal of brackets (RF)	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2755 2710r1	Correction to Transmit Modulation Quality for CA	12.5.0	12.6.0
12-2014 12-2014	RP-66 RP-66	RP-142144 RP-142144	271011 2717r1	Clarification on UL and DL CA Clarification of notes relating to interferer offsets in intraband CA receiver requirement tables.	12.5.0 12.5.0	12.6.0 12.6.0
12-2014	RP-66	RP-142147	2735r1	Band 28 and NS 24	12.5.0	12.6.0
12-2014	RP-66	RP-142179	2684r1	CR for UE requirements for 256QAM	12.5.0	12.6.0
12-2014	RP-66	RP-142180	2729r1	Introduction of Dual Connectivity to TS 36.101 Rel-12, RF part	12.5.0	12.6.0
12-2014	RP-66	RP-142184	2680r1	Introduction of dual uplink inter-band CA in TS 36.101 rel-12	12.5.0	12.6.0
12-2014	RP-66	RP-142182	2701r1	Introduction of inter-band CA_1-28 into TS36.101	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2758	Correction to Note 2 of Harmonic Signal Exceptions in Spurious Emissions	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2751r2	Removal of brackets and TBD from CA feature	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2697r1	Maintenance of CA performance requirements (Rel-12)	12.5.0	12.6.0
12-2014	RP-66	RP-142187	2679r2	CR to introduce CQI test for 3 DL CA	12.5.0	12.6.0
12-2014	RP-66	RP-142185	2721r1	Addition of 2UL non-contiguous intraband CA feature	12.5.0	12.6.0
12-2014	RP-66	RP-142144	2704r2	UE to UE co-existence between B42/B43	12.5.0	12.6.0
12-2014	RP-66	RP-142176	2685r2	Introduction of LC MTC into TS 36.101	12.5.0	12.6.0
12-2014	RP-66	RP-142190	2759r1	Introduction of additional band combinations for 3DL inter-band CA	12.5.0	12.6.0
03-2015	RP-77	RP-150387	2760r2	Introduce additional bands of LC MTC	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2761	CR on corrections to Dual-Layer Spatial Multiplexing with multiple CSI-RS config Rel-12	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2765r1	CR for applicability and test rules for TDD-FDD CA performance requirements	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2766	Introduction of CQI tests for TDD-FDD CA	12.6.0	12.7.0
03-2015	RP-77	RP-150395	2767r1	CR to introduce the SU-MIMO whitening verification test	12.6.0	12.7.0
03-2015 03-2015	RP-77 RP-77	RP-150392 RP-150392	2768r1 2769	CR on power imbalance test for 3DL CA CR on sustained data rate test for TDD FDD CA	12.6.0 12.6.0	12.7.0 12.7.0
03-2015	RP-77	RP-150392 RP-150394	2770r1	CR for introduction of 256QAM demodulation performance	12.6.0	12.7.0
03-2015	RP-77	RP-150393	2772r1	requirements CR: DC UE performance requirements	12.6.0	12.7.0
03-2015	RP-77	RP-150393	2773r1	CR: MTC demodulation performance requirements	12.6.0	12.7.0
03-2015	RP-77	RP-150390	2774r1	CR: MTC demodulation performance requirements	12.6.0	12.7.0
03-2015	RP-77	RP-150396	2775r1	Introduction of the eIMTA functional PDSCH demodulation test	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2776r3	CR on RF core requirements for D2D	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2777	Modification of CSI reference measurement channel Rel-12	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2779	Editorial correction for CA_18A-28A	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2781	Removing brackets for CA_1A-28A MSD requirements	12.6.0	12.7.0
03-2015	RP-77	RP-150384	2783	Editorial correction on symbols for enhanced performance requirements type A	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2784	Corrections on reference measurement channel	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2792	Correction of TS 36.101 for the Pcell support of 25+41	12.6.0	12.7.0
03-2015	RP-77	RP-150395	2793r1	CR for single cell demodulation test for SU-MIMO	12.6.0	12.7.0
03-2015	RP-77	RP-150391	2794	Introduction of CA_3A-42A and CA_3A-42C into 36.101	12.6.0	12.7.0
	I DD 77	RP-150384	2797	UL HARQ in PDSCH and PDCCH/PCFICH demod test cases for	12.6.0	12.7.0
03-2015	RP-77	RP-150382	2800	elCIC/felCIC with MBSFN ABS Correction to elCIC aggressor cell configurations	12.6.0	12.7.0

03-2015	RP-77	RP-150387	2801	R4-73AH-0040: Correction for uplik CA configuration in TS 36.101 Rel-12	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2802r1	Correction of MSD levels for CA_1A-8A in TS 36.101 rel-12	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2805	Removal of eDL-MIMO term from specification	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2809	Clarification of 2UL/3DL contiguous intraband CA REFSENS test	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2811r1	CR on TM4 normal demodulation test for 3DL CA	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2812	CR on introducing new DL referece measurement channels	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2813r1	CR on normal demodulation test for TDD-FDD CA	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2815	Additions of bandwidth combination set reference	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2816	Correction of band number in Table 5.6A.1-2a for LTE_CA_B4_B12_B30	12.6.0	12.7.0
03-2015	RP-77	RP-150382	2819	UE to UE co-existence between B42/B43	12.6.0	12.7.0
03-2015	RP-77	RP-150382	2822	Corrections to CA in-band emissions requirement	12.6.0	12.7.0
03-2015	RP-77	RP-150381	2830	Uplink RMCs for sustained data rate test	12.6.0	12.7.0
03-2015	RP-77	RP-150382	2833	Corrections to the CA power imbalance test	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2839r1	CR for soft buffer tests for TDD-FDD CA in 36.101 in Rel-12	12.6.0	12.7.0
03-2015	RP-77	RP-150392	2842	Editorial CR for CA UE performance tests in 36.101 in Rel-12	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2847	UE spurious emissions structure correction for CA	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2850	Correction of PCMAX for uplink inter-band and intra-band carrier aggregation	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2851	Exceptions for spurious response for UL CA	12.6.0	12.7.0
03-2015	RP-77	RP-150388	2852r1	Correction of REFSENS, OOBB and uplink configuration for 3DL/1UL CA	12.6.0	12.7.0
03-2015	RP-77	RP-150390	2853	SNR definition for category 0 UE	12.6.0	12.7.0
03-2015	RP-77	RP-150390	2854r1	FRC for category 0 UE PDSCH performance requirements	12.6.0	12.7.0
03-2015	RP-77	RP-150390	2855r1	Introduction of new PHICH and PBCH performance requirements for category 0 UE	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2861	Correction to FOOB reference in definition of MPR for contiguous CA with non-contiguous resource allocation	12.6.0	12.7.0
03-2015	RP-77	RP-150387	2862	Band 31 update	12.6.0	12.7.0
03-2015	RP-77	RP-150384	2867	Implementation of CA configurations specified in later releases	12.6.0	12.7.0

History

	Document history						
V12.5.0	November 2014	Publication					
V12.6.0	April 2015	Publication					
V12.7.0	May 2015	Publication					