ETSI TS 136 101 V11.11.0 (2015-04)

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 11.11.0 Release 11)

Reference RTS/TSGR-0436101vbb0

Keywords

LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2015. All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**[™] and LTE[™] are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	Intellectual Property Rights	
Forew	vord	2
Moda	l verbs terminology	2
Forew	vord	15
1	Scope	16
2	References	16
	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	19
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	
4.3	Void	
4.3A	Applicability of minimum requirements (CA, UL-MIMO, eDL-MIMO)	
4.4	RF requirements in later releases	
_	-	
	Operating bands and channel arrangement	22
5.1	General	
5.2	Void	
5.3	Void	
5.4	Void	
5.5	Operating bands	
5.5A	Operating bands for CA	
5.5B	Operating bands for UL-MIMO	
5.6	Channel bandwidth	
5.6.1	Channel bandwidths per operating band	
5.6A	Channel bandwidth for CA	
5.6A.1		
5.6B	Channel bandwidth for UL-MIMO	
5.6B.1	Void	
5.7	Channel arrangement	
5.7.1	Channel spacing	
5.7.1A	1 8 -	
5.7.2	Channel raster	
5.7.2A		
5.7.3	Carrier frequency and EARFCN	
5.7.4	TX-RX frequency separation	
5.7.4A	TX-RX frequency separation for CA	
6	Transmitter characteristics	
6.1	General	
6.2	Transmit power	
6.2.1	Void	
6.2.2	UE maximum output power	
6.2.2A		
6.2.2B		
6.2.3	UE maximum output power for modulation / channel bandwidth	
6.2.3A		
6.2.3B		41
6.2.4	UE maximum output power with additional requirements	
6.2.4A		

6.2.4A.4	A-MPR for CA_NS_04	
6.2.4A.5	A-MPR for CA_NS_05 for CA_38C	
6.2.4A.6	A-MPR for CA_NS_06	
6.2.4B	UE maximum output power with additional requirements for UL-MIMO	
6.2.5	Configured transmitted power	
6.2.5A	Configured transmitted power for CA	
6.2.5B	Configured transmitted power for UL-MIMO	
6.3	Output power dynamics	
6.3.1	(Void)	
6.3.2	Minimum output power	
6.3.2.1	Minimum requirement	
6.3.2A	UE Minimum output power for CA	
6.3.2A.1	Minimum requirement for CA	
6.3.2B	UE Minimum output power for UL-MIMO	
6.3.2B.1	Minimum requirement	
6.3.3	Transmit OFF power	
6.3.3.1.	Minimum requirement	
6.3.3A	UE Transmit OFF power for CA	
6.3.3A.1	Minimum requirement for CA	
6.3.3B	UE Transmit OFF power for UL-MIMO	
6.3.3B.1	Minimum requirement	
6.3.4	ON/OFF time mask	
6.3.4.1	General ON/OFF time mask	
6.3.4.2	PRACH and SRS time mask	
6.3.4.2.1	PRACH time mask	
6.3.4.2.2	SRS time mask	
6.3.4.3 6.3.4.4	Slot / Sub frame boundary time mask PUCCH / PUSCH / SRS time mask	
6.3.4A	ON/OFF time mask for CA	
6.3.4A 6.3.4B	ON/OFF time mask for UL-MIMO	
6.3.5	Power Control	
6.3.5.1	Absolute power tolerance	
6.3.5.1.1	Minimum requirements	
6.3.5.2	Relative Power tolerance	
6.3.5.2.1	Minimum requirements	
6.3.5.3	Aggregate power control tolerance	
6.3.5.3.1	Minimum requirement.	
6.3.5A	Power control for CA	
6.3.5A.1	Absolute power tolerance	
6.3.5A.1.1	1	
6.3.5A.2	Relative power tolerance	
6.3.5A.2.1		
6.3.5A.3	Aggregate power control tolerance	
6.3.5A.3.1		
6.3.5B	Power control for UL-MIMO	
6.4	Void	
6.5	Transmit signal quality	
6.5.1	Frequency error	
6.5.1A	Frequency error for CA	
6.5.1B	Frequency error for UL-MIMO	
6.5.2	Transmit modulation quality	
6.5.2.1	Error Vector Magnitude	
6.5.2.1.1	Minimum requirement	
6.5.2.2	Carrier leakage	69
6.5.2.2.1	Minimum requirements	
6.5.2.3	In-band emissions	70
6.5.2.3.1	Minimum requirements	70
6.5.2.4	EVM equalizer spectrum flatness	71
6.5.2.4.1	Minimum requirements	71
6.5.2A	Transmit modulation quality for CA	
6.5.2A.1	Error Vector Magnitude	
6.5.2A.2	Carrier leakage for CA	72

6 5 3 4 3 1		70
6.5.2A.2.1	Minimum requirements	
6.5.2A.3	In-band emissions	
6.5.2A.3.1	Minimum requirement for CA	73
6.5.2B	Transmit modulation quality for UL-MIMO	74
6.5.2B.1	Error Vector Magnitude	
	0	
6.5.2B.2	Carrier leakage	
6.5.2B.3	In-band emissions	
6.5.2B.4	EVM equalizer spectrum flatness for UL-MIMO	75
6.6 C	Output RF spectrum emissions	
6.6.1	Occupied bandwidth	
	1	
6.6.1A	Occupied bandwidth for CA	
6.6.1B	Occupied bandwidth for UL-MIMO	
6.6.2	Out of band emission	76
6.6.2.1	Spectrum emission mask	
6.6.2.1.1	Minimum requirement	
0.0.2.2.2		
6.6.2.1A	Spectrum emission mask for CA	
6.6.2.2	Additional spectrum emission mask	
6.6.2.2.1	Minimum requirement (network signalled value "NS_03", "NS_11", and "NS_20")	77
6.6.2.2.2	Minimum requirement (network signalled value "NS_04")	78
6.6.2.2.3	Minimum requirement (network signalled value "NS_06" or "NS_07")	
6.6.2.2A	Additional Spectrum Emission Mask for CA.	
6.6.2.2A.1	Minimum requirement (network signalled value "CA_NS_04")	
6.6.2.3	Adjacent Channel Leakage Ratio	79
6.6.2.3.1	Minimum requirement E-UTRA	80
6.6.2.3.1A	Void	
6.6.2.3.2		
	Minimum requirements UTRA	
6.6.2.3.2A	Minimum requirement UTRA for CA	
6.6.2.3.3A	Minimum requirements for CA E-UTRA	82
6.6.2.4	Void	
6.6.2.4.1	Void	
6.6.2A	Void	
6.6.2B	Out of band emission for UL-MIMO	
6.6.3	Spurious emissions	83
6.6.3.1	Minimum requirements	83
6.6.3.1A	Minimum requirements for CA	
6.6.3.2	Spurious emission band UE co-existence	
6.6.3.2A	Spurious emission band UE co-existence for CA	
6.6.3.3	Additional spurious emissions	90
6.6.3.3.1	Minimum requirement (network signalled value "NS_05")	90
6.6.3.3.2	Minimum requirement (network signalled value "NS_07")	
6.6.3.3.3	Minimum requirement (network signalled value "NS_08")	
6.6.3.3.4	Minimum requirement (network signalled value "NS_09")	
6.6.3.3.5	Minimum requirement (network signalled value "NS_12")	
6.6.3.3.6	Minimum requirement (network signalled value "NS_13")	92
6.6.3.3.7	Minimum requirement (network signalled value "NS_14")	
6.6.3.3.8	Minimum requirement (network signalled value "NS_15")	
	Minimum requirement (network signalled value 'NS_15')	
6.6.3.3.9		
6.6.3.3.10	Minimum requirement (network signalled value "NS_17")	
6.6.3.3.11	Minimum requirement (network signalled value "NS_18")	
6.6.3.3.12	Minimum requirement (network signalled value "NS_19")	94
6.6.3.3.13	Minimum requirement (network signalled value "NS_11")	
6.6.3.3.14	Minimum requirement (network signalled value "NS_20")	
6.6.3.3.15	Minimum requirement (network signalled value " NS_22")	
6.6.3.3A	Additional spurious emissions for CA	
6.6.3.3A.1	Minimum requirement for CA_1C (network signalled value "CA_NS_01")	
6.6.3.3A.2	Minimum requirement for CA_1C (network signalled value "CA_NS_02")	
6.6.3.3A.3	Minimum requirement for CA_1C (network signalled value "CA_NS_03")	96
6.6.3.3A.4	Minimum requirement for CA_1C (network signaled value "CA_NS_05")	
6.6.3.3A.5	Minimum requirement for CA_7C (network signalled value "CA_NS_06")	
6.6.3A	Void	
6.6.3B	Spurious emission for UL-MIMO	97
6.6A V	'oid	

6 (D		
6.6B	Void	
6.7	Transmit intermodulation	
6.7.1	Minimum requirement	97
6.7.1A	Minimum requirement for CA	
6.7.1B	Minimum requirement for UL-MIMO	
6.8	Void	
6.8.1	Void	
6.8A	Void	
6.8B	Time alignment error for UL-MIMO	
6.8B.1	Minimum Requirements	
7 Re	eceiver characteristics	00
7.1	General	
7.2	Diversity characteristics	
7.3	Reference sensitivity power level	
7.3.1	Minimum requirements (QPSK)	
7.3.1A	Minimum requirements (QPSK) for CA	
7.3.1B	Minimum requirements (QPSK) for UL-MIMO	109
7.3.2	Void	109
7.4	Maximum input level	109
7.4.1	Minimum requirements	
7.4.1A	Minimum requirements for CA	
7.4.1B	Minimum requirements for UL-MIMO	
7.4A	Void	
7.4A.1	Void	
7.5	Adjacent Channel Selectivity (ACS)	
7.5.1	Minimum requirements	
7.5.1A	Minimum requirements for CA	
7.5.1B	Minimum requirements for UL-MIMO	
7.6	Blocking characteristics	
7.6.1	In-band blocking	
7.6.1.1	Minimum requirements	
7.6.1.1A	Minimum requirements for CA	114
7.6.2	Out-of-band blocking	116
7.6.2.1	Minimum requirements	116
7.6.2.1A	Minimum requirements for CA	117
7.6.3	Narrow band blocking	
7.6.3.1	Minimum requirements	
7.6.3.1A	Minimum requirements for CA	
7.6A	Void	
7.6B	Blocking characteristics for UL-MIMO	
7.7	Spurious response	
7.7.1	Minimum requirements	
7.7.1A	Minimum requirements for CA	
7.7.1B	Minimum requirements for UL-MIMO	
7.8	Intermodulation characteristics	
7.8.1	Wide band intermodulation	
7.8.1.1	Minimum requirements	122
7.8.1A	Minimum requirements for CA	
7.8.1B	Minimum requirements for UL-MIMO	
7.8.2	Void	
7.9	Spurious emissions	
7.9.1	Minimum requirements	
7.10	Receiver image	
7.10.1	÷	
	Void	
7.10.1A	Minimum requirements for CA	
8 Pe	rformance requirement	
8.1	General	
8.1.1	Dual-antenna receiver capability	
8.1.1.1	Simultaneous unicast and MBMS operations	
8.1.1.2	•	
0.1.1.2	Dual-antenna receiver capability in idle mode	123

8.1.2	Applicability of requirements	.125
8.1.2.1	Applicability of requirements for different channel bandwidths	
8.1.2.2	Definition of CA capability	
8.1.2.3	Applicability and test rules for different CA configurations and bandwidth combination sets	
8.1.2.4	Test coverage for different number of component carriers	
8.2	Demodulation of PDSCH (Cell-Specific Reference Symbols)	
8.2.1	FDD (Fixed Reference Channel)	.128
8.2.1.1	Single-antenna port performance	.128
8.2.1.1.1	Minimum Requirement	.128
8.2.1.1.2	Void	.130
8.2.1.1.3	Void	.130
8.2.1.1.4	Minimum Requirement 1 PRB allocation in presence of MBSFN	
8.2.1.2	Transmit diversity performance	
8.2.1.2.1	Minimum Requirement 2 Tx Antenna Port	.131
8.2.1.2.2	Minimum Requirement 4 Tx Antenna Port	.131
8.2.1.2.3	Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor	
	cell ABS)	.132
8.2.1.2.3A	1 66	
	cell ABS and CRS assistance information are configured)	.134
8.2.1.2.4	Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference	
	model	
8.2.1.3	Open-loop spatial multiplexing performance	
8.2.1.3.1	Minimum Requirement 2 Tx Antenna Port	
8.2.1.3.1A	~	
8.2.1.3.2	Minimum Requirement 4 Tx Antenna Port	.140
8.2.1.3.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS)	.140
8.2.1.3.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.2.1.4	Closed-loop spatial multiplexing performance	
8.2.1.4.1	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	
8.2.1.4.1A		.147
8.2.1.4.1B		1 47
0 0 1 4 10	Antenna Port with TM4 interference model	.14/
8.2.1.4.10		140
02142	subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	
8.2.1.4.2 8.2.1.4.3	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	
	Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port MU-MIMO	
8.2.1.5 8.2.1.6	MU-MIMO [Control channel performance: D-BCH and PCH]	
8.2.1.7	Carrier aggregation with power imbalance	
8.2.1.7	Minimum Requirement	
8.2.1.8	Intra-band non-contiguous carrier aggregation with timing offset	
8.2.1.8.1	Minimum Requirement	
8.2.2	TDD (Fixed Reference Channel)	
8.2.2.1	Single-antenna port performance	
8.2.2.1.1	Minimum Requirement	
8.2.2.1.2	Void	
8.2.2.1.3	Void	
8.2.2.1.4	Minimum Requirement 1 PRB allocation in presence of MBSFN	
8.2.2.2	Transmit diversity performance	
8.2.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.2.2.2.2	Minimum Requirement 4 Tx Antenna Port	
8.2.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS)	.162
8.2.2.3A	,	
	cell ABS and CRS assistance information are configured)	.163
8.2.2.2.4	Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference	
	model	.165
8.2.2.3	Open-loop spatial multiplexing performance	.166
8.2.2.3.1	Minimum Requirement 2 Tx Antenna Port	
8.2.2.3.1A	Soft buffer management test	.168

8.2.2.3.2	Minimum Requirement 4 Tx Antenna Port	168
8.2.2.3.3	Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor	
	cell ABS)	169
8.2.2.3.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	173
8.2.2.4	Closed-loop spatial multiplexing performance	
8.2.2.4.1	Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	
8.2.2.4.1A		
8.2.2.4.1E		
0.2.2.	Antenna Port with TM4 interference model	176
8.2.2.4.10		
0.2.2.4.10	subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	
8.2.2.4.2	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	
8.2.2.4.3	Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	
8.2.2.4.3	MU-MIMO	
8.2.2.5	[Control channel performance: D-BCH and PCH]	
8.2.2.0		
8.2.2.7	Carrier aggregation with power imbalance	
	Minimum Requirement	
8.3	Demodulation of PDSCH (User-Specific Reference Symbols)	
8.3.1	FDD	
8.3.1.1	Single-layer Spatial Multiplexing	184
8.3.1.1A	Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9	
	interference model	186
8.3.1.1B	Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and	
	CRS assistance information are configured)	
8.3.1.2	Dual-Layer Spatial Multiplexing	
8.3.1.3	Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports	
8.3.1.3.1	Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)	
8.3.1.3.2	Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)	193
8.3.1.3.3	Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS	
	resource)	195
8.3.2	TDD	197
8.3.2.1	Single-layer Spatial Multiplexing	197
8.3.2.1A	Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)	199
8.3.2.1B	Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9	
	interference model	201
8.3.2.1C	Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and	
	CRS assistance information are configured)	203
8.3.2.2	Dual-Layer Spatial Multiplexing	
8.3.2.3	Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)	
8.3.2.4	Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports	
8.3.2.4.1	Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)	
8.3.2.4.2	Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)	
8.3.2.4.3	Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS	
0.0.2.1.0	resource)	211
8.4	Demodulation of PDCCH/PCFICH	
8.4.1	FDD	
8.4.1.1	Single-antenna port performance	
8.4.1.2	Transmit diversity performance	
8.4.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.4.1.2.1		
	Minimum Requirement 4 Tx Antenna Port	214
8.4.1.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	214
0 4 1 0 4	cell ABS)	214
8.4.1.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	010
0.4.2	cell ABS and CRS assistance information are configured)	
8.4.2	TDD	
8.4.2.1	Single-antenna port performance	
8.4.2.2	Transmit diversity performance	
8.4.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.4.2.2.2	Minimum Requirement 4 Tx Antenna Port	223
8.4.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS)	224

8.4.2.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	
	cell ABS and CRS assistance information are configured)	
8.5	Demodulation of PHICH	
8.5.1	FDD	
8.5.1.1	Single-antenna port performance	
8.5.1.2	Transmit diversity performance	
8.5.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.5.1.2.2	Minimum Requirement 4 Tx Antenna Port	233
8.5.1.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	233
8.5.1.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)	235
8.5.2	TDD	237
8.5.2.1	Single-antenna port performance	238
8.5.2.2	Transmit diversity performance	238
8.5.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.5.2.2.2	Minimum Requirement 4 Tx Antenna Port	239
8.5.2.2.3	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)	
8.5.2.2.4	Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor	0>
0.0.2.2.1	cell ABS and CRS assistance information are configured)	241
8.6	Demodulation of PBCH	
8.6.1	FDD	
8.6.1.1	Single-antenna port performance	
8.6.1.2	Transmit diversity performance	
8.6.1.2.1	Minimum Requirement 2 Tx Antenna Port	
8.6.1.2.2	Minimum Requirement 4 Tx Antenna Port	
8.6.1.2.3	Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource	
0.0.1.2.3	Restriction with CRS Assistance Information	244
8.6.2	TDD	
8.6.2.1	Single-antenna port performance	
8.6.2.2	Transmit diversity performance	
8.6.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.6.2.2.1	Minimum Requirement 2 Tx Antenna Port	
8.6.2.2.3	Minimum Requirement 4 TX Antenna Port under Time Domain Measurement Resource	240
8.0.2.2.3	Restriction with CRS Assistance Information	247
8.7	Sustained downlink data rate provided by lower layers	
8.7.1	FDD	
8.7.2	TDD	
8.7.2	FDD (EPDCCH scheduling)	
8.7.3	TDD (EPDCCH scheduling)	
8.8	Demodulation of EPDCCH	
o.o 8.8.1	Distributed Transmission	
8.8.1.1	FDD	
8.8.1.1.1	Void	
8.8.1.2	TDD	
8.8.1.2.1	Void	
8.8.2	Localized Transmission with TM9	
8.8.2.1	FDD	
8.8.2.1.1	Void	
8.8.2.1.2	Void	
8.8.2.2	TDD	
8.8.2.2.1	Void	
8.8.2.2.1	Void	
8.8.3	Localized transmission with TM10 Type B quasi co-location type	
8.8.3.1	FDD	
8.8.3.2	TDD	
9 Re	porting of Channel State Information	264
9.1	General	
9.1.1	Applicability of requirements	264
9.1.1.1	Applicability of requirements for different channel bandwidths	264

9.1.1.2	Applicability and test rules for different CA configurations and bandwidth combination sets	265
9.2	CQI reporting definition under AWGN conditions	
9.2.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)	
9.2.1.1	FDD	
9.2.1.2	TDD	
9.2.1.3	FDD (CSI measurements in case two CSI subframe sets are configured)	
9.2.1.4	TDD (CSI measurements in case two CSI subframe sets are configured)	269
9.2.1.5	FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance	
	information)	271
9.2.1.6	TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance	
	information)	
9.2.2	Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)	
9.2.2.1	FDD	
9.2.2.2	TDD	
9.2.3	Minimum requirement PUCCH 1-1 (CSI Reference Symbols)	
9.2.3.1	FDD	
9.2.3.2	TDD	
9.2.4	Minimum requirement PUCCH 1-1 (With Single CSI Process)	
9.2.4.1	FDD	
9.2.4.2	TDD	
9.3	CQI reporting under fading conditions	
9.3.1	Frequency-selective scheduling mode	
9.3.1.1	Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)	
9.3.1.1.1	FDD	
9.3.1.1.2	TDD	285
9.3.1.1.3	FDD (CSI measurements in case two CSI subframe sets are configured and with CRS	9 0 c
0 2 1 1 4	assistance information)	286
9.3.1.1.4	TDD (CSI measurements in case two CSI subframe sets are configured and with CRS	200
0 0 1 0	assistance information)	
9.3.1.2	Minimum requirement PUSCH 3-1 (CSI Reference Symbol)	
9.3.1.2.1	FDD	
9.3.1.2.2	TDD	
9.3.2	Frequency non-selective scheduling mode	
9.3.2.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)	
9.3.2.1.1	FDD	
9.3.2.1.2	TDD Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.3.2.2	FDD	
9.3.2.2.1		
9.3.2.2.2	TDD	
9.3.3	Frequency-selective interference	
9.3.3.1 9.3.3.1.1	Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)	
9.3.3.1.1	FDD TDD.	
9.3.3.1.2	Void	
9.3.3.2.1	Void	
9.3.3.2.1	Void	
9.3.4	UE-selected subband CQI	
9.3.4	Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)	
9.3.4.1.1	FDD	
9.3.4.1.2	TDD	
9.3.4.2	Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)	
9.3.4.2.1	FDD	
9.3.4.2.2	TDD	
9.3.5	Additional requirements for enhanced receiver Type A	
9.3.5.1	Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)	
9.3.5.1.1	FDD	
9.3.5.1.2	TDD	
9.3.5.2	Minimum requirement PUCCH 1-1 (CSI Reference Symbol)	
9.3.5.2.1	FDD	
9.3.5.2.2	TDD	
9.3.6	Minimum requirement (With multiple CSI processes)	
9.3.6.1	FDD.	

9.3.6.2	TDD	
9.4	Reporting of Precoding Matrix Indicator (PMI)	
9.4.1	Single PMI	
9.4.1.1	Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)	
9.4.1.1.		
9.4.1.1.2		
9.4.1.2	Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)	
9.4.1.2.		
9.4.1.2.2		
9.4.1.3	Minimum requirement PUSCH 3-1 (CSI Reference Symbol)	
9.4.1.3.		
9.4.1.3.		
9.4.1a	Void	
9.4.1a.1		
9.4.1a.1		
9.4.1a.1		
9.4.2	Multiple PMI	
9.4.2.1	Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)	
9.4.2.1.		
9.4.2.1.2		
9.4.2.2	Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)	
9.4.2.2.		
9.4.2.2.2		
9.4.2.3	Minimum requirement PUSCH 1-2 (CSI Reference Symbol)	
9.4.2.3.		
9.4.2.3.		
9.4.3	Void	
9.4.3.1	Void	
9.4.3.1.		
9.4.3.1.		
9.5	Reporting of Rank Indicator (RI)	
9.5.1	Minimum requirement (Cell-Specific Reference Symbols)	
9.5.1.1	FDD	
9.5.1.2	TDD	
9.5.2	Minimum requirement (CSI Reference Symbols)	
9.5.2.1	FDD	
9.5.2.2	TDD	
9.5.3	Minimum requirement (CSI measurements in case two CSI subframe sets are configured)	
9.5.3.1	FDD	
9.5.3.2	TDD	347
9.5.4	Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS	240
0 5 4 1	assistance information are configured)	
9.5.4.1	FDD	
9.5.4.2	TDD	
9.5.5	Minimum requirement (with CSI process)	
9.5.5.1	FDD	
9.5.5.2	TDD	
9.6	Additional requirements for carrier aggregation	
9.6.1	Periodic reporting on multiple cells (Cell-Specific Reference Symbols)	
9.6.1.1 9.6.1.2	FDD TDD	
9.0.1.2	עעד	
10 I	Performance requirement (MBMS)	360
10.1	FDD (Fixed Reference Channel)	
10.1.1	Minimum requirement	
10.2	TDD (Fixed Reference Channel)	
10.2.1	Minimum requirement	
Annex	A (normative): Measurement channels	
	General	
	JL reference measurement channels	

A.2.1	General	
A.2.1.1	Applicability and common parameters	
A.2.1.2	Determination of payload size	
A.2.1.3	Overview of UL reference measurement channels	
A.2.2	Reference measurement channels for FDD	
A.2.2.1	Full RB allocation	
A.2.2.1.1	QPSK	
A.2.2.1.2	16-QAM	
A.2.2.1.3	64-QAM	
A.2.2.2	Partial RB allocation	
A.2.2.2.1	QPSK	
A.2.2.2.2	16-QAM	
A.2.2.2.3	64-QAM	
A.2.2.3	Reference measurement channels for sustained downlink data rate provided by lower layers	
A.2.3	Reference measurement channels for TDD	
A.2.3.1	Full RB allocation	
A.2.3.1.1	QPSK	
A.2.3.1.2	16-QAM	
A.2.3.1.3	64-QAM	
A.2.3.2	Partial RB allocation	
A.2.3.2.1	QPSK	
A.2.3.2.2	16-QAM	375
A.2.3.2.3	64-QAM	
A.2.3.3	Reference measurement channels for sustained downlink data rate provided by lower layers	
A.3 DI	reference measurement channels	276
A.3.1	General	
A.3.1.1	Overview of DL reference measurement channels	
A.3.2	Reference measurement channel for receiver characteristics	
A.3.2 A.3.3	Reference measurement channels for PDSCH performance requirements (FDD)	
A.3.3.1	Single-antenna transmission (Common Reference Symbols)	
A.3.3.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.3.2.1	Two antenna ports	
A.3.3.2.2	Four antenna ports	
A.3.3.3	Reference Measurement Channel for UE-Specific Reference Symbols	
A.3.3.3.1	Two antenna port (CSI-RS)	
A.3.3.3.2	Four antenna ports (CSI-RS)	
A.3.4	Reference measurement channels for PDSCH performance requirements (TDD)	
A.3.4.1	Single-antenna transmission (Common Reference Symbols)	
A.3.4.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.4.2.1	Two antenna ports	
A.3.4.2.2	Four antenna ports	
A.3.4.3	Reference Measurement Channels for UE-Specific Reference Symbols	
A.3.4.3.1	Single antenna port (Cell Specific)	
A.3.4.3.2	Two antenna ports (Cell Specific)	
A.3.4.3.3	Two antenna ports (CSI-RS)	
A.3.4.3.4	Four antenna ports (CSI-RS).	
A.3.4.3.5	Eight antenna ports (CSI-RS)	
A.3.5	Reference measurement channels for PDCCH/PCFICH performance requirements	
A.3.5.1	FDD	
A.3.5.2	TDD	
A.3.6	Reference measurement channels for PHICH performance requirements	
A.3.7	Reference measurement channels for PBCH performance requirements	
A.3.8	Reference measurement channels for MBMS performance requirements	
A.3.8.1	FDD	
A.3.8.2	TDD	
A.3.9	Reference measurement channels for sustained downlink data rate provided by lower layers	
A.3.9.1	FDD.	
A.3.9.2	TDD	
A.3.9.3	FDD (EPDCCH scheduling)	
A.3.9.4	TDD (EPDCCH scheduling)	
A.3.10	Reference Measurement Channels for EPDCCH performance requirements	

	FDD	
A.4 CSI ref	ference measurement channels	431
A.5 OFDM	A Channel Noise Generator (OCNG)	437
	NG Patterns for FDD	
	OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern	
	OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern	
	OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	
	OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission	
	OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern	
	OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks	.440
	OCNG FDD pattern 7: dynamic OCNG FDD pattern when user data is in multiple non-contiguous blocks	440
	OCNG FDD pattern 8: One sided dynamic OCNG FDD pattern for TM10 transmission	
	NG Patterns for TDD.	
A.5.2.1 (OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern	112
	OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern	
	OCNG TDD pattern 2: 1 wo sided dynamic OCNG TDD pattern	
	OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission	
	OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern	
	OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks OCNG TDD pattern 7: dynamic OCNG TDD pattern when user data is in multiple non-contiguous	.443
		110
	blocks DCNG TDD pattern 8: One sided dynamic OCNG TDD pattern for TM10 transmission	
Annex B (no	rmative): Propagation conditions	448
	propagation condition	
-	bath fading propagation conditions	
	ay profiles	
	nbinations of channel model parameters	
	AO Channel Correlation Matrices	
	Definition of MIMO Correlation Matrices	
	MIMO Correlation Matrices at High, Medium and Low Level	
	AO Channel Correlation Matrices using cross polarized antennas	
	Definition of MIMO Correlation Matrices using cross polarized antennas	
	Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides	
B.2.3A.2.1	Spatial Correlation Matrices at eNB side	
B.2.3A.2.2	Spatial Correlation Matrices at UE side	
	Beam steering approach	
	pagation conditions for CQI tests	
	Propagation conditions for CQI tests with multiple CSI processes	
	d	
	SFN Propagation Channel Profile	
	peed train scenario	
	orming Model	
	gle-layer random beamforming (Antenna port 5, 7, or 8)	
	1-layer random beamforming (antenna ports 7 and 8)	
	eric beamforming model (antenna ports 7-14)	
	dom beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)	
	dom beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)	
	rence models for enhanced performance requirements Type-A	
	ninant interferer proportion	
	nsmission mode 3 interference model	
	smission mode 4 interference model	
B.5.4 Trar	nsmission mode 9 interference model	.462
Annex C (no	rmative): Downlink Physical Channels	463

C.1	General	463
C.2	Set-up	463
C.3 C.3.1 C.3.2 C.3.3 C.3.4	Set-up	463 463 464 465 466 467
Anne	x E (normative): Environmental conditions	468
E.1	General	
E.2 E.2.1 E.2.2 E.2.3	Environmental Temperature Voltage Vibration.	468 468 468
Anne	x F (normative): Transmit modulation	470
F.1	Measurement Point	470
F.2	Basic Error Vector Magnitude measurement	470
F.3	Basic in-band emissions measurement	471
F.4	Modified signal under test	471
F.5 F.5.1 F.5.2 F.5.3 F.5.4 F.5.5	Window length Timing offset Window length Window length for normal CP Window length for Extended CP Window length for PRACH	473 473 473 474
F.6	Averaged EVM	475
F.7	Spectrum Flatness	476
Anne	x G (informative): Reference sensitivity level in lower SNR	477
G.1	General	477
G.2	Typical receiver sensitivity performance (QPSK)	477
G.3	Reference measurement channel for REFSENSE in lower SNR	480
Anne H.1	x H (normative): Modified MPR behavior	
Anne	x H (informative): Change history	483
Histor	ry	498

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

. The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain"
- [3] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 36.211: "Physical Channels and Modulation".
- [5] 3GPP TS 36.212: "Multiplexing and channel coding".
- [6] 3GPP TS 36.213: "Physical layer procedures".
- [7] 3GPP TS 36.331: " Requirements for support of radio resource management ".
- [8] 3GPP TS 36.307: " Requirements on User Equipments (UEs) supporting a release-independent frequency band".
- [9] 3GPP TS 36.423: "X2 application protocol (X2AP) ".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply in the case of a single component carrier. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Aggregated Transmission Bandwidth Configuration: The number of resource block allocated within the aggregated channel bandwidth.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Enhanced performance requirements type A: This defines performance requirements assuming as baseline receiver reference symbol based linear minimum mean square error interference rejection combining.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Lower sub-block **edge:** The frequency at the lower edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

Non-contiguous spectrum: Spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

Synchronized operation: Operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

Unsynchronized operation: Operation of TDD in two different systems, where the conditions for synchronized operation are not met.

Upper sub-block edge: The frequency at the upper edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

BW _{Channel}	Channel bandwidth
BW _{Channel,block}	Sub-block bandwidth, expressed in MHz. BW _{Channel,block} = F _{edge,block,high} - F _{edge,block,low} .
$BW_{Channel_CA}$	Aggregated channel bandwidth, expressed in MHz.
BW_{GB}	Virtual guard band to facilitate transmitter (receiver) filtering above / below edge CCs.

E_{RS}	Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.
1.5	excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{E}_{s}	The averaged received energy per RE of the wanted signal during the useful part of the symbol,
F	i.e. excluding the cyclic prefix, at the UE antenna connector; average power is computed within a set of REs used for the transmission of physical channels (including user specific RSs when present), divided by the number of REs within the set, and normalized to the subcarrier spacing Frequency
F _{Interferer} (offset)	Frequency offset of the interferer
F _{Interferer}	Frequency of the interferer
F _C F	Frequency of the carrier centre frequency Center frequency of the highest transmitted/received carrier in a sub-block.
F _{C,block, high} F _{C,block, low}	Center frequency of the lowest transmitted/received carrier in a sub-block.
$F_{C_{low}}$	The centre frequency of the <i>lowest carrier</i> , expressed in MHz.
$F_{C_{high}}$	The centre frequency of the highest carrier, expressed in MHz.
$F_{DL_{low}}$	The lowest frequency of the downlink operating band
F _{DL_high}	The highest frequency of the downlink operating band
F _{UL_low}	The lowest frequency of the uplink operating band The highest frequency of the uplink operating band
F _{UL_high} F _{edge,block,low}	The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset.}$
$F_{edge,block,high}$	The upper sub-block edge, where $F_{edge,block,high} = F_{C,block,high} + F_{offset.}$
F_{edge_low}	The <i>lower edge</i> of aggregated channel bandwidth, expressed in MHz.
F_{edge_high}	The <i>higher edge</i> of aggregated channel bandwidth, expressed in MHz.
F _{offset}	Frequency offset from $F_{C_{high}}$ to the <i>higher edge</i> or $F_{C_{low}}$ to the <i>lower edge</i> .
$F_{offset,block,low}$	Separation between lower edge of a sub-block and the center of the lowest component carrier within the sub-block
$F_{\rm offset, block, high}$	Separation between higher edge of a sub-block and the center of the highest component carrier within the sub-block
F _{OOB}	The boundary between the E-UTRA out of band emission and spurious emission domains.
I_o	The power spectral density of the total input signal (power averaged over the useful part of the
	symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal
I _{or}	The total transmitted power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{I}_{or}	The total received power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
I_{ot}	The received power spectral density of the total noise and interference for a certain RE (average
	power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
L _{CRB}	Transmission bandwidth which represents the length of a contiguous resource block allocation
N _{cp}	expressed in units of resources blocks Cyclic prefix length
N _{DL}	Downlink EARFCN
N_{oc}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as measured at the UE antenna connector
N_{oc1}	The power spectral density of a white noise source (average power per RE normalized to the
N _{oc2}	subcarrier spacing), simulating interference in non-CRS symbols in ABS subframe from cells that are not defined in a test procedure, as measured at the UE antenna connector. The power spectral density of a white noise source (average power per RE normalized to the
	subcarrier spacing), simulating interference in CRS symbols in ABS subframe from all cells that are not defined in a test procedure, as measured at the UE antenna connector.

N_{oc3}	The power spectral density of a white noise source (average power per RE normalised to the
000	subcarrier spacing), simulating interference in non-ABS subframe from cells that are not defined in a test procedure, as measured at the UE antenna connector
N_{oc}	The power spectral density (average power per RE normalised to the subcarrier spacing) of the
N _{Offs-DL}	summation of the received power spectral densities of the strongest interfering cells explicitly defined in a test procedure plus, as measured at the UE antenna connector. The respective power spectral density of each interfering cell relative to is defined by its associated DIP value. Offset used for calculating downlink EARFCN
N _{Offs-UL}	Offset used for calculating uplink EARFCN
N _{otx}	The power spectral density of a white noise source (average power per RE normalised to the
οιx	subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B transmit antenna connector
N _{RB}	Transmission bandwidth configuration, expressed in units of resource blocks
N_{RB_agg}	The number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth.
N_{RB_alloc}	Total number of simultaneously transmitted resource blocks in Channel bandwidth or Aggregated Channel Bandwidth.
N _{RB,c}	The transmission bandwidth configuration of component carrier c , expressed in units of resource blocks
$N_{RB,largest\;BW}$	The largest transmission bandwidth configuration of the component carriers in the bandwidth combination, expressed in units of resource blocks
N _{UL}	Uplink EARFCN.
Rav	Minimum average throughput per RB.
P _{CMAX}	The configured maximum UE output power.
P_{CMAX}, c	The configured maximum UE output power for serving cell c.
P _{EMAX} P _{EMAX, c}	Maximum allowed UE output power signalled by higher layers. Same as IE <i>P-Max</i> , defined in [7]. Maximum allowed UE output power signalled by higher layers for serving cell <i>c</i> . Same as IE <i>P-Max</i> , defined in [7].
P _{Interferer}	Modulated mean power of the interferer
P _{PowerClass}	P _{PowerClass} is the nominal UE power (i.e., no tolerance).
P _{UMAX}	The measured configured maximum UE output power.
Puw	Power of an unwanted DL signal
Pw	Power of a wanted DL signal
RB _{start}	Indicates the lowest RB index of transmitted resource blocks.
RB _{end}	Indicates the highest RB index of transmitted resource blocks.
Δf_{OOB}	Δ Frequency of Out Of Band emission.
$\Delta R_{IB,c}$	Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving cell <i>c</i> .
$\Delta T_{IB,c}$	Allowed maximum configured output power relaxation due to support for inter-band CA operation, for serving cell c.
ΔT_{C}	Allowed operating band edge transmission power relaxation.
$\Delta T_{C,c}$	Allowed operating band edge transmission power relaxation for serving cell c.
σ	Test specific auxiliary variable used for the purpose of downlink power allocation, defined in Annex C.3.2.
W_{gap}	Sub-block gap size

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ABS	Almost Blank Subframe
ACLR	Adjacent Channel Leakage Ratio
ACS	Adjacent Channel Selectivity
A-MPR	Additional Maximum Power Reduction
AWGN	Additive White Gaussian Noise
BS	Base Station
CA	Carrier Aggregation
CA_X	CA for band X where X is the applicable E-UTRA operating band

3GPP TS 36.101 version 11.11.0 Release 11

~	
CA_X-X	Non-contiguous intra band CA for band X where X is the applicable E-UTRA operating band
CA_X-Y	CA for band X and Band Y where X and Y are the applicable E-UTRA operating band
CC	Component Carriers
CPE	Customer Premise Equipment
CPE_X	Customer Premise Equipment for E-UTRA operating band X
CW	Continuous Wave
DL	Downlink
DIP	Dominant Interferer Proportion
eDL-MIMO	Down Link Multiple Antenna transmission
EARFCN	E-UTRA Absolute Radio Frequency Channel Number
EPRE	Energy Per Resource Element
E-UTRA	Evolved UMTS Terrestrial Radio Access
EUTRAN	Evolved UMTS Terrestrial Radio Access Network
EVM	Error Vector Magnitude
FDD	Frequency Division Duplex
FRC	Fixed Reference Channel
HD-FDD	Half- Duplex FDD
MCS	Modulation and Coding Scheme
MOP	Maximum Output Power
MPR	Maximum Power Reduction
MSD	Maximum Sensitivity Degradation
OCNG	OFDMA Channel Noise Generator
OFDMA	Orthogonal Frequency Division Multiple Access
OOB	Out-of-band
PA	Power Amplifier
PCC	Primary Component Carrier
P-MPR	Power Management Maximum Power Reduction
PSS	Primary Synchronization Signal
PSS_RA	PSS-to-RS EPRE ratio for the channel PSS
RE	Resource Element
REFSENS	Reference Sensitivity power level
r.m.s	Root Mean Square
SCC	Secondary Component Carrier
SINR	Signal-to-Interference-and-Noise Ratio
SNR	Signal-to-Noise Ratio
SSS	Secondary Synchronization Signal
SSS_RA	SSS-to-RS EPRE ratio for the channel SSS
TDD	Time Division Duplex
UE	User Equipment
UL	Uplink
UL-MIMO	Up Link Multiple Antenna transmission
UMTS	Universal Mobile Telecommunications System
UTRA	UMTS Terrestrial Radio Access
UTRAN	UMTS Terrestrial Radio Access Network
xCH_RA	xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS
xCH_RB	xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS
ACH_RD	A ST IS TO DE REFINIO IN THE MAINER ACT IN AN HARSHINGE OF DET SYMBOLS CONTAINING RO

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.521-1 Annex F defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The reference sensitivity power levels defined in subclause 7.3 are valid for the specified reference measurement channels.
- d) Note: Receiver sensitivity degradation may occur when:
 - 1) The UE simultaneously transmits and receives with bandwidth allocations less than the transmission bandwidth configuration (see Figure 5.6-1), and
 - 2) Any part of the downlink transmission bandwidth is within an uplink transmission bandwidth from the downlink center subcarrier.
- e) The spurious emissions power requirements are for the long term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Void

4.3A Applicability of minimum requirements (CA, UL-MIMO, eDL-MIMO)

The requirements in clauses 5, 6 and 7 which are specific to CA, UL-MIMO, and eDL-MIMO are specified as suffix A, B, C, D where;

- a) Suffix A additional requirements need to support CA
- b) Suffix B additional requirements need to support UL-MIMO
- c) Suffix C additional requirements need to support TBD
- d) Suffix D additional requirements need to support eDL-MIMO

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffix A, B, C and D) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C and D) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature (CA, UL-MIMO, and eDL-MIMO) in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal supporting CA, compliance with minimum requirements for non-contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for contiguous intraband carrier aggregation in the same operating band.

For a terminal supporting CA, compliance with minimum requirements for contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for non- contiguous intra-band carrier aggregation in the same operating band.

4.4 RF requirements in later releases

The standardisation of new frequency bands may be independent of a release. However, in order to implement a UE that conforms to a particular release but supports a band of operation that is specified in a later release, it is necessary to specify some extra requirements. TS 36.307 [8] specifies requirements on UEs supporting a frequency band that is independent of release.

NOTE: For terminals conforming to the 3GPP release of the present document, some RF requirements in later releases may be mandatory independent of whether the UE supports the bands specified in later releases or not. The set of requirements from later releases that is also mandatory for UEs conforming to the 3GPP release of the present document is determined by regional regulation.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

- 5.2 Void
- 5.3 Void
- 5.4 Void

5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.

E-UTRA Operating Band	Uplink (UL) operating band BS receive UE transmit FuL_low - FuL_high	Downlink (DL) operating band BS transmit UE receive FDL_low - FDL_high	Duplex Mode
1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
4	1710 MHz – 1755 MHz	2110 MHz – 2155 MHz	FDD
5	824 MHz – 849 MHz	869 MHz – 894MHz	FDD
6 ¹	830 MHz – 840 MHz	875 MHz – 885 MHz	FDD
7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
8	880 MHz – 915 MHz	925 MHz - 960 MHz	FDD
9			FDD
10	<u>1749.9 MHz – 1784.9 MHz</u> 1710 MHz – 1770 MHz	2110 MHz – 2170 MHz	FDD
10	1427.9 MHz – 1447.9 MHz		FDD
12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
13	777 MHz – 787 MHz	746 MHz – 756 MHz	FDD
14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD
15	Reserved	Reserved	FDD
16	Reserved	Reserved	FDD
17	704 MHz – 716 MHz	734 MHz – 746 MHz	FDD
18	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD
10	830 MHz – 845 MHz	875 MHz – 890 MHz	FDD
20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
21	1447.9 MHz – 1462.9 MHz		FDD
22	3410 MHz – 3490 MHz	3510 MHz – 3590 MHz	FDD
23	2000 MHz – 2020 MHz	2180 MHz – 2200 MHz	FDD
24	1626.5 MHz – 1660.5 MHz		FDD
25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD
27	807 MHz – 824 MHz	852 MHz – 869 MHz	FDD
28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
29	N/A	717 MHz – 728 MHz	FDD ²
			100
33	1900 MHz – 1920 MHz	1900 MHz – 1920 MHz	TDD
34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
35	1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	TDD
36	1930 MHz – 1990 MHz	1930 MHz – 1990 MHz	TDD
37	1910 MHz – 1930 MHz	1910 MHz – 1930 MHz	TDD
38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
41	2496 MHz 2690 MHz	2496 MHz 2690 MHz	TDD
42	3400 MHz – 3600 MHz	3400 MHz – 3600 MHz	TDD
43	3600 MHz – 3800 MHz	3600 MHz – 3800 MHz	TDD
44	703 MHz – 803 MHz	703 MHz – 803 MHz	TDD
NOTE 1: E NOTE 2: R d	and 6 is not applicable Restricted to E-UTRA operation whownlink operating band is paired	nen carrier aggregation is configured. with the uplink operating band (externa at is supporting the configured Pcell.	The

Table 5.5-1 E-UTRA operating bands

5.5A Operating bands for CA

E-UTRA carrier aggregation is designed to operate in the operating bands defined in Tables 5.5A-1 and 5.5A-2.

E-UTRA	E-UTRA	Uplink (UL) operating band			Downlink (D	Duplex		
CA Band	Band	BS receive / UE transmit			BS transi	nit /	UE receive	Mode
		F _{UL_low} – F _{UL_high}			F _{DL_lo}	w -	F_{DL_high}	
CA_1	1	1920 MHz	I	1980 MHz	2110 MHz	Ι	2170 MHz	FDD
CA_7	7	2500 MHz	I	2570 MHz	2620 MHz	Ι	2690 MHz	FDD
CA_38	38	2570 MHz	I	2620 MHz	2570 MHz	Ι	2620 MHz	TDD
CA_40	40	2300 MHz	I	2400 MHz	2300 MHz	Ι	2400 MHz	TDD
CA_41	41	2496 MHz		2690 MHz	2496 MHz		2690 MHz	TDD

Table 5.5A-1: Intra-band contiguous CA operating bands

E-UTRA	E-UTRA	Uplink (UL)	оре	erating band	Downlink (D	L) c	perating band	Duplex	
CA Band	Band	BS receive / UE transmit BS transmit / UE receive				Mode			
				F _{UL_high}			F _{DL_high}	1	
0.0.4.5	1	1920 MHz	_	1980 MHz	2110 MHz	-	2170 MHz		
CA_1-5	5	824 MHz	_	849 MHz	869 MHz	-	894 MHz	FDD	
0.0.4.40	1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	500	
CA_1-18	18	815 MHz	—	830 MHz	860 MHz	-	875 MHz	FDD	
0.4.4.4.0	1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD	
CA_1-19	19	830 MHz	-	845 MHz	875 MHz	-	890 MHz		
CA 1.01	1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz		
CA_1-21	21	1447.9 MHz	-	1462.9 MHz	1495.9 MHz	-	1510.9 MHz	FDD	
CA 0.17	2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz		
CA_2-17	17	704 MHz	-	716 MHz	734 MHz	-	746 MHz	FDD	
<u> </u>	2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz		
CA_2-29	29		N/A		717 MHz	-	728 MHz	FDD	
	3	1710 MHz	_	1785 MHz	1805 MHz	-	1880 MHz		
CA_3-5	5	824 MHz	—	849 MHz	869 MHz	-	894 MHz	FDD	
04 0 7	3	1710 MHz	—	1785 MHz	1805 MHz	-	1880 MHz	500	
CA_3-7	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	- FDD	
	3	1710 MHz		1785 MHz	1805 MHz		1880 MHz	500	
CA_3-8	8	880 MHz		915 MHz	925 MHz		960 MHz	FDD	
<u></u>	3	1710 MHz	-	1785 MHz	1805 MHz	-	1880 MHz	500	
CA_3-20	20	832 MHz	-	862 MHz	791 MHz	-	821 MHz	FDD	
04.45	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	500	
CA_4-5	5	824 MHz	_	849 MHz	869 MHz	-	894 MHz	FDD	
01.17	4	1710 MHz		1755 MHz	2110 MHz		2155 MHz	500	
CA_4-7	7	2500 MHz		2570 MHz	2620 MHz		2690 MHz	FDD	
0.0. 1.10	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	500	
CA_4-12	12	699 MHz	-	716 MHz	729 MHz	-	746 MHz	FDD	
0.0.4.4.0	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	500	
CA_4-13	13	777 MHz	-	787 MHz	746 MHz	-	756 MHz	FDD	
CA 4 47	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz		
CA_4-17	17	704 MHz	-	716 MHz	734 MHz	-	746 MHz	FDD	
CA 4.00	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz		
CA_4-29	29		N/A		717 MHz	-	728 MHz	FDD	
04 5 40	5	824 MHz	—	849 MHz	869 MHz	-	894 MHz		
CA_5-12	12	699 MHz	-	716 MHz	729 MHz	-	746 MHz	FDD	
04 5 47	5	824 MHz	-	849 MHz	869 MHz	-	894 MHz	500	
CA_5-17	17	704 MHz	-	716 MHz	734 MHz	-	746 MHz	FDD	
04 7 00	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	FDD	
CA_7-20	20	832 MHz	-	862 MHz	791 MHz	-	821 MHz	FDD	
CA 0.00	8	880 MHz	-	915 MHz	925 MHz	-	960 MHz		
CA_8-20	20	832 MHz	-	862 MHz	791 MHz	-	821 MHz	FDD	
04 44 40	11	1427.9 MHz	-	1447.9 MHz	1475.9 MHz	-	1495.9 MHz	FDD	
CA_11-18	18	815 MHz	—	830 MHz	860 MHz	-	875 MHz	FDD	

Table 5.5A-2: Inter-band CA operating bands

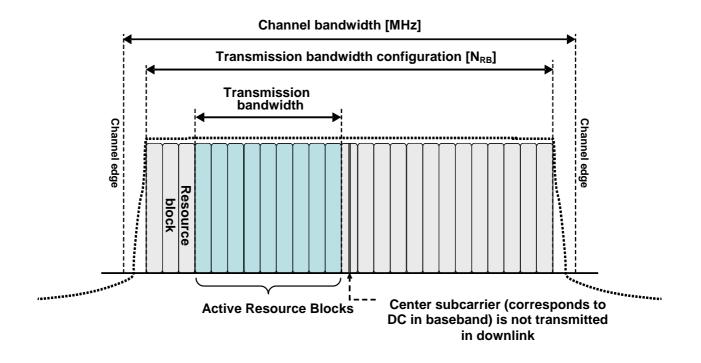
E-UTRA	E-UTRA	Uplink (UL) operating band			Downlink (D	Duplex		
CA Band	Band	BS receive / UE transmit			BS transi	nit /	UE receive	Mode
		F _{UL_low}	F _{UL_high}	F _{DL_low} – F _{DL_high}				
CA_25-25	25	1850 MHz	-	1915 MHz	1930 MHz	-	1995 MHz	FDD
CA_41-41	41	2496 MHz	-	2690 MHz	2496 MHz	Ι	2690 MHz	TDD

Table 5.5A-3: Intra-band non-contiguous CA operating bands

5.5B Operating bands for UL-MIMO

E-UTRA UL-MIMO is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5B-1: Void


5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1: Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration N _{RB}	6	15	25	50	75	100

Figure 5.6-1 shows the relation between the Channel bandwidth (BW_{Channel}) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- BW_{Channel}/2.

Figure 5.6-1: Definition of channel bandwidth and transmission bandwidth configuration for one E-UTRA carrier

5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

E-UTRA band / Channel bandwidth										
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
Band		-	-	-		-				
1			Yes	Yes	Yes	Yes				
2	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹				
3	Yes	Yes	Yes	Yes	Yes ¹	Yes ¹				
4	Yes	Yes	Yes	Yes	Yes	Yes				
5	Yes	Yes	Yes	Yes ¹						
6			Yes	Yes ¹						
7			Yes	Yes	Yes ³	Yes ^{1, 3}				
8	Yes	Yes	Yes	Yes ¹						
9			Yes	Yes	Yes ¹	Yes ¹				
10			Yes	Yes	Yes	Yes				
11			Yes	Yes ¹						
12	Yes	Yes	Yes ¹	Yes ¹						
13			Yes ¹	Yes ¹						
14			Yes ¹	Yes ¹						
			100	100						
17			Yes ¹	Yes ¹						
18			Yes	Yes ¹	Yes ¹					
19			Yes	Yes ¹	Yes ¹					
20			Yes	Yes ¹	Yes ¹	Yes ¹				
20			Yes	Yes ¹	Yes ¹	163				
21			Yes	Yes	Yes ¹	Yes ¹				
22	Yes	Yes		Yes	Yes ¹	Yes ¹				
	165	165	Yes	Yes	Tes	165				
24 25	Yes	Yes	Yes Yes	Yes	Yes ¹	Yes ¹				
25			Yes	Yes ¹	Yes ¹	165				
20	Yes Yes	Yes Yes		Yes ¹	165					
27	Tes	Yes	Yes Yes	Yes ¹	Yes ¹	Yes ^{1, 2}				
		165	Tes	165	165	Tes				
	-		Vaa	Voo	Voo	Vaa				
33 34			Yes	Yes	Yes	Yes				
_	Vaa	Vaa	Yes	Yes	Yes	Vaa				
35	Yes	Yes	Yes	Yes	Yes	Yes				
36	Yes	Yes	Yes	Yes	Yes	Yes				
37			Yes	Yes	Yes	Yes				
38			Yes	Yes	Yes ³	Yes ³				
39			Yes	Yes	Yes	Yes				
40			Yes	Yes	Yes	Yes				
41			Yes	Yes	Yes	Yes				
42			Yes	Yes	Yes	Yes				
43			Yes	Yes	Yes	Yes				
44		Yes	Yes	Yes	Yes	Yes				
NOTE 1:				elaxation of th	ne specified	JE receiver				
	sensitivity rec									
				num requirem						
		carrier freque	encies confin	ed to either 7	13-723 MHz	or 728-				
NOTEO	738 MHz	hand the second		· ···· Bire La A						
NOTE 3:	refers to the	bandwidth f	or which the	uplink transm	ission band	width can				
				channel assig						
			order to me	et unwanted e	emissions re	quirements				
	(Clause 6.6.3	0.∠).								

b) The use of different (asymmetrical) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.6A Channel bandwidth for CA

For intra-band contiguous carrier aggregation *Aggregated Channel Bandwidth*, *Aggregated Transmission Bandwidth Configuration* and *Guard Bands* are defined as follows, see Figure 5.6A-1.

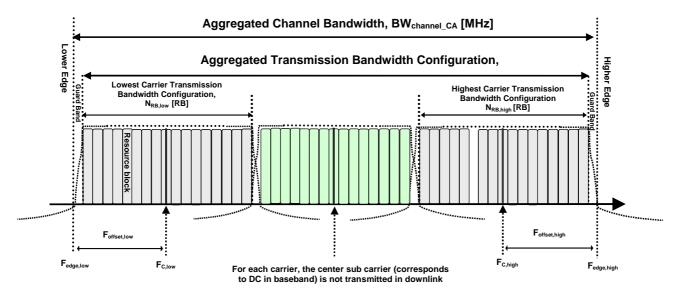


Figure 5.6A-1. Definition of Aggregated channel bandwidth and aggregated channel bandwidth edges

The aggregated channel bandwidth, BW_{Channel CA}, is defined as

$$BW_{Channel_CA} = F_{edge,high} - F_{edge,low}$$
 [MHz]

The lower bandwidth edge $F_{edge,low}$ and the upper bandwidth edge $F_{edge,high}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

 $F_{edge,low} = F_{C,low} - F_{offset,low}$ $F_{edge,high} = F_{C,high} + F_{offset,high}$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$\begin{split} F_{offset,low} &= (0.18 N_{RB,low} + \Delta f_1)/2 + BW_{GB} \left[MHz \right] \\ F_{offset,high} &= (0.18 N_{RB,high} + \Delta f_1)/2 + BW_{GB} \left[MHz \right] \end{split}$$

where $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while N_{RB,low} and N_{RB,high} are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier, respectively. BW_{GB} denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

NOTE: The values of BW_{Channel_CA} for UE and BS are the same if the lowest and the highest component carriers are identical.

Aggregated Transmission Bandwidth Configuration is the number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth and is defined per CA Bandwidth Class (Table 5.6A-1).

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.6A-2.

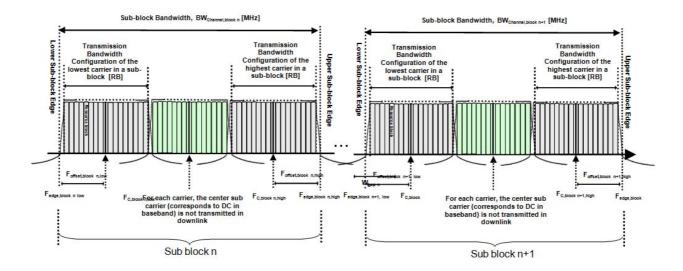


Figure 5.6A-2. Non-contiguous intraband CA terms and definitions

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

 $F_{edge,block, low} = F_{C,block,low} - F_{offset,block, low}$

The upper sub-block edge of the Sub-block Bandwidth is defined as

 $F_{edge,block,high} = F_{C,block,high} + F_{offset,block,high}$.

The Sub-block Bandwidth, BW_{Channel.block}, is defined as follows:

BWChannel,block = Fedge,block,high - Fedge,block,low [MHz]

The lower and upper frequency offsets F_{offset,block,low} and F_{offset,block,high} depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$\begin{split} F_{offset,block,low} &= (0.18 N_{RB,low} + \Delta f_1)/2 + BW_{GB} \, [MHz] \\ F_{offset,block,high} &= (0.18 N_{RB,high} + \Delta f_1)/2 + BW_{GB} \, [MHz] \end{split}$$

where $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing and $\Delta f_1 = 0$ for the uplink, while N_{RB,low} and N_{RB,high} are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier within a sub-block, respectively. BW_{GB} denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

 $W_{gap} = F_{edge,block n+1,low} - F_{edge,block n,high [MHz]}$

CA Bandwidth Class	Aggregated Transmission Bandwidth Configuration	Maximum number of CC	Nominal Guard Band BW _{GB}					
A	N _{RB,agg} ≤ 100	1	a₁BW _{Channel(1)} - 0.5∆f₁ (NOTE 2)					
В	N _{RB,agg} ≤ 100	2	NOTE 3					
С	100 < N _{RB,agg} ≤ 200	2	0.05 $max(BW_{Channel(1)}, BW_{Channel(2)}) - 0.5\Delta f_1$					
D	200 < N _{RB,agg} ≤ 300	3	NOTE 3					
E	300 < N _{RB,agg} ≤ 400	4	NOTE 3					
F	400 < N _{RB,agg} ≤ 500	5	NOTE 3					
NOTE 1: BW _{Cha}	NOTE 1: BW _{Channel(1)} and BW _{Channel(2)} are channel bandwidths of two E-UTRA component carriers							
according to Table 5.6-1 and $\Delta f_1 = \Delta f$ for the downlink with Δf the subcarrier spacing while $\Delta f_1 =$								
0 for the uplink.								
NOTE 2: $a_1 = 0.16/1.4$ for BW _{Channel(1)} = 1.4 MHz whereas $a_1 = 0.05$ for all other channel bandwidths.								
NOTE 3: Applicaple for later releases.								

Table 5.6A-1: CA bandwidth classes and corresponding nominal guard bands

The channel spacing between centre frequencies of contiguously aggregated component carriers is defined in subclause 5.7.1A.

5.6A.1 Channel bandwidths per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations with associated bandwidth combination sets. For inter-band carrier aggregation, a *carrier aggregation configuration* is a combination of operating bands, each supporting a carrier aggregation bandwidth class. For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class.

For each carrier aggregation configuration, requirements are specified for all bandwidth combinations contained in a *bandwidth combination set*, which is indicated per supported band combination in the UE radio access capability. A UE can indicate support of several bandwidth combination sets per band combination.

Requirements for intra-band contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-1. Requirements for inter-band carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-2.

The DL component carrier combinations for a given CA configuration shall be symmetrical in relation to channel centre unless stated otherwise in Table 5.6A.1-1 or 5.6A.1-2.

Table 5.6A.1-1: E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA

E-UTRA CA configuration / Bandwidth combination set							
	Uplink CA configurations (NOTE 3)	Component carriers in c freq	Maximum				
E-UTRA CA configuration		Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	Bandwidth combination set		
CA_1C	CA_1C	15 15		40			
		20	20	40	0		
CA_7C	CA_7C	15	15	40	0		
		20	20	40			
CA 28C	CA_38C	15	15	40	0		
CA_38C		20	20	40			
	CA_40C	10	20		0		
CA_40C		15	15	40			
		20	10, 20				
	CA_41C	10	20		0		
CA_41C		15	15, 20	40			
		20	10, 15, 20				
index NOTE 2: For the	king letter). Absence he supported CC b	e of a CA bandwidth class for andwidth combinations, the C	a CA bandwidth class specified an operating band implies supp C downlink and uplink bandwid prted by the present release of s	oort of all classe ths are equal.			

E-UTRA CA Configuration	Uplink CA configurations (NOTE 4)	E-UTRA C E- UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
CA_1A-5A	-	1				Yes			20	0
		5			Vee	Yes	Vee	Vee		
CA_1A-18A	-	1	-		Yes	Yes	Yes	Yes	- 35	0
		18 1			Yes	Yes Yes	Yes Yes	Yes		l
CA_1A-19A	-	19			Yes Yes	Yes	Yes	res	35	0
		19			Yes	Yes	Yes	Yes		
CA_1A-21A	-	21			Yes	Yes	Yes	165	35	0
		2			Yes	Yes	163			
CA_2A-17A	-	17			Yes	Yes			20	0
		2			Yes	Yes				
CA_2A-29A	-	29		Yes	Yes	Yes			20	0
		3		163	163	Yes	Yes	Yes		
		5			Yes	Yes	163	163	- 30	0
CA_3A-5A	-	3			163	Yes				
		5			Yes	Yes			20	1
		3			Yes	Yes	Yes	Yes		
CA_3A-7A	-	7			163	Yes	Yes	Yes	40	0
		3	-			Yes	Yes	Yes		
CA_3A-8A	-	8			Yes	Yes	100	103	- 30	0
		3			103	Yes				
		8			Yes	Yes			20	
		3			Yes	Yes	Yes	Yes	- 30	0
CA_3A-20A	-	20			Yes	Yes	100	100		
		4			Yes	Yes			- 20	0
CA_4A-5A	-	5			Yes	Yes				
		4			Yes	Yes			- 30	0
CA_4A-7A	-	7			Yes	Yes	Yes	Yes		
		4	Yes	Yes	Yes	Yes				0
CA_4A-12A	-	12			Yes	Yes			20	
		4			Yes	Yes	Yes	Yes		
	-	13				Yes			- 30	0
CA_4A-13A		4			Yes	Yes				
		13				Yes			20	1
<u></u>		4			Yes	Yes				_
CA_4A-17A	-	17			Yes	Yes			20	0
<u> </u>		4			Yes	Yes				0
CA_4A-29A	-	29		Yes	Yes	Yes			20	
		5			Yes	Yes				<u> </u>
CA_5A -12A	-	12			Yes	Yes			- 20	0
		5			Yes	Yes				<u>^</u>
CA_5A-17A	-	17			Yes	Yes			20	0
CA_7A-20A		7				Yes	Yes	Yes	- 30	0
	-	20			Yes	Yes				
CA_8A-20A		8			Yes	Yes			- 20	0
	-	20			Yes	Yes			20	0
CA 11A 40A		11			Yes	Yes			25	0
CA_11A-18A	-	18			Yes	Yes	Yes		25	0
(the ind) NOTE 2: For eac	Configuration reference lexing letter). Abser th band combination supported CC band	nce of a CA n, all comb	bandwid	th class f	or an ope d bandwi	erating ba	and implie	es support e set	of all classes.	able 5.6A-1

Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA

NOTE 4: Uplink CA configurations are the configurations supported by the present release of specifications.

Table 5.6A.1-3: E-UTRA CA configurations and bandwidth combination sets defined for noncontiguous intra-band CA

E-UTRA CA configuration	L-OTIX	Component c	n / Bandwidth combin arriers in order of arrier frequency			
	Uplink CA configurations (NOTE 1)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Maximum aggregated bandwidth [MHz]	Bandwidth combination set	
CA_25A-25A	-	5, 10	5, 10	20	0	
CA_41A-41A	-	10, 15, 20	10, 15, 20	40	0	

5.6B Channel bandwidth for UL-MIMO

The requirements specified in subclause 5.6 are applicable to UE supporting UL-MIMO.

5.6B.1 Void

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.7.1A Channel spacing for CA

For intra-band contiguous carrier aggregation bandwidth class C, the nominal channel spacing between two adjacent E-UTRA component carriers is defined as the following:

Nominal channel spacing =
$$\frac{BW_{Channel(1)} + BW_{Channel(2)} - 0.1 |BW_{Channel(1)} - BW_{Channel(2)}|}{0.6} = 0.3 \text{ [MHz]}$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two E-UTRA component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.2A Channel raster for CA

For carrier aggregation the channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where $F_{DL_{low}}$ and $N_{Offs-DL}$ are given in Table 5.7.3-1 and N_{DL} is the downlink EARFCN.

 $F_{DL} = F_{DL \text{ low}} + 0.1(N_{DL} - N_{Offs-DL})$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where F_{UL_low} and $N_{Offs-UL}$ are given in Table 5.7.3-1 and N_{UL} is the uplink EARFCN.

 $F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs-UL})$

E-UTRA Operating Band 1 2 3	F _{DL_low} (MHz) 2110 1930	Downlink N _{Offs-DL}	Range of N _{DL}	F _{UL_low} (MHz)	Uplink N _{offs-UL}	Range of NUL
2						
3	1930	0	0 - 599	1920	18000	18000 – 18599
		600	600 - 1199	1850	18600	18600 - 19199
4	1805	1200	1200 - 1949	1710	19200	19200 - 19949
4	2110	1950	1950 – 2399	1710	19950	19950 - 20399
5	869	2400	2400 - 2649	824	20400	20400 - 20649
6	875	2650	2650 - 2749	830	20650	20650 - 20749
7	2620	2750	2750 - 3449	2500	20750	20750 - 21449
8	925	3450	3450 - 3799	880	21450	21450 - 21799
9	1844.9	3800	3800 - 4149	1749.9	21800	21800 - 22149
10	2110	4150	4150 - 4749	1710	22150	22150 - 22749
11	1475.9	4750	4750 - 4949	1427.9	22750	22750 - 22949
12	729	5010	5010 - 5179	699	23010	23010 - 23179
13	746	5180	5180 - 5279	777	23180	23180 - 23279
14	758	5280	5280 - 5379	788	23280	23280 - 23379
	100	0200	0200 0010	100	20200	20200 20070
17	734	5730	5730 - 5849	704	23730	23730 - 23849
18	860	5850	5850 - 5999	815	23850	23850 - 23999
19	875	6000	6000 - 6149	830	24000	24000 - 24149
20	791	6150	6150 - 6449	832	24150	24150 - 24449
21	1495.9	6450	6450 - 6599	1447.9	24450	24450 - 24599
22	3510	6600	6600 - 7399	3410	24600	24600 - 25399
23	2180	7500	7500 - 7699	2000	25500	25500 - 25699
24	1525	7700	7700 - 8039	1626.5	25700	25700 - 26039
25	1930	8040	8040 - 8689	1850	26040	26040 - 26689
26	859	8690	8690 - 9039	814	26690	26690 - 27039
27	852	9040	9040 - 9209	807	27040	27040 - 27209
28	758	9210	9210 - 9659	703	27210	27210 - 27659
29 ²	717	9660	9660 - 9769	100	N/A	21210 21000
		0000	0000 0100		10/7	
33	1900	36000	36000 - 36199	1900	36000	36000 - 36199
34	2010	36200	36200 - 36349	2010	36200	36200 - 36349
35	1850	36350	36350 - 36949	1850	36350	36350 - 36949
36	1930	36950	36950 - 37549	1930	36950	36950 - 37549
37	1910	37550	37550 - 37749	1910	37550	37550 - 37749
38	2570	37750	37750 - 38249	2570	37750	37750 - 38249
39	1880	38250	38250 - 38649	1880	38250	38250 - 38649
40	2300	38650	38650 - 39649	2300	38650	38650 - 39649
41	2496	39650	39650 - 41589	2496	39650	39650 - 41589
42	3400	41590	41590 - 43589	3400	41590	41590 - 43589
43	3600	43590	43590 - 45589	3600	43590	43590 - 45589
44	703	45590	45590 - 46589	703	45590	45590 - 46589
с 7 с 1	arrier extends bey 5 and 100 channe hannel numbers a 0, 15 and 20 MHz	yond the operated al numbers at the at the upper oper a respectively.	ate carrier frequenci- ting band edge shall ne lower operating ba erating band edge sh rhen carrier aggrega	not be used. This in and edge and the las all not be used for c	perating band e polies that the fi st 6, 14, 24, 49,	rst 7, 15, 25, 50, 74 and 99

Table 5.7.3-1: E-UTRA channel numbers

TX-RX frequency separation 5.7.4

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

E-UTRA Operating Band	TX - RX
	carrier centre frequency
	separation
1	190 MHz
2	80 MHz.
3	95 MHz.
4	400 MHz
5	45 MHz
6	45 MHz
7	120 MHz
8	45 MHz
9	95 MHz
10	400 MHz
11	48 MHz
12	30 MHz
13	-31 MHz
14	-30 MHz
17	30 MHz
18	45 MHz
19	45 MHz
20	-41 MHz
21	48 MHz
22	100 MHz
23	180 MHz
24	-101.5 MHz
25	80 MHz
26	45 MHz
27	45 MHz
28	55 MHz

Table 5.7.4-1: Default UE TX-RX frequency separation

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

5.7.4A TX-RX frequency separation for CA

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.7.4-1 is applied to PCC and SCC, respectively.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

- 6.2 Transmit power
- 6.2.1 Void

6.2.2 UE maximum output power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth for non CA configuration and UL-MIMO unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1					23	±2		
2					23	$\pm 2^2$		
3					23	$\pm 2^2$		
4					23	±2		
5					23	±2		
6					23			
7					23	$\frac{\pm 2}{\pm 2^2}$		
8					23	$\pm 2^2$		
9					23	±2		
10					23	±2		
11					23	±2		
12					23	$\pm 2^2$		
13					23	<u></u> ±2		
14	31	+2/-3			23	±2		
	01	12/0			20	<u> </u>		
17					23	<u>+2</u>		
18					23	±2 ⁵		
19					23	±2		
20					23	$\pm 2^{2}$		
20					23	±2		
21					23	± 2 +2/-3.5 ²		
					23 ⁶	+2/-3.5 ±2 ⁶		
23								
24					23	$\frac{\pm 2}{\pm 2^2}$		
25					23			
26					23	$\pm 2^2$		
27					23	±2		
28					23	+2/-2.5		
33					23	±2	-	-
34					23	<u>+2</u>		
35					23	±2		
36					23	±2		
37					23	±2		
38					23	±2		
39	ļ			ļ	23	±2		
40					23	± 2 $\pm 2^2$		
41					23			
42					23	+2/-3		
43					23	+2/-3		
44					23	+2/[-3]		
NOTE 1: NOTE 2:	2 refers to the F _{UL_high} – 4	MHz and F_{UL_r}	n bandwidth _{igh} , the maxi	s (Figure 5.6- mum output p	1) confined	within F _{UL_low} ar ement is relaxe	nd F _{UL_low} + 4 d by reducing	MHz or g the lower
NOTE 4:	For the UE P _{PowerClass} is For a UE th	the maximum at supports bo	UE power s th Band 18	specified witho and Band 26,	out taking int the maximu	g frequencies, t to account the t m output power ndwidths confin	olerance requirement	t is relaxed by
NOTE 6:	818 MHz.		-			005 MHz shall b		

Table 6.2.2-1: UE Power Class

6.2.2A UE maximum output power for CA

The following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth.

The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the requirements in subclause 6.2.2 apply.

For intra-band contiguous carrier aggregation the maximum output power is specified in Table 6.2.2A-1.

E-UTRA CA Configuration	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
CA_1C					23	+2/-2		
CA_7C					23	$+2/-2^{2}$		
CA_38C					23	+2/-2		
CA_40C					23	+2/-2		
CA_41C					23	+2/-2 ²		
NOTE 1: Void NOTE 2: If all transmitted resource blocks (Figure 5.6A-1) over all component carriers are confined within F _{UL_low} and F _{UL_low} + 4 MHz or/and F _{UL_high} – 4 MHz and F _{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB								
NOTE 3: P _{Power} NOTE 4: For in	 NOTE 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance NOTE 4: For intra-band contiguous carrier aggregation the maximum power requirement should apply to the total transmitted power over all component carriers (per UE). 							

Table 6.2.2A-1: CA UE Power Class

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.2 apply.

6.2.2B UE maximum output power for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1					23	+2/-3		
2					23	+2/-3 ²		
3					23	+2/-32		
4					23	+2/-3		
5					23	+2/-3		
6					23	+2/-3		
7					23	$+2/-3^{2}$		
8					23	+2/-3 ²		
9					23	+2/-3		
10					23	+2/-3		
11					23	+2/-3		
12					23	+2/-3 ²		
13					23	+2/-3		
14					23	+2/-3		
					20	12/0		
17					23	+2/-3		
18					23	+2/-3		
19					23	+2/-3		
20					23	$+2/-3^{2}$		
20					23	+2/-3		
21					23	+2/-3 +2/-4.5 ²		
						+2/-4.3		
					00	.0/0		
23					23	+2/-3		
24					23	+2/-3		
25					23	$+2/-3^{2}$		
26					23	+2/-32		
27					23	+2/-3	-	
28					23	+2/[-3]		
						- / -		
33					23	+2/-3		
34					23	+2/-3		
35					23	+2/-3		
36					23	+2/-3		
37					23	+2/-3		
38					23	+2/-3		
39					23	+2/-3		
40					23	+2/-3		
41					23	+2/-3 ²		
42					23	+2/-4		
43					23	+2/-4		
44				T	23	+2/[-3]		
	2 refers to the F _{UL_high} – 4 letter tolerance line	MHz and F _{UL_} nit by 1.5 dB	_{high} , the maxi	mum output p	ower require	within F _{UL_low} ar ement is relaxe g frequencies, t	d by reducing	g the lower
						o account the t		13 1 1 0.

Table 6.2.2B-1: UE Power Class for UL-MIMO in closed loop spatial multiplexing scheme

Table 6.2.2B-2: UL-MIMO configuration in closed-loop spatial multiplexing scheme

Transmission mode	DCI format	Codebook Index
Mode 2	DCI format 4	Codebook index 0

For single-antenna port scheme, the requirements in subclause 6.2.2 apply.

6.2.3 UE maximum output power for modulation / channel bandwidth

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Modulation	Modulation Channel bandwidth / Transmission bandwidth (N _{RB})					MPR (dB)	
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

For PRACH, PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For transmissions with non-contiguous resource allocation in single component carrier, the allowed Maximum Power Reduction (MPR) for the maximum output power in table 6.2.2-1, is specified as follows

$$MPR = CEIL \{M_A, 0.5\}$$

Where M_A is defined as follows

$M_A =$	8.00-10.12A	; 0.00< A \leq 0.33
	5.67 - 3.07A	; 0.33< A ≤0.77
	3.31	; 0.77< A ≤1.0

Where

 $A = N_{RB_alloc} \ / \ N_{RB}$

CEIL{M_A, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0]

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

6.2.3A UE Maximum Output power for modulation / channel bandwidth for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1due to higher order modulation and contiguously aggregated transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3A-1. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Modulation		CA bandwidth Class C				
	50 RB + 100 RB	75 RB + 75 RB	75 RB+100 RB	100 RB + 100 RB	(dB)	
QPSK	> 12 and ≤ 50	> 16 and ≤ 75	> 16 and ≤ 75	> 18 and ≤ 100	≤ 1	
QPSK	> 50	> 75	> 75	> 100	≤2	
16 QAM	≤ 12	≤ 16	≤ 16	≤ 18	≤1	
16 QAM	> 12 and ≤ 50	> 16 and ≤ 75	> 16 and ≤ 75	> 18 and ≤ 100	≤2	
16 QAM	> 50	> 75	> 75	> 100	≤ 3	

Table 6.2.3A-1: Maximum Power Reduction (MPR) for Power Class 3

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

$$MPR = CEIL \{M_{A}, 0.5\}$$

Where MA is defined as follows

$M_A =$	8.2	; $0 \le A < 0.025$
	9.2 - 40A	; $0.025\!\le\!A\!<\!0.05$
	8 – 16A	; 0.05 $\leq A < 0.25$
	4.83 - 3.33A	; $0.25 \le A \le 0.4$,
	3.83 - 0.83A	; 0.4 \leq A \leq 1,

Where

 $A = N_{RB_alloc} / N_{RB_agg.}$

CEIL{ $M_{A, 0.5}$ } means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.3 apply.

6.2.3B UE maximum output power for modulation / channel bandwidth for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2B-1 is specified in Table 6.2.3-1. The requirements shall be met with UL-MIMO configurations defined in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.3 apply.

6.2.4 UE maximum output power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the output power as specified in Table 6.2.2-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For UE Power Class 1 and 3 the specific requirements and identified subclauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in subclause 6.2.3.

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		0 4 40 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
		35, 50	15	>8	≤1
			20	>10	≤1
NS_04	6.6.2.2.2	41	5	>6	≤1
NS_04	0.0.2.2.2	41	10, 15, 20	Table	6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
	66224	21	10 15	> 40	≤1
NS_09	6.6.3.3.4	21	10, 15	> 55	≤ 2
NS_10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20	Table 6.2.4-5	
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table	6.2.4-6
NS_13	6.6.3.3.6	26	5	Table	6.2.4-7
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15		6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥2 ≥1	≤ 1 ≤ 4
NS_19	6.6.3.3.12	44	10, 15, 20	—	<u>≤ 4</u> 6.2.4-14
61_01	6.2.2	44	10, 15, 20	rable	0.2.4-14
NS_20	6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20	Table	6.2.4-15
NS_22	6.6.3.3.15 6.6.3.3.16	42, 43	5, 10, 15, 20	Table	6.2.4-16
NS_32	-	-	-	-	-

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Parameters	Re	egion A	Regio	Region B		
RB _{start}		0 - 12	13 – 18	19 – 42	43 – 49	
L _{CRB} [RBs]	6-8	1 to 5 and 9-50	≥8	≥18	≤2	
A-MPR [dB]	≤ 8	≤ 12	≤ 12	≤ 6	≤ 3	
NOTE 1; RB _{start} indicates the lowest RB index of transmitted resource blocks NOTE 2; L _{CRB} is the length of a contiguous resource block allocation NOTE 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.						
	NOTE 4; For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.					

Table 6.2.4-2: A-MPR for "NS_07"

Table 6.2.4-3: A-MPR for "NS_10"

Channel bandwidth [MHz]	Parameters	Region A				
	RB _{start}	0 – 10				
15	L _{CRB} [RBs]	1 -20				
	A-MPR [dB]	≤2				
	RB _{start}	0 – 15				
20	L _{CRB} [RBs]	1 -20				
	A-MPR [dB]	≤ 5				
NOTE 1: RB _{start} inc	licates the lowest RB index	of transmitted resource blocks				
NOTE 2: LCRB is th	e length of a contiguous re	source block allocation				
NOTE 3: For intra-	NOTE 3: For intra-subframe frequency hopping which intersects Region A, notes 1 and 2 apply					
on a per	on a per slot basis					
NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR						
value ma	y be applied for both slots i	in the subframe				

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C	
10	RB _{start}	0 – 12	13 – 36	37 – 49	
	RB _{start} + L _{CRB} [RBs]	N/A	>37	N/A ³	
	A-MPR [dB]	≤3dB	≤2dB	≤3dB	
15	RB _{start}	0 – 18	19 – 55	56 – 74	
	RB _{start} + L _{CRB} [RBs]	N/A	>56	N/A ³	
	A-MPR [dB]	≤3dB	≤2dB	≤3dB	
20	RB _{start}	0 – 24	25 – 74	75 – 99	
	RB _{start} + L _{CRB} [RBs]	N/A ³	>75	N/A ³	
	A-MPR [dB]	≤3dB	≤2dB	≤3dB	
NOTE 1:RB _{start} indicates the lowest RB index of transmitted resource blocksNOTE 2:L _{CRB} is the length of a contiguous resource block allocationNOTE 3: ³ refers to any RB allocation that starts in Region A or C is allowed the specified A-MPRNOTE 4:For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basisNOTE 5:For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for					
	ts in the subframe	0			

Channel Bandwidth [MHz]	Parameters									
	Fc [MHz]	<20	04			≥2004				
3	L _{CRB} [RBs]	1-1	15		>5					
	A-MPR [dB]	≤	-			≤ 1				
	Fc [MHz]	<20	<2004 200)4 ≤ Fc <	2007		≥2(007	
5	L _{CRB} [RBs]	1-25				6 & -25	8-12		>	·6
	A-MPR [dB]	≤]	7		5	4	0		S	1
	Fc [MHz]	200)5 ≤	Fc <2	2015	5		201	5	
	RB _{start}	0-49					0-49	9		
10	L _{CRB} [RBs]	1-50			1-50					
	A-MPR [dB]	≤ 12			0					
	Fc [MHz]	<2012.5								
	RB _{start}	0-4			5-21	1	22	22-56		57-74
	L _{CRB} [RBs]	≥1	7-:	50	0-	6 & ≥50	≤25	>2	5	>0
	A-MPR [dB]	≤15	≤	7		≤10	0	≤6	6	≤15
15	Fc [MHz]					2012	.5			
	RB _{start}	0-12			13	-39	40-6	5		66-74
	L _{CRB} [RBs]	≥1	≥1 ≥30		0	<30	≥ (69 RB _{star}			≥1
	A-MPR [dB]	≤10	≤10		≤6 0		≤2			≤6.5
	Fc [MHz]	2		2010)					
	RB _{start}	0-12		1	13-29 30-68		68		69-99	
20	L _{CRB} [RBs]	≥1	10	-60		1-9 & >60	1-24	≥2	5	≥1
	A-MPR [dB]	≤15	4	≦7		≤10	0	≤7	7	≤15

Table 6.2.4-5: A-MPR for "NS_11"

Channel bandwidth [MHz]	Parameters	Reg	Region B	
	RB _{start}		0	1-2
1.4	L _{CRB} [RBs]	≤3	≥4	≥4
	A-MPR [dB]	≤3	≤6	≤3
	RB _{start}	0-3		4-5
3	L _{CRB} [RBs]	4-9	1-3 and 10-15	≥9
	A-MPR [dB]	≤4	≤3	≤3
	RB _{start}	0-6		7-9
5	L _{CRB} [RBs]	≤8	≥9	≥15
	A-MPR [dB]	≤5	≤3	≤3

Table 6.2.4-6: A-MPR for "NS_12"

Table 6.2.4-7: A-MPR for "NS_13"

Channel bandwidth [MHz]	Parameters	Region A	
	RB _{start}	0-2	
5	L _{CRB} [RBs]	≤5	≥18
	A-MPR [dB]	≤3	≤2

Table 6.2.4-8: A-MPR for "NS_14"

Channel bandwidth [MHz]	Parameters	Region A	
	RB _{star} t	0	
10	L _{CRB} [RBs]	≤5	≥50
	A-MPR [dB]	≤3	≤1
	RB _{start}	3≥	3
15	L _{CRB} [RBs]	≤16	≥50
	A-MPR [dB]	≤3	≤1

Table 6.2.4-9: A-MPR for "NS_15" for E-UTRA highest channel edge > 845 MHz and ≤ 849 MHz

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
1.4	RB _{end} [RB]			4-5
	A-MPR [dB]			≤3
	RB _{end} [RB]	0-1	8-12	13-14
3	L _{CRB} [RB]	≤2	≥8	>0
	A-MPR [dB]	≤4	≤4	≤9
	RB _{end} [RB]	0-4	12-19	20-24
5	L _{CRB} [RB]	≤2	≥8	>0
	A-MPR [dB]	≤4	≤5	≤9
	RB _{end} [RB]	0-12	23-36	37-49
10	L _{CRB} [RB]	≤2	≥15	>0
	A-MPR [dB]	≤4	≤6	≤9
	RB _{end} [RB]	0-20	26-53	54-74
15	L _{CRB} [RB]	≤2	≥20	>0
	A-MPR [dB]	≤4	≤5	≤9

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C
	RB _{end} [RB]			19-24
5	L _{CRB} [RB]			≥18
	A-MPR [dB]			≤2
	RB _{end} [RB]	0-4	29-44	45-49
10	L _{CRB} [RB]	≤2	≥24	>0
	A-MPR [dB]	≤4	≤4	≤9
	RB _{end} [RB]	0-12	44-61	62-74
15	L _{CRB} [RB]	≤2	≥20	>0
	A-MPR [dB]	≤4	≤5	≤9

Table 6.2.4-10: A-MPR for "NS_15" for E-UTRA highest channel edge ≤ 845 MHz

Table 6.2.4-11: A-MPR for "NS_16" with channel lower edge at ≥807 MHz and <808.5 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region B Region C		Region E
	RB _{start}	0	1-2			
3 MHz	L _{CRB} [RBs]	≥12	12			
	A-MPR [dB]	≤2	≤1			
	RB _{start}	0-1	2	2-9	2-5	
5 MHz	L _{CRB} [RBs]	1 - 25	12	15-18	20	
	A-MPR [dB]	≤5	≤1	≤2	≤3	
	RB _{start}	0 - 8	0-14		15-20	15-24
10 MHz	L _{CRB} [RBs]	1 - 12	15-20	≥24	≥30	24-27
	A-MPR [dB]	≤5	≤3	≤7	≤3	≤1

Table 6.2.4-12: A-MPR for "NS	_16" with channel lower edge at ≥808.5 MHz and <812 MHz

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D	Region E
	RB _{start}	0	0-1	1-5		
5 MHz	L _{CRB} [RBs]	16-20	≥24	16-20		
	A-MPR [dB]	≤2	≤3	≤1		
	RB _{start}	0.	-6	0-10	0-14	11-20
10 MHz	L _{CRB} [RBs]	1-12	15-20	24-32	≥36	24-32
	A-MPR [dB]	≤5	≤2	≤4	≤5	≤1

Table 6.2.4-13: A-MPR for "NS	_16'	' with channel	l lower edge at ≥812 MHz
-------------------------------	------	----------------	--------------------------

Channel bandwidth [MHz]	Parameter	Region A	Region B	Region C	Region D
	RB _{start}	0 - 9	0	1-14	0-5
10 MHz	L _{CRB} [RBs]	27-32	36-40	36-40	≥45
	A-MPR [dB]	≤1	≤2	≤1	≤3

Channel bandwidth [MHz]	Parameters	Region A		Region B
	RB _{start}			0-6
10	L _{CRB} [RBs]			≥40
	A-MPR [dB]			≤1
	RB _{start}	0.	-6	7-20
15	L _{CRB} [RBs]	≤18	≥36	≥42
	A-MPR [dB]	≤2	≤3	≤2
	RB _{start}	0-	14	15-30
20	L _{CRB} [RBs]	≤40	≥45	≥50
	A-MPR [dB]	≤2	≤3	≤2

Table 6.2.4-14: A-MPR for "NS_19"

Table 6.2.4-15: A-MPR for "NS_20"

Channel Bandwidth [MHz]	Parameters									
	Fc [MHz]	< 20	< 2007.5 ≤ Fc < 2012.5 ≤ Fc ≤ 2017.5					c ≤ 2017.5		
5	RB _{start}	≤2	24		0	-3		4-6	≤2	24
5	L _{CRB} [RBs]	>	0	1:	5-19	≥2()	≥18	1-:	25
	A-MPR [dB]	Ì	17		≤1	≤4		≤2	≤	0
	Fc [MHz]					2	005			
	RB _{start}		0-25				26-34		35-	49
	L _{CRB} [RBs]		>0		8	3-15	;	>15	>	0
10	A-MPR [dB]		≤16			≤2		≤5	≤	6
10	Fc [MHz]	2015								
	RB _{start}		0	-5					6-10	
	L _{CRB} [RBs]		≥(32				≥40		
	A-MPR [dB]		≤	4				≤2		
	Fc [MHz]					20)12.5			
15	RB _{start}		0-14				15-24		25-39	61-74
15	L _{CRB} [RBs]	1-9 & 4	0-75	10-3	39	24-2	29	≥30	≥36	≤6
	A-MPR [dB]	≤11		≤6		≤1		≤7	≤5	≤6
	Fc [MHz]					2	010			
20	RB _{start}	0-21		22-31			32-38	39-49	50-68	69-99
20	L _{CRB} [RBs]	>0	1-9&3	31-75	10-3	30	≥15	≥24	≥25	>0
	A-MPR [dB]	≤17 ≤12 ≤6		≤9	≤7	≤5	≤16			
	NOTE 1: When NS_20 is signaled the minimum requirements for the 10 MHz bandwidth are specified for E-UTRA									
UL carrier center frequencies of 2005 MHz or 2015 MHz. NOTE 2: When NS_20 is signaled the minimum requirements for the 15 MHz channel bandwidth are specified for E-UTRA UL carrier center frequency of 2012.5 MHz.										

Channel bandwidth [MHz]	Parameters	Region A	Region B	Region C	Region D
5	N	lo A-MPR is neede	d for 5 MHz chanr	nel bandwidth	
10	RB _{start}	0-13	0-17	≤ 6	≥12
	L _{CRB} [RBs]	> 36	33-36	≤ 32	≤ 32
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥44
	A-MPR [dB]	4	3	3	3
15	RB _{start}	0-24	0-38	≤ 14	≥ 23
	L _{CRB} [RBs]	> 50	37-50	≤ 36	≤ 36
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥59
	A-MPR [dB]	5	4	3	3
20	RB _{start}	0-35	0-51	≤ 21	≥ 31
	L _{CRB} [RBs]	> 64	49-64	≤ 48	≤ 48
	RBstart + LCRB [RBs]	N/A	N/A	N/A	≥79
	A-MPR [dB]	5	4	3	3

Table 6.2.4-16: A-MPR for "NS_22"

NOTE 4; For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

For PRACH, PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5 apply.

6.2.4A UE maximum output power with additional requirements for CA

Additional ACLR, spectrum emission and spurious emission requirements for carrier aggregation can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the CA Power Class as specified in Table 6.2.2A-1.

If for intra-band carrier aggregation the UE is configured for transmissions within an E-UTRA channel bandwidth, then subclauses 6.2.3 and 6.2.4 apply with the Network Signaling value indicated by the IE additionalSpectrumEmission of the PCC.

For intra-band contiguous aggregation with the UE configured for transmissions within the aggregated channel bandwidth, the maximum output power reductions specified in Table 6.2.4A-1 is allowed when the applicable CA network signalling value is indicated by the IE additionalSpectrumEmissionSCell-r10. Then clause 6.2.3A does not apply, i.e. carrier aggregation MPR = 0 dB.

CA Network Signalling value	Requirements (subclause)	Uplink CA Configuration	A-MPR [dB] (subclause)
CA_NS_01	6.6.3.3A.1	CA_1C	6.2.4A.1
CA_NS_02	6.6.3.3A.2	CA_1C	6.2.4A.2
CA_NS_03	6.6.3.3A.3	CA_1C	6.2.4A.3
CA_NS_04	6.6.2.2A.1	CA_41C	6.2.4A.4
CA_NS_05	6.6.3.3A.4	CA_38C	6.2.4A.5
CA_NS_06	6.6.3.3A.5	CA_7C	6.2.4A.6

Table 6.2.4A-1: Additional Maximum Power Reduction (A-MPR) for CA

For PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band carrier aggregation, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR specified in table 6.2.4A-1, the power limits specified in subclause 6.2.5A apply.

6.2.4A.1 A-MPR for CA_NS_01 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCC and the SCC for contiguously aggregated signals is specified in table 6.2.4A.1-1.

CA_1C: CA_NS_01	RB _{start}	L _{CRB} [RBs]	RB _{start} + L _{CRB} [RBs]	A-MPR for QPSK and 16- QAM [dB]		
	0 – 23 and 176 – 199	> 0	N/A	≤ 12.0		
100 RB / 100 RB	24 – 105	> 64	N/A	≤ 6.0		
	106 – 175	N/A	> 175	≤ 5.0		
	0 – 6 and 143	0 < L _{CRB} ≤ 10	N/A	≤ 11.0		
	- 149	> 10	N/A	≤ 6.0		
75 RB / 75 RB	7 – 90	> 44	N/A	≤ 5.0		
	91 – 142	N/A	> 142	≤ 2.0		
 NOTE 1: RB_start indicates the lowest RB index of transmitted resource blocks NOTE 2: L_CRB is the length of a contiguous resource block allocation NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe 						

Table 6.2.4A.1-1: Contiguous allocation A-MPR for CA_NS_01

If the UE is configured to CA_1C and it receives IE CA_NS_01 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL
$$\{M_{A}, 0.5\}$$

Where M_A is defined as follows

$$\begin{split} M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ & -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \\ & -1.7 \ A + 8.2 & ; \ 0.70 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.2 A-MPR for CA_NS_02 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.2-1.

CA_1C: CA_NS_02	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16 –QAM [dB]
	0 –20	> 0	≤ 4 dB
	21 – 46	> 0	≤ 3 dB
100 RB / 100 RB	47 – 99	> RB _{end} - 20	≤ 3 dB
	100 – 184	> 75	≤ 6 dB
	185 – 199	> 0	≤ 10 dB
	0 – 48	> 0	≤ 2 dB
	49 - 80	> RB _{end} - 20	≤ 3 dB
75 RB / 75 RB	81 – 129	> 60	≤ 5 dB
	130 – 149	> 84	≤ 6 dB
	130 – 149	1 – 84	≤ 2 dB

Table 6.2.4A.2-1: Contiguous allocation A-MPR for CA_NS_02

If the UE is configured to CA_1C and it receives IE CA_NS_02 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL
$$\{M_{A}, 0.5\}$$

Where MA is defined as follows

$$\begin{split} M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ & -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \\ & -1.7 \ A + 8.2 & ; \ 0.70 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.3 A-MPR for CA_NS_03 for CA_1C

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.3-1.

CA_1C: CA_NS_03	RB _{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 – 26	> 0	≤ 10 dB
	27 – 63	≥ RB _{end} - 27	≤ 6 dB
100 RB / 100 RB	27 – 63	< RB _{end} - 27	≤ 1 dB
	64 – 100	> RB _{end} - 20	≤ 4 dB
	101 – 171	> 68	≤ 7 dB
	172 – 199	> 0	≤ 10 dB
	0 – 20	> 0	≤ 10 dB
	21 – 45	> 0	≤ 4 dB
	46 – 75	> RB _{end} – 13	≤ 2 dB
75 RB / 75 RB	76 – 95	> 45	≤ 5 dB
	96 – 149	> 43	≤ 8 dB
	120 – 149	1 - 43	≤ 6 dB

Table 6.2.4A.3-1: Contiguous allocation A-MPR for CA_NS_03

If the UE is configured to CA_1C and it receives IE CA_NS_03 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL
$$\{M_{A}, 0.5\}$$

Where M_A is defined as follows

$$\begin{split} M_A = & -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ & -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.4 A-MPR for CA_NS_04

If the UE is configured to CA_41C and it receives IE CA_NS_04 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.4-1.

CA Bandwidth Class C	RB _{Start}	L _{CRB} [RBs]	RB _{start} + L _{CRB} [RBs]	A-MPR for QPSK [dB]	A-MPR for 16QAM [dB]	
50RB / 100 RB	0 – 44 and 105 – 149	>0	N/A	≤4dB	≤4dB	
	45 – 104	N/A	>105	≤3dB	≤4dB	
75 RB / 75 RB	0 – 44 and 105 – 149	>0	N/A	≤4dB	≤4dB	
	45 – 104	N/A	>105	≤4dB	≤4dB	
100 RB / 75 RB	0 – 49 and 125 – 174	>0	N/A	≤4dB	≤4dB	
	50 - 124	N/A	>125	≤3dB	≤4dB	
100 RB / 100 RB	0 – 59 and 140 – 199	>0	N/A	≤3dB	≤4dB	
	60– 139	N/A	>140	≤3dB	≤4dB	
NOTE 1: RB _{start} indicates the lowest RB index of transmitted resource blocks Stab Stab NOTE 2: L _{CRB} is the length of a contiguous resource block allocation NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe						

If the UE is configured to CA_41C and it receives IE CA_NS_04 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_{A}, 0.5\}$$

Where M_A is defined as follows

$$\begin{split} \mathbf{M}_{A} &= 10.5, & 0 \leq A < 0.05 \\ &= -50.0A + 13.00, & 0.05 \leq A < 0.15 \\ &= -4.0A + 6.10, & 0.15 \leq A < 0.40 \\ &= -0.83A + 4.83, & 0.40 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4A.5 A-MPR for CA_NS_05 for CA_38C

If the UE is configured to CA_38C and it receives IE CA_NS_05 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.5-1.

RB_{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]			
0 – 12	>0	≤ 5 dB			
13 – 79	> RB _{end} – 13	≤ 2 dB			
80 – 180	>60	≤ 6 dB			
181 – 199	> 0	≤ 11 dB			
0 – 70	> max (0, RB _{end} -10)	≤ 2 dB			
71- 108	> 60	≤ 5 dB			
109 – 139	>0	≤ 5 dB			
140 – 149	≤ 70	≤ 2 dB			
140 – 149	>70	≤ 6 dB			
 NOTE 1: RB_{end} indicates the highest RB index of transmitted resource blocks NOTE 2: L_{CRB} is the length of a contiguous resource block allocation NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A- 					
	0 - 12 13 - 79 80 - 180 181 - 199 0 - 70 71- 108 109 - 139 140 - 149 140 - 149 dicates the higher the length of a co a-subframe frequent a per slot basis a-subframe frequent	$0 - 12$ >0 $13 - 79$ > RB _{end} - 13 $80 - 180$ >60 $181 - 199$ > 0 $0 - 70$ > max (0, RB _{end} -10) $71 - 108$ > 60 $109 - 139$ > 0 $140 - 149$ ≤ 70 $140 - 149$ > 70 idicates the highest RB index of transmitted results a contiguous resource block allo a-subframe frequency hopping which intersect in a per slot basis			

Table 6.2.4A.5-1: Contigous Allocation A-MPR for CA_NS_05

If the UE is configured to CA_38C and it receives IE CA_NS_05 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_{A, 0.5}\}$$

Where MA is defined as follows

$$\begin{split} M_A &= -14.17 \; A + 16.50 \qquad ; \; 0 \leq A < 0.60 \\ &- 2.50 \; A + 9.50 \qquad ; \; 0.60 \leq A \leq 1 \end{split}$$

Where $A = N_{RB_alloc} / N_{RB_agg}$

6.2.4A.6 A-MPR for CA_NS_06

If the UE is configured to CA_7C and it receives IE CA_NS_06 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.6-1.

CA Bandwidth Class C	RB_{end}	L _{CRB} [RBs]	A-MPR for QPSK and 16-QAM [dB]
	0 –22	>0	≤[4 dB
	23 – 105	> RB _{end} – 10	≤ 2 dB
100RB/100RB	106 – 142	> 75	≤ 3 dB
	143 – 177	>70	≤ 5 dB
	178 – 199	> 0	≤ 10 dB
	0 – 7	>0	≤ 5 dB
	20- 74	> RB _{end} – 10	≤ 2 dB
75RB/75RB	75 – 109	>64	≤ 2 dB
	110 – 144	>35	≤ 6 dB
	145 – 149	>0	≤ 10 dB

If the UE is configured to CA_7C and it receives IE CA_NS_06 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL $\{M_{A}, 0.5\}$

Where M_A is defined as follows

 $\begin{array}{rl} M_A = & -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ & -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1 \end{array}$

Where $A = N_{RB_alloc} / N_{RB_agg.}$

6.2.4B UE maximum output power with additional requirements for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the A-MPR values specified in subclause 6.2.4 shall apply to the maximum output power specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.4 apply.

6.2.5 Configured transmitted power

The UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell *c*. The configured maximum output power $P_{CMAX,c}$ is set within the following bounds:

$$P_{CMAX_L,c} \leq P_{CMAX,c} \leq P_{CMAX_H,c}$$

with

$$P_{CMAX_L,c} = MIN \{P_{EMAX,c} - \Delta T_{C,c}, P_{PowerClass} - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C,c}, P-MPR_c)\}$$

 $P_{CMAX_H,c} = MIN \{P_{EMAX,c}, P_{PowerClass}\}$

where

- P_{EMAX,c} is the value given by IE *P*-*Max* for serving cell *c*, defined in [7];

- P_{PowerClass} is the maximum UE power specified in Table 6.2.2-1 without taking into account the tolerance specified in the Table 6.2.2-1;
- MPR_c and A-MPR_c for serving cell c are specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- $\Delta T_{IB,c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2; $\Delta T_{IB,c} = 0$ dB otherwise;
- $\Delta T_{C,c} = 1.5$ dB when Note 2 in Table 6.2.2-1 applies;
- $\Delta T_{C,c} = 0$ dB when Note 2 in Table 6.2.2-1 does not apply.

P-MPR_c is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR_c for serving cell c only for the above cases. For UE conducted conformance testing P-MPR shall be 0 dB

NOTE 1: P-MPR_c was introduced in the $P_{CMAX,c}$ equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.

NOTE 2: P-MPR_c may impact the maximum uplink performance for the selected UL transmission path.

For each subframe, the $P_{CMAX_L,c}$ for serving cell *c* is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum $P_{CMAX_L,c}$ over the two slots is then applied for the entire subframe. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured configured maximum output power P_{UMAX,c} shall be within the following bounds:

 $P_{CMAX_L,c} - MAX\{T_L, T(P_{CMAX_L,c})\} \leq P_{UMAX,c} \leq P_{CMAX_H,c} + T(P_{CMAX_H,c})$

where $T(P_{CMAX,c})$ is defined by the tolerance table below and applies to $P_{CMAX_L,c}$ and $P_{CMAX_L,c}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2.2-1 for the applicable operating band.

Р _{СМАХ,с} (dBm)	Tolerance T(P _{CMAX,c}) (dB)
$23 < P_{CMAX,c} \le 33$	2.0
$21 \le P_{CMAX,c} \le 23$	2.0
$20 \le P_{CMAX,c} < 21$	2.5
19 ≤ P _{CMAX,c} < 20	3.5
18 ≤ P _{CMAX,c} < 19	4.0
13 ≤ P _{CMAX,c} < 18	5.0
8 ≤ P _{CMAX,c} < 13	6.0
$-40 \le P_{CMAX,c} < 8$	7.0

Table 6.2.5-1: PCMAX.c tolerance

For the UE which supports inter-band carrier aggregation configurations with uplink assigned to one E-UTRA band the $\Delta T_{IB,c}$ is defined for applicable bands in Table 6.2.5-2.

Inter-band CA Configuration	E-UTRA Band	ΔT _{IB,c} [dB]					
	1	0.3					
CA_1A-5A	5	0.3					
CA_1A-18A	1	0.3					
	18 0.3						
CA_1A-19A	1	0.3					
	19	0.3					
CA_1A-21A	1	0.3					
	21	0.3					
CA_2A-17A	2	0.3					
CA 2A-29A	17	0.8					
<u>CA_ZA-Z9A</u>	Ζ	0.3					
	3	0.3					
CA_3A-5A	5	0.3					
	3	0.5					
CA_3A-7A	7	0.5					
04 04 04	3	0.3					
CA_3A-8A	8	0.3					
CA_3A-20A	3	0.3					
CA_3A-20A	20	0.3					
CA_4A-5A	4	0.3					
UA_4A-5A	5	0.3					
CA_4A-7A	4	0.5					
	7	0.5					
CA_4A-12A	4	0.3					
	12	0.8					
CA_4A-13A	4 0.3						
	13	0.3					
CA_4A-17A	17 0.8						
CA_4A-29A	4	0.3					
	5 0.8						
CA_5A-12A	12	0.4					
	5	0.8					
CA_5A-17A	17	0.4					
CA_7A-20A	7	0.3					
07_17-207	20	0.3					
CA_8A-20A	8	0.4					
0/(_0/(20/(20	0.4					
CA_11A-18A	11	0.3					
		0.3					
	ove additional tolerances are only ap that belong to the supported inter-ban						
	inations	la camer aggregation					
		n non-aggregated operation for the					
	The above additional tolerances also apply in non-aggregated operation for the supported E-UTRA operating bands that belong to the supported inter-band						
carrier	carrier aggregation configurations						
	e the UE supports more than one of th						
	egation configurations and a E-UTRA operating band belongs to more than						
	er-band carrier aggregation configura						
	en the E-UTRA operating band freque						
	icable additional tolerance shall be th						
	cated to one decimal place for that op						
	configurations. In case there is a harn						
	and high band DL, then the maximun						
	oorted carrier aggregation configuration	ons involving such band shall be					
appl							
	en the E-UTRA operating band freque						
	icable additional tolerance shall be th						
appl	ies for that operating band among the	e supported CA configurations					

Table 6.2.5-2: ΔT_{IB,c}

- NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.
- NOTE: To meet the $\Delta T_{IB,c}$ requirements for CA_3A-7A with state-of-the-art technology, an increase in power consumption of the UE may be required. It is also expected that as the state-of-the-art technology evolves in the future, this possible power consumption increase can be reduced or eliminated.

6.2.5A Configured transmitted power for CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power $P_{CMAX,c}$ for serving cell *c* and its total configured maximum output power P_{CMAX} .

The configured maximum output power $P_{CMAX,c}$ on serving cell c shall be set as specified in subclause 6.2.5.

For uplink inter-band carrier aggregation, MPR_c and $A-MPR_c$ apply per serving cell c and are specified in subclause 6.2.3 and subclause 6.2.4, respectively. P-MPR_c accounts for power management for serving cell c. $P_{CMAX,c}$ is calculated under the assumption that the transmit power is increased independently on all component carriers.

For uplink intra-band contiguous carrier aggregation, $MPR_c = MPR$ and $A-MPR_c = A-MPR$ with MPR and A-MPR specified in subclause 6.2.3A and subclause 6.2.4A respectively. There is one power management term for the UE, denoted P-MPR, and P-MPR_c = P-MPR. P_{CMAX,c} is calculated under the assumption that the transmit power is increased by the same amount in dB on all component carriers.

Table 6.2.5A-1:Void

The total configured maximum output power PCMAX shall be set within the following bounds:

$$P_{CMAX_L} \le P_{CMAX} \le P_{CMAX_H}$$

For uplink inter-band carrier aggregation with one serving cell c per operating band,

 $P_{CMAX_L} = MIN \{ 10log_{10} \sum MIN \ [\ p_{EMAX,c'} (\Delta t_{C,c}), \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / pmpr_c], P_{PowerClass} \} = MIN \{ 10log_{10} \sum MIN \ [\ p_{EMAX,c'} (\Delta t_{C,c}), \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{IB,c}) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{IB,c})) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{IB,c})) , \ p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{IB,c}))$

$$P_{CMAX_H} = MIN\{10 \log_{10} \sum p_{EMAX,c}, P_{PowerClass}\}$$

where

- $p_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE *P*-Max for serving cell *c* in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1; p_{PowerClass} is the linear value of P_{PowerClass};
- mpr_c and a-mpr_c are the linear values of MPR_c and A-MPR_c as specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- pmpr_c is the linear value of P-MPR_c;
- $\Delta t_{C,c}$ is the linear value of $\Delta T_{C,c}$. $\Delta t_{C,c} = 1.41$ when Note 2 in Table 6.2.2-1 applies for a serving cell *c*, otherwise $\Delta t_{C,c} = 1$;

- $\Delta t_{IB,c}$ is the linear value of the inter-band relaxation term $\Delta T_{IB,c}$ of the serving cell *c* as specified in Table 6.2.5-2; otherwise $\Delta t_{IB,c} = 1$.

For uplink intra-band contiguous carrier aggregation,

$$P_{CMAX_L} = MIN\{10 \ log_{10} \sum p_{EMAX,c} - \Delta T_C, P_{PowerClass} - MAX(MPR + A-MPR + \Delta T_{IB,c} + \Delta T_C, P-MPR)\}$$

 $P_{CMAX_H} = MIN\{10 \log_{10} \sum p_{EMAX,c}, P_{PowerClass}\}$

where

- $p_{EMAX,c}$ is the linear value of $P_{EMAX,c}$ which is given by IE *P-Max* for serving cell *c* in [7];
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1;
- MPR and A-MPR are specified in subclause 6.2.3A and subclause 6.2.4A respectively;
- $\Delta T_{\text{IB},c}$ is the additional tolerance for serving cell c as specified in Table 6.2.5-2;
- P-MPR is the power management term for the UE;
- ΔT_{C} is the highest value $\Delta T_{C,c}$ among all serving cells *c* in the subframe over both timeslots. $\Delta T_{C,c} = 1.5$ dB when Note 2 in Table 6.2.2A-1 applies to the serving cell *c*, otherwise $\Delta T_{C,c} = 0$ dB.

For each subframe, the P_{CMAX_L} is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum P_{CMAX_L} over the two slots is then applied for the entire subframe. $P_{PowerClass}$ shall not be exceeded by the UE during any period of time.

The measured maximum output power P_{UMAX} over all serving cells shall be within the following range:

 $P_{CMAX_L} - T(P_{CMAX_L}) \leq P_{UMAX} \leq P_{CMAX_H} + T(P_{CMAX_H})$

 $P_{UMAX} = 10 \log_{10} \sum p_{UMAX,c}$

where $p_{UMAX,c}$ denotes the measured maximum output power for serving cell *c* expressed in linear scale. The tolerance $T(P_{CMAX})$ is defined by the table below and applies to P_{CMAX_L} and P_{CMAX_H} separately.

Р _{смах} (dBm)	Tolerance T(P _{CMAX}) Intra-band with two active UL serving cells (dB)	
$21 \le P_{CMAX} \le 23$	2.0	
$20 \le P_{CMAX} < 21$	[2.5]	
19 ≤ P _{CMAX} < 20	[3.5]	
18 ≤ P _{CMAX} < 19	[4.0]	
13 ≤ P _{CMAX} < 18	[5.0]	
8 ≤ P _{CMAX} < 13	[6.0]	
$-40 \le P_{CMAX} < 8$	[7.0]	

Table 6.2.5A-2: P_{CMAX} tolerance

Table 6.2.5A-3: Void

6.2.5B Configured transmitted power for UL-MIMO

For UE supporting UL-MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power $P_{CMAX,c}$, the lower bound $P_{CMAX_L,c}$, and the higher bound $P_{CMAX_H,c}$ specified in subclause 6.2.5 shall apply to UE supporting UL-MIMO, where

- $P_{PowerClass}$ and $\Delta T_{C,c}$ are specified in subclause 6.2.2B;
- MPR_c is specified in subclause 6.2.3B;
- A-MPR_c is specified in subclause 6.2.4B.

The measured configured maximum output power $P_{UMAX,c}$ for serving cell c shall be within the following bounds:

 $P_{CMAX_L,c} - MAX\{T_L, T_{LOW}(P_{CMAX_L,c})\} \le P_{UMAX,c} \le P_{CMAX_H,c} + T_{HIGH}(P_{CMAX_H,c})$

where $T_{LOW}(P_{CMAX_L,c})$ and $T_{HIGH}(P_{CMAX_H,c})$ are defined as the tolerance and applies to $P_{CMAX_L,c}$ and $P_{CMAX_H,c}$ separately, while T_L is the absolute value of the lower tolerance in Table 6.2.2B-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial amultiplexing scheme, the tolerance is specified in Table 6.2.5B-1. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2.

Р _{смах,с} (dBm)	Tolerance Tolerance TLOW(PCMAX_L,c) (dB) THIGH(PCMAX_H,c) (dB)			
$P_{CMAX,c} = 23$	3.0	2.0		
$22 \le P_{CMAX,c} < 23$	5.0	2.0		
$21 \leq P_{CMAX,c} < 22$	5.0 3.0			
20 ≤ P _{CMAX,c} < 21	6.0 4.0			
16 ≤ P _{CMAX,c} < 20	5.0			
11 ≤ P _{CMAX,c} < 16	6.0			
-40 ≤ P _{CMAX,c} < 11	7.	.0		

Table 6.2.5B-1: P_{CMAX,c} tolerance in closed-loop spatial multiplexing scheme

For single-antenna port scheme, the requirements in subclause 6.2.5 apply.

6.3 Output power dynamics

6.3.1 (Void)

6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

	Channel bandwidth / Minimum output power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power			-40 c	lBm		
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

Table 6.3.2.1-1: Minimum output power

6.3.2A UE Minimum output power for CA

For intra-band contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., the power in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

6.3.2A.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation the minimum output power is defined as the mean power in one subframe (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2A.1-1.

	CC Channel bandwidth / Minimum output power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power			-40 c	dBm		
Measurement bandwidth				9.0 MHz	13.5 MHz	18 MHz

Table 6.3.2A.1-1: Minimum output power for intra-band contiguous CA UE

6.3.2B UE Minimum output power for UL-MIMO

For UE supporting UL-MIMO, the minimum controlled output power is defined as the broadband transmit power of the UE, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) at each transmit antenna connector, when the UE power is set to a minimum value.

6.3.2B.1 Minimum requirement

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2B.1-1.

Table 6.3.2B.1-1: Minimum output power

	Channel bandwidth / Minimum output power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power	-40 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

For single-antenna port scheme, the requirements in subclause 6.3.2 apply.

6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3.1. Minimum requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

	Channel bandwidth / Transmit OFF power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-50 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

Table 6.3.3.1-1: Transmit OFF power

6.3.3A UE Transmit OFF power for CA

For intra-band contiguous carrier aggregation, transmit OFF power is defined as the mean power per component carrier when the transmitter is OFF on both component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

6.3.3A.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation the transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3A.1-1.

	Channel bandwidth / Transmit OFF power / Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power			-50 c	lBm		
Measurement bandwidth				9.0 MHz	13.5 MHz	18 MHz

Table 6.3.3A.1-1: Transmit OFF power for intra-band contiguous CA UE

6.3.3B UE Transmit OFF power for UL-MIMO

For UE supporting UL-MIMO, the transmit OFF power is defined as the mean power at each transmit antenna connector when the transmitter is OFF at all transmit antenna connectors. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

6.3.3B.1 Minimum requirement

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.3B.1-1.

	Channel bandwidth / Transmit OFF power/ Measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power			-50 c	IBm		
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

 Table 6.3.3B.1-1: Transmit OFF power per antenna port

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

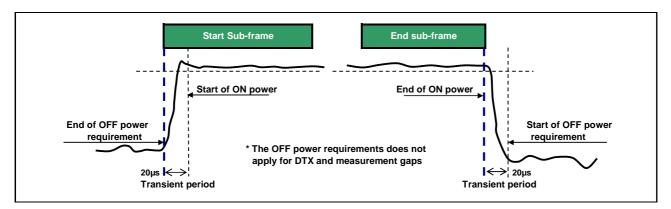
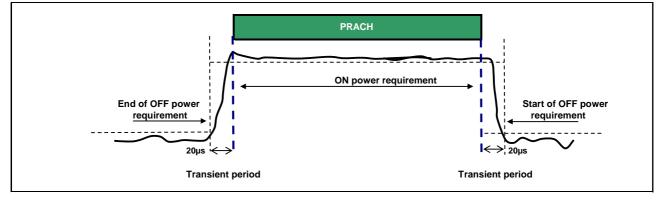


Figure 6.3.4.1-1: General ON/OFF time mask

6.3.4.2 PRACH and SRS time mask


6.3.4.2.1 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.4.2-1. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
4	0.1479

Table 6.3.4.2-1: PRACH ON power measurement period

Figure 6.3.4.2-1: PRACH ON/OFF time mask

6.3.4.2.2 SRS time mask

In the case a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period. Figure 6.3.4.2.2-1

In the case a dual SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2-2

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

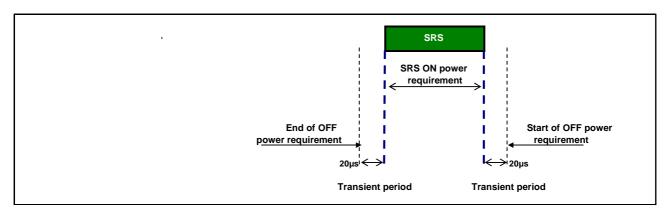


Figure 6.3.4.2.2-1: Single SRS time mask

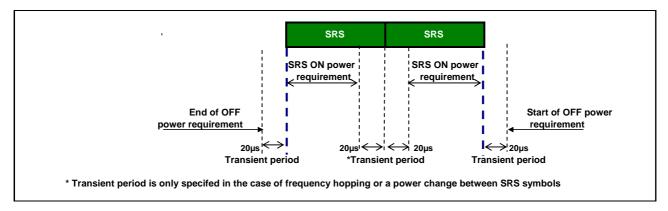
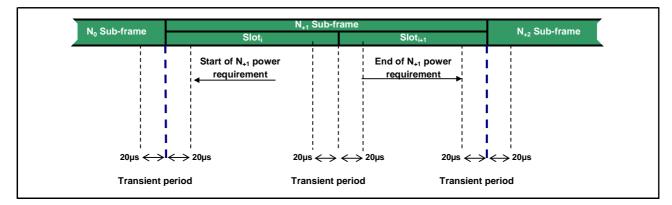



Figure 6.3.4.2.2-2: Dual SRS time mask for the case of UpPTS transmissions

6.3.4.3 Slot / Sub frame boundary time mask

The sub frame boundary time mask defines the observation period between the previous/subsequent sub–frame and the (reference) sub-frame. A transient period at a slot boundary within a sub-frame is only allowed in the case of Intra-sub frame frequency hopping. For the cases when the subframe contains SRS the time masks in subclause 6.3.4.4 apply.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

6.3.4.4 PUCCH / PUSCH / SRS time mask

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

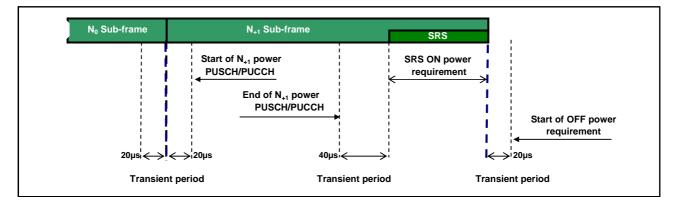


Figure 6.3.4.4-1: PUCCH/PUSCH/SRS time mask when there is a transmission before SRS but not after

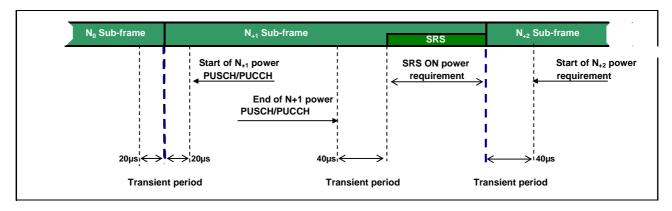


Figure 6.3.4.4-2: PUCCH/PUSCH/SRS time mask when there is transmission before and after SRS

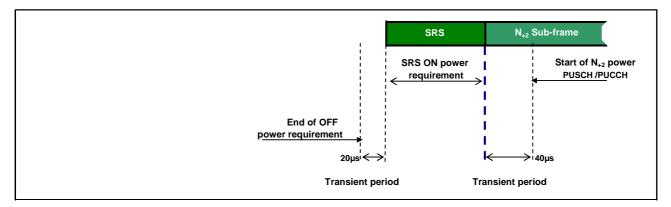


Figure 6.3.4.4-3: PUCCH/PUSCH/SRS time mask when there is a transmission after SRS but not before

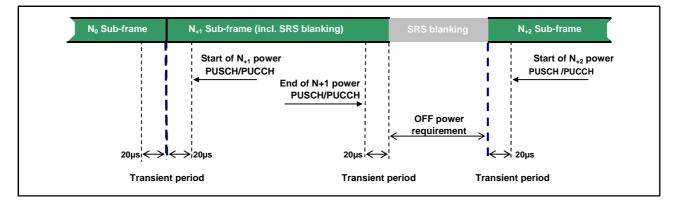


Figure 6.3.4.4-4: SRS time mask when there is FDD SRS blanking

6.3.4A ON/OFF time mask for CA

For intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in subclause 6.3.4.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.4.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3.4B ON/OFF time mask for UL-MIMO

For UE supporting UL-MIMO, the ON/OFF time mask requirements in subclause 6.3.4 apply at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.4.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.3.4 apply.

6.3.5 Power Control

6.3.5.1 Absolute power tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133)

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133).

6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in subclause 6.2.2 and the Minimum output power as defined in subclause 6.3.2.

For operating bands under Note 2 in Table 6.2.2-1, the absolute power tolerance as specified in Table 6.3.5.1.1-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} .

Table 6.3.5.1.1-1:	Absolute	power	tolerance
--------------------	----------	-------	-----------

Conditions	Tolerance
Normal	± 9.0 dB
Extreme	± 12.0 dB

6.3.5.2 Relative Power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

For PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power relatively to the power of the most recently transmitted preamble. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

6.3.5.2.1 Minimum requirements

The requirements specified in Table 6.3.5.2.1-1 apply when the power of the target and reference sub-frames are within the power range bounded by the Minimum output power as defined in subclause 6.3.2 and the measured PUMAX as defined in subclause 6.2.5 (i.e, the actual power as would be measured assuming no measurement error). This power shall be within the power limits specified in subclause 6.2.5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in subclauses 6.3.2 and 6.2.2. For these exceptions the power tolerance limit is a maximum of ± 6.0 dB in Table 6.3.5.2.1-1

Power step ∆P (Up or down) [dB]		All combinations of PUSCH and PUCCH transitions [dB]	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames [dB]	PRACH [dB]
ΔP <	< 2	±2.5 (Note 3)	±3.0	±2.5
2 ≤ ΔF	' < 3	±3.0	±4.0	±3.0
3 ≤ ΔF	° < 4	±3.5	±5.0	±3.5
4 ≤ ∆P	≤ 10	±4.0	±6.0	±4.0
10 ≤ ∆F	° < 15	±5.0	±8.0	±5.0
15 ≤	ΔP	±6.0	±9.0	±6.0
NOTE 2:	 NOTE 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed NOTE 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power tolerance is relaxed by increasing the upper limit by 1.5 dB if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the targe sub-frame is not confined within any one of these frequency ranges; if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges, then the tolerance is relaxed by reducing the lower limit by 1.5 dB. 			relative power 5 dB if the confined within high and the target tency ranges; if confined within high and the hese frequency ower limit by 1.5
NOTE 3:	For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods for TDD: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is ±1.0 dB.			those generated s for TDD: for a

Table 6.3.5.2.1-1 Relative power tolerance for transmission (normal conditions)

The power step (ΔP) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to subclause 5.1 of [TS 36.213]. The error is the difference between ΔP and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2.1-1.

For sub-frames not containing an SRS symbol, the power change is defined as the relative power difference between the mean power of the original reference sub-frame and the mean power of the target subframe not including transient durations. The mean power of successive sub-frames shall be calculated according to Figure 6.3.4.3-1 and Figure 6.3.4.1-1 if there is a transmission gap between the reference and target sub-frames.

If at least one of the sub-frames contains an SRS symbol, the power change is defined as the relative power difference between the mean power of the last transmission within the reference sub-frame and the mean power of the first transmission within the target sub-frame not including transient durations. A transmission is defined as PUSCH, PUCCH or an SRS symbol. The mean power of the reference and target sub-frames shall be calculated according to Figures 6.3.4.1-1, 6.3.4.2-1, 6.3.4.4-1, 6.3.4.4-2 and 6.3.4.4-3 for these cases.

6.3.5.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.1 Minimum requirement

The UE shall meet the requirements specified in Table 6.3.5.3.1-1 for aggregate power control over the power range bounded by the minimum output power as defined in subclause 6.3.2 and the maximum output power as defined in subclause 6.2.2.

TPC command UL cl		UL channel	Aggregate power tolerance within 21 ms
0 dB		PUCCH	±2.5 dB
0 dB		PUSCH	±3.5 dB
NOTE: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.			

Table 6.3.5.3.1-1: Aggregate power control tolerance

6.3.5A Power control for CA

The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per component carrier with power setting in accordance with Clause 5.1 of [6].

6.3.5A.1 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

6.3.5A.1.1 Minimum requirements

For intra-band contiguous carrier aggregation bandwidth classe C the absolute power control tolerance per component carrier is given in Table 6.3.5.1.1-1.

6.3.5A.2 Relative power tolerance

6.3.5A.2.1 Minimum requirements

The requirements apply when the power of the target and reference sub-frames on each component carrier exceed -20 dBm and the total power is limited by P_{UMAX} as defined in subclause 6.2.5A. For the purpose of these requirements, the power in each component carrier is specified over only the transmitted resource blocks.

For intra-band contiguous carrier aggregation bandwidth classe C, the UE shall meet the following requirements for transmission on both assigned component carriers when the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame:

a) for all possible combinations of PUSCH and PUCCH transitions per component carrier, the corresponding requirements given in Table 6.3.5.2.1-1:

b) for SRS transitions on each component carrier, the requirements for combinations of PUSCH/PUCCH and SRS transitions given in Table 6.3.5.2.1-1 with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subrames:

c) for RACH on the primary component carrier, the requirements given in Table 6.3.5.2.1-1 for PRACH

For a) and b) above, the power step ΔP between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

For a), b) and c) above, two exceptions are allowed for each component carrier for a power per carrier ranging from -20 dBm to $P_{UMAX,c}$ as defined in subclause 6.2.5. For these exceptions the power tolerance limit is ±6.0 dB in Table 6.3.5.2.1-1..

6.3.5A.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in [6] are constant on all active component carriers.

6.3.5A.3.1 Minimum requirements

For intra-band contiguous carrier aggregation bandwidth classe C, the aggregate power tolerance per component carrier is given in Table 6.3.5.3.1-1 with either simultaneous PUSCH or simultaneous PUCCH-PUSCH (if supported by the UE) configured. The average power per PRB shall be aligned across both assigned carriers before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

6.3.5B Power control for UL-MIMO

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.5 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2, wherein

- The Maximum output power requirements for UL-MIMO are specified in subclause 6.2.2B
- The Minimum output power requirements for UL-MIMO are specified in subclause 6.3.2B
- The requirements for configured transmitted power for UL-MIMO are specified in subclause 6.2.5B.

For single-antenna port scheme, the requirements in subclause 6.3.5 apply.

6.4 Void

6.5 Transmit signal quality

6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

6.5.1A Frequency error for CA

For intra-band contiguous carrier aggregation the UE modulated carrier frequencies per band shall be accurate to within ± 0.1 PPM observed over a period of one timeslot compared to the carrier frequency of primary component carrier received from the E-UTRA in the corresponding band.

6.5.1B Frequency error for UL-MIMO

For UE(s) supporting UL-MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B.

6.5.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.5.2 are defined using the measurement methodology specified in Annex F.

6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.

6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
QPSK or BPSK	%	17.5	17.5
16QAM	%	12.5	12.5

Parameter	Unit	Level
UE Output Power	dBm	≥ -40
Operating conditions		Normal conditions

6.5.2.2 Carrier leakage

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

6.5.2.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.1-1.

Parameters	Relative limit (dBc)	Applicable frequencies
Output power >10 dBm	-28	Carrier center frequency < 1 GHz
	-25	Carrier center frequency ≥ 1 GHz
0 dBm ≤ Output power ≤10 dBm	-25	
-30 dBm ≤ Output power ≤0 dBm	-20	
-40 dBm ≤ Output power < -30 dBm	-10	

 Table 6.5.2.2.1-1: Minimum requirements for relative carrier leakage power

6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.

Parameter description	Unit	Limit (Note 1)		Applicable Frequencies
General	dB	$\max \left\{ \begin{array}{l} -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRB}, \\ -57 \ dBm \ / 180 \ kHz - P_{RB} \right\} \end{array}$		Any non-allocated (Note 2)
IQ Image	dB	-28	Image frequencies when carrier center frequency < 1 GHz and Output power > 10 dBm	Imaga
		-25	Image frequencies when carrier center frequency < 1 GHz and Output power ≤ 10 dBm	Image frequencies
		-25	Image frequencies when carrier center frequency ≥ 1 GHz	(Notes 2, 3)
Carrier leakage	dBc	-28	Output power > 10 dBm and carrier center frequency < 1 GHz	
		-25	Output power > 10 dBm and carrier center frequency ≥ 1 GHz	Carrier frequency
		-25	0 dBm ≤ Output power ≤10 dBm	(Notes 4, 5)
		-20	-30 dBm ≤ Output power ≤ 0 dBm	
		-10	-40 dBm ≤ Output power < -30 dBm	

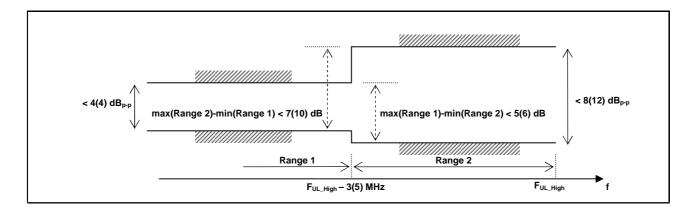
Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

NOTE 1:	An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values
	(General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 10.
NOTE 2:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non- allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
NOTE 3:	The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.
NOTE 4:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non- allocated RB to the measured total power in all allocated RBs.
NOTE 5:	The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC
	frequency if $N_{\rm RB}$ is odd, or in the two RBs immediately adjacent to the DC frequency if $N_{\rm RB}$ is even, but excluding any allocated RB.
NOTE 6:	$L_{\it CRB}$ is the Transmission Bandwidth (see Figure 5.6-1).
NOTE 7:	$N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Configuration (see Figure 5.6-1).
NOTE 8:	EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
NOTE 9:	$\Delta_{\it RB}$ is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
	$\Delta_{\rm \tiny RB}=1$ or $\Delta_{\rm \tiny RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
NOTE 10:	$P_{\scriptscriptstyle RB}$ is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

6.5.2.4.1 Minimum requirements


The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.5.2.4.1-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.5.2.4.1-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.5.2.4.1-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.1-1).

Frequency range	Maximum ripple [dB]
$F_{UL_Meas} - F_{UL_Low} \ge 3 \text{ MHz} \text{ and } F_{UL_High} - F_{UL_Meas} \ge 3 \text{ MHz}$	4 (p-p)
(Range 1)	
F _{UL_Meas} – F _{UL_Low} < 3 MHz or F _{UL_High} – F _{UL_Meas} < 3 MHz	8 (p-p)
(Range 2)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated	
NOTE 2: F _{UL_Low} and F _{UL_High} refer to each E-UTRA frequency band specified in Table 5.5-1	

Table 6.5.2.4.1-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency range	Maximum Ripple [dB]
F _{UL_Mea}	s – $F_{UL_{Low}} \ge 5 \text{ MHz}$ and $F_{UL_{High}} - F_{UL_{Meas}} \ge 5 \text{ MHz}$	4 (p-p)
	(Range 1)	
F _{UL_Mea}	as – F _{UL_Low} < 5 MHz or F _{UL_High} – F _{UL_Meas} < 5 MHz	12 (p-p)
	(Range 2)	
NOTE 1:	$F_{\text{UL}_\text{Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2:	F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency 5.5-1	band specified in Table

Figure 6.5.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

6.5.2A Transmit modulation quality for CA

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.5.2A.1 Error Vector Magnitude

For the intra-band contiguous carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers.

When a single component carrier is configured Table 6.5.2.1.1-1 apply.

The EVM requirements are according to Table 6.5.2A.1-1 if CA is configured in uplink.

Parameter	Unit	Average EVM Level per CC	Reference Signal EVM Level
QPSK or BPSK	%	17.5	17.5
16QAM	%	12.5	12.5

6.5.2A.2 Carrier leakage for CA

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. Carrier leakage is defined for each component carrier and is measured on the carrier with PRBs allocated. The measurement interval is one slot in the time domain.

6.5.2A.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2A.2.1-1.

Table 6.5.2A.2.1-1: Minimum requirements for Relative Carrier Leakage Power

Parameters	Relative Limit (dBc)
Output power >0 dBm	-25
-30 dBm ≤ Output power ≤0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

6.5.2A.3 In-band emissions

6.5.2A.3.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation bandwidth class C, the requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 apply within the aggregated transmission bandwidth configuration with both component carrier (s) active and one single contiguous PRB allocation of bandwidth L_{CRB} at the edge of the aggregated transmission bandwidth configuration.

The inband emission is defined as the interference falling into the non allocated resource blocks for all component carriers. The measurement method for the inband emissions in the component carrier with PRB allocation is specified in annex F. For a non allocated component carrier a spectral measurement is specified.

Paramete	r Unit		Limit	Applicable Frequencies		
		_	$25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$			
General	dB	$20 \cdot \log_{10}$	$EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}$,	Any non-allocated (Note 1)		
		– 57 dBm	$/180 kHz - P_{RB}$			
IQ Image	dB		-25	Exception for IQ image (Note 2)		
Carrier		-25	Output power > 0 dBm	Exception for Carrier frequency		
leakage	dBc	-20	$-30 \text{ dBm} \le \text{Output power} \le 0 \text{ dBm}$	(Note 3)		
		-10	-40 dBm ≤ Output power < -30 dBm			
	minimum requireme (General, IQ Image non-allocated RB. 1	ent is calculate or Carrier lea The measurem Ilocated RB to	imit is evaluated in each non-allocated F ed as the higher of P_{RB} - 30 dB and the p kage) that apply. P_{RB} is defined in Note nent bandwidth is 1 RB and the limit is en the measured average power per allocations.	oower sum of all limit values 8. The limit is evaluated in each xpressed as a ratio of measured		
NOTE 2:	Exceptions to the g	eneral limit are	e allowed for up to $L_{\scriptscriptstyle CRBs}$ +1 RBs within	a contiguous width of $L_{{\it CRBs}}$ +1		
NOTE 3:	Exceptions to the g bandwidth is 1 RB a measured total pow	eneral limit are and the limit is ver in all alloca		er in the non-allocated RB to the		
NOTE 4:	$L_{\it CRB}$ is the Transr	nission Bandw	vidth (see Figure 5.6-1) not exceeding	$N_{RB}/2-1$		
	$N_{\scriptscriptstyle RB}$ is the Transmallocated.	ission Bandw	idth Configuration (see Figure 5.6-1) of t	the component carrier with RBs		
NOTE 6:	EVM is the limit	specified in Ta	ble 6.5.2.1.1-1 for the modulation forma	t used in the allocated RBs.		
NOTE 7:	$\Delta_{\it RB}$ is the starting	frequency offs	set between the allocated RB and the m	easured non-allocated RB (e.g.		
	$\Delta_{\scriptscriptstyle RB}=1$ or $\Delta_{\scriptscriptstyle RB}=$	= -1 for the fi	rst adjacent RB outside of the allocated	bandwidth.		
NOTE 8:	$P_{\scriptscriptstyle RB}$ is the transmit	ted power per	180 kHz in allocated RBs, measured in	dBm.		

Table 6.5.2A.3.1-1: Minimum requirements for in-band emissions (allocated component carrier)

Para- meter	Unit	Meas BW Note 1		Limit	remark	Applicable Frequencies
General	dB	BW of 1 RB (180KHz rectangular)	$20 \cdot \log_{10}$	$25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$ $EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB},$ $n / 180 kHz - P_{RB} \}$	The reference value is the average power per allocated RB in the allocated component carrier	Any RB in the non allocated component carrier. The frequency raster of the RBs is derived when this component carrier is allocated with RBs
IQ Image	dB	BW of 1 RB (180KHz rectangular)		-25 Note 2	The reference value is the average power per allocated RB in the allocated component carrier	The frequencies of the L_{CRB} contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with
		BW of 1 RB (180KHz		Note 3	The reference	RBs The frequencies of
		rectangular)	-25	Output power > 0 dBm	value is the total power of the	the up to 2 non-allocated RBs are
Carrier leakage	dBc		-20	-30 dBm ≤ Output power ≤ 0 dBm	allocated RBs in the allocated component carrier	unknown. The frequency raster of the RBs is derived when this
			-10	-40 dBm ≤ Output power < -30 dBm	camor	component carrier is allocated with RBs
	Resolutio bandwidtł		han the me	easurement BW may be integrated	to achieve the r	neasurement
			limit is are	allowed for up to $L_{\it CRB}$ +1 RBs wit	hin a contiguou	is width of $L_{\scriptscriptstyle CRB}$
NOTE 3:	Two Exce			are allowed for up to two contiguous		RBs

Table 6.5.2A.3.1-2: Minimum requirements for in-band emissions (not allocated component carrier)

NOTE 4: Note 4 to note 8 from Table 6.5.2A.3.1-1 apply for Table 6.5.2A.3.1-2 as well.

Transmit modulation quality for UL-MIMO For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna

connector.

For single-antenna port scheme, the requirements in subclause 6.5.2 apply.

The transmit modulation quality is specified in terms of:

6.5.2B

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process

- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

6.5.2B.1 Error Vector Magnitude

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.5.2.1.1-1 which is defined in subclause 6.5.2.1 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.2 Carrier leakage

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.5.2.2.1-1 which is defined in subclause 6.5.2.2 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.3 In-band emissions

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.5.2.3.1-1 which is defined in subclause 6.5.2.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2.2B-2.

6.5.2B.4 EVM equalizer spectrum flatness for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.5.2.4.1-1 and Table 6.5.2.4.1-2 which are defined in subclause 6.5.2.4 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

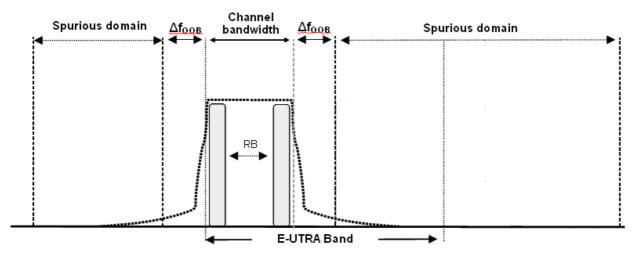


Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1

	Occupied channel bandwidth / Channel bandwidth						
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Channel bandwidth (MHz)	1.4	3	5	10	15	20	

Table 6.6.1-1: Occupied channel bandwidth

6.6.1A Occupied bandwidth for CA

For intra-band contiguous carrier aggregation the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth defined in subclause 5.6A.

6.6.1B Occupied bandwidth for UL-MIMO

For UE supporting UL-MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in Table 6.6.1B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

Table 6.6.1B-1:	Occupied	channel	bandwidth
-----------------	----------	---------	-----------

	Occupied channel bandwidth / Channel bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Channel bandwidth (MHz)	1.4	3	5	10	15	20

For single-antenna port scheme, the requirements in subclause 6.6.1 apply.

6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.1-1 the spurious requirements in subclause 6.6.3 are applicable.

6.6.2.1.1 Minimum requirement

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{оов} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth			
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz			
± 1-2.5	-10	-10	-10	-10	-10	-10	1 MHz			
± 2.5-2.8	-25	-10	-10	-10	-10	-10	1 MHz			
± 2.8-5		-10	-10	-10	-10	-10	1 MHz			
± 5-6		-25	-13	-13	-13	-13	1 MHz			
± 6-10			-25	-13	-13	-13	1 MHz			
± 10-15				-25	-13	-13	1 MHz			
± 15-20					-25	-13	1 MHz			
± 20-25						-25	1 MHz			

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.1A Spectrum emission mask for CA

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the aggregated channel bandwidth (Table 5.6A-1) For intra-band contiguous carrier aggregation the bandwidth class C, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.1A-1 for the specified channel bandwidth.

	Spectrum emission limit [dBm]/BW _{Channel_CA}								
Δf _{OOB}	25RB+100RB	50RB+100RB	75RB+75RB	75RB+100RB	100RB+100RB	Measurement			
(MHz)	(24.95 MHz)	(29.9 MHz)	(30 MHz)	(34.85 MHz)	(39.8 MHz)	bandwidth			
± 0-1	-22	-22.5	-22.5	-23.5	-24	30 kHz			
± 1-5	-10	-10	-10	-10	-10	1 MHz			
± 5-24.95	-13	-13	-13	-13	-13	1 MHz			
± 24.95-29.9	-25	-13	-13	-13	-13	1 MHz			
± 29.9-29.95	-25	-25	-13	-13	-13	1 MHz			
± 29.95-30		-25	-13	-13	-13	1 MHz			
± 30-34.85		-25	-25	-13	-13	1 MHz			
± 34.85-34.9		-25	-25	-25	-13	1 MHz			
± 34.9-35			-25	-25	-13	1 MHz			
± 35-39.8				-25	-13	1 MHz			
± 39.8-39.85				-25	-25	1 MHz			
± 39.85-44.8					-25	1 MHz			

Table 6.6.2.1A-1: General E-UTRA CA spectrum emission mask for Bandwidth Class C

6.6.2.2 Additional spectrum emission mask

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2.1 Minimum requirement (network signalled value "NS_03", "NS_11", and "NS_20")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03", "NS_11" or "NS_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.

	Spectrum emission limit (dBm)/ Channel bandwidth								
∆f _{оов} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth		
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz		
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz		
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz		
± 2.8-5		-13	-13	-13	-13	-13	1 MHz		
± 5-6		-25	-13	-13	-13	-13	1 MHz		
± 6-10			-25	-13	-13	-13	1 MHz		
± 10-15				-25	-13	-13	1 MHz		
± 15-20					-25	-13	1 MHz		
± 20-25						-25	1 MHz		

Table 6.6.2.2.1-1: Additional requirements

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.2 Minimum requirement (network signalled value "NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

		Spectrum emission limit (dBm)/ Channel bandwidth							
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth		
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz		
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz		
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz		
± 2.8-5.5		-13	-13	-13	-13	-13	1 MHz		
± 5.5-6		-25	-25	-25	-25	-25	1 MHz		
± 6-10			-25	-25	-25	-25	1 MHz		
± 10-15				-25	-25	-25	1 MHz		
± 15-20					-25	-25	1 MHz		
± 20-25						-25	1 MHz		

Table 6.6.2.2.2-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.3 Minimum requirement (network signalled value "NS_06" or "NS_07")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.

	Spectru	Spectrum emission limit (dBm)/ Channel bandwidth							
Δf _{ООВ} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	Measurement bandwidth				
± 0-0.1	-13	-13	-15	-18	30 kHz				
± 0.1-1	-13	-13	-13	-13	100 kHz				
± 1-2.5	-13	-13	-13	-13	1 MHz				
± 2.5-2.8	-25	-13	-13	-13	1 MHz				
± 2.8-5		-13	-13	-13	1 MHz				
± 5-6		-25	-13	-13	1 MHz				
± 6-10			-25	-13	1 MHz				
± 10-15				-25	1 MHz				

Table 6.6.2.2.3-1: Additional requirements

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2A Additional Spectrum Emission Mask for CA

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2A.1 Minimum requirement (network signalled value "CA_NS_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "CA_NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2A-1.

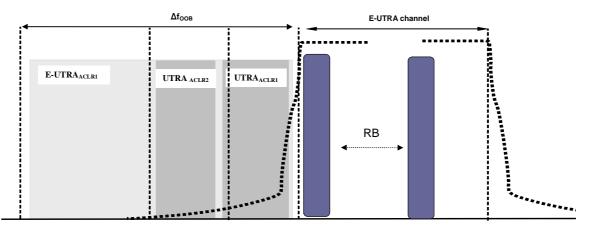

	Spectrum emission limit [dBm]/BW _{Channel_CA}									
	Δf _{oob} (MHz)	50+100RB (29.9 MHz)	75+75B (30 MHz)	75+100RB (34.85 MHz)	100+100RB (39.8 MHz)	Measurement bandwidth				
Γ	± 0-1	-22.5	-22.5	-23.5	-24	30 kHz				
	± 1-5.5	-13	-13	-13	-13	1 MHz				
	$\pm 5.5-34.9$	-25	-25	-25	-25	1 MHz				
	\pm 34.9-35		-25	-25	-25	1 MHz				
	$\pm 35 - 39.85$			-25	-25	1 MHz				
	± 39.85-44.8				-25	1 MHz				

Table 6.6.2.2A-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements for one E-UTRA carrier are specified for two scenarios for an adjacent E-UTRA and /or UTRA channel as shown in Figure 6.6.2.3-1.

6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2. If the measured adjacent channel power is greater than -50dBm then the E-UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2.

	Char	Channel bandwidth / E-UTRA _{ACLR1} / Measurement bandwidth							
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	30 dB			
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz			
Adjacent channel	+1.4	+3.0	+5	+10	+15	+20			
centre frequency	/	/	/	/	/	/			
offset [MHz]	-1.4	-3.0	-5	-10	-15	-20			

Table 6.6.2.3.1-1: General requirements for E-UTRA_{ACLR}

	Char	Channel bandwidth / E-UTRA _{ACLR1} / Measurement bandwidth							
	1.4	3.0	5	10	15	20			
	MHz	MHz	MHz	MHz	MHz	MHz			
E-UTRA _{ACLR1}			37 dB	37 dB					
E-UTRA channel									
Measurement			4.5 MHz	9.0 MHz					
bandwidth									
Adjacent channel			+5	+10					
centre frequency			/	/					
offset [MHz]			-5	-10					
NOTE 1: E-UTRAAC	NOTE 1: E-UTRA _{ACLR1} shall be applicable for >23dBm								

6.6.2.3.1A Void

6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2nd UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than –50dBm then the UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.2-1.

		Channel bandwidth / UTRA _{ACLR1/2} / Measurement bandwidth								
	1.4	3.0				20				
	MHz	MHz	MHz	MHz	MHz	MHz				
UTRA _{ACLR1}	33 dB	33 dB	33 dB	33 dB	33 dB	33 dB				
Adjacent channel centre	0.7+BW _{UTRA} /2 /	1.5+BW _{UTRA} /2 /	+2.5+BW _{UTRA} /2	+5+BW _{UTRA} /2	+7.5+BW _{UTRA} /2	+10+BW _{UTRA} /2				
frequency offset [MHz]	-0.7- BW _{UTRA} /2	-1.5- BW _{UTRA} /2	/ -2.5-BW _{UTRA} /2	/ -5-BW _{UTRA} /2	/ -7.5-BW _{UTRA} /2	/ -10-BW _{UTRA} /2				
UTRA _{ACLR2}	-	-	36 dB	36 dB	36 dB	36 dB				
Adjacent channel centre frequency offset [MHz]	-	-	+2.5+3*BW _{UTRA} /2 / -2.5-3*BW _{UTRA} /2	+5+3*BW _{UTRA} /2 / -5-3*BW _{UTRA} /2	+7.5+3*BW _{UTRA} /2 / -7.5-3*BW _{UTRA} /2	+10+3*BW _{UTRA} /2 / -10-3*BW _{UTRA} /2				
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz				
UTRA 5MHz channel Measurement bandwidth (Note 1)	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz				
UTRA 1.6MHz channel measurement bandwidth (Note 2)	1.28 MHz	1.28 MHz	1.28 MHz	1.28MHz	1.28MHz	1.28MHz				
			nce with UTRA FDD							

Table 6.6.2.3.2-1: Requir	rements for UTRA _{ACLR1/2}
---------------------------	-------------------------------------

6.6.2.3.2A Minimum requirement UTRA for CA

For intra-band contiguous carrier aggregation the UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2nd UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned aggregated channel bandwidth power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2A-1. If the measured UTRA channel power is greater than –50dBm then the UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.2A-1.

	CA bandwidth class / UTRA _{ACLR1/2} / measurement bandwidth
	CA bandwidth class C
UTRA _{ACLR1}	33 dB
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} /2 + BW _{UTRA} /2 / - BW _{Channel_CA} / 2 - BW _{UTRA} /2
UTRA _{ACLR2}	36 dB
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} /2 + 3*BW _{UTRA} /2 / - BW _{Channel_CA} /2 - 3*BW _{UTRA} /2
CA E-UTRA channel Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}
UTRA 5MHz channel Measurement bandwidth (Note 1)	3.84 MHz
UTRA 1.6MHz channel measurement bandwidth (Note 2)	1.28 MHz
	DD co-existence with UTRA FDD in paired spectrum. DD co-existence with UTRA TDD in unpaired spectrum.

Table 6.6.2.3.2A-1: Requirements for UTRA_{ACLR1/2}

6.6.2.3.3A Minimum requirements for CA E-UTRA

For intra-band contiguous carrier aggregation the carrier aggregation E-UTRA Adjacent Channel Leakage power Ratio (CA E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.3A-1. If the measured adjacent channel power is greater than – 50dBm then the E-UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.3A-1.

	CA bandwidth class / CA E-UTRA _{ACLR} / Measurement bandwidth CA bandwidth class C
CA E-UTRA _{ACLR}	30 dB
CA E-UTRA channel Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} / - BW _{Channel_CA}

6.6.2.4 Void

6.6.2.4.1 Void

6.6.2A Void

<reserved for future use>

6.6.2B Out of band emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.2 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.6.3 apply.

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.3.1 Minimum requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (NRB) and channel bandwidths.

Table 6.6.3.1-1: Boundary between E-UTRA out of band and spurious emission domain

Channel	1.4	3.0	5	10	15	20
bandwidth	MHz	MHz	MHz	MHz	MHz	MHz
ООВ boundary F _{OOB} (MHz)	2.8	6	10	15	20	25

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than F_{OOB} (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be $F_{OOB} + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

Frequency Range	Maximum Level	Measurement bandwidth	Note
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
NOTE 1: Applies for Bar	nd 22, Band 42 and	Band 43	

Table 6.6.3.1-2: Spurious emissions limits

6.6.3.1A Minimum requirements for CA

For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth (Table 5.6A-1). For frequencies Δ fOOB greater than FOOB as specified in Table 6.6.3.1A-1 the spurious emission requirements in Table 6.6.3.1-2 are applicable.

Table 6.6.3.1A-1: Boundary between E-UTRA out of band and spurious emission domain for intraband contiguous carrier aggregation

CA Bandwidth Class	ООВ boundary F _{оов} (MHz)
A	Table 6.6.3.1-1
В	FFS
C	BW _{Channel_CA} + 5

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than F_{OOB} (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the aggregated channel should be $F_{OOB} + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band, for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

		Spurious	s em	ission			
E-UTRA Band	Protected band		ency (MHz	range :)	Maximum Level (dBm)	MBW (MHz)	Note
1	E-UTRA Band 1, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 38, 40, 41, 42, 43, 44	$F_{DL_{low}}$	_	F_{DL_high}	-50	1	
	E-UTRA Band 3, 34	F _{DL_low}	-	FDL_high	-50	1	15
	Frequency range	1880		1895	-40	1	15,27
	Frequency range	1895		1915	-15.5	5	15, 26, 27
	Frequency range	1915		1920	+1.6	5	15, 26, 27
	Frequency range	1839.9	-	1879.9	-50	1	15
2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 26, 27, 28, 29, 41, 42	F _{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 2, 25	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
	E-UTRA Band 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	2
3	E-UTRA Band 1, 7, 8, 20, 26, 27, 28, 33, 34, 38, 41, 43, 44	F_{DL_low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 3	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F_{DL_high}	-50	1	13
	E-UTRA Band 22, 42	F _{DL_low}	-	F_{DL_high}	-50	1	2
4	Frequency range E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,	1884.5	-	1915.7	-41 -50	0.3	13
	23, 24, 25, 26, 27, 28, 29, 41, 43	F _{DL_low}	-	F _{DL_high}			
	E-UTRA Band 42	F _{DL_low}	-	F_{DL_high}	-50	1	2
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 28, 29,42, 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 41	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 26	859	-	869	-27	1	
6	E-UTRA Band 1, 9, 11, 34	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	860	-	875	-37	1	
	Frequency range	875	-	895	-50	1	
		1884.5	-	1919.6	-41	0.3	7
	Frequency range	1884.5	-	1915.7			8
7	E-UTRA Band 1, 3, 7, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26
	Frequency range	2595	-	2620	-40	1	15, 21
8	E-UTRA Band 1, 20, 28, 33, 34, 38, 39, 40	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	E-UTRA band 3	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA band 7	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 8	F _{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 22, 41, 42, 43	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 11, 21	F _{DL_low}	-	F_{DL_high}	-50	1	23
	Frequency range	860	-	890	-40	1	15, 23
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 23
9	E-UTRA Band 1, 11, 18, 19, 21, 26, 28, 34	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	<u> </u>	1879.9	-50	1	
	Frequency range	2545	-	2575	-50	1	
10	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 41, 43	$F_{DL_{low}}$	_	F_{DL_high}	-50	1	
	E-UTRA Band 22, 42	F _{DL_low}	L -	F _{DL_high}	-50	1	2
11	E-UTRA Band 1, 11, 18, 19, 21, 28, 34	F _{DL_low}	_	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	

Table 6.6.3.2-1: Requirements

		05.45	1	0575	50	4	[
10	E-UTRA Band 2, 5, 13, 14, 17, 23, 24,	2545	-	2575	-50	1	
12	25, 26, 27, 41	F _{DL low}	-	F_{DL_high}	-50	1	
	E-UTRA Band 4, 10	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 12		-	F _{DL high}	-50	1	15
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 17, 23,	F _{DL_low}	-	DL_high			10
10	25, 26, 27, 29, 41	F _{DL low}	-	F_{DL_high}	-50	1	
	Frequency range	769	-	775	-35	0.00625	15
	Frequency range	799	-	805	-35	0.00625	11, 15
	E-UTRA Band 14	F _{DL low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 24	F _{DL low}	-	F _{DL_high}	-50	1	2
14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,	· DL_IOW		• DL_nign			
	23, 24, 25, 26, 27, 29, 41	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	Frequency range	769	-	775	-35	0.00625	12, 15
	Frequency range	799	-	805	-35	0.00625	11, 12, 15
17	E-UTRA Band 2, 5, 13, 14, 17, 23, 24,				-50	1	
	25, 26, 27, 41	F _{DL_low}	-	F_{DL_high}			
	E-UTRA Band 4, 10	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 12	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
18	E-UTRA Band 1, 11, 21, 34	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	860	-	890	-40	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	758	-	799	-50	1	
	Frequency range	799	-	803	-40	1	15
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
	Frequency range	2545	-	2575	-50	1	
19	E-UTRA Band 1, 11, 21, 28, 34	F _{DL_low}	_	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945	-	960	-50	1	
	Frequency range	1839.9	-	1879.9	-50	1	
	Frequency range	2545	-	2575	-50	1	
20	E-UTRA Band 1, 3, 7, 8, 20, 22, 33, 34,	_		_	-50	1	
	40, 43	F _{DL_low}	-	F _{DL_high}	50	4	45
	E-UTRA Band 20	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 38, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	758	-	788	-50	1	
21	E-UTRA Band 1, 18, 19, 28, 34	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	945	-	960	-50	1	
	Frequency range Frequency range	1839.9 2545	-	1879.9 2575	-50 -50	1	
22	E-UTRA Band 1, 3, 7, 8, 20, 26, 27, 28,	2040	-	2075	-50		
~~~	33, 34, 38, 39, 40, 43	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
	Frequency range	3510	_	3525	-40	1	15
	Frequency range	3525	-	3590	-50	1	
23	E-UTRA Band 4, 5, 10, 12, 13, 14, 17,	0020		0000			
	23, 24, 26, 27, 29, 41	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
24	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,	_		_	-50	1	
	23, 24, 25, 26, 29, 41	F _{DL_low}	-	$F_{DL_high}$			
05				1	50	1	
25	E-UTRA Band 4, 5, 10,12, 13, 14, 17, 23, 24, 26, 27, 28, 29, 41, 42	Free	-	Fourte	-50	-	
25	24, 26, 27, 28, 29, 41, 42	F _{DL_low}	-	F _{DL_high}			15
25	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2	F _{DL_low}	-	$F_{DL_high}$	-50	1	15 15
25	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2 E-UTRA Band 25	F _{DL_low}	- -	$F_{DL_high}$ $F_{DL_high}$	-50 -50	1	15
	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2 E-UTRA Band 25 E-UTRA Band 43	F _{DL_low}	- - -	$F_{DL_high}$	-50	1	-
25 26	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2 E-UTRA Band 25	F _{DL_low}		$F_{DL_high}$ $F_{DL_high}$	-50 -50	1	15
	24, 26, 27, 28, 29, 41, 42         E-UTRA Band 2         E-UTRA Band 25         E-UTRA Band 43         E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 26, 29, 34, 40, 42, 43	F _{DL_low} F _{DL_low} F _{DL_low}		F _{DL_high} F _{DL_high} F _{DL_high}	-50 -50 -50	1 1 1	15
	24, 26, 27, 28, 29, 41, 42         E-UTRA Band 2         E-UTRA Band 25         E-UTRA Band 43         E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 26, 29,	F _{DL_low} F _{DL_low} F _{DL_low}	- - - - - -	F _{DL_high} F _{DL_high} F _{DL_high}	-50 -50 -50 -50	1 1 1 1	15 2
	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2 E-UTRA Band 25 E-UTRA Band 43 E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18,19, 21, 23, 24, 25, 26, 29, 34, 40, 42, 43 E-UTRA Band 41 Frequency range	F _{DL_low} F _{DL_low} F _{DL_low} F _{DL_low}	- - -	F _{DL_high} F _{DL_high} F _{DL_high} F _{DL_high}	-50 -50 -50 -50 -50	1 1 1 1 1	15 2 2
	24, 26, 27, 28, 29, 41, 42         E-UTRA Band 2         E-UTRA Band 25         E-UTRA Band 43         E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 26, 29, 34, 40, 42, 43         E-UTRA Band 41	F _{DL} low F _{DL} low F _{DL} low F _{DL} low F _{DL} low 1884.5 703	- - - -	$F_{DL_high}$ $F_{DL_high}$ $F_{DL_high}$ $F_{DL_high}$ $F_{DL_high}$ $1915.7$ $799$	-50 -50 -50 -50 -50 -41	1 1 1 1 1 0.3	15 2 2
	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2 E-UTRA Band 25 E-UTRA Band 43 E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 26, 29, 34, 40, 42, 43 E-UTRA Band 41 Frequency range Frequency range	F _{DL} low           1884.5           703           799	- - - - -	$\label{eq:poly_prod} \begin{split} & F_{DL_high} \\ & 1915.7 \\ & 799 \\ & 803 \end{split}$	-50 -50 -50 -50 -50 -41 -50	1 1 1 1 1 0.3 1	15 2 2 8
	24, 26, 27, 28, 29, 41, 42 E-UTRA Band 2 E-UTRA Band 25 E-UTRA Band 43 E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 17, 18,19, 21, 23, 24, 25, 26, 29, 34, 40, 42, 43 E-UTRA Band 41 Frequency range	F _{DL} low F _{DL} low F _{DL} low F _{DL} low F _{DL} low 1884.5 703	- - - - - - - -	$F_{DL_high}$ $F_{DL_high}$ $F_{DL_high}$ $F_{DL_high}$ $F_{DL_high}$ $1915.7$ $799$	-50 -50 -50 -50 -50 -41 -50 -40	1 1 1 1 1 0.3 1 1	15 2 2 8

	14, 17, 23, 25, 26, 27, 29, 38, 41, 42, 43						
	Frequency range	799	-	805	-35	0.00625	
	E-UTRA Band 28	F _{DL_low}	-	790	-50	1	
28	E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 25, 26, 27, 34, 38, 41	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 4, 10, 22, 42, 43	$F_{DL_{low}}$	-	$F_{DL_high}$	-50	1	2
	E-UTRA Band 11, 21	$F_{DL_low}$	-	F _{DL_high}	-50	1	19, 24
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	19, 25
	Frequency range	686	-	694	-42	8	15, 32
	Frequency range	470	-	710	-26.2	6	31
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	-
			-	694	-26.2	6	15
	Frequency range	662	-	1915.7	-41	0.3	8, 19
	Frequency range	1884.5					0, 10
	Frequency range	1839.9	-	1879.9	-50	1	
33	E-UTRA Band 1, 7, 8, 20, 22, 28, 34, 38, 40, 42, 43	$F_{DL_low}$	-	$F_{DL_{high}}$	-50	1	5
	E-UTRA Band 3	$F_{DL_{low}}$	-	$F_{DL_high}$	-50	1	15
34	E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 33, 38,39, 40, 41, 42, 43, 44	F		E	-50	1	5
	Frequency range	F _{DL_low} 1884.5	-	F _{DL_high} 1915.7	-41	0.3	8
	Frequency range	1839.9	-	1879.9	-50	1	0
35							
36							
37			_				
38	E-UTRA Band 1,3, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43	F _{DL low}	-	$F_{DL_{high}}$	-50	1	
	Frequency range	2620	-	2645	-15.5	5	15, 22, 26
	Frequency range	2645	-	2690	-40	1	15, 22
39	E-UTRA Band 22, 34, 40, 41, 42, 44	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	
40	E-UTRA Band 1, 3, 7, 8, 20, 22, 26, 27, 28, 33, 34, 38, 39, 41, 42, 43, 44	F _{DL_low}	-	F _{DL_high}	-50	1	
41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 34, 39, 40, 42, 44	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 9, 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	30
	Frequency range	1839.9		1879.9	-50	1	30
	Frequency range	1884.5		1915.7	-41	0.3	8, 30
42	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 33, 34, 38, 40, 41, 44				-50	1	
43	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 33, 34, 38, 40	F _{DL_low}	_	F _{DL_high}	-50	1	
	E-UTRA Band 22	F _{DL_low}	-	F _{DL_high}	[-50]	[1]	3
44	E-UTRA Band 3, 5, 8, 34, 39, 41	F _{DL_low}	-	F _{DL_high} F _{DL_high}	-50	1	Ŭ
44				• DL High		1 1	1

NOTE 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1 NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval. NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band NOTE 4: N/A NOTE 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band NOTE 6: N/A. NOTE 7: Applicable when co-existence with PHS system operating in 1884.5-1919.6MHz. NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz. NOTE 9: N/A. NOTE 10: N/A. NOTE 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB NOTE 13: This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz. NOTE 14: N/A. NOTE 15: These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth. NOTE 16: N/A. NOTE 17: N/A NOTE 18: N/A NOTE 19: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. NOTE 20: N/A. NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. NOTE 22: This requirement is applicable for any channel bandwidths within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers with channel bandwidth overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE *P-Max*. NOTE 23 This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 902.5 MHz  $\leq$  F_c < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F_c) is within the range 907.5 MHz  $\leq$  F_c  $\leq$  912.5 MHz without any restriction on uplink transmission bandwidth. - for carriers of 10 MHz channel bandwidth when carrier centre frequency (F_c) is F_c = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with  $RB_{start} > 3$ . NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2nd harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band. NOTE 27: This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink

1 NOTE 28: I	transmission bandwidth less than or equal to 54 RB. N/A
NOTE 29: 1	
NOTE 30:	This requirement applies when the E-UTRA carrier is confined within 2545-2575 MHz and the channel bandwidth is 10 or 20 MHz.
-	This requirement is applicable for 5 and 10 MHz E-UTRA channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart<48.
NOTE 32:	This requirement is applicable in the case of a 10 MHz E-UTRA carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.

### 6.6.3.2A Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

E-	Spurious emission						
UTRA CA Config uration	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
CA_1C	E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 38, 40, 41, 42, 43, 44	$F_{DL_{low}}$	-	$F_{DL_high}$	-50	1	
	E-UTRA band 34	$F_{DL_low}$	-	$F_{DL_high}$	-50	1	4, 6, 7
	Frequency range	1880	-	1895	-40	1	7, 10
	Frequency range	1895	-	1915	-15.5	5	7, 10, 12
	Frequency range	1900	-	1915	-15.5	5	6, 7, 10, 12
	Frequency range	1915	-	1920	+1.6	5	6, 7, 10, 12
	Frequency range	1884.5	-	1915.7	-41	0.3	4, 5
	Frequency range	1839.9	-	1879.9	-50	1	
CA_7C	E-UTRA Band 1, 3, 7, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43	F _{DL_low}	-	$F_{DL_high}$	-50	1	
	Frequency range	2570	-	2575	+1.6	5	8, 12
	Frequency range	2575	-	2595	-15.5	5	8, 12
CA_38C	Frequency range E-UTRA Band 1,3, 8, 20, 22, 27, 28, 29,	2595	-	2620	-40	1	8
CA_36C	33, 34, 40, 42, 43	F _{DL_low}	-	$F_{DL_high}$	-50	1	9, 10,
	Frequency range	2620	-	2645	-15.5	5	11, 12
	Frequency range	2645	-	2690	-40	1	9, 10, 11
CA_40C	E-UTRA Band 1, 3, 7, 8, 20, 22, 26, 27, 33, 34, 38, 39, 41, 42, 43, 44	F _{DL_low}	-	$F_{DL_high}$	-50	1	
CA_41C	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 34, 39, 40, 42, 44	$F_{DL_low}$	-	F _{DL high}	-50	1	
NOTE 8: NOTE 9: NOTE 10 NOTE 11	<ul> <li>IOTE 1: F_{DL_low} and F_{DL_high} refer to each E-UTRA frequency band specified in Table 5.5-1</li> <li>IOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd, 3rd, 4th [or 5th] harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2MHz + N x L_{CRB} x 180kHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th [or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval. NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band</li> <li>IOTE 4: Applicable when CA_NS_01 in subclause 6.6.3.3A.1 is signalled by the network.</li> <li>IOTE 5: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.</li> </ul>						

#### Table 6.6.3.2A-1: Requirements for intra-band contiguous CA

### 6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

#### 6.6.3.3.1 Minimum requirement (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)				Measurement bandwidth	Note
	5 MHz	10 MHz	15 MHz	20 MHz		
1884.5 ≤ f ≤1915.7	-41	-41	-41	-41	300 KHz	1
NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned, where channel BW is as defined in subclause 5.6. Additional restrictions apply for operations below this point.						

Table 6.6.3.3.1-1: Additional requirements (PHS)

The requirements in Table 6.6.3.3.1-1 apply with the additional restrictions specified in Table 6.6.3.3.1-2 when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is less than the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned.

15 MHz channel bandwidth with $f_c = 1932.5$ MHz							
RB _{start}	0-7	8-66	67-74				
L _{CRB}	N/A	≤ MIN(30, 67 – RB _{start} )	N/A				
	20 MHz channel bandwidth with f _c = 1930 MHz						
RB _{start}	0-23	24-75	76-99				
L _{CRB}	N/A	≤ MIN(24, 76 – RB _{start} )	N/A				

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

### 6.6.3.3.2 Minimum requirement (network signalled value "NS_07")

When "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band	Channel bandwidth / Spectrum	Measurement		
(MHz)	emission limit (dBm)	bandwidth		
	10 MHz			
769 ≤ f ≤ 775	-57	6.25 kHz		
NOTE: The emissions measurement shall be sufficiently power averaged to ensure standard standard deviation < 0.5 dB.				

Table 6.6.3.3.2-1:	Additional	requirements
--------------------	------------	--------------

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

#### 6.6.3.3.3 Minimum requirement (network signalled value "NS_08")

When "NS 08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band	Channel ban	oandwidth / Spectrum emission limit (dBm)		Measurement bandwidth
(MHz)	5MHz	10MHz	15MHz	
860 ≤ f ≤ 890	-40	-40	-40	1 MHz

Table 6.6.3.3.3-1: Additional requirement

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

#### 6.6.3.3.4 Minimum requirement (network signalled value "NS_09")

When "NS 09" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.4-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)		Measurement bandwidth	
	5MHz	10MHz	15MHz	
1475.9 ≤ f ≤ 1510.9	-35	-35	-35	1 MHz

- NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).
- NOTE 2: To improve measurement accuracy, A-MPR values for NS_09 specified in Table 6.2.4-1 in subclause 6.2.4 are derived based on both the above NOTE 1 and 100 kHz RBW.

#### 6.6.3.3.5 Minimum requirement (network signalled value "NS_12")

When "NS 12" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.5-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	
	1.4 MHz, 3 MHz, 5 MHz		
806 ≤ f ≤ 813.5	-42	6.25 kHz	
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or			
above 814.2 MHz.			
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a			
standard deviation < 0.5 dB.			

#### 6.6.3.3.6 Minimum requirement (network signalled value "NS_13")

When "NS 13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.6-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	
	5 MHz		
806 ≤ f ≤ 816	-42	6.25 kHz	
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 819 MHz.			
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.			

Table 6.6.3.3.6-1: Additional requirements

#### 6.6.3.3.7 Minimum requirement (network signalled value "NS_14")

When "NS 14" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.7-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	
	10 MHz, 15 MHz		
806 ≤ f ≤ 816	-42	6.25 kHz	
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 824 MHz.			
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.			

Table 6.6.3.3.7-1: Additional requirements

#### 6.6.3.3.8 Minimum requirement (network signalled value "NS_15")

When "NS 15" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.8-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz	Measurement bandwidth	
851 ≤ f ≤ 859	-53	6.25 kHz	
NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.			

#### 6.6.3.3.9 Minimum requirement (network signalled value "NS_16")

When "NS_16" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.9-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4, 3, 5, 10 MHz	Measurement bandwidth	Note
790 ≤ f ≤ 803	-32	1 MHz	

#### Table 6.6.3.3.9-1: Additional requirements

### 6.6.3.3.10 Minimum requirement (network signalled value "NS_17")

When "NS_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.10-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10 MHz	Measurement bandwidth	Note	
470 ≤ f ≤ 710	-26.2	6 MHz	1	
NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.				

#### Table 6.6.3.3.10-1: Additional requirements

#### 6.6.3.3.11 Minimum requirement (network signalled value "NS_18")

When "NS_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.11-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.11-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth	Note
692-698	-26.2	6 MHz	

#### 6.6.3.3.12 Minimum requirement (network signalled value "NS_19")

When "NS_19" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.12-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.12-1:	Additional	requirements
---------------------	------------	--------------

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 3, 5, 10, 15, 20 MHz	Measurement bandwidth	Note
662 ≤ f ≤ 694	-25	8 MHz	

#### 6.6.3.3.13 Minimum requirement (network signalled value "NS_11")

When "NS_11" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.13-1. These requirements also apply for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 1.4, 3, 5, 10, 15, 20 MHz	Measurement bandwidth
E-UTRA Band 2	-50	1 MHz
1998 ≤ f ≤ 1999	-21	1 MHz
1997 ≤ f < 1998	-27	1 MHz
1996 ≤ f < 1997	-32	1 MHz
1995 ≤ f < 1996	-37	1 MHz
1990 ≤ f < 1995	-40	1 MHz

Table 6.6.3.3.13-1: Additional requirements

#### 6.6.3.3.14 Minimum requirement (network signalled value " NS_20")

When "NS_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.14-1. These requirements also apply for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth				
1990 ≤ f < 1999	-40	1 MHz				
1999 ≤ f ≤ 2000	-40	Note 1				
Note 1: The measurement bandwidth is 1% of the applicable E-UTRA channel bandwidth.						

Table 6.6.3.3.14-1: Additional requirements

#### 6.6.3.3.15 Minimum requirement (network signalled value " NS_22")

When "NS 22" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.15-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Frequency band (MHz)						
		5, 10, 15, 20 MHz				
3400	≤ f ≤ 3800	-23 (Note 1, Note 3)	5 MHz			
		-40 (Note 2)	1 MHz			
Note 1:		nent applies within an offset between 5 MHz an				
		r and from the upper edge of the channel band				
Note 2:		nent applies from 3400 MHz up to 25 MHz belo				
	E-UTRA channel edge and from 25 MHz above the upper E-UTRA					
	channel edge up to 3800 MHz.					
Note 3: This emission limit might imply risk of harmful interference to UE(s) operating						
	in the protect	ed operating band.				

Table 6.6.3.3.15-1: Additional requirement

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth.

## 6.6.3.3A Additional spurious emissions for CA

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell reconfiguration message.

#### 6.6.3.3A.1 Minimum requirement for CA_1C (network signalled value "CA_NS_01")

When "CA_NS_01" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Protected band	Frequenc	cy ra	inge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note					
E-UTRA band 34	FDL_low	-	FDL_high	-50	1						
Frequency range         1884.5         -         1915.7         -41         0.3         1											
NOTE 1: Applicable v	vhen the aggre										

Table 6.6.3.3A.1-1: Additional requirements (PHS)

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

#### 6.6.3.3A.2 Minimum requirement for CA_1C (network signalled value "CA_NS_02")

When "CA_NS_02" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Protected band	Frequency range (MHz)		nge (MHz)	Maximum Level (dBm)	MBW (MHz)	
E-UTRA band 34	$F_{DL_{low}}$	-	$F_{DL_high}$	-50	1	
Frequency range	1900	-	1915	-15.5	5	
Frequency range	1915	-	1920	+1.6	5	

Table 6.6.3.3A.2-1: Additional requirements

## 6.6.3.3A.3 Minimum requirement for CA_1C (network signalled value "CA_NS_03")

When "CA_NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.3-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Protected band	Frequency range (MHz)		nge (MHz)	Maximum Level (dBm)	MBW (MHz)
E-UTRA band 34	$F_{DL_low}$	-	$F_{DL_high}$	-50	1
Frequency range	1880	-	1895	-40	1
Frequency range	1895	-	1915	-15.5	5
Frequency range	1915 - 1920		1920	+1.6	5

Table 6.6.3.3A.3-1: Additional requirements

#### 6.6.3.3A.4 Minimum requirement for CA_38C (network signalled value "CA_NS_05")

When "CA_NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.4-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth. This requirement is applicable for carriers with aggregated channel bandwidths confined in 2570 - 2615 MHz.

Protected band	Frequence	;y rar	nge (MHz)	Maximum Level (dBm)	MBW (MHz)
Frequency range	2620	-	2645	-15.5	5
Frequency range	2645	-	2690	-40	1

#### Table 6.6.3.3A.4-1: Additional requirements

#### 6.6.3.3A.5 Minimum requirement for CA_7C (network signalled value "CA_NS_06")

When "CA_NS_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.5-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)
Frequency range	2570	-	2575	+1.6	5
Frequency range	2575	-	2595	-15.5	5
Frequency range	2595	-	2620	-40	1

Table 6.6.3.3A.5-1: Additional requirements

## 6.6.3A Void

<reserved for future use>

# 6.6.3B Spurious emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.3 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-1.

For single-antenna port scheme, the general requirements in subclause 6.6.3 apply.

# 6.6A Void

6.6B Void

# 6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

## 6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by

the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.

BW Channel (UL)	5MHz		10MHz		15MHz		20MHz	
Interference Signal Frequency Offset	5MHz	10MHz	10MHz	20MHz	15MHz	30MHz	20MHz	40MHz
Interference CW Signal Level	-40dBc							
Intermodulation Product	-29dBc	-35dBc	-29dBc	-35dBc	-29dBc	-35dBc	-29dBc	-35dBc
Measurement bandwidth	4.5MHz	4.5MHz	9.0MHz	9.0MHz	13.5MHz	13.5MHz	18MHz	18MHz

Table 6.7.1-1: Transmit Intermodulation

# 6.7.1A Minimum requirement for CA

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product on both component carriers when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through rectangular filter with measurement bandwidth shown in Table 6.7.1A-1.

For intra-band contiguous carrier aggregation the requirement of transmitting intermodulation is specified in Table 6.7.1A-1.

CA bandwidth class(UL)		С	
Interference Signal Frequency Offset	BW _{Channel_CA}	2*BW _{Channel_CA}	
Interference CW Signal Level	-40dBc		
Intermodulation Product	-29dBc	-35dBc	
Measurement bandwidth	BW _{Channel_CA} - 2* BW _{GB}		

Table 6.7.1A-1: Transmit Intermodulation

# 6.7.1B Minimum requirement for UL-MIMO

For UE supporting UL-MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.7.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.7.1 apply.

- 6.8 Void
- 6.8.1 Void
- 6.8A Void

# 6.8B Time alignment error for UL-MIMO

For UE(s) with multiple transmit antenna connectors supporting UL-MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

### 6.8B.1 Minimum Requirements

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

# 7 Receiver characteristics

# 7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.4-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers (one component carrier per sub-block), an in-gap test refers to the case when the interfering signalis located at a negative offset with respect to the assigned channel frequency of the highest carrier frequency and located at a positive offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers (one component carrier per sub-block), an out-of-gap test refers to the case when the interfering signal(s) is (are) located at a positive offset with respect to the assigned channel frequency of the highest carrier frequency, or located at a negative offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation of two component carriers with channel bandwidth larger than or equal to 5 MHz (one component carrier per sub-block), the existing adjacent channel selectivity requirements, in-band blocking requirements (for each case), and narrow band blocking requirements apply for in-gap tests only if the corresponding interferer frequency offsets with respect to the two measured carriers satisfy the following condition in relation to the sub-block gap size  $W_{gap}$  for at least one of these carriers j, j = 1,2, so that the interferer frequency position does not change the nature of the core requirement tested:

 $W_{gap} \geq 2 \cdot |F_{Interferer \; (offset), j}| - B W_{Channel(j)}$ 

where  $F_{\text{Interferer (offset)},j}$  is the interferer frequency offset with respect to carrier *j* as specified in subclause 7.5.1, subclause 7.6.1 and subclause 7.6.3 for the respective requirement and BW_{Channel(j)} the channel bandwidth of carrier *j*. The interferer frequency offsets for adjacent channel selectivity, each in-band blocking case and narrow- band blocking shall be tested separately with a single in-gap interferer at a time.

# 7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. These requirements apply to all UE categories unless stated otherwise. Requirements for 4 ports are FFS. With the exception of subclause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

# 7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

# 7.3.1 Minimum requirements (QPSK)

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2

Channel bandwidth									
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex		
Band	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	Mode		
1			-100	-97	-95.2	-94	FDD		
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD		
3	-101.7	-98.7	-97	-94	-92.2	-91	FDD		
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD		
5	-103.2	-100.2	-98	-95			FDD		
6			-100	-97			FDD		
7			-98	-95	-93.2	-92	FDD		
8	-102.2	-99.2	-97	-94			FDD		
9			-99	-96	-94.2	-93	FDD		
10			-100	-97	-95.2	-94	FDD		
11			-100	-97		• •	FDD		
12	-101.7	-98.7	-97	-94			FDD		
13	101.1	00.7	-97	-94			FDD		
13			-97	-94			FDD		
			-31	-34			100		
 17			-97	-94			FDD		
17			-100 ⁷	-94 -97 ⁷	-95.2 ⁷		FDD		
19			-100	-97	-95.2		FDD		
20			-97	-94	-91.2	-90	FDD		
20			-97	-94 -97	-91.2	-90	FDD		
					-92.2	-91			
22	4047	404 7	-97	-94	-92.2	-91	FDD		
23	-104.7	-101.7	-100	-97	-95.2	-94	FDD		
24	404.0		-100	-97	01.7	-90.5	FDD		
25	-101.2	-98.2	-96.5	-93.5	-91.7 -92.7 ⁶	-90.5	FDD		
26	-102.7	-99.7	-97.5 ⁶	-94.5 ⁶	-92.7		FDD		
27	-103.2	-100.2	-98	-95	00.7	04	FDD		
28		-100.2	-98.5	-95.5	-93.7	-91	FDD		
33			-100	-97	-95.2	-94	TDD		
34			-100	-97	-95.2		TDD		
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD		
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD		
37			-100	-97	-95.2	-94	TDD		
38			-100	-97	-95.2	-94	TDD		
39			-100	-97	-95.2	-94	TDD		
40			-100	-97	-95.2	-94	TDD		
41			-98	-95	-93.2	-92	TDD		
42			-99	-96	-94.2	-93	TDD		
43			-99	-96	-94.2	-93	TDD		
44		[-100.2]	[-98]	[-95]	[-93.2]	[-92]	TDD		
	he transmitter								
	Reference meas Pattern OP.1 FE						NG .		
	The signal powe								
NOTE 4: F	or the UE whic				d 9 the ref	erence sen	sitivity		
	evel is FFS.	h			and 04.4		a na statu sta		
	or the UE whic	n supports	both Band	11 and Ba	ind 21 the i	reterence s	ensitivity		
	indicates that t	he reauirem	nent is mo	dified bv -0	.5 dB wher	the carrie	r		
fr	equency of the	assigned E	E-UTRA cl	hannel ban	dwidth is w	ithin 865-8	94 MHz.		
	or a UE that su					ence sensi	tivity level		
fo	or Band 26 app	lies for the	applicable	channel ba	andwidths.				

Table 7.3.1-1: Reference sensitivity QPSK PREFSENS	Table 7.3.1-1:	Reference	sensitivity	QPSK	PREFSENS
----------------------------------------------------	----------------	-----------	-------------	------	----------

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1-2.

NOTE: Table 7.3.1-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex G (informative).

For the UE which supports inter-band carrier aggregation configuration in Table 7.3.1-1A with uplink in one E-UTRA band, the minimum requirement for reference sensitivity in Table 7.3.1-1 shall be increased by the amount given in  $\Delta R_{IB,c}$  in Table7.3.1-1A for the applicable E-UTRA bands.

Inter-band CA Configuration	E-UTRA Band	ΔR _{IB,c} [dB]		
CA_1A-5A	1	0		
04_14-34	5	0		
CA_1A-18A	1	0		
	18	0		
CA_1A-19A	1	0		
_	19	0		
CA_1A-21A	21	0		
	21	0		
CA_2A-17A	17	0.5		
	3	0		
CA_3A-5A	5	0		
04 04 74	3	0		
CA_3A-7A	7	0		
CA_3A-8A	3	0		
CA_3A-6A	8	0		
CA_3A-20A	3	0		
0/(_0/(20/(	20	0		
CA_4A-5A	4	0		
	5	0		
CA_4A-7A	4	0.5		
	7 4	0.5		
CA_4A-12A	12	0.5		
	4	0.5		
CA_4A-13A	13	0		
	4	0		
CA_4A-17A	17	0.5		
0.0.50.400	5	0.5		
CA_5A-12A	12	0.3		
CA_5A-17A	5	0.5		
<u>CA_5A-17A</u>	17	0.3		
CA_7A-20A	7	0		
	20	0		
CA_8A-20A	8	0		
_	20	0		
CA_11A-18A	11	0		
NOTE 1. The ak	18 pove additional tolerances are only ap	0 plicable for the E LITRA operating		
	that belong to the supported inter-bar			
	urations	a carrier aggregation		
	oove additional tolerances also apply i	n intra-band CA and non-		
	ated operation for the supported E-U			
	oported inter-band carrier aggregation			
NOTE 3: In case	e the UE supports more than one of th	e above inter-band carrier		
	ation configurations and a E-UTRA o			
	er-band carrier aggregation configura			
	hen the E-UTRA operating band freq			
	plicable additional tolerance shall be			
	able 7.3.1-1A, truncated to one decim	1 11 2		
	perating band among the supported CA			
	rmonic relation between low band Ul	•		
	aximum tolerance among the differen			
	nfigurations involving such band sha			
	hen the E-UTRA operating band freq			
	plicable additional tolerance shall be			
7.	3.1-1A that would apply for that oper	ating band among the supported		

Table 7.3.1-1A: ΔR_{IB,c}

CA configurations

NOTE : The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

E-UTRA Band / Channel bandwidth / N _{RB} / Duplex mode								
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex	
Band							Mode	
1			25	50	75	100	FDD	
2	6	15	25	50	50 ¹	50 ¹	FDD	
3	6	15	25	50	50 ¹	50 ¹	FDD	
4	6	15	25	50	75	100	FDD	
5	6	15	25	25 ¹			FDD	
6			25	25 ¹			FDD	
7			25	50	75	75 ¹	FDD	
8	6	15	25	25 ¹			FDD	
9			25	50	50 ¹	50 ¹	FDD	
10			25	50	75	100	FDD	
11			25	25 ¹			FDD	
12	6	15	20 ¹	20 ¹			FDD	
13			20 ¹	20 ¹			FDD	
14			15 ¹	15 ¹			FDD	
17			20 ¹	20 ¹			FDD	
18			25	25 ¹	25 ¹		FDD	
19			25	25 ¹	25 ¹		FDD	
20			25	20 ¹	20 ³	20 ³	FDD	
21			25	25 ¹	25 ¹		FDD	
22			25	50	50 ¹	50 ¹	FDD	
23	6	15	25	50	75	100	FDD	
24			25	50			FDD	
25	6	15	25	50	50 ¹	50 ¹	FDD	
26	6	15	25	25 ¹	25 ¹		FDD	
27	6	15	25	25 ¹			FDD	
28	-	15	25	25 ¹	25 ¹	25 ¹	FDD	
		-	_	-				
33			25	50	75	100	TDD	
34			25	50	75		TDD	
35	6	15	25	50	75	100	TDD	
36	6	15	25	50	75	100	TDD	
37			25	50	75	100	TDD	
38			25	50	75	100	TDD	
39	1		25	50	75	100	TDD	
40	1		25	50	75	100	TDD	
41	1		25	50	75	100	TDD	
42			25	50	75	100	TDD	
43			25	50	75	100	TDD	
43		15	25	50	75	100	TDD	
<ul> <li>NOTE 1: ¹ refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).</li> <li>NOTE 2: For the UE which supports both Band 11 and Band 21 the uplink configuration for reference sensitivity is FFS.</li> <li>NOTE 3: ³ refers to Band 20; in the case of 15MHz channel bandwidth, the UL</li> </ul>								
	resource blo channel bar							

 Table 7.3.1-2: Uplink configuration for reference sensitivity

Unless given by Table 7.3.1-3, the minimum requirements specified in Tables 7.3.1-1 and 7.3.1-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

E-UTRA Band	Network Signalling value
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09
23	NS_03

# 7.3.1A Minimum requirements (QPSK) for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with both downlink component carriers active and either of the uplink carriers active. The UE shall meet the requirements specified in subclause 7.3.1 with the following exceptions.

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0a, exceptions to the aforementioned requirements are allowed when the uplink active in the lower-frequency operating band is within a specified frequency range as noted in Table 7.3.1A-0a. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0a and Table 7.3.1A-0b.

Channel bandwidth									
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode	
CA_3A-8A ⁴	3				N/A	N/A	N/A	FDD	
CA_SA-6A	8			N/A	N/A			FUU	
CA_4A-12A ^{5,6}	4	-89.2	-89.2	-90	-89.5			FDD	
CA_4A-12A	12			-96.5	-93.5			FUU	
CA_4A-17A ^{5,6}	4			-90	-89.5			FDD	
				-96.5	-93.5			FDD	
NOTE 1: The transmitter shall be set to $P_{UMAX}$ as defined in subclause 6.2.5A. NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 NOTE 3: The signal power is specified per port NOTE 4: No requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of the high band. The reference sensitivity is only verified when this is not the case (the requirements specified in clause 7.3.1 apply). NOTE 5: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the uplink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the downlink transmission bandwidth of the high band. NOTE 6: The requirements should be verified for UL EARFCN of the low band (superscript LB) such that $f_{UL}^{LB} = \left[ f_{DL}^{HB} / 0.3 \right] 0.1$ in MHz and $F_{UL_{Low}}^{LB} + BW_{Channel}^{LB} / 2 < f_{UL_{high}}^{LB} - BW_{Channel}^{LB} / 2$ with $f_{DL}^{HB}$ the carrier frequency of the high band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the									

E-UTRA Band / Channel bandwidth of the high band / $N_{RB}$ / Duplex mode									
EUTRA CA Configuration	UL band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex mode	
CA_4A-12A	12	2	5	8	16			FDD	
CA_4A-17A	17			8	16			FDD	
<ul> <li>NOTE 1: refers to the UL resource blocks, which shall be centred within the transmission bandwidth configuration for the channel bandwidth.</li> <li>NOTE 2: the UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.1-2 for the uplink bandwidth in which case the allocation according to Table 7.3.1-2 applies.</li> </ul>									

Table 7.3.1A-0b: Uplink configuration for the low band (exceptions)

For band combinations including operating bands without uplink band (as noted in Table 5.5-1), the requirements are specified in Table 7.3.1A-0d and Table 7.3.1A-0e.

Channel bandwidth									
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode	
	2			-98	-95			FDD	
CA_2A-29A	29		-98.7	-97	-94				
	4 -100 -97								
CA_4A-29A	29		-98.7	-97	-94			FDD	
NOTE 1: The transmitter shall be set to P _{UMAX} as defined in subclause 6.2.5A.         NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1         FDD/TDD as described in Annex A.5.1.1/A.5.2.1         NOTE 3: The signal power is specified per port									

Table 7.3.1A-0d: Reference sensitivity QPSK PREFSENS

Table 7.3.1A-0e:	Uplink configuration for	reference sensitivity
------------------	--------------------------	-----------------------

E-UTRA Band / Channel bandwidth / N _{RB} / Duplex mode									
EUTRA CA Configuration	EUTRA band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex mode	
	2			25	50				
CA_2A-29A	29		N/A	N/A	N/A			FDD	
	4			25	50		FDD		
CA_4A-29A	29		N/A	N/A	N/A			FDD	

In all cases for single uplink inter-band CA, unless given by Table 7.3.1-3 for the band with the active uplink carrier, the applicable reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

For intra-band contiguous carrier aggregation the throughput of each component carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1A-1. Table 7.3.1A-1 specifies the maximum number of allocated uplink resource blocks for which the intra-band contiguous carrier aggregation reference sensitivity requirement shall be met. The PCC and SCC allocations follow Table 7.3.1A-1 and form a contiguous allocation where TX–RX frequency separations are as defined in Table 5.7.4-1. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2 and the downlink PCC carrier center frequency shall be configured closer to uplink operating band than the downlink SCC center frequency. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

	CA configuration / CC combination / $N_{RB_agg}$ / Duplex mode									
	100RB	100RB+50RB		75RB+75RB		100RB+75RB		+100RB	Duplex	
CA configuration	PCC	SCC	PCC	SCC	PCC	SCC	PCC	SCC	Mode	
CA_1C	N/A	N/A	75	54	N/A	N/A	100	30	FDD	
CA_7C	N/A	N/A	75	0	N/A	N/A	75	0	FDD	
CA_38C			75	75			100	100	TDD	
CA_40C	100	50	75	75	N/A	N/A	100	100	TDD	
CA_41C	100	50	75	75	100	75	100	100	TDD	
NOTE 1: The carrier NOTE 2: The transm	nitted powe	r over both	n PCC and	d SCC sha	all be set to	o P _{UMAX} as	defined in a	subclause 6	5.2.5A.	

#### Table 7.3.1A-1: Intra-band contiguous CA uplink configuration for reference sensitivity

NOTE 3: The UL resource blocks in both PCC and SCC shall be confined within the transmission bandwidth

configuration for the channel bandwidth (Table 5.6-1).

NOTE 4: The UL resource blocks in PCC shall be located as close as possible to the downlink operating band, while the UL resource blocks in SCC shall be located as far as possible from the downlink operating band.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the throughput of each downlink component carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with both downlink carriers active and parameters specified in Table 7.3.1-1 and Table 7.3.1A-3 with the power level in Table 7.3.1-1 increased by  $\Delta_{IBNC}$  given in Table 7.3.1A-3 for the SCC. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

CA configuration	Aggregated channel bandwidth (PCC+SCC)	W _{gap} /[MHz]	UL PCC allocation	ΔR _{iBNC} (dB)	Duplex mode
	25RB+25RB	$30.0 < W_{gap} \le 55.0$	10 ¹	5.0	
	2010-2010	$0.0 < W_{gap} \le 30.0$	25 ¹	0.0	
	25RB+50RB	$25.0 < W_{gap} \le 50.0$	10 ¹	4.5	
CA 25A-25A	2568+5068	$0.0 < W_{gap} \le 25.0$	25 ¹	0.0	FDD
CA_23A-23A	50RB+25RB	15.0 < W _{gap} ≤ 50.0	10 ⁴	5.5	FUU
	50KB+25KB	$0.0 < W_{gap} \le 15.0$ $32^1$		0.0	
	50RB+50RB	10.0 < W _{gap} ≤ 45.0	10 ⁴	5.0	
	SUKB+SUKB	$0.0 < W_{gap} \le 10.0$	0.0		
CA_41A-41A	NOTE 6	NOTE 7	0.0	TDD	
operat NOTE 2: W _{gap} is NOTE 3: The ca operat NOTE 4: ⁴ refer NOTE 5: For the only in NOTE 6: All cor NOTE 7: All app	ting band but confi s the sub-block gap arrier center freque ting band. s to the UL resource e TDD intra-band r a synchronized ope nbinations of chan blicable sub-block CC allocation is sa	ce blocks shall be located as c ned within the transmission. p between the two sub-blocks. ency of PCC in the UL operatir ce blocks shall be located at R non-contiguous CA configuration eration between all component nel bandwidths defined in Tab gap sizes. une as Transmission bandwidt	ng band is conf B _{start} =33. ons, the minim carriers. le 5.6A.1-3.	igured close um requirem	r to the DL ents apply

# Table 7.3.1A-3: Intra-band non-contiguous CA uplink configuration for reference sensitivity with one uplink

## 7.3.1B Minimum requirements (QPSK) for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.3.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{UMAX}$  is the total transmitter power over the two transmit antenna connectors.

## 7.3.2 Void

## 7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

## 7.4.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1-1

Rx Parameter	Rx Parameter Units Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm	-25					
<ul> <li>Bandwidth Configuration</li> <li>NOTE 1: The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L as defined in subclause 6.2.5.</li> <li>NOTE 2: Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.</li> </ul>							

 Table 7.4.1-1: Maximum input level

## 7.4.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the maximum input level is defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.4.1 for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation maximum input level is defined as the powers received at the UE antenna port over the Transmission bandwidth configuration of each CC, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each component carrier.

The downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.4.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels over each component carrier as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1A-1.

For intra-band non-contiguous carrier aggregation with two downlink carriers each carrier shall meet the requirements specified in Table 7.4.1-1 while all downlink carriers are active.

The throughput shall be  $\geq$  95% of the maximum throughput of the specified reference measurement channel as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) over each carrier. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1A-3.

Rx Parameter Units CA Bandwidth Cla							
		Α	В	С	D	E	F
Power in largest Transmission Bandwidth Configuration CC	dBm			-25			
Power in each other CC	dBm			-25 + 10log(N ^{RB,c} /N _{RB,larg est BW)}			
NOTE 1: The transmitter sha 6.2.5A. NOTE 2: Reference measure dynamic OCNG Pat	ment chan	nel is Anne	ex A.3.2: 6	4QAM, R=3	3/4 varian	t with one	

Table 7.4.1A-1: Maximum input level for intra-band contiguous CA

### 7.4.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements in Clause 7.4.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

## 7.4A Void

7.4A.1 Void

## 7.5 Adjacent Channel Selectivity (ACS)

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

### 7.5.1 Minimum requirements

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

			Channel bandwidth							
Rx Parameter	Units	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
ACS	dB	33.0	33.0	33.0	33.0	30	27			

Rx Parameter	Units			Channel ba	andwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
Power in	dBm										
Transmission											
Bandwidth			REFSENS + 14 dB								
Configuration											
	dBm	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS				
PInterferer		+45.5dB	+45.5dB	+45.5dB	+45.5dB	+42.5dB	+39.5dB				
BWInterferer	MHz	1.4	3	5	5	5	5				
FInterferer (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.0025				
		/	/	/	/	/	/				
		-1.4-0.0025	-3-0.0075	-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-				
							0.0025				
NOTE 1: The tra	insmitter s	hall be set to 4d	B below PCMAX	⊥ at the minimum	uplink configura	ation specified i	n Table 7.3.1-				
2 with	PCMAX_L as	defined in subcla	ause 6.2.5.			-					
NOTE 2: The int	erferer co	nsists of the Refe	erence measur	ement channel sp	pecified in Anne	x A.3.2 with one	e sided				
dynam	ic OCNG I	Pattern OP.1 FD	D/TDD as desc	cribed in Annex A	.5.1.1/A.5.2.1 a	nd set-up accor	ding to Annex				
C.3.1							-				

Rx Parameter	Units			Channel b	andwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
Power in Transmission Bandwidth Configuration	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5				
PInterferer	dBm		-25								
<b>BW</b> Interferer	MHz	1.4	3	5	5	5	5				
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.0025				
		/	/	/	/	/	/				
		-1.4-0.0025	-3-0.0075	-5-0.0025	-7.5-0.0075	-10-0.0125	-12.5-				
							0.0025				
NOTE 1: The tra	insmitter s	hall be set to 24	dB below PCMA	x_L at the minimu	m uplink configu	iration specified	in Table				
		x_L as defined in				·					
				ement channel sp Annex A.5.1.1/A.							

Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

## 7.5.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band, the adjacent channel requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.5.1 for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the adjacent channel requirements of subclause 7.5.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.5.1A-2 and Table 7.5.1A-3 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement specified in Table 7.5.1A-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5.1A-2 and 7.5.1A-3.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, each larger than or equal to 5 MHz, the adjacent channel selectivity requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.5.1 for each component carrier subject to in-gap and out-of-gap interferers while both downlink carriers are active. The interferer powerP_{interferer} for Case 1 in Table 7.5.1-2 shall be set to the maximum of the levels given by the two downlink carriers. For both Case 1 and Case 2 (Table 7.5.1-3), the wanted signal power level of each carrier shall be set in accordance with the ACS requirement (Clause 7.5.1) relative to the interferer power P_{interferer}.

		CA Bandwidth Class								
Rx Parameter	Units	В	С	D	E	F				
ACS	dB		24							

Rx Parameter	Units	CA Bandwidth Class						
		В	С	D	E	F		
Pw in Transmission Bandwidth			REFSENS +					
Configuration, per CC			14 dB					
	dBm		Aggregated					
			power + 22.5					
PInterferer			dB					
BWInterferer	MHz		5					
F _{Interferer} (offset)	MHz		2.5 + F _{offset}					
			/					
			-2.5 - F _{offset}					
NOTE 1: The transmitter shall be	e set to 4dB	below P _{CM}	AX L, OT PCMAX_L a	as defined in s	ubclause 6.2.5	iΑ.		
NOTE 2: The interferer consists of	of the Refer	ence meas	urement channe	I specified in A	nnex A.3.2 wi	th one sided		
dynamic OCNG Pattern	OP.1 FDD	/TDD as de	escribed in Annex	x A.5.1.1/A.5.2	2.1 and set-up	according to		
Annex C.3.1								
NOTE 3: The Finterferer (offset) is the	he frequenc	y separatio	on of the center fr	requency of th	e carrier close	st to the		
interferer and the cente	r frequency	of the adja	cent channel inte	erferer and sha	all be further a	djusted to		
$F_{interferer} / 0.015 + 0.5 0.4$	015 + 0.007	5 MHz to b	e offset from the	sub-carrier ra	ster.			

Table 7.5.1A-2: Test parameters for Adjacent channel selectivity, Case 1

Table 7.5.1A-3: Test parameters for	Adjacent channel selectivity, Case 2

Rx Parameter	Units		CA	CA Bandwidth Class				
		В	С	D	E	F		
Pw in Transmission Bandwidth Configuration, per CC	dBm		-47.5+10 log ₁₀ (N _{RB,c} / N _{RB agg} )					
PInterferer	dBm			-25				
BWInterferer	MHz		5					
F _{Interferer} (offset)	MHz		2.5+ F _{offset}					
			/					
			-2.5- F _{offset}					
NOTE 1: The transmitter shall be NOTE 2: The interferer consists dynamic OCNG Pattern Annex C.3.1	of the Refe	erence measu	rement channel s	pecified in Ar	nnex 3.2 with or	ne sided		
NOTE 3: The F _{interferer} (offset) is t interferer and the cente $F_{interferer} / 0.015 + 0.5 ] 0.$	r frequenc	y of the adjac	ent channel interf	erer and shal	I be further adju			

## 7.5.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.5.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

## 7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

## 7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels..

#### 7.6.1.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

Rx parameter	Units			Channel b	andwidth		
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in			REFSENS	+ channel band	width specific v	alue below	
Transmission	dBm						
Bandwidth	ubiii	6	6	6	6	7	9
Configuration							
BWInterferer	MHz	1.4	3	5	5	5	5
Floffset, case 1	MHz	2.1+0.0125	4.5+0.0075	7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125
Floffset, case 2	MHz	3.5+0.0075	7.5+0.0075	12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007
					5	5	5
NOTE 1: The tra	nsmitter	shall be set to	4dB below Pcr	MAX_L at the minii	mum uplink co	nfiguration spe	cified in
Table 7	'.3.1-2 wi	th PCMAX_L as c	defined in subc	lause 6.2.5.			
NOTE 2: The inte	erferer co	onsists of the R	Reference mea	surement chanr	nel specified in	Annex A.3.2 w	ith one
sided d	ynamic C	OCNG Pattern	OP.1 FDD/TD	D as described i	in Annex A.5.1	.1/A.5.2.1 and	set-up
accordi	ng to An	nex C.3.1					-

E-UTRA	Parameter	Unit	Case 1	Case 2	Case 3	Case 4	Case 5
band	PInterferer	dBm	-56	-44			-38
	F _{Interferer} (offset)	MHz	=-BW/2 - F _{loffset,case 1} & =+BW/2 + F _{loffset,case 1}	≤-BW/2 - F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}			-BW/2 - 11
$\begin{array}{c} 1,2,3,4,5,\\ 6,7,8,9,\\ 10,11,12,\\ 13,14,17,\\ 18,19,20,\\ 21,22,23,\\ 25,26,27,\\ 28,31,33,\\ 34,35,36,\\ 37,38,39,\\ 40,41,42,\\ 43,44 \end{array}$	FInterferer	MHz	(Note 2)	F _{DL_low} − 15 to F _{DL_high} + 15	Void	Void	
30	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15			F _{DL_low} -11
the NOTE 2: Fo	e first 15 MHz b or each carrier f a. the carrier b. the carrier	elow or requency frequenc	above the UE receive I / the requirement is va y -BW/2 - F _{loffset, case 1} a y +BW/2 + F _{loffset, case 1}	rfering signal may not fa band lid for two frequencies:			d, but within

#### Table 7.6.1.1-2: In-band blocking

For the UE which supports inter band CA configuration in Table 7.3.1-1A,  $P_{Interferer}$  power defined in Table 7.6.1.1-2 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

#### 7.6.1.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the in-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier while both downlink carriers are active. For the UE which supports inter band CA configuration in Table 7.3.1-1A,  $P_{Interferer}$  power defined in Table 7.6.1.1-2 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A. For E-UTRA CA configurations including an operating

band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink in the band capable of UL operation.. The requirements for the component carrier configured in the operating band without uplink band are specified in Table 7.6.1.1-1 and Table 7.6.1.1A-0.

Table 7.6.1.1A-0: In-I	band blocking for addition	nal operating bands for	carrier aggregation

E-UTRA band	Parameter	Unit	Case 1	Case 2
	PInterferer	dBm	-56	-44
	F _{Interferer} (offset)	MHz	=-BW/2 - F _{loffset,case 1} & =+BW/2 + F _{loffset,case 1}	≤-BW/2 – F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}
29	FInterferer	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15
NOTE 1: For cer	rtain bands, the ur	nwanted mo	dulated interfering signal r	nay not fall inside the
NOTE 2: For ea a. t	ch carrier frequen he carrier frequen	cy the requi cy -BW/2 -		
	•		<ul> <li>Floffset, case 1</li> <li>modulated interfering signal</li> </ul>	al are interferer center

For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the in-band blocking requirements of subclause 7.6.1.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.1.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.1.1A-1 and Tables 7.6.1.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, each larger than or equal to 5 MHz, the in-band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier subject to in-gap and out-of-gap interferers while both downlink carriers are active.

Rx Parameter	Units		CA	Bandwidth Cla	iss			
		В	С	D	E	F		
Pw in Transmission		R	EFSENS + CA B	pecific value belo	ow.			
Bandwidth	dBm		12					
Configuration, per CC			12					
BWInterferer	MHz		5					
Floffset, case 1	MHz		7.5					
Floffset, case 2	MHz		12.5					
NOTE 1: The transmit	ter shall b	be set to 4dB bel	OW PCMAX_L OF PC	MAX_L_CA as defin	ed in subclause 6	6.2.5A		
NOTE 2: The interfere	er consiste	s of the Reference	of the Reference measurement channel specified in Annex A.3.2 with one sided					
dynamic OC	NG Patte	rn OP.1 FDD/TD	OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to					
Annex C.3.1						-		

Table	7.6.1	.1A-1:	In band	blocking	parameters
-------	-------	--------	---------	----------	------------

CA	configuration	Parameter	Unit	Case 1	Case 2
		PInterferer	dBm	-56	-44
		F _{Interferer} (offset)	MHz	=-F _{offset} - F _{loffset,case 1} & =+F _{offset} + F _{loffset,case 1}	≤-F _{offset} − F _{loffset,case 2} & ≥+F _{offset} + F _{loffset,case 2}
_	5, CA_7C, CA_38C, _40C, CA_41C	F _{Interferer} (Range)	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15
	band, but within the first For each carrier freque	at 15 MHz below ancy the require	/ or above ment is vali	d for two frequencies:	inside the UE receive
	a. the carrier freque b. the carrier freque	ency +Foffset + Flo	offset, case 1		
NOTE 3:	F _{offset} is the frequency aggregated channel ba		enter frequ	ency of the CC being te	sted to the edge of
NOTE 4:	the interferer and the c	enter frequency	of the inte	f the center frequency of rferer tested and shall be ffset from the sub-carrier	e further adjusted to

Table 7.6.1.1A-2: In-band blocking

## 7.6.2 Out-of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.

### 7.6.2.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to  $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$  exceptions are allowed for spurious

response frequencies in each assigned frequency channel when measured using a 1MHz step size, where  $N_{RB}$  is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to  $\max(8, \left[ (N_{RB} + 2 \cdot L_{CRBs})/8 \right])$  exceptions are allowed for spurious

response frequencies in each assigned frequency channel when measured using a 1MHz step size, where  $N_{RB}$  is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.6-1) and  $L_{CRBs}$  is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

Rx Parameter	rameter Units Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in	REFSENS + channel bandwidth specific value below						e below	
Transmission	alDura							
Bandwidth	dBm	6	6	6	6	7	9	
Configuration		_	-	-	-		-	
NOTE 1: The transmit	The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink							
configuration	specified	in Table 7	7.3.1-2 wit	h PCMAX_L	as define	d in subcla	ause	
6.2.5.	5							
	eference measurement channel is specified in Annex A.3.2 with one sided							
dynamic OC	NG Patterr	OP.1 FE	DD/TDD a	s describe	ed in Anne	x A.5.1.1/	A.5.2.	

Table 7.6.2.1-1: Out-of-band blocking parameters

E-UTRA band	Parameter	Units	Frequency					
			Range 1	Range 2	Range 3	Range 4		
	PInterferer	dBm	-44	-30	-15	-15		
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,			F _{DL_low} -15 to F _{DL_low} -60	F _{DL_low} -60 to F _{DL_low} -85	F _{DL_low} -85 to 1 MHz	-		
12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44	F _{Interferer} (CW)	MHz	F _{DL_high} +15 to F _{DL_high} + 60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-		
2, 5, 12, 17	FInterferer	MHz	_	_	-	FUL_low - FUL_hi		

Table 7.6.2.1-2: Out of band blocking

7.6.2.1A Minimum requirements for CA

For inter-band carrier aggregation with the uplink assigned to one E-UTRA band, the out-of-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The throughput in the downlink measured shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1A-0. The UE shall meet these requirements for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the out-of-band blocking requirements of subclause 7.6.2.1A do not apply.

Paramete	er Unit	nit Range 1 Range 2 Range 3						
Pw	dBm	Table 7.6.	Table 7.6.2.1-1 for both component carriers					
Pinterferer	dBm	-44 + ΔR _{IB,c}	-30 + ΔR _{IB,c}	-15 + ΔR _{IB,c}				
Finterferer	MHz	$-60 < f - F_{DL_{Low(1)}} < -15$	$-85 < f - F_{DL_{Low(1)}} \le -60$	$1 \le f \le F_{DL_Low(1)} - 85$				
(CW)		or	or	or				
		$-60 < f - F_{DL_{Low(2)}} < -15$	$-85 < f - F_{DL_{Low(2)}} \le -60$	$F_{DL_{High(1)}} + 85 \le f$				
		or	or	$\leq F_{DL_Low(2)} - 85$				
		$15 < f - F_{DL_{High(1)}} < 60$	$60 \leq f - F_{DL_{High(1)}} < 85$	or				
		or	or	$F_{DL_{High(2)}} + 85 \le f$				
		$15 < f - F_{DL_{High(2)}} < 60$	$60 \leq f - F_{DL_{High(2)}} < 85$	≤ 12750				
NOTE 1:		nd F _{DL_High(1)} denote the respec						
	operating b	and, $F_{DL_Low(2)}$ and $F_{DL_High(2)}$ the second seco	ne respective lower and up	per frequency limits of the				
	upper oper	5						
NOTE 2:		$_{(2)} - F_{DL_High(1)} < 145 \text{ MHz and}$						
	in both Rar	nge 1 and Range 2. Then the l	ower of the P _{Interferer} applies	i.				
NOTE 3:	NOTE 3: For $F_{DL_Low(1)} - 15$ MHz $\leq f \leq F_{DL_High(1)} + 15$ MHz and $F_{DL_Low(2)} - 15$ MHz $\leq f \leq F_{DL_High(2)} + 15$							
	MHz the appropriate adjacent channel selectivity and in-band blocking in the respective							
	subclauses	7.5.1A and 7.6.1.1A shall be	applied.					
NOTE 4:	$\Delta R_{IB,c}$ acco	rding to Table 7.3.1-1A applies	s when serving cell <i>c</i> is me	asured.				

Table 7.6.2.1A-0: out-of-band blocking for inter-band carrier aggregation with one active uplink

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to  $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$  exceptions per downlink are allowed for spurious response frequencies when measured using a step size of 1 MHz. For these exceptions the requirements in clause 7.7.1A apply.

For intra-band contiguous carrier aggreagations the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.2.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.2.1A-1 and Tables 7.6.2.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1A-1 and 7.6.2.1A-2.

For Table 7.6.2.1A-2 in frequency range 1, 2 and 3, up to  $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$  exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

#### Table 7.6.2.1A-1: Out-of-band blocking parameters

Rx Parameter		CA Bandwidth Class					
		В	С	D	E	F	
Pw in Transmission Bandwidth Configuration, per CC	REFSENS + CA Bandwidth Class specific value below						
			9				
NOTE 1: The transmitter shall be set to 4dB below PCMAX_L,c or PCMAX_L as defined in subclause 6.2.5A. NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.							

Table	7.6.2.1	A-2:	Out	of	band	blocking
			••••	•••	Naila	ale en ling

CA configuration	Parameter	Units	Frequency		
			Range 1	Range 2	Range 3
	PInterferer	dBm	-44	-30	-15
	<b>E</b>		F _{DL_low} -15 to F _{DL_low} -60	F _{DL_low} -60 to F _{DL_low} -85	F _{DL_low} -85 to 1 MHz
CA_1C, <u>CA_3C</u> , CA_7C , CA_38C, CA_40C, CA_41C	F _{Interferer} (CW)	MHz	$F_{DL_{high}} + 15$ to $F_{DL_{high}} + 60$	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the out-of-band blocking requirements are defined with the uplink configuration in accordance with table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.6.2.1 for each component carrier while both downlink carriers are active.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to  $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$  exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to  $\max(8, \left[ (N_{RB} + 2 \cdot L_{CRBs})/8 \right])$  exceptions per assigned E-UTRA channel

per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 spurious response are applicable.

## 7.6.3 Narrow band blocking

This requirement is measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

#### 7.6.3.1 Minimum requirements

The relative throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1-1

Parameter	Unit	Channel Bandwidth							
Farameter	Unit	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Р	dDm	P _R	P _{REFSENS} + channel-bandwidth specific value below						
Pw	dBm	22	18	16	13	14	16		
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55		
$F_{uw}$ (offset for $\Delta f = 15 \text{ kHz}$ )	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075		
$F_{uw}$ (offset for $\Delta f = 7.5 \text{ kHz}$ )MHz									
NOTE 1: The transmitter shall be set a 4 dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L as defined in subclause 6.2.5.									
	NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.								

For the UE which supports inter-band CA configuration in Table 7.3.1-1A,  $P_{UW}$  power defined in Table 7.6.3.1-1 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

#### 7.6.3.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the narrow-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the narrow-band blocking requirements of subclause 7.6.3.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.3.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.6.3.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1A-1.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the narrow band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier subject to in-gap and out-of-gap interferers while both downlink carriers are active.

Deremeter	Unit	CA Bandwidth Class						
Parameter	Unit	В	С	D	E	F		
Pw in Transmission Bandwidth	dDm	REF	SENS + CA Band	width Class	specific valu	e below		
Configuration, per CC	dBm		16 ⁴					
P _{uw} (CW)	dBm		-55					
Fuw (offset for			- F _{offset} – 0.2					
$\Delta f = 15 \text{ kHz}$	MHz		/					
$\Delta l = 15 \text{ KHZ})$			+ F _{offset} + 0.2					
F _{uw} (offset for	MHz							
$\Delta f = 7.5 \text{ kHz}$								
NOTE 1: The transmitter shall be se	et to 4dB below F	CMAX_L,c Or F	PCMAX_L as defined	in subclause	e 6.2.5A.			
NOTE 2: Reference measurement	channel is specifi	ied in Annex	A.3.2 with one sid	led dynamic	OCNG Patte	ern OP.1		
FDD/TDD as described in	FDD/TDD as described in Annex A.5.1.1/A.5.2.1.							
	E 3: The F _{uw} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and							
the center frequency of th	the center frequency of the interfererand shall be further adjusted to $ F_{interferer}/0.015 + 0.5 0.015 + 0.0075$ MHz							
to be offset from the sub-	carrier raster.				-			
NOTE 4: The requirement is applie	d for the band co	mbinations	whose component	carriers' BW	'>5 MHz.			

#### Table 7.6.3.1A-1: Narrow-band blocking

## 7.6A Void

<Reserved for future use>

# 7.6B Blocking characteristics for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.6 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

## 7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in subclause 7.6.2 is not met.

## 7.7.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

Rx parameter	Ax parameter   Units   Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in REFSENS + channel bandwidth specific value below						low	
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9
NOTE 1: The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2.							
N OTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.							

	Table 7.7.1-1:	Spurious	response	parameters
--	----------------	----------	----------	------------

Parameter	Unit	Level		
P _{Interferer} (CW)	dBm	-44		
FInterferer	MHz	Spurious response frequencies		

For the UE which supports inter-band CA configuration in Table 7.3.1-1A,  $P_{interferer}$  power defined in Table 7.7.1-2 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

### 7.7.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the spurious response requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The throughput measured in each downlink with  $F_{interferer}$  in Table 7.6.2.1A-0 at spurious response frequencies shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2. The UE shall meet these requirements for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the spurious response requirements of subclause 7.7.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.7.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1A-1 and 7.7.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the spurious response requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in clause 7.7.1 for each component carrier while both downlink carriers are active.

Rx Parameter	Units	CA Bandwidth Class					
		В	С	D	E	F	
Pw in Transmission Bandwidth	Transmission Bandwidth dBm REFSENS + CA Bandwidth Class specific value below						
Configuration, per CC			9				
NOTE 1: The transmitter shall be set to 4dB below PCMAX_L,c or PCMAX_L as defined in subclause 6.2.5A.							
NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern							
OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.							

Table 7.7.1A-1:	Spurious	response	parameters
-----------------	----------	----------	------------

Parameter	Unit	Level	
P _{Interferer} (CW)	dBm	-44	
F _{Interferer}	MHz	Spurious response frequencies	

## 7.7.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.7.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

## 7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

## 7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

### 7.8.1.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals

Rx Para	meter	Units	Channel bandwidth						
			1.4 MHz 3 MHz			5 MHz	10 MHz	15 MHz	20 MHz
Power in			REFSENS + channel bandwidth specific value below						
Transmissi Bandwidth Configurati		dBm	12 8		6	6	7	9	
P _{Interferer 1} (CW)		dBm	-46						
P _{Interferer 2} (Modulated	d)	dBm	-46						
BW Interferer 2	2		1.4 3 5						
F _{Interferer 1} (Offset)		MHz	-BW/2 -2.1 -BW/2 -4.5 -BW/2 -7.5 / / / / +BW/2 + 2.1 +BW/2 + 4.5 +BW/2 + 7.5						
F _{Interferer 2} (Offset)		MHz	2*FInterferer 1						
<ul> <li>NOTE 1: The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L as defined in subclause 6.2.5.</li> <li>NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.</li> </ul>									
	NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1The interfering modulated signal is 5MHz E- UTRA signal as described in Annex D for channel bandwidth ≥5MHz								

Table 7.8.1.1-1: Wide band intermodulation

For the UE which supports inter band CA configuration in Table 7.3.1-1A,  $P_{interferer1}$  and  $P_{interferer2}$  powers defined in Table 7.8.1.1-1 are increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

## 7.8.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the wide band intermodulation requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA

CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the wideband intermodulation requirements of subclause 7.8.1A do not apply.

For intra-band contiguous carrier aggegation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.8.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggreagation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.8.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq 95\%$  of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1A-1

Rx para	meter	Units	ts CA Bandwidth Class					
			В	С	D	E	F	
Pw in			REFSENS + CA Bandwidth Class specific value below					
Transmiss								
Bandwidth	-	dBm		12				
Configura CC	tion, per							
PInterferer 1		dBm			-46		1	
(CW)					-40			
PInterferer 2		dBm			-46			
(Modulate	/			_				
BWInterferer	2	MHz		5				
FInterferer 1		MHz		-F _{offset} -7.5				
(Offset)				/ + F _{offset} +7.5				
F _{Interferer 2} (Offset)		MHz	2*FInterferer 1					
· · · /	The trans	smitter sha	all be set to 4dE	B below PCMAX L,c	or PCMAX L as d	efined in subcla	use 6.2.5A.	
				is specified in Ar	-			
				ed in Annex A.5.				
NOTE 3:	The mod	ulated inte	erferer consists	of the Reference	measurement	channel specifie	ed in Annex	
			ed dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex					
NOTE			th set-up according to Annex C.3.1.					
NOTE 4:		•	odulated signal is 5MHz E-UTRA signal as described in Annex D for channel					
		h ≥5MHz.						
NOTE 5:		he F _{interferer 1} (offset) is the frequency separation of the center frequency of the carrier closest to the interferer and the center frequency of the CW interferer and F _{interferer 2} (offset) is the frequency						
	separation of the center frequency of the carrier closest to the interferer and the center frequency							
		odulated in		of the barrier of			since inequency	

Table 7.8.1A-1: Wide band intermodulation

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the wide band intermodulation requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while both downlink carriers are active. The wide band intermodulation requirements shall be supported for out-of-gap test only.

## 7.8.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.8.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

## 7.8.2 Void

# 7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

## 7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

Table 7.9.1-1: General receiver spurious emission requirements

Frequency band	Measurement bandwidth	Maximum level	Note		
30MHz ≤ f < 1GHz	100 kHz	-57 dBm			
$1$ GHz $\leq$ f $\leq$ 12.75 GHz	1 MHz	-47 dBm			
12.75 GHz $\leq$ f $\leq$ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	1		
NOTE 1: Applies only for Band 22, Band 42 and Band 43 NOTE 2: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH_RA/RB as defined in Annex C.3.1.					

# 7.10 Receiver image

## 7.10.1 Void

## 7.10.1A Minimum requirements for CA

Receiver image rejection is a measure of a receiver's ability to receive the E-UTRA signal on one component carrier while it is also configured to receive an adjacent aggregated carrier. Receiver image rejection ratio is the ratio of the wanted received power on a sub-carrier being measured to the unwanted image power received on the same sub-carrier when both sub-carriers are received with equal power at the UE antenna connector.

For intra-band contiguous carrier aggregation the UE shall fulfil the minimum requirement specified in Table 7.10.1A-1 for all values of aggregated input signal up to -22 dBm.

	CA bandwidth class						
Rx parameter	Units	Α	В	С	D	E	F
Receiver image rejection	dB			25			

## 8 Performance requirement

This clause contains performance requirements for the physical channels specified in TS 36.211 [4]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

Note: For the requirements in the following sections, similar Release 8 and 9 requirements apply for time domain measurements restriction under colliding CRS.

### 8.1 General

#### 8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

For all test cases, the SNR is defined as

$$SNR = \frac{\hat{E}_{s}^{(1)} + \hat{E}_{s}^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}}$$

where the superscript indicates the receiver antenna connector. The above SNR definition assumes that the REs are not precoded. The SNR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SNR requirement applies for the UE categories and CA capabilities given for each test.

For enhanced performance requirements type A, the SINR is defined as

$$SINR = \frac{\hat{E}_{s}^{(1)} + \hat{E}_{s}^{(2)}}{N_{oc}^{(1)'} + N_{oc}^{(2)'}}$$

where the superscript indicates the receiver antenna connector. The above SINR definition assumes that the REs are not precoded. The SINR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SINR requirement applies for the UE categories given for each test.

#### Table 8.1.1-1: Void

- 8.1.1.1 Simultaneous unicast and MBMS operations
- 8.1.1.2 Dual-antenna receiver capability in idle mode
- 8.1.2 Applicability of requirements

#### 8.1.2.1 Applicability of requirements for different channel bandwidths

In Clause 8 the test cases may be defined with different channel bandwidth to verify the same target FRC conditions with the same propagation conditions, correlation matrix and antenna configuration.

#### 8.1.2.2 Definition of CA capability

The definition with respect to CA capabilities for 2CCs is given as in Table 8.1.2.2-1.

CA Capability	CA Capability Description
CA_C	Intra-band contiguous CA
CA_A_2	Inter-band CA
CA_N	Intra-band non-contiguous CA
Note 1: CA_C corresponds to E-UTRA CA configurations and bandwidth combination sets defined in Table 5.6A.1-1. CA_A_2 corresponds to E- UTRA CA configurations and bandwidth combination sets defined in Ta 5.6A.1-2. CA_N corresponds to E-UTRA CA configurations and bandwi combination sets defined in Table 5.6A.1-3.	

Table 8.1.2.2-1: Definition of CA capability with 2DL CCs

The supported testable aggregated CA bandwidth combinations for 2CCs for each CA capability are listed in Table 8.1.2.2-2.

# Table 8.1.2.2-2: Supported testable aggregated CA bandwidth combinations for different CA capability with 2DL CCs

CA Capability	Bandwidth combination for FDD CA	Bandwidth combination for TDD CA			
CA_C	20+20MHz	20+20MHz			
CA_A_2	10+10MHz, 10+15MHz,	NA			
	10+20MHz, 15+20MHz,				
	20+20MHz				
CA_N	10+10MHz	20+20MHz			
Note 1: This table is only for information and applicability and test rules					
of CA performance requirements are specified in 8.1.2.3 and					
9.1.	1.2.				

For test cases with more than one component carrier, "Fraction of Maximum Throughput" in the performance requirement refers to the ratio of the sum of throughput values of all component carriers to the sum of the nominal maximum throughput values of all component carriers, unless otherwise stated.

# 8.1.2.3 Applicability and test rules for different CA configurations and bandwidth combination sets

For tests defined in Table 8.2.1.8.1-2, the tests are applied to CA_3A-3A defined in Table 5.6A.1-3.

The performance requirement for CA UE demodulation tests in Clause 8 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL CCs in Table 8.1.2.3-1. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set.

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order	No. of the supported bandwidth combinations to be tested from each selected CA configuration
CA tests with 2CCs in Clause 8.2.1.1.1, 8.2.1.4.3	Any one of the supported CA capabilities	Any one of the supported FDD CA configurations	10+10 MHz, 20+20 MHz	1
CA tests with 2CCs in Clause 8.2.1.3.1	Each supported CA capability	Any one of the supported FDD CA configurations in each CA capability	10+10 MHz, 20+20 MHz	1
CA tests with 2CCs in Clause 8.2.1.3.1A, 8.7.1	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported FDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in Clause 8.2.1.7.1	CA_C	Supported FDD intra-band contiguous CA configurations covering the lowest and highest operating bands	Largest aggregated CA bandwidth combinations	1
CA tests with 2CCs in Clause 8.2.2.1.1, 8.2.2.4.3	Any one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in Clause 8.2.2.3.1	Each supported CA capability	Any one of the supported TDD CA configurations in each CA capability with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in Clause 8.2.2.3.1A, 8.7.2	Any one of the supported CA capabilities with largest aggregated CA bandwidth	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1
CA tests with 2CCs in 8.2.2.7.1	CA_C	Supported TDD intra-band contiguous CA configurations covering the lowest and highest operating bands	Largest aggregated CA bandwidth combinations	1
CA tests with 2CCs in Clause 8.2.1.8.1	CA_N	CA_3A-3A defined in Table 5.6A.1-3	10+10 MHz	1

Table 8.1.2.3-1: Applicability and test rules	for CA UE demodulation tests with 2 DL CCs
-----------------------------------------------	--------------------------------------------

Note 1: The applicability and test rules are specified in this table, unless otherwise stated.

#### 8.1.2.4 Test coverage for different number of component carriers

For FDD tests specified in 8.2.1.1.1, 8.2.1.3.1, 8.2.1.4.3, and 8.7.1, if corresponding CA tests are tested, the test coverage can be considered fulfilled without executing single carrier tests.

For TDD tests specified in 8.2.2.1.1, 8.2.2.3.1, 8.2.2.4.3, and 8.7.2, if corresponding CA tests are tested, the test coverage can be considered fulfilled without executing single carrier tests.

# 8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

## 8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Parameter	Unit	Value
Inter-TTI Distance		1
Number of HARQ processes per component carrier	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths
Cyclic Prefix		Normal
Cell_ID		0
Cross carrier scheduling		Not configured

#### Table 8.2.1-1: Common Test Parameters (FDD)

### 8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

#### 8.2.1.1.1 Minimum Requirement

For single carrier the requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.1.1.1-4, with the addition of the parameters in Table 8.2.1.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

Parameter		Unit	Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18	Test 19	
Develiek eeus	$\rho_{A}$	dB	0	0	0	0	0	
Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB	0 (Note 1)					
	σ	dB	0	0	0	0	0	
$N_{\it oc}$ at ante	nna port	dBm/15kHz	-98	-98	-98	-98	-98	
Symbols for ur	used PRBs		OCNG (Note 2)					
Modula	tion		QPSK	16QAM	64QAM	16QAM	QPSK	
PDSCH transm	ission mode		1	1	1	1	1	
Note 1: $P_B =$	0.							
Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.								
Note 3: Void.								
Note 4: Void.								

#### Table 8.2.1.1.1-1: Test Parameters

					Correlation	Reference	value	
Test num.	Band- width	Reference channel	OCNG pattern	Propa- gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate gory
1	10 MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0	≥1
2	10 MHz	R.2 FDD	OP.1 FDD	ETU70	1x2 Low	70	-0.4	≥1
3	10 MHz	R.2 FDD	OP.1 FDD	ETU300	1x2 Low	70	0.0	≥1
4	10 MHz	R.2 FDD	OP.1 FDD	HST	1x2	70	-2.4	≥1
5	1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	0.0	≥1
6	10 MHz	R.3 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	≥2
0	5 MHz	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	1
7	10 MHz	R.3 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	≥2
	5 MHz	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	1
8	10 MHz	R.3 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	≥2
8	5 MHz	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	1
9	3 MHz	R.5 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	≥1
40	5 MHz	R.6 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.4	≥2
10	5 MHz	R.6-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5	1
44	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	≥2
11	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
12	10 MHz	R.7 FDD	OP.1 FDD	ETU70	1x2 Low	70	19.0	≥2
12	10 MHz	R.7-1 FDD	OP.1 FDD	ETU70	1x2 Low	70	18.1	1
13	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 High	70	19.1	≥2
13	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 High	70	17.8	1
14	15 MHz	R.8 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	≥2
14	15 MHz	R.8-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.8	1
	20 MHz	R.9 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	≥3
15	20 MHz	R.9-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.3	2
	20 MHz	R.9-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
16	3 MHz	R.0 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
17	10 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
18	20 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	≥1
19	10 MHz	R.41 FDD	OP.1 FDD	EVA5	1x2 Low	70	-5.4	≥1
Note 1 Note 2 Note 3	: Void.							

Table 8.2.1.1.1-2: Minimum performance (FRC)

Table 8.2.1.1.1-3: Test Pa	arameters for CA
----------------------------	------------------

Parameter		Unit	Test 1-2			
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
allocation	σ	dB	0			
N _{oc} a	t antenna port	dBm/15kHz	-98			
Symbols	for unused PRBs		OCNG (Note 2)			
N	lodulation		QPSK			
PDSCH t	ansmission mode		1			
Note 1: $P_B$	= 0.					
Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.						
	PUCCH format 1b with channel selection is used to feedback ACK/NACK.					
Note 4: The	same PDSCH transmis	sion mode is appli	ed to each component carrier.			

Table 8.2.1.1.1-4: Minimum	performance	(FRC)	) for CA
----------------------------	-------------	-------	----------

				Propa-	Correlation	Reference	ce value	
Test num.	Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum throughput	SNR (dB)	UE cate- gory

						(%)		
1	2x10 MHz	R.2 FDD	OP.1 FDD (Note 1)	EVA5	1x2 Low	70	-1.1	≥3 (Note 2)
2	2x20 MHz	R.42 FDD	OP.1 FDD (Note 1)	EVA5	1x2 Low	70	-1.3	≥5
Note 1	Note 1: The OCNG pattern applies for each CC.							
Note 2	Note 2: 30usec timing difference between two CCs is applied in inter-band CA case.							
Note 3	Note 3: The applicability of requirements for different CA configurations and bandwidth combination sets is defined							
	in 8.1.2.3.							

- 8.2.1.1.2 Void
- 8.2.1.1.3 Void

#### 8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Parameter		Unit	Test 1			
	$ ho_{\scriptscriptstyle A}$	dB	0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
	σ	dB	0			
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98			
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)			
PDSCH transmission	on mode		1			
Note 1: $P_B = 0$ Note 2: The MBSF	N portion of		no comprisos tho			
	The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the first slot.					
QPSK mod not inserted	The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.					

 Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

ſ	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
	number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.29 FDD	OP.3 FDD	ETU70	1x2 Low	30	2.0	≥1

#### 8.2.1.2 Transmit diversity performance

#### 8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.1-2, with the addition of the parameters in Table 8.2.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

#### Table 8.2.1.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2			
	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98			
PDSCH transmissio	on mode		2			
Note 1: $P_B = 1$ .						

Test			OCNG	Propagation	Correlation	Reference	value	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughp ut (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Medium	70	6.8	≥2
	5 MHz	R.11-2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9	1
2	10 MHz	R.10 FDD	OP.1 FDD	HST	2x2	70	-2.3	≥1

#### 8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.2-2, with the addition of the parameters in Table 8.2.1.2.2-1 and the downlink physical channel setup according Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Parameter		Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		2
Note 1: $P_B = 1$ .			

Test	st Band- Reference (		OCNG	Propagation	Correlation	Reference v	UE	
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 FDD	OP.1 FDD	EPA5	4x2 Medium	70	0.6	≥1
2	10 MHz	R.13 FDD	OP.1 FDD	ETU70	4x2 Low	70	-0.9	≥1

Table 8.2.1.2.2-2: Minimum performance Transmit Diversity (FRC)

# 8.2.1.2.3 Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.1.2.3-2, with the addition of parameters in Table 8.2.1.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N _{oc1}	dBm/15kHz	-102 (Note 2)	N/A
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A
	N _{oc3}	dBm/15kHz	-94.8 (Note 4)	N/A
$\widehat{E}_s/N_{oc2}$		dB	Reference Value in Table 8.2.1.2.3-2	6
BW _{Channel}		MHz	10	10
Subframe Configura	ation		Non-MBSFN	Non-MBSFN
Time Offset between	Cells	μs	2.5 (synchron	nous cells)
Cell Id			0	1
ABS pattern (Note	5)		N/A	11000100 11000000 11000000 11000000 11000000
RLM/RRM Measurement Pattern (Note 6)			1000000 1000000 1000000 1000000 1000000 1000000	N/A
	C _{CSI,0}		11000100 11000000 11000000 11000000 11000000	N/A
CSI Subframe Sets (Note7)	C _{CSI,1}		00111011 00111111 00111111 00111111 00111111	N/A
Number of control OFDN	l symbols		2	
PDSCH transmission	mode		2	N/A
Cyclic prefix			Normal	Normal
overlapping with the Note 3: This noise is appli ABS.	ne aggressor A ed in OFDM s	ymbols #0, #4, #7, #11 of a	a subframe overlapping	with the aggressor
Note 5:ABS pattern as deNote 6:Time-domain meaNote 7:As configured accmeasurements de	fined in [9]. surement reso ording to the ti fined in [7].	I symbols of a subframe o purce restriction pattern for me-domain measurement s the aggressor cell. The n	PCell measurements as resource restriction patt	s defined in [7] ern for CSI

Table 8.2.1.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

Note 8: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.

Note 9: SIB-1 will not be transmitted in Cell2 in this test.

Test Number	Reference Channel		OCNG Propagation Pattern Conditions (Note 1)		Correlation Matrix and Antenna	Matrix and Antenna		UE Category	
		Cell 1	Cell 2	Cell 1	Cell 2	Configurati on	Fraction of Maximum Throughput (%) (Note 5)	SNR (dB) (Note 2)	
1	R.11-4 FDD (Note 4)	OP.1 FDD	OP.1 FDD	EVA5	EVA 5	2x2 Medium	70	3.4	≥2
Note 1:					Cell2 are	statistically indep	bendent.		
Note 2:	SNR correspo	nds to $\widehat{E}$	$s/N_{oc2}$	of cell 1.					
Note 3: Note 4:	The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.								
Note 5:	The maximum	Through	put is cal	culated fi	rom the tota	al Payload in 9 s	ubframes, avera	aged ove	r 40ms.

Table 8.2.1.2.3-2: Minimum Performance Transmit Diversity (FRC)

# 8.2.1.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.1.2.3A-2, with the addition of parameters in Table 8.2.1.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Parameter		Unit	Cell 1	Cell 2	Cell 3			
i urumotor	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3			
Downlink power allocation	$\rho_{B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)			
anocation	σ	dB	0	N/A	N/A			
	N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A			
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A			
	N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A			
$\hat{E}_s/N_{oc2}$		dB	Reference Value in Table8.2.1.2.3A- 2	12	10			
BW _{Channel}		MHz	10	10	10			
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN			
Time Offset betwee	n Cells	μs	N/A	3	-1			
Frequency shift betwe	en Cells	Hz	N/A	300	-100			
Cell Id			0	126	1			
ABS pattern (Not	e 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000			
RLM/RRM Measur Subframe Pattern (f			10000000 10000000 10000000 10000000 1000000	N/A	N/A			
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A			
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A			
Number of control of symbols	OFDM		2	Note 8	Note 8			
PDSCH transmissio	n mode		2	Note 9	Note 9			
Cyclic prefix			Normal	Normal	Normal			
<ul> <li>Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS Note 5: ABS pattern as defined in [9].</li> <li>Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].</li> <li>Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.</li> <li>Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying</li> </ul>								
Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5. Note 10: The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same. Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.								

 Table 8.2.1.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

Test Number	Reference Channel	OC			Correlation Matrix and	Reference	UE Cate				
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11-4 FDD Note 4	OP.1 FDD							70	3.4	≥2
Note 1: Note 2:	The propagation The correlation							y independent. 2 and Cell 3.			
Note 3:	SNR correspo	SNR corresponds to $\hat{E}_s / N_{oc2}$ of cell 1.									
Note 4:		the servir	ng cell sul	bframe v	when the s	ubframe i	s overlap	and its associate ped with the ABS			l and

Table 8.2.1.2.3A-2: Minimum Performance Transmit Diversity (FRC)

Note 5: The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms.

# 8.2.1.2.4 Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.1.2.4-2, with the addition of parameters in Table 8.2.1.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.1.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Parameter		Unit	Cell 1	Cell 2	Cell 3			
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3			
	σ	dB	0	0	0			
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1			
$N_{oc}$ at antenna po	ort	dBm/15kHz	-98	N/A	N/A			
DIP (Note 2)		dB	N/A	-2.23	-8.06			
BW _{Channel}		MHz	10	10	10			
Cyclic Prefix			Normal	Normal	Normal			
Cell Id			0	1	2			
Number of control OFDM	symbols		2	2	2			
PDSCH transmission			2	N/A	N/A			
Interference mod	el		N/A	As specified in clause B.5.2	As specified in clause B.5.2			
Probability of occurrence of	Rank 1	%	N/A	80	80			
transmission rank in interfering cells	Rank 2	%	N/A	20	20			
Reporting interva	al	ms	5	N/A	N/A			
Reporting mode			PUCCH 1-0	N/A	N/A			
Note 1: $P_B = 1$								
Note 2: The respective received power spectral density of each interfering cell relative to $N_{oc}$ is defined by								
<ul> <li>its associated DIP value as specified in clause B.5.1.</li> <li>Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.</li> <li>Note 4: Cell 2 transmission is delayed with respect to Cell 1 by 0.33 ms and Cell 3 transmission is delayed with respect to Cell 1 by 0.67 ms.</li> </ul>								

# Table 8.2.1.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

# Table 8.2.1.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

Test Number	Reference Channel	OCI	NG Pat	tern	Propagation Conditions		Correlation Matrix and				
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.46 FDD	OP.	N/A	N/A	EV	EV	EV	2x2 Low	70	-1.1	≥1
		1			A70	A70	A70				
		FD									
		D									
Note 1:											
Note 2:	Note 2: SINR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1.										
Note 3:	Correlation ma	trix and	anten	na conf	iguratic	on para	meters	apply for each o	f Cell 1, Cell 2 a	nd Cell 3.	

### 8.2.1.3 Open-loop spatial multiplexing performance

#### 8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.1.3.1-2, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.1.3.1-4, with the addition of the parameters in Table 8.2.1.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Parameter		Unit	Test 1-2
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
PDSCH transmissio	on mode		3
Note 1: $P_B = 1$ .			
Note 2: Void			
Note 3: Void			

Table 8.2.1.3.1-1: Test Parameters for Large Delay CDD (FRC)

Table 8.2.1.3.1-2: Minimum performance Large Delay CDD (FRC)	Table 8.2.1.3.1-2: Minimum	performance Larg	ge Delay CDD	(FRC)
--------------------------------------------------------------	----------------------------	------------------	--------------	-------

				Brono	Correlation	Reference value			
Test num	Bandwidth	Reference channel	OCNG pattern	Propa- gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE category	
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.0	≥2	
2	10 MHz	R.35 FDD	OP.1 FDD	EVA200	2x2 Low	70	20.2	≥2	
3	10 MHz	R.35-4 FDD	OP.1 FDD	ETU300	2x2 Low	70	19.7	≥2	
Note 1:	Void.								
Note 2:	Test 1 may not be executed for UE-s for which Test 1 or 2 in Table 8.2.1.3.1-4 is applicable.								

Table 8.2.1.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA

Parameter		Unit	Test 1-3			
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98			
PDSCH transmission	on mode		3			
Note 1: $P_B = 1$ .						
feedback /	feedback ACK/NACK.					
	component carrier.					

				Propa-	Correlation	Reference				
Test num.	Band- width	Reference channel	OCNG pattern	gation condi- tion	matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	UE cate- gory		
1	2x10 MHz	R.11 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.7	≥3		
2	2x20 MHz	R.30 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.2	≥5		
Note 1:	The OCNC	The OCNG pattern applies for each CC.								
Note 2:	Void.									
Note 3:	The applic in 8.1.2.3.	The applicability of requirements for different CA configurations and bandwidth combination sets is defined								

### 8.2.1.3.1A Soft buffer management test

For CA the requirements are specified in Table 8.2.1.3.1A-2, with the addition of the parameters in Table 8.2.1.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.2.1.3.1A-3.

Parameter		Unit	Test 1-7			
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98			
PDSCH transmissi	on mode		3			
Note 1: $P_B = 1$ .	Note 1: $P_{\rm R} = 1$ .					
selection i	For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.					
	For CA test cases, the same PDSCH transmission mode is applied to each component carrier.					

#### Table 8.2.1.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

#### Table 8.2.1.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

				Propa-		Referenc	e value	
Test num	Bandwi dth	Reference channel	OCNG pattern	gation condi- tion	Correlation matrix and antenna config.	Fraction of maximum Throughput (%)	SNR (dB)	
1	2x20 MHz	R.30 FDD	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.2	
2	15MHz +	R.35-2 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.1	
	10MHz	R.35-3 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAS 2x2 LOW	70	15.1		
3	20MHz +	R.30 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA70	2x2 Low	70	13.5	
5	10MHz	R.11 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAID	ZXZ LOW	70	13.5	
4	20MHz +	R.30 FDD for 20MHz CC	20MHz CC (Note 1)	EVA70	2x2 Low	70	13.5	
4	15MHz	R.30-1 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVATU	ZXZ LOW	70	13.5	
5	2x20 MHz	R.35-1 FDD	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.8	
6	20MHz +	R.35-1 FDD for 20MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.9	
0	10MHz	R.35-3 FDD for 10MHz CC	OP.1 FDD (Note 1)	EVAS	ZXZ LOW	70	15.9	
7	20MHz +	R.35-1 FDD for 20MHz CC	OP.1 FDD (Note 1)		2×2 L ovy	70	15.9	
/	15MHz	R.35-2 FDD for 15MHz CC	OP.1 FDD (Note 1)	EVA5	2x2 Low	70	15.9	
Note 1: Note 2: Note 3:	Note 1:For CA test cases, the OCNG pattern applies for each CC.Note 2:For Test 2, 3, 4, 6, 7 the Fraction of maximum Throughput applies to each CC.							

LIE optogony	Bandwidth combination with maximum aggregated bandwidth (Note 1)					
UE category	2x20MHz	15MHz+10MHz	20MHz+10MHz	20MHz+15MHz		
3	1	2	3	4		
4 5		N/A	6	7		
Note 1: Maximum over all supported CA configurations and bandwidth combination sets according to Table 5.6A.1-						
1and Table	e 5.6A.1-2.	-		-		

Table 8.2.1.3.1A-3: Test points for soft buffer management tests for CA

#### 8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.2-2, with the addition of the parameters in Table 8.2.1.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Parameter		Unit	Test 1
Develielenewer	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_B = 1$			

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 FDD	OP.1 FDD	EVA70	4x2 Low	70	14.3	≥2

# 8.2.1.3.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.3-2, with the addition of parameters in Table 8.2.1.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.1.3.3-4, with the addition of parameters in Table 8.2.1.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.1.3.3-1 and 8.2.1.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Parameter		Unit	Cell 1	Cell 2	
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	
	σ	dB	0	N/A	
	N _{oc1}	dBm/15kHz	-102 (Note 2)	N/A	
$N_{oc}$ at antenna port	$N_{oc2}$	dBm/15kHz	-98 (Note 3)	N/A	
	$N_{oc3}$	dBm/15kHz	-94.8 (Note 4)	N/A	
$\widehat{E}_{s}/N_{oc2}$		dB	Reference Value in Table 8.2.1.3.3-2	6	
BW _{Channel}		MHz	10	10	
Subframe Configura	ation		Non-MBSFN	Non-MBSFN	
Cell Id			0	1	
Time Offset between	Cells	μs	2.5 (synchror	nous cells)	
ABS pattern (Note	5)		N/A	11000100, 11000000, 11000000, 11000000, 11000000	
RLM/RRM Measurement Subframe Pattern(Note 6)			10000000 10000000 10000000 10000000 1000000	N/A	
CSI Subframe Sets (Note	C _{CSI,0}		11000100 11000000 11000000 11000000 11000000	N/A	
7)	C _{CSI,1}		00111011 00111111 00111111 00111111 00111111	N/A	
Number of control OFDN			2		
PDSCH transmission	mode		3 Normal	N/A	
Cyclic prefixNote 1: $P_B = 1$ .		<u> </u>	Normal	Normal	
Note 2:This noise is appli overlapping with tNote 3:This noise is appli aggressor ABS.Note 4:This noise is appli Note 5:ABS pattern as de Note 6:Time-domain meat Mote 7:Note 7:As configured acc measurements de	he aggressor A red in OFDM sy red in all OFDM offined in [9]. asurement resc ording to the ti fined in [7]. ng cell. Cell 2 is	ymbols #1, #2, #3, #5, #6, ABS. ymbols #0, #4, #7, #11 of A symbols of a subframe of purce restriction pattern fo me-domain measurement s the aggressor cell. The r	a subframe overlapping overlapping with aggress r PCell measurements a t resource restriction pa	y with the sor non-ABS as defined in [7]. ttern for CSI	
Note 9: SIB-1 will not be transmitted in Cell2 in this test.					

### Table 8.2.1.3.3-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

Test Reference Number Channel		OCNG Pattern		Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference Value		UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) (Note 5)	SNR (dB) (Note 2)	
1	R.11 FDD (Note 4)	OP.1 FDD	OP.1 FDD	EVA 5	EVA 5	2x2 Low	70	13.3	≥2
Note 1:	The propagati	on condit	ions for C	ell 1 and	Cell2 are	statistically indepe	endent.		
Note 2:	SNR correspo	onds to $\widehat{E}$	$N_{oc2}$	of cell 1.					
Note 3: Note 4:	Cell 1 Referer are transmitte	nce chann d in the s	el is mod erving cel	ified: PDS	SCH other e when th	pply for Cell 1 and than SIB1/paging subframe is over definition of the ref	and its associa rlapped with the	ABS sub	
Note 5:						al Payload in 9 su			10ms.

Table 8.2.1.3.3-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3
	σ	dB	0	N/A
	N _{oc1}	dBm/15kHz	-102 (Note 2)	N/A
$N_{oc}$ at antenna port	$N_{oc2}$	dBm/15kHz	-98 (Note 3)	N/A
	$N_{oc3}$	dBm/15kHz	-94.8 (Note 4)	N/A
$\widehat{E}_{s}/N_{oc2}$		dB	Reference Value in Table 8.2.1.3.3-4	6
BW _{Channel}		MHz	10	10
Subframe Configura	ation		Non-MBSFN	MBSFN
Cell Id			0	126
Time Offset between	Cells	μs	2.5 (synchror	nous cells)
ABS pattern (Note 5)			N/A	0001000000 0100000010 0000001000 0000000
RLM/RRM Measurement Pattern (Note 6			000100000 010000010 000001000 000000000	N/A
CSI Subframe Sets (Note	C _{CSI,0}		000100000 010000010 000001000 000000000	N/A
7)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A
MBSFN Subframe Allocation (Note 10)			N/A	001000 100001 000100 000000
Number of control OFDN			2	
PDSCH transmission Cyclic prefix	mode		3 Normal	N/A Normal
subframe overlap Note 3: This noise is appl Note 4: This noise is appl Note 5: ABS pattern as de MBSFN ABS subt Note 6: Time-domain mea Note 7: As configured acc measurements de Note 8: Cell 1 is the servit Cell2 is the same Note 9: SIB-1 will not be t	ping with the ag ied in OFDM sy ied in all OFDM afined in [9]. The frames. asurement resc cording to the ti offined in [7]. Ing cell. Cell 2 is ransmitted in C	ymbol #0 of a subframe of I symbols of a subframe of the 4 th , 12 th , 19 th and 27 th s purce restriction pattern fo me-domain measurement is the aggressor cell. The i	verlapping with the aggress overlapping with aggress subframes indicated by A or PCell measurements a t resource restriction par number of the CRS port	ressor ABS. sor non-ABS. ABS pattern are as defined in [7]. ttern for CSI s in Cell1 and
subframe allocation Note 11: The maximum nu	on. mber of uplink	HARQ transmission is lim ptected by MBSFN ABS in	nited to 2 so that each P	

Table 8.2.1.3.3-3: Test Parameters for Large Delay CDD (FRC) – MBSFN ABS

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 2)	Correlation Matrix and Antenna	Reference Value		UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) (Note 5)	SNR (dB) (Note 2)	
1	R.11 FDD (Note 4)	OP.1 FDD	OP.1 FDD	EVA 5	EVA 5	2x2 Low	70	12.0	≥2
Note 1:					Cell2 are	statistically indepe	endent.	•	•
Note 2:	SNR correspo	onds to $\widehat{E}$	$_{s}/N_{oc2}$ c	of cell 1.					
Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.									
Note 5:	The maximum	n Through	put is calo	culated fro	om the tota	al Payload in 4 su	bframes, averag	ed over 4	l0ms.

 Table 8.2.1.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

# 8.2.1.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.4-2, with the addition of parameters in Table 8.2.1.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 ad Cell3.

Parameter		Unit	Cell 1	Cell 2	Cell 3			
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3			
Downlink power allocation	$\rho_{B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)			
anocation	σ	dB	0	N/A	N/A			
	N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A			
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A			
	N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A			
$\hat{E}_s/N_{oc2}$		dB	Reference Value in Table 8.2.1.3.4-2	Reference Value in Table 8.2.1.3.4-2	Reference Value in Table 8.2.1.3.4-2			
BW _{Channel}		MHz	10	10	10			
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN			
Time Offset betwee	n Cells	μs	N/A	3	-1			
Frequency shift betwe	en Cells	Hz	N/A	300	-100			
Cell Id			0	1	126			
ABS pattern (No	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000			
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000 1000000	N/A	N/A			
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A			
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A			
Number of control symbols	OFDM		2	Note 8	Note 8			
PDSCH transmissio	n mode		3	Note 9	Note 9			
Cyclic prefix			Normal	Normal	Normal			
<ul> <li>Note 1: P_B = 1.</li> <li>Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS Note 5: ABS pattern as defined in [9].</li> <li>Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].</li> <li>Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].</li> </ul>								
indicated by Note 9: Downlink ph	"0" of ABS	pattern.	s not available for ABS 2 and Cell 3 in accorda					
			Cell 2 and Cell 3 is the	same.				

### Table 8.2.1.3.4-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

Note 11: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

ETSI

Test Numb	Refer ence	$\widehat{E}_s/$	N _{oc2}	00	NG Patt	ern		opagatio		Correlatio n Matrix	Reference	e Value	UE Cate
er	Chan nel	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Antenna Configurat ion (Note 2)	Fraction of Maximu m Through put (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 FDD Note 4	9	7	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	70	13.9	≥2
2	R.35 FDD Note 4	9	1	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	70	22.6	≥2
Note 1:	•								•	ependent.			
Note 2: Note 3:					$\frac{1}{2}$ of cell 1	•	n apply f	or Cell 1,	Cell 2 ar	nd Cell 3.			
Note 4:	4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.												
Note 5:	The m	aximun	n Throu	ighput is	calculate	d from th	e total Pa	ayload in	9 subfrai	mes, averaged	over 40ms.		

### Table 8.2.1.3.4-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

# 8.2.1.4 Closed-loop spatial multiplexing performance

## 8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Parameter		Unit	Test 1	Test 2			
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)			
	σ	dB	0	0			
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98	-98			
Precoding granul	arity	PRB	6	50			
PMI delay (Note	e 2)	ms	8	8			
Reporting inter	val	ms	1	1			
Reporting mod	le		PUSCH 1-2	PUSCH 3-1			
CodeBookSubsetR on bitmap	estricti		001111	001111			
PDSCH transmis mode	sion		4	4			
Note 1: $P_{R} = 1$ .							
<ul> <li>Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> </ul>							

Table 8.2.1.4.1-1: Test Parameters for S	ngle-Layer Spatial Multiplexing (FRC)
------------------------------------------	---------------------------------------

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.10 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.5	≥1
2	10 MHz	R.10 FDD	OP.1 FDD	EPA5	2x2 High	70	-2.3	≥1

 Table 8.2.1.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

#### 8.2.1.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1A-2, with the addition of the parameters in Table 8.2.1.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Parameter		Unit	Test 1			
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-6			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)			
	σ	dB	3			
$N_{_{oc}}$ at antenna p	ort	dBm/15kHz	-98			
Precoding granula	arity	PRB	6			
PMI delay (Note	2)	ms	8			
Reporting interv	al	ms	1			
Reporting mode	e		PUSCH 1-2			
CodeBookSubsetRe on bitmap	estricti		00000000000000000 00000000000000000 0000			
PDSCH transmiss	sion		4			
mode						
Note 1: $P_{B} = 1$ .						
Note 2: If the UE reports in an available uplink reporting instanc at subrame SF#n based on PMI estimation at a downlin SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).						

Table 8.2.1.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 FDD	OP.1 FDD	EVA5	4x2 Low	70	-3.2	≥1

### 8.2.1.4.1B Enhanced Performance Requirement Type A - Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.1.4.1B-2, with the addition of the parameters in Table 8.2.1.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rankone performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined in clause B.5.3. In Table 8.2.1.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
$N_{oc}$ at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	l symbols		2	2	2
PDSCH transmission			6	N/A	N/A
Interference mod			N/A	As specified in clause B.5.3	As specified in clause B.5.3
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Precoding granula	rity	PRB	50	6	6
PMI delay (Note		ms	8	N/A	N/A
Reporting interva	al	ms	5	N/A	N/A
Reporting mode			PUCCH 1-1	N/A	N/A
CodeBookSubsetRestrict	on bitmap		001111	N/A	N/A
Note 1: $P_{R} = 1$					
Note 2: The respective red	ceived power	spectral density of	of each interfering	cell relative to $N_a$	$_{c}$ is defined by
its associated DIP Note 3: Cell 1 is the servir Note 4: If the UE reports in at a downlink SF r before SF#(n+4). Note 5: All cells are time-s	ng cell. Cell 2, n an available not later than s	3 are the interferuplink reporting	ring cells. instance at subrar		

# Table 8.2.1.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

# Table 8.2.1.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Test Number	Reference Channel	OCI	NG Pat	tern		opagat onditio		Correlation Matrix and	Reference	Value UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.47 FDD	OP. 1 FD D	N/A	N/A	EV A5	EV A5	EV A5	2x2 Low	70	0.8	≥1
Note 1:								e statistically inc	dependent.		
Note 2:	Note 2: SINR corresponds to $\hat{E}_s / N_{oc}$ of Cell 1 as defined in clause 8.1.1.										
Note 3:	Correlation ma	trix and	anten	na conf	iguratic	on para	meters	apply for each o	f Cell 1, Cell 2 a	nd Cell 3.	

# 8.2.1.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.1.4.1C-2, with the addition of parameters in Table 8.2.1.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.1.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)
anocation	σ	dB	0	N/A	N/A
	N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A
$N_{oc}$ at antenna port	$N_{oc2}$	dBm/15kHz	-98 (Note 3)	N/A	N/A
	N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
$\widehat{E}_{s}/N_{oc2}$		dB	Reference Value in Table 8.2.1.4.1C-2	12	10
BW _{Channel}		MHz	10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift betwe	en Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (Note 5)			N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control of symbols	OFDM		2	Note 8	Note 8
PDSCH transmission mode			6	Note 9	Note 9
Precoding granularity		PRB	50	N/A	N/A
PMI delay (Note		ms	8	N/A	N/A
Reporting inter		ms	1	N/A	N/A
Peporting mod			PUSCH 3-1	N/A	N/A
CodeBookSubsetRe bitmap			1111	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

Table 8.2.1.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) – Non-MBSFN ABS

Note 1:	$P_B = 1$ .
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe
	overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the
	aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 5:	ABS pattern as defined in [9].
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined in
	[7]
Note 7:	As configured according to the time-domain measurement resource restriction pattern for CSI
	measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe
	indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying
	OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI
	estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at
	the eNB downlink before SF#(n+4).
Note 11:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 12:	

#### Table 8.2.1.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)- Non-MBSFN ABS

Test Number	Reference Channel	00	NG Patt	G Pattern Propagation Conditions (Note1)			Correlation Reference Value Matrix and			UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 FDD	OP.1	OP.1	OP.1	EPA5	EPA5	EPA5	2x2 High	70	6.1	≥2
	Note 4	FDD	FDD	FDD							
Note 1:								ally independen			
Note 2:					iguration	apply for	Cell 1, C	cell 2 and Cell 3.			
Note 3:	SNR correspo	onds to $\hat{I}$	$\hat{E}_s / N_{oc2}$ of	of cell 1.							
Note 4:	Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.										
Note 5:	The maximun	n Throug	hput is ca	alculated	from the	total Pay	load in 9	subframes, ave	raged over 40ms	S.	

### 8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.2-2, with the addition of the parameters in Table 8.2.1.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Parameter		Unit	Test 1-2			
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
	σ	dB	0			
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98			
Precoding granu	Ilarity	PRB	50			
PMI delay (Not	e 2)	ms	8			
Reporting inte	rval	ms	1			
Reporting mo	de		PUSCH 3-1			
CodeBookSubsetRo bitmap	estriction		110000			
PDSCH transmission	on mode		4			
Note 1: $P_B = 1$ .						
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).						

Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.35 FDD	OP.1 FDD	EPA5	2x2 Low	70	18.9	≥2
2	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.3	≥2

### 8.2.1.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.1.4.3-2, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.1.4.3-4, with the addition of the parameters in Table 8.2.1.4.3-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3

$N_{\scriptscriptstyle oc}$ at antenna port	dBm/15kHz	-98			
Precoding granularity	PRB	6			
PMI delay (Note 2)	ms	8			
Reporting interval	ms	1			
Reporting mode		PUSCH 1-2			
CodeBookSubsetRestrictio		000000000000000000000000000000000000000			
n bitmap		000000111111111111111100			
		0000000000000			
PDSCH transmission mode		4			
Note 1: $P_B = 1$ .					
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).					
Note 3: Void.					
Note 4: Void.					
Note 5: Void.					

Table 8.2.1.4.3-2: Minimum pe	erformance Multi-Layer	Spatial Multiplexing (FRC)
-------------------------------	------------------------	----------------------------

				Propa-	Correlation	Reference v		
Test num.	Band- width	Referencechannel	OCNG gation pattern condi- tion		matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	10 MHz	R.36 FDD	OP.1 FDD	EPA5	4x2 Low	70	14.7	≥2
Note 1	: Void							

# Table 8.2.1.4.3-3: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

Parameter		Unit	Test 1	Test 2			
Deverliek zewer	$ ho_{\scriptscriptstyle A}$	dB	-6	-6			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)	-6 (Note 1)			
	σ	dB	3	3			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98	-98			
Precoding granu	Ilarity	PRB	6	8			
PMI delay (Not	e 2)	ms	8	8			
Reporting inter	rval	ms	1	1			
Reporting mo	de		PUSCH 1-2	PUSCH 1-2			
CodeBookSubsetRe	estriction		000000000000000000	000000000000000000			
bitmap			000000000000000000	0000000000000000000			
			0000001111111	0000001111111			
			1111111110000	1111111110000			
			000000000000	000000000000			
CSI request field (	Note 3)		'1	0'			
PDSCH transmission	on mode		4				
Note 1: $P_B = 1$ .							
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).							
Note 3: Multiple Collayers.	Multiple CC-s under test are configured as the 1 st set of serving cells by higher						
Note 5: The same	PDSCH tra	insmission mode is	applied to each con	nponent carrier.			

				Bropo	Propa- Correlation	Reference		
Test num.	Band- width	Referencechannel	OCNG pattern	Propa- gation condi- tion	matrix and antenna config.	Fraction of maximum throughput (%)	SNR (dB)	UE cate- gory
1	2x10 MHz	R.14 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.8	≥3
2	2x20 MHz	R.14-3 FDD	OP.1 FDD (Note 1)	EVA5	4x2 Low	70	10.9	≥5
Note 1:	Note 1: The OCNG pattern applies for each CC.							
Note 2								
	in 8.1.2	2.3.						

Table 8.2.1.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA

#### 8.2.1.5 MU-MIMO

# 8.2.1.6 [Control channel performance: D-BCH and PCH]

# 8.2.1.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjancent carrier aggregation UE to demodulate the signal transmitted by the PCell in the presence of a stronger SCell signal on an adjacent frequency. Throughput is measured on the PCell only.

#### 8.2.1.7.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.1.7.1-2, with the addition of the parameters in Table 8.2.1.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Paramete	er	Unit	Test 1	
Develiates	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	
	σ	dB	0	
$\hat{E}_{s}$ – PCell at anten PCell	na port of	dBm/15kHz	-85	
$\hat{E}_{s}$ _SCell at anten Scell	na port of	dBm/15kHz	-79	
$N_{oc}$ at antenn	a port	dBm/15kHz	Off (Note 2)	
Symbols for unus	ed PRBs		OCNG (Note 3)	
Modulatio	n		64 QAM	
Maximum number transmissio			1	
Redundancy versi sequence	•		{0}	
PDSCH transmiss of PCell			1	
PDSCH tramsmiss of SCell	sion mode		3	
Note 1: $P_{B} = 0$ .				
Note 2:No external noise sources are appliedNote 3:These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated. pseudo random data, which is QPSK modulated.Note 4:Void.				

Table 8.2.1.7.1-1: Test Parameters for CA

Table 8.2.1.7.1-2: Minimum	performance	(FRC) for CA
----------------------------	-------------	--------------

Test Number	Band- width		rence nnel	OCNG	OCNG Pattern		Pattern Propagation Conditions		Correlation Matrix and Antenna		Reference value Fraction of Maximum Throughput (%)		UE Category
		PCell	SCell	PCell	SCell	PCell	SCell	PCell	SCell	PCell	SCell		
1	2x20M Hz	R.49 FDD	NA	OP.1 FDD	OP.5 FDD	AWGN	Clause B.1	1x2	2x2	85%	NA	≥5	
Note 1: Note 2:	the cor	CNG pattern for PCell is used to fill the control channel. The OCNG pattern for SCell is used to fill ntrol channel and PDSCH. pplicability of requirements for different CA configurations and bandwidth combination sets is defined											

# 8.2.1.8 Intra-band non-contiguous carrier aggregation with timing offset

The requirements in this section verify the ability of an intraband non-contiguous carrier aggregation UE to demodulate the signal transmitted by the PCell and SCell in the presence of timing offset between the cells. Throughput is measured on both cells.

### 8.2.1.8.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.1.8.1-2, with the addition of the parameters in Table 8.2.1.8.1-1 and the downlink physical channel setup according to Annex C.3.2.

Paramete	er	Unit	Test 1		
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)		
	σ	dB	0		
$N_{\scriptscriptstyle oc}$ at antenn	a port	dBm/15kHz	-98		
Modulatio	n		64 QAM		
Maximum number transmissio			4		
Redundancy versions sequence	-		{0,0,1,2}		
PDSCH transmiss of PCell	ion mode		3		
PDSCH tramsmiss of SCell	sion mode		3		
Note 1: $P_B = 1$ .	$P_{\rm B} = 1$ .				
Note 2: The OC	The OCNG pattern is used to fill unused control channel and PDSCH.				

<b>T</b>		<b>-</b>	
Table 8.2.1.8	.1-1: Test	Parameters	tor CA

Table 8.2.1.8.1-2: Minimum performance (FRC) for CA

Test Number	Cell	Band- width	Reference Channel	OCNG Pattern	Propagati on	Correlati on Matrix	Refence va	alue	Timing relative to	UE Catego	
					Conditions	and Antenna	Fraction of Maximum Throughput (%)	SNR (dB)	PCell (µs)	ry	
1	PCell	10MH z	R.YY FDD	OP.1	EPA200	2x2 Low	70	[21.1 5]	N/A	≥3	
	SCell	10MH z	R.35-3 FDD	FDD	EPA200	2x2 Low	60	[15.1 8]	-30.26		

NOTE: The EPA200 propagation channels applied to PCell and SCell are statistically independent.

# 8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Parameter	Unit	Value
Uplink downlink configuration (Note 1)		1
Special subframe configuration (Note 2)		4
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes per component carrier	Processes	7
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths
Cross carrier scheduling		Not configured
	Table 4.2-2 in TS 36. Table 4.2-1 in TS 36.	

#### Table 8.2.2-1: Common Test Parameters (TDD)

# 8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.4 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

### 8.2.2.1.1 Minimum Requirement

For single carrier the requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.2.1.1-4, with the addition of the parameters in Table 8.2.2.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

Paramete	r	Unit	Test 1- 5	Test 6-8	Test 9- 15	Test 16- 18	Test 19
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0
power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)

#### Table 8.2.2.1.1-1: Test Parameters

	σ	dB	0	0	0	0	0	
$N_{oc}$ at ante	enna	dBm/15kHz	-98	-98	-98	-98	-98	
port	,		0010	0010	0010	00110	00110	
Symbols			OCNG	OCNG	OCNG	OCNG	OCNG	
unused Pl	RBs		(Note 2)	(Note 2)	(Note 2)	(Note 2)	(Note 2)	
Modulati	on		QPSK	16QAM	64QAM	16QAM	QPSK	
ACK/NA	CK		Multiplexing	Multiplexing	Multiplexing	Multiplexing	Multiplexing	
feedback n	node							
PDSCH	1		1	1	1	1	1	
transmission	mode							
Note 1: P	=0							
Note 2: Th	ese phy	sical resource	blocks are ass	igned to an arl	oitrary number	of virtual UEs v	with one	
PI	PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated							
	pseudo random data, which is QPSK modulated.							
	oid.							
Note 4: Vo	oid.							

Table 8.2.2.1.1-2:	Minimum	performance	(FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2	≥1
2	10 MHz	R.2 TDD	OP.1 TDD	ETU70	1x2 Low	70	-0.6	≥1
3	10 MHz	R.2 TDD	OP.1 TDD	ETU300	1x2 Low	70	-0.2	≥1
4	10 MHz	R.2 TDD	OP.1 TDD	HST	1x2	70	-2.6	≥1
5	1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	0.0	≥1
6	10 MHz	R.3 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	≥2
	5 MHz	R.3-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	1
7	10 MHz	R.3 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	≥2
	5 MHz	R.3-1 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	1
8	10 MHz	R.3 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	≥2
	5 MHz	R.3-1 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	1
9	3 MHz	R.5 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥1
10	5 MHz	R.6 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥2
	5 MHz	R.6-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1
11	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	≥2
	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1
12	10 MHz	R.7 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	≥2
	10 MHz	R.7-1 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	1
13	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	≥2
	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	1

### ETSI

14	15 MHz	R.8 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	≥2
	15 MHz	R.8-1 TDD	OP.1	EVA5	1x2 Low	70	17.8	1
			TDD					
15	20 MHz	R.9 TDD	OP.1	EVA5	1x2 Low	70	17.7	≥3
			TDD					
	20 MHz	R.9-2 TDD	OP.1	EVA5	1x2 Low	70	17.7	2
			TDD					_
	20 MHz	R.9-1 TDD	OP.1	EVA5	1x2 Low	70	17.7	1
	20 10112	14.5 1 100	TDD	LVNO		70		I
16	3 MHz	R.0 TDD	OP.1	ETU70	1x2 Low	30	2.1	≥1
			TDD					
17	10 MHz	R.1 TDD	OP.1	ETU70	1x2 Low	30	2.0	≥1
			TDD					
18	20 MHz	R.1 TDD	OP.1	ETU70	1x2 Low	30	2.1	≥1
			TDD					
19	10 MHz	R.41 TDD	OP.1	EVA5	1x2 Low	70	-5.3	≥1
			TDD					
Note 1:	Void	•		•		-		

# Table 8.2.2.1.1-3: Test Parameters for CA

	Parameter	Unit	Test 1					
Downlink power	$\rho_{\scriptscriptstyle A}$	dB	0					
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)					
	σ	dB	0					
N	$T_{oc}$ at antenna port	dBm/15kHz	-98					
Symb	ools for unused PRBs		OCNG (Note 2)					
	Modulation		QPSK					
ACK/N	NACK feedback mode		PUCCH format 1b with channel selection					
PDSC	H transmission mode		1					
Note 1:	$P_B = 0$							
Note 2:	These physical resource blo	ocks are assigned	ed to an arbitrary number of virtual UEs with one					
	PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated							
	pseudo random data, which	is QPSK modu	lated.					
Note 3:	The same PDSCH transmis	sion mode is ap	pplied to each component carrier.					

# Table 8.2.2.1.1-4: Minimum performance (FRC) for CA

	Bandwidth	Reference Channel	OCNG Pattern		Correlation	Reference value				
Test number				Propagation Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	UE Category		
1	2x20MHz	R.42 TDD	OP.1 TDD (Note 1)	EVA5	1x2 Low	70	-1.2	≥5		
Note 1:	•	attern applies								
Note 2:	The applicab	he applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.								

- 8.2.2.1.2 Void
- 8.2.2.1.3 Void

8.2.2.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Parameter		Unit	Test 1			
	$ ho_{\scriptscriptstyle A}$	dB	0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
	σ	dB	0			
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98			
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)			
ACK/NACK feedbac	ck mode		Multiplexing			
PDSCH transmissio	on mode		1			
Note 1: $P_B = 0$ Note 2:The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the first slot.Note 3:The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN						
		ulated MBSFN data				

### Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	erence OCNG	Propagation	Correlation	Reference	UE	
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 TDD	OP.3 TDD	ETU70	1x2 Low	30	2.0	≥1

# 8.2.2.2 Transmit diversity performance

### 8.2.2.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.1-2, with the addition of the parameters in Table 8.2.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Parameter		Unit	Test 1-2				
	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98				
ACK/NACK feedba	ck mode		Multiplexing				
PDSCH transmission	on mode		2				
Note 1: $P_B = 1$							

 Table 8.2.2.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Test	Bandw	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	idth	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz	R.11 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	≥2	
I	5 MHz	R.11-2 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	1	
2	10 MHz	R.10 TDD	OP.1 TDD	HST	2x2	70	-2.3	≥1	

# 8.2.2.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.2-2, with the addition of the parameters in Table 8.2.2.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.2.2.1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2				
	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{oc}$ at antenna	port	dBm/15kHz	-98				
ACK/NACK feedba	ck mode		Multiplexing				
PDSCH transmission	on mode		2				
Note 1: $P_B = 1$							

Table 8.2.2.2.2-2: Minimum performance	Transmit Diversity (FRC)
----------------------------------------	--------------------------

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	1.4 MHz	R.12 TDD	OP.1 TDD	EPA5	4x2 Medium	70	0.2	≥1	
2	10 MHz	R.13 TDD	OP.1 TDD	ETU70	4x2 Low	70	-0.5	≥1	

# 8.2.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.2.3-2, with the addition of parameters in Table 8.2.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

	Parameter		Unit	Cell 1	Cell 2
	downlink confi			1	1
Special	subframe con	figuration		4	4
		$ ho_{\scriptscriptstyle A}$	dB	-3	-3
	nk power cation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
		σ	dB	0	N/A
		N _{oc1}	dBm/15kHz	-102 (Note 2)	N/A
$N_{oc}$ at an	ntenna port	$N_{oc2}$	dBm/15kHz	-98 (Note 3)	N/A
		$N_{oc3}$	dBm/15kHz	-94.8 (Note 4)	N/A
	$\widehat{E}_{s}/N_{oc2}$		dB	Reference Value in Table 8.2.2.2.3-2	6
	BW _{Channel}		MHz	10	10
Sub	frame Configu	ration		Non-MBSFN	Non-MBSFN
Time	Offset betwee	n Cells	μs	2.5 (synch	ronous cells)
	Cell Id			0	1
AE	3S pattern (No	te 5)		N/A	0000010001 0000000001
	/ Measuremer Pattern (Note			0000000001 0000000001	N/A
CSI Subf	frame Sets	C _{CSI,0}		0000010001 0000000001	N/A
	ote 7)	C _{CSI,1}		1100101000 1100111000	N/A
Number	of control OFD	M symbols		2	
	NACK feedbac			Multiplexing	
	CH transmissio			2	N/A
	Cyclic prefix			Normal	Normal
Note 2: 1 Note 3: 1	subframe overl This noise is a	apping with the oplied in OFD	И symbols #1, #2, #3, #5, e aggressor ABS. И symbols #0, #4, #7, #1 ⁻		
Note 4:	he aggressor / This noise is ap non-ABS.		DM symbols of a subfrar	ne overlapping v	vith aggressor
Note 6:	ABS pattern as Fime-domain n defined in [7].		esource restriction patter	n for PCell meas	urements as
Note 7:			e time-domain measuren	nent resource re	striction pattern
Note 8: 0		rving cell. Cell	2 is the aggressor cell. T	he number of the	e CRS ports in
			in Cell2 in this test.		

Table 8.2.2.3-1: Test Parameters for Transmit divers	ity Performance (FRC)
------------------------------------------------------	-----------------------

Test Number	Reference Channel	eene anon eegan		itions	Correlation Matrix and Antenna	Reference Value		UE Category	
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) (Note 5)	SNR (dB) (Note 2)	
1	R.11-4 TDD (Note 4)	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Medium	70	3.8	≥2
Note 1:	The propagat	ion condit	ions for C	ell 1 and 0	Cell2 are	statistically indepe	endent.		•
Note 2:	SNR correspo	onds to $\widehat{ ilde{E}}$	$\hat{Z}_s / N_{oc2}$ of	of cell 1.					
Note 3: Note 4:	The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.								
Note 5:	The maximur	n Through	put is cal	culated fro	om the tota	al Payload in 2 su	bframes, averag	ged over :	20ms.

Table 8.2.2.3-2: Minimum Performance Transmit Diversity (FRC)

# 8.2.2.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.2.3A-2, with the addition of parameters in Table 8.2.2.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Parameter			Unit	Cell 1	Cell 2	Cell 3			
Uplink downlink configuration				1	1	1			
Special subframe	e con	figuration		4	4	4			
	$\rho_A$		dB	-3	-3	-3			
Downlink powe allocation	Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)			
allocation		σ	dB	0	N/A	N/A			
		N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A			
N _{oc} at antenna p	οπ	$N_{oc2}$	dBm/15kHz	-98 (Note 3)	N/A	N/A			
		N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A			
$\widehat{E}_s/N$	oc2		dB	Reference Value in Table 8.2.2.2.3A-2	12	10			
BW _{Cha}	annel		MHz	10	10	10			
Subframe Co	nfigu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN			
Time Offset be	twee	n Cells	μs	N/A	3	-1			
Frequency shift	betwe	en Cells	Hz	N/A	300	-100			
Cell	Cell Id			0	126	1			
ABS patterr	ABS pattern (Note 5)			N/A	0000000001 0000000001	0000000001 0000000001			
	RLM/RRM Measurement Subframe Pattern (Note 6)			0000000001 0000000001	N/A	N/A			
CSI Subframe S		C _{CSI,0}		000000001 0000000001	N/A	N/A			
(Note7)		C _{CSI,1}		1100111000 1100111000	N/A	N/A			
Number of con symb		OFDM		2	Note 8	Note 8			
ACK/NACK fee		k mode		Multiplexing	N/A	N/A			
PDSCH transm				2	Note 9	Note 9			
Cyclic p				Normal	Normal	Normal			
Note 1: $P_B = 1$					•				
Note 2: This no subfrar	ise is ne ov	verlapping v s applied in	vith the aggresso	#1, #2, #3, #5, #6, # or ABS. #0, #4, #7, #11 of a					
Note 4: This no	ise is	applied in		ols of a subframe ov	verlapping with age	gressor non-ABS			
		as defined		striction nottorn for		nte ac defined in			
	Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in								
Note 7: As con	<ul> <li>[7]</li> <li>Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].</li> </ul>								
Note 8: The nu	mber	of control (	OFDM symbols is	s not available for A	BS and is 2 for the	e subframe			
Note 9: Downli	nk ph			2 and Cell 3 in acc	ordance with Anne	ex C.3.3 applying			
Note 10: The nu	mber	of the CRS	S ports in Cell 1,	Cell 2 and Cell 3 is id Cell 3 in this test.					

 Table 8.2.2.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

Test Number	Reference Channel	00	NG Patt	ern	F		Propagation Conditions (Note 1)		Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11-4 TDD Note 4	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Medium	70	3.5	≥2
Note 1: Note 2: Note 3:	Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3										
Note 4: Note 5:	Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.										

Table 8.2.2.2.3A-2: Minimum Performance	ce Transmit Diversity (FRC)
-----------------------------------------	-----------------------------

# 8.2.2.2.4 Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.2.2.4-2, with the addition of parameters in Table 8.2.2.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.2.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Parameter		Unit	Cell 1	Cell 2	Cell 3		
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3		
	σ	dB	0	0	0		
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1		
$N_{oc}$ at antenna po	ort	dBm/15kHz	-98	N/A	N/A		
DIP (Note 2)		dB	N/A	-1.73	-8.66		
BW _{Channel}		MHz	10	10	10		
Cyclic Prefix			Normal	Normal	Normal		
Cell Id	Cell Id			1	2		
Number of control OFDM	symbols		2	2	2		
PDSCH transmission			2	N/A	N/A		
Interference mod	el		N/A	As specified in clause B.5.2	As specified in clause B.5.2		
Probability of occurrence of	Rank 1	%	N/A	80	80		
transmission rank in interfering cells	Rank 2	%	N/A	20	20		
Reporting interva	d	ms	5	N/A	N/A		
Reporting mode			PUCCH 1-0	N/A	N/A		
ACK/NACK feedback		Multiplexing	N/A	N/A			
Note 1: $P_B = 1$ Note 2: The respective received power spectral density of each interfering cell relative to $N_{oc}$ is defined by							
its associated DIP value as specified in clause B.5.1.         Note 3:       Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.         Note 4:       All cells are time-synchronous.							

# Table 8.2.2.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

# Table 8.2.2.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions		Correlation Matrix and	Reference	Value	UE Cate		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.46 TDD	OP.	N/A	N/A	EV	EV	EV	2x2 Low	70	-1.4	≥1
		1			A70	A70	A70				
		TD									
		D									
	Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.										
Note 2:	lote 2: SINR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1.										
Note 3:	Correlation ma	trix and	d anten	na conf	iguratic	on parai	meters	apply for each o	f Cell 1, Cell 2 a	nd Cell 3.	

# 8.2.2.3 Open-loop spatial multiplexing performance

# 8.2.2.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.2.3.1-2, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.2.3.1-4, with the addition of the parameters in Table 8.2.2.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Parameter	-	Unit	Test 1-2
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{_{oc}}$ at antenna	a port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Bundling
PDSCH transmissi	on mode		3
Note 1: $P_B = 1$			
Note 2: Void.			
Note 3: Void.			

Table 8.2.2.3.1-1: Test Parameters for Large Delay CDD (FRC)

Test Bandwidth		Reference	OCNG	Propagation	Correlation	Reference v	UE	
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.1	≥2
2	10 MHz	R.35 TDD	OP.1 TDD	EVA200	2x2 Low	70	20.3	≥2
3	10 MHz	R.35-2 TDD	OP.1 TDD	ETU300	2x2 Low	70	20.3	≥2
Note 1:	: Void	•						

Table 8.2.2.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA

Parameter		Unit	Test 1				
Develiate a surra	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98				
ACK/NACK feedba	ck mode		PUCCH format 1b with channel selection				
PDSCH transmission	on mode		3				
Note 1: $P_{R} = 1$							
Note 2: The same PDSCH transmission mode is applied to each component carrier.							

Table 8.2.2.3.1-4: Minimum performance Large Delay CDD (FRC) for CA

					Correlation	Referenc				
Test num ber	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	UE Category		
1	2x20 MHz	R.30-1 TDD	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	13.7	≥5		
Note 1	Note 1: The OCNG pattern applies for each CC.									
Note 2	Note 2: The applicability of requirements for different CA configurations and bandwidth combination sets is defined in									
	8.1.2.3.									

### 8.2.2.3.1A Soft buffer management test

For CA the requirements are specified in Table 8.2.2.3.1A-2, with the addition of the parameters in Table 8.2.2.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify UE performance with proper instantaneous buffer implementation.

Parameter		Unit	Test 1-2					
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3					
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)					
	σ	dB	0					
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98					
ACK/NACK feedba	ck mode		- (Note 2)					
PDSCH transmission	on mode		3					
Note 1: $P_B = 1$								
Note 2: PUCCH fo	Note 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK.							
Note 3: For CA test cases, the same PDSCH transmission mode is applied to each component carrier.								

Table 8.2.2.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	value	UE	CA	
num ber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Cate gory	capabil ity	
1	2x20 MHz	R.30-2 TDD	OP.1 TDD (Note 1)	EVA70	2x2 Low	70	13.2	3	CL_C, CL_A-A	
2	2x20 MHz	R.35-1 TDD	OP.1 TDD (Note 1)	EVA5	2x2 Low	70	15.7	4	CL_C, CL_A-A	
Note 1	Note 1: For CA test cases, the OCNG pattern applies for each CC.									
Note 2	: The applical 8.1.2.3.	bility of require	ments for dif	ferent CA config	jurations and band	lwidth combinati	on sets is	s defined	in	

### 8.2.2.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.2-2, with the addition of the parameters in Table 8.2.2.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Parameter		Unit	Test 1
Deurslink neuron	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Bundling
PDSCH transmission	on mode		3
Note 1: $P_B = 1$ .			

Т	est	Bandwidth	Reference	OCNG	OCNG Propagation Correlation		Reference v	UE	
nur	nber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.14 TDD	OP.1 TDD	EVA70	4x2 Low	70	14.2	≥2

Table 8.2.2.3.2-2: Minimum performance Large Delay CDD (FRC)

# 8.2.2.3.3 Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.3-2, with the addition of parameters in Table 8.2.2.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.2.3.3-4, with the addition of parameters in Table 8.2.2.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.2.3.3-1 and 8.2.2.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

	Parameter		Unit	Cell 1	Cell 2		
Uplink do	wnlink config	guration		1	1		
	ubframe conf			4	4		
		$ ho_{\scriptscriptstyle A}$	dB	-3	-3		
Downlink power allocation		$ ho_{\scriptscriptstyle B}$	dB -3 (Note 1)		-3 (Note 1)		
			dB	0	N/A		
		N _{oc1}	dBm/15kHz	-102 (Note 2)	N/A		
$N_{oc}$ at ante	enna port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A		
		$N_{oc3}$	dBm/15kHz	-94.8 (Note 4)	N/A		
	$\widehat{E}_{s}/N_{oc2}$		dB	Reference Value in Table 8.2.2.3.3-2	6		
	BW _{Channel}		MHz	10	10		
Subfra	ame Configui	ation		Non-MBSFN	Non-MBSFN		
	Cell Id			0	1		
Time O	Time Offset between Cells			2.5 (synchroi	nous cells)		
ABS	ABS pattern (Note 5)			N/A	0000010001, 0000000001		
	RLM/RRM Measurement Subframe Pattern (Note 6)			0000000001, 0000000001	N/A		
CSI Subfra	ime Sets	C _{CSI,0}		0000010001, 0000000001	N/A		
(Note	e 7)	C _{CSI,1}		1100101000 1100111000	N/A		
Number of	control OFDI	V symbols		2			
	CK feedbac			Multiplexing			
PDSCH	transmission	n mode		3	N/A		
	Cyclic prefix			Normal	Normal		
<ul> <li>Note 1: P_B = 1.</li> <li>Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> </ul>							
		defined in [9]		attorn for DCall massi	romante as defined		
Note 6: Tir in			esource restriction	pattern for PCell measu	rements as defined		
Note 7: As	configured a	according to th ents defined in		surement resource rest	riction pattern for		
Note 8: Ce		ving cell. Cell		cell. The number of the	CRS ports in Cell1		
			in Cell2 in this test.				

# Table 8.2.2.3.3-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

Test Number	Reference Channel	OCNG	Pattern		gation itions te 1)	Correlation Matrix and Antenna			UE Category	
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) (Note 5)	SNR (dB) (Note 2)		
1	R.11 TDD (Note 4)	OP.1 TDD	OP.1 TDD	EVA 5	EVA 5	2x2 Low	70	14.0	≥2	
Note 1:	The propagat	tion condit	ions for C	ell 1 and 0	Cell2 are	statistically indepe	endent.			
Note 2:	SNR corresp	onds to $\widehat{E}$	$\hat{Z}_s/N_{oc2}$ of	of cell 1.						
Note 3: Note 4:	Cell 1 Refere PDCCH/PCF	The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.								
Note 5:						al Payload in 2 su				

Table 8.2.2.3.3-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

Parameter		Unit	Cell 1	Cell 2		
Uplink downlink config			1	1		
Special subframe conf	iguration		4	4		
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)		
	σ	dB	0	N/A		
	N _{oc1}	dBm/15kHz	-102 (Note 2)	N/A		
$N_{oc}$ at antenna port	$N_{oc2}$	dBm/15kHz	-98 (Note 3)	N/A		
	$N_{oc3}$	dBm/15kHz	-94.8 (Note 4)	N/A		
$\widehat{E}_{s}/N_{oc2}$		dB	Reference Value in Table 8.2.2.3.3-4	6		
BW _{Channel}		MHz	10	10		
Subframe Configur	ation		Non-MBSFN	MBSFN		
Cell Id			0	126		
Time Offset betweer	n Cells	μs	2.5 (synchro	nous cells)		
ABS pattern (Not	e 5)		N/A	0000000001 0000000001		
RLM/RRM Measurement Pattern (Note 6			0000000001 0000000001	N/A		
CSI Subframe Sets	C _{CSI,0}		0000000001 0000000001	N/A		
(Note 7)	C _{CSI,1}		1100111000 1100111000	N/A		
MBSFN Subframe Alloca 10)	ation (Note		N/A	000010		
Number of control OFD	V symbols		2			
ACK/NACK feedback	k mode		Multiplexing			
PDSCH transmissior	n mode		3	N/A		
Cyclic prefix			Normal	Normal		
Note 1: $P_B = 1$ .						
#13 of a subfrai	me overlappir	ig with the aggresso	3, #4, #5, #6, #7, #8, #9 or ABS. bframe overlapping with			
	plied in all OF	DM symbols of a si	ubframe overlapping wit	th aggressor non-		
		. The 10 th and 20 th s	subframes indicated by	ABS pattern are		
		esource restriction	pattern for PCell measu	rements as defined		
			surement resource rest	riction pattern for		
CSI measureme Note 8: Cell 1 is the ser and Cell2 is the	ving cell. Cell		cell. The number of the	CRS ports in Cell1		
Note 9: SIB-1 will not be	e transmitted me Allocation	in Cell2 in this test. as defined in [7], or	ne frame with 6 bits is cl	hosen for MBSFN		

Test Number	Reference Channel			Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference Value		UE Category
		Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Fraction of Maximum Throughput (%) Note 5)	SNR (dB) (Note 2)	
1	R.11 TDD (Note 4)	OP.1 TDD	OP.1 TDD	EVA 5	EVA 5	2x2 Low	70	12.2	≥2
Note 1:					Cell2 are s	statistically indepe	ndent.		
Note 2:	SNR correspo	onds to $\widehat{E}$	$\hat{C}_s/N_{oc2}$ of	of cell 1.					
Note 3: Note 4:	The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.								
Note 5:						al Payload in 2 sul			

#### Table 8.2.2.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

# 8.2.2.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.4-2, with the addition of parameters in Table 8.2.2.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Parameter		Unit	Cell 1	Cell 2	Cell 3		
Uplink downlink confi	guration		1	1	1		
Special subframe con	figuration		4	4	4		
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)		
	σ	dB	0	N/A	N/A		
	N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A		
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A		
	$N_{oc3}$	dBm/15kHz	-93 (Note 4)	N/A	N/A		
$\widehat{E}_s/N_{oc2}$		dB	Reference Value in Table 8.2.2.3.4-2	Reference Value in Table 8.2.2.3.4-2	Reference Value in Table 8.2.2.3.4-2		
BW _{Channel}		MHz	10	10	10		
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN		
Time Offset betwee	n Cells	μs	N/A	3	-1		
Frequency shift betwe	en Cells	Hz	N/A	300	-100		
Cell Id			0	1	126		
ABS pattern (Not	te 5)		N/A	0000000001 0000000001	0000000001 0000000001		
RLM/RRM Measur Subframe Pattern (I			0000000001 0000000001	N/A	N/A		
CSI Subframe Sets	C _{CSI,0}		0000000001 0000000001	N/A	N/A		
(Note7)	C _{CSI,1}		1100111000 1100111000	N/A	N/A		
Number of control symbols	OFDM		2	Note 8	Note 8		
ACK/NACK feedbac	k mode		Multiplexing	N/A	N/A		
PDSCH transmissio			3	Note 9	Note 9		
Cyclic prefix			Normal	Normal	Normal		
<ul> <li>Note 1: P_B = 1.</li> <li>Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS ABS pattern as defined in [9].</li> <li>Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 7: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].</li> <li>Note 8: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.</li> <li>Note 9: Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying</li> </ul>							
Note 10: The number	of the CRS		Cell2 and Cell 3 is the d Cell 3 in this test.	e same.			

# Table 8.2.2.3.4-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

Test Num	Refer ence	$\hat{E}_s/s$	N _{oc2}	00	NG Patt	ern		ropagations (N		Correlation Matrix and	Reference	Value	UE Cate
ber	Chan nel	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 2)	Fraction of Maximum Throughp ut (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 TDD Note 4	9	7	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	70	14.2	≥2
2	R.35 TDD Note 4	9	1	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	70	22.7	≥2
Note 1:										pendent.			
Note 2:							apply to	r Cell 1,	Cell 2 and	d Cell 3.			
Note 3:				$\widehat{E}_{s}/N_{oc2}$									
Note 4:	Note 4: Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.												
Note 5:	The n	naximun	n Throu	ghput is c	alculated	from the	e total Pa	yload in 2	2 subfram	es, averaged ov	/er 20ms.		

### Table 8.2.2.3.4-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

# 8.2.2.4 Closed-loop spatial multiplexing performance

# 8.2.2.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1-2, with the addition of the parameters in Table 8.2.2.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Parameter		Unit	Test 1	Test 2				
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)				
	σ	dB	0	0				
$N_{\scriptscriptstyle oc}$ at antenna po	ort	dBm/15kHz	-98	-98				
Precoding granular	ity	PRB	6	50				
PMI delay (Note 2	2)	ms	10 or 11	10 or 11				
Reporting interva		ms	1 or 4 (Note 3)	1 or 4 (Note 3)				
Reporting mode			PUSCH 1-2	PUSCH 3-1				
CodeBookSubsetRest	riction		001111	001111				
bitmap								
ACK/NACK feedback	mode		Multiplexing	Multiplexing				
PDSCH transmission	mode		4	4				
Note 1: $P_B = 1$ .								
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).								
Note 3: For Uplink - c and 4ms.	lownlink	configuration 1 the rep	orting interval will alte	ernate between 1ms				

Table 8.2.2.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.10 TDD	OP.1 TDD	EVA5	2x2 Low	70	-3.1	≥1
2	10 MHz	R.10 TDD	OP.1 TDD	EPA5	2x2 High	70	-2.8	≥1

 Table 8.2.2.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

#### 8.2.2.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1A-2, with the addition of the parameters in Table 8.2.2.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1A-1: Test Parameters for S	Single-Layer Spatial Multiplexing (FRC)
-------------------------------------------	-----------------------------------------

Parameter		Unit	Test 1					
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-6					
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)					
	σ	dB	3					
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98					
Precoding granul	arity	PRB	6					
PMI delay (Note	e 2)	ms	10 or 11					
Reporting inter-	val	ms	1 or 4 (Note 3)					
Reporting mod	le		PUSCH 1-2					
CodeBookSubsetR	estricti		00000000000000000					
on bitmap			00000000000000000					
			0000000000000111					
			1111111111111					
ACK/NACK feed	oack		Multiplexing					
mode								
PDSCH transmis	sion		4					
mode								
Note 1: $P_B = 1$ .								
Note 2: If the UE	reports	in an available up	link reporting instance					
	at subrame SF#n based on PMI estimation at a downlink							
SF not la	iter than	SF#(n-4), this rep	orted PMI cannot be					
		B downlink before						
			1 the reporting interval					
		ween 1ms and 4m						

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 TDD	OP.1 TDD	EVA5	4x2 Low	70	-3.5	≥1

# 8.2.2.4.1B Enhanced Performance Requirement Type A – Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.2.4.1B-2, with the addition of the parameters in Table 8.2.2.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-

one performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined in clause B.5.3. In Table 8.2.2.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

Table 8.2.2.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference
model

Parameter		Unit	Cell 1	Cell 2	Cell 3
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3	-3
	σ	dB	0	0	0
Cell-specific reference	signals		Antenna ports 0,1	Antenna ports 0,1	Antenna ports 0,1
$N_{oc}$ at antenna po	ort	dBm/15kHz	-98	N/A	N/A
DIP (Note 2)		dB	N/A	-1.73	-8.66
BW _{Channel}		MHz	10	10	10
Cyclic Prefix			Normal	Normal	Normal
Cell Id			0	1	2
Number of control OFDM	symbols		2	2	2
PDSCH transmission			6	N/A	N/A
Interference mode	əl		N/A	As specified in clause B.5.3	As specified in clause B.5.3
Probability of occurrence of	Rank 1	%	N/A	80	80
transmission rank in interfering cells	Rank 2	%	N/A	20	20
Precoding granula	ity	PRB	50	6	6
PMI delay (Note 4		ms	10 or 11	N/A	N/A
Reporting interva	1	ms	5	N/A	N/A
Reporting mode			PUCCH 1-1	N/A	N/A
CodeBookSubsetRestricti	on bitmap		001111	N/A	N/A
ACK/NACK feedback	mode		Multiplexing	N/A	N/A
Note 1: $P_B = 1$ Note 2: The respective rec its associated DIP				cell relative to $N_{a}$	$c_{c}$ is defined by

its associated DIP value as specified in clause B.5.1. Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.

Note 4: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
 Note 5: All cells are time-synchronous.

# Table 8.2.2.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

Test Number	Reference Channel	OCNG Pattern			Propagation Conditions			Correlation Matrix and	Reference Value		UE Cate
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configurati on (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	gory
1	R.47 TDD	OP. 1 TD D	N/A	N/A	EV A5	EV A5	EV A5	2x2 Low	70	1.1	≥1
Note 1:	Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.										
Note 2:	SINR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1.										
Note 3:									of Cell 1, Cell 2 a	nd Cell 3.	

# 8.2.2.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.4.1C-2, with the addition of parameters in Table 8.2.2.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Para	ameter		Unit	Cell 1	Cell 2	Cell 3				
Uplink downli				1	1	1				
Special subfra	me con	figuration		4	4	4				
<b>_</b>		$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3				
Downlink po allocatior		$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-3 (Note 1)				
		σ	dB	0	N/A	N/A				
		N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A				
$N_{oc}$ at antenn	a port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A				
		N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A				
$\widehat{E}_s$	$/N_{oc2}$		dB	Reference Value in Table 8.2.2.4.1C-2	12	10				
BW	Channel		MHz	10	10	10				
Subframe	Configu	iration		Non-MBSFN	Non-MBSFN	Non-MBSFN				
Time Offset	betwee	en Cells	μs	N/A	3	-1				
Frequency sh	ift betwe	een Cells	Hz	N/A	300	-100				
С	ell Id			0	126	1				
ABS patt	ern (No	te 5)		N/A	0000000001 0000000001	0000000001 0000000001				
	RLM/RRM Measurement Subframe Pattern (Note 6)			0000000001 0000000001	N/A	N/A				
CSI Subframe	Sets	C _{CSI,0}		0000000001 0000000001	N/A	N/A				
(Note7)				1100111000 1100111000	N/A	N/A				
Number of	control mbols	OFDM		2	Note 8	Note 8				
ACK/NACK		k mode		Multiplexing	N/A	N/A				
PDSCH tran				6	Note 9	Note 9				
Precoding	g granul	larity	PRB	50	N/A	N/A				
PMI dela	y (Note	10)	ms	10 or 11	N/A	N/A				
Reporti	ng inter	val	ms	1 or 4 (Note 11)	N/A	N/A				
	ing mod			PUSCH 3-1	N/A	N/A				
CodeBookSu				1111	N/A	N/A				
	ic prefix			Normal	Normal	Normal				
Note 1: $P_{R}$ =	=1.									
Note 2: This over Note 3: This	noise is lapping noise is	with the ag s applied in	gressor ÁBS.	#1, #2, #3, #5, #6, #8, #0, #4, #7, #11 of a sul						
	essor A noise is		all OFDM symbo	ols of a subframe overla	apping with agor	essor non-ARS				
		as defined			PPing min aggi					
Note 6: Time				striction pattern for PCe	ell measurement	s as defined in				
				nain measurement resc	ource restriction	pattern for CSI				
Note 8: The	number		OFDM symbols i	s not available for ABS	and is 2 for the	subframe				
Note 9: Dow	indicated by "0" of ABS pattern. Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying									
			ed in Annex A.5. available uplink r	eporting instance at sul	orame SF#n bas	ed on PMI				
estir	nation a	at a downlin		an SF#(n-4), this reported						
	Uplink -			e reporting interval will a	alternate betwee	n 1ms and				
		of the CRS	Sports in Cell 1,	Cell 2 and Cell 3 is the	same.					

### Table 8.2.2.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) – Non-MBSFN ABS

Note 13: SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Test Number	Reference Channel	OCNG Pattern		Propagation Conditions (Note1)		Correlation Matrix and	Reference Value		UE Cate		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%) Note 5	SNR (dB) (Note 3)	gory
1	R.11 TDD	OP.1	OP.1	OP.1	EPA5	EPA5	EPA5	2x2 High	70	6.4	≥2
	Note 4	TDD	FDD	TDD							
Note 1:	The propagation	on conditi	ons for C	ell 1, Cel	ll 2 and C	ell 3 are	statistica	lly independent.			
Note 2:	The correlation	n matrix a	nd anten	na config	juration a	pply for (	Cell 1, Ce	ell 2 and Cell 3.			
Note 3:	: SNR corresponds to $\hat{E}_s/N_{ac^2}$ of cell 1.										
Note 4:	37 002										
Note 5:	The maximum	Through	out is cal	culated fr	om the to	otal Paylo	oad in 2 s	ubframes, averag	ed over 20ms.		

#### Table 8.2.2.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)– Non-MBSFN ABS

#### 8.2.2.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2-2, with the addition of the parameters in Table 8.2.2.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Parameter		Unit	Test 1-2		
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)		
	σ	dB	0		
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98		
Precoding granu	Ilarity	PRB	50		
PMI delay (Not	e 2)	ms	10 or 11		
Reporting inte	rval	ms	1 or 4 (Note 3)		
Reporting mo	de		PUSCH 3-1		
ACK/NACK feedba	ck mode		Bundling		
CodeBookSubsetR	estriction		110000		
bitmap					
PDSCH transmission	on mode		4		
Note 1: $P_B = 1$ .					
subrame S not later th applied at	2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).				
		configuration 1 the 1ms and 4ms.	reporting interval		

Table 8.2.2.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

#### Table 8.2.2.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Те	st	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
num	iber	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1		10 MHz	R.35 TDD	OP.1 TDD	EPA5	2x2 Low	70	19.5	≥2
2	<u>)</u>	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Low	70	13.9	≥2

#### 8.2.2.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.2.4.3-2, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.2.4.3-4, with the addition of the parameters in Table 8.2.2.4.3-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Paramete	r	Unit	Test 1			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)			
	σ	dB	3			
$N_{_{oc}}$ at antenna	a port	dBm/15kHz	-98			
Precoding gran	ularity	PRB	6			
PMI delay (No	te 2)	ms	10 or 11			
Reporting inte	erval	ms	1 or 4 (Note 3)			
Reporting mo	ode		PUSCH 1-2			
ACK/NACK feedba	ack mode		Bundling			
CodeBookSubsetR	estriction		000000000000000000000000000000000000000			
bitmap			0000011111111111111111000000			
			000000000			
PDSCH transmissi	on mode		4			
Note 1: $P_B = 1$ .						
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)						
Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.						
Note 4: Void.						
Note 5: Void.						
Note 6: Void.						

Table 8.2.2.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagatio	Correlation	Reference v	value	UE
number	width	Channel	Pattern	n Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.36 TDD	OP.1 TDD	EPA5	4x2 Low	70	15.7	≥2
Note 1:	Void							

Parameter		Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-6
	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3

$N_{oc}$ at antenna port	dBm/15kHz	-98				
Precoding granularity	PRB	8				
PMI delay (Note 2)	ms	10 or 11				
Reporting interval	ms	1 or 4 (Note 3)				
Reporting mode		PUSCH 1-2				
ACK/NACK feedback mo	de	PUCCH format 1b with channel selection				
CodeBookSubsetRestricti	on	000000000000000000000000000000000000000				
bitmap		0000111111111111111100000000				
		0000000				
CSI request field (Note 4	.)	'10'				
PDSCH transmission mo	de	4				
Note 1: $P_B = 1$ .						
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)						
between 1ms an						
Note 4: Multiple CC-s ur layers.						
Note 5: The same PDSC	H transmission mode is	applied to each component carrier.				

#### Table 8.2.2.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA

Test	Band-	Reference	OCNG	Propagatio	Correlation	Reference	ce value	UE Cate
number	width	Channel	Pattern	n Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
1	2x20 MHz	R.43 TDD	OP.1 TDD (Note 1)	EVA5	4x2 Low	70	11.1	≥5
Note 1: Note 2:		pattern applies bility of requiren		ent CA configur	ations and bandwi	idth combination	sets is defined i	n 8.1.2.3.

#### 8.2.2.5 MU-MIMO

#### 8.2.2.6 [Control channel performance: D-BCH and PCH]

### 8.2.2.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjancent carrier aggregation UE to demodulate the signal transmitted by the PCell in the presence of a stronger SCell signal on an adjacent frequency. Throughput is measured on the PCell only.

#### 8.2.2.7.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.2.7.1-2, with the addition of the parameters in Table 8.2.2.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

Paramet	er	Unit	Test 1	
Develiele e erre	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	
	σ	dB	0	
$\hat{E}_{s} - {}^{PCell}$ at anter PCell	nna port of	dBm/15kHz	-85	
$\hat{E}_{s}$ _ <i>SCell</i> at anter Scell	nna port of	dBm/15kHz	-79	
$N_{oc}$ at anteni	na port	dBm/15kHz	Off (Note 2)	
Symbols for unus	sed PRBs		OCNG (Note 3)	
Modulatio	n		64 QAM	
Maximum numbe transmiss			1	
Redundancy vers sequence	0		{0}	
PDSCH transmis of PCel	sion mode		1	
PDSCH transmis of SCel			3	
Note 1: $P_B = 0$				
<ul> <li>Note 2: No external noise sources are applied.</li> <li>Note 3: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data.</li> <li>Note 4: Void.</li> </ul>				

Table 8.2.2.7.1-1: Test Parameters for CA

Table 8.2.2.7.1-2: Minimum	performance	(FRC) for CA
----------------------------	-------------	--------------

Test Number	Band- width	Reference Channel		OCNG Pattern			gation itions	Matri	lation x and anna	Fract Maxi	ce value ion of mum hput (%)	UE Category
		PCell	SCell	PCell	SCell	PCell	SCell	PCell	SCell	PCell	SCell	
1	2x20M Hz	R.49 TDD	NA	OP.1 TDD	OP.5 TDD	AWGN	Clause B.1	1x2	2x2	85%	NA	≥5
Note 1:	The OCNG pattern for PCell is used to fill the control channel. The OCNG pattern for SCell is used to fill the control channel and PDSCH.											
Note 2:	The ap in 8.1.		/ of requi	rements f	or differ	ent CA d	configura	ations ar	nd band	width comb	ination set	s is defined

# 8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

### 8.3.1 FDD

The parameters specified in Table 8.3.1-1 are valid for FDD unless otherwise stated.

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	2
Precoder update granularity		Frequency domain: 1 PRG for Transmission mode 9 and 10 Time domain: 1 ms
Note 1: Void. Note 2: Void.	·	

#### Table 8.3.1-1: Common Test Parameters for User-specific Reference Symbols

#### 8.3.1.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.1-1 and 8.3.1.1-2, with the addition of the parameters in Table 8.3.1.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

paramete	r	Unit	Test 1	Test 2				
	$ ho_{\scriptscriptstyle A}$	dB	0	0				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)				
	σ	dB	-3	-3				
Beamforming r	nodel		Annex B.4.1	Annex B.4.1				
Cell-specific ref	erence		Antenna ports 0,1					
CSI reference s	ignals		Antenna ports 15,,18	Antenna ports 15,,18				
CSI-RS periodic subframe of $T_{CSI-RS} / \Delta_{CS}$	set -RS	Subframes	5/2	5/2				
CSI reference configuration			0	3				
Zero-power CS configuratio <i>I</i> _{CSI-RS} / <i>ZeroPower</i> CS bitmap	SI-RS on	Subframes / bitmap	3 / 00010000000000000000	3 / 0001000000000000				
$N_{\scriptscriptstyle oc}$ at antenna	a port	dBm/15kHz	-98	-98				
Symbols for ur PRBs	used		OCNG (Note 4)	OCNG (Note 4)				
Number of allo resource blocks		PRB	50	50				
Simultaneo transmissio			No	Yes (Note 3, 5)				
PDSCH transm mode	ission		9	9				
Note 1: $P_B = 1$ Note 2:The momentport 7 ofNote 3:Modulaport (7Note 4:ThesevirtualOCNG	$P_B = 1$ .							
			ties $n_{\rm SCID}$ are set to 0					
DM RS	with inte	errering simultai	neous transmission test	t cases.				

#### Table 8.3.1.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

 
 Table 8.3.1.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Test Bandwidt		OCNG	Propagation	Correlation	Reference	UE	
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Antenna Maximum (dB)		Category
1	10 MHz QPSK 1/3	R.43 FDD	OP.1 FDD	EVA5	2x2 Low	70	-1	≥1

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	UE				
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Antenna Maximum (dB)		Category			
2	10 MHz 64QAM 1/2	R.50 FDD	OP.1 FDD	EPA5	2x2 Low	70	21.9	≥2			
Note 1:											

#### Table 8.3.1.1-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

# 8.3.1.1A Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.1.1A-2, with the addition of the parameters in Table 8.3.1.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.1.1A-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

paramete	r	Unit	Cell 1	Cell 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
anooanon	σ	dB	-3	-3
Cell-specific referen	nce signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference s	•		Antenna ports 15,,18	N/A
CSI-RS periodic subframe offset T _{CSI}	-RS / $\Delta$ CSI-RS	Subframes	5/2	N/A
CSI reference configuration			0	N/A
$N_{\scriptscriptstyle oc}$ at antenn	a port	dBm/15kH z	-98	N/A
DIP (Note :	2)	dB	N/A	-1.73
BW _{Channel}		MHz	10	10
Cyclic Pref	ïx		Normal	Normal
Cell Id			0	126
Number of contro symbols	I OFDM		2	2
PDSCH transmiss	ion mode		9	N/A
Beamforming r	model		As specified in clause B.4.3 (Note 4, 5)	N/A
Interference m	nodel		N/A	As specified in clause B.5.4
Probability of occurrence of	Rank 1		N/A	70
transmission rank in interfering cells	Rank 2		N/A	30
Precoder update g	ranularity	PRB	50	6
PMI delay (No	ote 5)	Ms	8	N/A
Reporting inte	erval	Ms	5	N/A
Reporting m	ode		PUCCH 1-1	N/A
CodeBookSubsetF bitmap	Restriction		00000000000000000 0000000000000000 00000	N/A
Symbols for unus	ed PRBs		OCNG (Note 6)	N/A
Simultaneous tran	smission		No simultaneous transmission on the other antenna port in (7 or 8) not used for the input signal under test	N/A
Note 1: $P_{R} = 1$		I		
Note 2: The respe			tral density of each inter P value as specified in c	-
Note 3: The mode antenna p	ulation symb port 7 or 8.	ols of the signa	al under test in Cell 1 are	e mapped onto
Note 5: If the UE	reports in ar	n available upli	nk reporting instance at a not later than SF#(n-4),	subrame SF#n based

# Table 8.3.1.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

ETSI

	cannot be applied at the eNB downlink before SF#(n+4).
Note 6:	These physical resource blocks are assigned to an arbitrary number of virtual UEs
	with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs
	shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 7:	All cells are time-synchronous.

## Table 8.3.1.1A-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

Test Number	Referenc e		NG tern		gation itions	Correlatio n Matrix	Reference V	alue	UE Categor
	Channel	Cell 1	Cell 2	Cell 1	Cell 2	and Antenna Configurat ion (Note 3)	Fraction of MaximumSINR (dB)Throughput (%)(Note 2)		У
1	R.48 FDD	OP.1 FDD	N/A	EVA5	EVA5	4x2 Low	70	-1.1	≥1
Note 1:							ly independent.		
Note 2:	SINR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1.								
Note 3:	Correlation	matrix ar	nd antenr	na configu	uration pa	arameters appl	y for each of Cell 1	and Cell 2.	

# 8.3.1.1B Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.1.1B -2, with the addition of parameters in Table 8.3.1.1B -1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.1.1B -1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Parameter		Unit	Cell 1	Cell 2	Cell 3
Falameter	0	dB	0	-3	-3
Downlink power	$\rho_A$	dB	0 (Note 1)	-3 (Note 1)	-3 (Note 1)
allocation	$ ho_{\scriptscriptstyle B}$ $\sigma$	dB	-3	N/A	N/A
	N _{oc1}	dBm/15kHz	-	N/A	N/A
N at antonna port	$N_{oc1}$ $N_{oc2}$	dBm/15kHz	-98 (Note 2) -98 (Note 3)	N/A N/A	N/A N/A
$N_{oc}$ at antenna port	N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A
$\widehat{E}_{s}/N_{oc2}$	1 v oc3	dB	Reference Value	12	10
BW _{Channel}		MHz	in Table 2 10	10	10
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
-					
Time Offset betwee		μs	N/A	3	-1
Frequency shift betwe	en Cells	Hz	N/A	300	-100
Cell Id			0	1	126
Cell-specific reference	e signals			ntenna ports 0,1	
CSI reference sig			Antenna ports 15,16	N/A	N/A
CSI-RS periodicity subframe offse $T_{CSI-RS} / \Delta_{CSI-R}$	et	Subframes	5 / 2	N/A	N/A
CSI reference sig configuration			8	N/A	N/A
Zero-power CSI- configuration	-RS	Subframes / bitmap	[3 / 0010000000000 00]	N/A	N/A
ABS pattern (Not	te 5)		N/A	11000000 11000000 11000000 11000000 11000000	11000000 11000000 11000000 11000000 11000000
RLM/RRM Measur Subframe Pattern (I			10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		11000000 11000000 11000000 11000000 11000000	N/A	N/A
(Note7)	C _{CSI,1}		00111111 00111111 00111111 00111111 00111111	N/A	N/A
Number of control symbols	OFDM		2	Note 8	Note 8
PDSCH transmissio	n mode		TM9-1layer	Note 9	Note 9
Precoding granul			Frequency domain: 1 PRG Time domain: 1 ms	N/A	N/A
Beamforming mo			Annex B.4.1	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

### Table 8.3.1.1B-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Note 1:	$P_B = 1$ .
Note 2:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a
	subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the
Note 4	aggressor ABS.
Note 4:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non- ABS.
Note 5:	ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated
	PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is
	overlapped with the ABS subframe of aggressor cell and the subframe is available in the
	definition of the reference channel.
Note 6:	Time-domain measurement resource restriction pattern for PCell measurements as defined
	in [7].
Note 7:	As configured according to the time-domain measurement resource restriction pattern for
	CSI measurements defined in [7].
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe
	indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3
	applying OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI
	estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at
	the eNB downlink before SF#(n+4).
	· · · · · · · · · · · · · · · · · · ·
Note 12:	
Note 13:	The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Table 8.3.1.1B-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Test Number	Reference Channel	00	NG Patt	ern	Conditions (Note1) Cell 1 Cell 2 Cell 3		Correlation Matrix and	Reference Value		UE Cate	
		Cell 1	Cell 2	Cell 3			Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	gory	
1	R.51 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5		2x2 Low	70	7.8	≥2	
Note 1: Note 2: Note 3:	The correlation	on matrix	n conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. Inds to $\hat{E}_s/N_{ac2}$ of cell 1.								

### 8.3.1.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.2-2, with the addition of the parameters in Table 8.3.1.2-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

#### Table 8.3.1.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

parameter		Unit	Test 1				
		Unit	Cell 1	Cell 2			
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	4	0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	4 (Note 1)	0			
	σ	dB	-3	-3			

Cell-specific reference signals		Antenna ports 0 and	Antenna ports 0 and					
Cell ID		0	126					
CSI reference signals		Antenna ports 15,16	NA					
Beamforming model		Annex B.4.2	NA					
CSI-RS periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$	Subframes	5/2	NA					
CSI reference signal configuration		8	NA					
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	3 / 001000000000000000	NA					
$N_{\it oc}$ at antenna port	dBm/15kHz	-98	-98					
$\widehat{E}_s/N_{oc}$		Reference Value in Table 8.3.1.2-2	7.25dB					
Symbols for unused PRBs		OCNG (Note 2)	NA					
Number of allocated resource blocks (Note 2)	PRB	50	NA					
Simultaneous transmission		No	NA					
PDSCH transmission mode		9	Blanked					
Note 1: $P_{\scriptscriptstyle B} = 1$ Note 2:These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.								

Table 8.3.1.2-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test number	Bandwidth and MCS						gation dition	Correlation Matrix and	Reference value		UE Categ
			Cell1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	ory	
1	10 MHz 16QAM 1/2	R.51 FDD	OP.1 FDD	N/A	ETU5	ETU5	2x2 Low	70	[14.2]	2-8	
Note 1: Note 2:	2: Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.										
Note 3:	SNR correspon	ds to $E_s/N_{oc}$	of Cell	1.							

# 8.3.1.3 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

#### 8.3.1.3.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.1.3.1-3, with the additional parameters in Table 8.3.1.3.1-1 and Table 8.3.1.3.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.1.3.1-2. In Table 8.3.1.3.1-1 and 8.3.1.3.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2

(TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Paramete	r	Unit	TP 1	TP 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	ice signals		Antenna ports 0,1	(Note 2)
CSI-RS 0 antenr	na ports		NA	Port {15,16}
qcl-CSI-RS-Configl CSI-RS 0 period subframe offset T _{CSI}	icity and _{-RS} / ∆ _{CSI-RS}	Subframes	NA	5/2
qcl-CSI-RS-Configl CSI-RS 0 config			NA	8
csi-RS-ConfigZPId power CSI-RS 0 co I _{CSI-RS} / ZeroPower CSI-R	<i>r11,</i> Zero- nfiguration		NA	2/ 000001000000000
$N_{\scriptscriptstyle oc}$ at antenn	a port	dBm/15kH z	-98	-98
$\widehat{E}_{s}/N_{oc}$	$\widehat{E}_{s}/N_{oc}$		Reference point in Table 8.3.1.3.1-3	Reference point in Table 8.3.1.3.1-3
BW _{Channel}		MHz	10	10
Cyclic Prefix			Normal	Normal
Cell Id			0	0
Number of contro symbols	I OFDM		2	2
PDSCH transmiss	ion mode		Blanked	10
Number of alloca	ted PRB	PRB	NA	50
<i>qcl-Operation, '</i> PE Mapping and Qu Location Indic	asi-Co-		Туре	B, '00'
Time offset betwe	een TPs	μs	NA	Reference point in Table 8.3.1.3.1-3
Frequency error be	tween TPs	Hz	NA	0
Beamforming I	model		NA	As specified in clause B.4.1
Symbols for unus	ed PRBs		NA	OCNG (Note 3)
Note 1: $P_B = 1$				
Noet 2: REs for a Note 3: These ph with one	ysical resou PDSCH per	rce blocks are virtual UE; the	zero transmission powe assigned to an arbitrary data transmitted over th n data, which is QPSK r	number of virtual UEs e OCNG PDSCHs

Table 8.3.1.3.1-1: Test Parameters for quasi co-location type B: same Cell ID

	Table 8.3.1.3.1-2 Configurations of PQI and DL	transmission hypothesis for each PQI set
--	------------------------------------------------	------------------------------------------

PQI set index	Parameter	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	ZP CSI-RS 0	Blanked	PDSCH

Test Number	Reference OGCN Channel pattern				tions	Correlation Matrix and Antenna	Reference \	UE Category		
		TP 1	TP 2	TPs (μs)	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.52 FDD	NA	OP.1 FDD	2	EPA	EPA	2x2 Low	70	12.1	≥2
2	R.52 FDD	NA	OP.1 FDD	-0.5	EPA	EPA	2x2 Low	70	12.6	≥2
Note 2:	The propagation The correlation SNR correspon	n matrix	and ante	nna configur	ation app	ly for TF	1 and TP 2.			<u>.</u>

Table 8.3.1.3.1-3: Minimum performance for quasi co-location type B: same Cell ID

#### 8.3.1.3.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.1.3.2-3, with the additional parameters in Table 8.3.1.3.2-1 and 8.3.1.3.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In 8.3.1.3.2-1 and 8.3.1.3.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.1.3.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

paramete	r	Unit	TP 1	TP 2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.1
Cell-specific reference signals		Antenna ports 0,1	(Note 2)
CSI reference signals 0		Antenna ports {15,16}	N/A
CSI-RS 0 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$	Subframes	5/2	N/A
CSI reference signal 0 configuration		0	N/A
CSI reference signals 1		N/A	Antenna ports {15,16}
CSI-RS 1 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$	Subframes	N/A	5/2
CSI reference signal 1 configuration		N/A	8
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	2/ 0010000000000000000000000000000000000	N/A
Zero-power CSI-RS1 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap _S	Subframes /bitmap	N/A	2/ 000001000000000
$\widehat{E}_{s}/N_{oc}$	dB	Reference Value in Table 8.3.1.3.2-3	Reference Value in Table 8.3.1.3.2-3
$N_{_{oc}}$ at antenna port	dBm/15kH z	-98	-98
BW _{Channel}	MHz	10	10
Cyclic Prefix		Normal	Normal
Cell Id		0	0
Number of control OFDM symbols		2	2
Timing offset between TPs		N/A	Reference Value in Table 8.3.1.3.2-3
Frequency offset between TPs	Hz	N/A	0
Number of allocated resource blocks	PRB	50	50
PDSCH transmission mode		10	10
Probability of occurrence of PDSCH transmission(Note 3)	%	30	70
Symbols for unused PRBs		OCNG (Note 4)	OCNG (Note 4)

Note 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

PQI set index	Parameter	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	ZP CSI-RS 0	PDSCH	Blanked
PQI set 1	CSI-RS 1	ZP CSI-RS 1	Blanked	PDSCH

#### Table 8.3.1.3.2-2 Configurations of PQI and DL transmission hypothesis for each PQI set

#### Table 8.3.1.3.2-3 Performance Requirements for timing offset compensation with DPS transmission

Test Number	Timing offset(us)	Reference Channel		OCNG Propagation Pattern Conditions		Correlation Reference Value Matrix and			UE Category	
			TP 1	TP 2	TP 1	TP 2	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	2	R.53 FDD	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	70	12.2	≥2
2	-0.5	R.53 FDD	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	70	12.5	≥2
Note 1: Note 2: Note 3:	<ul> <li>The propagation conditions for TP 1 and TP 2 are statistically independent.</li> <li>Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2.</li> </ul>									

#### 8.3.1.3.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.1.3.3-2, with the additional parameters in Table 8.3.1.3.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In 8.3.1.3.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

parameter		Unit	TP 1	TP 2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3

Beamforming model		N/A	As specified in clause B.4.2					
Cell-specific reference signals		Antenna ports 0,1	Antenna ports 0,1					
CSI reference signals 0		N/A	Antenna ports {15,16}					
CSI-RS 0 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$	Subframes	N/A	5 / 2					
CSI reference signal 0 configuration		N/A	0					
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	N/A	2/ 00100000000000000					
$\widehat{E}_{s}/N_{oc}$	dB	Reference point in Table 8.3.1.3.3-2 + 4dB	Reference Value in Table 8.3.1.3.3-2					
$N_{_{oc}}$ at antenna port	dBm/15kH z	-98	-98					
BW _{Channel}	MHz	10	10					
Cyclic Prefix		Normal	Normal					
Cell Id		0	126					
Number of control OFDM symbols		1	2					
Timing offset between TPs	us	N/A	0					
Frequency offset between TPs	Hz	N/A	200					
<i>qcl-Operation, '</i> PDSCH RE Mapping and Quasi-Co- Location Indicator'		Туре	B, '00'					
PDSCH transmission mode		Blank	10					
Number of allocated resource block		N/A	50					
Symbols for unused PRBs		N/A	OCNG(Note2)					
Note 1: $P_B = 1$ Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.								

#### Table 8.3.1.3.3-2 Performance Requirements for quasi co-location type B with different Cell ID and Colliding CRS

Test Number	Reference Channel		NG tern	Cond	gation itions te1)	Correlation Matrix and Antenna	Reference	Reference Value	
		TP 1	TP 2	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.54 FDD	N/A	OP.1 FDD	EPA5	ETU5	2x2 Low	70	14.4	≥2
Note 1: Note 2: Note 3:	Correlation m	atrix and	antenna	configura	ation para	e statistically indep ameters apply for d in clause 8.1.1.		d TP 2.	

### 8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for User-specific Reference Symbols

Parameter	Unit	Value
Uplink downlink configuration (Note 1)		1
Special subframe configuration (Note 2)		4
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes	Processes	7
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	2
Precoder update granularity		Frequency domain: 1 PRB for Transmission mode 8, 1 PRG for Transmission mode 9 and 10Time domain: 1 ms
ACK/NACK feedback mode		Multiplexing
	Table 4.2-2 in TS 36. Table 4.2-1 in TS 36.	

### 8.3.2.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna port 5, the requirements are specified in Table 8.3.2.1-2, with the addition of the parameters in Table 8.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the demodulation performance using user-specific reference signals with full RB or single RB allocation.

Parameter		Unit	Test 1	Test 2	Test 3	Test 4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1) 0 (Note 1)		0 (Note 1)	0 (Note 1)		
	σ	dB	0	0	0	0		
Cell-specific refere signals	ence			Antenn	a port 0			
Beamforming mo	del		Annex B.4.1					
$N_{_{oc}}$ at antenna p	oort	dB/15kHz	-98	-98	-98	-98		
Symbols for unused	PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)		
PDSCH transmiss mode	sion		7	7	7	7		
Note 1: $P_{B} = 0$ .								
Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with on PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.								

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.25 TDD	OP.1 TDD	EPA5	2x2 Low	70	-0.8	≥1
2	10 MHz 16QAM 1/2	R.26 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	≥2
	5MHz 16QAM 1/2	R.26-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	1
3	10 MHz 64QAM 3/4	R.27 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	≥2
	10 MHz 64QAM 3/4	R.27-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	1
4	10 MHz 16QAM 1/2	R.28 TDD	OP.1 TDD	EPA5	2x2 Low	30	1.7	≥1

Table 8.3.2.1-2: Minimum performance DRS (FRC)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.1-4 and 8.3.2.1-5, with the addition of the parameters in Table 8.3.2.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port.

Parameter		Unit	Test 1	Test 2	Test 3	Test 4	Test 5
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
	σ	dB	-3	-3	-3	-3	-3
Cell-specific reference signals	e			Antenna p	port 0 and ant	enna port 1	
Beamforming mode	l				Annex B.4.1		
$N_{\scriptscriptstyle oc}$ at antenna por	t	dBm/15kHz	-98	-98	-98	-98	-98
Symbols for unused PF	Symbols for unused PRBs		OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)	OCNG (Note 4)
Simultaneous transmis	sion		No	No	No	Yes (Note 3, 5)	Yes (Note 3, 5)
PDSCH transmission m	ode		8	8	8	8	8
	mbols	bols of the sigr of an interferei st.					t used for the
per virtual UE	These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.						
Note 5: The two UEs'	5: The two UEs' scrambling identities $n_{\rm SCID}$ are set to 0 for CDM-multiplexed DM RS with interfering						
simultaneous	transm	ission test cas	es.				

 Table 8.3.2.1-3: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	-1.0	≥1
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	≥2
	5MHz 16QAM 1/2	R.32-1 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	1
3	10 MHz 64QAM 3/4	R.33 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	≥2
	10 MHz 64QAM 3/4	R.33-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	1

### Table 8.3.2.1-4: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC)

# Table 8.3.2.1-5: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
4	10 MHz	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.9	≥2
	16QAM 1/2	(Note 1)						
5	10 MHz	R.34 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.0	≥2
	64QAM 1/2	(Note 1)						
Note 1:	The reference of	channel applie	s to both the i	input signal unde	er test and the inte	rfering signal.		

### 8.3.2.1A Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.1A-2 and 8.3.2.1A-3, with the addition of the parameters in Table 8.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

Parameter		Unit	Test 1	Test 2			
Davaslintenan	$ ho_{\scriptscriptstyle A}$	dB	0	0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)			
	σ	dB	-3	-3			
Cell-specific refere signals	nce		Antenna	ports 0,1			
CSI reference sigr	nals		Antenna ports 15,,22	Antenna ports 15,,18			
Beamforming mo	del		Annex B.4.1	Annex B.4.1			
CSI-RS periodicity subframe offse T _{CSI-RS} / Δ _{CSI-RS}	t	Subframes	5 / 4	5 / 4			
CSI reference sig configuration	nal		1	3			
Zero-power CSI-I configuration I _{CSI-RS} / ZeroPowerCSI-F bitmap		Subframes / bitmap	4 / 0010000100000000	4 / 001000000000000000			
$N_{\scriptscriptstyle oc}$ at antenna p	ort	dBm/15kHz	-98	-98			
Symbols for unus PRBs	ed		OCNG (Note 4)	OCNG (Note 4)			
Number of allocat resource blocks (No		PRB	50	50			
Simultaneous transmission			No	Yes (Note 3, 5)			
PDSCH transmiss mode	ion		9	9			
Note 1: $P_{\scriptscriptstyle B} = 1$ .Note 2:The modu port 7 or 8Note 3:Modulation port (7 orNote 4:These ph virtual UE OCNG PI							
			ties $n_{ m SCID}$ are set to 0 neous transmission test				

# Table 8.3.2.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Table 8.3.2.1A-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.50 TDD	OP.1 TDD	EVA5	2x2 Low	70	-0.6	≥1

Test	Bandwidth			Propagation	Correlation	Reference v	UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
2	10 MHz 64QAM 1/2	R.44 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.1	≥2
Note 1:	The reference of	channel applie	s to both the	input signal unde	er test and the inte	rfering signal.		

#### Table 8.3.2.1A-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

# 8.3.2.1B Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.2.1B-2, with the addition of the parameters in Table 8.3.2.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed-loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.2.1B-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

	r	Unit	Cell 1	Cell 2
Downlink news	$ ho_{\scriptscriptstyle A}$	dB	0	0
Downlink power - allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referen	ce signals		Antenna ports 0,1	Antenna ports 0,1
CSI reference s	ignals		Antenna ports 15,,18	N/A
CSI-RS periodic subframe offset T _{CSI-}	$_{\rm RS}$ / $\Delta_{\rm CSI-RS}$	Subframes	5 / 4	N/A
CSI reference s configuratio			0	N/A
$N_{\scriptscriptstyle oc}$ at antenna	a port	dBm/15kH z	-98	N/A
DIP (Note 2	2)	dB	N/A	-1.73
BW _{Channel}		MHz	10	10
Cyclic Prefi	x		Normal	Normal
Cell Id			0	126
Number of contro symbols	IOFDM		2	2
PDSCH transmissi	on mode		9	0 0 -3 Antenna ports 0,1 N/A N/A N/A N/A 10 N/A 126 2 126 2 N/A 126 2 N/A N/A N/A As specified in clause B.5.4 70 30 6 N/A N/A N/A N/A N/A N/A
Beamforming model			As specified in clause B.4.3 (Note 4, 5)	N/A
Interference model			N/A	
Probability of occurrence of	Rank 1		N/A	70
transmission rank in interfering cells	Rank 2		N/A	30
Precoder update g	ranularity	PRB	50	6
PMI delay (No	te 5)	ms	10 or 11	N/A
Reporting inte	erval	ms	5	N/A
Reporting mo	ode		PUCCH 1-1	N/A
CodeBookSubsetR bitmap	estriction		0000000000000000 0000000000000000 000000	N/A
Symbols for unuse	ed PRBs		OCNG (Note 6)	N/A           -1.73           10           Normal           126           2           N/A           N/A
Simultaneous trans	smission		No simultaneous transmission on the other antenna port in (7 or 8) not used for the input signal	N/A

# Table 8.3.2.1B-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

Note 4: The precoder in clause B.4.3 follows OE recommended PMI. Note 5: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI

	cannot be applied at the eNB downlink before SF#(n+4).
Note 6:	These physical resource blocks are assigned to an arbitrary number of virtual UEs
	with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs
	shall be uncorrelated pseudo random data, which is QPSK modulated.
Note 7:	All cells are time-synchronous.

## Table 8.3.2.1B-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

Test Number	Referenc e		NG tern		gation itions	Correlatio n Matrix	Reference Value		UE Categor
	Channel	Cell 1	Cell 2	Cell 1	Cell 2	and Antenna Configurat ion (Note 3)	Fraction of Maximum Throughput (%)	SINR (dB) (Note 2)	У
1	R.48 TDD	OP.1 TDD	N/A	EVA5	EVA5	4x2 Low	70	-1.0	≥1
Note 1:							ly independent.		
Note 2:	SINR corres	sponds to	$\hat{E}_s/N_a$	$_{pc}$ of Ce	ll 1 as de	fined in clause	8.1.1.		
Note 3:	Correlation	matrix ar	nd antenr	na configu	uration pa	arameters appl	y for each of Cell 1	and Cell 2	

# 8.3.2.1C Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.2.1.C -2, with the addition of parameters in Table 8.3.2.1.C -1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.2.1.C -1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

Parameter		Unit	Cell 1	Cell 2	Cell 3	
Uplink downlink Conf	iguration		1	1	1	
Special subframe con	figuration		4	4	4	
	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	-3 (Note 1)	-3 (Note 1)	
anooatori	σ	dB	-3	N/A	N/A	
	N _{oc1}	dBm/15kHz	-98 (Note 2)	N/A	N/A	
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 3)	N/A	N/A	
	N _{oc3}	dBm/15kHz	-93 (Note 4)	N/A	N/A	
$\widehat{E}_s/N_{oc2}$		dB	Reference Value in Table 2	12	10	
BW _{Channel}		MHz	10	10	10	
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN	
Time Offset betwee	n Cells	μs	N/A	3	-1	
Frequency shift betwe	een Cells	Hz	N/A	300	-100	
Cell Id			0	1	126	
Cell-specific reference	e signals		A	ntenna ports 0,1		
CSI reference sig	inals		Antenna ports 15,16	N/A	N/A	
CSI-RS periodicit subframe offs $T_{CSI-RS} / \Delta_{CSI-R}$	et	Subframes	5/4	N/A	N/A	
CSI reference si configuratior	gnal		8	N/A	N/A	
Zero-power CSI configuratior I _{CSI-RS} / ZeroPowe bitmap	-RS	Subframes / bitmap	[4 / 0010000000000 00]	N/A	N/A	
ABS pattern (No	te 5)		N/A	0000000001 00000000001	0000000001 0000000001	
RLM/RRM Measur Subframe Pattern (			0000000001 0000000001	N/A	N/A	
CSI Subframe Sets	C _{CSI,0}		0000000001 0000000001	N/A	N/A	
(Note7)	C _{CSI,1}		1100111000 1100111000	N/A	N/A	
Number of control symbols	OFDM		2	Note 8	Note 8	
PDSCH transmissio	n mode		TM9-1layer	Note 9	Note 9	
Precoding granu	arity		Frequency domain: 1 PRG Time domain: 1 ms	N/A	N/A	
Beamforming m			Annex B.4.1	N/A	N/A	
Cyclic prefix			Normal	Normal	Normal	

### Table 8.3.2.1.C-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

	$P_{\rm B}=1$ .
Nata Or	
	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a
	subframe overlapping with the aggressor ABS.
	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
	ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 9:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.
Note 10:	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).
Note 11:	For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.
Note 12:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.
	The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

#### Table 8.3.2.1.C-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

Test Number	Reference Channel	00	NG Patt	ern	Propagation Conditions (Note1)		Correlation Matrix and	Reference Value		UE Cate	
		Cell 1	Cell 2	Cell 3	Cell 1			Antenna Configurati on (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	gory
1	R.51 TDD	OP.1	OP.1	OP.1		EVA5		2x2 Low	70	8.5	≥2
		TDD	TDD	TDD							
Note 1: Note 2: Note 3:		on matrix	and ante	nna conf				ally independen Cell 2 and Cell 3.			

### 8.3.2.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.2-2, with the addition of the parameters in Table 8.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation.

Parame	ter	Unit	Test 1	Test 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)
allocation	σ	dB	-3	-3
Cell-spe referend symbol	ce		Antenna port 0 ar 1	nd antenna port
Beamforn mode			Annex	B.4.2
$N_{_{oc}}$ at ant port	enna	dBm/15kHz	-98	-98
Symbols unused P			OCNG (Note 2)	OCNG (Note 2)
Number allocate resource b	ed	PRB	50	50
PDSCI transmiss mode	sion		8	8
Note 1:	$P_{R} = 1$			
Note 2:	These numbe transm	physical resource blocks or of virtual UEs with one hitted over the OCNG PD n data, which is QPSK m	PDSCH per virtual SCHs shall be unco	UE; the data

#### Table 8.3.2.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Table 8.3.2.2-2: Minimum performance for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	4.5	≥2	
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.7	≥2	

### 8.3.2.3 Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.3-2, with the addition of the parameters in Table 8.3.2.3-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

#### Table 8.3.2.3-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

parameter		Unit	Test 1			
		Unit	Cell 1	Cell 2		
Downlink nowor	$ ho_{\scriptscriptstyle A}$	dB	4	0		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	4 (Note 1)	0		
anooanon	σ	dB	-3	-3		

PDSCH transmission mode		9	NA Blanked
Number of allocated resource blocks (Note 2) Simultaneous	PRB	50	NA
Symbols for unused PRBs		OCNG (Note 2)	NA
$\widehat{E}_s/N_{oc}$		Reference Value in Table 8.3.2.3-2	Test specific, 7.25dB
$N_{oc}$ at antenna port	dBm/15kHz	-98	-98
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	4 / 001000000000000000	NA
CSI reference signal configuration		8	NA
CSI-RS periodicity and subframe offset <i>T</i> _{CSI-RS} / Δ _{CSI-RS}	Subframes	5 / 4	NA
Beamforming model		Annex B.4.2	NA
CSI reference signals		Antenna ports 15,16	NA
Cell ID		0	126
Cell-specific reference signals		Antenna ports 0 and 1	Antenna ports 0 and 1

Table 8.3.2.3-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

Test number	Bandwidth and MCS	Reference Channel		NG tern		gation dition	Correlation Matrix and	Reference	Reference value	
			Cell 1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	gory
1	10 MHz 16QAM 1/2	R.51 TDD	OP.1 TDD	N/A	ETU5	ETU5	2x2 Low	70	[14.8]	2-8
Note 1: Note 2: Note 3:	The propagation Correlation mater SNR correspond	ix and antenna	a configui	ration par				nd Cell 2.		

#### 8.3.2.4 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

#### 8.3.2.4.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.1-3, with the additional parameters in Table 8.3.2.4.1-1 and Table 8.3.2.4.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the

'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.2.4.1-2. In Table 8.3.2.4.1-1 and 8.3.2.4.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2 (TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Paramete	r	Unit	TP 1	TP 2
Deurslink neuron	Downlink power $\rho_A$		0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Cell-specific referer	nce signals		Antenna ports 0,1	(Note 2)
CSI-RS 0 antenr	na ports		NA	Port {15,16}
qcl-CSI-RS-Configl CSI-RS 0 period subframe offset T _{CSI}	icity and -Rs / ∆csi-Rs	Subframes	NA	5/4
qcl-CSI-RS-Configl CSI-RS 0 config			NA	8
csi-RS-ConfigZPId power CSI-RS 0 co I _{CSI-RS} / ZeroPower CSI-R	nfiguration		NA	4/ 0000010000000000
$N_{\scriptscriptstyle oc}$ at antenn	a port	dBm/15kH z	-98	-98
$\widehat{E}_{s}/N_{oc}$		dB	Reference point in Table 8.3.2.4.1-3	Reference point in Table 8.3.2.4.1-3
BW _{Channe}	I	MHz	10	10
Cyclic Pref	ïx		Normal	Normal
Cell Id			0	0
Number of contro symbols	OFDM		2	2
PDSCH transmiss	ion mode		Blanked	10
Number of alloca	ted PRB	PRB	NA	50
<i>qcl-Operation, '</i> PD Mapping and Qu Location Indic	iasi-Co-		Туре	B, '00'
Time offset betwo	een TPs	μs	NA	Reference point in Table 8.3.2.4.1-3
Frequency error be	tween TPs	Hz	NA	0
Beamforming	model		NA	As specified in clause B.4.1
Symbols for unus	ed PRBs		NA	OCNG (Note 3)
Note 3: These ph with one	ysical resou PDSCH per	rce blocks are virtual UE; the	zero transmission powe assigned to an arbitrary data transmitted over th	number of virtual UEs e OCNG PDSCHs

shall be uncorrelated pseudo random data, which is QPSK modulated.

PQI set index	Parameter	DL transmissior hypothesis for ea PQI Set		
	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	ZP CSI-RS 0	Blanked	PDSCH

#### Table 8.3.2.4.1-2 Configurations of PQI and DL transmission hypothesis for each PQI set

#### Table 8.3.2.4.1-3: Minimum performance for quasi co-location type B: same Cell ID

Test Number	Reference Channel		iCN tern	Time offset between	offset Conditions		Correlation Matrix and Antenna	Reference Value		UE Category
		TP 1	TP 2	TPs (μs)	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.52 TDD	NA	OP.1 TDD	2	EPA	EPA	2x2 Low	70	12	≥2
2	R.52 TDD	NA	OP.1 TDD	-0.5	EPA	EPA	2x2 Low	70	12.4	≥2
Note 1: Note 2:	The correlation matrix and antenna configuration apply for TP 1 and TP 2.									
Note 3:	SNR correspo	nds to $E$	$E_s / N_{oc}$	of TP 2 as de	efined in o	clause 8	.1.1.			

#### 8.3.2.4.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.2.4.2-3, with the additional parameters in Table 8.3.2.4.2-1 and 8.3.2.4.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In8.3.2.4.2-1 and 8.3.2.4.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.2.4.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

paramete	r	Unit	TP 1	TP 2
Downlink power $\rho_A$		dB	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0
	σ	dB	-3	-3
Beamforming model			N/A	As specified in clause B.4.1
Cell-specific referen	ce signals		Antenna ports 0,1	(Note 2)
CSI reference signa			Antenna ports {15,16}	N/A
CSI-RS 0 periodicity subframe offset T _{CSI}	$_{\rm RS}$ / $\Delta_{\rm CSI-RS}$	Subframes	5 / 4	N/A
CSI reference signa configuration	0		0	N/A
CSI reference signa	ls 1		N/A	Antenna ports {15,16}
CSI-RS 1 periodicity subframe offset T _{CSI}		Subframes	N/A	5 / 4
CSI reference signa configuration	1		N/A	8
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPower CSI-RS	bitmap	Subframes /bitmap	4/ 0010000000000000000000000000000000000	N/A
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPower CSI-RS		Subframes /bitmap	N/A	4/ 000001000000000
$\widehat{E}_{s}/N_{oc}$	·	dB	Reference Value in Table 8.3.2.4.2-3	Reference Value in Table 8.3.2.4.2-3
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kH z	-98	-98
BW _{Channel}		MHz	10	10
Cyclic Prefix			Normal	Normal
Cell Id			0	0
Number of control O symbols	FDM		2	2
Timing offset betwee	en TPs		N/A	Reference Value in Table 8.3.2.4.2-3
Frequency offset be	tween TPs	Hz	N/A	0
Number of allocated blocks	resource	PRB	50	50
PDSCH transmissio	n mode		10	10
Probability of occurrence of PDSCH transmission(Note 3)		%	30	70
			OCNG (Note 4)	OCNG (Note 4)

#### Table 8.3.2.4.2-1 Test Parameters for timing offset compensation with DPS transmission

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified. Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

PQI set index	Parameter	DL transmission hypothesis for each PQI Set		
	NZP CSI-RS Index (For quasi co-location)	ZP CSI-RS configuration	TP 1	TP 2
PQI set 0	CSI-RS 0	ZP CSI-RS 0	PDSCH	Blanked
PQI set 1	CSI-RS 1	ZP CSI-RS 1	Blanked	PDSCH

#### Table 8.3.2.4.2-2 Configurations of PQI and DL transmission hypothesis for each PQI set

Test Number	Timing offset(us)	Reference Channel			Propa Cond	gation itions	Correlation Matrix and	Reference Value		UE Category
			TP 1	TP 2	TP 1	TP 2	Antenna Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	2	R.53 TDD	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	70	12.3	≥2
2	-0.5	R.53 TDD	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	70	12.5	≥2
Note 1: Note 2: Note 3:										

# 8.3.2.4.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.3-2, with the additional parameters in Table 8.3.2.4.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In 8.3.2.4.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

Table 8.3.2.4.3-1	<b>Test Parameters for</b>	quasi co-location ty	pe B with different Cell ID	and Colliding CRS
-------------------	----------------------------	----------------------	-----------------------------	-------------------

parameter		Unit	TP 1	TP 2	
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0	0	
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0	
	σ	dB	-3	-3	

Beamforming model		N/A	As specified in clause B.4.2				
Cell-specific reference signals		Antenna ports 0,1	Antenna ports 0,1				
CSI reference signals 0		N/A	Antenna ports {15,16}				
CSI-RS 0 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$	Subframes	N/A	5 / 4				
CSI reference signal 0 configuration		N/A	0				
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPower CSI-RS bitmap	Subframes /bitmap	N/A	4/ 001000000000000000				
$\widehat{E}_s/N_{oc}$	dB	Reference point in Table 8.3.2.4.3-2 + 4dB	Reference Value in Table 8.3.2.4.3-2				
$N_{_{oc}}$ at antenna port	dBm/15kH z	-98	-98				
BW _{Channel}	MHz	10	10				
Cyclic Prefix		Normal	Normal				
Cell Id		0	126				
Number of control OFDM symbols		1	2				
Timing offset between TPs	us	N/A	0				
Frequency offset between TPs	Hz	N/A	200				
<i>qcl-Operation, '</i> PDSCH RE Mapping and Quasi-Co- Location Indicator'		Туре	B, '00'				
PDSCH transmission mode		Blank	10				
Number of allocated resource block		N/A	50				
Symbols for unused PRBs		N/A	OCNG(Note2)				
Note 1: $P_B = 1$ Note 2:       These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.							

#### Table 8.3.2.4.3-2 Performance Requirements for quasi co-location type B with different Cell ID and Colliding CRS

Test Number	Reference Channel		NG tern			Correlation Matrix and Antenna	Reference	UE Category	
		TP 1	TP 2	TP 1	TP 2	Configuration (Note 2)	Fraction of Maximum Throughput (%)	SNR (dB) (Note 3)	
1	R.54 TDD	N/A	OP.1 TDD	EPA5	ETU5	2x2 Low	70	14.7	≥2
Note 1: Note 2: Note 3:	Note 1:       The propagation conditions for TP 1 and TP 2 are statistically independent.         Note 2:       Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2.								

### 8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH

### 8.4.1 FDD

The parameters specified in Table 8.4.1-1 are valid for all FDD tests unless otherwise stated.

Parame	eter	Unit	Single antenna port	Transmit diversity
Number of PDC	CH symbols	symbols	2	2
Number of PHICH	H groups ( <i>N</i> g)		1	1
PHICH du	ration		Normal	Normal
Unused RE-s a	and PRB-s		OCNG	OCNG
Cell I	D		0	0
Downlink power allocation	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
$N_{_{oc}}$ at antenna port		dBm/15kHz	-98	-98
Cyclic p	refix		Normal	Normal

#### Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

#### 8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration	Pm-dsg (%)	SNR (dB)
						and		
						correlation		
						Matrix		
1	10 MHz	8 CCE	R.15 FDD	OP.1 FDD	ETU70	1x2 Low	1	-1.7

8.4.1.2 Transmit diversity performance

#### 8.4.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
numbe		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16 FDD	OP.1 FDD	EVA70	2 x 2 Low	1	-0.6

#### Table 8.4.1.2.1-1: Minimum performance PDCCH/PCFICH

#### 8.4.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	ce value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17 FDD	OP.1 FDD	EPA5	4 x 2 Medium	1	6.3

#### Table 8.4.1.2.2-1: Minimum performance PDCCH/PCFICH

# 8.4.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.4.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Paramete	r	Unit	Cell 1	Cell 2			
1 didinoto	PDCCH_RA	onit					
Downlink power	PHICH_RA OCNG_RA	dB	-3	-3			
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3			
	N _{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A			
$N_{ac}$ at antenna port	N _{oc2}	N _{oc2} dBm/15kHz -98		N/A			
	N _{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A			
$\widehat{E}_s/N_{oc2}$		dB	Reference Value in Table 8.4.1.2.3- 2	1.5			
BW _{Channel}		MHz	10	10			
Subframe Config	uration		Non-MBSFN	Non-MBSFN			
Time Offset betwe	en Cells	μs	2.5 (synchro	nous cells)			
Cell Id			0	1			
ABS pattern (N	ote 4)		N/A	00000100 00000100 00000100 01000100 00000100			
RLM/RRM Measureme Pattern (Note			00000100 00000100 00000100 00000100 00000100	N/A			
CSI Subframe Sets	C _{CSI,0}		00000100 00000100 00000100 01000100 00000100	N/A			
(Note 6)	C _{CSI,1}		11111011 11111011 11111011 10111011 10111011 11111011	N/A			
Number of control OF			3				
Number of PHICH g			1 Extended				
PHICH durat Unused RE-s and			Extended OCNG				
Cyclic prefi			Normal	Normal			
Note 1: This noise is a overlapping wit Note 2: This noise is a aggressor ABS	<ul> <li>e 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>e 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> </ul>						
Note 4: ABS pattern as are transmitted subframe of ag	ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.						
[7];	[7];						
measurements Note 7: Cell 1 is the se	measurements defined in [7]; Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1						
	and Cell2 is the same. 8: SIB-1 will not be transmitted in Cell2 in the test.						

Table 8.4.1.2.3-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

Test Numb er	Aggregati on Level	Referen ce Channel	OCNG Pattern Propagation Conditions (Note 1)		Correlation Matrix and Antenna		rence lue		
			Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	2x2 Low	1	-3.9
Note 1:					Cell 2 are	statistica	Ily independent.		
Note 2:	SNR corresp	SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1.							
Note 3:	The correlat	ion matrix ar	nd antenn	a configu	iration ap	ply for Ce	ell 1 and Cell 2.		

Table 8.4.1.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Paramet	er	Unit	Cell 1	Cell 2
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
	$N_{oc1}$	dBm/15kHz	-100.5 (Note 1)	N/A
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N _{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
$\widehat{E}_s/N_{ot}$		dB	Reference Value in Table 8.4.1.2.3- 4	1.5
BW _{Chanr}	nel	MHz	10	10
Subframe Conf	iguration		Non-MBSFN	MBSFN
Time Offset betw	veen Cells	μs	2.5 (synchro	nous cells)
Cell Id			0	126
ABS pattern (	ABS pattern (Note 4)		N/A	0001000000 0100000010 0000001000 0000000
RLM/RRM Measuren Pattern (No			0001000000 010000010 000001000 00000000	N/A
CSI Subframe Sets	C _{CSI,0}		000100000 010000010 000001000 000000000	N/A
(Note 6)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A
MBSFN Subframe Allocation (Note 9)			N/A	001000 100001 000100 000000
Number of control O			3	
Number of PHICH			1	
PHICH dur			extended	
Unused RE-s ar			OCNG	
Cyclic pre	TIX	l	Normal	Normal

Table 8.4.1.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 2:	This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. The 4 th , 12 th , 19 th and 27 th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 7:	Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 8:	SIB-1 will not be transmitted in Cell2 in this test.
Note 9:	MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN subframe allocation.
Note 10:	The maximum number of uplink HARQ transmission is limited to 2 so that each PHICH channel transmission is in a subframe protected by MBSFN ABS in this test.

Table 8.4.1.2.3-4: Minimum performance PDCCH/PCHICH – MBSFN ABS

Test Numb er	Aggregati on Level	Reference Channel		NG tern	n Conditions (Note 1) Cell 2 Cell 1 Cell 2		Conditions (Note 1)		Conditions (Note 1)		nditions Matrix and		Reference Value	
			Cell 1	Cell 2			Configurati on	Pm- dsg (%)	SNR (dB) (Note 2)					
1	8 CCE	R15-1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	2x2 Low	1	-4.2					
Note 1:		ation conditions			II2 are st	atistically	independent.							
Note 2:	SNR corresponds to $\hat{E}_s / N_{oc2}$ of cell 1.													
Note 3:	The correlat	ion matrix and	antenna	configura	tion appl	y for Cell	1 and Cell 2.							

# 8.4.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-4.

In Tables 8.4.1.2.4-1 and 8.4.1.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell3are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Param	eter	Unit	Cell 1	Cell 2	Cell 3		
	PDCCH_RA						
Downlink power	PHICH_RA OCNG_RA PCFICH_RB	dB	-3	-3	-3		
allocation	PDCCH_RB PHICH_RB OCNG_RB		-3	-3	-3		
	N _{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A		
N _{oc} at antenna port	$N_{oc2}$	dBm/15kHz	-98 (Note 2)	N/A	N/A		
pon	$N_{oc3}$	dBm/15kHz	-93 (Note 3)	N/A	N/A		
$\hat{E}_s/N$	l oc2	dB	Reference Value in Table 8.4.1.2.4-2	5	3		
BW _{Ch}	annel	MHz	10	10	10		
Subframe Co	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN		
Time Offset be	etween Cells	μs	N/A	3	-1		
Frequency shift	between Cells	Hz	N/A	300	-100		
Cell	Id		0	126	1		
ABS pattern (Note 4)			N/A	00000100 00000100 00000100 00000100 00000100	00000100 00000100 00000100 00000100 00000100		
	RLM/RRM Measurement Subframe Pattern (Note 5)		00000100 00000100 00000100 00000100 00000100	N/A	N/A		
CSI Subframe	C _{CSI,0}		00000100 00000100 00000100 00000100 00000100	N/A	N/A		
Sets (Note 6)	C _{CSI,1}		11111011 11111011 11111011 11111011 11111011 11111011	N/A	N/A		
Number of control			2	Note 7	Note 7		
Number of PHIC			1	N/A	N/A		
PHICH d Unused RE-s			Normal OCNG	N/A OCNG	N/A OCNG		
Cyclic p			Normal	Normal	Normal		
Note 1: This noi	se is applied in O	L FDM symbols #1, #2 essor ABS.					
<ul> <li>overlapping with the aggressor ABS.</li> <li>Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS</li> <li>Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are transmitted in the serving cell subframe when the subframe is overlapped with the ABS</li> </ul>							
Note 5: Time-do [7];		ent resource restriction					
measure	ements defined in						
	nber of control OF d by "0" of ABS pa	DM symbols is not attern.	available for ABS a	and is 2 for the su	ubframe		
Note 8: The nur	nber of the CRS p	oorts in Cell1, Cell2 a ted in Cell2 and Cell		me.			

Table 8.4.1.2.4-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OCNG Pattern		Propagation Conditions (Note 1)			Correlation Matrix and	Reference Value		
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.2
Note 1:	The propagation	on conditions f	or Cell 1,	Cell 2 ar	nd Cell 3	are statis	stically ind	depender	nt.		•
Note 2:	The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.										
Note 3:	SNR correspon	nds to $\hat{E}_s / N_{o}$	of cell	1.							

Table 8.4.1.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Paran	neter	Unit	Cell 1	Cell 2	Cell 3
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N _{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A
$N_{oc}$ at antenna	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N _{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
$\widehat{E}_s/N$		dB	Reference Value in Table 8.4.1.2.4-4	5	3
BW _C	nannel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	MBSFN	MBSFN
Time Offset between Cells		μs	N/A	3	-1
Frequency shift between Cells		Hz	N/A	300	-100
Cell Id			0	126	1
ABS patter	n (Note 4)		N/A	0001000000 010000010 0000001000 00000000	0001000000 010000010 0000001000 00000000
RLM/RRM Measu Pattern (			0001000000 010000010 000001000 00000000	N/A	N/A
CSI Subframe	C _{CSI,0}		0001000000 010000010 000001000 00000000	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1110111111 1011111101 1111110111 1111111	N/A	N/A
MBSFN Subframe Allocation (Note 7)			N/A	001000 100001 000100 000000	001000 100001 000100 000000
Number of contro			2	Note 8	Note 8
Number of PHIC			1	N/A	N/A
PHICH o Unused RE-s			Normal OCNG	N/A OCNG	N/A OCNG
Cyclic			Normal	Normal	Normal

Table 8.4.1.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.
Note 2:	This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.
Note 3:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 3:	ABS pattern as defined in [9]. The 4 th , 12 th , 19 th and 27 th subframes indicated by ABS pattern
Note 4.	
	are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated
	PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped
	with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition
	of the reference channel.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in
	[7].
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI
	measurements defined in [7].
Note 7:	MBSFN Subframe Allocation as defined in [7], four frames with 24 bits are chosen for MBSFN
	subframe allocation.
Note 8:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe
11010 0.	indicated by "0" of ABS pattern.
Note 9:	The maximum number of uplink HARQ transmission is limited to 2 so that each PHICH channel
Note 9.	
Nata 10	transmission is in a subframe protected by MBSFN ABS in this test.
Note 10:	
Note 11:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.

Table 8.4.1.2.4-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

Test Number	33 3 3		OCNG Pattern			Propagation Conditions (Note 1)			Correlation Matrix and	Reference Value	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 FDD	OP.1 FDD	OP.1 FDD	OP.1 FDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.0
Note 1: Note 2: Note 3:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1.										

## 8.4.2 TDD

The parameters specified in Table 8.4.2-1 are valid for all TDD tests unless otherwise stated.

Parame	eter	Unit	Single antenna port	Transmit diversity			
Uplink downlink o (Note	•		0	0			
Special subframe (Note	•		4	4			
Number of PDC	CH symbols	symbols	2	2			
Number of PHICH	l groups ( <i>N</i> g)		1	1			
PHICH du	ration		Normal	Normal			
Unused RE-s a	and PRB-s		OCNG	OCNG			
Cell II	D		0	0			
Downlink nowor	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3			
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3			
$N_{\scriptscriptstyle oc}$ at anter	nna port	dBm/15kHz	-98	-98			
Cyclic pi	refix		Normal	Normal			
ACK/NACK feed	back mode		Multiplexing	Multiplexing			
	Note 1: as specified in Table 4.2-2 in TS 36.211 [4].						

### Table 8.4.2-1: Test Parameters for PDCCH/PCFICH

## 8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 TDD	OP.1 TDD	ETU70	1x2 Low	1	-1.6

## 8.4.2.2 Transmit diversity performance

## 8.4.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.4.2.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration and correlation	Pm-dsg (%)	SNR (dB)
						Matrix		
1	10 MHz	4 CCE	R.16 TDD	OP.1 TDD	EVA70	2 x 2 Low	1	0.1

## 8.4.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17 TDD	OP.1 TDD	EPA5	4 x 2 Medium	1	6.5

Table 8.4.2.2.2-1: Minimum performance PDCCH/PCFICH

# 8.4.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3.. In Table 8.4.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C3.2 and for Cell 2 is according to Annex C.3.3, respectively.

	Paramete	r	Unit	Cell 1	Cell 2	
Uplii				1	1	
				4	4	
Davuali		PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	
	Uplink downlink co Special subframe of Downlink power allocation $N_{oc}$ at antenna port $\widehat{E}_s/N_{oc}$ BW _{Chann} Subframe Conf Time Offset betw Cell Id ABS pattern ( RLM/RRM Measuren Pattern(No CSI Subframe Sets(Note 6) Number of control O ACK/NACK feedt Number of PHICH Unused RE-s ar Cyclic pre lote 1: This noise is overlapping v lote 2: This noise is aggressor AB lote 3: This noise is are transmitte subframe of a lote 5: Time-domain	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	
		N _{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A	
$N_{oc}$ at a	ntenna port	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A	
		N _{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A	
	$\widehat{E}_s/N_{oc2}$		dB	Reference Value in Table 8.4.2.2.3-2	1.5	
	BW _{Channe}	l	MHz	10	10	
S	ubframe Config	guration		Non-MBSFN	Non-MBSFN	
Tin	ne Offset betwe	en Cells	μs	2.5 (synchronous cells)		
	Cell Id			0	1	
	ABS pattern (N	ote 4)		N/A	0000010001 0000000001	
RLM/RI	RM Measurem Pattern(Note			0000000001 0000000001		
CSI S	Subframe	C _{CSI,0}		0000010001 0000000001	N/A	
Sets	(Note 6)	C _{CSI,1}		1100101000 1100111000	N/A	
Numbe	er of control OF	DM symbols		3		
AC	K/NACK feedba	ack mode		Multiplexing		
Num				1		
	PHICH dura			extended		
Ur				OCNG		
	Cyclic pref			Normal	Normal	
Note 1: Note 2:	overlapping wi This noise is a	th the aggressor <i>i</i> pplied in OFDM s	ymbols #1, #2, #3, #5, # ABS. ymbols #0, #4, #7, #11 o			
	This noise is a ABS pattern as are transmitted	pplied in OFDM s s defined in [9]. Pl d in the serving ce	ymbols of a subframe ov DCCH/PCFICH other the Il subframe when the su	an that associated wi	th SIB1/Paging	
Note 5:		.0	ource restriction pattern	for PCell measureme	ents as defined in	
			ime-domain measureme	ent resource restrictio	n pattern for CSI	
Note 7:		erving cell. Cell 2 i	s the aggressor cell. The	e number of the CRS	ports in Cell1	
Note 8:		be transmitted in C	Cell2 in the test.			

Table 8.4.2.2.3-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

Test Numbe r	Aggregatio n Level	Referenc e Channel	OCNG Pattern		Propagation Conditions (Note 1)		Correlation Matrix and Antenna	Reference Value	
			Cell 1	Cell 2	Cell 1	Cell 2	Configuration	Pm- dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Low	1	-3.9
Note 1:	The propagation				are statisti	cally indep	endent.		
Note 2:	SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1.								
Note 3:	The correlation	n matrix and a	ntenna co	nfiguration	apply for	Cell 1 and	Cell 2.		

Table 8.4.2.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Paramete	er	Unit	Cell 1	Cell 2		
Uplink downlink co			1	1		
Special subframe c	onfiguration		4	4		
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3		
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	1       1         PA       4         PA       4         PA       A         A       A         A       A         A       A         A       A         A       A         A       A         A       A         A       B         A       A         A       B         A       A         A       B         A       A         A       B         A       A         A       B         A       B         A       B	-3			
	N _{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A		
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A		
	$N_{oc3}$	dBm/15kHz	-95.3 (Note 3)	N/A		
$\widehat{E}_s/N_{oc}$	2	dB	in Table	1.5		
BW _{Channe}	1	MHz		10		
Subframe Config	guration		Non-MBSFN	MBSFN		
Time Offset betwe	een Cells	μS	2.5 (synchro	onous cells)		
Cell Id			0	126		
ABS pattern (N	lote 4)		N/A	0000000001 0000000001		
RLM/RRM Measurem Pattern(Not			000000001			
CSI Subframe	C _{CSI,0}			N/A		
Sets(Note 6)	C _{CSI,1}			N/A		
MBSFN Subframe Allo				000010		
Number of control OF						
ACK/NACK feedb			Multiplexing			
Number of PHICH						
PHICH dura						
Unused RE-s an Cyclic pre				Normal		
		wmbolc #1 #2 #3 #4				
<ul> <li>Note 1: This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 2: This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS</li> <li>Note 4: ABS pattern as defined in [9]. The 10th and 20th subframes indicated by ABS pattern are MBSFN ABS subframes.PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.</li> <li>Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].</li> </ul>						
Note 6: As configured measurement Note 7: Cell 1 is the s and Cell2 is th	s defined in [7]. erving cell. Cell 2 ne same.	is the aggressor cell. Th				
	ame Allocation as		ne with 6 bits is chose	en for MBSFN		

Table 8.4.2.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	OCNG	Pattern	Propage Condition		Correlation Matrix and	Referen	ce Value
			Cell 1	Cell 2	Cell 1	Cell 2	Antenna Configurati on	Pm-dsg (%)	SNR (dB) (Note 2)
1	8 CCE	R15-1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	2x2 Low	1	-4.1
Note 1:	The propagation				statistically in	ndependen	t.		
Note 2:	SNR correspo	nds to $\widehat{E}_{s}/N_{a}$	$_{c2}$ of cell 1.						
Note 3:	The correlation	n matrix and ar	ntenna confi	guration ap	ply for Cell 1	and Cell 2			

Table 8.4.2.2.3-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

# 8.4.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-4.

In Tables 8.4.2.2.4-1 and 8.4.2.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Param	eter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink		•	1	1	1
Special subframe			4	4	4
Downlink power	PDČCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N _{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A
$N_{oc}$ at antenna	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N _{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
$\hat{E}_s/N$	$\widehat{E}_s/N_{oc2}$		Reference Value in Table 8.4.2.2.4-2	5	3
BW _{Ch}	annel	MHz	10	10	10
Subframe Co	nfiguration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset be	tween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	Id		0	126	1
ABS patterr			N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Me Subframe Patt			0000000001 0000000001	N/A	N/A
CSI Subframe	C _{CSI,0}		0000000001 0000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of co symb			2	Note 7	Note 7
ACK/NACK fee	dback mode		Multiplexing	N/A	N/A
Number of PHIC	H groups ( <i>N</i> _q )		1	N/A	N/A
PHICH d			Normal	N/A	N/A
Unused RE-s	and PRB-s		OCNG	OCNG	OCNG
Cyclic p			Normal	Normal	Normal
overlap Note 2: This no	ping with the agg ise is applied in C	0FDM symbols #1, # ressor ABS. 0FDM symbols #0, #			
Note 3: This no Note 4: ABS pa transmi	ttern as defined i	II OFDM symbols o n [9]. PDCCH/PCFI g cell subframe whe ell.	CH other than that	associated with S	SIB1/Paging are
Note 5: Time-do [7];	omain measurem	ent resource restric			
	igured according ements defined ir	to the time-domain [7];	measurement res	ource restriction p	attern for CSI
Note 7: The nur indicate	mber of control O d by "0" of ABS p	FDM symbols is not battern.			ubframe
		ports in Cell1, Cell2 tted in Cell2 and Ce		ame.	

Table 8.4.2.2.4-1: Test Parameters for PDCCH/PCFICH – Non	-MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	00	NG Patte	ern		ropagati itions (N		Correlation Matrix and	Reference Value	
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	1	-2.0
Note 1: Note 2: Note 3:	The propagation The correlation SNR correspo	n matrix and a	ntenna co	onfiguratio							

Table 8.4.2.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

Parar	neter	Unit	Cell 1	Cell 2	Cell 3		
Uplink downlin			1	1	1		
Special subfram			4	4	4		
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3		
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3		
	N _{oc1}	dBm/15kHz	-98(Note 1)	N/A	N/A		
$N_{oc}$ at antenna	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A		
port	N _{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A		
$\widehat{E}_s/l$		dB	Reference Value in Table 8.4.2.2.4-4	5	3		
BWc	hannel	MHz	10	10	10		
Subframe C	onfiguration		Non-MBSFN	MBSFN	MBSFN		
Time Offset b	etween Cells	μs	N/A	3	-1		
Frequency shift	between Cells	Hz	N/A	300	-100		
Cel	l ld		0	126	1		
ABS patter	. ,		N/A	0000000001 0000000001	000000001 0000000001		
RLM/RRM M Subframe Pat			0000000001 0000000001	N/A	N/A		
CSI Subframe	C _{CSI,0}		0000000001 0000000001	N/A	N/A		
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A		
MBSFN Subfra (Not			N/A	000010	000010		
Number of contro			2	Note 8	Note 8		
ACK/NACK fe			Multiplexing	N/A	N/A		
Number of PHI			1	N/A	N/A		
PHICH			Normal	N/A	N/A		
Unused RE-			OCNG	OCNG	OCNG		
Cyclic				Normal	Normal		
a subfr Note 2: This no Note 3: This no Note 4: ABS pa MBSFN are trai	Note 1:This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.Note 2:This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.Note 3:This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABSNote 4:ABS pattern as defined in [9]. The 10 th and 20 th subframes indicated by ABS pattern are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference						
Note 5: Time-d [7].	omain measureme	ent resource restricti	·				
measu	rements defined in	to the time-domain n [7]. tion as defined in [7]					
subfrar	ne allocation.	FDM symbols is not					
indicate Note 9: Cell 1 i	ed by "0" of ABS p s the serving cell.						
	s the same. vill not be transmit	ted in Cell2 in this te	st.				

Table 8.4.2.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

Test Number	Aggregati on Level	Reference Channel	00	NG Patt	ern		ropagati litions (N		Correlation Matrix and	Refere	nce Value
			Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell3	Antenna Configuration (Note 2)	Pm- dsg (%)	SNR (dB) (Note 3)
1	8 CCE	R.15-2 TDD	OP.1 TDD	OP.1 TDD	OP.1 TDD	EVA5	EVA5	EVA5	2x2 Low	1	-1.8
Note 1: Note 2: Note 3:	The propagation The correlation SNR correspo	n matrix and a	ntenna co	onfigurati							•

Table 8.4.2.2.4-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

## 8.5 Demodulation of PHICH

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold delection).

## 8.5.1 FDD

The parameters specified in Table 8.5.1-1 are valid for all FDD tests unless otherwise stated.

Param	Parameter		Single antenna port	Transmit diversity
Downlink power			0	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
PHICH duration			Normal	Normal
Number of PHICH groups (Note 1)			Ng = 1	Ng = 1
PDCCH Content			UL Grant should be included with the proper information aligned with A.3.6	
Unused RE-s	and PRB-s		OCNG	OCNG
Cell	D		0	0
$N_{oc}$ at antenna port		dBm/15kHz	-98	-98
Cyclic p	orefix		Normal	Normal
Note 1: accordin	g to Clause 6.9 in	TS 36.211 [4]		

Table 8.5.1-1: Test Parameters for PHICH

## 8.5.1.1 Single-antenna port performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 FDD	ETU70	1 x 2 Low	0.1	5.5
2	10 MHz	R.24	OP.1 FDD	ETU70	1 x 2 Low	0.1	0.6

Table 8.5.1.1-1:	Minimum	performance	PHICH
1 abie 0.5.1.1-1.	willing	periormance	FINCH

## 8.5.1.2 Transmit diversity performance

## 8.5.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.1-1: Minimum	performance PHICH
----------------------------	-------------------

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19	OP.1 FDD	EVA70	2 x 2 Low	0.1	4.4

## 8.5.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	5 MHz	R.20	OP.1 FDD	EPA5	4 x 2 Medium	0.1	6.1

# 8.5.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.5.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Paramete	r	Unit	Cell 1	Cell 2
	PDCCH_RA			
Downlink power allocation	PHICH_RA OCNG_RA	dB	-3	-3
	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3
$N_{oc}$ at antenna port	$N_{oc1}$	dBm/15kHz	-100.5 (Note 1)	N/A
	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A
	N _{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A
$\widehat{E}_s/N_{oc2}$	$\widehat{E}_s/N_{oc2}$		Reference Value in Table 8.5.1.2.3- 2	1.5
BW _{Channe}	l	MHz	10	10
Subframe Config	guration		Non-MBSFN	Non-MBSFN
Time Offset betwe	een Cells	μs	2.5 (synchror	ious cells)
Cell Id			0	1
ABS pattern (N	lote 4)		N/A	00000100 00000100 00000100 01000100 00000100
RLM/RRM Measurem Pattern (Not			00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets (Note 6)	C _{CSI,0}		00000100 00000100 00000100 01000100 00000100	N/A
	C _{CSI,1}		11111011 11111011 11111011 10111011 10111011 11111011	N/A
Number of control OF			3	
Number of PHICH of			1 ovtondod	
PHICH dura Unused RE-s and			extended OCNG	OCNG
Cyclic pref			Normal	Normal
overlapping wi Note 2: This noise is a aggressor ABS Note 3: This noise is a Note 4: ABS pattern as subframe is ov indicated by th Note 5: Time-domain r [7] Note 6: As configured measurements	A pplied in OFDM s pplied in OFDM s pplied in OFDM s defined in [9]. Pl erlapped with the e ABS pattern. neasurement reso according to the t defined in [7]	ymbols #1, #2, #3, #5, # ABS ymbols #0, #4, #7, #11 o ymbols of a subframe ov HICH is transmitted in th ABS subframe of aggre ource restriction pattern ime-domain measureme s the aggressor cell. The	of a subframe overlapp verlapping with aggres le serving cell subfram ssor cell but not in the for PCell measurement ent resource restriction	bing with the sor non-ABS e when the 26 th subframe its as defined in pattern for CSI
Cell2 is the sa	•		· · · · · · · ·	

Table 8.5.1.2.3-1:	Test	<b>Parameters for PHICH</b>	
--------------------	------	-----------------------------	--

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Antenna Configuration and	Reference Value	
		Cell 1	Cell 2	Cell 1	Cell 2	Correlation Matrix	Pm-an (%)	SNR (dB) (Note 2)
1	R.19	OP.1 FDD	OP.1 FDD	EPA5	EPA5	2x2 Low	0.1	4.6
Note 1:					ell 2 are s	tatistically indepen	dent.	
Note 2:	SNR correspor	nds to $\widehat{E}_s$	$/N_{\it oc2}$ of	cell 1.				
Note 3:	The correlation	matrix ar	nd antenna	a configura	ation appl	y for Cell 1 and Ce	ll 2.	

Table 8.5.1.2.3-2: Minimum performance PHICH

# 8.5.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.4-2. In Table 8.5.1.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Downlink power	PDCCH_RA PHICH_RA OCNG_RA PCFICH_RB	dB			
allocation	PCFICH_RB		-3	-3	-3
	PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	N _{oc1}	dBm/15kHz	-98 (Note 1)	N/A	N/A
N _{oc} at antenna	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	N _{oc3}	dBm/15kHz	-93 (Note 3)	N/A	N/A
$\widehat{E}_s/N_{oc2}$		dB	Reference Value in Table 8.5.1.2.4- 2	5	3
BW _{Channe}	el	MHz	10	10	10
Subframe Confi	iguration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betw	veen Cells	μs	N/A	3	-1
Frequency shift bet	tween Cells	Hz	N/A	300	-100
Cell Id			0	126	1
PDCCH Cor	PDCCH Content		UL Grant should be included with the proper information aligned with A.3.6.	N/A	N/A
ABS pattern (Note 4)			N/A	00000100 00000100 00000100 00000100 00000100	00000100 00000100 00000100 00000100 00000100
RLM/RRM Measurement Subframe Pattern (Note 5)			00000100 00000100 00000100 00000100 00000100	N/A	N/A
CSI Subframe	C _{CSI,0}		00000100 00000100 00000100 00000100 00000100	N/A	N/A
Sets (Note 6)	C _{CSI,1}		11111011 11111011 11111011 11111011 11111011 11111011	N/A	N/A
Number of control Of			2	Note 7	Note 7
Number of PHICH			1	N/A	N/A
PHICH dura			Normal	N/A	N/A
Unused RE-s an Cyclic pre			OCNG Normal	OCNG Normal	OCNG Normal

Table 8.5.1.2.4-1: Test Parameters for PHICH
----------------------------------------------

Note 1:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS
Note 2:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 3:	This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 4:	ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26 th subframe indicated by the ABS pattern.
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
Note 7:	The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.
Note 8:	The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.
Note 9:	SIB-1 will not be transmitted in Cell 2 and Cell 3 in the test.

Table 8.5.1.2.4-2: Minimum performance PHICH

Test Number	Reference Channel	00	NG Patt	ern	Propagation Conditions (Note 1)		Antenna Configuration	Reference Value		
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-an (%)	SNR (dB) (Note 3)
1	R.19	OP.1 FDD	OP.1 FDD	OP.1 FDD	EPA5	EVA5	EVA5	2x2 Low	0.1	5.0
Note 1: Note 2: Note 3:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. SNR corresponds to $\hat{E}_s/N_{oc2}$ of Cell 1.									

## 8.5.2 TDD

The parameters specified in Table 8.5.2-1 are valid for all TDD tests unless otherwise stated.

Param	eter	Unit	Single antenna port	Transmit diversity
Uplink downlink cor 1)			1	1
Special subframe (Note			4	4
	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
PHICH du	uration		Normal	Normal
Number of PHICH	groups (Note 3)		Ng = 1	Ng = 1
PDCCH C	Content			I be included with the on aligned with A.3.6.
Unused RE-s			OCNG	OCNG
Cell	D		0	0
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98	-98
Cyclic prefix			Normal	Normal
ACK/NACK fee			Multiplexing	Multiplexing
	ied in Table 4.2-2			
	ied in Table 4.2-1		.]	
Note 3: accordin	g to Clause 6.9 in	15 36.211 [4]		

#### Table 8.5.2-1: Test Parameters for PHICH

## 8.5.2.1 Single-antenna port performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Reference value		
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
1	10 MHz	R.18	OP.1 TDD	ETU70	1 x 2 Low	0.1	5.8	
2	10 MHz	R.24	OP.1 TDD	ETU70	1 x 2 Low	0.1	1.3	

#### Table 8.5.2.1-1: Minimum performance PHICH

## 8.5.2.2 Transmit diversity performance

## 8.5.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Reference value		
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
1	10 MHz	R.19	OP.1 TDD	EVA70	2 x 2 Low	0.1	4.2	

#### Table 8.5.2.2.1-1: Minimum performance PHICH

### 8.5.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration and correlation Matrix	Referen Pm-an (%)	ce value SNR (dB)
1	5 MHz	R.20	OP.1 TDD	EPA5	4 x 2 Medium	0.1	6.2

#### Table 8.5.2.2-1: Minimum performance PHICH

# 8.5.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3, In Table 8.5.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

Paramete	er	Unit	Cell 1	Cell 2		
Uplink downlink co		•••••	1	1		
Special subframe co			4	4		
Deursliek neuron	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3		
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3		
	N _{oc1}	dBm/15kHz	-100.5 (Note 1)	N/A		
$N_{oc}$ at antenna port	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A		
	N _{oc3}	dBm/15kHz	-95.3 (Note 3)	N/A		
$\widehat{E}_s/N_{occ}$		dB	Reference Value in Table 8.5.2.2.3-2	1.5		
BW _{Channe}	1	MHz	10	10		
Subframe Config	guration		Non-MBSFN	Non-MBSFN		
Time Offset betwe	een Cells	μs	2.5 (synchrone	ous cells)		
Cell Id			0	1		
ABS pattern (N	lote 4)		N/A	0000010001 0000000001		
RLM/RRM Measurem Pattern (Not			000000001 0000000001	N/A		
CSI Subframe Sets	C _{CSI,0}		0000010001 0000000001	N/A		
(Note 6)	C _{CSI,1}		1100101000 1100111000	N/A		
Number of control OF	DM symbols		3			
ACK/NACK feedb	ack mode		Multiplexing			
Number of PHICH			1			
PHICH dura			extended			
Unused RE-s an			OCNG	OCNG		
Cyclic pret		1 1 1/4 1/2 1/2 1/2	Normal	Normal		
overlapping w	ith the aggressor applied in OFDM s	ÁBS	#6, #8, #9, #10,#12, #1 of a subframe overlapp			
		symbols of a subframe of	overlapping with aggres	sor non-ABS		
Note 4: ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5						
Note 5: Time-domain			n for PCell measuremen			
5	U U	time-domain measurem	nent resource restriction	pattern for CSI		
	0	is the aggressor cell. T	he number of the CRS p	ports in Cell1 and		
	be transmitted in	Cell2 in the test.				

Table 8.5.2.2.3-1: Test Parameters for PHICH

Test Number	Reference Channel	OCNG	Pattern	Cond	gation itions te 1)	Antenna Configuration and	Reference Value		
		Cell 1	Cell 2	Cell 1	Cell 2	Correlation Matrix	Pm-an (%)	SNR (dB) (Note 2)	
1	R.19	OP.1 TDD	OP.1 TDD	EPA5	EPA5	2x2 Low	0.1	4.6	
Note 1:					ell 2 are s	tatistically independent	dent.		
Note 2:	SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1.								
Note 3:	The correlation	matrix ar	nd antenna	a configura	ation appl	y for Cell 1 and Ce	ll 2.		

Table 8.5.2.2.3-2: Minimum performance PHICH

# 8.5.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.4-2. In Table 8.5.2.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Paran	neter	Unit	Cell 1	Cell 2	Cell 3
Uplink downlink	c configuration		1	1	1
Special subfram			4	4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	-3	-3	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	-3	-3
	$N_{oc1}$	dBm/15kHz	-98 (Note 1)	N/A	N/A
$N_{oc}$ at antenna	N _{oc2}	dBm/15kHz	-98 (Note 2)	N/A	N/A
port	$N_{oc3}$	dBm/15kHz	-93 (Note 3)	N/A	N/A
$\widehat{E}_s/N$	V _{oc2}	dB	Reference Value in Table 8.5.2.2.4-2	5	3
BW _{Cr}	nannel	MHz	10	10	10
Subframe Co	onfiguration		Non-MBSFN	Non-MBSFN	Non- MBSFN
Time Offset b	etween Cells	μs	N/A	3	-1
Frequency shift	between Cells	Hz	N/A	300	-100
Cell	ld		0	126	1
PDCCH	PDCCH Content		UL Grant should be included with the proper information aligned with A.3.6.	N/A	N/A
ABS patter	ABS pattern (Note 4)		N/A	0000000001 0000000001	000000001
RLM/RRM Measu	amont Subframa		000000001	000000001	000000001
Pattern (			0000000001 0000000001	N/A	N/A
CSI Subframe	C _{CSI,0}		0000000001 0000000001	N/A	N/A
Sets (Note 6)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of contro	OFDM symbols		2	Note 7	Note 7
ACK/NACK fee			Multiplexing	N/A	N/A
Number of PHIC			1	N/A	N/A
PHICH c			Normal	N/A	N/A
Unused RE-s			OCNG	OCNG	OCNG
Cyclic Note 1: This noi			Normal	Normal	Normal
overlap Note 2: This noi aggress Note 3: This noi Note 4: ABS pa subfram	ping with the aggre se is applied in OF or ABS se is applied in OF ttern as defined in ne is overlapped wi	ssor ABS DM symbols #0, # DM symbols of a [9]. PHICH is tran th the ABS subfra	#2, #3, #5, #6, #8, #9 #4, #7, #11 of a subf subframe overlappir smitted in the servin me of aggressor cel tion pattern for PCel	rame overlapping ng with aggressor g cell subframe w l but not in subfra	y with the non-ABS /hen the me 5
Note 6: As confi measur Note 7: The nur indicate	ements defined in   nber of control OFI d by "0" of ABS pa	[7] DM symbols is not ttern.	measurement resou t available for ABS a	ind is 2 for the su	
	nber of the CRS po ill not be transmitte		2 and Cell 3 is the s ell 3 in the test.	ame.	

### Table 8.5.2.2.4-1: Test Parameters for PHICH

Test Number	Reference Channel	00	NG Patt	ern Propagation Conditions (Note 1)		Antenna Configuration	Reference Value			
		Cell 1	Cell 2	Cell 3	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-an (%)	SNR (dB) (Note 3)
1	R.19	OP.1 TDD	OP.1 TDD	OP.1 TDD	EPA5	EVA5	EVA5	2x2 Low	0.1	5.7
Note 1: Note 2: Note 3:	The correlation	agation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. lation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. esponds to $\hat{E}_s/N_{ac2}$ of Cell 1.								

Table 8.5.2.2.4-2: Minimum performance PHICH

## 8.6 Demodulation of PBCH

The receiver characteristics of the PBCH are determined by the probability of miss-detection of the PBCH (Pm-bch), which is defined as

$$Pm - bch = 1 - \frac{A}{B}$$

Where A is the number of correctly decoded MIB PDUs and B is the Number of transmitted MIB PDUs (Redundancy versions for the same MIB are not counted separately).

## 8.6.1 FDD

Table 8.6.1-1: Test Parameters for PBCH

Parame	ter	Unit	Single antenna port	Transmit diversity
Downlink power	PBCH_RA	dB	0	-3
allocation	PBCH_RB	dB	0	-3
$N_{\it oc}$ at anter	na port	dBm/15kHz	-98	-98
Cyclic pr	efix		Normal	Normal
Cell I	)		0	0
		2-2 in TS 36.211 [4 2-1 in TS 36.211 [4		

## 8.6.1.1 Single-antenna port performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detecting PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

 Table 8.6.1.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation	Pm-bch (%)	SNR (dB)
				Matrix		
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.1

## 8.6.1.2 Transmit diversity performance

## 8.6.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1 4 MHz	R 22	EPA5	2 x 2 L ow	1	-4.8

### Table 8.6.1.2.1-1: Minimum performance PBCH

## 8.6.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.6.1.2.2-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)
				and		
				correlation		
				Matrix		
1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-3.5

### 8.6.1.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.1.2.3-1 and Table 8.6.1.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, repectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Parameter		Unit	Cell 1	Cell 2	Cell 3	
Downlink power	PBCH_RA OCNG_RA	dB	-3	-3	-3	
allocation	PBCH_RB OCNG_RB	dB	-3	-3	-3	
$N_{oc}$ at an	tenna port	dBm/15kHz	-98	N/A	N/A	
<u>Ê</u> N,	5	dB	Reference Value in Table 8.6.1.2.3-2	4	2	
BWc	hannel	MHz	1.4	1.4	1.4	
Time Offset b	etween Cells	μs	N/A	3	-1	
Frequency shift	between Cells	Hz	N/A	300	-100	
Cel	l ld		0	126	1	
ABS Patte	rn (Note 4)		N/A	01000000 01000000 01000000 01000000 01000000	01000000 01000000 01000000 01000000 01000000	
Unused RE-	s and PRB-s		OCNG	OCNG	OCNG	
Cyclic	prefix		Normal	Normal	Normal	
<ul> <li>Note 1: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.</li> <li>Note 2: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.</li> <li>Note 3: The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.</li> <li>Note 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.</li> </ul>						

Test	Reference	Propagation Conditions (Note 1)		Antenna Configuration	Reference Value		
Number	Channel	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-bch (%)	SNR (dB) (Note 3)
1	R.22	ETU30	ETU30	ETU30	2x2 Low	1	-3.0
Note 1:					3 are statistically independent		
Note 2:	The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.						
Note 3:	SNR correspo	nds to $\hat{E}_s / N_o$	$_c$ of cell 1.				

## 8.6.2 TDD

Parame	ter	Unit	Single antenna port	Transmit diversity	
Uplink downlink o (Note 1			1	1	
Special subframe configuration (Note 2)			4	4	
Downlink power allocation			0	-3	
$N_{oc}$ at antenna port		dBm/15kHz	-98	-98	
Cyclic prefix			Normal	Normal	
Cell I	)		0	0	
Note 1:as specified in Table 4.2-2 in TS 36.211 [4].Note 2:as specified in Table 4.2-1 in TS 36.211 [4].					

## Table 8.6.2-1: Test Parameters for PBCH

## 8.6.2.1 Single-antenna port performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.4

## 8.6.2.2 Transmit diversity performance

## 8.6.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Test number	Bandwidth	Reference Channel	Propagation Condition	Antenna configuration and correlation Matrix	Referen Pm-bch (%)	ce value SNR (dB)
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8

## 8.6.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-4.1

Table 8.6.2.2.2-1: Minimum performance PBCH

### 8.6.2.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.2.2.3-1 and Table 8.6.2.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Parameter		Unit	Cell 1	Cell 2	Cell 3			
Downlink p	oower	PBCH_RA OCNG_RA	dB	-3	-3	-3		
allocatio	on	PBCH_RB OCNG_RB	dB	-3	-3	-3		
N _{oc}	$_{c}$ at ante	enna port	dBm/15kHz	-98	N/A	N/A		
	$\frac{\widehat{E}_s}{N_{oc}}$	,	dB	Reference Value in Table 8.6.2.2.3-2	4	2		
BW _{Channel}			MHz	1.4	1.4	1.4		
Time Offset between Cells			μs	N/A 3		-1		
Frequency shift between Cells			Hz	N/A	N/A 300			
Cell Id				0 126		1		
ABS Pattern (Note 4)				N/A	0000000001 0000000001	0000000001 0000000001		
Unuse	ed RE-s	and PRB-s		OCNG	OCNG	OCNG		
	Cyclic p			Normal	Normal	Normal		
Note 2: 5 Note 3:	<ul> <li>SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.</li> <li>The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.</li> </ul>							
F								

## Table 8.6.2.2.3-1: Test Parameters for PBCH

Test	Reference	Propagation	ropagation Conditions (Note 1) Antenna Config		Antenna Configuration	Refe	erence Value	
Number	Channel	Cell 1	Cell 2	Cell 3	and Correlation Matrix (Note 2)	Pm-bch (%)	SNR (dB) (Note 3)	
1	R.22	ETU30	ETU30	ETU30	2x2 Low	1	-3.0	
Note 1: Note 2:	· · · · · · · · · · · · · · · · · · ·							
Note 3:	SNR corresponds to $\hat{E}_s / N_{oc}$ of cell 1.							

## 8.7 Sustained downlink data rate provided by lower layers

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available. Test case is selected according to table 8.7-1 depending on UE capability for CA and EPDCCH.

#### Table 8.7-1: SDR test applicability

	Single carrier UE not supporting EPDCCH	CA UE not supporting EPDCCH	Single carrier UE supporting EPDCCH	CA UE supporting EPDCCH
FDD	8.7.1	8.7.1	8.7.3	8.7.1, 8.7.3
TDD	8.7.2	8.7.2	8.7.4	8.7.2, 8.7.4

## 8.7.1 FDD

The parameters specified in Table 8.7.1-1 are valid for all FDD tests unless otherwise stated.

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes per component carrier	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1
Cross carrier scheduling		Not configured
Propagation condition		Static propagation condition No external noise sources are applied

## Table 8.7.1-1: Common Test Parameters (FDD)

The requirements are specified in Table 8.7.1-3, with the addition of the parameters in Table 8.7.1-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.7.1-4. The TB success rate shall be sustained during at least 300 frames.

Test	Bandwidth Trans	Transmission	Antenna	Antenna Codebook			ower (dB)	$\hat{E}_{_{s}}$ at	Symbols for
Test	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	antenna port (dBm/15kHz)	unused PRBs
1	10	1	1 x 2	N/A	0	0	0	-85	OP.6 FDD
2	10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3,4,6	20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3A	10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3B, 4A	2x10	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
3C, 4B	15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6A	2x20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6B	10+15	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6C	10+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
6D	15+20	3	2 x 2	10	-3	-3	0	-85	OP.1 FDD
Note 1:	For CA test	cases, PUCCH fo	rmat 1b with char	nnel selection	is used t	to feedb	ack ACk	K/NACK.	

## Table 8.7.1-3: Minimum requirement (FDD)

Test	Number of bits of a DL-SCH transport	Measurement channel	Reference value
	block received within a TTI		TB success rate [%]
1	10296	R.31-1 FDD	95
2	25456	R.31-2 FDD	95
3	51024	R.31-3 FDD	95
3A	36696 (Note 2)	R.31-3A FDD	85
3B	25456	R.31-2 FDD	95
3C	51024	R.31-3C FDD	85
4	75376 (Note 3)	R.31-4 FDD	85
4A	36696 (Note 2)	R.31-3A FDD	85
4B	55056 (Note 5)	R.31-4B FDD	85
6	75376 (Note 3)	R.31-4 FDD	85
6A	75376 (Note 3)	R.31-4 FDD	85
6B	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85
	55056 for 15MHz CC	R.31-5 FDD for 15MHz CC	
6C	36696 (Note 2) for 10MHz CC	R.31-3A FDD for 10MHz CC	85
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
6D	55056 for 15MHz CC	R.31-5 FDD for 15MHz CC	85
	75376 (Note 3) for 20MHz CC	R.31-4 FDD for 20MHz CC	
Note 1:	For 2 layer transmissions, 2 transport blocks	are received within a TTI.	
Note 2:	35160 bits for sub-frame 5.		
Note 3:			
Note 4:	The TB success rate is defined as TB succes	s rate = 100%*N _{DL_correct_rx} / (N _{DL_newtx}	+ N _{DL_retx} ), where N _{DL_newtx} is
	the number of newly transmitted DL transport	blocks, N _{DL_retx} is the number of retra	insmitted DL transport
	blocks, and N _{DL_correct_rx} is the number of corre	ectly received DL transport blocks.	
Note 5:	52752bits for sub-frame 5.		

CA config	Maximum supported Bandwidth/ Bandwidth combination (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7
Single	10	1	2	3A	ЗA	-	-
Single carrier	15	-	-	3C	4B	-	-
Carrier	20	-	-	3	4	6	6
	10+10	-	-	3B	4A	4A	4A
CA	10+15	-	-	3B	4A	6B	6B
with	10+20	-	-	3B	4A	6C	6C
2CCs	15+20	5+20		3B	4A	6D	6D
2003	20+20	-	-	3B or 3 (Note 4)	4A or 4 (Note 4)	6A	6A
Note 1: Note 2: Note 3: Note 4: Note 5:	<ul> <li>For non-CA UE, test is selected for maximum supported bandwidth.</li> <li>Void.</li> <li>If the intra-band contiguous CA is the only CA configuration supported by category 3 or 4 UE, the single carrier test is selecte, i.e., Test 3 for UE category 3 and Test 4 for UE category 4. Otherwise, Test 3B applies for category 3 UE and Test 4A applies for category 4 UE.</li> </ul>						

Table 8.7.1-4: Test points for sustained data rate (FRC)

## 8.7.2 TDD

The parameters specified in Table 8.7.2-1 are valid for all TDD tests unless otherwise stated.

_						
Parameter	Unit	Value				
Special subframe configuration (Note 1)		4				
Cyclic prefix		Normal				
Cell ID		0				
Inter-TTI Distance		1				
Maximum number of HARQ transmission		4				
Redundancy version coding sequence		{0,0,1,2} for 64QAM				
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1				
Cross carrier scheduling		Not configured				
Propagation condition		Static propagation condition No external noise sources are applied				
Note 1: as specified in Table 4.2-1 in TS 36.211 [4].						

### Table 8.7.2-1: Common Test Parameters (TDD)

The requirements are specified in Table 8.7.2-3, with the addition of the parameters in Table 8.7.2-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.7.2-4. The TB success rate shall be sustained during at least 300 frames.

Test	Bandwidth (MHz)	Transmission mode	Antenna configuration	Codebook subset restriction		(UD)		power allocation		$\hat{E}_s$ at antenna port (dBm/15kHz)	ACK/NACK feedback mode	Symbols for unused PRBs
					$o_{A}$	$ ho_{\scriptscriptstyle B}$	σ	·				
1	10	1	1 x 2	N/A	0	0	0	-85	Bundling	OP.6 TDD		
2	10	3	2 x 2	10	- 3	-3	0	-85	Bundling	OP.1 TDD		
3	20	3	2 x 2	10	- 3	-3	0	-85	Bundling	OP.1 TDD		
ЗA	15	3	2 x 2	10	- 3	-3	0	-85	Muliplexing	OP.2 TDD		
4,6	20	3	2 x 2	10	- 3	-3	0	-85	Multiplexing	OP.1 TDD		
6A	2x20	3	2 x 2	10	- 3	-3	0	-85	- (Note 1)	OP.1 TDD		
Note 1:	PUCCH for	mat 1b with chan	nel selection is us	sed to feedbac	k A	CK/NA	CK.					

Table 8.7.2-2: test parameters	for sustained downlink data rate	(TDD)
--------------------------------	----------------------------------	-------

## Table 8.7.2-3: Minimum requirement (TDD)

Test	Number of bits of a DL-SCH transport block received within a TTI for normal/special sub- frame	Measurement channel	Reference value TB success rate [%]	
1	10296/0	R31-1 TDD	95	
2	25456/0	R31-2 TDD	95	
3	51024/0	R31-3 TDD	95	
ЗA	51024/0	R31-3A TDD	85	
4	75376/0 (Note 2)	R31-4 TDD	85	
6	75376/0 (Note 2)	R.31-4 TDD	85	
6A	75376/0 (Note 2)	R.31-4 TDD	85	
Note 2: 71112	ayer transmissions, 2 transport blocks are bits for sub-frame 5.			

Note 3: The TB success rate is defined as TB success rate = 100%*N_{DL_correct_rx}/ (N_{DL_newtx} + N_{DL_retx}), where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and N_{DL_correct_rx} is the number of correctly received DL transport blocks.

CA coi	nfig	Bandwidth/ Bandwidth combination (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7		
Single carrier		10	1	2	-	-	-	-		
		15	-	-	ЗA	ЗA	-	-		
		20	-	-	3	4	6	6		
CA with 2CCs		20+20		-	3 (Note 4)	4 (Note 4)	6A	6A		
Note 1: Note 2: Note 3: Note 4:	te 2: For non-CA UE, test is selected for maximum supported bandwidth. te 3: Void.									
	selected.									
Note 5:	The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 8.1.2.3.									

## 8.7.3 FDD (EPDCCH scheduling)

The parameters specified in Table 8.7.3-1 are valid for all FDD tests unless otherwise stated.

#### Table 8.7.3-1: Common test parameters (FDD)

Parameter	Unit	Value					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ							
processes per	Processes	8					
component carrier							
Maximum number of		4					
HARQ transmission		4					
Redundancy version		(0,0,1,2) for $640M$					
coding sequence		{0,0,1,2} for 64QAM					
Number of OFDM							
symbols for PDCCH per	OFDM symbols	1					
component carrier	-						
Cross carrier scheduling		Not configured					
Number of EPDCCH		1					
sets		l I					
EPDCCH transmission		Localized					
type							
Number of PRB per		2 PRB pairs					
EPDCCH set and		10MHz BW: Resource blocks n _{PRB} = 48, 49					
EPDCCH PRB pair		15MHz BW: Resource blocks n _{PRB} = 70, 71					
allocation		20MHz BW: Resource blocks n _{PRB} = 98, 99					
EPDCCH Starting		Derived from CFI (i.e. default behaviour)					
Symbol							
ECCE Aggregation		2 ECCEs					
Level		2 20020					
Number of EREGs per		4					
ECCE							
EPDCCH scheduling		EPDCCH candidate is randomly assigned					
		in each subframe					
EPDCCH precoder		Fixed PMI 0					
(Note 1)							
EPDCCH monitoring SF		111111111 000000000					
pattern		111111111 000000000					
Timing advance	μs	100					
Propagation condition		Static propagation condition					
	No external noise sources are applied						
	oder parameters are o	defined for tests with 2 x 2 antenna					
configuration							

The requirements are specified in Table 8.7.3-3, with the addition of the parameters in Table 8.7.3-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.3-4. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.3-2: Test parameters for SDR test for PDSCH scheduled by	
	y Ei DOOII (i DD)

Test	Bandwidth	Transmission	nemission Antenna		Codebook subset			$\hat{E}_{_{s}}$ at	Symbols for	
1621	(MHz)	mode	configuration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	δ	antenna port (dBm/15kHz)	unused PRBs
1	10	1	1 x 2	N/A	0	0	0	0	-85	OP.6 FDD
2	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
3,4,6	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
ЗA	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD
3C, 4B	15	3	2 x 2	10	-3	-3	0	3	-85	OP.1 FDD

Test	Number of bits of a DL-SCH transport	Measurement channel	Reference value
	block received within a TTI		TB success rate [%]
1	10296	R.31E-1 FDD	95
2	25456	R.31E-2 FDD	95
3	51024	R.31E-3 FDD	95
ЗA	36696 (Note 2)	R.31E-3A FDD	85
3C	51024	R.31E-3C FDD	85
4	75376 (Note 3)	R.31E-4 FDD	85
4B	55056 (Note 5)	R.31E-4B FDD	85
6	75376 (Note 3)	R.31E-4 FDD	85
Note 1:	For 2 layer transmissions, 2 transport blocks	are received within a TTI.	
Note 2:	35160 bits for sub-frame 5.		
Note 3:	71112 bits for sub-frame 5.		
Note 4:	The TB success rate is defined as TB succes	s rate = 100%*N _{DL_correct_rx} / (N _{DL_newt}	x + N _{DL_retx} ), where N _{DL_newtx} is
	the number of newly transmitted DL transport		
	blocks, and N _{DL_correct_rx} is the number of corre	ectly received DL transport blocks.	
Note 5:	52752 bits for sub-frame 5.		

Table 8.7.3-3: Minimum requirement (FDD)

Table 8.7.3-4: 1	Fest points fo	or sustained	data rate	(FRC)
------------------	----------------	--------------	-----------	-------

CA config	Bandwidth (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7
Cingle	10	1	2	3A	3A	-	-
Single	15	-	-	3C	4B	-	-
carrier	20	-	-	3	4	6	6
Note 1: The test is selected for maximum supported bandwidth.							

# 8.7.4 TDD (EPDCCH scheduling)

The parameters specified in Table 8.7.4-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.4-1: Common test parameters (TDD)

Parameter	Unit	Value					
Special subframe configuration (Note 1)		4					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Maximum number of HARQ transmission		4					
Redundancy version coding sequence		{0,0,1,2} for 64QAM					
Number of OFDM symbols for PDCCH per component carrier	OFDM symbols	1					
Cross carrier scheduling		Not configured					
Number of EPDCCH sets		1					
EPDCCH transmission type		Localized					
Number of PRB per EPDCCH set and EPDCCH PRB pair allocation		2 PRB pairs 10MHz BW: Resource blocks $n_{PRB} = 48$ , 49 15MHz BW: Resource blocks $n_{PRB} = 70$ , 71 20MHz BW: Resource blocks $n_{PRB} = 98$ , 99					
EPDCCH Starting Symbol		Derived from CFI (i.e. default behaviour)					
ECCE Aggregation Level		2 ECCEs					
Number of EREGs per ECCE		4 for normal subframe and 8 for special subframe					
EPDCCH scheduling		EPDCCH candidate is randomly assigned in each subframe					
EPDCCH precoder (Note 2)		Fixed PMI 0					
EPDCCH monitoring SF pattern		UL-DL configuration 1: 1101111111 000000000 UL-DL configuration 5: 1100111001 0000000000					
Timing advance	μs	100					
Propagation condition		Static propagation condition No external noise sources are applied					
Note 1:       As specified in Table 4.2-1 in TS 36.211 [4].         Note 2:       EPDCCH precoder parameters are defined for tests with 2 x 2 antenna configuration							

The requirements are specified in Table 8.7.4-3, with the addition of the parameters in Table 8.7.4-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.7.4-4. The TB success rate shall be sustained during at least 300 frames.

Test	Bandwidth (MHz)	Transmission mode	Antenn a configu	Codebook subset	ante		$\hat{E}_{_{s}}$ at antenna port	Symbols for unused	ACK/NACK feedback		
	(1411 12)	mode	ration	restriction	$ ho_{\scriptscriptstyle A}$	$ ho_{\scriptscriptstyle B}$	σ	δ	(dBm/15kHz)	PRBs	mode
1	10	1	1 x 2	N/A	0	0	0	0	-85	OP.6 TDD	Bundling
2	10	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Bundling
3	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Bundling
ЗA	15	3	2 x 2	10	-3	-3	0	3	-85	OP.2 TDD	Multiplexing
4,6	20	3	2 x 2	10	-3	-3	0	3	-85	OP.1 TDD	Multiplexing

#### Table 8.7.4-2: Test parameters for SDR test for PDSCH scheduled by EPDCCH (TDD)

#### Table 8.7.4-3: Minimum requirement (TDD)

Test	Number of bits of a DL transport block received a TTI for normal/specia frame	within	Reference value TB success rate [%]	
1	10296/0	R.31E-1 TDD	95	
2	25456/0	R.31E-2 TDD	95	
3	51024/0	R.31E-3 TDD	95	
ЗA	51024/0	R.31E-3A TDD	85	
4	75376/0 (Note 2)	R.31E-4 TDD	85	
6	75376/0 (Note 2) R.31E-4 TDD 85			
Note 2: 71 ² Note 3: The the	number of newly transmitted DL tr	blocks are received within a TTI. success rate = 100%*N _{DL_correct_rx} / (N _{DL_nev} ansport blocks, N _{DL_retx} is the number of re of correctly received DL transport blocks.		

CA config	Bandwidth/ Bandwidth combination (MHz)	Category 1	Category 2	Category 3	Category 4	Category 6	Category 7	
Single carrier	10	1	2	-	-	-	-	
	15	-	-	ЗA	3A	-	-	
	20	-	-	3	4	6	6	
Note 1:	The test is selected for maximum supported bandwidth.							

The test is selected for maximum supported bandwidth. Note 1:

#### Demodulation of EPDCCH 8.8

The receiver characteristics of the EPDCCH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). For the distributed transmission tests in 8.8.1, EPDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of EPDCCH. For other tests, EPDCCH and PCFICH are not tested jointly.

#### **Distributed Transmission** 8.8.1

#### 8.8.1.1 FDD

The parameters specified in Table 8.8.1.1-1 are valid for all FDD distributed EPDCCH tests unless otherwise stated.

			1			
	Parame	Unit	Value			
Number of	Number of PDCCH symbols			2 (Note 1)		
PHICH du	ration			Normal		
	E-s and PRB	-s		OCNG		
Cell ID				0		
		$ ho_{\scriptscriptstyle A}$	dB	-3		
Downlink p	oower	$ ho_{\scriptscriptstyle B}$	dB	-3		
allocation		σ	dB	0		
		δ	dB	3		
$N_{\scriptscriptstyle oc}$ at and	tenna port		dBm/15 kHz	-98		
Cyclic pret	fix			Normal		
Subframe	Configuratio	n		Non-MBSFN		
Precoder Update Granularity			PRB	1		
Flecodel	Spuale Gran	ulanty	ms	1		
Beamform	ing Pre-Cod	er		Annex B. 4.4		
Cell Speci	fic Reference	e Signal		Port 0 and 1		
Number of	FEPDCCH S	ets Configured		2 (Note 2)		
Number of	PRB per EF	PDCCH Set		4 (1 st Set) 8 (2 nd Set)		
EPDCCH	Subframe Me	onitoring		NA		
PDSCH T	М			TM3		
DCI Forma	at			2A		
<ul> <li>Note 1: The starting symbol for EPDCCH is derived from the PCFICH. RRC signalling <i>epdcch-StartSymbol-r11</i> is not configured.</li> <li>Note 2: The two sets are distributed EPDCCH sets and non-overlapping with PRB = {3, 17, 31, 45} for the first set and PRB = {0, 7, 14, 21, 28, 35, 42, 49} for the second set. EPDCCH is scheduled in the first set for Test 1 and second set for Test 2, respectively. Both sets are always configured.</li> </ul>						

 Table 8.8.1.1-1: Test Parameters for Distributed EPDCCH

For the parameters specified in Table 8.8.1.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.1-2. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.1.1-2: Minimum performance Distributed EPDCCH

Test	Bandwidth	Aggregatio	Reference	OCNG	Propagation	Antenna	Referenc	e value
number		n level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 ECCE	R.55 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	2.60
2	10 MHZ	16 ECCE	R.56 FDD	OP.7 FDD	EVA70	2 x 2 Low	1	-3.20

8.8.1.1.1 Void

#### Table 8.8.1.1.1-1: Void

#### 8.8.1.2 TDD

The parameters specified in Table 8.8.1.2-1 are valid for all TDD distributed EPDCCH tests unless otherwise stated.

	_			
	Parame		Unit	Value
	of PDCCH syr	nbols	symbols	2 (Note 1)
PHICH du				Normal
	RE-s and PRB	-S		OCNG
Cell ID				0
		$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink allocation		$ ho_{\scriptscriptstyle B}$	dB	-3
anocation	anoodion	σ	dB	0
	δ	dB	3	
$N_{\scriptscriptstyle oc}$ at ar	ntenna port	dBm/15 kHz	-98	
Cyclic pre	efix		Normal	
Subframe	Configuratio	n		Non-MBSFN
Procodor	Update Gran	PRB	1	
TIECOUEI	Opuale Gran	ms	1	
	ning Pre-Code		Annex B. 4.4	
	ific Reference			Port 0 and 1
Number c	of EPDCCH S	ets Configured		2 (Note 2)
Number o	of PRB per EF	PDCCH Set		4 (1 st Set) 8 (2 nd Set)
EPDCCH	Subframe Me	onitoring		NA
PDSCH T	М			TM3
DCI Form	at			2A
TDD UL/	DL Configurat	ion		0
TDD Spe	cial Subframe	)		1 (Note 3)
Note 1: Note 2: Note 3:	PRB = {0, 7 EPDCCH is set for Test	h-StartSymb DCCH sets a 31, 45} for th 49} for the s st set for Tes n sets are all	ool-r11 is not and non- ne first set and	

 Table 8.8.1.2-1: Test Parameters for Distributed EPDCCH

For the parameters specified in Table 8.8.1.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.2-2. The downlink physical setup is in accordance with Annex C.3.2.

 Table 8.8.1.2-2: Minimum performance Distributed EPDCCH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 ECCE	R.55 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	2.8
2	10 MHZ	16 ECCE	R.56 TDD	OP.7 TDD	EVA70	2 x 2 Low	1	-3.10

8.8.1.2.1 Void

#### Table 8.8.1.2.1-1: Void

# 8.8.2 Localized Transmission with TM9

#### 8.8.2.1 FDD

The parameters specified in Table 8.8.2.1-1 are valid for all FDD TM9 localized ePDCCH tests unless otherwise stated.

Param	eter	Unit	Value				
Number of PDCCH sy	mbols	symbols	1 (Note 1)				
EPDCCH starting sym		symbols	2 (Note 1)				
PHICH duration			Normal				
Unused RE-s and PR	B-s		OCNG				
Cell ID			0				
	$ ho_{\scriptscriptstyle A}$	dB	0				
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0				
allocation	σ	dB	-3				
	δ	dB	0				
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15 kHz	-98				
Cyclic prefix			Normal				
Subframe Configuration	on		Non-MBSFN				
Brocodor Undato Gra	Precoder Update Granularity		1				
Frecouer Opuale Grai	lulanty	ms	1				
Beamforming Pre-Coo			Annex B.4.5				
Cell Specific Reference			Port 0 and 1				
CSI-RS Reference Sig			Port 15 and 16				
CSI-RS reference sigr	nal resource		0				
configuration			0				
CSI reference signal s	subframe		2				
configuration I _{CSI-RS}							
ZP-CSI-RS configurat	ion bitmap		00000100000000				
ZP-CSI-RS subframe	configuration I _{ZP-}		2				
CSI-RS Number of EPDCCH S	Sote		2 (Note 2)				
EPDCCH Subframe M							
subframePatternConfi			1111110111 (Note 3)				
PDSCH TM	9111		ТМ9				
	a symbol for EPDC	CH is signalle	d with epdcch-StartSymbol-r11. However, CFI is				
set to 1.							
	t is distributed trans	mission with	PRB = {0, 49} and the second set is localized				
			5, 42, 49}. ePDCCH is scheduled in the second set				
for all tests.			· · · ·				
			equired to monitor ePDCCH for UE-specific search				
space only	in SFs configured b	y subframeP	PatternConfig-r11. Legacy PDCCH is not scheduled.				

Table 8.8.2.1-1: Test Parameters for Localized EPDCCH with TM9

For the parameters specified in Table 8.8.2.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.2.1-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of 99.9%.

The downlink physical setup is in accordance with Annex C.3.2.

Test	Bandwidt	Aggregatio	Reference	OCNG	Propagatio	Antenna	Referenc	e value
numbe	r h	n level	Channel	Pattern	n Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	2 ECCE	R.57 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	12.2
2	10 MHZ	8 ECCE	R.58 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	2.5

#### 8.8.2.1.1 Void

#### Table 8.8.2.1.1-1: Void

8.8.2.1.2 Void

Table 8.8.2.1.2-1: Void

#### Table 8.8.2.1.2-2: Void

#### Table 8.8.2.1.2-3: Void

# 8.8.2.2 TDD

The parameters specified in Table 8.8.2.2-1 are valid for all TDD TM9 localized ePDCCH tests unless otherwise stated.

Parame	eter	Unit	Value
Number of PDCCH syr	nbols	symbols	1 (Note 1)
EPDCCH starting sym	loc	symbols	2 (Note 1)
PHICH duration			Normal
Unused RE-s and PRE	B-S		OCNG
Cell ID			0
	$ ho_{\scriptscriptstyle A}$ dB		0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0
allocation	σ	dB	-3
	δ	dB	0
N of optoppo part	-	dBm/15	-98
$N_{_{oc}}$ at antenna port		kHz	
Cyclic prefix			Normal
Subframe Configuratio	n		Non-MBSFN
Dropodor Undoto Crop	ulority	PRB	1
Precoder Update Gran	ulanty	ms	1
Beamforming Pre-Cod	er		Annex B.4.5
Cell Specific Reference	e Signal		Port 0 and 1
CSI-RS Reference Sig			Port 15 and 16
CSI-RS reference sign	al resource		0
configuration			
CSI reference signal su	ubtrame		0
configuration I _{CSI-RS}	an hitman		000001000000000
ZP-CSI-RS configuration	on billinap	-	
CSI-RS	configuration IZP-		0
Number of EPDCCH S	ets		2 (Note 2)
	opitaring pattorn		1100011000 1100010000 1100011000
EPDCCH Subframe M subframePatternConfig			1100001000 1100011000 1000011000
subiramer allem Coning	<i>j</i> -1 1 1		1100011000 (Note 3)
PDSCH TM			TM9
TDD UL/DL Configurat			0
TDD Special Subframe			1 (Note 4)
	symbol for EPDCC	H is signalle	d with epdcch-StartSymbol-r11. However, CFI is
			PRB = {0, 49} and the second set is localized 5, 42, 49}. ePDCCH is scheduled in the second set
Note 3: EPDCCH is space only i	n SFs configured by	y subframeF	equired to monitor ePDCCH for UE-specific search PatternConfig-r11. Legacy PDCCH is not scheduled.
Note 4: Demodulation	on performance is a	veraged over	er normal and special subframe.

#### Table 8.8.2.2-1: Test Parameters for Localized EPDCCH with TM9

For the parameters specified in Table 8.8.2.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.2.2.2-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of 99.9%.

The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.8.2.2-2: Minimum performance Localized EPDCCH with TM9

ſ	Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
	number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
ſ	1	10 MHz	2 ECCE	R.57 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	12.8
ſ	2	10 MHZ	8 ECCE	R.58 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	2.0

8.8.2.2.1 Void

#### Table 8.8.2.2.1-1: Void

8.8.2.2.2 Void

Table 8.8.2.2.2-1: Void

Table 8.8.2.2.2-2: Void

#### Table 8.8.2.2.2-3: Void

### 8.8.3 Localized transmission with TM10 Type B quasi co-location type

#### 8.8.3.1 FDD

For the parameters specified in Table 8.8.3.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.1-2. In Table 8.8.3.1-1, transmission point 1 (TP 1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

### Table 8.8.3.1-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

		11	Te	est 1	Te	st 2	
	rameter	Unit	TP 1	TP 2	TP 1	TP 2	
PHICH durat					ormal		
Downlink	$ ho_{\scriptscriptstyle A}$	dB			0		
power	$ ho_{\scriptscriptstyle B}$	dB			0		
allocation	σ	dB			-3		
	δ	dB		1	0		
$\hat{E}_s/N_{oc}$		dB	0dB power imbalance is considered between TP 1 and TP 2,	Reference value in Table 8.8.3.1- 2	Reference value in Table 8.8.3.1- 2	Reference value in Table 8.8.3.1- 2	
$N_{\scriptscriptstyle oc}$ at anten	na port	dBm/ 15kH z		-	98		
Bandwidth		MHz	10	10	10	10	
Number of co EPDCCH Se			2 (N	lote 1)	2 (N	ote1)	
EPDCCH-PR (setConfigId)			0	1	0	1	
PRB-set	type of EPDCCH-		Localized	Localized	Localized	Localized	
Number of Pl EPDCCH-PR	B-set	PRB	8	8	8	8	
	amforming model		Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10	Annex B.4.5 TM10	
	PDSCH transmission mode PDSCH transmission scheduling		Blanked in all the subframes	Transmit in all the subframes	Probability of occurrence of PDSCH transmission is 30% (Note 3)	Probability of occurrence of PDSCH transmission is 70% (Note 3)	
Non-zero power CSI	CSI reference signal configuration		N/A	0	N/A	0	
reference signal (NZPId=1)	CSI reference signal subframe configuration I _{CSI-RS}		N/A	2	N/A	2	
Non-zero power CSI	CSI reference signal configuration		N/A	N/A	10	N/A	
reference signal (NZPId=2)	CSI reference signal subframe configuration I _{CSI-RS}		N/A	N/A	2	N/A	
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	0000010000000 000	N/A	1000010000000 000	
signal (ZPId=1)	CSI-RS subframe configuration I _{CSI-RS}		N/A	2	N/A	2	
Zero power CSI reference	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	N/A	1000010000000 000	N/A	
signal (ZPId=2)	CSI-RS subframe configuration I _{CSI-RS}		N/A	N/A	2	N/A	
PQI set 0 (Note 4)	Non-Zero power CSI RS Identity (NZPId)		N/A	1	N/A	1	

	Zero power CSI RS Identity (ZPId)		N/A	1	N/A	1			
PQI set 1	Non-Zero power CSI RS Identity (NZPId)		N/A	N/A	2	N/A			
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	N/A	2	N/A			
Number o	f PDCCH symbols	Symb ols		1 (Note 2)					
EPDCCH	starting position		pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)			
Subframe	configuration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN			
Time offs	et between TPs	μs	N/A	2	N/A	2			
Frequenc	y shift between TPs	Hz	N/A	200	N/A	200			
Cell ID			0	126	0	126			
Note 1: Note 2:	Note 1: Resource blocks n _{PRB} =0, 7, 14, 21, 28, 35, 42, 49 are allocated for both the first set and the second set.								
Note 3:	Probabilities of occurre	SCH is transmitted shall be randomly determined independently for each subframe. ence of PDSCH transmission from TP 1 and TP 2 are specified.							
Note 4:	For PQI set 0, PDSCH transmitted from TP1.					and EPDCCH are			

Table 8.8.3.1-2: Minimum Performance

Test	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
number	level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	2 ECCE	R.59 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	13.4
2	2 ECCE	R.59 FDD	OP.7 FDD	EVA5	2 x 2 Low	1	13.4

### 8.8.3.2 TDD

For the parameters specified in Table 8.8.3.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.2-2. In Table 8.8.3.2-1, transmission point 1 (TP1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

### Table 8.8.3.2-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

Deremeter		11	Τe	est 1	Tes	st 2	
-	irameter	Unit	TP 1	TP 2	TP 1	TP 2	
PHICH durat	ion			Nc	ormal		
Devention	$ ho_{\scriptscriptstyle A}$	dB			0		
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0		
allocation	σ	dB			-3		
	δ	dB			0		
$\hat{E}_s/N_{oc}$		dB	0dB power imbalance is considered between TP 1 and TP 2,	Reference value in Table 8.8.3.2- 2	Reference value in Table 8.8.3.2- 2	Reference value in Table 8.8.3.2- 2	
$N_{\scriptscriptstyle oc}$ at anter	ina port	dBm/ 15kH z		-	98		
Bandwidth		MHz	10	10	10	10	
	PDCCH Sets			lote 1)	2 (N		
EPDCCH-PR (setConfigId)	)		0	1	0	1	
PRB-set	n type of EPDCCH-		Localized	Localized	Localized	Localized	
Number of P EPDCCH-PF	RB-set	PRB	8	8	8	8	
	amforming model		Annex B.4.5	Annex B.4.5	Annex B.4.5	Annex B.4.5	
PDSCH tran	smission mode		TM10	TM10	TM10	TM10	
PDSCH transmission scheduling			Blanked in all the subframes	Transmit in all the subframes	Probability of occurrence of PDSCH transmission is 30% (Note 3)	Probability of occurrence of PDSCH transmission is 70% (Note 3)	
CSI reference configuration	s		Antenna ports 15,16	Antenna ports 15,16	Antenna ports 15,16	Antenna ports 15,16	
Non-zero power CSI	CSI reference signal configuration		N/A	0	N/A	0	
reference signal (NZPId=1)	CSI reference signal subframe configuration I _{CSI-RS}		N/A	0	N/A	0	
Non-zero power CSI	CSI reference signal configuration		N/A	N/A	10	N/A	
reference signal (NZPId=2)	CSI reference signal subframe configuration I _{CSI-RS}		N/A	N/A	0	N/A	
Zero power CSI	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	0000010000000 000	N/A	1000010000000 000	
reference signal (ZPId=1)	CSI-RS subframe configuration I _{CSI-RS}		N/A	0	N/A	0	
Zero power CSI	CSI-RS Configuration list (ZeroPowerCSI- RS bitmap)	Bitma p	N/A	N/A	1000010000000 000	N/A	
reference signal (ZPId=2)	CSI-RS subframe configuration I _{CSI-RS}		N/A	N/A	0	N/A	

PQI set 0	Non-Zero power CSI RS Identity (NZPId)		N/A	1	N/A	1			
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	1	N/A	1			
Non-Źero power CSI RS Identity PQI set 1 (NZPId)			N/A	N/A	2	N/A			
(Note 4)	Zero power CSI RS Identity (ZPId)		N/A	N/A	2	N/A			
Number o	f PDCCH symbols	Symb ols	1 (Note 2)						
EPDCCH	starting position		pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)	pdsch-Start- r11=2 (Note 2)			
Subframe	configuration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN			
Time offs	et between TPs	μs	N/A	2	N/A	2			
Frequenc	Frequency shift between TPs		N/A	200	N/A	200			
Cell ID			0	126	0	126			
	DL configuration		0						
TDD spec	cial subframe		1						
Note 1:	Resource blocks n _{PRB}								
Note 2:	The starting OFDM sy	mbol for I	EPDCCH is deterr	nined from the high	er layer signalling p	dsch-Start-r11.			
And CFI is set to 1.									
Note 3:	Note 3: The TP from which PDSCH is transmitted shall be randomly determined independently for each subframe.								
	Probabilities of occurre								
Note 4:	For PQI set 0, PDSCH					and EPDCCH are			
	transmitted from TP1. EPDCCH and PDSCH are transmitted from same TP.								

Table 8.8.3.2-2: Minimum Performance

ſ	Test	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	e value
	number	level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
ſ	1	2 ECCE	R.59 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	13.6
	2	2 ECCE	R.59 TDD	OP.7 TDD	EVA5	2 x 2 Low	1	13.6

# 9 Reporting of Channel State Information

# 9.1 General

This section includes requirements for the reporting of channel state information (CSI). For all test cases in this section,

the definition of SNR is in accordance with the one given in clause 8.1.1, where SA

$$NR = \frac{\sum \hat{I}_{or}^{(j)}}{\sum N_{oc}^{(j)}}.$$

# 9.1.1 Applicability of requirements

### 9.1.1.1 Applicability of requirements for different channel bandwidths

In Clause 9 the test cases may be defined with different channel bandwidth to verify the same CSI requirement.

# 9.1.1.2 Applicability and test rules for different CA configurations and bandwidth combination sets

The performance requirement for CA CQI tests in Clause 9 are defined independent of CA configurations and bandwidth combination sets specified in Clause 5.6A.1. For UEs supporting different CA configurations and bandwidth combination sets, the applicability and test rules are defined for the tests for 2 DL CCs in Table 9.1.1.2-1. For simplicity, CA configuration below refers to combination of CA configuration and bandwidth combination set. The definition of CA capability is specified in 8.1.2.2.

Tests	CA capability where the tests apply	CA configuration from the selected CA capbility where the tests apply	CA Bandwidth combination to be tested in priority order	No. of the supported bandwidth combinations to be tested from each selected CA configuration
CA tests with 2CCs in Clause 9.6.1.1	Any of one of the supported CA capabilities	Any one of the supported FDD CA configurations	10+10 MHz, 20+20 MHz	1
CA tests with 2CCs in Clause 9.6.1.2	Any of one of the supported CA capabilities with largest aggregated CA bandwidth combination	Any one of the supported TDD CA configurations with largest aggregated CA bandwidth combination	Largest aggregated CA bandwidth combination	1

# 9.2 CQI reporting definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.213 [6]. To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

# 9.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)

#### 9.2.1.1 FDD

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1 FDD in Table A.4-1 shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Parameter		Unit	Te	Test 1 Test 2			
Bandwidth	Bandwidth		10				
PDSCH transmission	on mode		1				
$\rho_A$		dB		0			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0				
	σ	dB			0		
Propagation condit antenna configur				AWGN (1 x 2)			
SNR (Note 2	<u>/)</u>	dB	0	1	6	7	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97	-92	-91	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-	-98	
Max number of H transmission					1		
Physical channel f reporting	or CQI		PUCCH Format 2				
PUCCH Report	Туре		4				
Reporting period	dicity	ms		Np	_d = 5		
cqi-pmi-Configurati	onIndex				6		
Note 1:         Reference measurement channel RC.1 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.           Note 2:         For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s)							
and the res	spective wa	anted signal input le	vei.				

#### Table 9.2.1.1-1: PUCCH 1-0 static test (FDD)

#### 9.2.1.2 TDD

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to RC.1 TDD in Table A.4-1 shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Paramete	r	Unit	Те	Test 1 Test 2				
Bandwidth	1	MHz	10					
PDSCH transmiss	on mode			1				
Uplink downlink cor	figuration				2			
Special subfra					4			
configuratio	n				-			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB			0			
allocation	$ ho_{\scriptscriptstyle B}$	dB			0			
	σ	dB			0			
Propagation condition and antenna configuration				AWGI	N (1 x 2)			
SNR (Note	2)	dB	0	1	6	7		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97	-92	-91		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98			
Max number of transmissio			1					
Physical channel reporting				PUSCH	H (Note 3)			
PUCCH Report	Туре		4					
Reporting perio		ms	$N_{\rm pd} = 5$					
cqi-pmi-Configura	tionIndex				3			
ACK/NACK feedba			Multiplexing					
OCNG Pa	attern OP.1	ent channel RC.1 T TDD as described ir	n Annex A.5.2	2.1.		-		
		nimum requirements		lled for at leas	t one of the tw	vo SNR(s)		
Note 3: To avoid PUSCH in	PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7							

#### Table 9.2.1.2-1: PUCCH 1-0 static test (TDD)

#### 9.2.1.3 FDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to RC.2 FDD / RC.6 FDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  shall be larger than or equal to 2 and less than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Desemator		Unit		Tes	st 1		Te	st 2
Parameter			Ce		Cell 2	Ce	ell 1	Cell 2
Bandwidth		MHz		1(				0
PDSCH transmission			2		Note 10		2	Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3				3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3				3
	σ	dB		0	)			0
Propagation condit antenna configu			(	Clause B	3.1 (2x2)		Clause I	B.1 (2x2)
$\widehat{E}_{s}/N_{oc2}$ (Not	te 1)	dB	4	5	6	4	5	-12
$\mathbf{r}(i)$	$N_{oc1}^{(j)}$	dBm/15kHz	-102 (N	lote 7)	N/A		lote 7)	N/A
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)		N/A	-98(N	lote 8)	N/A
port	$N_{oc3}^{(j)}$	dBm/15kHz	-94.8 (1	Note 9)	N/A	-98(N	lote 9)	N/A
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-92	-94	-93	-110
Subframe Configu	uration		Non-M	BSFN	Non-MBSFN	Non-N	/BSFN	Non-MBSFN
Cell Id			0		1		0	1
Time Offset betwee	en Cells	μs	2.5	(synchro	onous cells)	2.5	5 (synchr	onous cells)
ABS pattern (Note 2)			N/A		01010101 01010101 01010101 01010101 01010101 01010101	N/A 010 ⁻ 010 ⁻ 010 ⁻		01010101 01010101 01010101 01010101 01010101 01010101
RLM/RRM Measurement Subframe Pattern (Note 4)			00000100 00000100 00000100 00000100 00000100		N/A	00000100 00000100 00000100 00000100 00000100		N/A
CSI Subframe Sets	C _{CSI,0}		01010 01010 01010 01010 01010 01010 01010		N/A	0101 0101 0101 0101	10101 10101 10101 10101 10101 10101	N/A
(Note 3)	C _{CSI,1}		1010 1010 1010 1010 1010 1010	1010 1010 1010 1010 1010	N/A	1010 1010 1010 1010	01010 01010 01010 01010 01010 01010	N/A
Number of control symbols	OFDM		3		5		:	3
Max number of F transmission				1				1
Physical channel for C _{CSI,0} CQI reporting			F	PUCCH F	Format 2		PUCCH	Format 2
Physical channel for C _{CSI,1} CQI reporting			F	USCH (	Note 12)		PUSCH	(Note 12)
PUCCH Report Type				4	ŀ			4
Reporting perior	dicity	Ms		N _{pd}	= 5		N _{pd}	= 5
cqi-pmi-Configurati C _{CSI,0} (Note 1	3)		6		N/A		6	N/A
<i>cqi-pmi-Configuratio</i> C _{CSI,1} (Note 1			5		N/A		5	N/A

Table 9.2.1.3-1: PUCCH 1-0 static test (FDD)
----------------------------------------------

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the
	respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
Note 11:	Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and RC.6 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.
Note 12:	To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH
	instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic
	CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
Note 13:	
Note 14:	cqi-pmi-ConfigurationIndex2 is applied for C _{CSI,1} .

#### 9.2.1.4 TDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.4-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to RC.2 TDD / RC.6 TDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by the median CQI - 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets than or equal to 5 in Test 1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

Parameter	Unit		Tes	st 1	Test 2				
			Cell 1 Cell 2				Cell 2		
Bandwidth		MHz			0			0	
PDSCH transmission			2	2	Note 10		2	Note 10	
Uplink downlink cont					1			1	
Special subfra configuration				4	1			4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-	3		-	3	
allocation	$ ho_{\scriptscriptstyle B}$	dB		-	3		-	3	
	σ	dB		(	)			0	
Propagation condit antenna configu				Clause E	3.1 (2x2)		Clause	B.1 (2x2)	
$\widehat{E}_{s}/N_{oc2}$ (Note 1)		dB	4	5	6	4	5	-12	
	$N_{oc1}^{(j)}$	dBm/15kHz	-102 (1	Note 7)	N/A	-98 (N	lote 7)	N/A	
$N_{\scriptscriptstyle oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98 (Note 8)		N/A	
port	$N_{oc3}^{(j)}$	dBm/15kHz	-94.8 (	Note 9)	N/A	-98 (Note 9)		N/A	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-94	-93	-92	-94	-93	-110	
Subframe Configuration			Non-M	1BSFN	Non-MBSFN	Non-M	IBSFN	Non-MBSFN	
Cell Id			(	C	1		C	1	
Time Offset betwee	en Cells	μs	2.5 (synchr		onous cells)	2.5	i (synchr	ronous cells)	
ABS pattern (No	ote 2)		N/A		0100010001 0100010001	N/A		0100010001 0100010001	
RLM/RRM Measu Subframe Pattern (			0000000001 0000000001		N/A	000000001 0000000001		N/A	
CSI Subframe Sets	C _{CSI,0}		01000 01000	10001	N/A	01000		N.A	
(Note 3)	C _{CSI,1}		1000101000		N/A	1000101000 1000101000		N/A	
Number of control	OFDM						2		
symbols			3		3				
Max number of H transmission			1		1		1		
Physical channel for reporting			PUCCH Format 2		Format 2	PUCCH Format 2		Format 2	
Physical channel for	C _{CSI,1} CQI			PUSCH	(Note 12)	PUSCH		SCH	
reporting PUCCH Report Type				,	4			4	
Reporting periodicity		ms			= 5			+   = 5	
cqi-pmi-ConfigurationIndex						<u> </u>			
C _{CSI,0} (Note 1	3)			3	N/A		3	N/A	
cqi-pmi-Configuratio	onIndex2		4	4	N/A		4	N/A	
ACK/NACK feedba				Multip	lexina	1	Multir	lexing	

Table 9.2.1.4-1: PUCCH 1-0 static test (TDD)

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
Note 11:	Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 for UE Category ≥2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1, and RC.6 TDD according to Table
	A.4-1 for Category 1 with one/two sided dynami OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1 and Annex A.5.2.2.
Note 12:	To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH
	instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic
	CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
Note 13:	
Note 14:	cqi-pmi-ConfigurationIndex2 is applied for C _{CSI,1.}

# 9.2.1.5 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in Table 9.2.1.5-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to RC.2 FDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by the set transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. The BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

			Te	st 1	Te	st 2
Parameter	,	Unit	Cell 1	Cell 2 and 3	Cell 1	Cell 2 and 3
Bandwidth		MHz		10		0
PDSCH transmission mode			2	Note 10	2	Note 10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	-	3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	-	3
	σ	dB		0		0
Propagation condit antenna configu			Clause	B.1 (2x2)	Clause I	B.1 (2x2)
$\widehat{E}_{s}/N_{oc2}$ (Not		dB	4 5	Cell 2: 12 Cell 3: 10	13 14	Cell 2: 12 Cell 3: 10
$\mathbf{x}(i)$	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (Note 7)	N/A	-98 (Note 7)	N/A
$N_{oc}^{(j)}$ at antenna port	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)	N/A	-98 (Note 8)	N/A
·	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (Note 9)	N/A	-93 (Note 9)	N/A
Subframe Config	uration		Non-MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0	Cell 2: 6 Cell 3: 1	0	Cell 2: 6 Cell 3: 1
Time Offset betwee	en Cells	μs		: 3 usec		3 usec -1usec
	<b>0</b> "			: 300Hz		300Hz
Frequency Shift betw	een Cells	Hz		-100Hz		-100Hz
ABS pattern (Note 2)			N/A	01010101 01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101 01010101
RLM/RRM Measurement Subframe Pattern (Note 4)			00000100 00000100 00000100 00000100 00000100	N/A	00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets	C _{CSI,0}		01010101 01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101 01010101	N/A
(Note 3)	C _{CSI,1}		10101010 10101010 10101010 10101010 10101010 10101010	N/A	10101010 10101010 10101010 10101010 10101010 10101010	N/A
Number of control OFDM symbols				3	:	3
Max number of HARQ transmissions				1		1
Physical channel for C _{CSI,0} CQI reporting			PUCCH	Format 2	PUCCH	Format 2
Physical channel for C _{CSI,1} CQI reporting			PUSCH	(Note 12)	PUSCH	(Note 12)
PUCCH Report Type				4		4
Reporting periodicity		Ms	Npo	₁ = 5	N _{pd}	= 5
cqi-pmi-Configurati C _{CSI,0} (Note 1	3)		6	N/A	6	N/A
cqi-pmi-Configuratio C _{CSI,1} (Note 1			5	N/A	5	N/A

### Table 9.2.1.5-1: PUCCH 1-0 static test (FDD)

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the
	respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI
	measurements defined in [7]
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1,
	Cell2, and Cell3 are the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe
	overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor
	ABS.
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG
	pattern as defined in Annex A.5.1.5
Note 11:	Reference measurement channel in Cell 1 RC.2 FDD according to Table A.4-1 with one sided dynamic
	OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
Note 12:	To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH
	instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic
	CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
Note 13:	cqi-pmi-ConfigurationIndex is applied for C _{CSI,0}
Note 14:	$cqi$ -pmi-ConfigurationIndex2 is applied for $C_{CSI,1}$ .

# 9.2.1.6 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in Table 9.2.1.6-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to RC.2 TDD in Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by the set of the median CQI is greater than 0.1. If the PDSCH BLER in ABS subframes using transport format indicated by the median CQI is greater than 0.1. The BLER in ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in ABS subframes using transport format indicated by the median CQI is greater than 0.1. The BLER in ABS subframes using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

				Tes	st 1		Te	st 2	
Parameter		Unit	Ce		Cell 2 and 3	Ce	11 1	Cell 2 and 3	
Bandwidth		MHz		1	0		1	0	
PDSCH transmission	on mode		2	2	Note 10		2	Note 10	
Uplink downlink con	figuration				1			1	
Special subfra configuratio				2	4			4	
	$ ho_{\scriptscriptstyle A}$	dB		-	3		-	3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-	3		-	3	
	σ	dB		(	)			0	
Propagation condi antenna configu				Clause I	3.1 (2x2)		Clause I	B.1 (2x2)	
$\widehat{E}_{s}/N_{oc2}$ (No		dB	4	5	Cell 2: 12 Cell 3: 10	13	14	Cell 2: 12 Cell 3: 10	
(.)	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (N	lote 7)	N/A	-98 (N	lote 7)	N/A	
$N_{oc}^{(j)}$ at antenna	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (N	lote 8)	N/A	-98 (N	lote 8)	N/A	
port	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (N	lote 9)	N/A	-93 (N	lote 9)	N/A	
Subframe Config	uration		Non-MBSFN		Non-MBSFN	Non-MBSFN		Non-MBSFN	
Cell Id			0		Cell 2: 6 Cell 3: 1	0		Cell 2: 6 Cell 3: 1	
Time Offset betwe	en Cells	μs	Cell 2: 3 usec Cell 3: -1usec			Cell 2: 3 usec Cell 3: -1usec			
Frequency shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz		300Hz		
ABS pattern (No	ote 2)		N/A		0100010001 0100010001	N/A		0100010001 0100010001	
RLM/RRM Measu Subframe Pattern			000000001 0000000001		N/A	000000001 0000000001		N/A	
CSI Subframe Sets	C _{CSI,0}		0100010001 0100010001		N/A	0100010001 0100010001		N.A	
(Note 3)	C _{CSI,1}		10001 10001		N/A	1000101000 1000101000		N/A	
Number of control symbols	OFDM		3		3		3		
Max number of H transmission					1			1	
Physical channel for reporting	C _{CSI,0} CQI		ł	PUCCH	Format 2		PUCCH	Format 2	
Physical channel for C _{CSI,1} CQI reporting			F	PUSCH	(Note 12)		PUSCH	(Note 12)	
PUCCH Report Type			4		4		4		
Reporting periodicity		ms		Npd	= 5	Np		d = 5	
cqi-pmi-Configurata C _{CSI,0} (Note 1			3		N/A	:	3	N/A	
cqi-pmi-Configuratio	onIndex2		4	1	N/A		4	N/A	
ACK/NACK feedba				Multip	lexing		Multip	lexing	

Table 9.2.1.6-1: PUCCH	1-0 static test (	(TDD)
------------------------	-------------------	-------

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
Note 11:	Reference measurement channel in Cell 1 RC.2 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
Note 12:	To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic
	CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
Note 13:	
Note 14:	cai-pmi-ConfigurationIndex2 is applied for Cost

# 9.2.2 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

#### 9.2.2.1 FDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$  -1, median  $CQI_1$ , median  $CQI_1 +1$ } for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

Parameter		Unit	Te	st 1	Te	st 2		
Bandwidth		MHz			10			
PDSCH transmissio	on mode				4			
Develiate a surray	$ ho_{\scriptscriptstyle A}$	dB		-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-3				
	σ	dB			0			
Propagation condit antenna configur				Clause	B.1 (2 x 2)			
CodeBookSubsetRe bitmap	estriction			01	0000			
SNR (Note 2	2)	dB	10	11	16	17		
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-88	-87	-82	-81		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			98		
Max number of H transmission			1					
Physical channel for reporting	CQI/PMI		PUCCH Format 2					
PUCCH Report Ty CQI/PMI	/pe for		2					
PUCCH Report Typ	e for RI				3			
Reporting period	dicity	ms		Np	_{od} = 5			
cqi-pmi-Configurati	onIndex				6			
ri-ConfigInde					lote 3)			
Note 1:       Reference measurement channel RC.2 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.         Note 2:       For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.								
Note 3: It is intended to have UL collisions between RI reports and HARQ-ACK, since the RI reports shall not be used by the eNB in this test.								

#### Table 9.2.2.1-1: PUCCH 1-1 static test (FDD)

#### 9.2.2.2 TDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.2.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$ -1, median  $CQI_1$ , median  $CQI_1$ +1} for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1.

	Parameter		Unit	Те	st 1	Те	st 2		
	Bandwidth		MHz		10				
PDSCH	l transmissic	on mode				4			
Uplink do	ownlink conf	iguration				2			
	ecial subfra					4			
Downlin	nk power	$ ho_{\scriptscriptstyle A}$	dB			-3			
	cation	$ ho_{\scriptscriptstyle B}$	dB			-3			
		σ	dB			0			
	ation condit				Clause E	3.1 (2 x 2)			
	okSubsetRe bitmap				010	0000			
5	SNR (Note 2	)	dB	10	11	16	17		
	$\hat{I}_{or}^{(j)}$	/	dB[mW/15kHz]	-88	-87	-82	-81		
	$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			98		
	number of H ransmission			1					
-	channel for	-							
Fliysical	reporting			PUSCH (Note 3)					
PUC	CH Report	Туре				2			
	orting period		ms	$N_{\rm pd} = 5$					
cqi-pmi	i-Configurati	onIndex			·	3			
n	i-ConfigInde	X			805 (I	Note 4)			
ACK/NA	ACK feedbad	ck mode			Multip	olexing			
Note 1:	OCNG Pat	tern OP.1	ent channel RC.2 T TDD as described ir	n Annex A.5.2	2.1.				
Note 2:			imum requirements		lied for at leas	t one of the tw	vo SNR(s)		
Note 3:			anted signal input le tween CQI/PMI rep		Q-ACK it is ne	ecessary to re	port both on		
PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and									
	#8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe								
	SF#7 and #2.								
Note 4:			s set to the maximur						
			and HARQ-ACK re						
			Il reports will be dro						
	eNB, CQI ı	report colle	ction shall be skippe	ed every 160	ms during perf	ormance veril	fication.		

#### Table 9.2.2.2-1: PUCCH 1-1 static test (TDD)

## 9.2.3 Minimum requirement PUCCH 1-1 (CSI Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

#### 9.2.3.1 FDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.3.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$  -1, median  $CQI_1$ , median  $CQI_1 +1$ } for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER

using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

Parameter		Unit	Tes	st 1	Tes	st 2		
Bandwidth		MHz			10			
PDSCH transmission mode						9		
		$ ho_{\scriptscriptstyle A}$	dB	0				
Downlink p		$ ho_{\scriptscriptstyle B}$	dB			0		
allocati	on	P _c	dB			-3		
		σ	dB			-3		
Cell-speci	fic referen	ce signals			Antenna	ports 0, 1		
	eference s					orts 15,,18		
CSI-RS per					•			
	offset				ţ	5/1		
Tc	$_{SI-RS}$ / $\Delta_{CSI-}$	RS						
CSI reference	ce signal c	onfiguration				0		
Propagation					Clause	B.1 (4 x 2)		
	onfiguratio					· · ·		
	nforming N			As specified in Section B.4.3				
CodeBookSu				0x0000 0000 0100 0000				
S	NR (Note 2	2)	dB	7	8	13	14	
	$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-91	-90	-85	-84	
	$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		8		
Max number	of HARQ t	ransmissions				1		
Physical of	hannel for	r CQI/PMI			DUDOI	L (N = t = 0)		
,	reporting				PUSC	H (Note3)		
PUCCH Re	oort Type	for CQI/PMI				2		
Physical ch	annel for I	RI reporting			PUCCH	Format 2		
PUCCH	Report Ty	pe for RI				3		
Repo	rting perio	dicity	ms		Np	_d = 5		
	CQI delay		ms			8		
cqi-pmi-ConfigurationIndex						2		
ri-ConfigIndex 1								
Note 1: Re	ference m	easurement ch	annel RC.7 TDD ac	cording to Ta	ble A.4-1 with	n one sided dyr	namic OCNG	
			ibed in Annex A.5.1					
			requirements shall	be fulfilled for	at least one of	of the two SNR	(s) and the	
		anted signal inp						
			CQI/PMI reports an					
			PDCCH DCI forma					
allo	w periodic	CQI/PMI to m	ultiplex with the HA	RQ-ACK on H	20SCH in upl	INK SF#0 and #	<i>‡</i> 5.	

Table 9.2.3.1-1: PUCCH 1-1 static test (FDD)

#### 9.2.3.2 TDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.3.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$  -1, median  $CQI_1$ , median  $CQI_1$  +1} for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

Parameter	•	Unit	Tes	st 1	Tes	st 2	
Bandwidth		MHz			10		
PDSCH transmission					9		
Uplink downlink con					2		
Special subframe cor	nfiguration				4		
	$ ho_{\scriptscriptstyle A}$	dB			0		
Downlink power	$ ho_{\scriptscriptstyle B}$	dB			0		
allocation	$P_c$	dB			-6		
	σ	dB			-3		
CRS reference s	ignals			Antenna	ports 0, 1		
CSI reference si	gnals			Antenna p	orts 15,,22		
CSI-RS periodicity and	d subframe						
offset				5	5/3		
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$	RS						
CSI reference signal c	onfiguration				0		
Propagation condition a				Clause	B.1 (8 x 2)		
configuratio					· · ·	_	
Beamforming N					n Section B.4.		
CodeBookSubsetRestr					000 0000 000		
SNR (Note 2	2)	dB	4	5	10	11	
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-94	-93	-88	-87	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-9	-98	
Max number of HARQ to	ransmissions				1		
Physical channel for	CQI/PMI			DUSC	(Nata 2)		
reporting				PUSCE	I (Note 3)		
PUCCH Report Type for PMI	r CQI/second		2b				
Physical channel for F	RI reporting		PUSCH				
PUCCH Report Type for					5		
Reporting perio		ms		Np	_d = 5		
CQI delay		ms			or 11		
cqi-pmi-Configurati					3		
ri-ConfigInde				805 (	Note 4)		
ACK/NACK feedba	ck mode			Multi	plexing		
Note 1: Reference me	easurement ch	annel RC.7 TDD ac	cording to Ta	ble A.4-1 with	n one sided dyr	namic OCNG	
Pattern OP.1	TDD as descri	ibed in Annex A.5.2	.1.				
		requirements shall	be fulfilled for	at least one of	of the two SNR	t(s) and the	
	anted signal inp						
Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to							
		ultiplex with the HA					
		the maximum allow					
		K reports. In the cas					
		pped, while RI and H			xed. At eNB, C	QI report	
collection sha	all be skipped e	every 160ms during	performance	verification.			

# 9.2.4 Minimum requirement PUCCH 1-1 (With Single CSI Process)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

#### 9.2.4.1 FDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.4.1-1, and using the downlink physical channels specified in tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial

differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

#### wideband $CQI_1$ = wideband $CQI_0$ – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$  -1, median  $CQI_1$ , median  $CQI_1$  +1} for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

Paramet	er	Unit	Tes			Tes				
			TP1	TP2		TP1	TF	2		
Bandwid		MHz				10				
PDSCH transmis	sion mode		1			10				
	$ ho_{\scriptscriptstyle A}$	dB	0	0		0		0	0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0	0	)	0	C	)		
allocation (Note 1)	Pc	dB	-3	-3	2	-3	-;	3		
	σ	dB	-3	N/		-3	N/			
0-11.10		UD UD			/ \			/ \		
Cell ID			C	)		0	)			
Cell-specific refere	ence signals		Antenna ports 0, 1	(Not	e 2)	Antenna ports 0, 1	(Not	e 2)		
CSI reference	signals		Antenna ports 15,,18	N/	A	Antenna ports 15,,18	N/	Ά		
CSI-RS period subframe offset $T_{C}$			5/1	N/	A	5/1	N/	Ά		
CSI-RS config			0	N/	A	0	N/	Ά		
Zero-Power C configurat I _{CSI-RS} / ZeroPow bitmap	ion verCSI-RS		1 / 00100000000 0000	1 100000 000	00000	1 / 00100000000 0000	1 100000 000	00000		
CSI-IM config I _{CSI-RS} / ZeroPow bitmap	erCSI-RS		1 / 00100000000 0000	N/A		1 / 00100000000 0000	N/A			
CSI process configuration Signal/Interference/Reporting mode			CSI-RS/CSI-IN	SI-RS/CSI-IM/PUCCH 1-1		CSI-RS/CSI-I	//PUCCH	11-1		
Propagation condition and antenna configuration			Clause B.1 (4 x 2)	Claus (2 x		Clause B.1 (4 x 2)	Clause B.1 (2 x 2)			
CodeBookSubsetRestriction bitmap			0x0000 0000 0100 0000	100000				000		
SNR (Note		dB	20	6	7	20	14	15		
$\hat{I}_{or}^{(j)}$	-	dB[mW/15kHz]	-78	-92	-91	-78	-84	-83		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98		-98					
Modulation / Info			(Note4)	4) QPSK / 4392		(Note4)	QPSK / 4392			
Max number o transmissi	f HARQ		1	N/A		1	N/	Ά		
Physical channel f reportin	or CQI/PMI		PUSCH (Note5)	N/A		PUSCH (Note5)	N/A			
PUCCH Report CQI/PN	Type for		2	N/	A	2	N/	Ά		
PUCCH Report T			3	N/	A	3	N/	Ά		
Reporting per	iodicity	ms	$N_{\rm pd} = 5$	N/		$N_{\rm pd} = 5$	N/			
CQI Dela	ay	ms	8	N/	A	8	N/	Ά		
cqi-pmi-ConfigurationIndex			2	N/		2	N/			
ri-ConfigIndex			1	N/	A	1	N/	Ά		
PDSCH scheduled sub-frames			1,2,3,4,	6,7,8,9		1,2,3,4,	6,7,8,9			
Timing offset between TPs		US	C	)		0	)			
Frequency offset b		Hz	C	/		(	,			
OP.1 FD Note 2: REs for a Note 3: For each wanted s Note 4: Void	D as described antenna ports ( test, the minir ignal input lev	d in Annex A.5.1.1. D and 1 CRS have num requirements el.	zero transmission shall be fulfilled fo	power. or at least	one of t	one sided dynamic	d the resp	pective		
	collisions hat	veen COI/PMI rend	orts and HARQ-AC	.K it is ne	cessarv	to report both on I		heatad		

Table 9.2.4.1-1: PUCCH 1-1 static test (FDD)

Note 5: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

#### 9.2.4.2 TDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.4.2-1, and using the downlink physical channels specified in tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$  -1, median  $CQI_1$ , median  $CQI_1$  +1} for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1.

Parameter		Unit	Tes	-		Tes	-	_	
			TP1	TP1 TP2		TP1 TP2			
Bandwidt PDSCH transmiss		MHz	<u> </u>						
Uplink downlink co						2			
Special subframe c				4					
opecial cubitatile c		dB	0	0		0	(	)	
Downlink power	$\rho_{\scriptscriptstyle A}$	-		-		_		-	
allocation (Note 1)	$ ho_{\scriptscriptstyle B}$	dB	0	0		0		0	
	Pc	dB	-6	-6		-6		6	
	σ	dB	-3	N/.	A	-3		/A	
Cell ID			C			C	)		
Cell-specific refere	nce signals		Antenna ports 0, 1	(Not	e 2)	Antenna ports 0, 1	(No	te 2)	
CSI reference	signals		Antenna ports 15,,22	N/	A	Antenna ports 15,,22	N	/A	
CSI-RS periodi subframe offset $T_{CS}$			5/3	N/.	A	5/3	Ν	/A	
CSI-RS config			0	N/.	A	0	Ν	/A	
Zero-Power C configurati I _{CSI-RS} / ZeroPow bitmap	ion		3 / 00100000000 0000	3 100001 000	00000	3 / 00100000000 0000	10000	3 / 10000100000 00000	
CSI-IM configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			3 / 00100000000 0000	N/A		3 / 00100000000 0000	N/A		
CSI process configuration Signal/Interference/Reporting mode			CSI-RS/CSI-IN	M/PUCCH 1-1		CSI-RS/CSI-IN			
Propagation condition and antenna configuration			Clause B.1 (8 x 2)	Clause B.1 (2 x 2)		Clause B.1 (8 x 2)	Clause B.1 (2 x 2)		
CodeBookSubsetRestriction bitmap			0x0000 0000 0020 0000 0000 0001 0000	100000		0x0000 0000 0020 0000 0000 0001 0000	100000		
SNR (Note	e 3)	dB	17	6	7	17	14	15	
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-81	-92	-91	-81	-84	-83	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	-98		-98			
Modulation / Infor payload			(Note4)	QPSK / 4392		(Note4)	QPSK / 4392		
Max number of transmissio	ons		1	N/	A	1	N/A		
Physical channel for reporting	9		PUSCH (Note5)	N/.	A	PUSCH (Note5)	N	/A	
PUCCH Report Type for CQI/second PMI			2b	N/		2b		/A	
Physical channel for RI reporting			PUSCH	N/A		PUSCH	N	/A	
PUCCH Report Type for RI/ first PMI			5	N/.		5		/A	
Reporting periodicity		ms	$N_{\rm pd} = 5$	N/.		$N_{\rm pd} = 5$		/A	
CQI Dela cqi-pmi-Configura		ms	10 or 11 3	N/. N/.		10 or 11 3		/A /A	
ri-ConfigIn			805 (Note 6)	N/.		805 (Note 6)		/A /A	
ACK/NACK feedb			Multiplexing	N/		Multiplexing		/A /A	
PDSCH scheduled			3,4,			3,4,			
Timing offset bety		us	0, 1,			0, 1,			
Frequency offset be		Hz	C			C			

## Table 9.2.4.2-1: PUCCH 1-1 static test (TDD)

Note1:	Reference measurement channel RC.10 TDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.
Note 2:	REs for antenna ports 0 and 1 CRS have zero transmission power.
Note 3:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 4:	Void
Note 5:	To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.
Note 6:	RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

# 9.3 CQI reporting under fading conditions

## 9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands can be used for frequently-selective scheduling. To account for sensitivity of the input SNR the sub-band CQI reporting under frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

#### 9.3.1.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)

#### 9.3.1.1.1 FDD

For the parameters specified in Table 9.3.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.1-2 and by the following

a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Parameter		Unit	Tes	Test 1 Test 2		st 2
Bandwidth		MHz	10 MHz			
Transmission mode			1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB	0			
allocation	σ	dB	0			
SNF	(Note 3)	dB	9	10	14	15
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-89	-88	-84	-83
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
Propagation channel			Clause B.2.4 with $\tau_d = 0.45 \mu\text{s},$ $a = 1, \ f_D = 5 \text{Hz}$			).45 <i>μ</i> s,
Antenna configuration			1 x 2			
Reporting interval		ms	5			
CQI delay		ms	8			
Reporting mode			PUSCH 3-0			
Sub-band size		RB	6 (full size)			
Max number of HARQ transmissions			1			
Note 1: If S S Note 2: F	<ul> <li>SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Reference measurement channel RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in</li> </ul>					
Note 3: F	Annex A.5.1.1/2. For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.					

#### Table 9.3.1.1.1-1 Sub-band test for single antenna transmission (FDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE Category	≥1	≥1

#### 9.3.1.1.2 TDD

For the parameters specified in Table 9.3.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.2-2 and by the following

a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Parameter		Unit	Те	Test 1 Test		t 2
Bandwidth		MHz	10 MHz			
Transmission mode				1 (port 0)		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB				
allocation	σ	dB	0			
	downlink uration		2			
Special subframe configuration			4			
SNR (Note 3)		dB	9	10	14	15
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-89	-88	-84	-83
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98			8
			Clause B.2.4 with			1
Propagatio	on channel		$ au_{d}=0.45\mu{ m s},a=1,$			
			$f_D = 5 \text{ Hz}$ 1 x 2			
Antenna configuration			1 x 2			
Reportin	g interval	ms	5			
-	delay	ms	10 or 11			
Reporting mode			PUSCH 3-0			
Sub-band size		RB	6 (full size)			
Max number of HARQ			1			
transmissions			-			
	edback mode		Multiplexing			
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)						
Note 2: Ref with in A	Reference measurement channel RC.3 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.					
	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.					

 Table 9.3.1.1.2-1 Sub-band test for single antenna transmission (TDD)

Table 9.3.1.1.2-2	Minimum	requirement	(TDD)
-------------------	---------	-------------	-------

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE Category	≥1	≥1

# 9.3.1.1.3 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to  $\varepsilon$ .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Parameter		Unit		Tes		Te	est 2
			Cel		Cell 2 and 3	Cell 1	Cell 2 and 3
Bandwidth PDSCH transmissio	on mode	MHz	1	10	Note 10	1	10 Note 10
	$\rho_A$	dB		0		I	0
Downlink power		dB	0			0	
allocation	$ ho_{\scriptscriptstyle B}$ $\sigma$	dB		0			0
	0	QD	Clause	-		Clause B.2.4	
Propagation con	dition		with Td us, a = 5 H	= 0.45 1, fd =	EVA5 Low antenna correlation	with Td = 0.45 us, a = 1, fd = 5 Hz	EVA5 Low antenna correlation
Antenna configu	ration			1x		1	x2
${\widehat E}_{s} ig/ N_{oc2}$ (Not	e 1)	dB	4	5	Cell 2: 12 Cell 3: 10	14 15	Cell 2: 12 Cell 3: 10
( <i>i</i> )	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (No	ote 7)	N/A	-98 (Note 7)	N/A
$N_{oc}^{(j)}$ at antenna port	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (No	ote 8)	N/A	-98 (Note 8)	N/A
•	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (No	,	N/A	-93 (Note 9)	N/A
Subframe Config	uration		Non-M	BSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0		Cell 2: 6	0	Cell 2: 6
			Cell 3: 1 Cell 2: 3 usec		Cell 3: 1 Cell 2: 3 usec		
Time Offset betwee	en Cells	μs	Cell 3: -1usec		Cell 3: -1usec		
Frequency Shift betw	veen Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz		
ABS pattern (No	ote 2)		N/J		01010101 01010101 01010101 01010101 01010101 01010101	N/A	01010101 01010101 01010101 01010101 01010101 01010101
RLM/RRM Measu Subframe Pattern			00000 00000 00000 00000 00000	0100 0100 0100	N/A	00000100 00000100 00000100 00000100 00000100	N/A
CSI Subframe Sets	C _{CSI,0}		01010 01010 01010 01010 01010	0101 0101 0101 0101 0101	N/A	01010101 01010101 01010101 01010101 01010101 01010101	N/A
(Note 3)	C _{CSI,1}		10101 10101 10101 10101 10101	1010 1010 1010 1010	N/A	10101010 10101010 10101010 10101010 10101010 10101010	N/A
Number of control OFDM symbols				3		3	
Max number of HARQ transmissions				1			1
CQI delay		ms			8	3	
Reporting interval (Note 13)		ms	10				
Reporting mo			PUSCH 3-0				
Sub-band size		RB			6 (full	size)	

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5
Note 11:	Reference measurement channel in Cell 1 RC.3 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.
Note 12:	If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
No. 40.	

Note 13: The CSI reporting is such that reference subframes belong to C_{csi,0}.

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
3	0.01	0.01
UE Category	≥1	≥1

Table 9.3.1.1.3-2 Minimum requirement (FDD)

# 9.3.1.1.4 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.4-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to  $\varepsilon$ .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD.

Parameter		Unit		Tes				st 2
			Ce		Cell 2 and 3	Ce		Cell 2 and 3
Bandwidth		MHz			0			0
PDSCH transmission			1	-	Note 10		1	Note 10
Uplink downlink conf	iguration				1			1
Special subframe configuration				2	1			4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		(	)			)
allocation	$ ho_{\scriptscriptstyle B}$	dB		(	)			)
	σ	dB			)			)
Propagation conditio	n		Clause with Td us, a = 5 ł	= 0.45 1, fd =	EVA5 Low antenna correlation	Clause with Td us, a = 5 l	= 0.45 1, fd =	EVA5 Low antenna correlation
Antenna configuratio	n			1:	k2		1:	k2
$\widehat{E}_{s} \big/ N_{oc2}$ (Note 1)		dB	4	5	Cell 2: 12 Cell 3: 10	14	15	Cell 2: 12 Cell 3: 10
	$N_{oc1}^{(j)}$	dBm/15kHz	-98 (N	lote 7)	N/A	-98 (N	lote 7)	N/A
$N_{oc}^{(j)}$ at antenna port	$N_{oc2}^{(j)}$	dBm/15kHz	-98 (Note 8)		N/A	-98 (Note 8)		N/A
	$N_{oc3}^{(j)}$	dBm/15kHz	-93 (Note 9)		N/A	-93 (Note 9)		N/A
Subframe Configuration			Non-M	IBSFN	Non-MBSFN	Non-N	IBSFN	Non-MBSFN
Cell Id			C	)	Cell 2: 6 Cell 3: 1	(	)	Cell 2: 6 Cell 3: 1
Time Offset between Cells		μs	Cell 2: 3 usec Cell 3: -1usec		Cell 2: 3 usec Cell 3: -1usec			
Frequency shift betw	een Cells	Hz	Cell 2: 300Hz Cell 3: -100Hz		Cell 2: 300Hz Cell 3: -100Hz			
ABS pattern (Note 2)	)		N/	/A	0100010001 0100010001	N	/A	0100010001 0100010001
RLM/RRM Measurer Subframe Pattern (N			00000		N/A	00000		N/A
CSI Subframe Sets	C _{CSI,0}		01000 01000		N/A	01000 01000		N.A
(Note 3)	C _{CSI,1}		10001 10001	01000	N/A		01000 01000	N/A
Number of control OFDM symbols			3		3			
Max number of HARQ transmissions			1 1		1			
CQI delay		ms			1	4		
Reporting interval (Note 13)		ms				0		
Reporting mode					PUSC	CH 3-0		
Sub-band size		RB	6 (full size)					
ACK/NACK feedback	< mode		Multiplexing Multiplexing				lexing	

Table 9.3.1.1.4-1 Sub-band test for single antenna transmission (TDD)

Note 1:	For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
Note 2:	ABS pattern as defined in [9].
Note 3:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 4:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 5:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 6:	Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.
Note 7:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 8:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS
Note 9:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.
Note 10:	Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5
Note 11:	Reference measurement channel in Cell 1 RC.3 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.
Note 12:	If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a
	downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
Note 13	The CSI reporting is such that reference subframes belong to Casio

Note 13: The CSI reporting is such that reference subframes belong to C_{csi,0}.

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
3	0.01	0.01
UE Category	≥1	≥1

Table 9.3.1.1.4-2 Minimum requirement (TDD)

## 9.3.1.2 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

#### 9.3.1.2.1 FDD

For the parameters specified in Table 9.3.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Parameter		Unit	Те	st 1	Te	Test 2	
Bandwidth		MHz		10 MHz			
Transmission mode					9		
$\rho_{\scriptscriptstyle A}$		dB	0				
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0				
allocation	$P_c$	dB	0		0		
	σ	dB	0				
SNR (	Note 3)	dB	4	5	11	12	
Î	(j) or	dB[mW/15kHz]	-94	-93	-87	86	
N	(j) oc	dB[mW/15kHz]	-(	98	-9	98	
			Clause	e B.2.4 wi	th $ au_d = 0$	).45 <i>μ</i> s,	
Propagatio	on channel			a = 1, <i>f</i>	$f_D = 5  \text{Hz}$		
Antenna co	onfiguration			$a = 1, f_D = 5 \text{ Hz}$ 2x2			
	ning Model		As specified in Section B.4.3			B.4.3	
	nce signals		' 	Antenna ports 0			
CSI refere	nce signals		A	ntenna p	orts 15,	16	
	and subframe offset			5	/ 1		
	$/\Delta_{CSI-RS}$			5	/ 1		
	signal configuration				4		
CodeBookSubset	Restriction bitmap		000001				
Reporting int	erval (Note 4)	ms	5				
	delay	ms			8		
	ng mode				CH 3-1		
	ind size	RB	6 (full size)				
	RQ transmissions				1		
Note 1:       If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)         Note 2:       Reference measurement channel RC.8 FDD according to Table A.4-1 with one/two							
sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.							
	lote 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.					two	
Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.							

	Test 1	Test 2
α[%]	2	2
β[%]	40	40
γ	1.1	1.1

≥1

≥1

Table 9.3.1.2.1-2 Minimum requirement (FDD)

# 9.3.1.2.2 TDD

For the parameters specified in Table 9.3.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.2-2 and by the following

**UE** Category

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Parameter		Unit	Te	st 1	Te	st 2	
Bandwidth		MHz	10 MHz				
Transmission mode					9		
Uplink downlink configuration					2		
Special subfrar	ne configuration				4		
	$ ho_{\scriptscriptstyle A}$	dB	0				
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		0			
allocation	$P_c$	dB			0		
	σ	dB	0				
SNR (	Note 3)	dB	4	5	11	12	
Î	(j) pr	dB[mW/15kHz]	-94	-93	-87	-86	
N	r(j)	dB[mW/15kHz]	-9	98	-6	98	
			Clause	B.2.4 wi	th $\tau_{d} = 0$	).45 μs,	
Propagati	on channel			Clause B.2.4 with $\tau_d = 0.45 \mu \text{s}$ $a = 1$ , $f_p = 5 \text{Hz}$			
Antenna c	onfiguration		$a = 1, f_D = 5 \text{ Hz}$ 2x2				
	ning Model		As sr	As specified in Section B.4.3			
CRS reference signals					a port 0		
	nce signals			Antenna port 15,16			
CSI-RS periodicity and subframe offset					/ 3		
	$/\Delta_{CSI-RS}$			C	/ 3		
CSI-RS reference	signal configuration				4		
	Restriction bitmap		000001				
	erval (Note 4)	ms	5				
	delay	ms			10		
	ng mode				CH 3-1		
	and size	RB	6 (full size)				
	ARQ transmissions			NA 141	1		
	edback mode				blexing		
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)							
Note 2: Reference						′two	
Note 3: For each	For each test, the minimum requirements shall be fulfilled for at least one of the two				two		
<ul> <li>SNR(s) and the respective wanted signal input level.</li> <li>Note 4: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink</li> <li>SF#3 and #8 to allow aperiodic CQI/PMI/RI to be transmitted on uplink SF#2 and #7.</li> </ul>							

Table 0.24.2.24	Cub hand toot far TDD
Table 9.3.1.2.2-1	Sub-band test for TDD

Table 9.3.1.2.2-2 Minimum	requirement (TDD)
---------------------------	-------------------

	Test 1	Test 2
α[%]	2	2
β[%]	40	40
γ	1.1	1.1
UE Category	≥1	≥1

# 9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by the reporting variance, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. The purpose is to verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

# 9.3.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

#### 9.3.2.1.1 FDD

For the parameters specified in Table 9.3.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.1-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

Parameter		Unit	Test 1 Test			st 2
Bandwidth		MHz		10 N	MHz	
Transmission mode				1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB		0		
allocation	σ	dB		(	)	
SNR (	Note 3)	dB	6	7	12	13
Î	(j) pr	dB[mW/15kHz]	-92	-91	-86	-85
N	oc (j)	dB[mW/15kHz]	-9	98	-9	98
	on channel			EP	A5	
	tion and			High (	1 x 2)	
	onfiguration				H 1-0	
	ng mode periodicity	ms		Npd		
COL	delay	ms				
Physical	channel for	115		8		
	porting		PUSCH (Note 4)			
	eport Type			4	1	
	pmi-				1	
	ationIndex					
	er of HARQ			-	1	
	issions					
<ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel RC.1 FDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.4 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.</li> </ul>						
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.						
Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.						

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

#### 9.3.2.1.2 TDD

For the parameters specified in Table 9.3.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.2-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

		1	1		1	
Parameter		Unit	Test 1 Test		st 2	
Bandwidth		MHz			MHz	
Transmission mode				1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB			)	
power	$ ho_{\scriptscriptstyle B}$	dB		(	)	
allocation	σ	dB		(	)	
confi	downlink guration			2	2	
confi	subframe guration			2	1	
	(Note 3)	dB	6	7	12	13
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-92	-91	-86	-85
1	$V_{oc}^{(j)}$	dB[mW/15kHz]	-9	98	-9	98
	ion channel			EP	A5	
	ation and			High (	(1 x 2)	
	configuration				· · ·	
	ing mode	ms			<u>H 1-0</u>	
Reporting periodicity CQI delay		ms ms	N _{pd} = 5 10 or 11			
	channel for	113				
CQI r	eporting		PUSCH (Note 4)			
	Report Type			4	1	
	i-pmi- rationIndex			3	3	
	per of HARQ					
	missions			1	1	
	CK feedback			Madela	1	
	node			Multip	lexing	
Note 1:	If the UE repo	orts in an available u	plink rep	orting ins	tance at	
		In based on CQI es				
		, this reported wide	band CQ	l cannot l	be applie	d at the
		before SF#(n+4).				
Note 2:		easurement channel				
A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1						
TDD as described in Annex A.5.2.1 and RC.4 TDD according to						
Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.						
Note 3:	Note 3: For each test, the minimum requirements shall be fulfilled for at					
least one of the two SNR(s) and the respective wanted signal input						
Note 4:	level. To avoid collis	sions between COL	renorts a			c
Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH						
DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow						
periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink						
	subframe SF#					·

Table 9.3.2.1.2-1 Fading test for single antenna (TDD)

Table 9.3.2.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

# 9.3.2.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

## 9.3.2.2.1 FDD

For the parameters specified in Table 9.3.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.1-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

Parameter		Unit	Tes	st 1	Tes	st 2
Bandwidth		MHz		10	MHz	
Transmission mode				ć	9	
	$ ho_{\scriptscriptstyle A}$	dB		(	C	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		(	C	
allocation	$P_c$	dB		-1	3	
	σ	dB		-3		
SNR (1	Note 3)	dB	2	3	7	8
$\hat{I}_{a}^{0}$	(j) m	dB[mW/15kHz]	-96	-95	-91	-90
N	(j) oc	dB[mW/15kHz]	-9	8	-9	98
Propagatio	on channel			EP	A5	
Correlation and an				ULA Hig	h (4 x 2)	
Beamform	ning Model		As sp		Section	B.4.3
Cell-specific re				Antenna	ports 0,1	
CSI referen	nce signals		An	tenna po	rts 15,	,18
	and subframe offset				/1	
	$\Delta_{CSI-RS}$			5,	/1	
CSI-RS reference s	signal configuration				2	
CodeBookSubset	Restriction bitmap		0x0	000 000	0 0000 0	001
Reportir	ng mode			PUCC	CH 1-1	
Reporting	ms		N _{pd}	= 5		
CQI delay		ms		8	3	
Physical chann	nel for CQI/ PMI				(Note 4)	
repo				FUSCH	(11018 4)	
	Type for CQI/PMI				2	
	I for RI reporting				Format 2	
PUCCH repo					3	
	gurationIndex				2	
	ïgIndex				1	
	RQ transmissions				1	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)						
Note 2: Reference measurement channel RC.7 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.				ne		
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.				the two		
Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.						

Table 9.3.2.2.1-1 Fading test for FDD

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

Table 9.3.2.2.1-2 Minimum requirement (FDD)

#### 9.3.2.2.2 TDD

For the parameters specified in Table 9.3.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.2-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

	Parar	neter	Unit	Tes	st 1	Те	st 2
Parameter Bandwidth			MHz	100		MHz	51 2
Transmission mode					9		
Uplink downlink configuration					2		
		ne configuration				4	
		$\rho_A$	dB	0			
Downlink p	oower	$ ho_{\scriptscriptstyle B}$	dB		(	C	
allocati		$P_c$	dB		-	6	
		σ	dB	-3			
	SNR (I		dB	1			
	$\hat{I}_{o}^{(}$	j) r	dB[mW/15kHz]	-97	-96	-91	-90
	N	( <i>j</i> ) 20	dB[mW/15kHz]	-9	8	-6	98
		on channel				A5	
Correlation	and ant	enna configuration				n (8 x 2)	
		ing Model				Section	
		nce signals				ports 0, 1	
		nce signals		An	tenna po	rts 15,	,22
CSI-RS per		and subframe offset $\Delta_{\text{CSI-RS}}$			5/	3	
CSI-RS ref		signal configuration				2	
		Restriction bitmap		0x000	0 0000 0	000 0020	0000
	Reportir	na mode		PLIC	0000 0001 PUCCH 1-1 (Sub-mode: 2)		
		periodicity	ms	100		= 5	10. 2)
	CQI		ms			0	
Physical channel for CQI/ PMI					PUSCH	(Note 4)	
reporting PUCCH Report Type for CQI/ PMI						. ,	
		I for RI reporting				<u>c</u> Format 2	,
		ort type for RI				3	
		gurationIndex				3	
	ri-Conf				805 (N	-	
Max numb		RQ transmissions				1	
ACK/	NACK fe	edback mode			Multip	lexing	
		reports in an availabl					
		stimation at a downlin				orted wic	leband
		ot be applied at the e					
		e measurement char					ne
		namic OCNG Pattern					the two
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.							
Note 4: To avoid collisions between C					CK it is r	necessar	y to
report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be				-			
	transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with th HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.					with the	
	collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three						
r	eports co	ollide, it is expected the	hat CQI/PMI reports	s will be d	ropped, v	while RI a	and
F	IARQ-A	CK will be multiplexed	d. At eNB, CQI repo	ort collecti	on shall	be skippe	ed
every 160ms during performance verification and the reported CQI in subframe							
		he previous frame is		subframe	es until a	new CQ	l (after
(	JQI/PMI	dropping) is available	2.				

Table 0 2 2 2 2 4	Eading toot for TDD
Table 9.3.2.2.2-1	Fading test for TDD

Table 9.3.2.2.2-2	Minimum	requirement	(TDD)
-------------------	---------	-------------	-------

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	≥1	≥1

# 9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

# 9.3.3.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)

# 9.3.3.1.1 FDD

For the parameters specified in Table 9.3.3.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.1-2 and by the following

a) a sub-band differential CQI offset level of +2 shall be reported at least  $\alpha$ % for at least one of the sub-bands of full size at the channel edges;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Para	meter	Unit	Test 1	Test 2	
Band	dwidth	MHz	10 MHz 10 MHz		
Transmis	sion mode		1 (port 0)	1 (port 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	
power	$ ho_{\scriptscriptstyle B}$	dB	0	0	
allocation	σ	dB	0	0	
$I_{\scriptscriptstyle ot}^{(j)}$ for	RB 05	dB[mW/15kHz]	-102	-93	
$I_{\scriptscriptstyle ot}^{(j)}$ for	RB 641	dB[mW/15kHz]	-93	-93	
$I_{\mathit{ot}}^{(j)}$ for F	RB 4249	dB[mW/15kHz]	-93	-102	
Î	(j) or	dB[mW/15kHz]	-94 -94		
	er of HARQ hissions		1		
			Clause B.2.4 with $ au_d=0.45\mu$		
Propagati	on channel		$a = 1, f_D = 5 \text{ Hz}$		
Reportin	ig interval	ms		-	
	onfiguration		1:	x 2	
	delay	ms		8	
	ng mode			CH 3-0	
	and size	RB	· · · · ·	l size)	
Note 2:	subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)				
		nnex A.5.1.1/2.		1.1/2 1 DD as	

Table 9.3.3.1.1-1 Sub-band test for single antenna transmission (FDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	≥1	≥1

Table 9.3.3.1.1-2 Minimum requirement (FDD)

# 9.3.3.1.2 TDD

For the parameters specified in Table 9.3.3.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.2-2 and by the following

a) a sub-band differential CQI offset level of +2 shall be reported at least  $\alpha$ % for at least one of the sub-bands of full size at the channel edges;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Para	ameter	Unit	Test 1	Test 2
Ban	dwidth	MHz	10 MHz 10 MHz	
Transmis	ssion mode		1 (port 0)	1 (port 0)
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0	0
allocation	σ	dB	0	0
	downlink guration		2	
	subframe guration		4	
$I_{\scriptscriptstyle ot}^{(j)}$ for	r RB 05	dB[mW/15kHz]	-102	-93
$I_{\scriptscriptstyle ot}^{(j)}$ for	RB 641	dB[mW/15kHz]	-93	-93
$I_{\scriptscriptstyle ot}^{(j)}$ for	RB 4249	dB[mW/15kHz]	-93 -102	
j	$\hat{f}^{(j)}_{or}$	dB[mW/15kHz]	-94 -94	
	per of HARQ		1	
Propagat	ion channel		Clause B.2.4 with $a = 1, f_I$	u
Antenna o	configuration		1 x 5	2
Reporti	ng interval	ms	5	
	delay	ms	10 o	
· · · ·	ing mode		PUSC	
	and size	RB	6 (full	size)
	CK feedback lode		Multipl	exing
<ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 2: Reference measurement channel RC.3 TDD according to table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.</li> </ul>				

Table 9.3.3.1.2-1 Sub-band test for single antenna transmission (TDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	≥1	≥1

9.3.3.2 Void

9.3.3.2.1 Void

9.3.3.2.2 Void

# 9.3.4 UE-selected subband CQI

The accuracy of UE-selected subband channel quality indicator (CQI) reporting under frequency-selective fading conditions is determined by the relative increase of the throughput obtained when transmitting on the UE-selected subbands with the corresponding transport format compared to the case for which a fixed format is transmitted on any subband in set *S* of TS 36.213 [6]. The purpose is to verify that correct subbands are accurately reported for frequency-selective scheduling. To account for sensitivity of the input SNR the subband CQI reporting under frequency-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

#### 9.3.4.1 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)

#### 9.3.4.1.1 FDD

For the parameters specified in Table 9.3.4.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{\text{PRB}}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Par	ameter	Unit	Tes	Test 1 Test 2		
Bar	dwidth	MHz	10 MHz			
Transmi	ssion mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(	)	
power	$ ho_{\scriptscriptstyle B}$	dB		(	)	
allocation	σ	dB		(	)	-
SNR	(Note 3)	dB	9	10	14	15
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-89	-88	-84	-83
1	$V_{oc}^{(j)}$	dB[mW/15kHz]	-9	98	-9	98
			Clause	B.2.4 wit	h $\tau_d = 0$	.45 <i>μ</i> s,
Propaga	tion channel		$a = 1, f_D = 5 \text{ Hz}$			
Reporting interval		ms		5		
	l delay	ms		8	-	
	ing mode			PUSC	H 2-0	
	per of HARQ				1	
	missions		0 (( ))			
	nd size ( <i>k</i> )	RBs		3 (full	size)	
	of preferred ands ( <i>M</i> )			Ę	5	
<ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel RC.5 FDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.</li> <li>Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.</li> </ul>						

 Table 9.3.4.1.1-1 Subband test for single antenna transmission (FDD)

Table 9.3.4.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
γ	1.2	1.2
UE Category	≥1	≥1

#### 9.3.4.1.2 TDD

For the parameters specified in Table 9.3.4.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{PRB}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Para	ameter	Unit	Test 1 Test 2			st 2
Ban	dwidth	MHz	10 MHz			
Transmi	ssion mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$ ho_{\scriptscriptstyle B}$	dB		(	)	
allocation	σ	dB		(	)	
config	downlink guration			2	2	
	subframe guration			4	4	
SNR	(Note 3)	dB	9	10	14	15
	$\hat{f}^{(j)}_{or}$	dB[mW/15kHz]	-89	-88	-84	-83
Ι	$V_{oc}^{(j)}$	dB[mW/15kHz]	-9	8	-6	98
_			Clause B.2.4 with $\tau_d = 0.45$		).45 <i>μ</i> s,	
Propagat	ion channel		$a = 1, f_D = 5$ Hz			
Reporti	ng interval	ms		5	5	
	delay	ms		10 c		
Report	ing mode			PUSC	CH 2-0	
Max num	per of HARQ				1	
transr	nissions				-	
	nd size ( <i>k</i> )	RBs		3 (full	size)	
	of preferred ands ( <i>M</i> )			Ę	5	
ACK/NAC	CK feedback			Multin	lexing	
	ode			•	0	
Note 1:       If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)         Note 2:       Reference measurement channel RC.5 TDD according to Table A.4-1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.         Note 3:       For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.						

#### Table 9.3.4.1.2-1 Sub-band test for single antenna transmission (TDD)

Table 9.3.4.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
γ	1.2	1.2
UE Category	≥1	≥1

## 9.3.4.2 Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)

### 9.3.4.2.1 FDD

For the parameters specified in Table 9.3.4.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting

from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{\text{PRB}}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Para	meter	Unit	Tes	st 1	Tes	st 2
	dwidth	MHz	10 MHz		10 MHz	
Transmis	sion mode		1 (port 0)			
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0			
power	$\rho_{\scriptscriptstyle B}$	dB	0			
allocation	σ	dB		(	)	
SNR	(Note 3)	dB	8	9	13	14
	(j) or	dB[mW/15kHz]	-90	-89	-85	-84
	$I_{oc}^{(j)}$	dB[mW/15kHz]	-g	8	-9	8
Propagati	on channel			B.2.4 wit a = 1, f $N_P$	h $\tau_d = 0$ $\tau_D = 5 \text{Hz}$	.45 μs,
Reporting	periodicity	ms		N _P	= 2	
	delay	ms		8	3	
	channel for			PUSCH	(Note 4)	
PUCCH F	Report Type			4	1	
	band CQI				•	
	Report Type			1	I	
for subband CQI Max number of HARQ						
	nissions		1			
	d size (k)	RBs	6 (full size)			
	f bandwidth ts ( <i>J</i> )			3	3	
	K			1		
cqi-pmi-C	ConfigIndex		1			
	subframe SF# not later than cannot be app	orts in an available u th based on CQI es SF#(n-4), this repor blied at the eNB dow	timation a ted subb vnlink bef	at a down and or wi ore SF#(	llink subfr deband ( n+4)	CQI
	A.4-1 with one	easurement channel				
Note 3:	For each test,	Annex A.5.1.1/2. the minimum requi ne two SNR(s) and t				
	To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.					
Note 5:	CQI reports for bandwidth paraccording to t with j=1.	or the short subband (having 2RBs in the last art) are to be disregarded and data scheduling the most recent subband CQI report for bandwidth part				dth part
		nere wideband CQI cording to the most				I

Table 9.3.4.2.1-1 Subband test for single antenna transmission (FDD)

	Test 1	Test 2
γ	1.15	1.15
UE Category	≥1	≥1

#### 9.3.4.2.2 TDD

For the parameters specified in Table 9.3.4.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{PRB}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

Para	ameter	Unit	Tes	st 1	Tes	st 2
	dwidth	MHz		10	MHz	
Transmis	ssion mode			1 (po	ort 0)	
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(	)	
power $\rho_{\scriptscriptstyle B}$		dB		(	)	
allocation	σ	dB		(	)	
Uplink	downlink			,	2	
	guration			4	<u>_</u>	
	subframe			4	1	
	guration (Note 3)	dB	8	9	13	14
1	(j) or	dB[mW/15kHz]	-90	-89	-85	-84
Ν	$V_{oc}^{(j)}$	dB[mW/15kHz]	-6	98	-9	8
Propagat	ion channel		Clause	B.2.4 wit	th $ au_d=0$	.45 μs,
				a=1, f	$_{D} = 5  \text{Hz}$	
	periodicity	ms		<u>N_P</u>	= 5	
	delay channel for	ms		10 c	or 11	
	eporting			PUSCH	(Note 4)	
PUCCH Report Type			4			
for wideband CQI			•			
PUCCH Report Type for subband CQI			1			
	per of HARQ		1			
	nissions					
	nd size ( <i>k</i> )	RBs		6 (full	size)	
	of bandwidth rts ( <i>J</i> )		3			
pu	K		1			
cqi-pmi-(	ConfigIndex			3	3	
ACK/NAC	K feedback		Multiplexing			
	ode			-	-	
	subframe SF# not later than cannot be app	nts in an available u th based on CQI es SF#(n-4), this repor blied at the eNB dow	timation a ted subb vnlink bei	at a down and or wi fore SF#(	ilink subfr ideband ( n+4).	CQI
Note 2:		easurement channel e/two sided dynamic				-
		Annex A.5.2.1/2.				
Note 3:	least one of th	the minimum requi ne two SNR(s) and t				
Note 4:	level. To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink					CCH allow
	subframe SF#7 and #2. CQI reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and data scheduling according to the most recent subband CQI report for bandwidth par with j=1.					dth part
Note 6:		nere wideband CQI cording to the most				l

# Table 9.3.4.2.2-1 Sub-band test for single antenna transmission (TDD)

	Test 1	Test 2
γ	1.15	1.15
UE Category	≥1	≥1

#### Table 9.3.4.2.2-2 Minimum requirement (TDD)

# 9.3.5 Additional requirements for enhanced receiver Type A

The purpose of the test is to verify that the reporting of the channel quality is based on the receiver of the enhanced Type A. Performance requirements are specified in terms of the relative increase of the throughput obtained when the transport format is that indicated by the reported CQI subject to an interference model compared to the case with a white Gaussian noise model, and a requirement on the minimum BLER of the transmitted transport formats indicated by the reported CQI subject to an interference model.

# 9.3.5.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

#### 9.3.5.1.1 FDD

For the parameters specified in Table 9.3.5.1.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.1.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

	ameter	Unit	Cell 1	Cell 2	
Bandwidth		MHz		MHz	
Transmission mode			ů	ort 0)	
	lic Prefix		Normal	Normal	
	ell ID		0	1	
SINF	R (Note 8)	dB	-2	N/A	
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	N/A	
Propaga	tion channel		EPA5	Static (Note 7)	
Corre	lation and		Low (1 x 2)	(1 x 2)	
antenna	configuration		LOW (1 X Z)	(1 X Z)	
	(Note 4)	dB	N/A	-0.41	
Re	ference		Note 2	N/A	
measure	ment channel			-	
Repor	ting mode		PUCCH 1-0	N/A	
Reportin	ng periodicity	ms	$N_{\rm pd} = 2$	N/A	
	l delay	ms	8	N/A	
	I channel for reporting		PUSCH (Note 3)	N/A	
PUCCH	Report Type		4	N/A	
	qi-pmi-				
Configu	irationIndex		1	N/A	
	ber of HARQ		1	N/A	
Note 1:		rts in an available	unlink reporting in	stance at	
<ul> <li>than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel RC.1 FDD according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and RC.4 FDD according to Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.</li> <li>Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: The respective received power spectral density of each interfering</li> </ul>					
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Note 8: Note 9:	8: SINR corresponds to $\hat{E}_s / N_{oc}$ of Cell 1 as defined in clause 8.1.1.				

 Table 9.3.5.1.1-1 Fading test for single antenna (FDD)

Table 9.3.5.1.1-2 Minimum requirement (FDD)

γ	1.8
UE Category	≥1

#### 9.3.5.1.2 TDD

For the parameters specified in Table 9.3.5.1.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.1.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

			<b>•</b> " <i>i</i>	0.110	
	ameter	Unit	Cell 1	Cell 2	
Bandwidth Transmission mode		MHz		MHz	
			1 (po	ort 0)	
Uplink downlink configuration				2	
	ll subframe				
	iguration		4	4	
	lic Prefix		Normal	Normal	
			0	1	
-	R (Note 8)	dB	-2	N/A	
	· · · · ·				
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98	
	tion channel		EPA5	Static (Note 7)	
	configuration		Low (1 x 2)	(1 x 2)	
	(Note 4)	dB	N/A	-0.41	
	ference		Note 2	N1/A	
measure	ment channel		Note 2	N/A	
	ting mode		PUCCH 1-0	N/A	
Reportin	ng periodicity	ms	$N_{\rm pd} = 5$	N/A	
CC	l delay	ms	10 or 11	N/A	
	l channel for		PUSCH (Note	N/A	
	reporting		3)		
	Report Type		4	N/A	
	qi-pmi- ırationIndex		3	N/A	
Max number of HARQ			1	N/A	
	missions CK feedback				
	node		Multiplexing	N/A	
Note 1: If the UE repo subframe SF#		rts in an available u n based on CQI es n, this reported wide	timation at a down	link SF not later	
Note 2:	Reference me A.4-1 for Cate TDD as descr	before SF#(n+4) easurement channe egory 2-8 with one s ibed in Annex A.5.2 or Category 1 with o	ided dynamic OCI .1 and RC.4 TDD	NG Pattern OP.1 according to	
Note 3:	<ul> <li>Table A.4-1 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.</li> <li>Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.</li> </ul>				
Note 4:	The respective	e received power spin $N_{oc}$ is defined by			
Note 5: Note 6: Note 7:	specified in clause B.5.1. Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded. Both cells are time-synchronous. Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.				
Note 8:	SINR corresp	onds to $ \widehat{E}_{s} / N_{oc}    e$	of Cell 1 as define	d in clause	
Note 9:		sical channel setup defined in Annex A		OCNG pattern	

Table 9.3.5.1.2-1	Fading test for	single antenna (TE	)D)
-------------------	-----------------	--------------------	-----

Tab	le 9	.3.5.	1.2-2	Minimum	requiremen	t (TDD)	)
-----	------	-------	-------	---------	------------	---------	---

γ	1.8
UE Category	≥1

## 9.3.5.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

## 9.3.5.2.1 FDD

For the parameters specified in Table 9.3.5.2.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.2.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

<b></b>		0.114	0.110				
Parameter Bandwidth	Unit MHz	Cell 1	Cell 2 MHz				
Transmission mode	IVINZ		9				
Cyclic Prefix		Normal	Normal				
Cell ID		0	1				
SINR (Note 8)	dB	-2	N/A				
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	N/A				
Propagation channel		EPA5	Static (Note 7)				
Correlation and antenna configuration		Low (2 x 2)	(1 x 2)				
DIP (Note 4)	dB	N/A	-0.41				
Cell-specific reference	uD	Antenna ports	Antenna port 0				
signals		0,1					
CSI reference signals		Antenna ports 15,16	N/A				
CSI-RS periodicity and subframe offset		5/1	N/A				
CSI-RS reference signal configuration		2	N/A				
Zero-power CSI-RS							
configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	N/A	1 / 001000000000 000				
CodeBookSubsetRestr iction bitmap		001111	N/A				
Reference measurement channel		Note 2	N/A				
Reporting mode		PUCCH 1-1	N/A				
Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A				
CQI delay	ms	8	N/A				
Physical channel for CQI/PMI reporting		PUSCH (Note 3)	N/A				
PUCCH Report Type for CQI/PMI		2	N/A				
PUCCH channel for RI reporting		PUCCH Format 2	N/A				
PUCCH Report Type for RI		3	N/A				
cqi-pmi-			N. / A				
ConfigurationIndex		2	N/A				
ri-ConfigIndex		1	N/A				
Max number of HARQ		1	N/A				
transmissions		-	-				
subframe SF# than SF#(n-4 eNB downlink Note 2: Reference me A.4-1 with on	<ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel RC.11 FDD according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as</li> </ul>						
Note 3: To avoid collis necessary to DCI format 0 periodic CQI/ uplink subfrar	necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.						
	: The respective received power spectral density of each interfering cell relative to $N_{ac}$ is defined by its associated DIP value as						
specified in cl Note 5: Two cells are	specified in clause B.5.1. Two cells are considered in which Cell 1 is the serving cell and Cell						
Note 6: Both cells are Note 7: Static channe	time-synchronous	erference model.	5				

Table 9.3.5.2.1-1	Fading	test for	single	antenna	(FDD)
-------------------	--------	----------	--------	---------	-------

Note 8:	SINR corresponds to ${ar E}_s/N_{oc}$ ´ of Cell 1 as defined in clause
Note 9:	8.1.1. Downlink physical channel setup in Cell 2 applies OCNG pattern OP.1 FDD as defined in Annex A.5.1.1.

Table 9.3.5.2.1-2 Minimum requirement (FDD)

γ	1.8
UE Category	≥1

#### 9.3.5.2.2 TDD

For the parameters specified in Table 9.3.5.2.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.2.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

Parameter	Unit	Cell 1	Cell 2				
Bandwidth	MHz		MHz				
Transmission mode		,	9				
Uplink downlink			2				
configuration Special subframe							
configuration		4	1				
Cyclic Prefix		Normal	Normal				
Cell ID		0	1				
SINR (Note 8)	dB	-2	N/A				
	-						
	dB[mW/15kHz]	-98	-98				
Propagation channel Correlation and		EPA5	Static (Note 7)				
antenna configuration		Low (2 x 2)	(1 x 2)				
DIP (Note 4)	dB	N/A	-0.41				
Cell-specific reference	uВ	Antenna ports	Antenna port 0				
signals		0,1	Antenna port o				
CSI reference signals		Antenna ports 15,16	N/A				
CSI-RS periodicity and subframe offset		5/3	N/A				
CSI-RS reference		0	N1/A				
signal configuration		2	N/A				
Zero-power CSI-RS configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap	Subframes / bitmap	N/A	3 / 00100000000 0000				
CodeBookSubsetRestr iction bitmap		001111	N/A				
Reference measurement channel		Note 2	N/A				
Reporting mode		PUCCH 1-1 (Sub-mode: 2)	N/A				
Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A				
CQI delay	ms	10	N/A				
Physical channel for		PUSCH (Note	N1/A				
CQI/PMI reporting		3)	N/A				
PUCCH Report Type		2c	N/A				
for CQI/PMI			IN/A				
Physical channel for RI reporting		PUCCH Format 2	N/A				
PUCCH Report Type							
for RI		3	N/A				
cqi-pmi- ConfigurationIndex		3	N/A				
ri-ConfigIndex		805 (Note 9)	N/A				
Max number of HARQ		1	N/A				
transmissions ACK/NACK feedback							
mode		Multiplexing	N/A				
<ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel RC.11 TDD according to Table</li> </ul>							
<ul> <li>A.4-1 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.</li> <li>Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.</li> <li>Note 4: The respective received power spectral density of each interfering</li> </ul>							

	cell relative to $N_{_{oc}}$ ´ is defined by its associated DIP value as
	specified in clause B.5.1.
Note 5:	Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. Intefering cell is fully loaded.
Note 6:	Both cells are time-synchronous.
Note 7:	Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.
Note 8:	SINR corresponds to $ \widehat{E}_{s} ig / N_{oc}   $ of Cell 1 as defined in clause
	8.1.1.
Note 9:	RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.
Note 10:	
	OP.1 TDD as defined in Annex A.5.2.1.

Table 9.3.5.2.2-2 Minimum requirement (TDD)

γ	1.8
UE Category	≥1

# 9.3.6 Minimum requirement (With multiple CSI processes)

The purpose of the test is to verify the reporting accuracy of the CQI and the UE processing capability for multiple CSI processes. Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.3.6-1. For UE supports one CSI process, CSI process 2 is configured and the corresponding requirements shall be fulfilled. For UE supports three CSI processes, CSI processes 0, 1 and 2 are configured and the corresponding requirements shall be fulfilled. For UE supports four CSI processes, CSI processes 0, 1, 2 and 3 are configured and the corresponding requirements shall be fulfilled.

Table 9.3.6-1	Configuration of	CSI processes
---------------	------------------	---------------

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
CSI-RS resource	CSI-RS signal 0	CSI-RS signal 1	CSI-RS signal 0	CSI-RS signal 1
CSI-IM resource	CSI-IM resource 0	CSI-IM resource 0	CSI-IM resource 1	CSI-IM resource 2

# 9.3.6.1 FDD

For the parameters specified in Table 9.3.6.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least  $\delta$ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.1-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

#### 3GPP TS 36.101 version 11.11.0 Release 11

e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Table 9.3.6.1-1	Fading test for FDD
-----------------	---------------------

		Unit		Tes	st 1			Te	st 2	
Para	Parameter		TF			22	TP1 TP2			P2
	Bandwidth		10 MHz		10 MHz					
Transmis	sion mode		1	0	1	0	10 10		0	
	$ ho_{\scriptscriptstyle A}$	dB		(	0		0			
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0		0					
allocation	$P_c$	dB	-3		(	)	-	3	(	0
	σ	dB		-	3			-	3	
SNR (	Note 7)	dB	10	11	7	8	14	15	9	10
$\hat{I}_{a}$	(j) or	dB[mW/15kHz]	-88	-87	-91	-90	-84	-85	-89	-88
N	(j) oc	dB[mW/15kHz]		-6	98			-(	98	
Propagatio	on channel				Clause B.2.4.1 with $\tau_d = 0.45 \mu s$ , a = 1, $f_D = 5 Hz$		EPA 5 Low		Clause B.2.4.1 with $\tau_d = 0.45 \mu$ s, a = 1, $f_D = 5 \text{Hz}$	
Antenna co	onfiguration		4x	2	2	k2	4	x2	2	x2
	ning Model				Section				n Section	
	between TPs	US			0				0	
	et between TPs	Hz			0				0	
Cell-specific re	ference signals				ports 0,1				ports 0,1	
	signal 0		Antenn 15,		N	/A		na ports ,18	N	/A
	and subframe offset / $\Delta_{\rm CSI-RS}$		5/1		N/A		5	/1	N/A	
CSI-RS 0 c	onfiguration		0		N/A		0		N/A	
CSI-RS	signal 1		N/A		Antenna ports 15,16		N/A			na ports ,16
	and subframe offset / $\Delta_{\rm CSI-RS}$		N/	'A	5/1		N/A			/1
CSI-RS 1 c	onfiguration		N/	Ά	5		N	/A	į	5
Zero-power CSI-F	RS 0 configuration erCSI-RS bitmap		N/			/ 000000 00		/A	111000	/ 0000000 000
	RS 1 configuration rerCSI-RS bitmap		1 001001 000	10000	N	/A	00100	/ 110000 000	N	/A
T _{CSI-RS}	and subframe offset $/ \Delta_{CSI-RS}$		5/	1	5/1		5	5/1 5/1		/1
	onfiguration		2	2	2	2		2	2	2
	and subframe offset / $\Delta_{\rm CSI-RS}$		5/	'1	N	/A	5	/1	N	/A
CSI-IM 1 c	onfiguration		6	6	N	/A	(	6	N	/A
	and subframe offset / $\Delta_{CSI-RS}$		N/	A	5	/1	N	/A	5	/1
	onfiguration		N/A		1		N/A			1
	CSI-RS				RS 0				RS 0	
	CSI-IM				SI-IM 0 CSI-IM 0					
	Reporting mode CodeBookSubsetR		0.40			001	0.4		CH 1-1	001
	estriction bitmap Reporting		0x0000 0000 0000 0001		0x0000 0000 0000 00		001			
CSI process 0	periodicity	ms	$N_{\rm pd}=5$			$N_{\rm pd}=5$				
	CQI delay Physical channel for CQI/ PMI reporting	ms			0 (Note 6)		10 PUSCH (Note			
	PUCCH Report Type for CQI/PMI				2		2			
	PUCCH channel			PUCCH	Format 2		PUCCH Format 2			

	for RI reporting					
	PUCCH report type for RI		;	3	3	3
	cqi-pmi- ConfigurationIndex		2	2	2	2
	ri-ConfigIndex			1		
	CSI-RS		CSI-	RS 1	CSI-	RS 1
	CSI-IM		CSI-	-IM 0	CSI-	IM 0
	Reporting mode		PUSC	CH 3-1	PUSCH 3-1	
CSI process 1	CodeBookSubsetR estriction bitmap		000001		000	001
	Reporting interval (Note 9)	ms		5		
	CQI delay	ms		0		
	Sub-band size	RB		l size)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	CSI-RS			RS 0		
	CSI-IM			-IM 1		
CSI process 2	Reporting mode		PUSC	CH 3-1	PUSC	H 3-1
	CodeBookSubsetR estriction bitmap		0x0000 0000 0000 0001		0x0000 0000 0000 0001	
· F · · · · · -	Reporting interval (Note 9)	ms	5		5	
	CQI delay	ms	10		10	
	Sub-band size	RB	6 (full size			
	CSI-RS		CSI-ŔŠ 1			
	CSI-IM		CSI-IM 2			
	Reporting mode		PUSCH 3-1			
CSI process 3	CodeBookSubsetR estriction bitmap		000001			
	Reporting interval (Note 9)	ms	ť	5	5	
	CQI delay	ms	1	0	1	0
	Sub-band size	RB	6 (ful	l size)	6 (full	size)
CSI process for F	DSCH scheduling		CSI pro	ocess 2	CSI pro	cess 2
	ll ID		0	6		
Quasi-co-loc	cated CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
Quasi-co-lo	ocated CRS		Same Cell ID as Cell 1	Same Cell ID as Cell 2		Same Cell ID as Cell 2
PMI for subframe	2, 3, 4, 7, 8 and 9		0x0000 0000 0000 0001	100000	0x0000 0000 0000 0001	100000
PMI for subf	rame 1 and 6		0x0000 0000 0001 0000	100000	0x0000 0000 0001 0000	100000
Mox number of H	ARQ transmissions		1	N/A	1	N/A

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: 3 symbols allocated to PDCCH.

Note 3: Reference measurement channel RC.12 FDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.

Note 4: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.

Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.

	CSI process 0	CSI process 1	CSI process 2	CSI process 3
α[%]	N/A	2	2	2
$\beta$ [%]	N/A	40	40	40
$\delta$ [%]	10	N/A	N/A	N/A
γ	N/A	N/A	1.02	N/A
UE Category			≥1	

Table 9.3.6.1-2 Minimum requirement (FDD)

#### Table 9.3.6.1-3 Minimum median CQI difference between configured CSI processes (FDD)

	CSI process 1	CSI process 2	CSI process 3
CSI process 0	N/A	1	3
UE Category		≥1	

# 9.3.6.2 TDD

For the parameters specified in Table 9.3.6.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI, median CQI +1} shall be reported at least  $\delta$ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.2-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;
- e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test.

Parameter		11:4	Test 1			Test 2					
Parameter		Unit	TP1 TP2		22	TP1 TP2					
Bandwidth		MHz	10 MH				10 MI				
Transmission mode			10			0	10		10		
	Uplink downlink configuration Special subframe configuration		2 4		2 4			2	2 4		
		dB	0			<u>4</u> <u>4</u> 0		+			
	$\rho_A$					0					
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		(					-		
anocation	P _c	dB	-3		0		-3			C	
	σ	dB			3				3		
	Note 7)	dB	10	11	7	8	14	15	9	10	
I	(j) pr	dB[mW/15kHz]	-88	-87	-91	-90	-84	-85	-89	-88	
N	(j) oc	dB[mW/15kHz]	-98			-98					
			1		Clause	B.2.4.1			Clause	B.2.4.1	
					with					ith	
Propagati	on channel		EPA 5	5 Low	$\tau_d = 0.45 \mu \mathrm{s},$ $a = 1,$		EPA	5 Low	$\tau_d = 0$	).45 <i>μ</i> s,	
-										= 1,	
					$f_D = 5 \mathrm{Hz}$				$f_D =$	= 5 Hz	
	onfiguration		4>		22		4)			x2	
	ning Model		As sp		Section	B.4.3	As sp		n Section B.4.3		
	between TPs et between TPs	us Hz			0 0		-		0		
	ference signals	ΠΖ	Antenna ports 0,1			0 Antenna ports 0,1					
	signal 0		Antenna ports		N/A		Antenna ports		1	/A	
	and subframe offset		15,, 18				15,, 18			-	
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$			5/3		N/A		5/3			/A	
CSI-RS 0 configuration			0		N,		0		N/A		
CSI-RS	signal 1		N/A			a ports 16	N/A		Antenna ports 15, 16		
	CSI-RS 1 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$		N/A		5	/3	N/A		5	/3	
	onfiguration		N/A			5 N/A		/A	5		
	Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap		N/A		3 111000 000	000000	N/A		11100	; / 000000 000	
Zero-power CSI-RS 1 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			3/ 00100110000 00000		N	/A	3 / 00100110000 00000		N	/A	
	and subframe offset		5/	3	5,	/3	5,	/3	5	/3	
	$T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$ CSI-IM 0 configuration		2	2	2	2		2		2	
	and subframe offset / $\Delta_{CSI-RS}$		5/	'3	N	/A	5,	/3	N	/A	
CSI-IM 1 configuration			6	S	N	/A	6	6	N	/A	
	and subframe offset		N/	Ά	5,	/3	N	/A	5	/3	
	$/\Delta_{CSI-RS}$		N/			1	N			1	
001-111/2 0	CSI-RS		11/		RS 0	•	110		RS 0	•	
	CSI-IM		CSI-IM		IM 0		CSI-IM 0				
	Reporting mode		PUCC				PUCCH 1-1				
	CodeBookSubsetR estriction bitmap		0x0000 0000		0000 0000 0001		0x0000 0000 0000 000		001		
CSI process 0	Reporting periodicity	ms	$N_{\rm pd} = 5$			N _{pd} = 5					
	CQI delay	ms		12			12				
	Physical channel for CQI/ PMI			PUSCH (Note 6)			PUSCH (Note 6)				
reporting PUCCH Report			2			2					

# Table 9.3.6.2-1 Fading test for TDD

	Turne for COL/DML						
	Type for CQI/PMI PUCCH channel						
	for RI reporting		PUCCH	Format 2	PUCCH	Format 2	
	PUCCH report			3 3			
	type for RI			3		3	
	cqi-pmi- ConfigurationIndex		:	3		3	
	ri-ConfigIndex		805 (N	ote 10)	805 (Note 10)		
	CSI-RS			RS 1		RS 1	
	CSI-IM			-IM 0		·IM 0	
	Reporting mode		PUSCH 3-1		PUSCH 3-1		
	CodeBookSubsetR				000001		
CSI process 1	estriction bitmap		000	000001		001	
	Reporting interval (Note 9)	ms	Į	5	5		
	CQI delay	ms	12		12		
	Sub-band size	RB	6 (full size)		6 (full size)		
	CSI-RS			RS 0		RS 0	
	CSI-IM		CSI-		CSI-		
	Reporting mode		PUSC		PUSC		
	CodeBookSubsetR						
CSI process 2	estriction bitmap		0x0000 000	0 0000 0001	0x0000 000	0 0000 0001	
	Reporting interval			-		_	
	(Note 9)	ms	Ę	5	Ę	5	
	CQI delay	ms	1	2	1	12	
	Sub-band size	RB	6 (full size	e) (Note 8)	6 (full size) (Note 8)		
	CSI-RS		CSI-	ŔŜ 1	CSI-		
	CSI-IM		CSI-IM 2		CSI-IM 2		
	Reporting mode		PUSCH 3-1		PUSCH 3-1		
	CodeBookSubsetR		000001		000001		
CSI process 3	estriction bitmap		000	1001	000001		
	Reporting interval (Note 9)	ms	5		5		
	CQI delay	ms	1	2	12		
	Sub-band size	RB	6 (full size)		6 (full size)		
CSI process for I	DSCH scheduling		CSI pro	ocess 2	CSI process 2		
	ell ID		0	6	0	6	
Quasi-co-lo	cated CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1	
Quasi-co-l	ocated CRS		Same Cell ID	Same Cell ID	Same Cell ID	Same Cell ID	
			as Cell 1	as Cell 2	as Cell 1	as Cell 2	
PMI for sub	frame 4and 9		0x0000 0000 0000 0001	100000	0x0000 0000 0000 0001	100000	
PMI for sub	frame 3 and 8		0x0000 0000 0001 0000	100000	0x0000 0000 0001 0000	100000	
Max number of HARQ transmissions			1	N/A	1	N/A	
	eedback mode		Multiplexing	N/A	Multiplexing	N/A	
Note 1: If the UE later than Note 2: 3 symbol	reports in an available SF#(n-4), this reported s allocated to PDCCH.	d wideband CQI canr	nce at subframe S not be applied at th	SF#n based on CO ne eNB downlink b	QI estimation at a before SF#(n+4).	downlink SF no	
and 9 fro			-		ssion is schedule	d on subframe 4	
	CNG is transmitted as s						
	CNG is transmitted as s						
PDCCH	collisions between CQI DCI format 0 shall be tr	ansmitted in downlinl					
Note 7: For each	PUSCH in uplink SF#7 test, the minimum requ		filled for at least of	ne of the two SNF	R(s) and the respe	ctive wanted	
	out level. DCI format 0 with a trig		shall be transmitt	ed in downlink SF	#3 and #8 to allow	v aperiodic	
1 .1 .1.1.1.1.	/Pl to be transmitted in	unlink SE#7 and #0					
	RI to be transmitted in		CH transmission	TM10 OCNG show	Ild he transmitted		
Note 9: For these	/RI to be transmitted in e sub-bands which are in ing interval is set to the	not selected for PDS					

and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

	CSI process 0	CSI process 1	CSI process 2	CSI process 3		
α[%]	N/A	2	2	2		
β[%]	N/A	40	40	40		
$\delta$ [%]	10	N/A	N/A	N/A		
γ	N/A	N/A	1.02	N/A		
UE Category	≥1					

Table 9.3.6.2-2 Minimum requirement (TDD)

Table 9.3.6.2-3 Minimum median CQI difference between configured CSI processes (TDD)

	CSI process 1	CSI process 2	CSI process 3
CSI process 0	N/A	1	3
UE Category		≥1	

# 9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated and applied to the PDSCH. A fixed transport format (FRC) is configured for all requirements.

The requirements for transmission mode 6 with 1 TX and transmission mode 9 with 4 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ue}}{t_{rnd}} \, .$$

In the definition of  $\gamma$ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements,  $t_{rnd}$  is 60% of the maximum throughput obtained at  $SNR_{rnd}$  using random precoding, and  $t_{ue}$  the throughput measured at  $SNR_{rnd}$  with precoders configured according to the UE reports;

For the PUCCH 2-1 single PMI requirement,  $t_{rnd}$  is 60% of the maximum throughput obtained at  $SNR_{rnd}$  using random precoding on a randomly selected full-size subband in set S subbands, and  $t_{ue}$  the throughput measured at  $SNR_{rnd}$  with both the precoder and the preferred full-size subband applied according to the UE reports;

For PUSCH 2-2 multiple PMI requirements,  $t_{rnd}$  is 60% of the maximum throughput obtained at  $SNR_{rnd}$  using random precoding on a randomly selected full-size subband in set S subbands, and  $t_{ue}$  the throughput measured at  $SNR_{rnd}$  with both the subband precoder and a randomly selected full-size subband (within the preferred subbands) applied according to the UE reports.

The requirements for transmission mode 9 with 8 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ue, follow1, follow2}}{t_{rnd1, rnd2}}$$

In the definition of  $\gamma$ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements,  $t_{follow1,follow2}$  is 70% of the maximum throughput obtained at  $SNR_{follow1,follow2}$  using the precoders configured according to the UE reports, and  $t_{rnd1, rnd2}$  is the throughput measured at  $SNR_{follow1, follow2}$  with random precoding.

# 9.4.1 Single PMI

# 9.4.1.1 Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)

#### 9.4.1.1.1 FDD

For the parameters specified in Table 9.4.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.1.1-2.

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmis	sion mode		6
Propagat	ion channel		EVA5
Precoding	g granularity	PRB	50
	ation and onfiguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Report	ing mode		PUSCH 3-1
Reporti	ng interval	ms	1
PMI delay (Note 2)		ms	8
Measurement channel			R. 10 FDD
OCNG Pattern			OP.1 FDD
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}
Note 1: For random precoder selection, the pre shall be updated in each TTI (1 ms gra			
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n- 4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).			

Table 9.4.1.1.1-1 PMI test for single-layer (FDD)

Table 9.4.1.1.1-2 Minimum	requirement (FDD)
---------------------------	-------------------

Parameter	Test 1	
γ	1.1	
UE Category	≥1	

## 9.4.1.1.2 TDD

For the parameters specified in Table 9.4.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.1.1.2-2.

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
	downlink		4
	uration		1
Special	subframe		4
	uration		•
Propagatio	on channel		EVA5
	granularity	PRB	50
	tion and		Low 2 x 2
antenna co	onfiguration		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
N	oc	dB[mW/15kHz]	-98
Reporti	ng mode		PUSCH 3-1
Reportin	g interval	ms	1
PMI dela	y (Note 2)	ms	10 or 11
Measurem	ent channel		R.10 TDD
	Pattern		OP.1 TDD
Max numb	er of HARQ		4
	issions		7
	ncy version		{0,1,2,3}
coding sequence			[0,1,2,0]
ACK/NACK feedback			Multiplexing
mode			
Note 1: For random precoder selection, the precoder shall be updated in each available downlink			
transmission instance.			
Note 2: If the UE reports in an available uplink reporting			plink reporting
instance at su		brame SF#n based on PMI	
		a downlink SF not later than SF#(n-	
4), this reported PMI cannot be applied a			oplied at the
eNB downlink before SF#(n+4).			

Table 9.4.1.1.2-1 PMI test for single-layer (TDD)

Parameter	Test 1	
γ	1.1	
UE Category	≥1	

# 9.4.1.2 Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)

## 9.4.1.2.1 FDD

For the parameters specified in Table 9.4.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.1-2.

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
Propagation channel			EVA5
	tion and onfiguration		Low 4 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power	$ ho_{\scriptscriptstyle B}$	dB	-6
allocation	σ	dB	3
N	o(j)	dB[mW/15kHz]	-98
PMI	delay	ms	8 or 9
	ng mode		PUCCH 2-1 (Note 6)
	periodicity	ms	$N_{\rm pd} = 2$
	hannel for porting		PUSCH (Note 3)
PUCCH R	eport Type nd CQI/PMI		2
	eport Type and CQI		1
	ent channel		R.14-1 FDD
	Pattern		OP.1/2 FDD
	granularity	PRB	6 (full size)
Number of bandwidth parts (J)			3
ł	<		1
	onfigIndex		1
	er of HARQ		4
	issions		· · · · · · · · · · · · · · · · · · ·
	icy version equence		{0,1,2,3}
		recoder selection, th	ne precoder shall be updated
Note 2: I	every two TTI (2 ms granularity).		
<ul> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> </ul>			
Note 4: F F t	Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.		
Note 5: In the case where wideband PMI is reported, data transmitted on the most recently used subband			
Note 6: T t i	transmitted on the most recently used subband. The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.		

Table 9.4.1.2.1-1 PMI test for single-layer (FDD)

Table 9.4.1.2.1-2 Minimum requirement (FDD)

	Test 1
γ	1.2
UE Category	≥1

## 9.4.1.2.2 TDD

For the parameters specified in Table 9.4.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.2-2.

Parameter		Unit	Test 1	
Bandwidth		MHz	10	
	sion mode		6	
Uplink downlink configuration			1	
	subframe guration		4	
	ion channel		EVA5	
	ation and			
	onfiguration		Low 4 x 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6	
power	$ ho_{\scriptscriptstyle B}$	dB	-6	
allocation	σ	dB	3	
Ν	$V_{oc}^{(j)}$	dB[mW/15kHz]	-98	
PMI	delay	ms	10	
	ing mode		PUCCH 2-1 (Note 6)	
	periodicity	ms	$N_{\rm P}=5$	
Physical	channel for eporting		PUSCH (Note 3)	
	Report Type			
for wideba	and CQI/PMI		2	
	Report Type band CQI		1	
	nent channel		R.14-1 TDD	
	Pattern		OP.1/2 TDD	
	g granularity	PRB	6 (full size)	
	f bandwidth	TRD	, <i>,</i>	
	ts (J)		3	
pu	<u>K</u>		1	
cqi-pmi-0	ConfigIndex		4	
	per of HARQ			
transr	nissions		4	
Redunda	ncy version		{0,1,2,3}	
	sequence		{0,1,2,0}	
	CK fedback ode		Multiplexing	
		recoder selection, th	ne precoder shall be updated in	
		e downlink transmis		
			plink reporting instance at	
			imation at a downlink SF not later	
	than SF#(n-4)	, this reported PMI	cannot be applied at the eNB	
	downlink befo			
Note 3:		sions between HARQ-ACK and wideband CQI/PMI or		
		it is necessary to report both on PUSCH instead of		
PUCCH. PDCCH DCI format 0 shall be transmitted in downlink				
SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACH				
on PUSCH in uplink subframe SF#8 and #3. Note 4: Reports for the short subband (having 2RBs in the last bandwidth				
1010 4.	part) are to be disregarded and instead data is to be transmitted on			
	the most recently used subband for bandwidth part with j=1.			
Note 5:				
		the most recently u		
			in DCI format 1B shall be mapped	
			indicate the codebook index used	
			[4] according to the latest PMI	
report on PUCCH.				

Table 9.4.1.2.2-1 PMI test for single-layer (TDD)

Table 9.4.1.2.2-2 Minimum	requirement	(TDD)
---------------------------	-------------	-------

	Test 1
γ	1.2
UE Category	≥1

# 9.4.1.3 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

#### 9.4.1.3.1 FDD

For the parameters specified in Table 9.4.1.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.1-2.

		-		
Parameter		Unit	Test 1	
Bandwidth		MHz	10	
Transmission mode Propagation channel			9	
		PRB	EPA5	
Corrolo	granularity tion and	PKD	50 Low	
	onfiguration		ULA 4 x 2	
	c reference		Antenna ports	
sigr			0,1	
			Antenna ports	
	nce signals		15,,18	
	ning model		Annex B.4.3	
CSI-RS per	iodicity and		- / /	
	ne offset		5/ 1	
	/ _{Acsi-Rs}			
	figuration		6	
CodeBook	SubsetRestr		0x0000 0000	
iction			0000 FFFF	
	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0	
power allocation	Pc	dB	-3	
	σ	dB	-3	
N	(j) oc	dB[mW/15kHz]	-98	
	ng mode		PUSCH 3-1	
	g interval	ms	5	
	y (Note 2)	ms	8	
Measurement channel			R.44 FDD	
OCNG	Pattern		OP.1 FDD	
	er of HARQ		4	
transm				
Redundancy version coding sequence			{0,1,2,3}	
Note 1: F	equence	recoder selection, th	• • • •	
Note 2:	shall be updated in each TTI (1 ms granularity). If the UE reports in an available uplink reporting			
	instance at subrame SF#n based on PMI			
estimation at a downlink SF not later than SF#			ater than SF#(n-	
4	), this reported	ed PMI cannot be a		
e	eNB downlink before SF#(n+4).			
	PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order			
	to have the same PDSCH and OCNG power per			
subcarrier at the receiver.				

#### Table 9.4.1.3.1-1 PMI test for single-layer (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

#### Table 9.4.1.3.1-2 Minimum requirement (FDD)

#### 9.4.1.3.2 TDD

For the parameters specified in Table 9.4.1.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.2-2.

		-	
	neter	Unit	Test 1
Band		MHz	<u>10</u> 9
	sion mode Iownlink		9
	uration		1
	subframe		
	uration		4
	on channel		EVA5
	granularity	PRB	50
Antenna co	onfiguration		8 x 2
Correlation	n modeling		High, Cross
			polarized
	c reference		Antenna ports
sigr	nais		0,1
CSI referen	nce signals		Antenna ports 15,,22
Beamform	ning model		Annex B.4.3
	iodicity and		7(IIIIOX D.4.0
	ne offset		5/4
T _{CSI-RS}	/ $\Delta_{CSI-RS}$		
CSI-RS r	eference		0
signal cor	nfiguration		
			0x0000 0000
	SubsetRestr		001F FFE0
iction	bitmap		0000 0000
			FFFF
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0
power	Pc	dB	-6
allocation	FC		-
	σ	dB	-3
N	(j) oc	dB[mW/15kHz]	-98
	ng mode		PUSCH 3-1
	g interval	ms	5
	y (Note 2)	ms	10
	, ,		R.45-1 TDD
			for UE
Measurem	ent channel		Category 1,
Measurenn			R.45 TDD for
			UE Category
	_		≥2
	Pattern		OP.1 TDD
	er of HARQ		4
transm			
	cy version equence		{0,1,2,3}
	K feedback		
	de		Multiplexing
Note 1: For random precoder selection, the precoder			ne precoder
shall be updated in each TTI (1 ms granularity).			
Note 2: If the UE reports in an available uplink reporting			
i	nstance at su	brame SF#n based	on PMI
		a downlink SF not la	
4), this reported PMI cannot be applied at the			
eNB downlink before SF#(n+4).			
Note 3: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#4 and #			
		odic CQI/PMI/RI to b	be transmitted
	on uplink SF# Pandomizatio		am direction
	Note 4: Randomization of the principle beam direction shall be used as specified in B.2.3A.4		
1 3		as specified in D.Z.	л. <del>т</del>

Table 9.4.1.3.2-1 PMI test for single-layer (TDD)

Table 9.4.1.3.2-2 Minimum	requirement	(TDD)
---------------------------	-------------	-------

Parameter	Test 1
γ	3
UE Category	≥1

# 9.4.1a Void

- 9.4.1a.1 Void
- 9.4.1a.1.1 Void
- 9.4.1a.1.2 Void
- 9.4.2 Multiple PMI

# 9.4.2.1 Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)

9.4.2.1.1 FDD

For the parameters specified in Table 9.4.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.1-2.

	meter	Unit	Test 1
Band	lwidth	MHz	10
Transmis	sion mode		6
	on channel		EPA5
Precoding granularity (only for reporting and following PMI)		PRB	6
	tion and		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power	$ ho_{\scriptscriptstyle B}$	dB	-3
allocation	σ	dB	0
	oc	dB[mW/15kHz]	-98
	ng mode		PUSCH 1-2
	g interval	ms	1
PMI	delay	ms	8
Measurement channel			R.11-3 FDD for UE Category 1, R.11 FDD for UE Category ≥2
OCNG Pattern			OP.1/2 FDD
Max numb	er of HARQ iissions		4
Redundancy version		{0,1,2,3}	
Note 1:For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-			
Note 3: 0	4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). One/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2 shall be used.		

Table 9.4.2.1.1-1 PMI test for single-layer (FDD)

 Table 9.4.2.1.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

## 9.4.2.1.2 TDD

For the parameters specified in Table 9.4.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.2-2.

r		1	
	meter	Unit	Test 1
	lwidth	MHz	10
	sion mode		6
	downlink		1
	uration		
	subframe		4
	uration		EPA5
	on channel		EPAS
	granularity	ססס	C
(only for re	porting and ng PMI)	PRB	6
	tion and		
	onfiguration		Low 2 x 2
		٩D	2
Downlink	$\rho_{A}$	dB	-3
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
anocation	σ	dB	0
N	•(j) oc	dB[mW/15kHz]	-98
Reporti	ng mode		PUSCH 1-2
Reportin	g interval	ms	1
PMI	delay	ms	10 or 11
			R.11-3 TDD
			for UE
Measurem	ent channel		Category 1
modourom			R.11 TDD for
			UE Category
			≥2
	Pattern		OP.1/2 TDD
	er of HARQ iissions		4
	icy version		
	equence		{0,1,2,3}
	K feedback		
ma	ode		Multiplexing
Note 1: For random precoder selection, the precoders			
	shall be updated in each available downlink		
	transmission instance.		
	· · · · · · · · · · · · · · · · · · ·		
instance at subrame SF#n based on PMI			
	estimation at a downlink SF not later than SF#(n-		
<ul> <li>4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 3: One/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2 shall be</li> </ul>		pplied at the	
		ottorn OP 1/2	
used.			. 1/2 311ali De

Table 9.4.2.1.2-1 PMI test for single-layer (TDD)

#### Table 9.4.2.1.2-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	≥1

# 9.4.2.2 Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)

#### 9.4.2.2.1 FDD

For the parameters specified in Table 9.4.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.1-2.

Para	meter	Unit	Test 1	
Band	width	MHz	10	
Transmiss	sion mode		6	
Propagatio	on channel		EVA5	
Correlat antenna co	tion and onfiguration		Low 4 x 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6	
power	$ ho_{\scriptscriptstyle B}$	dB	-6	
allocation	σ	dB	3	
N	(j) oc	dB[mW/15kHz]	-98	
PMI	delay	ms	8	
Reportir	ng mode		PUSCH 2-2	
Reporting	g interval	ms	1	
Measureme	ent channel		R.14-2 FDD	
OCNG	Pattern		OP.1/2 FDD	
Subband	d size ( <i>k</i> )	RBs	3 (full size)	
Number of preferred 5 subbands ( <i>M</i> )		5		
Max number of HARQ transmissions 4		4		
	Redundancy version coding sequence {0,1,2,3}		{0,1,2,3}	
Note 1:         For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)           Note 2:         If the UE reports in an available uplink reporting instance at				
ť	han SF#(n-4)	#n based on PMI estimation at a downlink SF not later 4), this reported PMI cannot be applied at the eNB fore SF#(n+4)		

Table 9.4.2.2.1-1	PMI test for single	e-layer (FDD)
-------------------	---------------------	---------------

Table 9.4.2.2.1-2	Minimum	requirement	(FDD)
-------------------	---------	-------------	-------

	Test 1
γ	1.2
UE Category	≥1

#### 9.4.2.2.2 TDD

For the parameters specified in Table 9.4.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.2-2.

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
	lownlink		1
config			
Special s configi	subframe uration		4
	on channel		EVA5
Correlat	tion and onfiguration		Low 4 x 2
		dB	-6
Downlink	$ ho_{\scriptscriptstyle A}$		-
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6
allocation	σ	dB	3
N	(j) oc	dB[mW/15kHz]	-98
PMI	delay	ms	10
Reportir	ng mode		PUSCH 2-2
Reportin		ms	1
Measurement channel			R.14-2 TDD
	Pattern		OP.1/2 TDD
Subband size (k)		RBs	3 (full size)
Number of preferred subbands ( <i>M</i> )			5
Max number of HARQ transmissions			4
Redundancy version			{0,1,2,3}
coding sequence			
mode			Multiplexing
Note 1: For random precoder selection, the precoders shall be updated in each available downlink transmission instance.			
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later			
	han SF#(n-4) Iownlink befo		cannot be applied at the eNB

Table 9.4.2.2.2-2	Minimum	requirement	(TDD)
-------------------	---------	-------------	-------

	Test 1
γ	1.15
UE Category	≥1

# 9.4.2.3 Minimum requirement PUSCH 1-2 (CSI Reference Symbol)

#### 9.4.2.3.1 FDD

For the parameters specified in Table 9.4.2.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.1-2.

	neter	Unit	Test 1		
	width	MHz	10		
	sion mode		9		
	on channel		EVA5		
	granularity		-		
only for re (only for re	porting and ng PMI)	PRB	6		
Correla	tion and		Low		
	onfiguration		ULA 4 x 2		
Cell-specifi	c reference		Antenna ports		
sigr	nals		0,1		
CSI refere	nce signals		Antenna ports 15,,18		
Beamform	ning model		Annex B.4.3		
	iodicity and				
	ne offset		5/ 1		
T _{CSI-RS}	/ $\Delta_{csi-rs}$				
CSI-RS r	eference		0		
	nfiguration		8		
CodeBookS	SubsetRestr		0x0000 0000		
iction	bitmap		0000 FFFF		
	$\rho_{\scriptscriptstyle A}$	dB	0		
Downlink	$ ho_{\scriptscriptstyle B}$	dB	0		
power allocation	Pc	dB	-3		
	σ	dB	-3		
N	(j) oc	dB[mW/15kHz]	-98		
Reportir	ng mode		PUSCH 1-2		
Reportin	g interval	ms	5		
PMI	delay	ms	8		
Measurement channel			R.45-1 FDD for UE Category 1, R.45 FDD for UE Category ≥2		
OCNG	Pattern		OP.1 FDD		
Max numbe	er of HARQ				
transm			4		
	cy version		<i>(</i> <b>)</b> <i>( ) <i>( ) <i>( ) <i>( ) ( ) <i>( ) <i>( ) ( ) <i>( ) <i>( ) ( ) <i>( ) ( ) <i>( ) <i>( ) <i>( ) ( ) ( ) <i>( ) ( ) () ( ) <i>( ) () ( ) () () () ()</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>		
	equence		{0,1,2,3}		
		recoder selection, th	e precoders		
shall be updated in each TTI (1 ms granularity). Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n- 4), this reported PMI cannot be applied at the					
Note 3: C	eNB downlink before SF#(n+4). One/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2 shall be used.				
Note 4: PDSCH _RA= 0 dB, PDSCH_RB= 0 dB in order to have the same PDSCH and OCNG power per subcarrier at the receiver.					

Table 9.4.2.3.1-1 PMI test for single-layer (FDD)

Table 9.4.2.3.1-2 Minimum requirement	(FDD)	

Parameter	Test 1
γ	1.3
UE Category	≥1

## 9.4.2.3.2 TDD

For the parameters specified in Table 9.4.2.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.2-2.

Parar		Unit	Test 1	
Band		MHz	10	
Transmiss			9	
Uplink d configu			1	
Special s			4	
configu			EVA5	
Propagatic Precoding			EVAS	
(only for rep		PRB	6	
followin		FILD	0	
Antenna co			8 x 2	
Correlation			High, Cross	
Cell-specifi	-		polarized	
sigr			Antenna ports 0,1	
CSI referer	nce signals		Antenna ports 15,,22	
Beamform	ing model		Annex B.4.3	
CSI-RS per				
subfram			5/4	
	$\Delta$ CSI-RS			
CSI-RS r			4	
signal con	figuration		_	
			0x0000 0000	
CodeBookS			001F FFE0	
iction b	bitmap		0000 0000	
			FFFF	
	$ ho_{\scriptscriptstyle A}$	dB	0	
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	0	
allocation	Pc	db	-6	
	σ	dB	-3	
N	(j) 90	dB[mW/15kHz]	-98	
Reportin	ig mode		PUSCH 1-2	
Reporting	g interval	ms	5 (Note 4)	
PMI	delay	ms	8	
Measureme	ent channel		R.45-1 TDD for UE Category 1, R.45 TDD for	
			UE Category	
	Dattern		≥2 OP.1 TDD	
OCNG Max numbe				
transm			4	
Redundan	cy version		{0,1,2,3}	
coding se ACK/NACK				
mo	de	and an and a star of the star	Multiplexing	
Note 1:For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI				
4 e	estimation at a downlink SF not later than SF#(n- 4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). ote 3: One/two sided dynamic OCNG Pattern OP.1/2			
T u	TDD as described in Annex A.5.2.1/2 shall be used.			
Note 4: PDCCH DCI format 0 with a trigger for aperio CQI shall be transmitted in downlink SF#4 and to allow aperiodic CQI/PMI/RI to be transmitted			ink SF#4 and #9	

Table 9.4.2.3.2-1 PMI test for single-layer (TDD)

	on uplink SF#3 and #8.
Note 5:	Randomization of the principle beam direction
	shall be used as specified in B.2.3A.4.

#### Table 9.4.2.3.2-2 Minimum requirement (TDD)

Parameter	Test 1
γ	3.5
UE Category	≥1

- 9.4.3 Void
- 9.4.3.1 Void
- 9.4.3.1.1 Void
- 9.4.3.1.2 Void

# 9.5 Reporting of Rank Indicator (RI)

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction in section 9.5.1, transmission mode 9 is used with the specified CodebookSubSetRestriction in section 9.5.2 and transmission mode 3 is used with the specified CodebookSubSetRestriction in section 9.5.3, and transmission mode 10 is used with the specified CodebookSubSetRestriction in section 9.5.5.

For fixed rank 1 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to two singlelayer precoders, For fixed rank 2 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to one two-layer precoder, For follow RI transmission in sections 9.5.1, 9.5.2, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

For fixed rank 1 transmission in section 9.5.3, the RI reporting is restricted to single-layer, for fixed rank 2 transmission in section 9.5.3, the RI reporting is restricted to two-layers. For follow RI transmission in section 9.5.3, the RI reporting is either one or two layers.

# 9.5.1 Minimum requirement (Cell-Specific Reference Symbols)

#### 9.5.1.1 FDD

The minimum performance requirement in Table 9.5.1.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

For the parameters specified in Table 9.5.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.1-2.

Parameter		Unit	Test 1	Test 2	Test 3
Bandwidth		MHz		10	
PDSCH transmission mode				4	
$\rho_{\Lambda}$		dB		-3	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	
allocation	σ	dB		0	
Propagation condit antenna configu				2 x 2 EPA5	
CodeBookSubsetRe				11 for fixed RI = 1	
bitmap	5511011011		010000 for fixed RI = 2		
			010011	for UE reported	
Antenna correla	ation		Low	Low	High
RI configuration	on		Fixed RI=2 and	Fixed RI=1	Fixed RI=1
		15	follow RI	and follow RI	and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-98	-78	-78
Maximum number o transmission			1		
Reporting mo			PUCCH 1-1 (Note 4)		
Physical channel for	CQI/PMI		PUCCH Format 2		
reporting					
PUCCH Report Type for CQI/PMI			2		
Physical channel for RI reporting			PUSCH (Note 3)		
PUCCH Report Typ	e for RI			3	
Reporting period		ms	N_{pd}= 5		
PMI and CQI d		ms	8		
cqi-pmi-Configurati		1110	6		
ri-Configuration			1 (Note 5)		
		ailable uplink repor	ting instance at subfra		on PMI and
			ot later than SF#(n-4),		
			NB downlink before S		
			according to Table A		ed dynamic
OCNG Pat	ttern OP.1 I	FDD as described ir	n Annex A.5.1.1.		
			d HARQ-ACK it is neo		
PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 ar					
#9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8				oframe SF#8	
and #3.					
		ding information in DCI format 2 shall be mapped as:			
<ul> <li>For reported RI = 1 and PMI = 0 &gt;&gt; precoding information bit field index = 1</li> <li>For reported RI = 1 and PMI = 1 &gt;&gt; precoding information bit field index = 2</li> </ul>					
<ul> <li>For reported RI = 1 and PMI = 1 &gt;&gt; precoding information bit field index = 2</li> <li>For reported RI = 2 and PMI = 0 &gt;&gt; precoding information bit field index = 0</li> </ul>					
• For reported RI = 2 and PMI = 0 >> precoding information bit field index = 0		owitabies DI			
Note 5: To avoid the ambiguity of TE behaviour when reports are to be applied at the TE with one su					
			ne subtrame delay in a	addition to inote 1	to align with
CQI and PMI reports.					

Table 9.5.1.1-1	RI Test (FDD)
-----------------	---------------

Table 9.5.1.1-2	Minimum	requirement	(FDD)
-----------------	---------	-------------	-------

	Test 1	Test 2	Test 3
<i>)</i> 1	N/A	1.05	0.9
Ýź	1	N/A	N/A
UE Category	≥2	≥2	≥2

# 9.5.1.2 TDD

The minimum performance requirement in Table 9.5.1.2-2 is defined as

- The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when a) transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;
- The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when b) transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

For the parameters specified in Table 9.5.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.2-2.

Paramete	r	Unit	Test 1	Test 2	Test 3		
Bandwidth	ו	MHz		10			
PDSCH transmiss	ion mode		4				
	$ ho_{\scriptscriptstyle A}$	dB		-3			
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB		-3			
	σ	dB	0				
Uplink downlink cor	figuration			2			
Special subfra configuratio				4			
Propagation cond antenna configu				2 x 2 EPA5			
CodeBookSubsetRestriction bitmap			000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI				
Antenna correlation			Low Low High				
RI configuration			Fixed RI=2 and Fixed RI=1 Fixed RI follow RI and follow RI and follow				
SNR		dB	0	20	20		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78		
Maximum number transmissio				1			
Reporting mode			PUS	SCH 3-1 (Note 3)			
Reporting inte	erval	ms		5			
PMI and CQI	delay	ms		10 or 11			
ACK/NACK feedba				Bundling			
CQI estim	nation at a d	n available uplink reporting instance at subframe SF#n based on PMI and downlink subframe not later than SF#(n-4), this reported PMI and ot be applied at the eNB downlink before SF#(n+4).					
Note 2: Reference OCNG Pa	e measurem attern OP.1	nent channel RC.2 T TDD as described ir	DD according to Table	e A.4-1 with one	sided dynamic		

#### Table 9.5.1.2-1 RI Test (TDD)

Note 3: Reported wideband CQI and PMI are used and sub-band CQI is discarded.

	Test 1	Test 2	Test 3
'n	N/A	1.05	0.9
<i>Y</i> 2	1	N/A	N/A
UE Category	≥2	≥2	≥2

#### Minimum requirement (CSI Reference Symbols) 9.5.2

#### 9.5.2.1 FDD

The minimum performance requirement in Table 9.5.2.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

For the parameters specified in Table 9.5.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.1-2.

Paramete	r	Unit	Test 1	Test 2	Test 3		
Bandwidt		MHz		10			
PDSCH transmiss				9			
	$\rho_A$	dB		0			
Downlink power		dB		0			
allocation	$\rho_{\scriptscriptstyle B}$	-		-			
	Pc	dB dB		0			
σ Propagation condition and		uБ					
antenna configu				2 x 2 EPA5			
Cell-specific referen			Ar	ntenna ports 0			
Beamforming I				ified in Section B	.4.3		
CSI reference s				enna ports 15, 16	-		
CSI-RS periodic							
subframe of				5/1			
$T_{\text{CSI-RS}}$ / $\Delta_{\text{CS}}$	I-RS						
CSI reference	signal			6			
configuration	on						
CodeBookSubsetF	estriction			11 for fixed $RI = 2$			
bitmap	Councilon			00 for fixed $RI = 2$			
·				for UE reported			
Antenna corre	lation		Low	Low	High		
RI configurat	tion		Fixed RI=2 and	Fixed RI=1	Fixed RI=1		
SNR	-		follow RI 0	and follow RI 20	and follow RI 20		
$N_{oc}^{(j)}$			-98	-98	-98		
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-98	-78	-78		
Maximum number of HARQ				1			
transmissio							
Reporting me Physical channel for				PUCCH 1-1			
reporting			PL	JSCH (Note 3)			
PUCCH Report							
CQI/PMI	i ypo ioi			2			
Physical channe	l for RI		PU	ICCH Format 2			
reporting							
PUCCH Report Ty				3			
Reporting perio		ms		$N_{\rm pd} = 5$			
PMI and CQI		ms		8			
cqi-pmi-Configura				6 1 (Noto 4)			
ri-Configuratio		ovoiloble unlink re	l porting instance at sub	1 (Note 4)	ad an DMI and		
			ot later than SF#(n-4),				
	wideband CQI cannot be applied at the eNB downlink before SF#(n+4). Reference measurement channel RC.9 FDD according to Table A.4-1 with one sided dynamic						
		FDD as described in					
Note 3: To avoid	collisions be	tween CQI/ PMI rep	reports and HARQ-ACK it is necessary to report both on				
			CI format 0 shall be transmitted in downlink SF#1 and				
	w periodic C	QI/ PMI to multiple>	with the HARQ-ACK	on PUSCH in up	link SF#0 and		
#5.							
			when applying CQI and				
	re to be appl PMI reports.		ne subframe delay in a	addition to Note	I to align with		

#### Table 9.5.2.1-1 RI Test (FDD)

	Test 1	Test 2	Test 3
<i>γ</i> 1	N/A	1.05	0.9
<i>γ</i> 2	1	N/A	N/A
UE Category	≥2	≥2	≥2

 Table 9.5.2.1-2 Minimum requirement (FDD)

# 9.5.2.2 TDD

The minimum performance requirement in Table 9.5.2.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

For the parameters specified in Table 9.5.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.2-2.

Para	neter		Unit	Test 1 Test 2 Test 3				
Band	width		MHz		10			
PDSCH trans		n mode			9			
		$ ho_{\scriptscriptstyle A}$	dB		0			
Downlink pov	ver		dB		0			
allocation	VCI	$\rho_{\scriptscriptstyle B}$	-		-			
		Pc	dB		0			
Uplink downlin	k oonf	σ	dB	0				
Special s								
config					4			
Propagation								
antenna co					2 x 2 EPA5			
Cell-specific re				Ar	ntenna ports 0			
CSI refere					nna ports 15, 16			
Beamform	ning M	odel			fied in Section B	.4.3		
CSI refere					4			
config					4			
CSI-RS per								
subfram					5/4			
T _{CSI-RS}	$\Delta_{CSI-F}$	RS		0000				
CodeBookSub	setRe	estriction			11 for fixed $RI = 2$ 00 for fixed $RI = 2$			
bitr	nap							
Antenna	orrela	ition		010011 for UE reported RI				
						Fixed RI=1		
RI confi	RI configuration					and follow RI		
SI	١R		dB	0	20	20		
N	$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78			
Maximum nur		f HARQ						
transm					1			
Reportir	ng mo	de			PUCCH 1-1			
Physical chann				וס	ISCH (Noto 2)			
	rting			FU	JSCH (Note 3)			
PUCCH repor	t type MI	for CQI/			2			
Physical ch		for RI		PU	CCH Format 2			
	rting							
Reporting			ms		$N_{\rm pd} = 5$			
PMI and ACK/NACK fe			ms		<u>10</u>			
cqi-pmi-Confi					Bundling 4			
					<u>4</u> 1			
Note 1: If the CQI								
Note 2: Refe	rence	measurem	ent channel RC.9 T	DD according to Table		sided dynamic		
			TDD as described ir					
PUS	CH in:	stead of PL	isions between CQI/PMI reports and HARQ-ACK it is necessary to report both on ead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and eriodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#3 and					

# Table 9.5.2.2-1 RI Test (TDD)

Table 9.5.2.2-2	Minimum rec	uirement (	(TDD)

	Test 1	Test 2	Test 3
<i>)</i> /1	N/A	1.05	0.9
1/2	1	N/A	N/A
UE Category	≥2	≥2	≥2

# 9.5.3 Minimum requirement (CSI measurements in case two CSI subframe sets are configured)

#### 9.5.3.1 FDD

The minimum performance requirement in Table 9.5.3.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ 

For the parameters specified in Table 9.5.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.1-2.

Devementer		l lmit	Т	est 1	Tes	st 2
Parameter		Unit	Cell 1	Cell 2	Cell 1	Cell 2
Bandwidth		MHz	3	10 Note 10	1	
PDSCH transmissio		dB	3	-3		Note 10
Downlink power	$\rho_{A}$	-				-
allocation	$ ho_{\scriptscriptstyle B}$	dB dB		-3 0		3
Propagation condition	σ on and	uв				
antenna configur				2 EPA5	2 x 2	EPA5
bitmap	CodeBookSubsetRestriction		01 for fixed RI = 10 for fixed RI = 2 11 for UE reported RI	N/A	01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A
Antenna correla	tion		Fixed	_ow	Lc	W
RI configuratio	n		RI=1 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
$\widehat{E}_{s}/N_{oc2}$		dB	0	-12	20	6
	$N_{oc1}^{(j)}$	_	-98 (Note 3)	N/A	-102 (Note 3)	N/A
$N_{oc}^{(j)}$	$N_{oc2}^{(j)}$	dBmW/15kH z	-98 (Note 4)	N/A	-98 (Note 4)	N/A
	$N_{oc3}^{(j)}$	dB[mW/15k	-98 (Note 5)	N/A	-94.8 (Note 5)	N/A
$\hat{I}^{(j)}_{or}$	$\hat{I}_{or}^{(j)}$		-98	-110	-78	-92
Subframe Configu	ration		Non- MBSFN	Non-MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0	1	0	1
Time Offset betwee		μs	2.5 (syncr N/A	ronous cells) 10000000 10000000 10000000 10000000 1000000	2.5 (synchro N/A	10000000 10000000 10000000 10000000 1000000
RLM/RRM Measur Subframe Pattern (			1000000 1000000 1000000 1000000 1000000	N/A	1000000 1000000 1000000 1000000 1000000	N/A
CSI Subframe Sets (Note 8)	C _{CSI,0} C _{CSI,1}	-	10000000 10000000 10000000 10000000 0111111	N/A	10000000 10000000 10000000 10000000 0111111	N/A
Number of control Symbols	OFDM		3	3	3	3
	Maximum number of HARQ			1	1	
transmission Reporting mod			PLIC	CH 1-0	PUCC	H 1-0
Physical channel f						
reporting			PUCCF	I Format 2		Format 2
PUCCH Report Type	e tor CQI	<u> </u>		4	2	ł

# Table 9.5.3.1-1 RI Test (FDD)

Physical	channel for RI reporting		PUCCH Format 2		PUCCH	Format 2
PUCC	PUCCH Report Type for RI		3			3
Re	Reporting periodicity ms		Npd	= 10	N _{pd} :	= 10
cqi-pn	ni-ConfigurationIndex		1	1	1	1
ri-	ConfigurationInd			5		5
cqi-pm	i-ConfigurationIndex2		1	0	1	0
ri-(	ConfigurationInd2			2		2
	Cyclic prefix		Normal	Normal	Normal	Normal
Note 1:	If the UE reports in an av a downlink subframe not					
	downlink before SF#(n+4					
Note 2:	Reference measuremen				ble A.4-1 with one	e sided dynamic
	OCNG Pattern OP.1 FD					
Note 3:	This noise is applied in C	•	#1, #2, #3, #5,	#6, #8, #9, #10	,#12, #13 of a sub	oframe
	overlapping with the agg					
Note 4:	This noise is applied in C ABS.	)FDM symbols a	#0, #4, #7, #11	of a subframe	overlapping with t	he aggressor
Note 5:	This noise is applied in a	II OFDM symbo	ls of a subfram	e overlapping	with aggressor no	n-ABS
Note 6:	ABS pattern as defined i					
	transmitted in the serving					subframe of
	aggressor cell and the su					
Note 7:	Time-domain measurem					
Note 8:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].					
Note 9:						ell 1 and Cell 2
Note 10:	Downlink physical chann defined in Annex A.5.1.5		2 in accordanc	e with Annex C	3.3.3 applying OCI	NG pattern as

#### Table 9.5.3.1-2 Minimum requirement (FDD)

	Test 1	Test 2
<i>γ</i> 1	0.9	1.05
UE Category	≥2	≥2

# 9.5.3.2 TDD

The minimum performance requirement in Table 9.5.3.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ .

For the parameters specified in Table 9.5.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.2-2.

Parameter		Unit	Tes		Tes	
			Cell 1	Cell 2	Cell 1	Cell 2
Bandwidth PDSCH transmissio	n mode	MHz	3	Note 11	10 3	Note 11
Uplink downlink conf					1	
Special subfra					-	
configuration	ו		4		4	
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	3	-1	8
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	3	-3	3
anoodion	σ	dB	C		0	
Propagation condit antenna configur			2 x 2 l	EPA5	2 x 2 E	EPA5
CodeBookSubsetRe bitmap			01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A	01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	N/A
Antenna correla	ition		Lo	W/	Lo	M/
RI configuratio			Fixed RI=1 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
$\widehat{E}_{s}/N_{oc2}$		dB	0	-12	20	6
	$N_{ocl}^{(j)}$		-98 (Note 4)	N/A	-102 (Note 4)	N/A
$N_{\scriptscriptstyle oc}^{(j)}$	$N_{oc2}^{(j)}$	dB[mW/15k Hz]	-98 (Note 5)	N/A	-98 (Note 5)	N/A
	$N_{oc3}^{(j)}$		-98 (Note 6)	N/A	-94.8 (Note 6)	N/A
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	-98	-110	-78	-92
Subframe Configu	iration		Non- MBSFN	Non- MBSFN	Non-MBSFN	Non-MBSFN
Cell Id			0	1	0	1
Time Offset betwee	en Cells	μs	2.5 (sync cel		2.5 (synchro	nous cells)
ABS Pattern (No	ite 7)		N/A	0000000 001 0000000 001	N/A	0000000001 0000000001
RLM/RRM Measu Subframe Pattern (			00000000 01 00000000 01	N/A	0000000001 0000000001	N/A
CSI Subframe Sets	C _{CSI,0}		00000000 01 00000000 01	N/A	0000000001 0000000001	N/A
(Note 9)	C _{CSI,1}		11001110 00 11001110 00		1100111000 1100111000	
Number of control Symbols	OFDM		3	3	3	3
Maximum number o			1		1	
transmission					-	
Reporting mo			PUCC	H 1-0	PUCCH 1-0	
Physical channel for and RI reporti	ng		PUCCH I	Format 2	PUCCHI	Format 2
PUCCH Report Type	e for CQI		4		4	

# Table 9.5.3.2-1 RI Test (TDD)

	channel for C _{CSI,1} CQI nd RI reporting		PUSCH	(Note 3)	PUSCH	(Note 3)	
	Report Type for RI		3	3		3	
Rep	orting periodicity	ms	N _{pd} =	= 10	<i>N</i> _{pd} = 10		
ACK/NA	ACK feedback mode		Multip	lexing	Multip	lexing	
	-ConfigurationIndex		8			3	
	ConfigurationInd		5			5	
	ConfigurationIndex2		g			9	
	onfigurationInd2		C			)	
	Cyclic prefix		Normal	Normal	Normal	Normal	
Note 1:	If the UE reports in an estimation at a downli be applied at the eNB	nk subframe n downlink befo	ot later than S re SF#(n+4).	SF#(n-4), this	s reported wideba	nd CQI cannot	
Note 2:	Reference measurem dynamic OCNG Patte					with one sided	
Note 3:	To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#3.						
Note 4:	This noise is applied i overlapping with the a	n OFDM symb	ols #1, #2, #3				
Note 5:	This noise is applied i aggressor ABS.			7, #11 of a sι	ıbframe overlappi	ng with the	
Note 6:		This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS					
Note 7:	ABS pattern as define	d in [9]. PDSC	H other than	SIB1/paging	and its associate	d	
	PDCCH/PCFICH are with the ABS subfram						
Note 8:	reference channel. Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].						
Note 9:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].						
Note 10:	Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2 is the same.						
Note 11:	Downlink physical cha pattern as defined in A		Cell 2 in acco	rdance with	Annex C.3.3 apply	ying OCNG	

Table 9.5.3.2-2 Minimum requirement (TDD)

	Test 1	Test 2
<i>)</i> /1	0.9	1.05
UE Category	≥2	≥2

9.5.4 Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS assistance information are configured)

#### 9.5.4.1 FDD

For the parameters specified in Table 9.5.4.1-1, the minimum performance requirement in Table 9.5.4.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_{1;}$
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

In Table 9.5.4.1-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth			10	10	10
PDSCH transmissio	n mode		3	As defined in Note 1	As defined in Note 1
	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	-3	-3
	σ	dB	0	N/A	N/A
Propagation conditi antenna configur			2×2 EPA5 (Note 2)	2×2 EPA5 (Note 2)	2×2 EPA5 (Note 2)
CodeBookSubsetRe bitmap			01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	As defined in Note 1	As defined in Note 1
	$N_{oc1}$	dB[mW/15k Hz]	-98 (Note 3)	N/A	N/A
$N_{oc}$ at antenna port	$N_{oc2}$	dB[mW/15k Hz]	-98 (Note 4)	N/A	N/A
	N _{oc3}	dB[mW/15k Hz]	-93 (Note 5)	N/A	N/A
$\hat{E}_s/N_{oc2}$		dB	Reference Value in Table 9.5.4.1-2 for each test	12	10
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	Reference Value in Table 9.5.4.1-2 for each test	-86	-88
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift betwe	en Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No	te 6)		N/A	10000000 10000000 10000000 10000000 1000000	10000000 10000000 10000000 10000000 1000000
RLM/RRM Measur Subframe Pattern (			10000000 10000000 10000000 10000000 1000000	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		10000000 10000000 10000000 10000000 1000000	N/A	N/A
(Note 8)	C _{CSI,1}		01111111 01111111 01111111 01111111 0111111	N/A	N/A
Number of control symbols	OFDM		3	Note 9	Note 9
Maximum number o transmission			1	N/A	N/A
Reporting mod			PUCCH 1-0	N/A	N/A
Physical channel for reporting			PUCCH format 2	N/A	N/A
PUCCH Report Type	for COI		4	N/A	N/A
Physical channel for R			PUCCH Format 2	N/A	N/A
PUCCH Report Typ			3	N/A	N/A
Reporting period		ms	$N_{pd}=10$	N/A	N/A

# Table 9.5.4.1-1: RI Test (FDD)

cqi-pm	ni-ConfigurationIndex		11	N/A	N/A
ri-	ConfigurationInd		5	N/A	N/A
cqi-pm	i-ConfigurationIndex2		10	N/A	N/A
ri-C	ConfigurationInd2		2	N/A	N/A
	Cyclic prefix		Normal	Normal	Normal
Note 1:	Downlink physical chann			Annex C.3.3 app	lying OCNG
	pattern OP.5 FDD as de				
Note 2:	The propagation condition				
Note 3:	This noise is applied in (		#1, #2, #3, #5, #6, #8	3, #9, #10,#12, #1	3 of a subframe
	overlapping with the age				
Note 4:	This noise is applied in aggressor ABS.	OFDM symbols	#0, #4, #7, #11 of a s	subframe overlapp	oing with the
Note 5:	This noise is applied in a				
Note 6:	ABS pattern as defined	in [9]. PDSCH c	ther than SIB1/pagin	g and its associat	ed
	PDCCH/PCFICH are tra				
	overlapped with the ABS		ggressor cell and the	subframe is available	able in the
	definition of the reference				
Note 7:	Time-domain measurem [7]	ent resource re	striction pattern for P	Cell measuremen	its as defined in
Note 8:	As configured according measurements defined i		nain measurement re	source restriction	pattern for CSI
Note 9:	The number of control C		s not available for AB	S and is 3 for the	subframe
	indicated by "0" of ABS	pattern.			
Note 10:	If the UE reports in an a	vailable uplink r	eporting instance at s	subframe SF#n ba	ased on CQI
	estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot				
	be applied at the eNB downlink before SF#(n+4).				
Note 11:	Reference measuremen				with one sided
	dynamic OCNG Pattern				
Note 12:	The number of the CRS			e same.	
Note 13:	SIB-1 will not be transm	itted in Cell2 an	d Cell 3 in this test.		

#### Table 9.5.4.1-2 Minimum requirement (FDD)

	Test 1	Test 2	Test 3
$\widehat{E}_{_{s}}/N_{_{oc2}}$ for Cell 1 (dB)	4	20	20
$\hat{I}_{or}^{(j)}$ for Cell 1 (dB[mW/15kHz])	-94	-78	-78
Antenna correlation	High for Cell 1, low for Cell 2 and Cell 3	Low for Cell 1, Cell 2 and Cell 3	High for Cell 1, low for Cell 2 and Cell 3
<i>γ</i> 1	N/A	1.05	0.9
1/2	1.05	N/A	N/A
UE Category	≥2	≥2	≥2

#### 9.5.4.2 TDD

For the parameters specified in Table 9.5.4.2-1, the minimum performance requirement in Table 9.5.4.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_{1;}$
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

In Table 9.5.4.2-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

Parameter		Unit	Cell 1	Cell 2	Cell 3
Bandwidth		MHz	10	10	10
PDSCH transmissio	n mode		3	As defined in Note 1	As defined in Note 1
Uplink downlink conf			1	1	1
Special subframe con	figuration		4	4	4
Develiek zewez	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	-3	-3
	σ	dB	0	N/A	N/A
Propagation conditi antenna configura			2x2 EPA5 (Note 2)	2×2 EPA5 (Note 2)	2x2 EPA5 (Note 2)
CodeBookSubsetRe bitmap	striction		01 for fixed RI = 1 10 for fixed RI = 2 11 for UE reported RI	As defined in Note 1	As defined in Note 1
	$N_{oc1}$	dB[mW/15k Hz]	-98 (Note 3)	N/A	N/A
$N_{oc}$ at antenna port	$N_{oc2}$	dB[mW/15k Hz]	-98 (Note 4)	N/A	N/A
	$N_{oc3}$	dB[mW/15k Hz]	-93 (Note 5)	N/A	N/A
$\hat{E}_s/N_{oc2}$		dB	Reference Value in Table 9.5.4.2-2 for each test	12	10
$\hat{I}_{or}^{(j)}$		dB[mW/15k Hz]	Reference Value in Table 9.5.4.2-2 for each test	-86	-88
Subframe Configu	ration		Non-MBSFN	Non-MBSFN	Non-MBSFN
Time Offset betwee	n Cells	μs	N/A	3	-1
Frequency shift betwe	een Cells	Hz	N/A	300	-100
Cell Id			0	126	1
ABS pattern (No			N/A	0000000001 0000000001	0000000001 0000000001
RLM/RRM Measur Subframe Pattern (I			0000000001 0000000001	N/A	N/A
CSI Subframe Sets	C _{CSI,0}		0000000001 0000000001	N/A	N/A
(Note 8)	C _{CSI,1}		1100111000 1100111000	N/A	N/A
Number of control symbols	OFDM		3	Note 9	Note 9
Maximum number o transmissions			1	N/A	N/A
Reporting mod			PUCCH 1-0	N/A	N/A
Physical channel for 0 and RI reportir			PUCCH format 2	N/A	N/A
Physical channel for ( and RI reportir	C _{CSI,1} CQI		PUSCH (Note 14)	N/A	N/A
PUCCH Report Type			4	N/A	N/A
PUCCH Report Typ			3	N/A	N/A
Reporting period	icity	ms	<i>N_{pd}</i> = 10	N/A	N/A
ACK/NACK feedbac			Multiplexing	N/A	N/A
cqi-pmi-Configuratio	onIndex		8	N/A	N/A
ri-Configuration			5	N/A	N/A
cqi-pmi-Configuratio			9	N/A	N/A
ri-Configuration	nd2		0	N/A	N/A
Cyclic prefix			Normal	Normal	Normal

# Table 9.5.4.2-1: RI Test (TDD)

Note 1:	Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern OP.5 TDD as defined in Annex A.5.2.5.
Note 2:	The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.
Note 3:	This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.
Note 4:	This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.
Note 5:	This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS
Note 6:	ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated
	PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is
	overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.
Note 7:	Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]
Note 8:	As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].
Note 9:	The number of control OFDM symbols is not available for ABS and is 3 for the subframe indicated by "0" of ABS pattern.
Note 10:	If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
Note 11:	
Note 12:	The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.
Note 13:	SIB-1 will not be transmitted in Cell2 and Cell 3 in this test.
Note 14:	To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on
	PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and
	#9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe
	SF#8 and #3.

#### Table 9.5.4.2-2 Minimum requirement (TDD)

	Test 1	Test 2	Test 3
$\widehat{E}_{s}/N_{oc2}$ for Cell 1 (dB)	4	20	20
$\hat{I}_{or}^{(j)}$ for Cell 1 (dB[mW/15kHz])	-94	-78	-78
Antenna correlation	High for Cell 1, low for Cell 2 and Cell 3	Low for Cell 1, Cell 2 and Cell 3	High for Cell 1, low for Cell 2 and Cell 3
'n	N/A	1.05	0.9
1/2	1.05	N/A	N/A
UE Category	≥2	≥2	≥2

# 9.5.5 Minimum requirement (with CSI process)

Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.5.5-1.

For UE supports one CSI process, CSI process 0 is configured for Test 1 and Test 2, but CSI process 1 is not configured for Test 2. The corresponding  $\gamma$  requirements for Test 1 and Test 2 shall be fulfilled. The requirement on reported RI for CSI process 1 in Test 2 is not applicable.

For UE supports multiple CSI processes, CSI process 0 is configured for Test 1 and CSI processes 0 and 1 are configured for Test 2. The corresponding  $\gamma$  requirements for Test 1 and Test 2 shall be fulfilled, and also the requirement on reported RI for CSI process 1 in Test 2.

Table 9.5.5-1	Configuration	of CSI processes
---------------	---------------	------------------

	CSI process 0	CSI process 1
CSI-RS resource	CSI-RS signal 0	CSI-RS signal 1
CSI-IM resource	CSI-IM resource 0	CSI-IM resource 1

#### 9.5.5.1 FDD

The minimum performance requirement in Table 9.5.5.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

For the parameters specified in Table 9.5.5.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.1-2.

# Table 9.5.5.1-1 RI Test (FDD)

			Tes	st 1	Te	st 2
Parameter Bandwidth		Unit	TP1	TP2	TP1	TP2
		MHz	10 MHz			MHz
Transmission mode			10	10	10	10
	$ ho_{\scriptscriptstyle A}$	dB	(	0		0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB	(	D		C
allocation	P _c	dB	0	0	0	0
	σ	dB	- (	0		<u> </u>
SNR	Ŭ	dB	0	0	20	20
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-98	-98	-78	-78
$\overline{N_{oc}^{(j)}}$		dB[mW/15kHz]		98	{	98
Propagation channe	<u>ə</u> l		EPA 5 Low	EPA 5 Low	EPA 5 Low	EPA 5 High
Antenna configurati			2x2	2x2	2x2	2x2
Beamforming Mode				Section B.4.3		Section B.4.3
Timing offset betwe		us	1	C	1	C
Frequency offset be		Hz		0		0
Cell-specific referen	nce signals			a ports 0		a ports 0
CSI-RS signal 0			Antenna ports 15,16	N/A	Antenna ports 15,16	N/A
CSI-RS 0 periodicity $T_{CSI-RS} / \Delta_{CSI-RS}$	y and subframe offset		5/1	N/A	5/1	N/A
CSI-RS 0 configura	tion		0	N/A	0	N/A
CSI-RS signal 1			N/A	Antenna ports 15,16	N/A	Antenna ports 15,16
CSI-RS 1 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$			N/A	5/1	N/A	5/1
CSI-RS 1 configuration			N/A	3	N/A	3
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			N/A	1 / 10000010000 00000	N/A	1 / 10000010000 00000
Zero-power CSI-RS 1 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			1 / 00110000000 00000	N/A	1 / 00110000000 00000	N/A
CSI-IM 0 periodicity $T_{CSI-RS} / \Delta_{CSI-RS}$	and subframe offset		5/1	N/A	5/1	N/A
CSI-IM 0 configurat	ion		2	N/A	2	N/A
CSI-IM 1 periodicity $T_{CSI-RS} / \Delta_{CSI-RS}$	and subframe offset		N/A	5/1	N/A	5/1
CSI-IM 1 configurat	ion		N/A	6	N/A	6
RI configuration			Fixed RI=2 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
Physical channel fo	r CQI/PMI reporting		PUSCH (Note 6)	N/A	PUSCH (Note 6)	PUSCH (Note 6)
PUCCH Report Typ	e for CQI/PMI		2	N/A	2	2
Physical channel fo	r RI reporting		PUCCH Format 2	N/A	PUCCH Format 2	PUCCH Format 2
PUCCH Report Typ	e for RI		3	N/A	3	3
	CSI-RS		CSI-RS 0	N/A	CSI-RS 0	N/A
	CSI-IM		CSI-IM 0	N/A	CSI-IM 0	N/A
	Reporting mode		PUCCH 1-1	N/A	PUCCH 1-1	N/A
CSI process 0 (Note 7)	Reporting periodicity	ms	$N_{\rm pd} = 5$	N/A	$N_{\rm pd}=5$	N/A
	CQI delay	ms	8	N/A	10	N/A
	cqi-pmi- ConfigurationIndex		6	N/A	6	N/A
	ri-ConfigIndex		1	N/A	1	N/A
	CSI-RS		N/A	N/A	N/A	CSI-RS 1
CSI process 1	CSI-IM		N/A	N/A	N/A	CSI-IM 1
(Note 7, Note 9)	Reporting mode		N/A	N/A	N/A	PUCCH 1-1
	Reporting periodicity	ms	N/A	N/A	N/A	$N_{\rm pd}=5$

	CQI delay	ms	N/A	N/A	N/A	10
	cqi-pmi- ConfigurationIndex		N/A	N/A	N/A	4
	ri-ConfigIndex		N/A	N/A	N/A	1
CSI proce	ess for PDSCH scheduling		CSI pro	ocess 0	CSI pro	ocess 0
Cell ID			0	6	0	6
Quasi-co	-located CSI-RS		CSI-RS 0	CSI-RS 1	CSI-RS 0	CSI-RS 1
Quasi-co	-located CRS		Same Cell ID as Cell 1	Same Cell ID as Cell 2	Same Cell ID as Cell 1	Same Cell ID as Cell 2
PMI for s	ubframe 2, 3, 4, 7, 8 and 9		010000 for fixed RI = 2 010011 for UE reported RI	100000	000011 for fixed RI = 1 010011 for UE reported RI	N/A
PMI for subframe 1 and 6			100000	100000	100000	N/A
Max number of HARQ transmissions			1	N/A	1	N/A
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)						
Note 2:	3 symbols allocated to PDCCH					
Note 3:	Reference measurement channel RC.13 FDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.					
Note 4:	TM10 OCNG as specified in A.5	5.1.8 is transmitted or	subframe 1 and 6	6 from TP1.		
Note 5:	TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2 for Test 1; TP2 is					

Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test 2.

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 7: If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Note 9: If UE supports one CSI process, CSI process 1 is not configured in Test 2.

#### Table 9.5.5.1-2 Minimum requirement (FDD)

	Test 1	Test 2
<i>γ</i> 1	N/A	1.0
<i>Y</i> 2	1.0	N/A
UE Category	≥2	≥2

#### 9.5.5.2 TDD

The minimum performance requirement in Table 9.5.5.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

For the parameters specified in Table 9.5.5.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.2-2.

# Table 9.5.5.2-1 RI Test (TDD)

Parameter			Test 1		Test 2	
Parameter Bandwidth		Unit	TP1	TP2	TP1	TP2
		MHz	10 MHz			MHz
Transmission mode			10	10	10	10
$ ho_{\scriptscriptstyle A}$		dB	(	D	(	0
Downlink power	$ ho_{\scriptscriptstyle B}$	dB		0	(	0
allocation	$P_c$	dB	0	0	0	0
	σ	dB	_	0	-	0
Uplink downlink co	-	üB	2	2	2	2
Special subframe c	0		4	4	4	4
SNR	John gui da on	dB	0	0	20	20
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-98	-78	-78
$N_{oc}^{(j)}$		dB[mW/15kHz]	-9	98	-2	98
Propagation chann	el		EPA 5 Low	EPA 5 Low	EPA 5 Low	EPA 5 High
Antenna configurat	tion		2x2	2x2	2x2	2x2
Beamforming Mode			As specified in	Section B.4.3	As specified in	Section B.4.3
Timing offset betwe		US		0		0
Frequency offset b		Hz		0		0
Cell-specific refere	nce signals			a ports 0		a ports 0
CSI-RS signal 0			Antenna ports 15,16	N/A	Antenna ports 15,16	N/A
CSI-RS 0 periodicit T _{CSI-RS} / $\Delta$ _{CSI-RS}	ty and subframe offset		5/3	N/A	5/3	N/A
CSI-RS 0 configura	ation		0	N/A	0	N/A
CSI-RS signal 1			N/A	Antenna ports 15,16	N/A	Antenna port 15,16
CSI-RS 1 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$			N/A	5/3	N/A	5/3
CSI-RS 1 configura	ation		N/A	3	N/A	3
Zero-power CSI-RS 0 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			N/A	3 / 10000010000 00000	N/A	3 / 10000010000 00000
Zero-power CSI-RS 1 configuration I _{CSI-RS} / ZeroPowerCSI-RS bitmap			3 / 00110000000 00000	N/A	3 / 00110000000 00000	N/A
CSI-IM 0 periodicity T _{CSI-RS} / $\Delta$ _{CSI-RS}	y and subframe offset		5/3	N/A	5/3	N/A
CSI-IM 0 configura	tion		2	N/A	2	N/A
CSI-IM 1 periodicity T _{CSI-RS} / $\Delta$ _{CSI-RS}	y and subframe offset		N/A	5/3	N/A	5/3
CSI-IM 1 configura	tion		N/A	6	N/A	6
RI configuration			Fixed RI=2 and follow RI	N/A	Fixed RI=1 and follow RI	N/A
	CSI-RS		CSI-RS 0	N/A	CSI-RS 0	N/A
	CSI-IM		CSI-IM 0	N/A	CSI-IM 0	N/A
CSI process 0 (Note 6, 7)	Reporting mode		PUSCH 3-1	N/A	PUSCH 3-1	N/A
	Reporting Interval	ms	5	N/A	5	N/A
	CQI delay	ms	11	N/A	11	N/A
	CSI-RS		N/A	N/A	N/A	CSI-RS 1
CSI process 1	CSI-IM		N/A	N/A	N/A	CSI-IM 1
(Note 6, 7, 8)	Reporting mode		N/A	N/A	N/A	PUSCH 3-1
· · · · · · · · · · · · · · · · · · ·	Reporting Interval	ms	N/A	N/A	N/A	5
CQI delay CSI process for PDSCH scheduling		ms	N/A	N/A	N/A	11
CSI process for PL Cell ID	SCH scheduling			ocess 0		ocess 0
Quasi-co-located C			CSI-RS 0	6 CSI-RS 1	CSI-RS 0	6 CSI-RS 1
			Same Cell ID	Same Cell ID	Same Cell ID	Same Cell IE
Quasi-co-located C	CRS		as Cell 1	as Cell 2	as Cell 1	as Cell 2
PMI for subframe 4	and 9		010000 for fixed RI = 2 010011 for UE	100000	000011 for fixed RI = 1 010011 for UE	N/A

			reported RI		reported RI	
PMI for subframe 3 and 8			100000	100000	100000	N/A
Max num	ber of HARQ transmissions		1	N/A	1	N/A
ACK/NAC	CK feedback mode		Multiplexing	N/A	Multiplexing	N/A
Note 1:	Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF no later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)					downlink SF not
Note 2:	3 symbols allocated to PDCCH					
Note 3:	93: Reference measurement channel RC.13 TDD according to Table A.4-1. PDSCH transmission is scheduled on subframe 4 and 9 from TP1.					
Note 4:	TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3 and 8 from TP1.					
Note 5:						
Note 6:	Reported wideband CQI and PM	II are used and sub-b	and CQI is discar	ded.		
Note 7:	If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.					
Note 8:	If UE supports one CSI process, CSI process 1 is not configured in Test 2.					
Note 9:	PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#3and #8 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#7 and #2.					

Table 9.5.5.2-2 Minimum r	requirement (	(TDD)
---------------------------	---------------	-------

	Test 1	Test 2
<i>)</i> 1	N/A	1.0
<i>j</i> 2	1.0	N/A
UE Category	≥2	≥2

# 9.6 Additional requirements for carrier aggregation

This clause includes requirements for the reporting of channel state information (CSI) with the UE configured for carrier aggregation. The purpose is to verify that the channel state for each cell is correctly reported with multiple cells configured for periodic reporting.

# 9.6.1 Periodic reporting on multiple cells (Cell-Specific Reference Symbols)

#### 9.6.1.1 FDD

The following requirements apply to UE Category  $\geq 3$ . For the parameters specified in Table 9.6.1.1-1 and Table 9.6.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported shall be such that

wideband  $CQI_{Pcell}-wideband\ CQI_{Scell} \geq 2$ 

for more than 90% of the time.

Parameter		Unit	Pcell	Scell
PDSCH transmission mode				1
Downlink power $\rho_A$		dB	0	
allocation	$ ho_{\scriptscriptstyle B}$	dB		0
Propagation condit antenna configur			AWG	N (1 x 2)
SNR		dB	10	4
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-94
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98
Physical channel for CQI reporting			PUCCH	Format 2
PUCCH Report	Туре			4
Reporting period	dicity	ms	$N_{\rm pd} = 10$	
cqi-pmi-ConfigurationIndex			11	16 [shift of 5 ms relative to Pcell]
			DSCH for user data is sche as described in Annex A.5	

# Table 9.6.1.1-1: Parameters for PUCCH 1-0 static test on multiple cells (FDD)

#### Table 9.6.1.1-2: PUCCH 1-0 static test (FDD)

Test number		Bandwidth combination
1		10MHz for both cells
2		20MHz for both cells
Note 1:	lote 1: The applicability of requirements for different CA configurations and	
	bandwid	dth combination sets is defined in 9.1.1.2.

## 9.6.1.2 TDD

The following requirements apply to UE Category  $\geq 3$ . For the parameters specified in Table 9.6.1.2-1 and Table 9.6.1.2-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported shall be such that

wideband  $CQI_{Pcell}-wideband\ CQI_{Scell} \geq 2$ 

for more than 90% of the time.

Parameter		Unit	Pcell	Scell			
PDSCH transmissio	on mode			1			
Uplink downlink cont	figuration			2			
Special subfra configuration				4			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0			
allocation	$ ho_{\scriptscriptstyle B}$	dB		0			
Propagation condit antenna configu			AWGN (1 x 2)				
SNR		dB	10	4			
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	-88	-94			
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98			
Physical channel f reporting	or CQI		PUCCH Format 2				
PUCCH Report	Туре			4			
Reporting period	dicity	ms	Λ	/ _{pd} = 10			
cqi-pmi-Configurati	onIndex		8	13 [shift of 5 ms relative to Pcell]			
Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.							

Table 9.6.1.2-1: PUCCH 1-0 static test on multiple cells (TDD)

#### Table 9.6.1.2-2: PUCCH 1-0 static test (TDD)

Test number		Bandwidth combination					
1		20MHz for both cells					
Note 1:	The applicability of requirements for different CA configurations and bandwidth combination sets is defined in 9.1.1.2.						

## 10 Performance requirement (MBMS)

## 10.1 FDD (Fixed Reference Channel)

The parameters specified in Table 10.1-1 are valid for all FDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Parameter	Unit	Value					
Number of HARQ processes	Processes	None					
Subcarrier spacing	kHz	15 kHz					
Allocated subframes per Radio Frame (Note 1)		6 subframes					
Number of OFDM symbols for PDCCH		2					
Cyclic Prefix		Extended					
Note1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.							

#### 10.1.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.1-1 and Table 10.1.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.1-2.

Parameter		Unit	Test 1-4			
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0			
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)			
	σ	dB	0			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98			
Note 1: $P_B = 0$ .						

Table 10.1.1-1: Test Parameters for Testing

 Table 10.1.1-2: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and antenna	BLER (%)	SNR(dB)	UE Category
1	10 MHz	R.37 FDD	OP.4 FDD				4.1	≥1
2	10 MHz	R.38 FDD	OP.4 FDD	MBSFN			11.0	≥1
3	10 MHz	R.39 FDD	OP.4 FDD	channel model (Table	1x2 low	1	20.1	≥2
	5.0MHz	R.39-1 FDD	OP.4 FDD	B.2.6-1)			20.5	1
4	1.4 MHz	R.40 FDD	OP.4 FDD	]			6.6	≥1

## 10.2 TDD (Fixed Reference Channel)

The parameters specified in Table 10.2-1 are valid for all TDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Par	rameter	Unit	Value			
	er of HARQ ocesses	Processes	None			
Subcar	rier spacing	kHz	15 kHz			
	Allocated subframes per Radio Frame (Note 1)		5 subframes			
	Number of OFDM symbols for PDCCH		2			
Сус	lic Prefix		Extended			
Note1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.						

Table 10.2-1: Common Test Parameters (TDD)

### 10.2.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.2-1 and Table 10.2.1-1 and Annex A.3.8.2, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.1-2.

Parameter	,	Unit	Test 1-4		
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0		
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)		
	σ	dB	0		
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98		
Note 1: $P_B = 0$ .					

Table 10.2.1-1: Test Parameters for Testing

Table 10.2.1-2: Minimum pe	erformance
----------------------------	------------

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and antenna	BLER (%)	SNR(dB)	UE Category
1	10 MHz	R.37 TDD	OP.4 TDD				3.4	≥1
2	10 MHz	R.38 TDD	OP.4 TDD	MBSFN			11.1	≥1
3a	10 MHz	R.39 TDD	OP.4 TDD	channel model (Table	1x2 low	1	20.1	≥2
3b	5MHz	R.39-1 TDD	OP.4 TDD	B.2.6-1)			20.5	1
4	1.4 MHz	R.40 TDD	OP.4 TDD				5.8	≥1

## Annex A (normative): Measurement channels

## A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

## A.2 UL reference measurement channels

## A.2.1 General

#### A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

#### A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation  $N_{\text{RB}}$ 

- 1. Calculate the number of channel bits  $N_{ch}$  that can be transmitted during the first transmission of a given sub-frame.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

 $\min |R - (A + 24*(N_{CB} + 1)) / N_{ch}|, where N_{CB} = \begin{cases} 0, if C = 1\\ C, if C > 1 \end{cases}$  subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of  $N_{\text{RB}}$  resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.

3. If there is more than one *A* that minimises the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

#### A.2.1.3 Overview of UL reference measurement channels

In Table A.2.1.3-1 are listed the UL reference measurement channels specified in annexes A.2.2 and A.2.3 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.2.2 and A.2.3 as appropriate.

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD, Ful	I RB allocation, QP	SK							
FDD	Table A.2.2.1.1-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.1.1-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.1.1-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.1.1-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.2.2.1.1-1		15	QPSK	1/5	75		≥ 1	
FDD	Table A.2.2.1.1-1		20	QPSK	1/6	100		≥ 1	
FDD, Ful	I RB allocation, 16-	QAM							
FDD	Table A.2.2.1.2-1		1.4	16QAM	3/4	6		≥ 1	
FDD	Table A.2.2.1.2-1		3	16QAM	1/2	15		≥ 1	
FDD	Table A.2.2.1.2-1		5	16QAM	1/3	25		≥ 1	
FDD	Table A.2.2.1.2-1		10	16QAM	3/4	50		≥ 2	
FDD	Table A.2.2.1.2-1		15	16QAM	1/2	75		≥ 2	
FDD	Table A.2.2.1.2-1		20	16QAM	1/3	100		≥ 2	
FDD, Par	rtial RB allocation,	QPSK							
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	1		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	2		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	3		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	4		≥ 1	
FDD	Table A.2.2.2.1-1		1.4 - 20	QPSK	1/3	5		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	8		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	9		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	10		≥ 1	
FDD	Table A.2.2.2.1-1		3 - 20	QPSK	1/3	12		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	16		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	18		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	20		≥ 1	
FDD	Table A.2.2.2.1-1		5 - 20	QPSK	1/3	24		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	27		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	30		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	32		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	36		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	40		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	45		≥ 1	
FDD	Table A.2.2.2.1-1		10 - 20	QPSK	1/3	48		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/3	50		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/3	54		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	60		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	64		≥ 1	
FDD	Table A.2.2.2.1-1		15 - 20	QPSK	1/4	72		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	75		≥ 1	
FDD	Table A.2.2.2.1-1		20	QPSK	1/5	80		≥ 1	

Table A.2.1.3-1: Overview of UL reference measurement channels

TOD       Table A.22.1:1       Zu       OPS       No       No       A       A       A       A       A       A       A       A       A       A       A       A       A       No       B       A       A       A       A       B       B       A       A       A       B       B       A       A       B       B       A       A       B       B       A       A       B       B       A       A       B       B       A       A       B       B       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A <th>FDD</th> <th></th> <th></th> <th>20</th> <th>QPSK</th> <th>1/5</th> <th>01</th> <th></th> <th><b>N</b>1</th> <th></th>	FDD			20	QPSK	1/5	01		<b>N</b> 1	
FDD       Table A.2.2.2.1.1       V       Q0       QPSK       1.6       96       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       1       2       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       3       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       4       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       4       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       6       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       8       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       10       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       1/2       2.1       2.1         FDD       Table A.2.2.2.2.1       5.20       160AM       1/2       2.1       2.1         FDD       Table A.2.2.2.2.1       5.20       160AM       1/3       2.0       2.1         FDD       Table A.2.2.2.1       5.20       160AM       1/3       2.1       2.		Table A.2.2.2.1-1		20		1/5	81		≥ 1	
FDD.         Partial RB allocation, 16-QAM         3/4         1         2         1           FDD         Table A.22.2.2.1         1.4 - 20         160AM         3/4         2         2         2           FDD         Table A.22.2.2.1         1.4 - 20         160AM         3/4         2         2         2           FDD         Table A.22.2.2.1         1.4 - 20         160AM         3/4         4         2         1           FDD         Table A.22.2.2.1         1.4 - 20         160AM         3/4         6         2.1           FDD         Table A.22.2.2.1         3 - 20         160AM         3/4         9         2.1           FDD         Table A.22.2.2.1         3 - 20         160AM         3/4         9         2.1           FDD         Table A.22.2.2.1         5 - 20         160AM         3/4         12         2.1           FDD         Table A.22.2.2.1         5 - 20         160AM         1/2         2.1         1           FDD         Table A.22.2.2.1         5 - 20         160AM         1/3         2.6         2.1           FDD         Table A.22.2.2.1         10 - 20         160AM         1/3         2.6         2.1										
FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       1       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       2       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       3       2.1         FDD       Table A.2.2.2.2.1       1.4.20       160AM       3/4       6       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       6       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       9       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       10       2.1         FDD       Table A.2.2.2.2.1       3.20       160AM       3/4       10       2.1         FDD       Table A.2.2.2.2.1       5.20       160AM       1/2       16       2.1         FDD       Table A.2.2.2.2.1       5.20       160AM       1/3       2.0       2.1         FDD       Table A.2.2.2.2.1       5.20       160AM       1/3       2.6       1         FDD       Table A.2.2.2.1       10.20       160AM       3/4       30       2.2 <t< td=""><td></td><td></td><td></td><td>20</td><td>QPSK</td><td>1/6</td><td>96</td><td></td><td>21</td><td></td></t<>				20	QPSK	1/6	96		21	
FDD       Table A.2.2.2.1       1.4.20       160AM       3/4       2       2       2.1         FDD       Table A.2.2.2.1       1.4.20       160AM       3/4       3       2.1         FDD       Table A.2.2.2.1       1.4.20       160AM       3/4       4       2.1         FDD       Table A.2.2.2.1       3.20       160AM       3/4       6       2.1         FDD       Table A.2.2.2.1       3.20       160AM       3/4       8       2.1         FDD       Table A.2.2.2.1       3.20       160AM       3/4       9       2.1         FDD       Table A.2.2.2.1       3.20       160AM       3/4       10       2.1         FDD       Table A.2.2.2.1       5.20       160AM       1/2       16       2.1         FDD       Table A.2.2.2.1       5.20       160AM       1/3       20       2.1         FDD       Table A.2.2.2.1       5.20       160AM       1/3       2.5       2.1         FDD       Table A.2.2.2.1       10.20       160AM       1/3       2.5       2.1         FDD       Table A.2.2.2.1       10.20       160AM       3/4       30       2.2         FD			16-QAW	4.4.00	400.004	0/4				
FDD       Table A.22.2.21       1.4 - 20       160AM       3.4       3       2.1         FDD       Table A.22.2.21       1.4 - 20       160AM       3.4       4       2.1         FDD       Table A.22.2.21       1.4 - 20       160AM       3.4       6       2.1         FDD       Table A.22.2.21       3 - 20       160AM       3.4       8       2.1         FDD       Table A.22.2.21       3 - 20       160AM       3.4       8       2.1         FDD       Table A.22.2.21       3 - 20       160AM       3.4       10       2.1         FDD       Table A.22.2.21       3 - 20       160AM       3.4       12       2.1         FDD       Table A.22.2.21       5 - 20       160AM       1/2       16       2.1         FDD       Table A.22.2.21       5 - 20       160AM       1/3       20       2.1         FDD       Table A.22.2.21       5 - 20       160AM       1/3       20       2.1         FDD       Table A.22.2.21       10 - 20       160AM       3/4       30       2.2         FDD       Table A.22.2.21       10 - 20       160AM       3/4       36       2.2										
FDD       Table A.2.2.2.1       1.4 · 20       160AM       3/4       4       ≥ 1         FDD       Table A.2.2.2.1       3 · 20       160AM       3/4       6       ≥ 1         FDD       Table A.2.2.2.1       3 · 20       160AM       3/4       6       ≥ 1         FDD       Table A.2.2.2.1       3 · 20       160AM       3/4       9       ≥ 1         FDD       Table A.2.2.2.1       3 · 20       160AM       3/4       10       ≥ 1         FDD       Table A.2.2.2.1       3 · 20       160AM       3/4       10       ≥ 1         FDD       Table A.2.2.2.1       5 · 20       160AM       1/2       16       ≥ 1         FDD       Table A.2.2.2.1       5 · 20       160AM       1/3       20       ≥ 1         FDD       Table A.2.2.2.1       5 · 20       160AM       1/3       24       ≥ 1         FDD       Table A.2.2.2.1       10 · 20       160AM       1/3       27       ≥ 1         FDD       Table A.2.2.2.1       10 · 20       160AM       3/4       36       ≥ 2         FDD       Table A.2.2.2.1       10 · 20       160AM       3/4       46       ≥ 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
FDD       Table A.2.2.2.1       1.4 - 20       160AM       3/4       5       ≥ 1         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       8       ≥ 1         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       9       ≥ 1         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       10       ≥ 1         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       12       ≥ 1         FDD       Table A.2.2.2.2.1       5 - 20       160AM       1/2       18       ≥ 1         FDD       Table A.2.2.2.1       5 - 20       160AM       1/2       18       ≥ 1         FDD       Table A.2.2.2.1       5 - 20       160AM       1/3       20       ≥ 1         FDD       Table A.2.2.2.1       10 - 20       160AM       1/3       27       ≥ 1         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       30       ≥ 2         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       40       ≥ 2         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       48       ≥ 2										
FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       6       2 1         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       9       21         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       9       21         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       10       21         FDD       Table A.2.2.2.1       5 - 20       160AM       1/2       15       21         FDD       Table A.2.2.2.1       5 - 20       160AM       1/2       18       21         FDD       Table A.2.2.2.1       5 - 20       160AM       1/3       20       21         FDD       Table A.2.2.2.1       10 - 20       160AM       1/3       20       21         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       30       22         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       30       22         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       36       22         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       48       22         FDD										
FDD       Table A.2.2.2.1       3 - 20       16QAM       3/4       8       2 1         FDD       Table A.2.2.2.1       3 - 20       16QAM       3/4       9       21         FDD       Table A.2.2.2.1       3 - 20       16QAM       3/4       10       21         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/2       16       21         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/2       16       21         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/2       16       21         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/3       20       21         FDD       Table A.2.2.2.1       10 - 20       16QAM       1/3       25       21         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       30       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       40       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       40       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       22         FDD <td></td>										
FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       9       2 1         FDD       Table A.2.2.2.1       3 - 20       160AM       3/4       10       2 1         FDD       Table A.2.2.2.2.1       5 - 20       160AM       1/2       15       2 1         FDD       Table A.2.2.2.1       5 - 20       160AM       1/2       16       2 1         FDD       Table A.2.2.2.1       5 - 20       160AM       1/2       18       2 1         FDD       Table A.2.2.2.1       5 - 20       160AM       1/3       20       2 1         FDD       Table A.2.2.2.1       10 - 20       160AM       1/3       27       2 1         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       30       2 2         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       30       2 2         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       48       2 2         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       48       2 2         FDD       Table A.2.2.2.1       10 - 20       160AM       3/4       48       2 2										
FDD       Table A.2.2.2-1       3 - 20       160AM       3/4       10       ≥ 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       15       ≥ 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       15       ≥ 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       18       ≥ 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/3       20       ≥ 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/3       24       ≥ 1         FDD       Table A.2.2.2-1       10 - 20       160AM       1/3       25       ≥ 1         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       30       ≥ 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       36       ≥ 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       40       ≥ 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       48       ≥ 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       48       ≥ 2										
FDD       Table A.2.2.2-1       3 - 20       160AM       3/4       12       2 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       15       2 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       16       2 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/3       20       2 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/3       24       2 1         FDD       Table A.2.2.2-1       5 - 20       160AM       1/3       25       2 1         FDD       Table A.2.2.2-1       10 - 20       160AM       1/3       27       2 1         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       30       2 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       40       2 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       48       2 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       48       2 2         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       44       2 2				3 - 20		3/4	9			
FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       15       21         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       16       21         FDD       Table A.2.2.2-1       5 - 20       160AM       1/2       18       21         FDD       Table A.2.2.2-1       5 - 20       160AM       1/3       20       21         FDD       Table A.2.2.2-1       10 - 20       160AM       1/3       25       21         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       30       22         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       32       22         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       30       22         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       40       22         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       45       22         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       45       22         FDD       Table A.2.2.2-1       10 - 20       160AM       3/4       45       22         FDD	FDD	Table A.2.2.2.2-1		3 - 20	16QAM	3/4	10		≥ 1	
FDD       Table A.2.2.2.1       5 - 20       160AM       1/2       16       2 1         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/3       20       2 1         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/3       24       2 1         FDD       Table A.2.2.2.1       10 - 20       16QAM       1/3       24       2 1         FDD       Table A.2.2.2.1       10 - 20       16QAM       1/3       27       2 1         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       30       2 2         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       36       2 2         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       40       2 2         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       2 2         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       2 2         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       2 2         FDD       Table A.2.2.2.1       15 - 20       16QAM       3/4       50       2 2	FDD			3 - 20		3/4	12		≥ 1	
FDD       Table A.2.2.2.1       5 -20       160AM       1/2       18       21         FDD       Table A.2.2.2.1       5 -20       16QAM       1/3       20       21         FDD       Table A.2.2.2.1       5 -20       16QAM       1/3       24       21         FDD       Table A.2.2.2.1       10 -20       16QAM       1/3       25       21         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       30       22         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       30       22         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       30       22         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       40       22         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       48       22         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       48       22         FDD       Table A.2.2.2.1       10 -20       16QAM       3/4       48       22         FDD       Table A.2.2.2.1       15 -20       16QAM       3/4       50       22         FDD	FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	15		≥ 1	
FDD       Table A.2.2.2.1       5 - 20       160AM       1/3       20       21         FDD       Table A.2.2.2.1       5 - 20       16QAM       1/3       24       21         FDD       Table A.2.2.2.1       10 - 20       16QAM       1/3       25       21         FDD       Table A.2.2.2.1       10 - 20       16QAM       1/3       27       21         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       30       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       30       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       40       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       22         FDD       Table A.2.2.2.1       10 - 20       16QAM       3/4       48       22         FDD       Table A.2.2.2.1       15 - 20       16QAM       3/4       54       22         FDD       Table A.2.2.2.1       15 - 20       16QAM       1/2       75       22         F	FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	16		≥ 1	
FDD         Table A.2.2.2-1         5 - 20         16QAM         1/3         24         ≥ 1           FDD         Table A.2.2.2-1         10 - 20         16QAM         1/3         25         ≥ 1           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         30         ≥ 2           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         30         ≥ 2           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         36         ≥ 2           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2-1         10 - 20         16QAM         3/4         50         ≥ 2           FDD         Table A.2.2.2-1         15 - 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2-1         15 - 20         16QAM         1/2         75         ≥ 2           FDD	FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/2	18		≥ 1	
FDD         Table A.2.2.2.1         10 - 20         16QAM         1/3         25         ≥ 1           FDD         Table A.2.2.2.1         10 - 20         16QAM         3/4         30         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         32         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         36         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         3/4         50         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         1/2         50         ≥ 2           FDD         Table A.2.2.2.1         15 - 20         16QAM         1/2         52         2	FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/3	20		≥ 1	
FDD         Table A.2.2.2.1         IO - 20         16QAM         1/3         27         ≥ 1           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         30         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         32         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         46         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         50         ≥ 2           FDD         Table A.2.2.2.1         IS - 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2.1         IS - 20         16QAM         1/2         60         ≥ 2           FDD         Table A.2.2.2.1         IS - 20         16QAM         1/2         75         ≥ 2           FDD	FDD	Table A.2.2.2.2-1		5 - 20	16QAM	1/3	24		≥ 1	
FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         30         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         32         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         36         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         46         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.1         IO - 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2.1         IS - 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2.1         IS - 20         16QAM         1/2         72         ≥ 2           FDD         Table A.2.2.2.1         IS - 20         16QAM         1/2         75         ≥ 2           FDD	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	1/3	25		≥ 1	
FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         32         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         36         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.2.1         10 - 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         3/4         50         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         1/2         5         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         1/2         72         ≥ 2           FDD         Table A.2.2.2.2.1         20         16QAM         1/2         75         ≥ 2           FDD         Table A.2.2.2.2.1         20         16QAM         1/2         80         ≥ 2 <t< td=""><td>FDD</td><td>Table A.2.2.2.2-1</td><td></td><td>10 - 20</td><td>16QAM</td><td>1/3</td><td>27</td><td></td><td>≥ 1</td><td></td></t<>	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	1/3	27		≥ 1	
FDDTable A.2.2.2.110 $\cdot$ 2016QAM3/436 $\geq$ 2FDDTable A.2.2.2.110 $\cdot$ 2016QAM3/440 $\geq$ 2FDDTable A.2.2.2.110 $\cdot$ 2016QAM3/448 $\geq$ 2FDDTable A.2.2.2.110 $\cdot$ 2016QAM3/448 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM3/450 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM3/454 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM3/454 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM2/360 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM1/272 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM1/272 $\geq$ 2FDDTable A.2.2.2.115 $\cdot$ 2016QAM1/275 $\geq$ 2FDDTable A.2.2.2.12016QAM1/280 $\geq$ 2FDDTable A.2.2.2.12016QAM1/280 $\geq$ 2FDDTable A.2.2.2.12016QAM1/280 $\geq$ 2FDDTable A.2.2.2.12016QAM1/281 $\geq$ 2FDDTable A.2.2.2.12016QAM1/280 $\geq$ 2FDDTable A.2.2.3.1R.1.1 FDD10QPSK0.3140 $\geq$ 1FDDTable A.2.2.3.1R.1.3 FDD20QPSK0.3140 $\geq$ 1 <td>FDD</td> <td>Table A.2.2.2.2-1</td> <td></td> <td>10 - 20</td> <td>16QAM</td> <td>3/4</td> <td>30</td> <td></td> <td>≥ 2</td> <td></td>	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	30		≥ 2	
FDD         Table A.2.2.2.1         10 · 20         16QAM         3/4         40         ≥ 2           FDD         Table A.2.2.2.1         10 · 20         16QAM         3/4         45         ≥ 2           FDD         Table A.2.2.2.1         10 · 20         16QAM         3/4         48         ≥ 2           FDD         Table A.2.2.2.1         15 · 20         16QAM         3/4         50         ≥ 2           FDD         Table A.2.2.2.2.1         15 · 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2.2.1         15 · 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2.2.1         15 · 20         16QAM         2/3         60         ≥ 2           FDD         Table A.2.2.2.2.1         15 · 20         16QAM         1/2         72         ≥ 2           FDD         Table A.2.2.2.2.1         15 · 20         16QAM         1/2         72         ≥ 2           FDD         Table A.2.2.2.2.1         2.0         16QAM         1/2         80         ≥ 2           FDD         Table A.2.2.2.2.1         2.0         16QAM         1/2         81         ≥ 2           FDD<	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	32		≥ 2	
FDD       Table A.2.2.2.2-1       10 - 20       16QAM       3/4       45       ≥ 2         FDD       Table A.2.2.2.2-1       10 - 20       16QAM       3/4       48       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       3/4       54       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       2/3       60       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       2/3       64       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       75       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2.1       20       16QAM       2/5       90       ≥ 2	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	36		≥ 2	
FDDTable A.2.2.2.2.110 - 2016QAM3/448≥ 2FDDTable A.2.2.2.2.115 - 2016QAM3/450≥ 2FDDTable A.2.2.2.2.115 - 2016QAM2/360≥ 2FDDTable A.2.2.2.2.115 - 2016QAM2/364≥ 2FDDTable A.2.2.2.2.115 - 2016QAM1/272≥ 2FDDTable A.2.2.2.2.115 - 2016QAM1/272≥ 2FDDTable A.2.2.2.2.115 - 2016QAM1/275≥ 2FDDTable A.2.2.2.2.12016QAM1/275≥ 2FDDTable A.2.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.12016QAM1/280≥ 2FDDTable A.2.2.2.12016QAM2/590≥ 2FDDTable A.2.2.3.1R.1.1 FDD10QPSK0.3140≥ 1FDDTable A.2.3.1R.1.3 FDD20QPSK0.3190≥ 2FDDTable A.2.3.1R.1.4 FDD </td <td>FDD</td> <td>Table A.2.2.2.2-1</td> <td></td> <td>10 - 20</td> <td>16QAM</td> <td>3/4</td> <td>40</td> <td></td> <td>≥ 2</td> <td></td>	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	40		≥ 2	
FDD       Table A.2.2.2.2·1       15 - 20       16QAM       3/4       50       ≥ 2         FDD       Table A.2.2.2.2·1       15 - 20       16QAM       3/4       54       ≥ 2         FDD       Table A.2.2.2.2·1       15 - 20       16QAM       2/3       60       ≥ 2         FDD       Table A.2.2.2·1       15 - 20       16QAM       2/3       64       ≥ 2         FDD       Table A.2.2.2·1       15 - 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2·1       15 - 20       16QAM       1/2       75       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       75       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       2/5       90       ≥ 2         FDD	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	45		≥ 2	
FDD         Table A.2.2.2.2.1         15 - 20         16QAM         3/4         54         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         2/3         60         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         2/3         64         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         1/2         72         ≥ 2           FDD         Table A.2.2.2.2.1         15 - 20         16QAM         1/2         72         ≥ 2           FDD         Table A.2.2.2.2.1         20         16QAM         1/2         80         ≥ 2           FDD         Table A.2.2.2.2.1         20         16QAM         1/2         80         ≥ 2           FDD         Table A.2.2.2.1         20         16QAM         1/2         81         ≥ 2           FDD         Table A.2.2.2.1         20         16QAM         2/5         90         ≥ 2           FDD         Table A.2.2.2.1         20         16QAM         2/5         90         ≥ 2           FDD         Table A.2.2.3.1         R.1-1 FDD         10         QPSK         0.31         40         ≥ 1 <t< td=""><td>FDD</td><td>Table A.2.2.2.2-1</td><td></td><td>10 - 20</td><td>16QAM</td><td>3/4</td><td>48</td><td></td><td>≥ 2</td><td></td></t<>	FDD	Table A.2.2.2.2-1		10 - 20	16QAM	3/4	48		≥ 2	
FDD       Table A.2.2.2.2-1       15 - 20       16QAM       2/3       60       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2.2-1       15 - 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       75       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       81       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       1/2       81       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2.2-1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2.1       R.1-1 FDD       10       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3.1       R.1-2 FDD       10       QPSK       0.31       40	FDD	Table A.2.2.2.2-1		15 - 20	16QAM	3/4	50		≥ 2	
FDD       Table A.2.2.2.2.1       15 · 20       16QAM       2/3       64       ≥ 2         FDD       Table A.2.2.2.2.1       15 · 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       1/2       75       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       1/2       81       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       1/2       81       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2.2.1       20       16QAM       2/5       96       ≥ 2         FDD       Table A.2.2.2.1       R.1-1 FDD       10       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3.1       R.1-3 FDD       10       QPSK       0.31       40       ≥ 1<	FDD	Table A.2.2.2.2-1		15 - 20	16QAM	3/4	54		≥ 2	
FDD       Table A.2.2.2.2·1       15 · 20       16QAM       1/2       72       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       75       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       80       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       1/2       81       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       2/5       90       ≥ 2         FDD       Table A.2.2.2·1       20       16QAM       2/5       96       ≥ 2         FDD       Table A.2.2.2·1       10       20       16QAM       2/5       96       ≥ 2         FDD       Table A.2.2.3·1       R.1·1 FDD       10       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3·1       R.1·3 FDD       20       QPSK       0.31       40       ≥ 1         FDD       Table A.2.3·1       R.1·4 FDD       20       QPSK       0.31       40 </td <td>FDD</td> <td>Table A.2.2.2.2-1</td> <td></td> <td>15 - 20</td> <td>16QAM</td> <td>2/3</td> <td>60</td> <td></td> <td>≥ 2</td> <td></td>	FDD	Table A.2.2.2.2-1		15 - 20	16QAM	2/3	60		≥ 2	
FDDTable A.2.2.2.1Image: A product of the analysis of the a	FDD	Table A.2.2.2.2-1		15 - 20	16QAM	2/3	64		≥ 2	
FDD       Table A.2.2.2.2-1       Image: Constraint of the constraint	FDD	Table A.2.2.2.2-1		15 - 20	16QAM	1/2	72		≥ 2	
FDDTable A.2.2.2.2-1 $1/2$ 81 $\geq 2$ FDDTable A.2.2.2.2-1 $2/5$ 90 $\geq 2$ FDDTable A.2.2.2.2-1 $2/5$ 96 $\geq 2$ FDDTable A.2.2.2.2-1 $2/5$ 96 $\geq 2$ FDDTable A.2.2.2-1 $2/5$ 96 $\geq 2$ FDDTable A.2.2.3-1R.1-1 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-1 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-2 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3-1R.1-3 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.3.1R.1-4 FDD20QPSK0.3190 $\geq 2$ TDDTable A.2.3.1.1-1I.4QPSK1/36 $\geq 1$ TDDTable A.2.3.1.1-1I.4QPSK1/315 $\geq 1$ TDDTable A.2.3.1.1-1I.4QPSK1/325 $\geq 1$ TDDTable A.2.3.1.1-1I.4S <th< td=""><td>FDD</td><td>Table A.2.2.2.2-1</td><td></td><td>20</td><td>16QAM</td><td>1/2</td><td>75</td><td></td><td>≥ 2</td><td></td></th<>	FDD	Table A.2.2.2.2-1		20	16QAM	1/2	75		≥ 2	
FDDTable A.2.2.2.116QAM2/590 $\geq 2$ FDDTable A.2.2.2.1 $\geq 2$ FDD, Sustained data rateFDDTable A.2.2.3.1R.1.1 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3.1R.1.2 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3.1R.1.3 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3.1R.1.3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3.1R.1.3A FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3.1R.1.4 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.3.1.11.4QPSK1.36 $\geq 1$ TDDTable A.2.3.1.1.13QPSK1/315 $\geq 1$ TDDTable A.2.3.1.1.15QPSK1/325 $\geq 1$	FDD	Table A.2.2.2.2-1		20	16QAM	1/2	80		≥ 2	
FDDTable A.2.2.2.21 $20$ 16QAM $2/5$ 96 $\geq 2$ FDD, Sustained data rateFDDTable A.2.2.3-1R.1-1 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-2 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.3.1R.1-4 FDD20QPSK0.3190 $\geq 2$ TDDTable A.2.3.1.1-11.4QPSK1/36 $\geq 1$ TDDTable A.2.3.1.1-15QPSK1/325 $\geq 1$	FDD	Table A.2.2.2.2-1		20	16QAM	1/2	81		≥ 2	
FDD, Sustained data rate         FDD       Table A.2.2.3-1       R.1-1 FDD       10       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3-1       R.1-2 FDD       10       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3-1       R.1-2 FDD       10       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3-1       R.1-3 FDD       20       QPSK       0.31       90       ≥ 2         FDD       Table A.2.2.3-1       R.1-3 FDD       20       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3-1       R.1-3 FDD       20       QPSK       0.31       40       ≥ 1         FDD       Table A.2.2.3-1       R.1-3 FDD       20       QPSK       0.31       40       ≥ 1         FDD       Table A.2.3.1       R.1-4 FDD       20       QPSK       0.31       90       ≥ 2         TDD       Table A.2.3.1.1-1       1.4       QPSK       1/3       6       ≥ 1         TDD       Table A.2.3.1.1-1       3       QPSK       1/3       15       ≥ 1         TDD       Table A.2.3.1.1-1       5       QPSK       1/3	FDD	Table A.2.2.2.2-1		20	16QAM	2/5	90		≥ 2	
FDDTable A.2.2.3-1R.1-1 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-2 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3-1R.1-3 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-3 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-4 FDD20QPSK0.3190 $\geq 2$ <b>TDD, Full RB allocation, QPSK</b> 20QPSK1/390 $\geq 2$ TDDTable A.2.3.1.1-11.4QPSK1/36 $\geq 1$ TDDTable A.2.3.1.1-13QPSK1/315 $\geq 1$ TDDTable A.2.3.1.1-15QPSK1/325 $\geq 1$	FDD	Table A.2.2.2.2-1		20	16QAM	2/5	96		≥ 2	
FDDTable A.2.2.3-1R.1-2 FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3-1R.1-3A FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-3A FDD10QPSK0.3190 $\geq 2$ FDDTable A.2.3.1R.1-4 FDD20QPSK0.3190 $\geq 2$ TDDTable A.2.3.1.1-11.4QPSK1/36 $\geq 1$ TDDTable A.2.3.1.1-15QPSK1/315 $\geq 1$ TDDTable A.2.3.1.1-15QPSK1/325 $\geq 1$	FDD, Su	stained data rate								
FDDTable A.2.2.3-1R.1-3 FDD20QPSK0.3190 $\geq 2$ FDDTable A.2.2.3-1R.1-3A FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-4 FDD20QPSK0.3190 $\geq 2$ <b>TDD, Full RB allocation, QPSK</b> TDDTable A.2.3.1.1-11.4QPSK1/36 $\geq 1$ TDDTable A.2.3.1.1-133QPSK1/315 $\geq 1$ TDDTable A.2.3.1.1-15QPSK1/325 $\geq 1$	FDD	Table A.2.2.3-1	R.1-1 FDD	10	QPSK	0.31	40		≥ 1	
FDDTable A.2.2.3-1R.1-3A FDD10QPSK0.3140 $\geq 1$ FDDTable A.2.2.3-1R.1-4 FDD20QPSK0.3190 $\geq 2$ TDD, Full RB allocation, QPSKTDD, Table A.2.3.1.1-11.4QPSK1/36 $\geq 1$ TDDTable A.2.3.1.1-13.3QPSK1/35 $\geq 1$ TDDTable A.2.3.1.1-15QPSK1/325 $\geq 1$	FDD	Table A.2.2.3-1	R.1-2 FDD	10	QPSK	0.31	40		≥ 1	
FDD       Table A.2.2.3-1       R.1-4 FDD       20       QPSK       0.31       90       ≥ 2 <b>TDD, Full RB allocation, QPSK</b> 1/4       QPSK       1/3       6       ≥ 1         TDD       Table A.2.3.1.1-1       1.4       QPSK       1/3       15       ≥ 1         TDD       Table A.2.3.1.1-1       3       QPSK       1/3       25       ≥ 1         TDD       Table A.2.3.1.1-1       5       QPSK       1/3       25       ≥ 1	FDD	Table A.2.2.3-1	R.1-3 FDD	20	QPSK	0.31	90		≥ 2	
TDD, Full RB allocation, QPSK         TDD       Table A.2.3.1.1-1       1.4       QPSK       1/3       6       ≥ 1         TDD       Table A.2.3.1.1-1       3       QPSK       1/3       15       ≥ 1         TDD       Table A.2.3.1.1-1       5       QPSK       1/3       25       ≥ 1	FDD	Table A.2.2.3-1	R.1-3A FDI	D 10	QPSK	0.31	40		≥ 1	
TDD       Table A.2.3.1.1-1       1.4       QPSK       1/3       6       ≥ 1         TDD       Table A.2.3.1.1-1       3       QPSK       1/3       15       ≥ 1         TDD       Table A.2.3.1.1-1       5       QPSK       1/3       25       ≥ 1	FDD	Table A.2.2.3-1	R.1-4 FDD	20	QPSK	0.31	90		≥ 2	
TDD     Table A.2.3.1.1-1     3     QPSK     1/3     15     ≥ 1       TDD     Table A.2.3.1.1-1     5     QPSK     1/3     25     ≥ 1	TDD, Full RB allocation, QPSK									
TDD         Table A.2.3.1.1-1         5         QPSK         1/3         25         ≥ 1	TDD	Table A.2.3.1.1-1		1.4	QPSK	1/3	6		≥ 1	
	TDD	Table A.2.3.1.1-1		3	QPSK	1/3	15		≥ 1	
TDD Table A.2.3.1.1-1 10 QPSK 1/3 50 ≥ 1	TDD	Table A.2.3.1.1-1		5	QPSK	1/3	25		≥ 1	
	TDD	Table A.2.3.1.1-1		10	QPSK	1/3	50		≥ 1	

TDD	Table A.2.3.1.1-1		15	QPSK	1/5	75		<b>N</b> 1	1
								≥ 1	
TDD	Table A.2.3.1.1-1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	20	QPSK	1/6	100		≥ 1	
	II RB allocation, 16-	QAM	T						
TDD	Table A.2.3.1.2-1		1.4	16QAM	3/4	6		≥ 1	
TDD	Table A.2.3.1.2-1		3	16QAM	1/2	15		≥ 1	
TDD	Table A.2.3.1.2-1		5	16QAM	1/3	25		≥ 1	
TDD	Table A.2.3.1.2-1		10	16QAM	3/4	50		≥ 2	
TDD	Table A.2.3.1.2-1		15	16QAM	1/2	75		≥ 2	
TDD	Table A.2.3.1.2-1		20	16QAM	1/3	100		≥ 2	
	rtial RB allocation,	QPSK							
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	1		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	2		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	3		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	4		≥ 1	
TDD	Table A.2.3.2.1-1		1.4 - 20	QPSK	1/3	5		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	6		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	8		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	9		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	10		≥ 1	
TDD	Table A.2.3.2.1-1		3 - 20	QPSK	1/3	12		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	15		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	16		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	18		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	20		≥ 1	
TDD	Table A.2.3.2.1-1		5 - 20	QPSK	1/3	24		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	25		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	27		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	30		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	32		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	36		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	40		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	45		≥ 1	
TDD	Table A.2.3.2.1-1		10 - 20	QPSK	1/3	48		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/3	50		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/3	54		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	60		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	64		≥ 1	
TDD	Table A.2.3.2.1-1		15 - 20	QPSK	1/4	72		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/5	75		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/5	80		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/5	81		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/6	90		≥ 1	
TDD	Table A.2.3.2.1-1		20	QPSK	1/6	96		≥ 1	
TDD, Pa	rtial RB allocation,	16-QAM							
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	1		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	2		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	3		≥ 1	
TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	4		≥ 1	
	1			1		1	1		1

TDD	Table A.2.3.2.2-1		1.4 - 20	16QAM	3/4	5	≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	6	≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	8	≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	9	≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	10	≥ 1	
TDD	Table A.2.3.2.2-1		3 - 20	16QAM	3/4	12	≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	15	≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	16	≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/2	18	≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/3	20	≥ 1	
TDD	Table A.2.3.2.2-1		5 - 20	16QAM	1/3	24	≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	1/3	25	≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	1/3	27	≥ 1	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	30	≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	32	≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	36	≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	40	≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	45	≥ 2	
TDD	Table A.2.3.2.2-1		10 - 20	16QAM	3/4	48	≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	3/4	50	≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	3/4	54	≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	2/3	60	≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	2/3	64	≥ 2	
TDD	Table A.2.3.2.2-1		15 - 20	16QAM	1/2	72	≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	75	≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	80	≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	1/2	81	≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	2/5	90	≥ 2	
TDD	Table A.2.3.2.2-1		20	16QAM	2/5	96	≥ 2	
TDD, Su	stained data rate			-				
TDD	Table A.2.3.3-1	R.1-1 TDD	10	QPSK	0.43	40	≥ 1	
TDD	Table A.2.3.3-1	R.1-2 TDD	10	QPSK	0.61	40	≥ 2	
TDD	Table A.2.3.3-1	R.1-3 TDD	20	QPSK	0.49	90	≥ 2	
TDD	Table A.2.3.3-1	R.1-3B TDI	D 15	QPSK	0.42	60	≥ 2	
TDD	Table A.2.3.3-1	R.1-4 TDD	20	QPSK	0.49	90	≥ 2	

## A.2.2 Reference measurement channels for FDD

#### A.2.2.1 Full RB allocation

#### A.2.2.1.1 QPSK

#### Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6	
Payload size	Bits	600	1544	2216	5160	4392	4584	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of code blocks per Sub-Frame		1	1	1	1	1	1	
(Note 1)								
Total number of bits per Sub-Frame	Bits	1728	4320	7200	14400	21600	28800	
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400	
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥1	≥ 1	
Note 1: If more than one Code Block is	s present, a	n addition	al CRC s	sequence	of L = 24	Bits is a	ttached	
to each Code Block (otherwise L = 0 Bit)								

#### A.2.2.1.2 16-QAM

#### Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM		
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3		
Payload size	Bits	2600	4264	4968	21384	21384	19848		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame (Note 1)		1	1	1	4	4	4		
Total number of bits per Sub-Frame	Bits	3456	8640	14400	28800	43200	57600		
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400		
UE Category		≥1	≥ 1	≥1	≥ 2	≥2	≥2		
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)									

#### A.2.2.1.3 64-QAM

[FFS]

#### A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

### A.2.2.2.1 QPSK

Paramet er	Ch BW	Allocate d RBs	DFT- OFDM Symbols per Sub- Frame	Mod'n	Target Coding rate	Payload size	Transpo rt block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Categor y
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	QPSK	1/3	72	24	1	288	144	≥1
	1.4 - 20	2	12	QPSK	1/3	176	24	1	576	288	≥1
	1.4 - 20	3	12	QPSK	1/3	256	24	1	864	432	≥1
	1.4 - 20	4	12	QPSK	1/3	392	24	1	1152	576	≥1
	1.4 - 20	5	12	QPSK	1/3	424	24	1	1440	720	≥1
	3-20	6	12	QPSK	1/3	600	24	1	1728	864	≥1
	3-20	8	12	QPSK	1/3	808	24	1	2304	1152	≥1
	3-20	9	12	QPSK	1/3	776	24	1	2592	1296	≥1
	3-20	10	12	QPSK	1/3	872	24	1	2880	1440	≥1
	3-20	12	12	QPSK	1/3	1224	24	1	3456	1728	≥1
	5-20	15	12	QPSK	1/3	1320	24	1	4320	2160	≥1
	5-20	16	12	QPSK	1/3	1384	24	1	4608	2304	≥1
	5-20	18	12	QPSK	1/3	1864	24	1	5184	2592	≥1
	5-20	20	12	QPSK	1/3	1736	24	1	5760	2880	≥1
	5-20	24	12	QPSK	1/3	2472	24	1	6912	3456	≥1
	10-20	25	12	QPSK	1/3	2216	24	1	7200	3600	≥1
	10-20	27	12	QPSK	1/3	2792	24	1	7776	3888	≥ 1
	10-20	30	12	QPSK	1/3	2664	24	1	8640	4320	≥ 1
	10-20	32	12	QPSK	1/3	2792	24	1	9216	4608	≥1
	10-20	36	12	QPSK	1/3	3752	24	1	10368	5184	≥ 1
	10-20	40	12	QPSK	1/3	4136	24	1	11520	5760	≥ 1
	10-20	45	12	QPSK	1/3	4008	24	1	12960	6480	≥1
	10-20	48	12	QPSK	1/3	4264	24	1	13824	6912	≥1
	15 - 20	50	12	QPSK	1/3	5160	24	1	14400	7200	≥ 1
	15 - 20	54	12	QPSK	1/3	4776	24	1	15552	7776	≥1
	15 - 20	60	12	QPSK	1/4	4264	24	1	17280	8640	≥ 1
	15 - 20	64	12	QPSK	1/4	4584	24	1	18432	9216	≥ 1
	15 - 20	72	12	QPSK	1/4	5160	24	1	20736	10368	≥1
	20	75	12	QPSK	1/5	4392	24	1	21600	10800	≥1
	20	80	12	QPSK	1/5	4776	24	1	23040	11520	≥1
	20	81	12	QPSK	1/5	4776	24	1	23328	11664	≥1
	20	90	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
	20	96	12	QPSK	1/6	4264	24	1	27648	13824	≥1

#### Table A.2.2.2.1-1 Reference Channels for QPSK with partial RB allocation

#### A.2.2.2.2 16-QAM

Paramet er	Ch BW	Allocate d RBs	DFT- OFDM Symbols per Sub- Frame	Mod'n	Target Coding rate	Payload size	Transpo rt block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame	Total symbols per Sub- Frame	UE Categor y
Unit	MHz					Bits	Bits		Bits		
	1.4 - 20	1	12	16QAM	3/4	408	24	1	576	144	≥1
	1.4 - 20	2	12	16QAM	3/4	840	24	1	1152	288	≥1
	1.4 - 20	3	12	16QAM	3/4	1288	24	1	1728	432	≥1
	1.4 - 20	4	12	16QAM	3/4	1736	24	1	2304	576	≥1
	1.4 - 20	5	12	16QAM	3/4	2152	24	1	2880	720	≥1
	3-20	6	12	16QAM	3/4	2600	24	1	3456	864	≥1
	3-20	8	12	16QAM	3/4	3496	24	1	4608	1152	≥1
	3-20	9	12	16QAM	3/4	3880	24	1	5184	1296	≥1
	3-20	10	12	16QAM	3/4	4264	24	1	5760	1440	≥1
	3-20	12	12	16QAM	3/4	5160	24	1	6912	1728	≥1
	5-20	15	12	16QAM	1/2	4264	24	1	8640	2160	≥1
	5-20	16	12	16QAM	1/2	4584	24	1	9216	2304	≥1
	5-20	18	12	16QAM	1/2	5160	24	1	10368	2592	≥1
	5-20	20	12	16QAM	1/3	4008	24	1	11520	2880	≥1
	5-20	24	12	16QAM	1/3	4776	24	1	13824	3456	≥1
	10-20	25	12	16QAM	1/3	4968	24	1	14400	3600	≥1
	10-20	27	12	16QAM	1/3	4776	24	1	15552	3888	≥1
	10-20	30	12	16QAM	3/4	12960	24	3	17280	4320	≥2
	10-20	32	12	16QAM	3/4	13536	24	3	18432	4608	≥ 2
	10-20	36	12	16QAM	3/4	15264	24	3	20736	5184	≥2
	10-20	40	12	16QAM	3/4	16992	24	3	23040	5760	≥2
	10-20	45	12	16QAM	3/4	19080	24	4	25920	6480	≥2
	10-20	48	12	16QAM	3/4	20616	24	4	27648	6912	≥2
	15 - 20	50	12	16QAM	3/4	21384	24	4	28800	7200	≥2
	15 - 20	54	12	16QAM	3/4	22920	24	4	31104	7776	≥2
	15 - 20	60	12	16QAM	2/3	23688	24	4	34560	8640	≥2
	15 - 20	64	12	16QAM	2/3	25456	24	4	36864	9216	≥2
	15 - 20	72	12	16QAM	1/2	20616	24	4	41472	10368	≥2
	20	75	12	16QAM	1/2	21384	24	4	43200	10800	≥2
	20	80	12	16QAM	1/2	22920	24	4	46080	11520	≥2
	20	81	12	16QAM	1/2	22920	24	4	46656	11664	≥2
	20	90	12	16QAM	2/5	20616	24	4	51840	12960	≥2
	20	96	12	16QAM	2/5	22152	24	4	55296	13824	≥2

#### Table A.2.2.2.2-1 Reference Channels for 16-QAM with partial RB allocation

#### A.2.2.2.3 64-QAM

[FFS]

## A.2.2.3 Reference measurement channels for sustained downlink data rate provided by lower layers

Unit Value										
	R.1-1	R.1-2	R.1-3	R.1-3A	R.1-4	FFS				
	FDD	FDD	FDD	FDD	FDD					
MHz	10	10	20	10	20					
	40	40	90	40	90					
	(Note 2)	(Note 2)	(Note 3)	(Note 2)	(Note 3)					
	10	10	10	10	10					
	12	12	12	12	12					
	QPSK	QPSK	QPSK	QPSK	QPSK					
	0.31	0.31	0.31	0.31	0.31					
Bits	3496	3496	7992	3496	7992					
	1	1	2	1	2					
	5760	5760	12960	5760	12960					
	11520	11520	25920	11520	25920					
Mbps	3.496	3.496	7.992	3.496	7.992					
	≥ 1	≥ 1	≥2	≥ 1	≥2					
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code										
	Bits	R.1-1       FDD         MHz       10         40       40         (Note 2)       10         12       QPSK         0.31       3496         1       5760         11520       Mbps         3.496       ≥ 1         resent, an additional (	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R.1-1 FDDR.1-2 FDDR.1-3 FDDR.1-3A FDDMHz1010201040409040(Note 2)(Note 2)(Note 3)(Note 2)101010101012121212QPSKQPSKQPSKQPSK0.310.310.310.31Bits3496349679923496111215760576012960576011520115202592011520Mbps3.4963.4967.9923.496 $\geq 1$ $\geq 1$ $\geq 2$ $\geq 1$ resent, an additional CRC sequence of L = 24 Bits is attract	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				

#### Table A.2.2.3-1: Uplink Reference Channels for sustained data-rate test (FDD)

Note 3: RB-s 5-94 allocated with PUSCH.

## A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

#### A.2.3.1 Full RB allocation

#### A.2.3.1.1 QPSK

#### Table A.2.3.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size							
For Sub-Frame 2,3,7,8	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	14400	21600	28800
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥ 1	≥1	≥ 1	≥1	≥1
Note 1: If more than one Code Block is to each Code Block (otherwise		n addition	al CRC s	equence	of L = 24	Bits is a	ttached
Note 2: As per Table 4.2-2 in TS 36.21	1 [4]						

#### A.2.3.1.2 16-QAM

#### Table A.2.3.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12		
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM		
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3		
Payload size									
For Sub-Frame 2,3,7,8	Bits	2600	4264	4968	21384	21384	19848		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of code blocks per Sub-Frame (Note 1)									
For Sub-Frame 2,3,7,8		1	1	1	4	4	4		
Total number of bits per Sub-Frame									
For Sub-Frame 2,3,7,8	Bits	3456	8640	14400	28800	43200	57600		
Total symbols per Sub-Frame									
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400		
UE Category		≥ 1	≥ 1	≥1	≥ 2	≥2	≥2		
<ul> <li>Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)</li> <li>Note 2: As per Table 4.2-2 in TS 36.211 [4]</li> </ul>									

#### A.2.3.1.3 64-QAM

[FFS]

#### A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

#### A.2.3.2.1 QPSK

Parame ter	Ch BW	Allocat ed RBs	UDL Configu ration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Categor y
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	QPSK	1/3	72	24	1	288	144	≥1
	1.4 - 20	2	1	12	QPSK	1/3	176	24	1	576	288	≥ 1
	1.4 - 20	3	1	12	QPSK	1/3	256	24	1	864	432	≥1
	1.4 - 20	4	1	12	QPSK	1/3	392	24	1	1152	576	≥ 1
	1.4 - 20	5	1	12	QPSK QPSK	1/3	424	24	1	1440	720	≥1
	3-20 3-20	6 8	1	12 12	QPSK	1/3 1/3	600 808	24 24	1	1728 2304	864 1152	≥ 1 ≥ 1
	3-20	9	1	12	QPSK	1/3	776	24	1	2304	1296	≥1
	3-20	10	1	12	QPSK	1/3	872	24	1	2392	1290	≥1
	3-20	10	1	12	QPSK	1/3	1224	24	1	3456	1728	≥1
	5-20	15	1	12	QPSK	1/3	1320	24	1	4320	2160	≥1
	5-20	16	1	12	QPSK	1/3	1384	24	1	4608	2304	≥1
	5-20	18	1	12	QPSK	1/3	1864	24	1	5184	2592	≥ 1
	5-20	20	1	12	QPSK	1/3	1736	24	1	5760	2880	≥ 1
	5-20	24	1	12	QPSK	1/3	2472	24	1	6912	3456	≥ 1
	10-20	25	1	12	QPSK	1/3	2216	24	1	7200	3600	≥ 1
	10-20	27	1	12	QPSK	1/3	2792	24	1	7776	3888	≥ 1
	10-20	30	1	12	QPSK	1/3	2664	24	1	8640	4320	≥ 1
	10-20	32	1	12	QPSK	1/3	2792	24	1	9216	4608	≥ 1
	10-20	36	1	12	QPSK	1/3	3752	24	1	10368	5184	≥ 1
	10-20	40	1	12	QPSK	1/3	4136	24	1	11520	5760	≥ 1
	10-20	45	1	12	QPSK	1/3	4008	24	1	12960	6480	≥ 1
	10-20	48	1	12	QPSK	1/3	4264	24	1	13824	6912	≥1
	15 - 20	50	1	12 12	QPSK	1/3	5160	24	1	14400	7200	≥1
	15 - 20 15 - 20	54 60	1	12	QPSK QPSK	1/3 1/4	4776 4264	24 24	1	15552 17280	7776 8640	≥ 1 ≥ 1
	15 - 20	64	1	12	QPSK	1/4	4204	24	1	18432	9216	≥1
	15 - 20	72	1	12	QPSK	1/4	5160	24	1	20736	10368	≥1
	20	75	1	12	QPSK	1/4	4392	24	1	21600	10800	≥1
	20	80	1	12	QPSK	1/5	4776	24	1	23040	11520	≥1
	20	81	1	12	QPSK	1/5	4776	24	1	23328	11664	≥1
	20	90	1	12	QPSK	1/6	4008	24	1	25920	12960	≥ 1
	20	96	1	12	QPSK	1/6	4264	24	1	27648	13824	≥1

#### Table A.2.3.2.1-1 Reference Channels for QPSK with partial RB allocation

#### A.2.3.2.2 16-QAM

Parame ter	Ch BW	Allocat ed RBs	UDL Configu ration (Note 2)	DFT- OFDM Symbol s per Sub- Frame	Mod'n	Target Coding rate	Payloa d size for Sub- Frame 2, 3, 7, 8	Transp ort block CRC	Number of code blocks per Sub- Frame (Note 1)	Total number of bits per Sub- Frame for Sub- Frame 2, 3, 7, 8	Total symbol s per Sub- Frame for Sub- Frame 2, 3, 7, 8	UE Categor y
Unit	MHz						Bits	Bits		Bits		
	1.4 - 20	1	1	12	16QAM	3/4	408	24	1	576	144	≥ 1
	1.4 - 20	2	1	12	16QAM	3/4	840	24	1	1152	288	≥ 1
	1.4 - 20	3	1	12	16QAM	3/4	1288	24	1	1728	432	≥ 1
	1.4 - 20	4	1	12	16QAM	3/4	1736	24	1	2304	576	≥ 1
	1.4 - 20	5	1	12	16QAM	3/4	2152	24	1	2880	720	≥1
	3-20	6	1	12	16QAM	3/4	2600	24	1	3456	864	≥ 1
	3-20	8	1	12	16QAM	3/4	3496	24	1	4608	1152	≥1
	3-20	9	1	12	16QAM	3/4	3880	24	1	5184	1296	≥ 1
	3-20	10	1	12	16QAM	3/4	4264	24	1	5760	1440	≥1
	3-20	12	1	12	16QAM	3/4	5160	24	1	6912	1728	≥ 1
	5-20	15	1	12	16QAM	1/2	4264	24	1	8640	2160	≥ 1
	5-20	16	1	12	16QAM	1/2	4584	24	1	9216	2304	≥1
	5-20	18	1	12	16QAM	1/2	5160	24	1	10368	2592	≥1
	5-20	20	1	12	16QAM	1/3	4008	24	1	11520	2880	≥ 1
	5-20	24	1	12	16QAM	1/3	4776	24	1	13824	3456	≥ 1
	10-20	25	1	12	16QAM	1/3	4968	24	1	14400	3600	≥1
	10-20	27	1	12	16QAM	1/3	4776	24	1	15552	3888	≥ 1
	10-20	30	1	12	16QAM	3/4	12960	24	3	17280	4320	≥ 2
	10-20	32	1	12	16QAM	3/4	13536	24	3	18432	4608	≥ 2
	10-20	36	1	12	16QAM	3/4	15264	24	3	20736	5184	≥ 2
	10-20	40	1	12	16QAM	3/4	16992	24	3	23040	5760	≥ 2
	10-20	45	1	12	16QAM	3/4	19080	24	4	25920	6480	≥2
	10-20	48	1	12	16QAM	3/4	20616	24	4	27648	6912	≥2
	15 - 20	50 54	1	12 12	16QAM	3/4	21384	24 24	4	28800	7200	≥2
	15 - 20	54 60	1	12	16QAM	3/4	22920 23688	24	4 4	31104	7776 8640	≥2
	<u>15 - 20</u> 15 - 20	60 64	1	12	16QAM 16QAM	2/3 2/3	23688	24	4	34560 36864	9216	≥ 2 ≥ 2
	15 - 20	64 72	1	12	16QAM 16QAM	2/3	25456	24	4	36864 41472	10368	≥2 ≥2
	20	72	1	12	16QAM 16QAM	1/2	20616	24	4	41472	10368	≥2 ≥2
	20	75 80	1	12	16QAM 16QAM	1/2	21384	24	4	43200	11520	≥2
	20	80	1	12	16QAM	1/2	22920	24	4	46080	11664	≥2
	20	90	1	12	16QAM	2/5	22920	24	4	51840	12960	≥2
	20	90 96	1	12	16QAM	2/5	20010	24	4	55296	13824	≥2
Note 1: Note 2:	If more t	han one Co	de Block is p n TS 36.211	resent, an a								

#### Table A.2.3.2.2-1 Reference Channels for 16QAM with partial RB allocation

A.2.3.2.3 64-QAM

[FFS]

#### A.2.3.3 Reference measurement channels for sustained downlink data rate provided by lower layers

Parameter	Unit			Value	•	
Reference Channel		R.1-1	R.1-2	R.1-3	R.1-3B	R.1-4
		TDD	TDD	TDD	TDD	TDD
Channel Bandwidth	MHz	10	10	20	15	20
Uplink-Downlink Configuration (Note 2)		5	5	5	1	1
Allocated Resource Blocks		40	40	90	60	90
		(Note 3)	(Note 3)	(Note 5)	(Note 4)	(Note 5)
Allocated Sub-Frames per Radio-Frame		1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Coding Rate						
For Sub-Frame 2		0.43	0.61	0.49	0.42	0.49
For Sub-Frame 3,7,8		n/a	n/a	n/a	0.42	0.49
Information Bit Payload per Sub-Frame	Bits					
For Sub-Frame 2		4968	6968	12576	7224	12576
For Sub-Frame 3,7,8		0	0	0	7224	12576
Number of Code Blocks per Sub-Frame						
(Note 1)						
For Sub-Frame 2		1	2	3	2	3
For Sub-Frame 3,7,8		0	0	0	2	3
Modulation Symbols per Sub-Frame						
For Sub-Frame 2		5760	5760	12960	8640	10240
For Sub-Frame 3,7,8		0	0	0	8640	10240
Binary Channel Bits per Sub-Frame						
For Sub-Frame 2		11520	11520	25920	17280	25920
For Sub-Frame 3,7,8		n/a	n/a	n/a	17280	25920
Max Throughput over 1 Radio-Frame	Mbps	0.4968	0.6968	1.2576	2.8896	5.0304
UE Category		≥ 1	≥ 2	≥2	≥ 2	≥ 2
Note 1: If more than one Code Block is p	present, an	additional C	CRC sequer	nce of $L = 2$	4 Bits is atta	ached to
each Code Block (otherwise L =						
Note 2: As per Table 4.2-2 in TS 36.211						
Note 3: RB-s 5-44 allocated with PUSCH						
Note 4: RB-s 7-66 allocated with PUSCH						
Note 5: RB-s 5-94 allocated with PUSCH	1.					

Table A.2.3.3-1: Uplink Reference Channels for sustained data-rate test (TDD)

## A.3 DL reference measurement channels

## A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation  $N_{\text{RB}}$ 

1. Calculate the number of channel bits  $N_{ch}$  that can be transmitted during the first transmission of a given sub-frame.

2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24*(N_{CB} + 1))/N_{ch}|, where N_{CB} = \begin{cases} 0, if C = 1\\ C, if C > 1 \end{cases}$$
 subject to

a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of  $N_{\rm RB}$  resource blocks.

b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].

3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

#### A.3.1.1 Overview of DL reference measurement channels

In Table A.3.1.1-1 are listed the DL reference measurement channels specified in annexes A.3.2 to A.3.10 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.3.2 to A.3.10 as appropriate.

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD, Rece	eiver requirements				•				
FDD	Table A.3.2-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.2-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.3.2-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.2-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.2-1		15	QPSK	1/3	75		≥ 1	
FDD	Table A.3.2-1		20	QPSK	1/3	100		≥ 1	
TDD, Rece	eiver requirements				_			-	
TDD	Table A.3.2-2		1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.2-2		3	QPSK	1/3	15		≥ 1	
TDD	Table A.3.2-2		5	QPSK	1/3	25		≥ 1	
TDD	Table A.3.2-2		10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.2-2		15	QPSK	1/3	75		≥ 1	
TDD	Table A.3.2-2		20	QPSK	1/3	100		≥ 1	
FDD, Rece	eiver requirements,	Maximum inp	out level	for UE Ca	tegorie	s 3-5			
FDD	Table A.3.2-3		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3		10	64QAM	3/4	50		-	
FDD	Table A.3.2-3		15	64QAM	3/4	75		-	
FDD	Table A.3.2-3		20	64QAM	3/4	100		-	
FDD, Rece	eiver requirements,	Maximum inp	out level	for UE Ca	tegorie	s 1			
FDD	Table A.3.2-3a		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3a		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3a		5	64QAM	3/4	18		-	
FDD	Table A.3.2-3a		10	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		15	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		20	64QAM	3/4	17		-	
	eiver requirements,	Maximum inp	1	-	tegorie	s 2		-	
FDD	Table A.3.2-3b		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3b		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3b		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3b		10	64QAM	3/4	50		-	
FDD	Table A.3.2-3b		15	64QAM	3/4	75		-	
FDD	Table A.3.2-3b		20	64QAM	3/4	83		-	
	eiver requirements,	Maximum inp	1	1		1	1	1	
TDD	Table A.3.2-4		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4		10	64QAM	3/4	50		-	
TDD	Table A.3.2-4		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4		20	64QAM	3/4	100		-	
	eiver requirements,	Maximum inp	1	r	_	1			
TDD	Table A.3.2-4a		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4a		3	64QAM	3/4	15		-	

#### Table A.3.1.1-1: Overview of DL reference measurement channels

TDD					0/4	40			
TDD	Table A.3.2-4a		5	64QAM	3/4	18		-	
TDD	Table A.3.2-4a		10	64QAM	3/4	17		-	
TDD	Table A.3.2-4a		15	64QAM	3/4	17		-	
TDD	Table A.3.2-4a		20	64QAM	3/4	17		-	
	eiver requirements,	Maximum inp	1	1		I I			
TDD	Table A.3.2-4b		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4b		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4b		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4b		10	64QAM	3/4	50		-	
TDD	Table A.3.2-4b		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4b		20	64QAM	3/4	83		-	
	CH Performance, S	-	transm	1	:S)				
FDD	Table A.3.3.1-1	R.4 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.3.1-1	R.42 FDD	20	QPSK	1/3	100		≥ 1	
FDD	Table A.3.3.1-1	R.2 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.1-2	R.3-1 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.1-2	R.3 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.1-3	R.5 FDD	3	64QAM	3/4	15		≥ 1	
FDD	Table A.3.3.1-3	R.6 FDD	5	64QAM	3/4	25		≥ 2	
FDD	Table A.3.3.1-3	R.7 FDD	10	64QAM	3/4	50		≥ 2	
FDD	Table A.3.3.1-3	R.8 FDD	15	64QAM	3/4	75		≥ 2	
FDD	Table A.3.3.1-3	R.9 FDD	20	64QAM	3/4	100		≥ 3	
FDD	Table A.3.3.1-3a	R.6-1 FDD	5	64QAM	3/4	18		≥ 1	
FDD	Table A.3.3.1-3a	R.7-1 FDD	10	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.8-1 FDD	15	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.9-1 FDD	20	64QAM	3/4	17		≥ 1	
FDD	Table A.3.3.1-3a	R.9-2 FDD	20	64QAM	3/4	83		≥ 2	
FDD	Table A.3.3.1-6	R.41 FDD	10	QPSK	1/10	50		≥ 1	
FDD, PDS	CH Performance, S	ingle-antenna	transm	ission (CR	S), Sin	gle PRB	(Cha	nnel e	edge)
FDD	Table A.3.3.1-4	R.0 FDD	3	16QAM	1/2	1		≥ 1	
FDD	Table A.3.3.1-4	R.1 FDD	10 / 20	16QAM	1/2	1		≥ 1	
FDD. PDS	CH Performance, S	ingle-antenna		ission (CR	S). Sin	ale PRB	(MBS		onfiguration)
FDD	Table A.3.3.1-5	R.29 FDD	10	16QAM	1/2	1		≥ 1	
	CH Performance: C					· ·			
FDD	Table A.3.3.1-7	R.49 FDD	20	64QAM	0.84-	100		≥5	
					0.87			- 5	
	CH Performance: C		1	-	nset	50			
FDD PDC	Table A.3.4.2.1-3	R.YY FDD	10	64QAM	) <b>T</b>	50		≥ 3	
	CH Performance, N	[			1	I I	ports		
FDD	Table A.3.3.2.1-1	R.10 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.2.1-1	R.11 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.1-1	R.11-2 FDD	5	16QAM	1/2	25		≥ 1	
FDD	Table A.3.3.2.1-1	R.11-3 FDD	10	16QAM	1/2	40		≥ 1	
FDD	Table A.3.3.2.1-1	R.11-4 FDD	10	QPSK	1/2	50		≥ 1	
FDD	Table A.3.3.2.1-1	R.30 FDD	20	16QAM	1/2	100		≥ 2	
FDD	Table A.3.3.2.1-1	R.30-1 FDD	15	16QAM	1/2	75		≥ 2	
FDD	Table A.3.3.2.1-1	R.35 FDD	10	64QAM	1/2	50		≥ 2	
FDD	Table A.3.3.2.1-1	R.35-1 FDD	20	64QAM	0.39	100		4	
FDD	Table A.3.3.2.1-1	R.35-2 FDD	15	64QAM	0.39	75		≥ 2	

FDD	Table A.3.3.2.1-1	R.35-3 FDD	10	64QAM	0.39	50	≥ 2	
FDD			-			50	≥ 2	
	Table A.3.3.2.1-2	R.35-4 FDD	10	64QAM QPSK	0.47	50		
FDD	Table A.3.3.2.1-2	R.46 FDD	10				≥ 1	
FDD	Table A.3.3.2.1-2	R.47 FDD	10	16QAM		50	≥ 1	
	CH Performance, N			-	-	-		
FDD	Table A.3.3.2.2-1	R.12 FDD	1.4	QPSK	1/3	6	≥ 1	
FDD	Table A.3.3.2.2-1	R.13 FDD	10	QPSK	1/3	50	≥ 1	
FDD	Table A.3.3.2.2-1	R.14 FDD	10	16QAM	1/2	50	≥ 2	
FDD	Table A.3.3.2.2-1	R.14-1 FDD	10	16QAM	1/2	6	≥ 1	
FDD	Table A.3.3.2.2-1	R.14-2 FDD	10	16QAM	1/2	3	≥ 1	
FDD	Table A.3.3.2.2-1	R.14-3 FDD	20	16QAM	1/2	100	≥ 2	
FDD	Table A.3.3.2.2-1	R.36 FDD	10	64QAM	1/2	50	≥ 2	
	CH Performance (U			-	-		- <u>r</u> - r	
FDD	Table A.3.3.3.1-1	R.51 FDD	10	16QAM	1/2	50	≥ 2	
	CH Performance (U			-		-RS, non (	Quasi Co-I	ocated)
FDD	Table A.3.3.3.1-2	R.52 FDD	10	64QAM	1/2	50	≥ 2	
FDD	Table A.3.3.3.1-2	R.53 FDD	10	64QAM	1/2	50	≥ 2	
FDD	Table A.3.3.3.1-2	R.54 FDD	10	16QAM	1/2	50	≥ 2	
	CH Performance (U	-		-		-	- <u>r</u> - r	
FDD	Table A.3.3.3.2-1	R.43 FDD	10	QPSK	1/3	50	≥ 1	
FDD	Table A.3.3.3.2-1	R.50 FDD	10	64QAM	1/2	50	≥ 2	
FDD	Table A.3.3.3.2-2	R.44 FDD	10	QPSK	1/3	50	≥ 1	
FDD	Table A.3.3.3.2-2	R.45 FDD	10	16QAM	1/2	50	≥ 2	
FDD	Table A.3.3.3.2-2	R.45-1 FDD	10	16QAM	1/2	39	≥ 1	
FDD	Table A.3.3.3.2-1	R.48 FDD	10	QPSK		50	≥ 1	
TDD, PDS	CH Performance, S	ingle-antenna	transm	ission (CR	S)	r		
TDD	Table A.3.4.1-1	R.4 TDD	1.4	QPSK	1/3	6	≥ 1	
TDD	Table A.3.4.1-1	R.42 TDD	20	QPSK	1/3	100	≥ 1	
TDD	Table A.3.4.1-1	R.2 TDD	10	QPSK	1/3	50	≥ 1	
TDD	Table A.3.4.1-2	R.3-1 TDD	5	16QAM	1/2	25	≥ 1	
TDD	Table A.3.4.1-2	R.3 TDD	10	16QAM	1/2	50	≥ 2	
TDD	Table A.3.4.1-3	R.5 TDD	3	64QAM	3/4	15	≥ 1	
TDD	Table A.3.4.1-3	R.6 TDD	5	64QAM	3/4	25	≥ 2	
TDD	Table A.3.4.1-3	R.7 TDD	10	64QAM	3/4	50	≥ 2	
TDD	Table A.3.4.1-3	R.8 TDD	15	64QAM	3/4	75	≥ 2	
TDD	Table A.3.4.1-3	R.9 TDD	20	64QAM	3/4	100	≥ 3	
TDD	Table A.3.4.1-3a	R.6-1 TDD	5	64QAM	3/4	18	≥ 1	
TDD	Table A.3.4.1-3a	R.7-1 TDD	10	64QAM	3/4	17	≥ 1	
TDD	Table A.3.4.1-3a	R.8-1 TDD	15	64QAM	3/4	17	≥ 1	
TDD	Table A.3.4.1-3a	R.9-1 TDD	20	64QAM	3/4	17	≥ 1	
TDD	Table A.3.4.1-3a	R.9-2 TDD	20	64QAM	3/4	83	≥ 2	
TDD	Table A.3.4.1-6	R.41 TDD	10	QPSK	1/10	50	≥ 1	
TDD, PDS	CH Performance, S	ingle-antenna	transm	ission (CR	S), Sin	gle PRB (	Channel e	dge)
TDD	Table A.3.4.1-4	R.0 TDD	3	16QAM	1/2	1	≥ 1	
TDD	Table A.3.4.1-4	R.1 TDD	10 / 20	16QAM	1/2	1	≥ 1	
TDD. PDS	CH Performance, S	ingle-antenna		ission (CR	S). Sin	gle PRB (I	MBSFN Co	onfiguration)
TDD	Table A.3.4.1-5	R.29 TDD	10	16QAM	1/2	1	≥ 1	<u> </u>
	CH Performance: C					ce		
,								

TDD	Table A.3.4.1-7	R.49 TDD	20	64QAM	0.81-	100		≥ 5	
					087				
	CH Performance, N	[	<b></b>		ř.	1	ha port	[	
TDD	Table A.3.4.2.1-1	R.10 TDD	10	QPSK	1/3	50		≥1	
TDD	Table A.3.4.2.1-1	R.11 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-1 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-2 TDD	5	16QAM	1/2	25		≥1	
TDD	Table A.3.4.2.1-1	R.11-3 TDD	10	16QAM	1/2	40		≥1	
TDD	Table A.3.4.2.1-1	R.11-4 TDD	10	QPSK	1/2	50		≥ 1	
TDD	Table A.3.4.2.1-1	R.30 TDD	20	16QAM	1/2	100		≥ 2	
TDD	Table A.3.4.2.1-1	R.30-1 TDD	20	16QAM	1/2	100		≥ 2	
TDD	Table A.3.4.2.1-1	R.30-2 TDD	20	16QAM	1/2	100		3	
TDD	Table A.3.4.2.1-1	R.35 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.35-1 TDD	20	64QAM	0.39	100		4	
TDD	Table A.3.4.2.1-2	R.35-2 TDD	10	64QAM	0.47	50		≥ 2	
TDD	Table A.3.4.2.1-2	R.46 TDD	10	QPSK		50		≥ 1	
TDD	Table A.3.4.2.1-2	R.47 TDD	10	16QAM		50		≥ 1	
TDD, PDS	CH Performance, N	lulti-antenna t	ransmis	sion (CRS	5), Four	anten	na por	ts	I
TDD	Table A.3.4.2.2-1	R.12 TDD	1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.13 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.2-1	R.14 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.2-1	R.14-1 TDD	10	16QAM	1/2	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.14-2 TDD	10	16QAM	1/2	3		≥ 1	
TDD	Table A.3.4.2.2-1	R.43 TDD	20	16QAM	1/2	100		≥2	
TDD	Table A.3.4.2.2-1	R.36 TDD	10	64QAM	1/2	50		≥ 2	
TDD, PDS	CH Performance, S	ingle antenna	port (D	RS)	_	-	-		
TDD	Table A.3.4.3.1-1	R.25 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.1-1	R.26 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.26-1 TDD	5	16QAM	1/2	25		≥ 1	
TDD	Table A.3.4.3.1-1	R.27 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.27-1 TDD	10	64QAM	3/4	18		≥ 1	
TDD	Table A.3.4.3.1-1	R.28 TDD	10	16QAM	1/2	1		≥ 1	
TDD, PDS	CH Performance, T	wo antenna p	orts (DR	S)					
TDD	Table A.3.4.3.2-1	R.31 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.2-1	R.32 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.2-1	R.32-1 TDD	5	16QAM	1/2	[25]		≥ 1	
TDD	Table A.3.4.3.2-1	R.33 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.2-1	R.33-1 TDD	10	64QAM	3/4	[18]		≥ 1	
TDD	Table A.3.4.3.2-1	R.34 TDD	10	64QAM	1/2	50		≥ 2	
TDD, PDS	CH Performance (U	E specific RS	) Two ar	ntenna por	rts (CSI	-RS)			
TDD	Table A.3.4.3.3-1	R.51 TDD	10	16QAM	1/2	50		≥ 2	
TDD, PDS	CH Performance (U	E specific RS	) Two ar	ntenna por	rts (CSI	-RS, n	on Qua	asi Co-	located)
TDD	Table A.3.4.3.3-2	R.52 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.3-2	R.53 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.3-2	R.54 TDD	10	16QAM	1/2	50		≥ 2	
TDD, PDS	CH Performance (U	E specific RS	) Four a	ntenna po	rts (CS	I-RS)			
TDD	Table A.3.4.3.4-1	R.44 TDD	10	64QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.4-1	R.48 TDD	10	QPSK		50		≥ 1	
TDD, PDS	CH Performance (U	E specific RS	) Eight a	intenna po	orts (CS	SI-RS)			

TDD	Table A.3.4.3.5-1	R.50 TDD	10	QPSK	1/3	50	≥ 1	
TDD	Table A.3.4.3.5-1	R.45 TDD	10	16QAM	1/3	50	 ≥ 2	
TDD	Table A.3.4.3.5-2	R.45-1 TDD	10	16QAM	1/2	39	≥ 1	
	CH / PCFICH Perfo		10	TOQAM	1/2	55	- 1	
FDD	Table A.3.5.1-1	R.15 FDD	10	PDCCH		-	-	
FDD	Table A.3.5.1-1	R.15-1 FDD	10	PDCCH				
FDD	Table A.3.5.1-1	R.15-2 FDD	10	PDCCH				
FDD	Table A.3.5.1-1	R.16 FDD	10	PDCCH				
FDD	Table A.3.5.1-1	R.17 FDD	5	PDCCH				
TDD, PDC	CH / PCFICH Perfo	rmance						
TDD	Table A.3.5.2-1	R.15 TDD	10	PDCCH				
TDD	Table A.3.5.2-1	R.15-1 TDD	10	PDCCH				
TDD	Table A.3.5.2-1	R.15-2 TDD	10	PDCCH				
TDD	Table A.3.5.2-1	R.16 TDD	10	PDCCH				
TDD	Table A.3.5.2-1	R.17 TDD	5	PDCCH				
FDD / TDD	, PHICH Performar	nce						
FDD / TDD	Table A.3.6-1	R.18	10	PHICH				
FDD /	Table A.3.6-1	R.19	10	PHICH				
TDD FDD /	Table A.3.6-1	R.20	5	PHICH				
TDD FDD /								
TDD	Table A.3.6-1	R.24	10	PHICH				
FDD / TDD FDD /	), PBCH Performan	ce		1	40/			
TDD	Table A.3.7-1	R.21	1.4	QPSK	1920			
FDD / TDD	Table A.3.7-1	R.22	1.4	QPSK	40/ 1920			
FDD / TDD	Table A.3.7-1	R.23	1.4	QPSK	40/ 1920			
	H Performance	I			1520			
FDD	Table A.3.8.1-1	R.40 FDD	1.4	QPSK	1/3	6	≥ 1	
FDD	Table A.3.8.1-1	R.37 FDD	10	QPSK	1/3	50	≥ 1	
FDD	Table A.3.8.1-2	R.38 FDD	10	16QAM	1/2	50	≥ 1	
FDD	Table A.3.8.1-3	R.39-1 FDD	5	64QAM	2/3	25	≥ 1	
FDD	Table A.3.8.1-3	R.39 FDD	10	64QAM	2/3	50	≥ 2	
TDD, PMC	H Performance							
TDD	Table A.3.8.2-1	R.40 TDD	1.4	QPSK	1/3	6	≥ 1	
TDD	Table A.3.8.2-1	R.37 TDD	10	QPSK	1/3	50	≥ 1	
TDD	Table A.3.8.2-2	R.38 TDD	10	16QAM	1/2	50	≥ 1	
TDD	Table A.3.8.2-3	R.39-1 TDD	5	64QAM	2/3	25	 ≥ 1	
TDD	Table A.3.8.2-3	R.39 TDD	10	64QAM	2/3	50	≥ 2	
	ained data rate (CF	-						
FDD	Table A.3.9.1-1	R.31-1 FDD	10	64QAM	0.40		 ≥ 1	
FDD	Table A.3.9.1-1	R.31-2 FDD	10	64QAM	0.59- 0.64		≥ 2	
FDD	Table A.3.9.1-1	R.31-3 FDD	20	64QAM	0.59- 0.62		≥ 2	
FDD	Table A.3.9.1-1	R.31-3A FDD	10	64QAM	0.85- 0.90		≥ 2	
FDD	Table A.3.9.1-1	R.31-3C FDD	15	64QAM	0.87- 0.91		≥ 3	
FDD	Table A.3.9.1-1	R.31-4 FDD	20	64QAM	0.87- 0.90		≥ 3	
FDD	Table A.3.9.1-1	R.31-4B FDD	15	64QAM	0.85- 0.88		≥ 4	

FDD	Table A.3.9.1-1	R.31-5 FDD	15	64QAM	0.85-	≥ 3	
TDD. Sust	tained data rate (CR	(S)			0.91		
TDD	Table A.3.9.2-1	R.31-1 TDD	10	64QAM	0.40	≥ 1	
TDD	Table A.3.9.2-1	R.31-2 TDD	10	64QAM	0.59- 0.64	≥ 2	
TDD	Table A.3.9.2-1	R.31-3 TDD	20	64QAM	0.59- 0.62	≥ 2	
TDD	Table A.3.9.2-1	R.31-3A TDD	15	64QAM	0.87- 0.90	≥ 2	
TDD	Table A.3.9.2-1	R.31-4 TDD	20	64QAM	0.87- 0.90	≥ 3	
FDD, Sust	tained data rate tes	t with EPDCCI	H sched	uling (CRS	-		
FDD	Table A.3.9.3-1	R.31E-1 FDD	10	64QAM	0.40- 0.41	≥ 1	
FDD	Table A.3.9.3-1	R.31E-2 FDD	10	64QAM	0.59- 0.66	≥ 2	
FDD	Table A.3.9.3-1	R.31E-3 FDD	20	64QAM	0.59- 0.63	 ≥ 2	
FDD	Table A.3.9.1-1	R.31E-3C FDD	15	64QAM	0.87- 0.92	 ≥ 3	
FDD	Table A.3.9.3-1	R.31E-3A FDD	10	64QAM	0.85- 0.92	≥ 2	
FDD	Table A.3.9.3-1	R.31E-4 FDD	20	64QAM	0.87- 0.91	≥ 3	
FDD	Table A.3.9.1-1	R.31E-4B FDD	15	64QAM	0.87- 0.90	≥ 4	
TDD, Sust	ained data rate tes	t with EPDCCI	H sched	uling (CRS	-		
TDD	Table A.3.9.4-1	R.31E-1 TDD	10	64QAM	0.40- 0.41	 ≥ 1	
TDD	Table A.3.9.4-1	R.31E-2 TDD	10	64QAM	0.59- 0.65	≥ 2	
TDD	Table A.3.9.4-1	R.31E-3 TDD	20	64QAM	0.59- 0.63	 ≥ 2	
TDD	Table A.3.9.4-1	R.31E-3A TDD	15	64QAM	0.87-0.92	≥ 2	
TDD	Table A.3.9.4-1	R.31E-4 TDD	20	64QAM	0.87- 0.90	≥ 3	
FDD, ePD	CCH performance						
FDD	Table A.3.10.1-1	R.55 FDD	10	EPDCC H			
FDD	Table A.3.10.1-1	R.56 FDD	10	EPDCC H			
FDD	Table A.3.10.1-1	R.57 FDD	10	EPDCC H			
FDD	Table A.3.10.1-1	R.58 FDD	10	EPDCC H			
FDD	Table A.3.10.1-1	R.59 FDD	10	EPDCC H			
TDD, ePD	CCH performance						
TDD	Table A.3.10.2-1	R.55 TDD	10	EPDCC H			
TDD	Table A.3.10.2-1	R.56 TDD	10	EPDCC H			
TDD	Table A.3.10.2-1	R.57 TDD	10	EPDCC H			
TDD	Table A.3.10.2-1	R.58 TDD	10	EPDCC H			
TDD	Table A.3.10.2-1	R.59 TDD	10	EPDCC H			
L	l	1	1	1 11	1	1	

# A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4 (Maximum input level).

Tables A.3.2-3, A.3.2-3a, A.3.2-3b, A.3.2-4, A.3.2-4a and A.3.2-4b are applicable for subclause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Parameter	Unit	Value										
Channel bandwidth	MHz	1.4	3	5	10	15	20					
Allocated resource blocks		6	15	25	50	75	100					
Subcarriers per resource block		12	12	12	12	12	12					
Allocated subframes per Radio Frame		9	9	9	9	9	9					
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK					
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3					
Number of HARQ Processes	Processes	8	8	8	8	8	8					
Maximum number of HARQ transmissions		1	1	1	1	1	1					
Information Bit Payload per Sub-Frame												
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760					
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A					
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760					
Transport block CRC	Bits	24	24	24	24	24	24					
Number of Code Blocks per Sub-Frame												
(Note 3)												
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	2	2					
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A					
For Sub-Frame 0	Bits	1	1	1	1	2	2					
Binary Channel Bits Per Sub-Frame												
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600					
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A					
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760					
Max. Throughput averaged over 1 frame	kbps	341.6	1143.	1952.	3952.	6040.	7884					
			2	8	8	8						
UE Category         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1         ≥ 1 <t< td=""></t<>												
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to												
PDCCH for 5 MHz and 3 MHz. 4 s												
Note 2: Reference signal, Synchronization												
Note 3: If more than one Code Block is pro		tional CR	C seque	nce of L =	= 24 Bits	is attache	ed to					
each Code Block (otherwise L = 0	Bit)		each Code Block (otherwise L = 0 Bit)									

Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit			Va	lue				
Channel Bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1		
Allocated subframes per Radio Frame (D+S)		3	3+2	3+2	3+2	3+2	3+2		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmission		1	1	1	1	1	1		
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK		
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3		
Information Bit Payload per Sub-Frame	Bits								
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760		
For Sub-Frame 1, 6		N/A	968	1544	3240	4968	6712		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		208	1064	1800	4392	6712	8760		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frame 4, 9		1	1	1	1	2	2		
For Sub-Frame 1, 6		N/A	1	1	1	1	2		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		1	1	1	1	2	2		
Binary Channel Bits Per Sub-Frame	Bits								
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600		
For Sub-Frame 1, 6		N/A	3276	5556	11256	16956	22656		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		672	3084	5604	13104	20004	26904		
Max. Throughput averaged over 1 frame	kbps	102.4	564	932	1965.	3007.	3970.		
					6	2	4		
UE Category	L	≥1	≥1	≥1	≥1	≥1	≥1		
<ul> <li>Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&amp;6), only 2 OFDM symbols are allocated to PDCCH for all BWs.</li> <li>Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&amp;6) to avoid problems with insufficient PDCCH performance</li> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]</li> <li>Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> <li>Note 5: As per Table 4.2-2 in TS 36.211 [4]</li> </ul>									

#### Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit			Va	lue				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		8	9	9	9	9	9		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	8	8	8	8	8	8		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	6456	12576	28336	45352	61664		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	11		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	3	5	8	11		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	8820	16380	38880	59580	80280		
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498		
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz. Note 2: Reference signal. Synchronization signals and PBCH allocated as per TS 36.211 [4].									

#### Table A.3.2-3 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (FDD)

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

#### Table A.3.2-3a Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

Parameter	Unit			Va	lue			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	18	17	17	17	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	9	9	9	9	9	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	10296	10296	10296	10296	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6456	8248	10296	10296	10296	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	2	2	2	2	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	2	2	2	2	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	13608	14076	14076	14076	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	8820	11088	14076	14076	14076	
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	9079.6	9266.4	9266.4	9266.4	
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH								
for 5 MHz and 3 MHz. 4 symbols								
Note 2: Reference signal, Synchronization	n signals and F	PBCH alloc	ated as pe	r TS 36.21	1 [4].			
Note 3: If more than one Code Block is pr	esent an addi	tional CRC	sequence	of $I = 24F$	Bits is attac	ched to eac	h Code	

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	83		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		8	9	9	9	9	9		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	8	8	8	8	8	8		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	51024		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	6456	12576	28336	45352	51024		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	9		
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0		N/A	2	3	5	8	9		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	68724		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	N/A	8820	16380	38880	59580	66204		
Max. Throughput averaged over 1 frame         kbps         2387.2         7448.8         12547         27294         42046         45922									
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz. Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36,211 [4].									

#### Table A.3.2-3b Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Parameter	Unit	Value								
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks		6	15	25	50	75	100			
Subcarriers per resource block		12	12	12	12	12	12			
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1			
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2			
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM			
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4			
Number of HARQ Processes	Processes	7	7	7	7	7	7			
Maximum number of HARQ transmissions		1	1	1	1	1	1			
Information Bit Payload per Sub-Frame										
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	61664			
For Sub-Frames 1,6	Bits	N/A	6968	11448	23688	35160	46888			
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits	N/A	6968	12576	30576	45352	61664			
Transport block CRC	Bits	24	24	24	24	24	24			
Number of Code Blocks per Sub-Frame										
(Note 4)										
For Sub-Frames 4,9		1	2	3	5	8	11			
For Sub-Frames 1,6		N/A	2	2	4	6	8			
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A			
For Sub-Frame 0		N/A	2	3	5	8	11			
Binary Channel Bits per Sub-Frame										
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	82800			
For Sub-Frames 1,6		N/A	9828	16668	33768	50868	67968			
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits	N/A	9252	16812	39312	60012	80712			
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	27877			
Note 1: For normal subframes(0,4,5,9), 2										
3 symbols allocated to PDCCH for					OCCH for 1	.4 MHz. Fo	r special			
subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH										
	eduled on spe	cial subfran	nes(1&6) to	o avoid pro	blems with	insufficien	t PDCCH			
performance.			- 4	TO 00 04	4 [ 4]					
Note 3: Reference signal, Synchronization						had to cas	h Cada			
Note 4: If more than one Code Block is pro	esent, an addi		sequence	01L = 24E	ons is allac	neu lo eac	n Coue			
Note 5: As per Table 4.2-2 in TS $36.211$ [4	Block (otherwise L = 0 Bit).									
11010 J. AS PELTADE 4.2-2 11 13 30.211 [2	†j.									

#### Table A.3.2-4 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (TDD)

Channel bandwidth         MHz         1.4         3         5         10         15         20           Allocated resource block         6         15         18         17         17         17           Subcarriers per resource block         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         1	Parameter	Unit			Va	lue			
Allocated resource blocks         6         15         18         17         17         17           Subcarriers per resource block         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         14         14         11         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1			1.4	3			15	20	
Uplink-Downlink Configuration (Note 5)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Allocated resource blocks		6	15	18	17	17	17	
Uplink-Downlink Configuration (Note 5)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame         2         3+2         3+2         3+2         3+2         3+2         3+2         3+2         Modulation         64QAM         64QA         64DE         64DE <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>			1	1	1	1	1	1	
Target Coding Rate         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4         3/4			2	3+2	3+2	3+2	3+2	3+2	
Number of HARQ Processes         Processes         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         <	Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Maximum number of HARQ transmissions         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th11< th="">         1         1</th11<>	Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Information Bit Payload per Sub-Frame         Bits         2984         8504         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         10296         1128         1128         1128         1128         1128 <t< td=""><td>Number of HARQ Processes</td><td>Processes</td><td>7</td><td>7</td><td>7</td><td>7</td><td>7</td><td>7</td></t<>	Number of HARQ Processes	Processes	7	7	7	7	7	7	
For Sub-Frames 4,9         Bits         2984         8504         10296         10296         10296           For Sub-Frames 1,6         Bits         N/A         6968         8248         7480         7480         7480           For Sub-Frame 5         Bits         N/A         6968         8248         7480         7480         7480           For Sub-Frame 0         Bits         N/A         6968         8248         10296         10296         10296           Transport block CRC         Bits         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24	Maximum number of HARQ transmissions		1	1	1	1	1	1	
For Sub-Frames 1,6         Bits         N/A         6968         8248         7480         7480         7480           For Sub-Frame 5         Bits         N/A	Information Bit Payload per Sub-Frame								
For Sub-Frame 5BitsN/AN/AN/AN/AN/AN/AFor Sub-Frame 0BitsN/A69688248102961029610296Transport block CRCBits24242424242424Number of Code Blocks per Sub-Frame (Note 4)1222222For Sub-Frames 4,9122222222For Sub-Frames 1,6N/A22222222For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 6N/A2222222Binary Channel Bits per Sub-FrameN/AN/AN/AN/AN/AN/AN/AN/AFor Sub-Frames 1,6N/A982811880116281162811628For Sub-Frame 5BitsN/A925211520140761407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference	For Sub-Frames 4,9	Bits	2984	8504	10296	10296	10296	10296	
For Sub-Frame 0BitsN/A696882481029610296Transport block CRCBits24242424242424Number of Code Blocks per Sub-Frame (Note 4)1222222For Sub-Frames 1,6N/A2222222For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/A222222Binary Channel Bits per Sub-FrameN/AN/AN/AN/AN/AN/AFor Sub-Frames 1,6N/A982811860116281162811628For Sub-Frames 1,6N/A982811880116281162811628For Sub-Frame 5BitsN/AN/AN/AN/AN/AFor Sub-Frame 5BitsN/A9252115201407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be schedule	For Sub-Frames 1,6	Bits	N/A	6968	8248	7480	7480	7480	
Transport block CRCBits2424242424242424Number of Code Blocks per Sub-Frame (Note 4)For Sub-Frames 4,9122222For Sub-Frames 1,6N/A222222For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/AN/A22222Binary Channel Bits per Sub-FrameN/A1134013608140761407614076For Sub-Frames 1,6N/AN/A982811880116281162811628For Sub-Frame 5BitsN/A982811880116281162811628For Sub-Frame 5BitsN/A945211520140761407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). </td <td>For Sub-Frame 5</td> <td>Bits</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
Number of Code Blocks per Sub-Frame (Note 4)12222For Sub-Frames 1,6N/A22222For Sub-Frame 5N/A22222For Sub-Frame 6N/A22222Binary Channel Bits per Sub-FrameN/A22222For Sub-Frames 4,9Bits41041134013608140761407614076For Sub-Frames 5N/A98281188011628116281162811628For Sub-Frame 5BitsN/A982811880116281162811628For Sub-Frame 5BitsN/A925211520140761407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).	For Sub-Frame 0	Bits	N/A	6968	8248	10296	10296	10296	
(Note 4)12222For Sub-Frames 1,6N/A22222For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/A22222Binary Channel Bits per Sub-FrameN/A22222For Sub-Frames 4,9Bits410411340136081407614076For Sub-Frames 1,6N/A982811880116281162811628For Sub-Frame 5BitsN/AN/AN/AN/AN/AFor Sub-Frame 0BitsN/A9828118201407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).	Transport block CRC	Bits	24	24	24	24	24	24	
For Sub-Frames 4,9122222For Sub-Frames 1,6N/A22222For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/A22222Binary Channel Bits per Sub-FrameN/A1134013608140761407614076For Sub-Frames 4,9Bits41041134013608140761407614076For Sub-Frames 1,6N/A982811880116281162811628For Sub-Frame 5BitsN/A9252115201407614076For Sub-Frame 0BitsN/A9252115201407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).	Number of Code Blocks per Sub-Frame								
For Sub-Frames 1,6N/A22222For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/A22222Binary Channel Bits per Sub-FrameN/A22222For Sub-Frames 4,9Bits41041134013608140761407614076For Sub-Frames 1,6N/A982811880116281162811628For Sub-Frame 5BitsN/AN/AN/AN/AN/AFor Sub-Frame 0BitsN/A9252115201407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).									
For Sub-Frame 5N/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0N/A22222Binary Channel Bits per Sub-Frame </td <td>For Sub-Frames 4,9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	For Sub-Frames 4,9								
For Sub-Frame 0N/A22222Binary Channel Bits per Sub-Frame	For Sub-Frames 1,6						2		
Binary Channel Bits per Sub-Frame       Image: Construct of the symbols and the symbol	For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frames 4,9Bits41041134013608140761407614076For Sub-Frames 1,6N/A98281188011628116281162811628For Sub-Frame 5BitsN/AN/AN/AN/AN/AN/AN/AFor Sub-Frame 0BitsN/A925211520140761407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).			N/A	2	2	2	2	2	
For Sub-Frames 1,6N/A982811880116281162811628For Sub-Frame 5BitsN/AN/AN/AN/AN/AN/AFor Sub-Frame 0BitsN/A9252115201407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).									
For Sub-Frame 5BitsN/AN/AN/AN/AN/AFor Sub-Frame 0BitsN/A925211520140761407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).		Bits			13608		14076		
For Sub-Frame 0BitsN/A925211520140761407614076Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).									
Max. Throughput averaged over 1 framekbps596.83791.24533.64584.84584.84584.8Note 1:For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.Note 2:For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance.Note 3:Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].Note 4:If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).									
<ul> <li>Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&amp;6), only 2 OFDM symbols are allocated to PDCCH for all BWs.</li> <li>Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&amp;6) to avoid problems with insufficient PDCCH performance.</li> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>									
<ul> <li>3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&amp;6), only 2 OFDM symbols are allocated to PDCCH for all BWs.</li> <li>Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&amp;6) to avoid problems with insufficient PDCCH performance.</li> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>									
<ul> <li>subframe (1&amp;6), only 2 OFDM symbols are allocated to PDCCH for all BWs.</li> <li>Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&amp;6) to avoid problems with insufficient PDCCH performance.</li> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>									
<ul> <li>Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&amp;6) to avoid problems with insufficient PDCCH performance.</li> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>						OCCH for 1	.4 MHz. Fo	r special	
<ul> <li>performance.</li> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>							. "		
<ul> <li>Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>									
Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).									
Block (otherwise $L = 0$ Bit).									
	Note 5: As per Table 4.2-2 in TS $36.211$ [4	11							

#### Table A.3.2-4a Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

Parameter	Unit			Va	lue			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	83	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1	
Allocated subframes per Radio Frame		2	3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	51024	
For Sub-Frames 1,6	Bits	N/A	6968	11448	23688	35160	39232	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	6968	12576	30576	45352	51024	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		1	2	3	5	8	9	
For Sub-Frames 1,6		N/A	2	3	5	7	7	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		N/A	2	3	5	8	9	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	68724	
For Sub-Frames 1,6		N/A	9828	16668	33768	50868	56340	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	N/A	9252	16380	39312	60012	66636	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	23154	
Note 1: For normal subframes(0,4,5,9), 2								
3 symbols allocated to PDCCH for					OCCH for 1	.4 MHz. Fo	r special	
subframe (1&6), only 2 OFDM syn								
Note 2: For 1.4MHz, no data shall be sch	eduled on spe	cial subfra	mes(1&6) t	o avoid pro	oblems with	n insufficier	nt	
PDCCH performance.								
Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].								
Note 4: If more than one Code Block is present, an additional CRC sequence of $L = 24$ Bits is attached to each Code								
Block (otherwise L = 0 Bit). Note 5: As per Table 4.2-2 in TS 36.211 [4	11							
Note 5: As per Table 4.2-2 in TS 36.211 [4].								

#### Table A.3.2-4b Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

# A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

## A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Parameter	Unit			Value						
Reference channel		R.4	R.42	R.2						
		FDD	FDD	FDD						
Channel bandwidth	MHz	1.4	20	10						
Allocated resource blocks (Note 4)		6	100	50						
Allocated subframes per Radio Frame		9	9	9						
Modulation		QPSK	QPSK	QPSK						
Target Coding Rate		1/3	1/3	1/3						
Information Bit Payload (Note 4)										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	8760	4392						
For Sub-Frame 5	Bits	N/A	N/A	N/A						
For Sub-Frame 0	Bits	152	8760	4392						
Number of Code Blocks										
(Notes 3 and 4)										
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	1						
For Sub-Frame 5		N/A	N/A	N/A						
For Sub-Frame 0		1	2	1						
Binary Channel Bits (Note 4)										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	27600	13800						
For Sub-Frame 5	Bits	N/A	N/A	N/A						
For Sub-Frame 0	Bits	528	26760	12960						
Max. Throughput averaged over 1 frame	Mbps	0.342	7.884	3.953						
(Note 4)										
UE Category		≥ 1	≥ 1	≥ 1						
Note 1: 2 symbols allocated to PDCCH for					ols allocated					
to PDCCH for 5 MHz and 3 MHz;										
Note 2: Reference signal, synchronization										
	Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to									
each Code Block (otherwise L = 0										
Note 4: Given per component carrier per c	odeword.									

#### Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value							
Reference channel				R.3-1	R.3				
				FDD	FDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks				25	50				
Allocated subframes per Radio Frame				9	9				
Modulation				16QAM	16QAM				
Target Coding Rate				1/2	1/2				
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			6456	14112				
For Sub-Frame 5	Bits			N/A	N/A				
For Sub-Frame 0	Bits			5736	12960				
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9				2	3				
For Sub-Frame 5				N/A	N/A				
For Sub-Frame 0				1	3				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			12600	27600				
For Sub-Frame 5	Bits			N/A	N/A				
For Sub-Frame 0	Bits			10920	25920				
Max. Throughput averaged over 1 frame	Mbps			5.738	12.586				
UE Category				≥ 1	≥2				
Note 1: 2 symbols allocated to PDCCH for						nbols allo	ocated		
to PDCCH for 5 MHz and 3 MHz;									
Note 2: Reference signal, synchronization									
Note 3: If more than one Code Block is pr		itional CR	C sec	uence of L	. = 24 Bits i	s attache	ed to		
each Code Block (otherwise L = 0	) Bit).								

#### Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

MHz	1.4	R.5 FDD	R.6	R.7	R.8	R.9 FDD		
MHz	1.4	FDD			1.10	1.3100		
MHz	1/		FDD	FDD	FDD			
	1.7	3	5	10	15	20		
		15	25	50	75	100		
		9	9	9	9	9		
	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
	3/4	3/4	3/4	3/4	3/4	3/4		
Bits		8504	14112	30576	46888	61664		
Bits		N/A	N/A	N/A	N/A	N/A		
Bits		6456	12576	28336	45352	61664		
		2	3	5	8	11		
		N/A	N/A	N/A	N/A	N/A		
		2	3	5	8	11		
Bits		11340	18900	41400	62100	82800		
Bits		N/A	N/A	N/A	N/A	N/A		
Bits		8820	16380	38880	59580	80280		
Mbps		7.449	12.547	27.294	42.046	55.498		
		≥ 1	≥2	≥ 2	≥ 2	≥ 3		
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH								
for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.								
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].								
Note 3: If more than one Code Block is present, an additional CRC sequence of $L = 24$ Bits is attached to each Code								
	Bits Bits Bits Bits Bits Bits Bits Bits	64QAM       3/4       Bits       Bits       Bits       Bits       Bits       Sits       Bits       Comparison       Sits       Bits       Mbps       Comparison       Signals and PBCH alloc	15964QAM $3/4$ $3/4$ $3/4$ BitsBitsN/ABits64562221Bits11340BitsBits11340BitsBits11340Bits11340Bits11340Bits120Mbps7.449212020MHz, 15MHz and 10MHz challocated to PDCCH for 1.4MHz.signals and PBCH allocated as p	15       25         9       9         64QAM       64QAM         3/4       3/4         3/4       3/4         Bits       8504         14112         Bits       8504         14112         Bits       6456         12576         2       3         2       3         2       3         3/4       11340         1800       188         11340       18900         Bits       11340         181s       16380         Mbps       7.449         12.547 $\geq 1$ $\geq 2$ 20 MHz, 15 MHz and 10 MHz channel BW;         allocated to PDCCH for 1.4 MHz.         signals and PBCH allocated as per TS 36.2*	15       25       50         9       9       9       9         64QAM       64QAM       64QAM       64QAM         3/4       3/4       3/4       3/4         Bits       8504       14112       30576         Bits       N/A       N/A       N/A         Bits       6456       12576       28336         2       3       5       5         1       2       3       5         2       3       5       5         1       2       3       5         1       1340       18900       41400         Bits       11340       18900       41400         Bits       11340       18900       41400         Bits       11340       18900       41400         Bits       11340       18900       41400         Bits       1430       18900       41400         Bits       12547       27.294 $\geq 1$ $\geq 2$ $\geq 2$ 20       MHz, 15       MHz and 10       MHz.         signals and PBCH allocated as per TS 36.211 [4].       4].	15       25       50       75         9       9       9       9       9       9         64QAM       64QAM       64QAM       64QAM       64QAM       64QAM         3/4       3/4       3/4       3/4       3/4       3/4         Bits       8504       14112       30576       46888         Bits       N/A       N/A       N/A       N/A         Bits       6456       12576       28336       45352         2       3       5       8         N/A       N/A       N/A       N/A         2       3       5       8         N/A       N/A       N/A       N/A         2       3       5       8         Bits       11340       18900       41400       62100         Bits       11340       18900       41400       62100         Bits       11340       18900       38880       59580         Mbps       7.449       12.547       27.294       42.046 $\geq 1$ $\geq 2$		

Block (otherwise L = 0 Bit).

Parameter	Unit		Value							
Reference channel			R.6-1	R.7-1	R.8-1	R.9-1	R.9-2			
			FDD	FDD	FDD	FDD	FDD			
Channel bandwidth	MHz		5	10	15	20	20			
Allocated resource blocks (Note 3)			18	17	17	17	83			
Allocated subframes per Radio Frame			9	9	9	9	9			
Modulation			64QAM	64QAM	64QAM	64QAM	64QAM			
Target Coding Rate			3/4	3/4	3/4	3/4	3/4			
Information Bit Payload										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		10296	10296	10296	10296	51024			
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits		8248	10296	10296	10296	51024			
Number of Code Blocks per Sub-Frame										
(Note 4)										
For Sub-Frames 1,2,3,4,6,7,8,9			2	2	2	2	9			
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A			
For Sub-Frame 0			2	2	2	2	9			
Binary Channel Bits Per Sub-Frame										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		13608	14076	14076	14076	68724			
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A			
For Sub-Frame 0	Bits		11088	14076	14076	14076	66204			
Max. Throughput averaged over 1 frame	Mbps		9.062	9.266	9.266	9.266	45.922			
UE Category			≥ 1	≥1	≥1	≥1	≥ 2			
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.										
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].										
Note 3: Localized allocation started from RB #0 is applied.										
Note 4: If more than one Code Block is present, an additional CRC sequence of $L = 24$ Bits is attached to each										

Table A.3.3.1-3a: Fixed Reference Channel 64QAM	R=3/4
-------------------------------------------------	-------

 Note 3:
 Localized allocation started from RB #0 is applied.

 Note 4:
 If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Parameter	Unit	Value							
Reference channel			R.0 FDD		R.1 FDD				
Channel bandwidth	MHz	1.4	3	5	10/20	15	20		
Allocated resource blocks			1		1				
Allocated subframes per Radio Frame			9		9				
Modulation			16QAM		16QAM				
Target Coding Rate			1/2		1/2				
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256				
For Sub-Frame 5	Bits		N/A		N/A				
For Sub-Frame 0	Bits		224		256				
Number of Code Blocks per Sub-Frame (Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9			1		1				
For Sub-Frame 5			N/A		N/A				
For Sub-Frame 0			1		1				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552				
For Sub-Frame 5	Bits		N/A		N/A				
For Sub-Frame 0	Bits		504		552				
Max. Throughput averaged over 1 frame	Mbps		0.202		0.230				
UE Category			≥ 1		≥ 1				
Note 1:       2 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4         PDCCH for 5 MHz and 3 MHz; 4       Reference signal, synchronizatio         Note 2:       Reference signal, synchronizatio         Note 3:       If more than one Code Block is p         Code Block (otherwise L = 0 Bit).	symbols allocan signals and for a signals and for a signal	ated to PI PBCH allo	DCCH for 1. ocated as pe	4 MHz. er TS 36.2	211 [4].				

	Parameter	Unit	Value					
Referenc	e channel		R.29 FDD					
			(MBSFN)					
Channel	bandwidth	MHz	10					
Allocated	resource blocks		1					
MBSFN (	Configuration (Note 3)		111111					
Allocated	subframes per Radio Frame		3					
Modulatio	ึ่งท		16QAM					
Target Co	oding Rate		1/2					
Informatio	on Bit Payload							
	-Frames 4,9	Bits	256					
For Sub	-Frame 5	Bits	N/A					
For Sub	-Frame 0	Bits	256					
For Sub	-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)					
Number of	of Code Blocks per Sub-Frame							
(Note 4)								
For Sub	-Frames 4,9		1					
For Sub	-Frame 5		N/A					
For Sub	-Frame 0		1					
For Sub	-Frame 1,2,3,6,7,8		0 (MBSFN)					
Binary Ch	nannel Bits Per Sub-Frame							
For Sub	-Frames 4,9	Bits	552					
For Sub	-Frame 5	Bits	N/A					
	-Frame 0	Bits	552					
	-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)					
Max. Thre	oughput averaged over 1 frame	kbps	76.8					
UE Categ	jory		≥ 1					
Note 1:	2 symbols allocated to PDCCH.							
Note 2:	Reference signal, synchronization	on signals a	and PBCH					
allocated as per TS 36.211 [4].								
Note 3: MBSFN Subframe Allocation as defined in [7], one frame								
	with 6 bits is chosen for MBSFN							
Note 4:	If more than one Code Block is p							
	CRC sequence of $L = 24$ Bits is	attached to	each Code					
	Block (otherwise L = 0 Bit).							

#### Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value					
Reference channel					R.41 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Allocated subframes per Radio Frame					9		
Modulation					QPSK		
Target Coding Rate					1/10		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				1384		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				1384		
Number of Code Blocks per Sub-Frame							
(Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9					1		
For Sub-Frame 5					N/A		
For Sub-Frame 0					1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				13800		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				12960		
Max. Throughput averaged over 1 frame	Mbps				1.246		
UE Category					≥1		
Note 1:         2 symbols allocated to PDCCH for           to PDCCH for 5 MHz and 3 MHz;           Note 2:         Reference signal, synchronization	4 symbols all	ocated to	PDCCH	for 1.4 N	1Hz.	bols allo	cated
Note 3: If more than one Code Block is p each Code Block (otherwise L = 0	resent, an add					s attache	ed to

#### Table A.3.3.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

Parameter	Unit	Value
Reference channel		R.49 FDD
Channel bandwidth	MHz	20
Allocated resource blocks		100
Allocated subframes per Radio Frame		9
Modulation		64QAM
Coding Rate		
For Sub-Frame 1,2,3,4,6,7,8,9,		0.84
For Sub-Frame 5		N/A
For Sub-Frame 0		0.87
Information Bit Payload		
For Sub-Frames 0,1,2,3,4,6,7,8,9	Bits	63776
For Sub-Frame 5	Bits	N/A
Number of Code Blocks per Sub-Frame (Note 3)		
For Sub-Frames 0,1,2,3,4,6,7,8,9	Code Blocks	11
For Sub-Frame 5	Code Blocks	N/A
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	75600
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	73080
Max. Throughput averaged over 1 frame	Mbps	57.398
UE Category		≥5
<ul> <li>Note 1: 3 symbols allocated to PDCCH.</li> <li>Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>		

# A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

## A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports
--------------------------------------------------------------

Parameter	Unit						Val	ue					
Reference		R.10	R.11	R.11-1	R.11-	R.11-	R.11-	R.30	R.30-	R.35-	R.35	R.35-	R.35-3
channel		FDD	FDD	FDD	2	3	4	FDD	1	1	FDD	2	FDD
					FDD	FDD Note 5	FDD		FDD	FDD		FDD	
Channel bandwidth	MHz	10	10	10	5	10	10	20	15	20	10	15	10
Allocated		50	50	50	25	40	50	100	75	100	50	75	50
resource blocks (Note 4)													
Allocated subframes per Radio Frame		9	9	9	9	9	9	9	8	8	9	8	8
Modulation		QPSK	16QAM	16QAM	16QA M	16QA M	QPS K	16QA M	16QA M	64QA M	64QAM	64QA M	64QA M
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	0.39	1/2	0.39	0.39
Information Bit Payload (Note 4)													
For Sub- Frames 1,2,3,4,6,7,8,9	Bits	4392	12960	12960	5736	1029 6	6968	2545 6	1908 0	3057 6	19848	2292 0	15264
For Sub- Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub- Frame 0	Bits	4392	12960	N/A	4968	1029 6	6968	2545 6	N/A	N/A	18336	N/A	N/A
Number of Code Blocks (Notes 3 and 4)													
For Sub- Frames 1,2,3,4,6,7,8,9	Bits	1	3	3	1	2	2	5	4	5	4	4	3
For Sub- Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub- Frame 0	Bits	1	3	N/A	1	2	2	5	N/A	N/A	3	N/A	N/A
Binary Channel Bits (Note 4)													
For Sub- Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	26400	1200 0	2112 0	1320 0	5280 0	3960 0	7920 0	39600	5940 0	39600
For Sub- Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub- Frame 0	Bits	12384	24768	N/A	1036 8	1948 8	1238 4	5116 8	N/A	N/A	37152	N/A	N/A
Max. Throughput averaged over 1 frame (Note	Mbps	3.953	11.664	10.368	5.086	9.266	6.271	22.91 0	15.26 4	24.46 1	17.712	18.33 6	12.211
4)													
UE Category Note 1: 2 symb	l Jols alloc	≥1 ated to P	≥ 2 DCCH for	≥2 20 MHz 1	≥1 5 MHzan	≥ 1 d 10 MH	≥1 z channe	≥ 2 ≥ BW: 3 •	≥2 symbols a	4 allocated	≥ 2 to PDCCH	≥ 2	≥ 2 Iz and 3
MHz; 4 Note 2: Refere	symbols nce sign than on	s allocate al, synchi	d to PDCC onization	H for 1.4 M signals and	ИНz. I PBCH a	allocated	as per TS	6 36.211	[4].		ach Code		
Note 4: Given	per comp	onent ca	rrier per co	odeword.	- 11 4 -	-1							

Note 5: For R.11-3 resource blocks of RB6–RB45 are allocated.

Parameter	Unit				Va	alue			
Reference channel		R.46	R.47	R.35-4					
		FDD	FDD	FDD					
Channel bandwidth	MHz	10	10	10					
Allocated resource blocks (Note 4)		50	50	50					
Allocated subframes per Radio Frame		9	9	9					
Modulation		QPSK	16QAM	64QAM					
Target Coding Rate				0.47					
Information Bit Payload (Note 4)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	5160	8760	18336					
For Sub-Frame 5	Bits	N/A	N/A	N/A					
For Sub-Frame 0	Bits	5160	8760	16416					
Number of Code Blocks									
(Notes 3 and 4)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	2	3					
For Sub-Frame 5	Bits	N/A	N/A	N/A					
For Sub-Frame 0	Bits	1	2	3					
Binary Channel Bits (Note 4)									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	39600					
For Sub-Frame 5	Bits	N/A	N/A	N/A					
For Sub-Frame 0	Bits	12384	24768	37152					
Max. Throughput averaged over 1	Mbps	4.644	7.884	16.310					
frame (Note 4)									
UE Category		≥ 1	≥ 1	≥2					
Note 1: 2 symbols allocated to PDCCI				IHz channe	I BW; 3	symbols	allocated	to PDCCH	I for 5 MHz
and 3 MHz; 4 symbols allocate									
Note 2: Reference signal, synchroniza									
Note 3: If more than one Code Block i	s present,	an additio	nal CRC se	quence of	L = 24 E	Bits is att	ached to e	each Code	Block
(otherwise L = 0 Bit)									
Note 4: Given per component carrier p	per codewo	ord.							

Table A.3.3.2.1-2: Fixed Reference Channel two antenna ports

Parameter	Unit	Value
Reference channel		R.YY FDD
Channel bandwidth	MHz	10
Number of CRS ports		2
Allocated resource blocks		50
Allocated subframes per Radio Frame		8
Modulation		64QAM
Coding Rate		
For Sub-Frame 1,2,3,4,6,7,8,9,		0.54
For Sub-Frame 5		n/a
For Sub-Frame 0		n/a
Information Bit Payload		
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	21384
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	n/a
Number of Code Blocks per Sub-Frame		
(Note 3)	Code	4
For Sub-Frames 1,2,3,4,6,7,8,9	Blocks	4
For Sub-Frame 5	Code	n/a
	Blocks	
For Sub-Frame 0	Code	n/a
	Blocks	
Binary Channel Bits Per Sub-Frame (Note 4)		
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	39600
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	n/a
Max. Throughput averaged over 1 frame	Mbps	17.11
(Note 4)		
UE Category		≥ 3
Note 1:2 symbols allocated to PDCCH.Note 2:Reference signal, synchronization	n signals a	and PBCH allocated as per TS
36.211 [4].		
Note 3: If more than one Code Block is p L = 24 Bits is attached to each Co		
Note 4: Given per component carrier per		

# Table A.3.3.2.1-3: PCell and SCell Fixed Reference Channel for NC CA demodulation with timing offset and power imbalance

## A.3.3.2.2 Four antenna ports

Parameter	Unit				Value			
Reference channel		R.12	R.13	R.14	R.14-1	R.14-2	R.14-3	R.36
		FDD	FDD	FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz	1.4	10	10	10	10	20	10
Allocated resource blocks (Note 4)		6	50	50	6	3	100	50
Allocated subframes per Radio Frame		9	9	9	8	8	9	9
Modulation		QPSK	QPSK	16QAM	16QAM	16QAM	16QAM	64QAM
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2	1/2
Information Bit Payload (Note 4)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	4392	12960	1544	744	[25456]	18336
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	n/a	N/A
For Sub-Frame 0	Bits	152	3624	11448	N/A	N/A	[22920]	18336
Number of Code Blocks								
(Notes 3 and 4)								
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	3	1	1	5	3
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	n/a	N/A
For Sub-Frame 0		1	1	2	N/A	N/A	4	3
Binary Channel Bits (Note 4)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1248	12800	25600	3072	1536	51200	38400
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	n/a	N/A
For Sub-Frame 0	Bits	480	12032	24064	N/A	N/A	49664	36096
Max. Throughput averaged over 1	Mbps	0.342	3.876	11.513	1.235	0.595	[22.656]	16.502
frame (Note 4)								
UE Category		≥ 1	≥ 1	≥ 2	≥ 1	≥ 1	≥2	≥ 2
Note 1: 2 symbols allocated to PDCC 5 MHz and 3 MHz; 4 symbols					el BW; 3 sy	mbols allo	cated to PD	OCCH for
Note 2: Reference signal, synchroniz					S 36.211 [4	41.		
Note 3: If more than one Code Block							d to each C	Code
Block (otherwise $L = 0$ Bit).		.,						
Note 4: Given per component carrier	per codev	word.						

#### Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Note 4: Given per component carrier per codeword.

# A.3.3.3 Reference Measurement Channel for UE-Specific Reference Symbols

## A.3.3.3.1 Two antenna port (CSI-RS)

The reference measurement channels in Table A.3.3.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

	Parameter	Unit	Value
Poforono	e channel	Onic	R.51 FDD
	bandwidth	MHz	
		IVIHZ	10
	I resource blocks		50 (Note 3)
	I subframes per Radio Frame		9
Modulatio			16QAM
	oding Rate		1/2
	on Bit Payload	5.	
	-Frames 1,4,6,9	Bits	11448
	-Frames 2,3,7,8	Bits	11448
	-Frame 5	Bits	N/A
	-Frame 0	Bits	9528
Number	of Code Blocks (Note 4)		
For Sub	o-Frames 1,4,6,9	Code	2
		blocks	
For Sub	-Frames 2,3,7,8	Code	2
		blocks	
For Sub	-Frame 5	Bits	N/A
For Sub	-Frame 0	Bits	2
Binary Cl	hannel Bits		
For Sub	-Frames 1,4,6,9	Bits	24000
For Sub	-Frames 2,7		23600
For Sub	-Frames 3,8		23200
For Sub	-Frame 5	Bits	N/A
For Sub	-Frame 0	Bits	19680
Max. Thr	oughput averaged over 1	Mbps	10.1112
frame		-	
UE Categ	gory		≥ 2
Note 1:	2 symbols allocated to PDCC	Η.	
Note 2:	Reference signal, synchroniza		s and PBCH
	allocated as per TS 36.211 [4		
Note 3:	50 resource blocks are allocat		
	4, 6, 7, 8, 9 and 41 resource b		
	RB30–RB49) are allocated in		
Note 4:	If more than one Code Block i		
	CRC sequence of $L = 24$ Bits	is attached	to each Code
	Block (otherwise L = 0 Bit).		

# Table A.3.3.3.1-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

The reference measurement channels in Table A.3.3.3.1-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

Parameter	Unit		Value	
Reference channel		R.52 FDD	R.53 FDD	R.54 FDD
Channel bandwidth	MHz	10	10	10
Allocated resource blocks		50 (Note 3)	50 (Note 3)	50 (Note 3)
Allocated subframes per Radio Frame		9	9	9
Modulation		64QAM	64QAM	16QAM
Target Coding Rate		1/2	1/2	1/2
Information Bit Payload				
For Sub-Frames 1,3,4,6,8,9	Bits	18336	18336	11448
For Sub-Frames 2,7	Bits	16416	16416	11448
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	14688	14688	9528
Number of Code Blocks (Note 4)				
For Sub-Frames 1,3,4,6,8,9	Code	3	3	2
	blocks			
For Sub-Frames 2, 7	Code	3	3	2
	blocks			
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	3	3	2
Binary Channel Bits				
For Sub-Frames 1,3,4,6,8,9	Bits	36000	36000	24000
For Sub-Frames 2,7		34200	33600	22800
For Sub-Frame 5	Bits	n/a	n/a	n/a
For Sub-Frame 0	Bits	29520	29520	19680
Max. Throughput averaged over 1	Mbps	15.7536	15.7536	10.1112
frame				
Note 1: 2 symbols allocated to PDCC				
Note 2: Reference signal, synchroniza				
Note 3: 50 resource blocks are allocat			7, 8, 9 and 41 resourc	ce blocks (RB0–
RB20 and RB30–RB49) are a			· · · · ·	
Note 4: If more than one Code Block i		an additional CRC	sequence of L = 24 Bi	ts is attached to
each Code Block (otherwise L	. = 0 Bit).			

# Table A.3.3.3.1-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

# A.3.3.3.2 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.3.3.2-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

Parameter	Unit		Value					
Reference channel		R.43 FDD	R.50 FDD	R.48 FDD				
Channel bandwidth	MHz	10	10	10				
Allocated resource blocks		50 (Note 3)	50 (Note 3)	50 (Note				
Allocated subframes per Radio Frame		9	9	<u>3)</u> 9				
Modulation		QPSK	64QAM	QPSK				
Target Coding Rate		1/3	1/2					
Information Bit Payload								
For Sub-Frames 1,4,6,9	Bits	3624	18336	6200				
For Sub-Frames 2,3,7,8	Bits	3624	16416	6200				
For Sub-Frame 5	Bits	N/A	N/A	N/A				
For Sub-Frame 0	Bits	2984	14688	4968				
Number of Code Blocks (Note 4)								
For Sub-Frames 1,4,6,9	Code	1	3	2				
	blocks							
For Sub-Frames 2,3,7,8	Code	1	3	2				
	blocks							
For Sub-Frame 5	Bits	N/A	N/A	N/A				
For Sub-Frame 0	Bits	1	3	1				
Binary Channel Bits								
For Sub-Frames 1,4,6,9	Bits	12000 36000		12000				
For Sub-Frames 2,7		11600	34800	11600				
For Sub-Frames 3,8		11600	34800	12000				
For Sub-Frame 5	Bits	N/A	N/A	N/A				
For Sub-Frame 0	Bits	9840	29520	9840				
Max. Throughput averaged over 1 frame	Mbps	3.1976	15.3696	5.4568				
UE Category		≥ 1	≥2	≥ 1				
Note 1: 2 symbols allocated to PDCC	4	- 1	- 2	= 1				
Note 2: Reference signal, synchroniza		s and PBCH a	llocated as pe	r TS 36.211				
	[4]. For R.31-1 and R.34-1, 50 resource blocks are allocated in sub-frames 1, 2, 3, 4, 6, 7, 8, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in							
Note 4: If more than one Code Block is Bits is attached to each Code				e of L = 24				

# Table A.3.3.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

The reference measurement channels in Table A.3.3.3.2-2 apply for verifying FDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.

Parameter	Unit		Value	
Reference channel		R.44	R.45	R.45-1
		FDD	FDD	FDD
Channel bandwidth	MHz	10	10	10
Allocated resource blocks		50 ³	$50^{3}$	39
Allocated subframes per Radio Frame		10	10	10
Modulation		QPSK	16QAM	16QAM
Target Coding Rate		1/3	1/2	1/2
Information Bit Payload				
For Sub-Frames (Non CSI-RS subframe)	Bits	3624	11448	8760
For Sub-Frames (CSI-RS subframe)	Bits	3624	11448	8760
For Sub-Frames (ZeroPowerCSI-RS subframe)	Bits	N/A	N/A	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0	Bits	2984	9528	8760
Number of Code Blocks per Sub-Frame	DIIS	2904	9520	8700
(Note 4)				
For Sub-Frames (Non CSI-RS subframe)		1	2	2
For Sub-Frames (CSI-RS subframe)		1	2	2
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A
subframe)				
For Sub-Frame 5		N/A	N/A	N/A
For Sub-Frame 0		1	2	2
Binary Channel Bits Per Sub-Frame				
For Sub-Frames (Non CSI-RS subframe)	Bits	12000	24000	18720
For Sub-Frames (CSI-RS subframe)	Bits	11600	23200	18096
For Sub-Frames (ZeroPowerCSI-RS	Bits	N/A	N/A	N/A
subframe)				
For Sub-Frame 5	Bits	N/A	N/A	N/A
For Sub-Frame 0	Bits	9840	19680	18720
Max. Throughput averaged over 1 frame	Mbps	3.1976	10.1112	7.884
UE Category		≥ 1	≥2	≥ 1
Note 1: 2 symbols allocated to PDCCH for symbols allocated to PDCCH for 5 for 1.4 MHz				
Note 2: Reference signal, synchronization	signals and PB	CH allocated a	s per TS 36.	211 [4]
Note 3: For R. 44 and R.45, 50 resource b				
and 41 resource blocks (RB0-RB2				
Note 4: If more than one Code Block is pre attached to each Code Block (othe	esent, an additio			

# A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

# A.3.4.1 Single-antenna transmission (Common Reference Symbols)

	Parameter	Unit		Valu	е	
Referenc	e channel		R.4	R.42		R.2
			TDD	TDD		TDD
Channel	bandwidth	MHz	1.4	20		10
Allocated	l resource blocks (Note 6)		6	100		50
	ownlink Configuration (Note 4)		1	1		1
	subframes per Radio Frame (D+S)		3	3+2		3+2
Modulatio			QPSK	QPSK		QPSK
Target Co	oding Rate		1/3	1/3		1/3
	on Bit Payload (Note 6)					
	-Frames 4,9	Bits	408	8760		4392
For Sub	-Frames 1,6	Bits	N/A	7736		3240
	-Frame 5	Bits	N/A	N/A		N/A
	-Frame 0	Bits	208	8760		4392
Number of	of Code Blocks					
(Notes 5	and 6)					
For Sub	-Frames 4,9		1	2		1
For Sub	-Frames 1,6		N/A	2		1
For Sub	-Frame 5		N/A	N/A		N/A
For Sub	-Frame 0		1	2		1
Binary Ch	nannel Bits (Note 6)					
For Sub	-Frames 4,9	Bits	1368	27600		13800
For Sub	-Frames 1,6	Bits	N/A	22656		11256
For Sub	-Frame 5	Bits	N/A	N/A		N/A
For Sub	-Frame 0	Bits	672	26904		13104
	oughput averaged over 1 frame	Mbps	0.102	4.175		1.966
(Note 6)						
UE Categ	gory		≥ 1	≥ 1		≥1
Note 1:	2 symbols allocated to PDCCH for 2	20 MHz, 15 I	MHz and	10 MHz ch	annel E	3W; 3
	symbols allocated to PDCCH for 5 M					
	PDCCH for 1.4 MHz. For subframe	1&6, only 2	OFDM sy	mbols are	allocate	ed to
	PDCCH.					
Note 2:	For BW=1.4 MHz, the information bi					
	zero (no scheduling) to avoid proble	ms with insi	ufficient P	DCCH per	forman	ce at
Note 2:	the test point.	ianala and F		aatad ac m	~ TO 0	6 014
Note 3:	Reference signal, synchronization s	ignais and F	BCH allo	cated as p	er 153	0.211
Note 4:	[4]. As per Table 4.2-2 in TS 36.211 [4].					
Note 4:	If more than one Code Block is pres		itional CP	C sequenc	ofl-	- 21
11010 0.	Bits is attached to each Code Block	(otherwise	L = 0 Bit).	C Sequenc		- 27
Note 6:	Given per component carrier per co		,.			

### Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit						
Reference channel				R.3-1	R.3		
				TDD	TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Uplink-Downlink Configuration (Note 3)				1	1		
Allocated subframes per Radio Frame (D+S)				3+2	3+2		
Modulation				16QAM	16QAM		
Target Coding Rate				1/2	1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits			6456	14112		
For Sub-Frames 1,6	Bits			5160	11448		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			5736	12960		
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 4,9				2	3		
For Sub-Frames 1,6				1	2		
For Sub-Frame 5				N/A	N/A		
For Sub-Frame 0				1	3		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits			12600	27600		
For Sub-Frames 1,6	Bits			11112	22512		
For Sub-Frame 5	Bits			N/A	N/A		
For Sub-Frame 0	Bits			11208	26208		
Max. Throughput averaged over 1 frame	Mbps			2.897	6.408		
UE Category				≥ 1	≥2		
Note 1: 2 symbols allocated to PDCCH for 2	20 MHz, 1	5 MHz an	d 10 MHz	channel BW	/; 3 symbol	s allocated	d to
PDCCH for 5 MHz and 3 MHz; 4 sy	mbols allo	cated to F	DCCH for	r 1.4 MHz. F	or subfram	ne 1&6, on	ly 2
OFDM symbols are allocated to PD							
Note 2: Reference signal, synchronization s		d PBCH al	located as	s per TS 36.	211 [4]		
Note 3: As per Table 4.2-2 in TS 36.211 [4].							
Note 4: If more than one Code Block is pres Code Block (otherwise L = 0 Bit).	sent, an a	dditional C	RC seque	ence of $L = 2$	24 Bits is at	tached to	each

### Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit			Val	ue			
Reference channel			R.5	R.6 TDD	R.7	R.8	R.9	
			TDD		TDD	TDD	TDD	
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks			15	25	50	75	100	
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)			3+2	3+2	3+2	3+2	3+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate			3/4	3/4	3/4	3/4	3/4	
Information Bit Payload								
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664	
For Sub-Frames 1,6	Bits		6968	11448	23688	35160	46888	
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664	
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9			2	3	5	8	11	
For Sub-Frames 1,6			2	2	4	6	8	
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0			2	3	5	8	11	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits		11340	18900	41400	62100	82800	
For Sub-Frames 1,6	Bits		9828	16668	33768	50868	67968	
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits		9252	16812	39312	60012	80712	
Max. Throughput averaged over 1 frame	Mbps		3.791	6.370	13.910	20.945	27.877	
UE Category			≥ 1	≥2	≥2	≥ 2	≥ 3	
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols								
are allocated to PDCCH.	ianala ard		acted or -	TO 26 24	4 [4]			
Note 2: Reference signal, synchronization s Note 3: As per Table 4.2-2 TS 36.211 [4].	ignais and		caleu as pe	13 30.21	1 [4]			
	ont an ad	ditional CP		e of I = 24	Rite is atta	ched to oor	h Code	
Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code								

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Block (otherwise L = 0 Bit).

Parameter	Unit			Va	lue			
Reference channel			R.6-1	R.7-1	R.8-1	R.9-1	R.9-2	
			TDD	TDD	TDD	TDD	TDD	
Channel bandwidth	MHz		5	10	15	20	20	
Allocated resource blocks (Note 3)			18	17	17	17	83	
Uplink-Downlink Configuration (Note 4)			1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)			3+2	3+2	3+2	3+2	3+2	
Modulation			64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate			3/4	3/4	3/4	3/4	3/4	
Information Bit Payload								
For Sub-Frames 4,9	Bits		10296	10296	10296	10296	51024	
For Sub-Frames 1,6	Bits		8248	7480	7480	7480	39232	
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits		8248	10296	10296	10296	51024	
Number of Code Blocks per Sub-Frame								
(Note 5)								
For Sub-Frames 4,9			2	2	2	2	9	
For Sub-Frames 1,6			2	2	2	2	7	
For Sub-Frame 5			N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0			2	2	2	2	9	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits		13608	14076	14076	14076	68724	
For Sub-Frames 1,6	Bits		11880	11628	11628	11628	56340	
For Sub-Frame 5	Bits		N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits		11520	14076	14076	14076	66636	
Max. Throughput averaged over 1 frame	Mbps		4.534	4.585	4.585	4.585	23.154	
UE Category			≥1	≥ 1	≥ 1	≥ 1	≥ 2	
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.								
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]								

Table A.3.4.1-3a: Fixed Reference Ch	nannel 64QAM R=3/4
--------------------------------------	--------------------

Note 3:

Note 4:

Localized allocation started from RB #0 is applied. As per Table 4.2-2 TS 36.211 [4]. If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). Note 5:

Parameter	Unit	Value						
Reference channel			R.0		R.1 TDD			
			TDD					
Channel bandwidth	MHz	1.4	3	5	10/20	15	20	
Allocated resource blocks			1		1			
Uplink-Downlink Configuration (Note 3)			1		1			
Allocated subframes per Radio Frame (D+S)			3+2		3+2			
Modulation			16QAM		16QAM			
Target Coding Rate			1/2		1/2			
Information Bit Payload								
For Sub-Frames 4,9	Bits		224		256			
For Sub-Frames 1,6	Bits		208		208			
For Sub-Frame 5	Bits		N/A		N/A			
For Sub-Frame 0	Bits		224		256			
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9			1		1			
For Sub-Frames 1,6			1		1			
For Sub-Frame 5			N/A		N/A			
For Sub-Frame 0			1		1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits		504		552			
For Sub-Frames 1,6	Bits		456		456			
For Sub-Frame 5	Bits		N/A		N/A			
For Sub-Frame 0	Bits		504		552			
Max. Throughput averaged over 1 frame	Mbps		0.109		0.118			
UE Category			≥ 1		≥ 1			
Note 1: 2 symbols allocated to PDCCH for 2								
PDCCH for 5 MHz and 3 MHz; 4 syr		ated to PI	DCCH for 1.4	4 MHz. Fo	or subframe 1	&6, only	2	
OFDM symbols are allocated to PD0								
Note 2: Reference signal, synchronization si	ignals and	PBCH allo	ocated as pe	er TS 36.2	11 [4]			
Note 3: As per Table 4.2-2 in TS 36.211 [4].								
Note 4: If more than one Code Block is pres	ent, an ado	ditional CF	RC sequence	e of L = 24	4 Bits is attac	hed to e	ach	
Code Block (otherwise L = 0 Bit).								

Table A.3.4.1-4: Fixed Reference Channel Single PRB
-----------------------------------------------------

	Parameter	Unit	Value
Reference cl	nannel		R.29 TDD
			(MBSFN)
Channel ban	dwidth	MHz	10
Allocated res	ource blocks		1
MBSFN Con	figuration (Note 3)		010010
Uplink-Down	link Configuration (Note 4)		1
Allocated sul	oframes per Radio Frame (D+S)		1+2
Modulation			16QAM
Target Codir	g Rate		1/2
Information E	Bit Payload		
For Sub-Fra	ames 4,9	Bits	0 (MBSFN)
For Sub-Fra	ames 1,6	Bits	208
For Sub-Fra	ame 5	Bits	N/A
For Sub-Fra	ame 0	Bits	256
Number of C	ode Blocks per Sub-Frame		
(Note 5)			
For Sub-Fra	ames 4,9	Bits	0 (MBSFN)
For Sub-Fra	ames 1,6	Bits	1
For Sub-Fra	ame 5	Bits	N/A
For Sub-Fra	ame 0	Bits	1
Binary Chan	nel Bits Per Sub-Frame		
For Sub-Fra	ames 4,9	Bits	0 (MBSFN)
For Sub-Fra	ames 1,6	Bits	456
For Sub-Fra		Bits	N/A
For Sub-Fra	ame 0	Bits	552
Max. Throug	hput averaged over 1 frame	kbps	67.2
UE Category			≥1
Note 1: 2	symbols allocated to PDCCH.		
	eference signal, synchronization s	ignals and	PBCH allocated as
	er TS 36.211 [4].		
	BSFN Subframe Allocation as def		one frame with 6
-	ts is chosen for MBSFN subframe		
	per Table 4.2-2 in TS 36.211 [4].		
	more than one Code Block is pres		
	equence of $L = 24$ Bits is attached	to each Co	ae BIOCK (Otherwise
L	= 0 Bit).		

Parameter	Unit			Va	alue		
Reference channel					R.41		
					TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Uplink-Downlink Configuration (Note 4)					1		
Allocated subframes per Radio Frame (D+S)					3+2		
Modulation					QPSK		
Target Coding Rate					1/10		
Information Bit Payload							
For Sub-Frames 4,9	Bits				1384		
For Sub-Frames 1,6	Bits				1032		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				1384		
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9					1		
For Sub-Frames 1,6					1		
For Sub-Frame 5					N/A		
For Sub-Frame 0					1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits				13800		
For Sub-Frames 1,6	Bits				11256		
For Sub-Frame 5	Bits				N/A		
For Sub-Frame 0	Bits				13104		
Max. Throughput averaged over 1 frame	Mbps				0.622		
UE Category					≥1		
Note 1: 2 symbols allocated to PDCCH for 2							
to PDCCH for 5 MHz and 3 MHz; 4	symbols allo	ocated to	PDCCH	for 1.4 M	Hz. For su	ıbframe	1&6,
only 2 OFDM symbols are allocated							
Note 2: For BW=1.4 MHz, the information b					et to zero (i	no sche	duling)
	pid problems with insufficient PDCCH performance at the test point.						
Note 3: Reference signal, synchronization s		PBCH allo	ocated as	per TS 3	36.211 [4]		
Note 4: As per Table 4.2-2 in TS 36.211 [4]			_				
Note 5: If more than one Code Block is pres		tional CR	C seque	nce of L	= 24 Bits is	s attache	ed to
each Code Block (otherwise L = 0 E	Bit).						

Table A.3.4.1-6: Fixed Reference Channel QPSK R=1/10

Parameter	Unit	Value					
Reference channel		R.49 TDD					
Channel bandwidth	MHz	20					
Allocated resource blocks		100					
Uplink-Downlink Configuration (Note 1)		1					
Allocated subframes per Radio Frame		3+2					
(D+S)							
Modulation		64QAM					
Number of OFDM symbols for PDCCH							
per component carrier							
For Sub-Frames 0,4,5,9	OFDM	3					
	symbols						
For Sub-Frames 1,6	OFDM	2					
	symbols						
Target Coding Rate							
For Sub-Frames 4,9		0.84					
For Sub-Frames 1,6		0.81					
For Sub-Frames 5		N/A					
For Sub-Frames 0		0.87					
Information Bit Payload							
For Sub-Frames 0, 4, 9	Bits	63776					
For Sub-Frame 1,6	Bits	55056					
For Sub-Frame 5	Bits	N/A					
Number of Code Blocks per Sub-Frame							
(Note 2)							
For Sub-Frames 0, 4, 9	Code	11					
	Blocks						
For Sub-Frame 1,6	Code	9					
	Blocks						
For Sub-Frame 5	Code	N/A					
	Blocks						
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	75600					
For Sub-Frame 1,6	Bits	67968					
For Sub-Frame 5	Bits	N/A					
For Sub-Frame 0	Bits	73512					
Max. Throughput averaged over 1 frame	Mbps	30.144					
UE Category		≥5					
Note 1: Reference signal, synchronizatio	n signals an	d PBC					
allocated as per TS 36.211 [4].	allocated as per TS 36.211 [4].						
Note 2: If more than one Code Block is p							
CRC sequence of $L = 24$ Bits is a	attached to e	each Code					
Block (otherwise $L = 0$ Bit).							

## Table A.3.4.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

# A.3.4.2 Multi-antenna transmission (Common Reference Signals)

### A.3.4.2.1 Two antenna ports

Parameter	Unit						Value			
Reference channel		R.10 TDD	R.11 TDD	R.11-1 TDD	R.11-2 TDD	R.11-3 TDD Note 6	R.11-4 TDD	R.30 TDD	R.30-1 TDD	R.30-2 TDD
Channel bandwidth	MHz	10	10	10	5	10	10	20	20	20
Allocated resource blocks (Note 5)		50	50	50	25	40	50	100	100	100
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	2+2	3+2	3+2	2	3+2	2+2	2
Modulation		QPSK	16QAM	16QAM	16QAM	16QAM	QPSK	16QAM	16QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit Payload (Note 5)										
For Sub-Frames 4,9	Bits	4392	12960	12960	5736	10296	6968	25456	25456	25456
For Sub-Frames 1,6		3240	9528	9528	5160	9144	N/A	22920	21384	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	4392	12960	N/A	4968	10296	N/A	25456	N/A	N/A
Number of Code Blocks (Notes 4 and 5)										
For Sub-Frames 4,9		1	3	3	1	2	2	5	5	5
For Sub-Frames 1,6		1	2	2	1	2	N/A	4	4	N/A
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	3	N/A	1	2	N/A	5	N/A	N/A
Binary Channel Bits (Note 5)										
For Sub-Frames 4,9	Bits	13200	26400	26400	12000	21120	13200	52800	52800	52800
For Sub-Frames 1,6		10656	21312	21312	10512	16992	10656	42912	42912	N/A
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	12528	25056	N/A	10656	19776	12528	51456	N/A	N/A
Max. Throughput averaged over 1 frame (Note 5)	Mbps	1.966	5.794	4.498	2.676	4.918	1.39	12.221	9.368	5.091
UE Category		≥ 1	≥2	≥2	≥ 1	≥1	≥1	≥ 2	≥2	3

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz; symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (other

Note 5: Given per component carrier per codeword.

Note 6: For R.11-3 resource blocks of RB6–RB45 are allocated.

Parameter	Unit			Val	ue		
Reference channel		R.46 TDD	R.47 TDD	R.35-2			
				TDD			
Channel bandwidth	MHz	10	10	10			
Allocated resource		50	50	50			
blocks (Note 5)							
Uplink-Downlink		1	1	1			
Configuration (Note							
3)							
Allocated subframes		3+2	3+2	2+2			
per Radio Frame							
(D+S)							
Modulation		QPSK	16QAM	64QAM			
Target Coding Rate				0.47			
Information Bit							
Payload (Note 5)	5.4	5100	0700	40000		_	
For Sub-Frames 4,9	Bits	5160	8760	18336		_	
For Sub-Frames 1,6	51	3880	7480	14688			
For Sub-Frame 5	Bits	N/A	N/A	N/A			
For Sub-Frame 0	Bits	5160	8760	N/A			
Number of Code							
Blocks							
(Notes 4 and 5)		4	0	2			
For Sub-Frames 4,9		1	2	3			
For Sub-Frames 1,6				3 N/A			
For Sub-Frame 5 For Sub-Frame 0		N/A	N/A	N/A N/A			
		1	2	IN/A			
Binary Channel Bits (Note 5)							
For Sub-Frames 4,9	Bits	13200	26400	39600		-	
For Sub-Frames 1,6	DIIS	10656	20400	31968		-	
For Sub-Frame 5	Bits	N/A	N/A	N/A		-	
For Sub-Frame 0	Bits	12528	25056	N/A		-	
Max. Throughput		2.324	4.124	6.604		-	
averaged over 1	Mbps	2.324	4.124	0.004			
frame (Note 5)							
UE Category		≥ 1	≥ 1	≥2			
	llocated to	PDCCH for 2			l Iz channel	BW/· 3 symb	ole allocated
		nd 3 MHz; 4 s					
		are allocated				112. I UI SUL	
		hronization sig		CH allocated	as per TS	36.211 [4]	
		S 36.211 [4].					
		Block is prese	ent, an additio	nal CRC sec	quence of L	= 24 Bits is	attached to
		rwise L = 0 Bi			•		

Table A.3.4.2.1-2: Fixed Reference Channel two antenna ports

Note 5: Given per component carrier per codeword

### A.3.4.2.2 Four antenna ports

Parameter	Unit				Value				
Reference channel		R.12	R.13	R.14	R.14-1	R.14-2	R.43	R.36	
		TDD	TDD	TDD	TDD	TDD	TDD	TDD	
Channel bandwidth	MHz	1.4	10	10	10	10	20	10	
Allocated resource blocks (Note 6)		6	50	50	6	3	100	50	
Uplink-Downlink Configuration (Note 4)		1	1	1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)		3	3+2	2+2	2	2	2+2	2+2	
Modulation		QPSK	QPSK	16QAM	16QAM	16QAM	16QAM	64QAM	
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2	1/2	
Information Bit Payload (Note 6)									
For Sub-Frames 4,9	Bits	408	4392	12960	1544	744	25456	18336	
For Sub-Frames 1,6	Bits	N/A	3240	9528	N/A	N/A	21384	15840	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	208	4392	N/A	N/A	N/A	N/A	N/A	
Number of Code Blocks       (Notes 5 and 6)									
For Sub-Frames 4,9		1	1	3	1	1	5	3	
For Sub-Frames 1,6		N/A	1	2	N/A	N/A	4	3	
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0		1	1	N/A	N/A	N/A	N/A	N/A	
Binary Channel Bits (Note 6)									
For Sub-Frames 4,9	Bits	1248	12800	25600	3072	1536	51200	38400	
For Sub-Frames 1,6		N/A	10256	20512	N/A	N/A	41312	30768	
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
For Sub-Frame 0	Bits	624	12176	N/A	N/A	N/A	N/A	N/A	
Max. Throughput averaged over 1 frame (Note 6)	Mbps	0.102	1.966	4.498	0.309	0.149	9.368	6.835	
UE Category		≥ 1	≥ 1	≥2	≥ 1	≥ 1	≥ 2	≥2	
UE Category       ≥1       ≥1       ≥2       ≥1       ≥2       ≥2       ≥2         Note 1:       2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.         Note 2:       For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.         Note 3:       Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].         Note 4:       As per Table 4.2-2 in TS 36.211 [4].         Note 5:       If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).									
	Children par empegate certier per externet								

#### Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Note 6: Given per component carrier per codeword.

# A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols

### A.3.4.3.1 Single antenna port (Cell Specific)

The reference measurement channels in Table A.3.4.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with one cell-specific antenna port.

Parameter Unit Value							
Reference channel		R.25 TDD	R.26 TDD	R.26-1 TDD	R.27 TDD	R.27-1 TDD	R.28 TDD
Channel bandwidth	MHz	10	10	5	10	10	10
Allocated resource blocks		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	1
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		3+2	3+2	3+2	3+2	3+2	3+2
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2
Information Bit Payload							
For Sub-Frames 4,9	Bits	4392	12960	5736	28336	10296	224
For Sub-Frames 1,6	Bits	3240	9528	4584	22920	8248	176
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	2984	9528	3880	22152	10296	224
Number of Code Blocks per Sub-Frame       (Note 5)							
For Sub-Frames 4,9		1	3	1	5	2	1
For Sub-Frames 1,6		1	2	1	4	2	1
For Sub-Frame 5		N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0		1	2	1	4	2	1
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	12600	25200	11400	37800	13608	504
For Sub-Frames 1,6	Bits	10356	20712	10212	31068	11340	420
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A
For Sub-Frame 0	Bits	10332	20664	7752	30996	13608	504
Max. Throughput averaged over 1 frame	Mbps	1.825	5.450	2.452	12.466	4.738	0.102
UE Category		≥ 1	≥ 2	≥ 1	≥ 2	≥1	≥1
<ul> <li>Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&amp;6, only 2 OFDM symbols are allocated to PDCCH.</li> <li>Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 3: as per Table 4.2-2 in TS 36.211 [4].</li> <li>Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.26-1, 25 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0.</li> <li>Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul>							
Note 6: Localized allocation started from	RB #0 is a	pplied.					

#### Two antenna ports (Cell Specific) A.3.4.3.2

The reference measurement channels in Table A.3.4.3.2-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports.

Reference channel		R.31	R.32	R.32-1	R.33	R.33-1	R.34		
		TDD	TDD	TDD	TDD	TDD	TDD		
Channel bandwidth	MHz	10	10	5	10	10	10		
Allocated resource		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	50 ⁴		
blocks				-		_			
Uplink-Downlink		1	1	1	1	1	1		
Configuration (Note 3)									
Allocated subframes		3+2	3+2	3+2	3+2	3+2	3+2		
per Radio Frame (D+S)									
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	64QAM		
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2		
Information Bit Payload									
For Sub-Frames 4,9	Bits	3624	11448	5736	27376	9528	18336		
For Sub-Frames 1,6		2664	7736	3112	16992	7480	11832		
For Sub-Frame 5 Bits N/A N/A N/A N/A N/A N/A									
For Sub-Frame 0									
Number of Code Blocks									
per Sub-Frame									
(Note 5)									
For Sub-Frames 4,9         1         2         1         5         2         3									
For Sub-Frames 1,6         1         2         1         3         2         2									
For Sub-Frame 5         N/A         N/A         N/A         N/A         N/A									
For Sub-Frame 0         1         2         1         4         2         3									
Binary Channel Bits Per									
Sub-Frame									
For Sub-Frames 4,9	Bits	12000	24000	10800	36000	12960	36000		
For Sub-Frames 1,6	5.4	7872	15744	6528	23616	10368	23616		
For Sub-Frame 5	Bits	N/A	N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 0	Bits	9840	19680	7344	29520	12960	29520		
Max. Throughput	Mbps	1.556	4.79	2.119	11.089	4.354	7.502		
averaged over 1 frame			> 0		> 0		2.0		
UE Category		≥ 1	≥2	≥ 1	≥2	≥ 1	≥ 2		
Note 1: 2 symbols allo									
allocated to PE For subframe							.4 IVI⊓Z.		
Note 2: Reference sign						or TS 36 21	1 [4]		
Note 3: as per Table 4			griais ariu		laieu as pe	10 30.21	· [+].		
Note 4: For R.31, R.32			source blo	cks are all	ncated in si	ub-frames 4	9 and 41		
resource block									
DwPTS portion									
frames 4,9 and									
0 and the DwP									
Note 5: If more than or				ditional CR	C sequence	e of L = 24 E	Bits is		
attached to ea					•				
Note 6: Localized alloc									

Table A.3.4.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS

## A.3.4.3.3 Two antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.3-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

F									
	Parameter	Unit	Value						
Referenc	e channel		R.51 TDD						
	bandwidth	MHz	10						
Allocated	resource blocks		50 (Note 5)						
Uplink-Do	ownlink Configuration (Note 3)		1						
Allocated	subframes per Radio Frame		3+2						
(D+S)	-								
Modulatio	n		16QAM						
Target Co	oding Rate		1/2						
Informatio	on Bit Payload								
For Sub	-Frames 4,9 (non CSI-RS	Bits	11448						
subframe	)								
For Sub	-Frame 4,9	Bits	11448						
For Sub	-Frames 1,6	Bits	7736						
	-Frame 5	Bits	N/A						
For Sub	-Frame 0	Bits	9528						
	of Code Blocks								
(Note 4)									
For Sub	-Frames 4, 9 (non CSI-RS	Code	2						
subframe		blocks							
	-Frames 4,9	Code	2						
		blocks							
For Sub	For Sub-Frames 1,6		2						
		blocks							
For Sub	-Frame 5		N/A						
	-Frame 0	Code	2						
		blocks							
Binary Ch	nannel Bits								
For Sub	-Frames 4, 9 (non CSI-RS	Bits	24000						
subframe	)								
For Sub	-Frames 4,9		22800						
For Sub	-Frames 1,6		15744						
For Sub	-Frame 5	Bits	N/A						
For Sub	-Frame 0	Bits	19680						
Max. Thre	oughput averaged over 1	Mbps	4.7896						
frame									
UE Categ	jory		≥ 2						
Note 1:	2 symbols allocated to PDCCH	Ι.							
Note 2:	Reference signal, synchronizat	tion signal	s and PBCH						
	allocated as per TS 36.211 [4].								
Note 3:	as per Table 4.2-2 in TS 36.21								
Note 4:	If more than one Code Block is								
	CRC sequence of L = 24 Bits is	s attached	to each Code						
	Block (otherwise L = 0 Bit).								
Note 5:	50 resource blocks are allocate								
	41 resource blocks (RB0–RB2								
	allocated in sub-frame 0 and th	ie DwPTS	portion of						
	sub-frames 1,6.								

# Table A.3.4.3.3-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

The reference measurement channels in Table A.3.4.3.3-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

Parameter	Unit		Value				
Reference channel		R.52 TDD	R.53 TDD	R.54 TDD			
Channel bandwidth	MHz	10	10	10			
Allocated resource blocks		50 (Note 5)	50 (Note 5)	50 (Note 5)			
Uplink-Downlink Configuration (Note 3)		1	1	1			
Allocated subframes per Radio Frame		3+2	3+2	3+2			
(D+S)							
Modulation		64QAM	64QAM	16QAM			
Target Coding Rate		1/2	1/2	1/2			
Information Bit Payload							
For Sub-Frame 4,9	Bits	16416	16416	11448			
For Sub-Frames 1,6	Bits	11832	11832	7736			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	14688	14688	9528			
Number of Code Blocks							
(Note 4)							
For Sub-Frames 4,9	Code	3	3	2			
	blocks						
For Sub-Frames 1,6	Code	2	2	2			
	blocks						
For Sub-Frame 5		n/a	n/a	n/a			
For Sub-Frame 0	Code	3	3	2			
	blocks						
Binary Channel Bits							
For Sub-Frames 4,9		34200	33600	22800			
For Sub-Frames 1,6		23616	23616	15744			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	29520	29520	19680			
Max. Throughput averaged over 1	Mbps	7.1184	7.1184	4.7896			
frame							
UE Category		≥ 2	≥ 2	≥ 2			
Note 1: 2 symbols allocated to PDCCI							
Note 2: Reference signal, synchroniza	ation signal	s and PBCH allo	ocated as per TS	36.211 [4].			
Note 3: as per Table 4.2-2 in TS 36.2			-				
Note 4: If more than one Code Block i			C sequence of L	. = 24 Bits is			
attached to each Code Block							
Note 5: 50 resource blocks are allocat							
and RB30–RB49) are allocate	d in sub-fr	ame 0 and the D	WPIS portion of	sub-frames 1,			
6.							

# Table A.3.4.3.3-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

## A.3.4.3.4 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.4-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

ParameterUnitValueReference channelR.44 TDDR.48 TDDChannel bandwidthMHz1010Allocated resource blocks50 (Note 4)50 (Note 4)Uplink-Downlink Configuration11(Note 3)11Allocated subframes per Radio3+23+2Frame (D+S)64QAMQPSKModulation64QAMQPSKTarget Coding Rate½Information Bit Payload1For Sub-Frames 4,9 (non CSI-RSBits16416For Sub-Frames 1,6118324264For Sub-Frames 1,6118324264For Sub-Frame 5Bits146884968Number of Code Blocks per Sub-Frame32Subframe)Sub-Frames 4,9 (non CSI-RS)32Sub-Frame 5Bits146884968Number of Code Blocks per Sub-Frame32For Sub-Frames 4,9 (non CSI-RS)32Subframe)Sub-Frames 4,9 (non CSI-RS)3For Sub-Frame 4,9 (non CSI-RS)32Subframe)Sub-Frame 4,9 (non CSI-RS)3For Sub-Frames 4,9 (non CSI-RS)32For Sub-Frames 4,9 (non CSI-RS)32Subframe)Sub-Frames 4,9 (non CSI-RS)3For Sub-Frames 4,9 (non CSI-RS)32Subframe)Sub-Frames 4,9 (non CSI-RS)3For Sub-Frames 4,9 (non CSI-RS)32Subframe)Sub-Frames 4,9 (non CSI-RS)3For Sub-Frames							
Channel bandwidthMHzTDDChannel bandwidthMHz1010Allocated resource blocks50 (Note 4)50 (Note 4)Uplink-Downlink Configuration11(Note 3)11Allocated subframes per Radio3+2Frame (D+S)64QAMQPSKModulation64QAMQPSKTarget Coding Rate½Information Bit Payload1For Sub-Frames 4,9 (non CSI-RSBits16416For Sub-Frames 1,6118324264For Sub-Frames 5BitsN/AN/AN/AN/AFor Sub-Frame 0Bits14688Number of Code Blocks per Sub- Frame (Note 5)32For Sub-Frames 4,9 (non CSI-RS subframe)32							
Channel bandwidthMHz1010Allocated resource blocks50 (Note 4)50 (Note 4)Uplink-Downlink Configuration11(Note 3)11Allocated subframes per Radio3+2Frame (D+S)64QAMQPSKModulation64QAMQPSKTarget Coding Rate½Information Bit Payload1For Sub-Frames 4,9 (non CSI-RSBits16416For Sub-Frames 4,9 (CSI-RSBits16416Subframe)5Bits14688For Sub-Frames 1,6118324264For Sub-Frame 5Bits146884968Number of Code Blocks per Sub-FrameBits146884968Number of Code Blocks per Sub-Frame32Subframe)3232							
Allocated resource blocks50 (Note 4)50 (Note 4)Uplink-Downlink Configuration11(Note 3)11Allocated subframes per Radio3+2Frame (D+S)3+2Modulation64QAMQPSKTarget Coding Rate½Information Bit Payload1For Sub-Frames 4,9 (non CSI-RSBits16416For Sub-Frames 4,9 (CSI-RSBits16416Subframe)11For Sub-Frames 1,6118324264For Sub-Frame 5Bits14688Number of Code Blocks per Sub-FrameBits14688Number of Code Blocks per Sub-Frame32Subframe)32							
Uplink-Downlink Configuration (Note 3)11Allocated subframes per Radio Frame (D+S)3+23+2Modulation64QAMQPSKTarget Coding Rate1/2Information Bit Payload1For Sub-Frames 4,9 (non CSI-RS subframe)Bits16416For Sub-Frames 4,9 (CSI-RS subframe)Bits16416For Sub-Frames 1,6118324264For Sub-Frames 5BitsN/AN/AN/AN/AFor Sub-Frame 5Bits14688Number of Code Blocks per Sub- Frame (Note 5)32For Sub-Frames 4,9 (non CSI-RS subframe)32							
Uplink-Downlink Configuration (Note 3)11Allocated subframes per Radio Frame (D+S)3+23+2Modulation64QAMQPSKTarget Coding Rate½Information Bit Payload1/2For Sub-Frames 4,9 (non CSI-RS subframe)Bits18336For Sub-Frames 4,9 (CSI-RS subframe)Bits16416For Sub-Frames 1,6118324264For Sub-Frames 5BitsN/AFor Sub-Frame 5Bits14688Number of Code Blocks per Sub- Frame (Note 5)32For Sub-Frames 4,9 (non CSI-RS subframe)32							
(Note 3)11Allocated subframes per Radio Frame (D+S)3+23+2Modulation64QAMQPSKTarget Coding Rate½Information Bit Payload1/2For Sub-Frames 4,9 (non CSI-RS subframe)Bits18336For Sub-Frames 4,9 (CSI-RS subframe)Bits16416For Sub-Frames 1,6118324264For Sub-Frames 5BitsN/AFor Sub-Frame 5Bits14688Number of Code Blocks per Sub- Frame (Note 5)32For Sub-Frames 4,9 (non CSI-RS subframe)32							
Allocated subframes per Radio3+23+2Frame (D+S)Modulation64QAMQPSKModulation64QAMQPSKTarget Coding Rate½Information Bit Payload1/2For Sub-Frames 4,9 (non CSI-RSBits18336Subframe)N/AFor Sub-Frames 4,9 (CSI-RSBits16416For Sub-Frames 1,6118324264For Sub-Frames 5BitsN/AFor Sub-Frame 0Bits14688Number of Code Blocks per Sub-Frame8For Sub-Frames 4,9 (non CSI-RS3Subframe)2							
Frame (D+S)64QAMQPSKModulation64QAMQPSKTarget Coding Rate½Information Bit Payload'/2For Sub-Frames 4,9 (non CSI-RSBits18336N/Asubframe)Bits164166200For Sub-Frames 4,9 (CSI-RSBits164166200subframe)Bits118324264For Sub-Frames 1,6118324264For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub-FrameImage: Sub-Frame 4,9 (non CSI-RS)32For Sub-Frames 4,9 (non CSI-RS)32subframe)Sub-Frame 532							
Modulation64QAMQPSKTarget Coding Rate½Information Bit Payload1/2For Sub-Frames 4,9 (non CSI-RSBits18336N/Asubframe)Bits164166200For Sub-Frames 4,9 (CSI-RSBits164166200subframe)Bits118324264For Sub-Frames 1,6118324264For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub-FrameImage: Sub-Frame 4,9 (non CSI-RS)32For Sub-Frames 4,9 (non CSI-RS)32subframe)Subframe)Subframe32							
Target Coding Rate½Information Bit PayloadFor Sub-Frames 4,9 (non CSI-RS subframe)Bits18336N/AFor Sub-Frames 4,9 (CSI-RS subframe)Bits164166200For Sub-Frames 1,6118324264For Sub-Frames 5 For Sub-Frame 0BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub- Frame (Note 5)Sub-Frames 4,9 (non CSI-RS)32Subframe)Sub-Frames 4,9 (non CSI-RS)32							
Information Bit PayloadInformation Bit PayloadFor Sub-Frames 4,9 (non CSI-RS subframe)Bits18336N/AFor Sub-Frames 4,9 (CSI-RS subframe)Bits164166200For Sub-Frames 1,6118324264For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub- Frame (Note 5)For Sub-Frames 4,9 (non CSI-RS subframe)32							
For Sub-Frames 4,9 (non CSI-RS subframe)Bits18336N/AFor Sub-Frames 4,9 (CSI-RS subframe)Bits164166200For Sub-Frames 1,6118324264For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub- Frame (Note 5)Image: Comparison of the state of the stat							
subframe)Image: constraint of the subframe)Image: constraint of the subframeFor Sub-Frames 1,6Bits164166200For Sub-Frames 1,6118324264For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub-FrameImage: constraint of the subframeImage: constraint of the subframe(Note 5)Image: constraint of the subframeImage: constraint of the subframeImage: constraint of the subframeFor Sub-Frames 4,9 (non CSI-RSImage: constraint of the subframeImage: constraint of the subframeImage: constraint of the subframeFor Sub-Frames 4,9 (non CSI-RSImage: constraint of the subframeImage: constraint of the subframeImage: constraint of the subframe							
subframe)Image: constraint of the subframe subfram							
subframe)4264For Sub-Frames 1,611832For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0BitsNumber of Code Blocks per Sub- Frame (Note 5)For Sub-Frames 4,9 (non CSI-RS subframe)3							
For Sub-Frames 1,6118324264For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub- Frame (Note 5)Image: Comparison of Code Blocks per Sub- Frame (Note 5)Image: Comparison of Code Blocks per Sub- Frame Sub-Frames 4,9 (non CSI-RS)32							
For Sub-Frame 5BitsN/AN/AFor Sub-Frame 0Bits146884968Number of Code Blocks per Sub- Frame (Note 5)							
Number of Code Blocks per Sub- Frame (Note 5)     Image: Constant of Constan							
Number of Code Blocks per Sub- Frame (Note 5)     Image: Constant of Constan							
Frame     Image: Constraint of the second seco							
For Sub-Frames 4,9 (non CSI-RS 3 2 subframe)							
subframe)							
For Sub-Frames 4,9 (CSI-RS 3 2							
subframe)							
For Sub-Frames 1,6 2 1							
For Sub-Frame 5 N/A N/A							
For Sub-Frame 0 3 1							
Binary Channel Bits Per Sub-							
Frame							
For Sub-Frames 4,9 (non CSI-RS Bits 36000 12000							
subframe)							
For Sub-Frames 4,9 (CSI-RS         Bits         33600         11600							
subframe)							
For Sub-Frames 1,6         23616         7872							
For Sub-Frame 5 Bits N/A N/A							
For Sub-Frame 0         Bits         29520         9840							
Max. Throughput averaged over 1 Mbps 7.1184 2.5896							
frame							
UE Category $\geq 2 \geq 1$							
Note 1:2 symbols allocated to PDCCH.Note 2:Reference signal, synchronization signals and PBCH							
allocated as per TS 36.211 [4].							
Note 3: as per Table 4.2-2 in TS 36.211 [4].							
Note 4: 50 resource blocks are allocated in sub-frames 4,9 and 41							
resource blocks (RB0–RB20 and RB30–RB49) are allocated							
in sub-frame 0 and the DwPTS portion of sub-frames 1,6.							
Note 5: If more than one Code Block is present, an additional CRC							
sequence of $L = 24$ Bits is attached to each Code Block							
(otherwise $L = 0$ Bit).							

# Table A.3.4.3.4-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

## A.3.4.3.5 Eight antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.5-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and eight CSI-RS antenna ports.

	Parameter	Unit	Value
Reference	e channel		R.50 TDD
	bandwidth	MHz	10
	l resource blocks		50 (Note 4)
Uplink-D 3)	ownlink Configuration (Note		1
Allocated Frame (I	l subframes per Radio 0+S)		3+2
Modulati			QPSK
Target C	oding Rate		1/3
	on Bit Payload		
	o-Frames 4,9 (non CSI-RS	Bits	3624
	-Frames 4,9 (CSI-RS	Bits	3624
	o-Frames 1,6		2664
	-Frame 5	Bits	N/A
	p-Frame 0	Bits	2984
Number Frame (Note 5)	of Code Blocks per Sub-		
For Sub	o-Frames 4,9 (non CSI-RS		1
For Sub subframe	-Frames 4,9 (CSI-RS		1
	-Frames 1,6		1
For Sub	o-Frame 5		N/A
For Sub	o-Frame 0		1
Binary C	hannel Bits Per Sub-Frame		
	o-Frames 4,9 (non CSI-RS	Bits	12000
For Sub- subframe	Frames 4,9 (CSI-RS	Bits	10400
	-Frames 1,6		7872
	p-Frame 5	Bits	N/A
	p-Frame 0	Bits	9840
Max. Thr frame	oughput averaged over 1	Mbps	1.556
<b>UE</b> Cate	gory		≥ 1
Note 1: Note 2:	2 symbols allocated to PDC Reference signal, synchron allocated as per TS 36.211	ization signa [4].	als and PBCH
Note 3: Note 4:	as per Table 4.2-2 in TS 36 50 resource blocks are allo 41 resource blocks (RB0–R allocated in sub-frame 0 an frames 1.6.	cated in sub B20 and RE	330-RB49) are
Note 5:	If more than one Code Bloc CRC sequence of $L = 24$ B Block (otherwise $L = 0$ Bit).		

# Table A.3.4.3.5-1: Fixed Reference Channel for CDM-multiplexed DM RS with eight CSI-RS antenna ports

The reference measurement channels in Table A.3.4.3.5-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and eight CSI-RS antenna ports.

	Parameter	Unit	Val	ue					
Reference			R.45	R.45-1					
			TDD	TDD					
Channel ba	andwidth	MHz	10	10					
	esource blocks	IVITIZ	50 ⁴	39					
	vnlink Configuration (Note 3)		1	1					
	subframes per Radio Frame		4+2	4+2					
(D+S)	ubitallies per Radio Frante		472	472					
	ubframes per Radio Frame		10	10					
Modulation			16QAM	16QAM					
Target Cod			1/2	1/2					
			1/2	1/2					
	Bit Payload	Dite	N1/A	N1/A					
	Frames 4 and 9	Bits	N/A	N/A					
	-RS subframe)	Dite	44440	0700					
	Frames 4 and 9	Bits	11448	8760					
(CSI-RS s	,	D'	7700	7400					
For Sub-Fr	•	Bits	7736	7480					
For Sub-F		Bits	N/A	N/A					
For Sub-F		Bits	9528	8760					
	Code Blocks per Sub-Frame								
(Note 5)									
	Frames 4 and 9		N/A	N/A					
	I-RS subframe)								
	ames 4 and 9		2	2					
	subframe)								
For Sub-Fr			2	2					
For Sub-F			N/A	N/A					
For Sub-F			2	2					
Binary Cha	nnel Bits Per Sub-Frame								
	Frames 4 and 9	Bits	N/A	N/A					
(Non CSI-	-RS subframe)								
For Sub-F	Frames 4 and 9	Bits	22400	17472					
(CSI-RS s	subframe)								
For Sub-Fr	ames 1,6	Bits	15744	14976					
For Sub-F	rame 5	Bits	N/A	N/A					
For Sub-F	rame 0	Bits	19680	18720					
Max. Throu	ughput averaged over 1 frame	Mbps	4.7896	4.1240					
UE Catego		1	≥2	≥ 1					
	2 symbols allocated to PDCCH for	20 MHz 15 M	Hz and 10 MI	Iz channel					
	BW; 3 symbols allocated to PDCC								
	allocated to PDCCH for 1.4 MHz. I								
	symbols are allocated to PDCCH.								
	Reference signal, synchronization	signals and Pl	BCH allocated	as per TS					
	36.211 [4].	signalo una ri							
	As per Table 4.2-2 in TS 36.211 [4	11.							
	for For R. 45, 50 resource blocks a		sub-frames 4	.9 and 41					
	resource blocks (RB0–RB20 and F								
frame 0 and the DwPTS portion of sub-frames 1,6.									
Note 5:	If more than one Code Block is pre L = 24 Bits is attached to each Coo								

# A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

# A.3.5.1 FDD

Parameter	Unit			Value		
Reference channel		R.15 FDD	R.15-1 FDD	R.15-2 FDD	R.16 FDD	R.17 FDD
Number of transmitter antennas		1	2	2	2	4
Channel bandwidth	MHz	10	10	10	10	5
Number of OFDM symbols for PDCCH	symbols	2	3	2	2	2
Aggregation level	CCE	8	8	8	4	2
DCI Format		Format 1	Format 1	Format 1	Format 2	Format 2
Cell ID		0	0	0	0	0
Payload (without CRC)	Bits	31	31	31	43	42

#### Table A.3.5.1-1: Reference Channel FDD

# A.3.5.2 TDD

#### Table A.3.5.2-1: Reference Channel TDD

Parameter	Unit			Value		
Reference channel		R.15 TDD	R.15-1 TDD	R.15-2 TDD	R.16 TDD	R.17 TDD
Number of transmitter antennas		1	2	2	2	4
Channel bandwidth	MHz	10	10	10	10	5
Number of OFDM symbols for PDCCH	symbols	2	3	2	2	2
Aggregation level	CCE	8	8	8	4	2
DCI Format		Format 1	Format 1	Format 1	Format 2	Format 2
Cell ID		0	0	0	0	0
Payload (without CRC)	Bits	34	34	34	46	45

# A.3.6 Reference measurement channels for PHICH performance requirements

#### Table A.3.6-1: Reference Channel FDD/TDD

Pa	rameter	Unit		Value	;	
Reference cha	nnel		R.18	R.19	R.20	R.24
Number of tran	smitter antennas		1	2	4	1
Channel bandv	vidth	MHz	10	10	5	10
User roles (Note 1)			W I1 I2	W I1 I2	W I1 I2	W I1
Resource alloc	ation (Note 2)		(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1) (0,4)	(0,0) (0,1)
Power offsets (	Note 3)	dB	-4 0 -3	-4 0 -3	-4 0 -3	+3 0
Payload (Note	4)		ARR	ARR	ARR	A R
Note 2: The Note 3: The	vanted user, I1=interf resource allocation p power offsets (per us ive to the first interfer	er user is g er) repres	given as (N_group_	PHICH, N_seq_PH		l per PHICH

Note 4: A=fixed ACK, R=random ACK/NACK.

# A.3.7 Reference measurement channels for PBCH performance requirements

#### Table A.3.7-1: Reference Channel FDD/TDD

Parameter	Unit	Value						
Reference channel		R.21	R.22	R.23				
Number of transmitter antennas		1	2	4				
Channel bandwidth	MHz	1.4	1.4	1.4				
Modulation		QPSK	QPSK	QPSK				
Target coding rate		40/1920	40/1920	40/1920				
Payload (without CRC)	Bits	24	24	24				

# A.3.8 Reference measurement channels for MBMS performance requirements

# A.3.8.1 FDD

Parameter			Р	мсн			
	Unit			Va	lue		
Reference channel		R.40 FDD			R.37 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Allocated subframes per Radio Frame (Note 1)		6			6		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits	408			3624		
For Sub-Frames 0,4,5,9	Bits	N/A			N/A		
Number of Code Blocks per Subframe (Note 3)		1			1		
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits	1224			10200		
For Sub-Frames 0,4,5,9	Bits	N/A			N/A		
MBMS UE Category		≥ 1			≥ 1		
Note 1: For FDD mode, up to 6 sub 36.331.							
Note 2: 2 OFDM symbols are reser 36.211.				Ū			
Note 3: If more than one Code Bloo attached to each Code Bloo			nal CR0	C sequ	ence of L = 24	4 Bits is	6

#### Table A.3.8.1-1: Fixed Reference Channel QPSK R=1/3

Parameter				PM	СН		
	Unit				Value		
Reference channel					R.38 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Allocated subframes per Radio Frame (Note 1)					6		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits				9912		
For Sub-Frames 0,4,5,9	Bits				N/A		
Number of Code Blocks per Subframe (Note 3)					2		
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits				20400		
For Sub-Frames 0,4,5,9	Bits				N/A		
MBMS UE Category					≥ 1		
Note 1: For FDD mode, up to 6 subframes (#1 36.331.	/2/3/6/7/	8) are	availa	ble for	MBMS, in lin	e with	TS
Note 2: 2 OFDM symbols are reserved for PD 36.211.	CCH; an	d refer	ences	signal	allocated as p	er TS	
Note 3: If more than one Code Block is preser attached to each Code Block (otherwi	•		CRC	seque	ence of L = 24	Bits is	1

Table A.3.8.1-2: Fixed Reference Channel 16QAM R=1/2

### Table A.3.8.1-3: Fixed Reference Channel 64QAM R=2/3

Parameter	РМСН									
	Unit			Va	alue					
Reference channel				R.39-1	R.39 FDD					
				FDD						
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks				25	50					
Allocated subframes per Radio Frame(Note1)				6	6					
Modulation				64QAM	64QAM					
Target Coding Rate				2/3	2/3					
Information Bit Payload (Note 2)				•						
For Sub-Frames 1,2,3,6,7,8	Bits			9912	19848					
For Sub-Frames 0,4,5,9	Bits			N/A	N/A					
Number of Code Blocks per Sub-Frame (Note 3)				2	4					
Binary Channel Bits Per Subframe		11		1						
For Sub-Frames 1,2,3,6,7,8	Bits			15300	30600					
For Sub-Frames 0,4,5,9	Bits			N/A	N/A					
MBMS UE Category				≥1	≥ 2					
Note 1:For FDD mode, up to 6 subframes (#1/2/3,Note 2:2 OFDM symbols are reserved for PDCCHNote 3:If more than one Code Block is present, arCode Block (otherwise L = 0 Bit).	l; and refere	ence sig	nal all	ocated as p	er TS 36.211.		ach			

# A.3.8.2 TDD

Parameter				РМСН						
	Unit			Va	lue					
Reference channel		R.40 TDD			R.37 TDD					
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks		6			50					
Uplink-Downlink Configuration(Note 1)		5			5					
Allocated subframes per Radio Frame		5			5					
Modulation		QPSK			QPSK					
Target Coding Rate		1/3			1/3					
Information Bit Payload (Note 2)										
For Sub-Frames 3,4,7,8,9	Bits	408			3624					
For Sub-Frames 0,1,2,5,6	Bits	N/A			N/A					
Number of Code Blocks per Subframe		1			1					
(Note 3)										
Binary Channel Bits Per Subframe										
For Sub-Frames 3,4,7,8,9	Bits	1224			10200					
For Sub-Frames 0,1,2,5,6	Bits	N/A			N/A					
MBMS UE Category		≥ 1			≥ 1					
Note 1: For TDD mode, in line with TS 3	6.331, Up	link-Downlink	Config	juratior	n 5 is propose	d, up to	o 5			
subframes (#3/4/7/8/9) are availa	able for M	BMS.								
Note 2: 2 OFDM symbols are reserved for										
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached										
to each Code Block (otherwise L	= 0 Bit).									

### Table A.3.8.2-1: Fixed Reference Channel QPSK R=1/3

425

 Table A.3.8.2-2: Fixed Reference Channel 16QAM R=1/2

Parameter	PMCH								
	Unit				Value				
Reference channel					R.38 TDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks					50				
Uplink-Downlink Configuration(Note 1)					5				
Allocated subframes per Radio Frame					5				
Modulation					16QAM				
Target Coding Rate					1/2				
Information Bit Payload (Note 2)									
For Sub-Frames 3,4,7,8,9	Bits				9912				
For Sub-Frames 0,1,2,5,6	Bits				N/A				
Number of Code Blocks per Subframe (Note 3)					2				
Binary Channel Bits Per Subframe									
For Sub-Frames 3,4,7,8,9	Bits				20400				
For Sub-Frames 0,1,2,5,6	Bits				N/A				
MBMS UE Category					≥ 1				
Note 1: For TDD mode, in line with TS 36.331	, Uplink-l	Downlin	nk Con	figura	tion 5 is prop	osed, i	up to		
5 subframes (#3/4/7/8/9) are available									
Note 2: 2 OFDM symbols are reserved for PD									
Note 3: If more than one Code Block is preser	nt, an ado	ditional	CRC s	seque	nce of L = 24	Bits is			

attached to each Code Block (otherwise L = 0 Bit).

Parameter				PMCH			
	Unit			Val	ue		
Reference channel				R.39-1TDD	R.39 TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Uplink-Downlink Configuration(Note 1)				5	5		
Allocated subframes per Radio Frame				5	5		
Modulation				64QAM	64QAM		
Target Coding Rate				2/3	2/3		
Information Bit Payload (Note 2)		<b></b>		•	l.		
For Sub-Frames 3,4,7,8,9	Bits			9912	19848		
For Sub-Frames 0,1,2,5,6	Bits			N/A	N/A		
Number of Code Blocks per Sub-Frame (Note 3)				2	4		
Binary Channel Bits Per Subframe							
For Sub-Frames 3,4,7,8,9	Bits			15300	30600		
For Sub-Frames 0,1,2,5,6	Bits			N/A	N/A		
MBMS UE Category				≥ 1	≥ 2		
Note 1:For TDD mode, in line with TS subframes (#3/4/7/8/9) are ava 2 OFDM symbols are reserved Note 3:Note 3:If more than one Code Block is attached to each Code Block (	ailable for for PDC s present	r MBMS CH; re , an ad	S. ferenc ditiona	ce signal allocat	ed as per TS 3	36.211	

#### Table A.3.8.2-3: Fixed Reference Channel 64QAM R=2/3

# A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers

## A.3.9.1 FDD

#### Table A.3.9.1-1: Fixed Reference Channel for sustained data-rate test (FDD)

Parameter	Unit				Va	lue													
Reference channel		R.31-1	R.31-2	R.31-3	R.31-3A	R.31-3C	R.31-4	R.31-4B	R.31-5										
		FDD	FDD	FDD	FDD	FDD	FDD	FDD	FDD										
Channel bandwidth	MHz	10	10	20	10	15	20	15	15										
Allocated resource blocks (Note 8)		Note 5	Note 6	Note 7	Note 6	Note 10	Note 7	Note 11	Note 9										
Allocated subframes per Radio		10	10	10	10	10	10	10	10										
Frame																			
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	64QAM										
Coding Rate																			
For Sub-Frame 1,2,3,4,6,7,8,9,		0.40	0.59	0.59	0.85	0.87	0.88	0.85	0.85										
For Sub-Frame 5		0.40	0.64	0.62	0.89	0.88	0.87	0.87	0.91										
For Sub-Frame 0		0.40	0.63	0.61	0.90	0.91	0.90	0.88	0.88										
Information Bit Payload (Note 8)																			
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	51024	75376	55056	55056										
For Sub-Frame 5	Bits	10296	25456	51024	35160	51024	71112	52752	52752										
For Sub-Frame 0	Bits	10296	25456	51024	36696	51024	75376	55056	55056										
Number of Code Blocks																			
(Notes 3 and 8)																			
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	9	13	9	9										
For Sub-Frame 5	Bits	2	5	9	6	9	12	9	9										
For Sub-Frame 0	Bits	2	5	9	6	9	13	9	9										
Binary Channel Bits (Note 8)																			
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	26100	43200	86400	43200	58752	86400	64800	64800										
For Sub-Frame 5	Bits	26100	39744	82080	39744	57888	82080	60480	60480										
For Sub-Frame 0	Bits	26100	40752	83952	40752	56304	83952	62352	62352										
Number of layers		1	2	2	2	2	2	2	2										
Max. Throughput averaged over 1	Mbps	10.296	25.456	51.024	36.542	51.024	74.950	54.826	54.826										
frame (Note 8)																			
UE Categories		≥1	≥ 2	≥ 2	≥2	≥ 3	≥ 3	≥ 4	≥ 3										
Note 1: 1 symbol allocated to PDC																			
Note 2: Reference signal, synchro																			
Note 3: If more than one Code Blo	ck is pres	sent, an ad	ditional CF	RC sequen	ce of L = 24	Bits is atta	ched to ea	ch Code Bl	ock										
(otherwise $L = 0$ Bit).																			
Note 4: Resource blocks $n_{PRB} = 0$ .							dwidths.												
Note 5: Resource blocks $n_{PRB} = 6$ .	.14,3049	9 are alloca	ated for the	e user data	in all sub-fr	ames.													
Note 6: Resource blocks n _{PRB} = 3.	49 are a	llocated fo	r the user of	data in sub	-frame 5, ai	nd resource	blocks n _{Pl}	_{RB} = 049 ir	n sub-										
frames 0,1,2,3,4,6,7,8,9.																			
Note 7: Resource blocks n _{PRB} = 4.	99 are a	llocated fo	r the user of	data in sub	-frame 5, a	nd resource	blocks n _{Pl}	_{RB} = 099 ir	n sub-										
frames 0,1,2,3,4,6,7,8,9.																			
Note 8: Given per component carr																			
Note 9: Resource blocks nPRB =	474 are	allocated f	for the use	r data in su	ub-frame 5.	and resource	ce blocks n	PRB = 07											

Note 9: Resource blocks nPRB = 4..74 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..74 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 10: Resource blocks  $n_{PRB} = 4..71$  are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.

Note 11: Resource blocks n_{PRB} = 4..74 are allocated for the user data in sub-frame 5, and resource blocks n_{PRB} = 0..74 in sub-frames 0,1,2,3,4,6,7,8,9.

# A.3.9.2 TDD

Parameter	Unit			Value				
Reference channel		R.31-1	R.31-2	R.31-3	R.31-3A	R.31-4		
		TDD	TDD	TDD	TDD	TDD		
Channel bandwidth	MHz	10	10	20	15	20		
Allocated resource blocks		Note 6	Note 7	Note 8	Note 9	Note 8		
Uplink-Downlink Configuration (Note 3)		5	5	5	1	1		
Number of HARQ Processes per	Proces	15	15	15	7	7		
component carrier	ses							
Allocated subframes per Radio Frame		8+1	8+1	8+1	4	4		
(D+S)								
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate								
For Sub-Frames 4,9		0.40	0.59	0.59	0.87	0.88		
For Sub-Frames 3,7,8		0.40	0.59	0.59	N/A	N/A		
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A		
For Sub-Frames 5		0.40	0.64	0.62	0.88	0.87		
For Sub-Frames 6		0.40	0.60	0.60	N/A	N/A		
For Sub-Frames 0		0.40	0.62	0.61	0.90	0.90		
Information Bit Payload								
For Sub-Frames 4,9	Bits	10296	25456	51024	51024	75376		
For Sub-Frames 3,7,8	Bits	10296	25456	51024	0	0		
For Sub-Frame 1	Bits	0	0	0	0	0		
For Sub-Frame 5	Bits	10296	25456	51024	51024	71112		
For Sub-Frame 6	Bits	10296	25456	51024	0	0		
For Sub-Frame 0	Bits	10296	25456	51024	51024	75376		
Number of Code Blocks per Sub-Frame								
(Note 4)								
For Sub-Frames 4,9		2	5	9	9	13		
For Sub-Frames 3,7,8		2	5	9	N/A	N/A		
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A		
For Sub-Frame 5		2	5	9	9	12		
For Sub-Frame 6	Bits	2	5	9	n/a	N/A		
For Sub-Frame 0		2	5	9	9	13		
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	26100	43200	86400	58752	86400		
For Sub-Frames 3,7,8	Bits	26100	43200	86400	0	0		
For Sub-Frame 1	Bits	0	0	0	0	0		
For Sub-Frame 5	Bits	26100	40176	82512	58320	82512		
For Sub-Frame 6	Bits	26100	42768	85968	N/A	N/A		
For Sub-Frame 0	Bits	26100	41184	84384	56736	84384		
Number of layers		1	2	2	2	2		
Max. Throughput averaged over 1 frame	Mbps	8.237	20.365	40.819	20.409	29.724		
(Note 10)								
UE Category		≥ 1	≥ 2	≥2	≥2	≥ 3		
Note 1: 1 symbol allocated to PDCCH for	or all tests.				•			
Note 2: Reference signal, synchronization		and PBCH	allocated a	s per TS 3	6.211 [4].			
Note 3: As per Table 4.2-2 in TS 36.211	[4].			•				
Note 4: If more than one Code Block is		additional	CRC sequ	ence of L =	= 24 Bits is a	ittached		
to each Code Block (otherwise			•					
Note 5: Resource blocks n _{PRB} = 02 are allocated for SIB transmissions in sub-frame 5 for all								
bandwidths.								
Note 6: Resource blocks $n_{PRB} = 614,3049$ are allocated for the user data in all subframes.								

Note 7: Resource blocks  $n_{PRB} = 3..49$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..49$  in sub-frames 0,3,4,6,7,8,9.

Note 8: Resource blocks  $n_{PRB} = 4..99$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..99$  in sub-frames 0,3,4,6,7,8,9.

Note 9: Resource blocks  $n_{PRB} = 4..71$  are allocated for the user data in all sub-frames

Note10: Given per component carrier per codeword.

# A.3.9.3 FDD (EPDCCH scheduling)

#### Table A.3.9.3-1: Fixed Reference Channel for sustained data-rate test with EPDCCH scheduling (FDD)

Parameter	Unit				Value			
Reference channel	Onit	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-	R.31E-4B
		1 FDD	2 FDD	3 FDD	3A FDD	3C FDD	4 FDD	FDD
Channel bandwidth	MHz	10	10	20	10	15	20	15
Allocated resource blocks (Note 8)		Note 5	Note 6	Note 7	Note 6	Note 9	Note 7	Note 10
Allocated subframes per Radio Frame		10	10	10	10	10	10	10
Modulation		64QAM						
Coding Rate								
(subframes with PDCCH USS								
monitoring)								
For Sub-Frame 1,2,3,4,6,7,8,9,		0.3972	0.5926	0.5933	0.8533	0.8725	0.8763	0.8533
For Sub-Frame 5		0.3972	0.6441	0.6246	0.8889	0.8855	0.8702	0.8762
For Sub-Frame 0		0.3972	0.6282	0.6106	0.9046	0.9105	0.9018	0.8868
Coding Rate								
(subframes with EPDCCH USS								
monitoring)								
For Sub-Frame 1,2,3,4,6,7,8,9,		0.4114	0.6047	0.5993	0.8707	0.8855	0.8851	0.8649
For Sub-Frame 5		0.4114	0.6584	0.6312	0.9086	0.8990	0.8794	0.8889
For Sub-Frame 0		0.4114	0.6418	0.6170	0.9242	0.9246	0.9112	0.8993
Information Bit Payload (Note 8)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	51024	75376	55056
For Sub-Frame 5	Bits	10296	25456	51024	35160	51024	71112	52752
For Sub-Frame 0	Bits	10296	25456	51024	36696	51024	75376	55056
Number of Code Blocks								
(Notes 3 and 8)		-	_					
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	9	13	9
For Sub-Frame 5	Bits	2	5	9	6	9	12	9
For Sub-Frame 0	Bits	2	5	9	6	9	13	9
Binary Channel Bits (Note 8)								
(subframes with PDCCH USS monitoring)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	26100	43200	86400	43200	58752	86400	64800
For Sub-Frame 5	Bits	26100	39744	82080	39744	57888	82080	60480
For Sub-Frame 0	Bits	26100	40752	83952	40752	56304	83952	62352
Binary Channel Bits (Note 8)	Dita	20100	407.52	03932	40732	30304	00902	02332
(subframes with EPDCCH USS								
monitoring)								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	25200	42336	85536	42336	57888	85536	63936
For Sub-Frame 5	Bits	25200	38880	81216	38880	57024	81216	59616
For Sub-Frame 0	Bits	25200	39888	83088	39888	55440	83088	61488
Number of layers		1	2	2	2	2	2	2
Max. Throughput averaged over 1	Mbps	10.296	25.456	51.024	36.542	51.024	74.950	54.826
frame (Note 8)	1.000	10.200	_000	51.021	501012	511021		0
UE Categories		≥ 1	≥2	≥2	≥2	≥ 3	≥ 3	≥ 4
Note 1: 1 symbol allocated to PDCCH	for all t	oete	•	•				

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 5: Resource blocks  $n_{PRB} = 6..14,30..49$  are allocated for the user data in all sub-frames.

Note 6: Resource blocks  $n_{PRB} = 3..49$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..49$  in sub-frames 0,1,2,3,4,6,7,8,9.

Note 7: Resource blocks n_{PRB} = 4..99 are allocated for the user data in sub-frame 5, and resource blocks n_{PRB} = 0..99 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 8: Given per component carrier per codeword.

Note 9: Resource blocks n_{PRB} = 4..71 are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.

Note 10: Resource blocks  $n_{PRB} = 4..74$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..74$  in sub-frames 0,1,2,3,4,6,7,8,9.

# A.3.9.4 TDD (EPDCCH scheduling)

### Table A.3.9.4-1: Fixed Reference Channel for sustained data-rate with EPDCCH scheduling (TDD)

Parameter	Unit			Value		
Reference channel		R.31E-1	R.31E-2	R.31E-3	R.31E-3A	R.31E-4
		TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	20	15	20
Allocated resource blocks		Note 6	Note 7	Note 8	Note 9	Note 8
Uplink-Downlink Configuration (Note 3)		5	5	5	1	1
Number of HARQ Processes per component carrier	Processes	15	15	15	7	7
Allocated subframes per Radio		8+1	8+1	8+1	4	4
Frame (D+S)						
Coding Rate						
(subframes with PDCCH USS						
monitoring)						
For Sub-Frames 4,9		0.3972	0.5926	0.5933	0.8725	0.8763
For Sub-Frames 3,7,8		0.3972	0.5926	0.5933	N/A	N/A
For Sub-Frames 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.3972	0.6372	0.6213	0.8790	0.8656
For Sub-Frames 6		0.3972	0.5986	0.5963	N/A	N/A
For Sub-Frames 0		0.3972	0.6216	0.6075	0.9036	0.8972
Coding Rate (subframes with EPDCCH USS						
monitoring)						
For Sub-Frames 4,9		0.4114	0.6047	0.5993	0.8856	0.8851
For Sub-Frames 3,7,8		0.4114	0.6047	0.5993	N/A	N/A
For Sub-Frames 1		<u>N/A</u>	N/A	N/A	N/A	N/A
For Sub-Frames 5		0.4114	0.6512	0.6279	0.8922	0.8748
For Sub-Frames 6		0.4114	0.6109	0.6024	N/A	N/A
For Sub-Frames 0		0.4114	0.6349	0.6138	0.9175	0.9065
Information Bit Payload						
For Sub-Frames 4,9	Bits	10296	25456	51024	51024	75376
For Sub-Frames 3,7,8	Bits	10296	25456	51024	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	10296	25456	51024	51024	71112
For Sub-Frame 6	Bits	10296	25456	51024	N/A	N/A
For Sub-Frame 0	Bits	10296	25456	51024	51024	75376
Number of Code Blocks per Sub- Frame (Note 4)						
For Sub-Frames 4,9		2	5	9	9	13
For Sub-Frames 3,7,8		2	5	9	N/A	N/A
For Sub-Frame 1		N/A	N/A	N/A	N/A	N/A
For Sub-Frame 5		2	5	9	9	12
For Sub-Frame 6	Bits	2	5	9	N/A	N/A
For Sub-Frame 0		2	5	9	9	13
Binary Channel Bits per Sub-Frame (subframes with PDCCH USS monitoring)						
For Sub-Frames 4,9	Bits	26100	43200	86400	58752	86400
For Sub-Frames 3,7,8	Bits	26100	43200	86400	N/A	N/A
For Sub-Frame 1	Bits	0	0	0	N/A	N/A
For Sub-Frame 5	Bits	26100	40176	82512	58320	82512
For Sub-Frame 6	Bits	26100	42768	85968	N/A	N/A
For Sub-Frame 0	Bits	26100	41184	84384	56736	84384
Binary Channel Bits per Sub-Frame (subframes with EPDCCH USS						
monitoring)	Dite	05000	40000	05500	E7000	05500
For Sub-Frames 4,9	Bits	25200	42336	85536	57888	85536
For Sub-Frames 3,7,8	Bits	25200	42336	85536	N/A	N/A
For Sub-Frame 1 For Sub-Frame 5	Bits Bits	0 25200	0 39312	0 81648	N/A 57456	N/A 81648
For Sub-Frame 6	Bits	25200	41904	85104	57456 N/A	N/A
		20200	41304	03104	IN/ <i>F</i> \	IN/A

For Sub-Frame 0		Bits	25200	40320	83520	55872	83520			
Number of layers			1	2	2	2	2			
Max. Throughput averaged over 1		Mbps	8.237	20.365	40.819	20.409	29.724			
frame (Note 10)		-								
UE Category			≥ 1	≥2	≥2	≥ 2	≥ 3			
Note 1:	Note 1: 1 symbol allocated to PDCCH for all tests.									
Note 2:	Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].									
Note 3:										
Note 4:	Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code									
	Block (otherwise $L = 0$ Bit).									
Note 5:	e 5: Resource blocks n _{PRB} = 02 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.									
Note 6:	lote 6: Resource blocks n _{PRB} = 614,3049 are allocated for the user data in all subframes.									
Note 7: Resource blocks $n_{PRB} = 349$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 049$										
in sub-frames 0,3,4,6,7,8,9.										
Note 8:	lote 8: Resource blocks $n_{PRB} = 499$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 099$									
	in sub-frames 0,3,4,6,7,8,9.									
Note 9:	ote 9: Resource blocks n _{PRB} = 471 are allocated for the user data in all sub-frames									
Note10:	: Given per component carrier per codeword.									

# A.3.10 Reference Measurement Channels for EPDCCH performance requirements

A.3.10.1 FDD

#### Table A.3.10.1-1: Reference Channel FDD

Parameter	Unit	Value						
Reference channel		R.55 FDD	R.56 FDD	R.57 FDD	R.58 FDD	R.59 FDD		
Number of transmitter antennas		2	2	2	2	2		
Channel bandwidth	MHz	10	10	10	10	10		
Number of OFDM symbols for PDCCH	symbols	2	2	1	1	1		
Aggregation level	ECCE	4	16	2	8	2		
DCI Format		2A	2A	2C	2C	2D		

# A.3.10.2 TDD

#### Table A.3.10.2-1: Reference Channel TDD

Parameter	Unit	Value						
Reference channel		R.55 TDD	R.56 TDD	R.57 TDD	R.58 TDD	R.59 TDD		
Number of transmitter antennas		2	2	2	2	2		
Channel bandwidth	MHz	10	10	10	10	10		
Number of OFDM symbols for PDCCH	symbols	2	2	1	1	1		
Aggregation level	CCE	4	16	2	8	2		
DCI Format		2A	2A	2C	2C	2D		

# A.4 CSI reference measurement channels

This section defines the DL signal applicable to the reporting of channel status information (Clause 9.2, 9.3 and 9.5).

In Table A.4-1 are specified the reference channels. Table A.4-13 specifies the mapping of CQI index to modulation coding scheme, which complies with the CQI definition specified in Section 7.2.3 of [6].

Table A.4-0: Void

RMC Name	Duplex	CH-BW	Alloc. RB-s	UL/DL Config	Alloc. SF-s	MCS Scheme	Nr. HARQ Proc.	Max. nr HARQ Trans.	Notes	
1 CRS Port										
RC.1 FDD	FDD	10	50	-		MCS.1	8	1		
RC.1 TDD	TDD	10	50	Note 3		MCS.1	10	1		
RC.3 FDD	FDD	10	6	-		MCS.10	8	1		
RC.3 TDD	TDD	10	6	Note 3		MCS.10	10	1		
RC.4 FDD	FDD	10	15	-		MCS.15	8	1	Note 6	
RC.4 TDD	TDD	10	15	Note 3		MCS.15	10	1	Note 6	
RC.5 FDD	FDD	10	3	-		MCS.17	8	1		
RC.5 TDD	TDD	10	3	Note 3		MCS.17	10	1		
2 CRS Ports										
RC.2 FDD	FDD	10	50	-		MCS.2	8	1		
RC.2 TDD	TDD	10	50	Note 3		MCS.2	10	1		
RC.6 FDD	FDD	10	15	-		MCS.16	8	1	Note 6	
RC.6 TDD	TDD	10	15	Note 3		MCS.16	10	1	Note 6	
				1 CRS Por	t + CSI-RS					
	500	40			Non CSI-RS	MCS.11	0	0	4	
RC.8 FDD	FDD	10	6	-	2 CSI-RS	MCS.12	8	1		
RC.8 TDD	TDD	10	6	Note 3	Non CSI-RS	MCS.11	10	1		
NO.0 TOD	TUU	10	0	NOLE 5	2 CSI-RS	MCS.12	10	1		
RC.9 FDD	FDD	10	50	_	Non CSI-RS	MCS.3	8	1		
10.5100	100	10	50		2 CSI-RS	MCS.4	0			
RC.9 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.3	10	1		
					2 CSI-RS	MCS.4		I		
2 CRS Port	+ CSI-RS									
RC.7 FDD	FDD	10	50	-	Non CSI-RS	MCS.5	8	1		
					4 CSI-RS	MCS.7				
RC.7 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.5	10	1		
					8 CSI-RS	MCS.8				
RC.11 FDD	FDD	10	50	_	Non CSI-RS	MCS.5	8	1		
10.11100	100	10	00		2 CSI-RS	MCS.6	0			
RC.11 TDD	TDD	10	50	Note 3	Non CSI-RS	MCS.5	10	1		
-		-			2 CSI-RS	MCS.6	-			
1 CRS Port	+ CSI-RS	+ CSI-IM						_		
					Non CSI- RS/IM	MCS.3				
RC.13 FDD	FDD	10	50	-	CSI- RS/IM	N/A	8	1		
	TDD	10	50	Note 2	Non CSI- RS/IM	MCS.3	10			
RC.13 TDD	TDD	10	50	Note 3	CSI- RS/IM	N/A	10	1		
2 CRS Port	+ CSI-RS	+ CSI-IM				·				
					Non CSI-RS	MCS.5				
RC.10 FDD	FDD	10	50	-	4 CSI- RS, 1 CSI	MCS.8	8	1		

### Table A.4-1: CSI reference measurement channels

					process				
					Non CSI-RS	MCS.5			
RC.10 TDD	TDD	10	50	Note 3	8 CSI- RS, 1 CSI process	MCS.9	10	1	
RC.12 FDD	FDD		0		Non CSI- RS/IM	MCS.13	8	1	
RG. 12 FDD	FDD	10	6	-	CSI- RS/IM	N/A			
RC.12 TDD	TDD	10	6	Noto 2	Non CSI- RS/IM	MCS.13	10	1	
RC.12 TDD	עטי	10 10	6	Note 3	CSI- RS/IM	N/A	10	1	
Note 1: 3 symbols allocated to PDCCH.									
Note 2: For FDD only subframes 1, 2, 3, 4, 6, 7, 8 and 9 are allocated to avoid PBCH and synchronization signal overhead.									
Note 2: TOD LIL DL configuration as specified in the individual tests									

TDD UL-DL configuration as specified in the individual tests. Note 3:

Note 4: For TDD when UL-DL configuration 1 is used only subframes 4 and 9 are allocated to avoide PBCH and synchronizaiton signal overhead.

For TDD when UL-DL configuration 2 is used only subframes 3, 4, 8, and 9 are allocated to avoid Note 5: PBCH and synchronization signal overhead. Centered within the Transmission Bandwidth Configuration (Figure 5.6-1).

Note 6:

Only subframes 2, 3, 4, 7, 8 and 9 are allocated to avoid PBCH and synchronization signal overhead. Note 7:

Table A.4-1a: Void
Table A.4-1b: Void
Table A.4-1c: Void
Table A.4-1d: Void
Table A.4-1e: Void
Table A.4-2: Void
Table A.4-2a: Void
Table A.4-2b: Void
Table A.4-2c: Void
Table A.4-2d: Void
Table A.4-2e: Void
Table A.4-3: Void
Table A.4-3a: Void
Table A.4-3b: Void
Table A.4-3c: Void
Table A.4-3d: Void
Table A.4-3e: Void
Table A.4-3f: Void
Table A.4-3g: Void
Table A.4-3h: Void
Table A.4-3i: Void
Table A.4-3j: Void
Table A.4-3k: Void
Table A.4-31: Void
Table A.4-4: Void
Table A.4-4a: Void
Table A.4-4b: Void
Table A.4-5: Void
Table A.4-5a: Void

Table A.4-5b: Void

Table A.4-6a: Void Table A.4-6b: Void

Table A.4-6: Void

Table A.4-6c: Void

Table A.4-6d: Void

Table A.4-6e: Void

Table A.4-6f: Void

Table A.4-7: Void

Table A.4-8: Void

Table A.4-9: Void

Table A.4-10: Void

Table A.4-11: Void

Table A.4-12: Void

### Table A.4-13: Mapping of CQI Index to Modulation coding scheme (MCS)

C	QI Inde	X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Targe	t Codin	g Rate	OOR	0.0762	0.1172	0.1885	0.3008	0.4385	0.5879	0.3691	0.4785	0.6016	0.4551	0.5537	0.6504	0.7539	0.8525	0.9258	Notes
	odulati	-	OOR			QP	SK			1	6QAN	Λ			64Q	AM			
MCS Scheme	PRB	Available RE-s								Imo	s								
MCS.1	50	6300	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.2	50	6000	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.3	50	5700	DTX	0	0	2	4	6	8	10	13	15	17	19	21	23	25	26	
MCS.4	50	5600	DTX	0	0	2	4	6	7	10	12	14	17	19	21	23	25	26	
MCS.5	50	5400	DTX	0	0	2	3	5	7	10	12	14	17	19	21	23	24	25	
MCS.6	50	5300	DTX	0	0	1	3	5	7	10	12	14	17	19	21	22	24	25	
MCS.7	50	5200	DTX	0	0	1	3	5	7	10	12	14	17	18	20	22	24	25	
MCS.8	50	5000	DTX	0	0	1	3	5	7	10	12	13	17	18	20	22	23	24	
MCS.9	50	4800	DTX	0	0	1	3	5	7	10	12	13	17	18	20	22	23	24	
MCS.10	6	756	DTX	0	0	2	4	6	8	11	13	16	19	21	23	25	27	27	
MCS.11	6	684	DTX	0	0	2	4	6	8	11	13	14	17	20	21	23	25	27	
MCS.12	6	672	DTX	0	0	1	4	6	8	10	12	14	17	19	21	23	25	26	
MCS.13	6	648	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.14	25	3150	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.15	15	1890	DTX	0	0	2	4	6	8	11	13	16	18	21	23	25	27	27	
MCS.16	15	1800	DTX	0	0	2	4	6	8	11	13	15	18	20	22	24	26	27	
MCS.17	3	378	DTX	0	1	2	5	7	9	12	13	16	19	21	23	25	27	27	
Note 1: Note 2: Note 3:	Mapping between Imcs and TBS according to Tables 7.1.7.1-1 and 7.1.7.2.1-1 in TS 36.213 [6]. 3 symbols allocated to PDCCH. Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or																		
	#6) sh	nall be used	for pote	ential	retra	nsmi	ssion	s.											

## A.5 OFDMA Channel Noise Generator (OCNG)

## A.5.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test) and/or allocations used for MBSFN. The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level ( $\gamma$ ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

 $\gamma_i = PDSCH_i _ RA / OCNG _ RA = PDSCH_i _ RB / OCNG _ RB,$ 

where  $\gamma_i$  denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels  $\gamma$  are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a constant transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For the performance requirements of UE with the CA capability, the OCNG patterns apply for each CC.

## A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

		Relative power level $\gamma_{\scriptscriptstyle PRB}$ [di	B]			
Subframe						
	0 5 1-4,6-9					
		Allocation		Data		
First u	unallocated PRB	First unallocated PRB	First unallocated PRB			
Last	– unallocated PRB	– Last unallocated PRB	<ul> <li>Last unallocated PRB</li> </ul>			
	0	0	0	Note 1		
Note 1:			arbitrary number of virtual UEs wit PDSCHs shall be uncorrelated ps			
	data, which is QPS	K modulated. The parameter $\gamma_{_{Pl}}$	$_{_{R\!B}}$ is used to scale the power of PI	DSCH.		
Note 2:			I in the test, the OCNG shall be tra RS according to transmission mod			
	parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is equal between all					
	the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.					

#### Table A.5.1.1-1: OP.1 FDD: One sided dynamic OCNG FDD Pattern

## A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB  $N_{_{RB}}-1$ .

	R						
	0	5	1-4,6-9				
		Allocation		PDSCH Data			
0 – (First	t allocated PRB-1)	0 – (First allocated PRB-1)	0 – (First allocated PRB-1)	1 Doorn Data			
	and	and	and				
(Last all	located PRB+1) –	(Last allocated PRB+1) –	(Last allocated PRB+1) –				
	$(N_{RB} - 1)$	$(N_{RB} - 1)$	$(N_{RB} - 1)$				
	0	0	0	Note 1			
Note 1:		ource blocks are assigned to a nitted over the OCNG PDSCH					
	modulated. The pa	rameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale t	he power of PDSCH.				
Note 2:	If two or more trans	smit antennas with CRS are us	ed in the test, the OCNG shall b	be transmitted to the virtual			
	users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ applies						
		ort separately, so the transmit p ne antenna transmission modes					

### Table A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

## A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

		Re	lative power	evel $\gamma_{\scriptscriptstyle PRB}$ [d	B]			
Alloca			Subfi	ame		PDSCH Data	PMCH Data	
n _{PRB}		0	Duiu	Data				
1 – 49		0	0 (Allocation: all empty PRB-s)	0	N/A	Note 1	N/A	
0 —	- 49 N/A N/A N/A 0				N/A	Note 2		
Note 1: Note 2: Note 3:	one PDS uncorrel used to Each ph each PF measure contain paramet If two or the virtu transmit	hysical resource SCH per virtual ated pseudo ra scale the powe ysical resource B shall be unce ement. The MB cell-specific Re ter $\gamma_{PRB}$ is used more transmit al users by all to power shall be	UE; the data t ndom data, wh r of PDSCH. block (PRB) i orrelated with SFN data shal ference Signal I to scale the p antennas are he transmit an equally split b	ransmitted over hich is QPSK r s assigned to I data in other P I be QPSK mo is only in the fil ower of PMCH used in the tes tennas accord etween all the	er the OCNG F nodulated. The MBSFN transm PRBs over the idulated. PMCI rst symbol of t f. t, the OCNG s ling to transmis transmit anter	PDSCHs sh e paramete nission. The period of al H subframe he first time shall be transsion mode nnas used	hall be be $\gamma_{PRB}$ is e data in my es shall e slot. The hsmitted to e 2. The in the test.	
N/A:	Not App	enna transmiss licable	ion modes are	specified in se		3FF 13 30	.213.	

### Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

## A.5.1.4 OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

		Re						
Alloca			Subframe					
$n_{P_{e}}$	RB	0, 4, 9 5 1 - 3, 6 - 8			Data	Data		
First unallocated PRB – Last unallocated PRB		0	0 (Allocation: all empty PRB-s)	N/A	Note 1	N/A		
First unallocated PRB – Last unallocated PRB		N/A	N/A	N/A	N/A	Note 2		
Note 1:	Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be							
		•		ich is QPSK modulated. The				
Note 2:	used to scale the power of PDSCH.							
	paramet	er $\gamma_{\scriptscriptstyle PRB}$ is used	to scale the po	ower of PMCH.				
Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.								
N/A:	Not App	licable						

Table A.5.1.4-1: OP.4 FDD: One sided dynamic OCNG FDD Pattern for MBMS transmission

### A.5.1.5 OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of DL sub-frames, when the unallocated area is continuous in the frequency domain (one sided).

	Relative power level $\gamma_{_{PRB}}$ [dB]							
Subframe								
	0	5	1-4,6-9	PDSCH				
		Allocation		Data				
First u	unallocated PRB	First unallocated PRB	First unallocated PRB					
Last u	unallocated PRB	Last unallocated PRB	Last unallocated PRB					
	0	0	0	Note 1				
Note 1:			arbitrary number of virtual UEs wit PDSCHs shall be uncorrelated ps					
	data, which is 16QA	AM modulated. The parameter $\gamma$	PRB is used to scale the power of F	PDSCH.				
Note 2:	e 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large							
	Delay CDD). The parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is							
		ne transmit antennas with CRS u d in section 7.1 in 3GPP TS 36.2	used in the test. The antenna trans 13.	mission				

### Table A.5.1.5-1: OP.5 FDD: One sided dynamic 16QAM modulated OCNG FDD Pattern

## A.5.1.6 OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB  $N_{RB} - 1$ .

	R					
	0 5 1-4,6-9					
		Allocation				
0 – (Firs	t allocated PRB of	0 – (First allocated PRB of	0 – (First allocated PRB of	PDSCH Data		
fir	rst block -1)	first block -1)	first block -1)			
	and	and	and			
``	ocated PRB of first	(Last allocated PRB of first	(Last allocated PRB of first			
	) – (First allocated	block +1) – (First allocated	block +1) – (First allocated			
PRB of	second block -1)	PRB of second block -1)	PRB of second block -1)			
	0	0 0		Note 1		
Note 1:		ource blocks are assigned to an nitted over the OCNG PDSCHs				
	modulated. The pa	rameter ${\gamma}_{\scriptscriptstyle PRB}$ is used to scale the sc	he power of PDSCH.			
Note 2:	If two or more trans	smit antennas with CRS are use	ed in the test, the OCNG shall b	be transmitted to the virtual		
	users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ applies					
	to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.					

## A.5.1.7 OCNG FDD pattern 7: dynamic OCNG FDD pattern when user data is in multiple non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in

multiple parts by the *M* allocated blocks for data transmission). The *m*-th allocated block starts with RPB  $N_{Start,m}$  and ends with PRB  $N_{End,m} - 1$ , where m = 1, ..., M. The system bandwidth starts with RPB 0 and ends with  $N_{RB} - 1$ .

F							
0	5	1-4,6-9					
	Allocation						
$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$					
			PDSCH Data				
$(PRBN_{End,(m-1)}) - (PRB$	$(PRBN_{End,(m-1)}) - (PRB$	$(PRBN_{End,(m-1)}) - (PRB$					
$N_{Start,m} - 1$ )	$N_{Start,m} - 1$ )	$N_{Start,m} - 1$ )					
$(PRBN_{End,M}) - (PRB$	$(PRBN_{End,M})$ – $(PRB$	$(PRBN_{End,M})$ – $(PRB$					
$N_{RB} - 1$ )	$N_{RB} - 1$ )	$N_{RB} - 1$ )					
0	0	0	Note 1				
	source blocks are assigned to a mitted over the OCNG PDSCHs						
modulated. The pa	rameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale t	he power of PDSCH.					
Note 2: If two or more tran	smit antennas with CRS are us	ed in the test, the OCNG shall I	be transmitted to the virtual				
users by all the tra	users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ applies						
	ort separately, so the transmit p						

#### Table A.5.1.7-1: OP.7 FDD: OCNG FDD Pattern when user data is in multiple non-contiguous blocks

## A.5.1.8 OCNG FDD pattern 8: One sided dynamic OCNG FDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

		Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dl	3]	_				
Subframe								
0 5 1-4,6-9								
	Allocation							
First unallocated PRB First unallocated PRB First unallocated PRB								
Last unallocated PRB Last unallocated PRB Last unallocated PRB								
	0 0 0 Note 1,2,3							
Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random								
	data, which is 16QAM modulated. The parameter ${\gamma}_{\scriptscriptstyle PRB}$ is used to scale the power of PDSCH.							
Note 2:	Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.							
Note 3:	The detailed test se	t-up for TM10 transmission i.e P	MI configuration is specified to ea	ch test case.				

Table A.5.1.1-1: OP.8 FDD: One sided d	ynamic OCNG FDD Pattern
----------------------------------------	-------------------------

## A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level ( $\gamma$ ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

 $\gamma_i = PDSCH_i _RA / OCNG _RA = PDSCH_i _RB / OCNG _RB,$ 

where  $\gamma_i$  denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels  $\gamma$  are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

### A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

		Relative power	level $\gamma_{\scriptscriptstyle PRB}$ [dB]				
	Subframe (only if available for DL)						
	0         5         3, 4, 7, 8, 9         1           and 6 (as normal subframe)         and 6 (as special subframe)         subframe)						
		Allo	cation				
First una	First unallocated PRB First unallocated PRB First unallocated PRB						
Last una	Last unallocated PRB Last unallocated PRB Last unallocated PRB Last unallocated PRB						
	0 0 0 0 Note 1						
Note 1:	These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data,						
	which is QPS	which is QPSK modulated. The parameter $\gamma_{_{PRR}}$ is used to scale the power of PDSCH.					
Note 2:	Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211						
Note 3:	3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The						
	parameter $\gamma_j$	PRB applies to each anter	nna port separately, so the	transmit power is equal b	etween all the		
		nnas with CRS used in th	ne test. The antenna transr				

### Table A.5.2.1-1: OP.1 TDD: One sided dynamic OCNG TDD Pattern

## A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is

discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB  $N_{\rm _{RB}}$  –1.

		Relative power	level $\gamma_{\scriptscriptstyle PRB}$ [dB]		PDSCH Data	
		Subframe (only in	f available for DL)		Data	
	0 5 3, 4, 6, 7, 8, 9 1,6					
			(6 as normal subframe)	(6 as special subframe)		
		Alloc	ation			
	0 -	0 —	0 —	0 —		
(First all	ocated PRB-1)	(First allocated PRB-1)	(First allocated PRB-1)	(First allocated PRB-1)		
	and	and	and	and		
-	cated PRB+1) –	(Last allocated PRB+1) –	(Last allocated PRB+1) –	(Last allocated PRB+1) –		
( )	$(N_{RB} - 1)$ $(N_{RB} - 1)$ $(N_{RB} - 1)$ $(N_{RB} - 1)$					
	0	0	0	0	Note 1	
Note 1:				rtual UEs with one PDSCH p pseudo random data, which i		
	modulated. The	parameter $\gamma_{\scriptscriptstyle PRB}$ is used to set	cale the power of PDSCH.			
Note 2:	: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211					
Note 3:	If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual					
	users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRR}}$ ap					
	•	ort separately, so the transm antenna transmission modes	• •	the transmit antennas with C in 3GPP TS 36.213.	RS used	

# A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.2.3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5ms downlink-to-uplink switch-point periodicity
---------------------------------------------------------------------------------------------------

			Relative power	level $\gamma_{\scriptscriptstyle PRB}$ [dB]						
Allocation n _{PRB}			Subf	PDSCH Data	PMCH Data					
n _{PR}	В	0	5	4, 9 ^{Note 2}	1, 6					
1 – 4	1 – 49 0 (Allocation: all N/A 0 Note 1 N/A empty PRB-s)									
0 – 4	0 – 49 N/A N/A 0 N/A N/A Note 3									
	Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{PRB}$ is used to scale the power of PDSCH.									
Note 2:	Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in									
Note 3:	uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.									
Note 4:										
N/A	Not A	pplicable								

### A.5.2.4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

		Relative power	level $\gamma_{\scriptscriptstyle PRB}$ [dB]					
Allocation	cation Subframe (only for DL) PDSCH Data PMCH							
n _{PRB}	0 and 6 (as normal subframe)	1 (as special subframe)	5	3, 4, 7 – 9	T Doon Data	T MOTT Data		
First unallocate d PRB – Last unallocate d PRB	0	0 (Allocation: all empty PRB-s of DwPTS)	0 (Allocation: all empty PRB-s)	N/A	Note 1	N/A		
First unallocate d PRB – Last unallocate d PRB	unallocate d PRB - N/A N/A N/A N/A N/A Note Last unallocate							
Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{PRB}$ is used to scale the power of PDSCH.								
Note 2:	Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.							
	If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.							
N/A	Not Applicable							

### Table A.5.2.4-1: OP.4 TDD: One sided dynamic OCNG TDD Pattern for MBMS transmission

### A.5.2.5 OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the sub-frames available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

		Relative power	level $\gamma_{\scriptscriptstyle PRB}$ [dB]				
	Subframe (only if available for DL)						
	0         5         3, 4, 7, 8, 9         1           and 6 (as normal subframe)         and 6 (as special subframe)         subframe)						
		Allo	cation				
First unallocated PRB First unallocated PRB First unallocated PRB First unallocated PRB							
Last una	Last unallocated PRB Last unallocated PRB Last unallocated PRB Last unallocated PRB						
	0 0 0 0 Note 1						
Note 1:	ote 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data,						
	which is 16QAM modulated. The parameter $\gamma_{_{PRB}}$ is used to scale the power of PDSCH.						
Note 2:	Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211						
Note 3:	ote 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large Delay						
	CDD). The parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is equal						
		he transmit antennas with section 7.1 in 3GPP TS 36	n CRS used in the test. The 5.213.	e antenna transmission m	odes are		

### Table A.5.2.5-1: OP.5 TDD: One sided dynamic 16QAM modulated OCNG TDD Pattern

## A.5.2.6 OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB  $N_{RB} - 1$ .

Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]					PDSCH Data
Subframe (only if available for DL)					
	0	5	3, 4, 6, 7, 8, 9	1,6	
			(6 as normal subframe)	(6 as special subframe)	
		Alloc	ation		
0 – (Firs	t allocated PRB	0 – (First allocated PRB	0 – (First allocated PRB	0 – (First allocated PRB	
of fir	st block -1)	of first block -1)	of first block -1)	of first block -1)	
	and	and	and	and	
(Last al	located PRB of	(Last allocated PRB of	(Last allocated PRB of	(Last allocated PRB of	
	first block +1) – (First				
allocated	allocated PRB of second allocated PRB of second allocated PRB of second allocated PRB of second				
block -1)         block -1)         block -1)				Note 1	
0 0 0 0					
Note 1:			d to an arbitrary number of vi SCHs shall be uncorrelated (		
modulated. The parameter ${\gamma}_{_{PRB}}$ is used to scale the power of PDSCH.					
Note 2:	Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211				
Note 3:	If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual				
users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ a					applies to
			it power is equal between all are specified in section 7.1 i		CRS used

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in multiple parts by the *M* allocated blocks for data transmission). The *m*-th allocated block starts with RPB  $N_{Start,m}$  and ends with PRB  $N_{End,m}$  -1, where m = 1, ..., M. The system bandwidth starts with RPB 0 and ends with  $N_{RB}$  -1.

## Table A.5.2.7-1: OP.7 TDD: OCNG TDD Pattern when user data is in multiple non-contiguous blocks

		Relative power	level ${\gamma}_{_{PRB}}$ [dB]		PDSCH Data
		Subframe (only if	available for DL)		Dala
	0	5	3, 4, 6, 7, 8, 9 (6 as normal subframe) _{Note 2}	1,6 (6 as special subframe) _{Note 2}	
		Alloc	ation		
0 – (PRI	$BN_{Start,1}-1$ )	$0 - (PRBN_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	$0 - (PRB N_{Start,1} - 1)$	
(PRB $\Lambda$	 $V_{End,(m-1)}) -$	 (PRB N _{End,(m-1)} ) –	 (PRB N _{End,(m-1)} ) –	 (PRB N _{End,(m-1)} ) –	
(PRB	$N_{Start,m} - 1$ )	(PRB $N_{Start,m} - 1$ )	(PRB $N_{Start,m} - 1$ )	(PRB $N_{Start,m} - 1$ )	
(PRB $N_{B}$	 _{End,M} ) – (PRB	 (PRB $N_{End,M}$ ) – (PRB	 (PRB $N_{End,M}$ ) – (PRB	 (PRB $N_{End,M}$ ) – (PRB	
Ν	и _{RB} —1)	$N_{RB} - 1$ )	$N_{RB} - 1$ )	$N_{RB} - 1$ )	
	0	0	0	0	Note 1
Note 1:	UE; the data tra	resource blocks are assigned normalized over the OCNG PD parameter $\gamma_{PRB}$ is used to s	SCHs shall be uncorrelated		
Note 2:	Subframes avail TS 36.211.	able for DL transmission dep	pends on the Uplink-Downlin	k configuration in Table 4.2-2	2 in 3GPP
Note 3:		ansmit antennas with CRS a transmit antennas with CRS			
		ort separately, so the transmi antenna transmission modes			CRS used

## A.5.2.8 OCNG TDD pattern 8: One sided dynamic OCNG TDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]					
Subframe					
	0 5 1-4,6-9			PDSCH	
		Allocation		Data	
First	unallocated PRB	First unallocated PRB	First unallocated PRB		
– Last unallocated PRB		– Last unallocated PRB	<ul> <li>Last unallocated PRB</li> </ul>		
0		0	0	Note 1,2,3	
Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random					
	data, which is 16QAM modulated. The parameter ${\gamma}_{_{PRB}}$ is used to scale the power of PDSCH.				
Note 2:	Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.				
Note 3:	The detailed test se	et-up for TM10 transmission i.e P	MI configuration is specified to ea	ach test case.	

### Table A.5.1.1-1: OP.8 TDD: One sided dynamic OCNG TDD Pattern

## Annex B (normative): Propagation conditions

## B.1 Static propagation condition

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}.$$

For 4 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & j & j \\ 1 & 1 - j & -j \end{bmatrix}$$

For 8 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 & j & j & j & j \\ 1 & 1 & 1 & 1 & -j & -j & -j & -j \end{bmatrix}$$

## B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.

- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency

- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multi-antenna systems.

- Additional multi-path models used for CQI (Channel Quality Indication) tests

## B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)
Extended Pedestrian A (EPA)	7	45 ns	410 ns
Extended Vehicular A model (EVA)	9	357 ns	2510 ns
Extended Typical Urban model (ETU)	9	991 ns	5000 ns

Table B.2.1-1 Delay profiles for E-UTRA channel models

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-2 Extended Pedestrian A model (EPA)

Table B.2.1-3 Extended	Vehicular A	A model (	(EVA)
------------------------	-------------	-----------	-------

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

#### Table B.2.1-4 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

## B.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as EVA[number], EPA[number] or ETU[number] where 'number' indicates the maximum Doppler frequency (Hz).

#### Table B.2.2-1 Void

## B.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in B.2.3 apply for the antenna configuration using uniform linear arrays at both eNodeB and UE.

### B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\ast} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$

### Table B.2.3.1-1 eNodeB correlation matrix

Table B.2.3.1-2 defines the correlation matrix for the UE:

	One antenna	Two antennas	Four antennas
UE Correlation	<i>R_{UE}</i> = 1	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 \end{pmatrix}$

### Table B.2.3.1-2 UE correlation matrix

Table B.2.3.1-3 defines the channel spatial correlation matrix  $R_{spat}$ . The parameters,  $\alpha$  and  $\beta$  in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

Table B.2.3.1-3:	$R_{spat}$	correlation matrices
------------------	------------	----------------------

1x2 case	$R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
2x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$
4x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^{*} & 1 \end{bmatrix}$
4x4 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\ast} & \beta^{\frac{4}{9}} & \beta^{\frac{4}{9}} & 1 \end{bmatrix}$

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of  $R_{eNB}$  and  $R_{UE}$  according to  $R_{spat} = R_{eNB} \otimes R_{UE}$ .

### B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The  $\alpha$  and  $\beta$  for different correlation types are given in Table B.2.3.2-1.

Low correlation		Medium Correlation		High Correlation	
α	β	α	β	α	β
0	0	0.3	0.9	0.9	0.9

### Table B.2.3.2-1

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in Table B.2.3.2-2 have been adjusted for the  $4x^2$  and  $4x^4$  high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the  $4x^2$  high correlation case, a=0.00010. For the  $4x^4$  high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$	
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$	
4x2 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 & 0.8999 & 0.8099 \\ 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 & 0.8099 & 0.8999 \\ 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 \\ 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 \\ 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 \\ 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 \\ 0.8999 & 0.8099 & 0.9542 & 0.8587 & 0.9542 & 0.8894 & 1.0000 & 0.8894 \\ 0.8099 & 0.8099 & 0.9542 & 0.8587 & 0.9542 & 0.8894 & 1.0000 & 0.8999 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 \end{bmatrix}$	
4x4 case	$R_{high} = \begin{bmatrix} 1.0000 \ 0.9882 \ 0.9541 \ 0.8999 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.8894 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8099 \\ 0.9882 \ 1.0000 \ 0.9882 \ 0.9541 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \\ 0.9541 \ 0.9882 \ 1.0000 \ 0.9882 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9105 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.8587 \ 0.8894 \ 0.8999 \ 0.8894 \ 0.8587 \\ 0.8999 \ 0.9541 \ 0.9882 \ 1.0000 \ 0.8894 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9105 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.8587 \ 0.8894 \ 0.8999 \ 0.8587 \ 0.8894 \ 0.8999 \ 0.8587 \ 0.8894 \ 0.8999 \ 0.8587 \ 0.9899 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767$	

Table B.2.3.2-2: MIMO correlation matrices for high correlation

1x2 case									N/A								
2x2 case		$R_{medium} = \begin{pmatrix} 1 & 0.9 & 0.3 & 0.27 \\ 0.9 & 1 & 0.27 & 0.3 \\ 0.3 & 0.27 & 1 & 0.9 \\ 0.27 & 0.3 & 0.9 & 1 \end{pmatrix}$															
4x2 case		R _{med}	lium =	0 0 0 0 0 0	0000 .9000 .8748 .7873 .5856 .5271 .3000 .2700	0.900 1.000 0.787 0.874 0.527 0.585 0.270 0.300	00       0.         73       1.         18       0.         71       0.         56       0.         00       0.	8748 7873 0000 9000 8748 7873 .5856 .5271	0.787 0.874 0.900 1.000 0.787 0.874 0.527 0.585	8       0.         0       0.         0       0.         3       1.         8       0.         1       0.	5271 8748 7873 0000 9000 8748	0.527 0.5856 0.7873 0.8748 0.9000 1.0000 0.7873 0.8748	5 0.2 3 0.5 8 0.5 0 0.8 0 0.7 3 1.0	700 856 271 748 873 000	0.2700 0.3000 0.5271 0.5856 0.7873 0.8748 0.9000 1.0000		
4x4 case	R _{medium} =		.0000 0.9882 0.9541 0.8645 0.8747 0.8645 0.8347 0.5787 0.5787 0.5588 0.2965 0.3000 0.2965	0.9882 1.0000 0.9882 0.8347 0.8645 0.8747 0.8645 0.5588 0.5787 0.5855 0.5787 0.2862 0.2965 0.3000	0.9541 0.9882 1.0000 0.7872 0.8347 0.8645 0.8747 0.5270 0.5588 0.5787 0.5855 0.2700 0.2862 0.2965	0.8645 0.8347 0.7872 1.0000 0.9882 0.9541 0.8999 0.8747 0.8645 0.8347 0.7872 0.5855 0.5787 0.5588	0.8747 0.8645 0.8347 0.9882 1.0000 0.9882 0.9541 0.8645 0.8747 0.8645 0.8347 0.5787 0.5855 0.5787	0.8645 0.8747 0.8645 0.9541 0.9882 1.0000 0.9882 0.8347 0.8645 0.8747 0.8645 0.5588 0.5787 0.5855	0.8347 0.8645 0.8747 0.8999 0.9541 0.9882 1.0000 0.7872 0.8347 0.8645 0.8747 0.5270 0.5588 0.5787	0.5787 0.5588 0.5270 0.8747 0.8645 0.8347 0.7872 1.0000 0.9882 0.9541 0.8999 0.8747 0.8645 0.8347	<ul> <li>3 0.5787</li> <li>) 0.5588</li> <li>) 0.5588</li> <li>7 0.8645</li> <li>5 0.8747</li> <li>) 0.8645</li> <li>2 0.8347</li> <li>) 0.9882</li> <li>2 1.0000</li> <li>1 0.9882</li> <li>2 1.0000</li> <li>1 0.9882</li> <li>) 0.9541</li> <li>7 0.8645</li> <li>5 0.8747</li> <li>7 0.8645</li> </ul>	0.5787 0.5855 0.5787 0.8347 0.8645 0.8747 0.8645 0.9541 0.9882 1.0000 0.9882 0.8347 0.8645 0.8747	0.5588 0.5787 0.5855 0.7872 0.8347 0.8645 0.8747 0.8999 0.9541 0.9882 1.0000 0.7872 0.8347 0.8645	0.2965 0.2862 0.2700 0.5855 0.5787 0.5588 0.5270 0.8747 0.8645 0.8347 0.7872 1.0000 0.9882 0.9541	0.3000 0.2965 0.2862 0.5787 0.5588 0.8645 0.8747 0.8645 0.8347 0.9882 1.0000 0.9882	0.2965 0.3000 0.2965 0.5588 0.5787 0.5855 0.5787 0.8347 0.8645 0.8747 0.8645 0.9541 0.9882 1.0000	0.2862 0.2965 0.3000 0.5270 0.5588 0.5787 0.5855 0.7872 0.8347 0.8645 0.8747 0.8999 0.9541 0.9882

Table B.2.3.2-3: MIMO	correlation matrices	s for medium correlation

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4,  $\mathbf{I}_d$  is the  $d \times d$  identity matrix.

# B.2.3A MIMO Channel Correlation Matrices using cross polarized antennas

The MIMO channel correlation matrices defined in B.2.3A apply for the antenna configuration using cross polarized antennas at both eNodeB and UE. The cross-polarized antenna elements with +/-45 degrees polarization slant angles are deployed at eNB and cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

#### 3GPP TS 36.101 version 11.11.0 Release 11

454

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of transmit or receive antennas.

## B.2.3A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{spat} = P(R_{eNB} \otimes \Gamma \otimes R_{UE})P^{T}$$

where

- $R_{UE}$  is the spatial correlation matrix at the UE with same polarization,
- $R_{eNB}$  is the spatial correlation matrix at the eNB with same polarization,
- $\Gamma$  is a polarization correlation matrix, and
- $(\bullet)^T$  denotes transpose.

The matrix  $\Gamma$  is defined as

$$\Gamma = \begin{bmatrix} 1 & 0 & -\gamma & 0 \\ 0 & 1 & 0 & \gamma \\ -\gamma & 0 & 1 & 0 \\ 0 & \gamma & 0 & 1 \end{bmatrix}$$

A permutation matrix P elements are defined as

$$P(a,b) = \begin{cases} 1 & for \ a = (j-1)Nr + i \ and \ b = 2(j-1)Nr + i, \\ 1 & for \ a = (j-1)Nr + i \ and \ b = 2(j-Nt/2)Nr - Nr + i, \\ 0 & otherwise \end{cases} i = 1, \dots, Nr, \ j = Nt/2 + 1, \dots, Nt + i \\ 0 & otherwise \end{cases}$$

where  $N_t$  and  $N_r$  is the number of transmitter and receiver respectively. This is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.2.3A.

## B.2.3A.2 Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides

#### B.2.3A.2.1 Spatial Correlation Matrices at eNB side

For 2-antenna transmitter using one pair of cross-polarized antenna elements,  $R_{eNB} = 1$ .

For 4-antenna transmitter using two pairs of cross-polarized antenna elements,  $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & I \end{pmatrix}$ .

For 8-antenna transmitter using four pairs of cross-polarized antenna elements, 
$$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$$

### B.2.3A.2.2 Spatial Correlation Matrices at UE side

For 2-antenna receiver using one pair of cross-polarized antenna elements,  $R_{UE} = 1$ .

For 4-antenna receiver using two pairs of cross-polarized antenna elements,  $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$ .

### B.2.3A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters  $\alpha$ ,  $\beta$  and  $\gamma$  for high spatial correlation are given in Table B.2.3A.3-1.

Table	B.2.3A.3-1	

		High spatial correlation	
	0.9	0.9	0.3
Note 1:	Value of $\alpha$ applies when n	nore than one pair of cross-polarized ar	tenna elements at eNB side.
Note 2:	Value of $\beta$ applies when n	nore than one pair of cross-polarized an	tenna elements at UE side.

The correlation matrices for high spatial correlation are defined in Table B.2.3A.3-2 as below.

The values in Table B.2.3A.3-2 have been adjusted to insure the correlation matrix is positive semi-definite after roundoff to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spat} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 8x2 high spatial correlation case, a=0.00010.

#### Table B.2.3A.3-2: MIMO correlation matrices for high spatial correlation

		1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.8999	0.0000	-0.3000	0.0000	-0.2965	0.0000	-0.2862	0.0000	-0.2700	0.0000
		0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.8999	0.0000	0.3000	0.0000	0.2965	0.0000	0.2862	0.0000	0.2700
		0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	-0.2965	0.0000	-0.3000	0.0000	-0.2965	0.0000	-0.2862	0.0000
		0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.2965	0.0000	0.3000	0.0000	0.2965	0.0000	0.2862
		0.9542	0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	-0.2862	0.0000	-0.2965	0.0000	-0.3000	0.0000	-0.2965	0.0000
		0.0000	0.9542	0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.2862	0.0000	0.2965	0.0000	0.3000	0.0000	0.2965
		0.8999	0.0000	0.9542	0.0000	0.9883	0.0000	1.0000	0.0000	-0.2700	0.0000	-0.2862	0.0000	-0.2965	0.0000	-0.3000	0.0000
8x2 case	R -	0.0000	0.8999	0.0000	0.9542	0.0000	0.9883	0.0000	1.0000	0.0000	0.2700	0.0000	0.2862	0.0000	0.2965	0.0000	0.3000
oxz case	$R_{high} =$	-0.3000	0.0000	-0.2965	0.0000	-0.2862	0.0000	-0.2700	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.8999	0.0000
		0.0000	0.3000	0.0000	0.2965	0.0000	0.2862	0.0000	0.2700	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000	0.8999
		-0.2965	0.0000	-0.3000	0.0000	-0.2965	0.0000	-0.2862	0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542	0.0000
		0.0000	0.2965	0.0000	0.3000	0.0000	0.2965	0.0000	0.2862	0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000	0.9542
		-0.2862	0.0000	-0.2965	0.0000	-0.3000	0.0000	-0.2965	0.0000	0.9542	0.0000	0.9883	0.0000	1.0000	0.0000	0.9883	0.0000
		0.0000	0.2862	0.0000	0.2965	0.0000	0.3000	0.0000	0.2965	0.0000	0.9542	0.0000	0.9883	0.0000	1.0000	0.0000	0.9883
		-0.2700	0.0000	-0.2862	0.0000	-0.2965	0.0000	-0.3000	0.0000	0.8999	0.0000	0.9542	0.0000	0.9883	0.0000	1.0000	0.0000
		0.0000	0.2700	0.0000	0.2862	0.0000	0.2965	0.0000	0.3000	0.0000	0.8999	0.0000	0.9542	0.0000	0.9883	0.0000	1.0000

### B.2.3A.4 Beam steering approach

Given the channel spatial correlation matrix in B.2.3A.1, the corresponding random channel matrix H can be calculated. The signal model for the k-th subframe is denoted as

$$y = HD_{\theta_{L}}Wx + n$$

Where

- H is the Nr xNt channel matrix per subcarrier.

- 
$$D_{\theta_k}$$
 is the steering matrix, which is  $D_{\theta_k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{j\theta_k} & 0 & 0 \\ 0 & 0 & e^{j2\theta_k} & 0 \\ 0 & 0 & 0 & e^{j3\theta_k} \end{bmatrix}$ ,

-  $\theta_k$  controls the phase variation, and the phase for k-th subframe is denoted by  $\theta_k = \theta_0 + \Delta \theta \cdot k$ , where  $\theta_0$  is the random start value with the uniform distribution, i.e.,  $\theta_0 \in [0, 2\pi]$ ,  $\Delta \theta$  is the step of phase variation, which is defined in Table B.2.3A.4-1, and *k* is the linear increment of 1 for every subframe throughout the simulation,

- W is the precoding matrix for 8 transmission antennas,
- y is the received signal, x is the transmitted signal, and n is AWGN.

Table B.2.3A.4-1: The step of phase variation

Variation Step	Value (rad/subframe)
$\Delta  heta$	1.2566×10⁻³

## B.2.4 Propagation conditions for CQI tests

For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t) \delta(\tau - \tau_d),$$

in continuous time  $(t, \tau)$  representation, with  $\tau_d$  the delay, *a* a constant and  $f_D$  the Doppler frequency. The same  $h(t, \tau)$  is used to describe the fading channel between every pair of Tx and Rx.

### B.2.4.1 Propagation conditions for CQI tests with multiple CSI processes

For CQI tests with multiple CSI processes, the following additional multi-path profile is used for 2 port transmission:

$$H = \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \circ H_{MP}$$

Where  $\circ$  represents Hadamard product,  $H_{MP}$  indicates the 2x2 propagation channel generated in the manner defined in Clause B.2.4.

### B.2.5 Void

## **B.2.6 MBSFN Propagation Channel Profile**

Table B.2.6-1 shows propagation conditions that are used for the MBSFN performance requirements in multi-path fading environment in an extended delay spread environment.

Table B.2.6-1: Propagation Conditions for Multi-Path Fading Environments for MBSFN Performance
Requirements in an extended delay spread environment

Exte	nded Delay Spread					
Maximum	Doppler frequency [5Hz]					
Relative Delay [ns]	Relative Mean Power [dB]					
0	0					
30	-1.5					
150	-1.4					
310	-3.6					
370	-0.6					
1090	-7.0					
12490	-10					
12520	-11.5					
12640	-11.4					
12800	-13.6					
12860	-10.6					
13580	-17.0					
27490	-20					
27520	-21.5					
27640	-21.4					
27800	-23.6					
27860	-20.6					
28580	-27.0					

## B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where  $f_s(t)$  is the Doppler shift and  $f_d$  is the maximum Doppler frequency. The cosine of angle  $\theta(t)$  is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos\theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), t > 2D_s/v \tag{B.3.4}$$

where  $D_s/2$  is the initial distance of the train from eNodeB, and  $D_{\min}$  is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

Parameter	Value
$D_s$	300 m
$D_{\min}$	2 m
ν	300 km/h
$f_d$	750 Hz

Table B.3-1: High speed train scenario

NOTE 1: Parameters for HST conditions in table B.3-1 including  $f_d$  and Doppler shift trajectories presented on figure B.3-1 were derived from Band 7 and are applied for performance verification in all frequency bands.

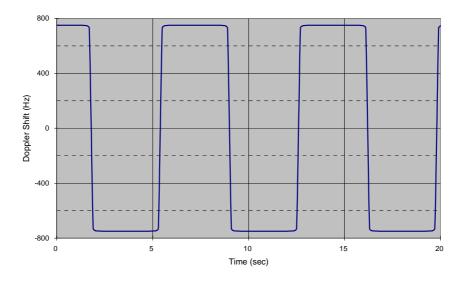



Figure B.3-1: Doppler shift trajectory

For 1x2 antenna configuration, the same  $h(t,\tau)$  is used to describe the channel between every pair of Tx and Rx.

For 2x2 antenna configuration, the same  $h(t,\tau)$  is used to describe the channel between every pair of Tx and Rx with phase shift according to  $\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}$ .

## B.4 Beamforming Model

## B.4.1 Single-layer random beamforming (Antenna port 5, 7, or 8)

Single-layer transmission on antenna port 5 or on antenna port 7 or 8 without a simultaneous transmission on the other antenna port, is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal  $y^{(p)}(i)$ ,  $i = 0,1,...,M_{\text{symb}}^{\text{ap}} -1$ , for antenna port  $p \in \{5, 7, 8\}$ , with  $M_{\text{symb}}^{\text{ap}}$  the number of modulation symbols including the

user-specific reference symbols (DRS), and generates a block of signals  $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \tilde{y}_{bf}(i) \end{bmatrix}^T$  the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i)$$

Single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port, is defined by using a pair of precoder vectors  $W_1(i)$  and  $W_2(i)$  each of size 2×1, which are not identical and randomly selected with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4], as beamforming weights, and normalizing the transmit power as follows:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = \frac{1}{\sqrt{2}} \left( W_1(i) y^{(7)}(i) + W_2(i) y^{(8)}(i) \right)$$

The precoder update granularity is specific to a test case.

The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 1$ ,  $p \in \{15,16,..,22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $y_{bf}(i)$ . The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 0$ ,  $p \in \{15,16,..,22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $\tilde{y}_{bf}(i)$ .

### B.4.2 Dual-layer random beamforming (antenna ports 7 and 8)

Dual-layer transmission on antenna ports 7 and 8 is defined by using a precoder matrix W(i) of size  $2 \times 2$  randomly selected with the number of layers v = 2 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input a block of signals for antenna ports 7 and 8,  $y(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) \end{bmatrix}^T$ ,  $i = 0, 1, ..., M_{symb}^{ap} - 1$ , with  $M_{symb}^{ap}$  being the number of modulation symbols per antenna port including the user-specific reference symbols, and generates a block of signals  $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \tilde{y}_{bf}(i) \end{bmatrix}^T$  the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \end{bmatrix},$$

The precoder update granularity is specific to a test case.

The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 1$ ,  $p \in \{15, 16, ..., 22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $y_{bf}(i)$ . The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 0$ ,  $p \in \{15, 16, ..., 22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $\tilde{y}_{bf}(i)$ .

### B.4.3 Generic beamforming model (antenna ports 7-14)

The transmission on antenna port(s) p = 7,8,...,v + 6 is defined by using a precoder matrix W(i) of size  $N_{CSI} \times v$ , where  $N_{CSI}$  is the number of CSI reference signals configured per test and v is the number of spatial layers. This precoder takes as an input a block of signals for antenna port(s) p = 7,8,...,v + 6,  $y^{(p)}(i) = \left[y^{(7)}(i) \quad y^{(8)}(i) \quad \cdots \quad y^{(6+v)}(i)\right], i = 0,1,...,M_{symb}^{ap} - 1$ , with  $M_{symb}^{ap}$  being the number of modulation symbols per antenna port including the user-specific reference symbols (DM-RS), and generates a block of signals  $y_{bf}^{(q)}(i) = \left[y_{bf}^{(0)}(i) \quad y_{bf}^{(1)}(i) \quad \ldots \quad y_{bf}^{(N_{CSI}-1)}(i)\right]^{T}$  the elements of which are to be mapped onto the same time-frequency index pair (k, l) but transmitted on different physical antenna elements:

$$\begin{bmatrix} y_{bf}^{(0)}(i) \\ y_{bf}^{(1)}(i) \\ \vdots \\ y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \\ \vdots \\ y^{(6+\nu)}(i) \end{bmatrix}$$

The precoder matrix W(i) is specific to a test case.

The physical antenna elements are identified by indices  $j = 0, 1, ..., N_{ANT} - 1$ , where  $N_{ANT} = N_{CSI}$  is the number of physical antenna elements configured per test.

Modulation symbols  $y_{bf}^{(q)}(i)$  with  $q \in \{0,1,...,N_{CSI}-1\}$  (i.e. beamformed PDSCH and DM-RS) are mapped to the physical antenna index j = q.

Modulation symbols  $y^{(p)}(i)$  with  $p \in \{0,1,..., P-1\}$  (i.e. PBCH, PDCCH, PHICH, PCFICH) are mapped to the physical antenna index j = p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols  $a_{k,l}^{(p)}$  with  $p \in \{0,1,..., P-1\}$  (i.e. CRS) are mapped to the physical antenna index j = p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols  $a_{k,l}^{(p)}$  with  $p \in \{15, 16, ..., 14 + N_{CSI}\}$  (i.e. CSI-RS) are mapped to the physical antenna index j = p - 15, where  $N_{CSI}$  is the number of CSI reference signals configured per test.

# B.4.4 Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)

EPDCCH distributed transmission on antenna port 107 and antenna port 109 is defined by using a pair of precoder vectors  $W_1(i)$  and  $W_2(i)$  each of size 2×1, which are not identical and randomly selected per EPDCCH PRB pair with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4], as beamforming weights. This precoder takes as an input the signal  $y^{(p)}(i)$ ,  $i = 0,1,...,M_{symb}^{ap} - 1$ , for antenna port  $p \in \{107, 109\}$ , with  $M_{symb}^{ap}$  the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a block of signals  $y_{bf}(i) = [y_{bf}(i) \ \tilde{y}_{bf}(i)]^{t}$ . When EPDCCH is associated with port 107, the transmitted block of signals is deonted as

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W_1(i) y^{(107)}(i).$$

When EPDCCH is associated with port 109, the transmitted block of signals is denoted as

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W_2(i) y^{(109)}(i).$$

## B.4.5 Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)

EPDCCH localized transmission on antenna port 107, 108, 109 or 110 is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal  $y^{(p)}(i)$ ,  $i = 0,1,...,M_{symb}^{ap} - 1$ , for antenna port  $p \in \{107, 108, 109, 110\}$ , with  $M_{symb}^{ap}$  the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a

block of signals  $y_{bf}(i) = [y_{bf}(i) \quad \tilde{y}_{bf}(i)]^T$  the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W(i) y^{(p)}(i) .$$

# B.5 Interference models for enhanced performance requirements Type-A

This clause provides a description for the modelling of interfering cell transmissions for enhanced performance requirements Type-A including: definition of dominant interferer proportion, transmission mode 3, 4 and 9 type of interference modelling.

## B.5.1 Dominant interferer proportion

Each interfering cell involved in enhanced performance requirements Type-A is characterized by its associated dominant interferer proportion (DIP) value:

$$DIP_i = \frac{\hat{I}_{or(i+1)}}{N_{oc}}$$

where is  $\hat{I}_{or(i+1)}$  is the average received power spectral density from the i-th strongest interfering cell involved in the requirement scenario ( $\hat{I}_{or(1)}$  is assumed to be the power spectral density associated with the serving cell) and

 $N_{oc}' = \sum_{i=2}^{N} \hat{I}_{or(j)} + N_{oc}$  where  $N_{oc}$  is the average power spectral density of a white noise source consistent with the

definition provided in subclause 3.2 and N is the total number of cells involved in a given requirement scenario.

### B.5.2 Transmission mode 3 interference model

This subclause provides transmission mode 3 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For rank-1 transmission over a subband, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4].

For rank-2 transmission over a subband, precoding for spatial multiplexing with large delay CDD over two layers for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.2 of [4].

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

## B.5.3 Transmission mode 4 interference model

This subclause provides transmission mode 4 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-1 of [4]. Note that codebook index 0 shall be excluded from random precoder selection when the number of layers is v = 2.

Precoding for spatial multiplexing with cell-specific reference signals for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.1 of [4] with the selected precoding matrices for each subframe and each CQI subband.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

## B.5.4 Transmission mode 9 interference model

This subclause provides transmission mode 9 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and each CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-2 of [4].

The generic beamforming model in subclause B.4.3 shall be applied assuming cell-specific reference signals and CSI reference signals as specified in the requirement scenario. Random precoding with selected rank and precoding matrices for each subframe and each CQI subband shall be applied to 16QAM randomly modulated layer symbols including the user-specific reference symbols over antenna port 7 when the rank is one and antenna ports 7, 8 when the rank is two.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

## Annex C (normative): Downlink Physical Channels

## C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

## C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Physical Channel
PBCH
SSS
PSS
PCFICH
PDCCH
EPDCCH
PHICH
PDSCH

## Table C.2-1: Downlink Physical Channels required for connection set-up

## C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

## C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	$PBCH_RA = 0 dB$
	$PBCH_RB = 0 dB$
PSS	$PSS_RA = 0 dB$
SSS	$SSS_RA = 0 dB$
PCFICH	$PCFICH_RB = 0 dB$
PDCCH	$PDCCH_RA = 0 dB$
	$PDCCH_RB = 0 dB$
PDSCH	$PDSCH_RA = 0 dB$
	$PDSCH_RB = 0 dB$
OCNG	$OCNG_RA = 0 dB$
	$OCNG_RB = 0 dB$

NOTE 1: No boosting is applied.

Parameter	Unit	Value	Note
Transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. $I_{or}$ shall be kept constant throughout all OFDM symbols
Cell-specific reference signal power ratio $E_{\rm RS}$ / $I_{\rm or}$		0 dB	

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

## C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	$PBCH_RA = \rho_A + \sigma$
	$PBCH_RB = \rho_B + \sigma$
PSS	PSS_RA = 0 (Note 3)
SSS	$SSS_RA = 0$ (Note 3)
PCFICH	PCFICH_RB = $\rho_B$ + $\sigma$
PDCCH	PDCCH_RA = $\rho_A$ + $\sigma$
	PDCCH_RB = $\rho_B$ + $\sigma$
EPDCCH	EPDCCH_RA = $\rho_A + \delta$
	EPDCCH_RB = $\rho_B + \delta$
PDSCH	PDSCH_RA = $\rho_A$
	PDSCH_RB = $\rho_B$
PMCH	PMCH_RA = $\rho_A$
	$PMCH_RB = \rho_B$
MBSFN RS	MBSFN RS_RA = $\rho_A$
	MBSFN RS_RB = $\rho_B$
OCNG	OCNG_RA = $\rho_A$ + $\sigma$
	OCNG_RB = $\rho_B$ + $\sigma$

NOTE 1:  $\rho_A = \rho_B = 0$  dB means no RS boosting.

NOTE 2: MBSFN RS and OCNG are not defined downlink physical channels in [4].

NOTE 3: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 4:  $\rho_A$ ,  $\rho_B$ ,  $\sigma$  and  $\delta$  are test specific.

NOTE 5: For TM 8, TM 9 and TM10  $\rho_A$ ,  $\rho_B$  are used for the purpose of the test set up only.

Parameter	Unit	Value	Note
Total transmitted power	dBm/15 kHz	Test specific	1. $I_{or}$ shall be kept
spectral density $I_{or}$			constant throughout all OFDM symbols
Cell-specific reference		Test specific	1. Applies for antenna
signal power ratio $E_{\scriptscriptstyle RS}$ / $I_{\scriptscriptstyle or}$			port p
Energy per resource element EPRE		Test specific	1. The complex-valued symbols $y^{(p)}(i)$ and
			$a_{k,l}^{(p)}$ defined in [4] shall
			conform to the given EPRE value. 2. For TM8, TM9, and TM10 the reference point for EPRE is before the precoder in Annex B.4.

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

## C.3.3 Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured

For the performance requirements and channel state information reporting when ABS is configured, the power allocation for the physical channels of the aggressor cell in non-ABS and ABS is listed in Table C.3.3-1.

## Table C.3.3-1: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell

Physical Channel	Parameters	Unit	EPRE Ratio		
Physical Channel			Non-ABS	ABS	
PBCH	PBCH_RA	dB	ρ _Α	Note 1	
FBCH	PBCH_RB	dB	ρ _B	Note 1	
PSS	PSS_RA	dB	ρΑ	Note 1	
SSS	SSS_RA	dB	ρΑ	Note 1	
PCFICH	PCFICH_RB	dB	ρ _B	Note 1	
PHICH	PHICH_RA	dB	ρ _Α	Note 1	
РПСП	PHICH_RB	dB	ρв	Note 1	
PDCCH	PDCCH_RA	dB	ρΑ	Note 1	
PDCCH	PDCCH_RB	dB	ρ _в	Note 1	
PDSCH	PDSCH_RA	dB	N/A	Note 1	
FDSCH	PDSCH_RB	dB	N/A	Note 1	
OCNG	OCNG_RA	dB	ρΑ	Note 1	
OCING	OCNG_RB	dB	ρв	Note 1	
Note 1: -∞ dB is allocated f	or this channel in this test				

AdBAdBAdBAdBAdBRBdBAdBAdB	Non-AB\$           ρA           ρB           ρA           ρA	ρA           ρB           ρA           ρA           ρA           Note 1           Note 1
A dB A dB A dB RB dB	ρ _B ρ _A ρ _A ρ _B ρ _B	ρ _B ρ _A ρ _A Note 1           Note 1
A dB A dB RB dB	ρA           ρA           ρA           ρA           ρA           ρA           ρA	ρ _A ρ _A Note 1 Note 1
A dB RB dB	ρ _Α ρ _Α	PA Note 1 Note 1
RB dB	ρ _Β ρ _Α	Note 1 Note 1
	ρΑ	Note 1
RA dB	- 73	
RB dB	ρ _B	Note 1
RA dB	ρΑ	Note 1
RB dB	ρ _Β	Note 1
RA dB	N/A	Note 1
RB dB	N/A	Note 1
	ρΑ	Note 1
KA OB		Note 1

Table C.3.3-2: Downlink physical channels transmitted in aggressor cell when ABS is configured in
this cell when the CRS assistance information is provided

## C.3.4 Power Allocation for Measurement of Performance Requirements when Quasi Co-location Type B: same Cell ID

For the performance requirements related to quasi-colocation type B behaviour when transmission points share the same Cell ID, the power allocation for the physical channels of the serving cell is listed in table C.3.4-1 and the power allocation for the physical channels of the cell transmitting PDSCH is listed in table C.3-4-2

Physical Channel	EPRE Ratio
PBCH	$PBCH_RA = \rho_A + \sigma$
	PBCH_RB = $\rho_B$ + $\sigma$
PSS	PSS_RA = 0 (Note 2)
SSS	$SSS_RA = 0$ (Note 2)
PDSCH	PDSCH_RA = $\rho_A$
	PDSCH_RB = $\rho_B$
PCFICH	PCFICH_RB = $\rho_B$ + $\sigma$
PDCCH	PDCCH_RA = $\rho_A$ + $\sigma$
	PDCCH_RB = $\rho_B + \sigma$

Table C.3.4-1: Downlink physical channels transmitted in the serving cell (TP1)

NOTE 1:  $\rho_A = \rho_B = 0$  dB means no RS boosting.

NOTE 2: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 3:  $\rho_A$ ,  $\rho_B$  and  $\sigma$  are test specific.

#### Table C.3.4-2: Downlink physical channels for the transmission point transmitting PDSCH (TP2)

Physical Channel	Value
PDSCH	Test Specific

## Annex D (normative): Characteristics of the interfering signal

## D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

## D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

	Channel bandwidth					
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
<b>BW</b> Interferer	1.4 MHz	3 MHz	5 MHz	5 MHz	5 MHz	5 MHz
RB	6	15	25	25	25	25

### Table D.2-1: Description of modulated E-UTRA interferer

## Annex E (normative): Environmental conditions

#### E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

#### E.2 Environmental

The requirements in this clause apply to all types of UE(s).

#### E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table E.2.1-1

+15°C to +35°C	for normal conditions (with relative humidity of 25 % to 75 %)
-10 [°] C to +55 [°] C	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

#### E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0,9 * nominal	1,1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1,3 * nominal	1,1 * nominal
Non regulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

#### E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

Frequency	ASD (Acceleration Spectral Density) random vibration
5 Hz to 20 Hz	0,96 m ² /s ³
20 Hz to 500 Hz	0,96 m ² /s ³ at 20 Hz, thereafter –3 dB/Octave

#### Table E.2.3-1

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.

#### Annex F (normative): Transmit modulation

#### F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

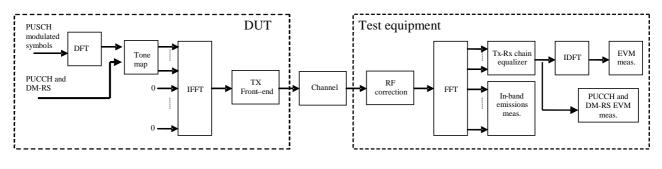



Figure F.1-1: EVM measurement points

## F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}}$$

where

 $T_m$  is a set of  $|T_m|$  modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 $P_0$  is the average power of the ideal signal. For normalized modulation symbols  $P_0$  is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

#### F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{max(f_{\min}, f_l + 12 \cdot \Delta_{RB} + \Delta f) \\ min(f_{\max}, f_l + 12 \cdot \Delta_{RB} + \Delta f) \\ min(f_{\max}, f_h + 12 \cdot \Delta_{RB} + \Delta f) \\ \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{f_h + (12 \cdot \Delta_{RB} - 11) + \Delta f \\ f_h + (12 \cdot \Delta_{RB} - 11) + \Delta f}} |Y(t, f)|^2, \Delta_{RB} > 0 \end{cases}$$

where

 $T_s$  is a set of  $|T_s|$  SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 $\Delta_{RB}$  is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.  $\Delta_{RB} = 1$  or  $\Delta_{RB} = -1$  for the first adjacent RB),

 $f_{\min}$  (resp.  $f_{\max}$ ) is the lower (resp. upper) edge of the UL system BW,

 $f_l$  and  $f_h$  are the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_s| \cdot N_{RB}} \sum_{t \in T_s} \sum_{f_l}^{f_l + (12 \cdot N_{RB} - 1)\Delta f} |Y(t, f)|^2}$$

where

 $N_{RB}$  is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to  $\Delta \tilde{t} = \Delta \tilde{c}$ , where sample time offsets  $\Delta \tilde{t}$  and  $\Delta \tilde{c}$  are defined in subclause F.4.

# F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The PUSCH data or PRACH signal under test is modified and, in the case of PUSCH data signal, decoded according to::

$$Z'(t,f) = IDFT\left\{\frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{j}v}\right\}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}}\right\}$$

where

z(v) is the time domain samples of the signal under test.

The PUCCH or PUSCH demodulation reference signal or PUCCH data signal under test is equalised and, in the case of PUCCH data signal decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}} e^{j2\pi j\Delta \tilde{t}}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$  is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \tilde{f}$  is the RF frequency offset.

 $\tilde{\varphi}(t, f)$  is the phase response of the TX chain.

 $\tilde{a}(t, f)$  is the amplitude response of the TX chain.

In the following  $\Delta \tilde{c}$  represents the middle sample of the EVM window of length W (defined in the next subsections) or the last sample of the first window half if W is even.

The EVM analyser shall

- > detect the start of each slot and estimate  $\Delta \tilde{t}$  and  $\Delta \tilde{f}$ ,
- > determine  $\Delta \tilde{c}$  so that the EVM window of length W is centred
  - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of 30.72MHz was assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
  - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.
  - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to  $\Delta \tilde{c}$  is corrected from the signal under test. The EVM analyser shall then

> correct the RF frequency offset  $\Delta \tilde{f}$  for each time slot, and

> apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The IQ origin offset shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative IQ origin offset power (relative carrier leakage power) also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients  $\tilde{a}(t, f)$  and  $\tilde{\varphi}(t, f)$  used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients  $\tilde{a}(t)$  and  $\tilde{\varphi}(t)$  used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e.  $\tilde{a}(t, f) = \tilde{a}(t)$  and  $\tilde{\varphi}(t, f) = \tilde{\varphi}(t)$ . The TX chain coefficient are chosen independently for each preamble transmission and for each  $\Delta \tilde{t}$ .

At this stage estimates of  $\Delta \tilde{f}$ ,  $\tilde{a}(t, f)$ ,  $\tilde{\varphi}(t, f)$  and  $\Delta \tilde{c}$  are available.  $\Delta \tilde{t}$  is one of the extremities of the window W, i.e.  $\Delta \tilde{t}$  can be  $\Delta \tilde{c} + \alpha - \left|\frac{W}{2}\right|$  or  $\Delta \tilde{c} + \left|\frac{W}{2}\right|$ , where  $\alpha = 0$  if W is odd and  $\alpha = 1$  if W is even. The EVM

analyser shall then

- > calculate EVM₁ with  $\Delta \tilde{t}$  set to  $\Delta \tilde{c} + \alpha \left\lfloor \frac{W}{2} \right\rfloor$ ,
- > calculate EVM_h with  $\Delta \tilde{t}$  set to  $\Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$ .

#### F.5 Window length

#### F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of  $\Delta \tilde{t}$ , which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the  $\Delta \tilde{t}$  range within which the error vector is close to its minimum.

#### F.5.2 Window length

The window length W affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

#### F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

Channel Bandwidth MHz	Cyclic prefix length ¹ N _{cp} for symbol 0	Cyclic prefix length ¹ $N_{cp}$ for symbols 1 to 6	Nominal FFT size	Cyclic prefix for symbols 1 to 6 in FFT samples	EVM window length <i>W</i> in FFT samples	Ratio of <i>W</i> to CP for symbols 1 to 6 ²
1.4			128	9	5	55.6
3			256	18	12	66.7
5	160	144	512	36	32	88.9
10	100	144	1024	72	66	91.7
15			1536	108	102	94.4
20			2048	144	136	94.4
Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.						
Note 2: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.						

Table F.5.3-1 EVM window length for normal CP

#### F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

Table F.5.4-1 EVM window length for extended CP

Channel Bandwidth MHz	Cyclic prefix length $N_{cp}$	Nominal FFT size	Cyclic prefix in FFT samples	EVM window length <i>W</i> in FFT samples	Ratio of W to CP ²
1.4		128	32	28	87.5
3		256	64	58	90.6
5	512	512	128	124	96.9
10	512	1024	256	250	97.4
15		1536	384	374	97.4
20		2048	512	504	98.4
Note 1:The unit is number of samples, sampling rate of 30.72MHz is assumed.Note 2:These percentages are informative					

#### F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats 0-4.

Table F.5.5-1 EVM window length for PRACH
-------------------------------------------

Preamble format	$\begin{array}{c} \textbf{Cyclic} \\ \textbf{prefix} \\ \textbf{length}^1 \ N_{cp} \end{array}$	Nominal FFT size ²	EVM window length <i>W</i> in FFT samples	Ratio of <i>W</i> to CP*		
0	3168	24576	3072	96.7%		
1	1 21024		20928	99.5%		
2	2 6240		6144	98.5%		
3	3 21024		20928	99.5%		
4	4 448		432	96.4%		
	Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed					
	Note 2: The use of other FFT sizes is possible as long as appropriate scaling of the window length is applied					
Note 3: T	hese percentage	es are informat	ive			

## F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for 20 slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus  $\overline{\text{EVM}}_1$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_1$  in the expressions above and  $\overline{\text{EVM}}_h$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_h$ .

Thus we get:

$$EVM = \max(EVM_1, EVM_h)$$

The calculation of the EVM for the demodulation reference signal,  $EVM_{DMRS}$ , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set  $T_m$  defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic  $EVM_{DMRS}$  measurements are first averaged over 20 slots in the time domain to obtain an intermediate average  $\overline{EVM}_{DMRS}$ .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS,i}^2}$$

In the determination of each  $EVM_{DMRS,i}$ , the timing is set to  $\Delta \tilde{t} = \Delta \tilde{t}_i$  if  $\overline{EVM}_1 > \overline{EVM}_h$ , and it is set to  $\Delta \tilde{t} = \Delta \tilde{t}_i$  otherwise, where  $\overline{EVM}_1$  and  $\overline{EVM}_h$  are the general average EVM values calculated in the same 20 slots over which the intermediate average  $\overline{EVM}_{DMRS}$  is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM DMRS,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^2}$$

The PRACH EVM,  $EVM_{PRACH}$ , is averaged over two preamble sequence measurements for preamble formats 0, 1, 2, 3, and it is averaged over 10 preamble sequence measurements for preamble format 4.

The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

Thus  $\overline{\text{EVM}}_{\text{PRACH,1}}$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_l$  and  $\overline{\text{EVM}}_{\text{PRACH,h}}$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_h$ .

Thus we get:

 $EVM_{PRACH} = \max(\overline{EVM}_{PRACH,1}, \overline{EVM}_{PRACH,h})$ 

# F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

# Annex G (informative): Reference sensitivity level in lower SNR

This annex contains information on typical receiver sensitivity when HARQ transmission is enabled allowing operation in lower SNR regions (HARQ is disabled in conformance testing), thus representing the configuration normally used in live network operation under noise-limited conditions.

#### G.1 General

The reference sensitivity power level  $P_{SENS}$  with HARQ retransmission enabled (operation in lower SNR) is the minimum mean power applied to both the UE antenna ports at which the residual BLER after HARQ shall meet the requirements for the specified reference measurement channel. The residual BLER after HARQ transmission is defined as follows:

$$BLER_{residual} = 1 - \frac{A}{R}$$

A: Number of correctly decoded MAC PDUs

B: Number of transmitted MAC PDUs (Retransmitted MAC PDUs are not counted)

# G.2 Typical receiver sensitivity performance (QPSK)

The residual BLER after HARQ shall be lower than 1% for the reference measurement channels as specified in Annexes G.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table G.2-1 and Table G.2-2

		Ch	annel bar	ndwidth			
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
1				[-102]			FDD
2				TBD			FDD
3				TBD			FDD
4				TBD			FDD
5				TBD			FDD
6				TBD			FDD
7				TBD			FDD
8				TBD			FDD
9				TBD			FDD
10				TBD			FDD
11				TBD			FDD
12				TBD			FDD
13				TBD			FDD
14				TBD			FDD
				100			100
17				TBD			FDD
18				TBD			FDD
19				TBD			FDD
20				TBD			FDD
20				TBD			FDD
22				TBD			FDD
23				TBD			FDD
26				TBD			FDD
20				TBD			FDD
28				TBD			FDD
				100			100
 33				[-102]			TDD
34				[-102]			TDD
35				[-102]			TDD
36				[-102]			TDD
30				[-102]			TDD
37			}	[-102]			TDD
38							TDD
				[-102]			
40				[-102]			TDD
42				[-102]			TDD
43				[-102]			TDD
44			to Power	[-102]	in clause f	2.5	TDD
Note 2: F	The transmitter a Reference meas OP.1 FDD/TDD	surement cl as describe	hannel is ( ed in Anne	G.3 with on ex A.5.1.1//	e sided dy	namic OCN	IG Pattern
Note 4: F	The signal powe For the UE whic evel is FFS.	er is specifie h supports	ed per por both Band	t d 3 and Bai	nd 9 the ret	ference ser	nsitivity
Note 5: F	For the UE whic evel is FFS.	h supports	both Band	11 and Ba	and 21 the	reference s	sensitivity

Table G.2-1: Reference	sensitivity QPSK P _{SENS}
------------------------	------------------------------------

Table G.2-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement in lower SNR must be met.

	E-UTRA Band / Channel bandwidth / NRB / Duplex mode						
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1				[6] ¹			FDD
2				[6] ¹			FDD
3				[6] ¹			FDD
4				[6] ¹			FDD
5				[6] ¹			FDD
6				[6] ¹			FDD
7				[6] ¹			FDD
8				[6] ¹			FDD
9				[6] ¹			FDD
10				[6] ¹			FDD
11				[6] ¹			FDD
12				[6] ¹			FDD
13				[6] ¹			FDD
14				[6] ¹			FDD
17				[6] ¹			FDD
18				[6] ¹			FDD
19				[6] ¹			FDD
20				[6] ¹			FDD
22				[6] ¹			FDD
21				[6] ¹			FDD
23				[6] ¹			FDD
26				[6] ¹			FDD
27				[6] ¹			FDD
28				[6] ¹			FDD
				[-]			
33				50			TDD
34				50			TDD
35				50			TDD
36				50			TDD
37				50			TDD
38				50			TDD
39				50			TDD
40				50			TDD
40				50			TDD
42				50			TDD
43				50			TDD
	L The UL resc		ks shall h		s close as	nossihla to	
Note 2:	downlink op configuration For the UE v uplink config	erating ban for the c which sup guration fo	and but co hannel ba ports both or reference	nfined with andwidth (T a Band 11 a ce sensitivit	in the trans able 5.6-1) and Band 2 ty is FFS.	smission ba ). 21 the minir	andwidth num
Note 3: For Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RBstart _11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RBstart _16					l in the cas		

 Table G.2-2: Minimum uplink configuration for reference sensitivity

Unless given by Table G.2-3, the minimum requirements specified in Tables G.2-1 and G.2-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

E-UTRA Band	Network Signalling value
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09
23	NS_03
35	NS_03
36	NS_03

Table G.2-3: Network Signalling	Value for reference sensitivity

# G.3 Reference measurement channel for REFSENSE in lower SNR

Tables G.3-1 and G.3-2 are applicable for Annex G.2 (Reference sensitivity level in lower SNR).

Table G.3-1 Fixed Reference Channel for Receiver Requ	uirements (FDD)
-------------------------------------------------------	-----------------

Parameter	Unit	Value
Channel bandwidth	MHz	10
Allocated resource blocks		50
Subcarriers per resource block		12
Allocated subframes per Radio Frame		10
Modulation		QPSK
Target Coding Rate		1/3
Number of HARQ Processes	Processes	8
Maximum number of HARQ transmissions		[4]
Information Bit Payload per Sub-Frame		
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	4392
Transport block CRC	Bits	24
Number of Code Blocks per Sub-Frame		
(Note 4)		
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13800
For Sub-Frame 5	Bits	N/A
For Sub-Frame 0	Bits	12960
Max. Throughput averaged over 1 frame	kbps	3952.
		8
UE Category		1-8
		/IHz and 10MHz channel BW. 3 symbols allocated to
PDCCH for 5 MHz and 3 MHz. 4		
Note 2: Reference signal, Synchronization	n signals and F	BCH allocated as per TS 36.211 [4]
		tional CRC sequence of $L = 24$ Bits is attached to
each Code Block (otherwise $L = 0$		
Note 4: Redundancy version coding sequ	ence is {0, 1, 2	, 3} for QPSK.

Parameter	Unit	Va	alue		
Channel Bandwidth	MHz		10		
Allocated resource blocks			50		
Uplink-Downlink Configuration (Note 5)			1		
Allocated subframes per Radio Frame			4+2		
(D+S)					
Number of HARQ Processes	Processes		7		
Maximum number of HARQ transmission			[4]		
Modulation			QPSK		
Target coding rate			1/3		
Information Bit Payload per Sub-Frame	Bits				
For Sub-Frame 4, 9			4392		
For Sub-Frame 1, 6			3240		
For Sub-Frame 5			N/A		
For Sub-Frame 0			4392		
Transport block CRC	Bits		24		
Number of Code Blocks per Sub-Frame					
(Note 5)					
For Sub-Frame 4, 9			1		
For Sub-Frame 1, 6			1		
For Sub-Frame 5			N/A		
For Sub-Frame 0			1		
Binary Channel Bits Per Sub-Frame	Bits				
For Sub-Frame 4, 9			13800		
For Sub-Frame 1, 6			11256		
For Sub-Frame 5			N/A		
For Sub-Frame 0			13104		
Max. Throughput averaged over 1 frame	kbps		1965.		
			6		
UE Category			1-5		
Note 1: For normal subframes(0,4,5,9), 2 channel BW; 3 symbols allocated for 1.4 MHz. For special subframe	to PDCCH for	5 MHz and 3 MHz; 4 sym	bols allocated	to PDCCH	
Note 2: For 1.4MHz, no data shall be sch insufficient PDCCH performance					
Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]					
Note 4: If more than one Code Block is pr each Code Block (otherwise L = 0	resent, an addi			ttached to	
Note 5: As per Table 4.2-2 in TS 36.211 [	4]				
Note 6: Redundancy version coding sequ	ence is {0, 1, 2	2, 3} for QPSK.			

#### Table G.3-2 Fixed Reference Channel for Receiver Requirements (TDD)

# Annex H (normative): Modified MPR behavior

#### H.1 Indication of modified MPR behavior

This annex contains the definitions of the bits in the field *modifiedMPRbehavior* indicated in the IE UE Radio Access Capability [7] by a UE supporting an MPR or A-MPR modified in a later release of this specification.

Index of field (bit number)	<b>Definition</b> (description of the supported functionality if indicator	Notes
	set to one)	
0 (leftmost bit)	- The MPR for intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation specified in Clause 6.2.3A in version 12.5.0 of this specification	- This bit can be set to 1 by a UE supporting intra-band contiguous CA bandwidth class C

Table H.1-1: Definitions of the bits in the field modifiedMPRbehavior

# Annex H (informative): Change history

#### Table H-1: Change History

11-2007         R4445         R4-7206         TS36.101V0.1.0 approved by RAN4         -           122007         R493         RP-080123         3         TS36.101 - Combined updates of E-UTRA LE requirements         8.0.0         8.0.0           052008         RP441         RP-080325         4         TS36.101 - Combined updates of E-UTRA LE requirements         8.1.0         8.2.0           052008         RP441         RP-080638         5r1         bandwildfhs         62.0         8.3.0           09-2008         RP441         RP-080638         10         CR for darification of additional spurious emission requirement         8.2.0         8.3.0           09-2008         RP441         RP-080638         15         Correction of In-band Blocking Requirement         8.2.0         8.3.0           09-2008         RP441         RP-080638         19r1         TS36.101: CR for section 6: NS_06         8.2.0         8.3.0           09-2008         RP441         RP-080638         21r1         TS36.101: CR for section 6: NL and blacking neguirement         8.2.0         8.3.0           09-2008         RP441         RP-080638         21r1         TS36.101: CR for section 6: NL and 17.8         8.2.0         8.3.0           09-2008         RP441         RP-080731         32.3	Date	TSG#	TSG Doc.	CR	Subject	Old	New
13-2008         RP#39         RP-409123         3         T\$36.101 - Combined updates of E-UTRA UE requirements         8.1.0         8.2.0           05-2008         RP#44         RP-080325         4         T\$36.101 - Combined updates of E-UTRA UE requirements         8.2.0         8.3.0           09-2008         RP#44         RP-080638         fr1         Transmitter intermodulation requirements         8.2.0         8.3.0           09-2008         RP#41         RP-080638         15         Connection of In-band Blocking Requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080638         1911         T\$36.101: CR for section 6: NS, 00         8.2.0         8.3.0           09-2008         RP#41         RP-080638         1911         T\$36.101: CR for section 7: X modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         2111         T\$36.101: CR for section 7: X modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         211         T\$36.101: CR for section 7: X modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         211         T\$36.101: CR for section 7: Lend 13 K sensitivity         8.2.0         8.3.0           09-2008 <t< td=""><td>11-2007</td><td>R4#45</td><td>R4-72206</td><td></td><td>TS36.101V0.1.0 approved by RAN4</td><td>-</td><td></td></t<>	11-2007	R4#45	R4-72206		TS36.101V0.1.0 approved by RAN4	-	
Op 2008         RP#40         RP-080325         4         TS36.101 - Combined updates of E-UTRA UE requirements         8.1.0         8.2.0           09-2008         RP#41         RP-080638         5r1         Addition of Ref Sens figures for 1.4MHz and 3MHz Channel         8.2.0         8.3.0           09-2008         RP#41         RP-080638         10         CR for clarification of additional spurious emission requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080638         115         Correction of In-band Blocking Requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080638         1911         TS36.101: CR for section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         2111         TS36.101: CR for section 7: Rond 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         224         TS36.101: CR for section 7: Rond 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-0806731         30         Correction of VLE for Section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Correction of VLE for Section 6: Tx modulation         8.2.0 <td< td=""><td>12-2007</td><td>RP#38</td><td>RP-070979</td><td></td><td>Approved version at TSG RAN #38</td><td>1.0.0</td><td>8.0.0</td></td<>	12-2007	RP#38	RP-070979		Approved version at TSG RAN #38	1.0.0	8.0.0
09-2008         RP#41         RP-080638         5r1         Addition of Ref Sens figures for 1.4MHz and 3MHz Channel         8.2.0         8.3.0           09-2008         RP#41         RP-080633         10         CR for clanification of additional spurious emission requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080633         15         Correction of In-band Blocking Requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080638         19r1         TS36.101: CR for section 6: Nr. modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         20r1         TS36.101: CR for UE OFF power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         21r1         TS36.101: CR for UE OFF power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         21r1         TS36.101: CR for section 7: Left 15K sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         29         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080731         372         UE EVM Windwing         8.2.0         8.3.0           09-2008         RP#41         RP-080731	03-2008	RP#39	RP-080123	3	TS36.101 - Combined updates of E-UTRA UE requirements	8.0.0	8.1.0
User-Solution         Construction	05-2008	RP#40	RP-080325	4		8.1.0	8.2.0
Ope2008         RP#41         RP-080633         10         CR for clarification of additional spurious amission requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080633         15         Correction of In-band Blocking Requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080638         19r1         TS36.101: CR for section 6: NS.06         8.2.0         8.3.0           09-2008         RP#41         RP-080638         2011         TS36.101: CR for JEC for Section 6: TX modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         211         TS36.101: CR for JEC for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         23         Absolute ACLR limit         6.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Cerroschord PA, PB definition to align with RAM1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         317         Correction of PA, PB definition to align with RAM1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         317         Correction of PA, PB definition to align with RAM1 specification         8.2.0         8	09-2008	RP#41	RP-080638	5r1			
Op         RP#41         RP-080638         15         Correction of In-band Blocking Regurement         8.2.0         8.3.0           09-2008         RP#41         RP-080638         19r1         TS36.101: CR for section 6: Ns.06         8.2.0         8.3.0           09-2008         RP#41         RP-080638         19r1         TS36.101: CR for section 6: Ns.modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         21r1         TS36.101: CR for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         29         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080731         292         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Removal 0[1] for UE Rel Sen's figures         8.2.0         8.3.0           09-2008         RP#41         RP-080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         441         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52/1<	09-2008	RP#41	RP-080638	7r1	Transmitter intermodulation requirements	8.2.0	8.3.0
09-2008         RP#41         RP-080638         18r1         T336.101: CR for section 6: NS_06         8.2.0         8.3.0           09-2008         RP#41         RP-080638         2011         T358.010: CR for section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         2011         T358.010: CR for UE Iminium power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         2411         T358.010: CR for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         26         UE EVM Windowing         Band 12 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080731         232         T358.0101: CR for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Removal of [] for UE Ref Sens figures         8.2.0         8.3.0           09-2008         RP#41         RP-080731         31         Correction of PA.PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of zence for LCS requirement         8.2.0         8.3.0           09-2008 </td <td>09-2008</td> <td>RP#41</td> <td>RP-080638</td> <td>10</td> <td>CR for clarification of additional spurious emission requirement</td> <td>8.2.0</td> <td></td>	09-2008	RP#41	RP-080638	10	CR for clarification of additional spurious emission requirement	8.2.0	
199-2008         RP#41         RP-080638         19r1         TS36.101: CR for section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080638         20r1         TS36.101: CR for UE OFF power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         24r1         TS36.101: CR for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         29         Absolute ACIR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080731         23r2         TS36.101: CR for section 6: UE to UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         31         Correction of PA. PB definition to align with RAHT specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44/d         Definition for specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52r1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731 <td>09-2008</td> <td>RP#41</td> <td>RP-080638</td> <td>15</td> <td></td> <td></td> <td></td>	09-2008	RP#41	RP-080638	15			
09-2008         RP#41         RP-080638         20r1         TS36.101: CR for UE ofF power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         21r1         TS36.101: CR for UE OFF power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         24         UE EVM Windowing         8.2.0         8.3.0           09-2008         RP#41         RP-080638         24         UE EVM Windowing         8.2.0         8.3.0           09-2008         RP#41         RP-080638         24         UE EVM Windowing         8.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Removal off    for UE Ref Sens figures         8.2.0         8.3.0           09-2008         RP#41         RP-080731         3772         UE Spurious emission band UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of spacified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         487         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         567         TS36.101 section 6r. Tx modulation         8.2.0         8.3.0	09-2008	RP#41	RP-080638	18r1	TS36.101: CR for section 6: NS_06	8.2.0	8.3.0
D9-2008         RP#41         RP-080638         21r1         TS36.101: CR for UE OFF power         8.2.0         8.3.0           09-2008         RP#41         RP-080638         24r1         TS36.101: CR for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP#41         RP-080638         29         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080638         29         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Removal of [] for UE Ref Sens figures         8.2.0         8.3.0           09-2008         RP#41         RP-080731         31         Correction of PA. PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         50         Alignment of the UE ACS requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080731         51         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP.080731         55         TS36.101	09-2008	RP#41	RP-080638	19r1	TS36.101: CR for section 6: Tx modulation	8.2.0	8.3.0
09-2008         RP441         RP-080638         24r1         TS36.101: CR for section 7: Band 13 Rx sensitivity         8.2.0         8.3.0           09-2008         RP441         RP-080638         26         UE EVM Windowing         8.2.0         8.3.0           09-2008         RP441         RP-080638         23         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP441         RP-080731         30         Removal of [1 for UE Ref Sens figures         8.2.0         8.3.0           09-2008         RP441         RP-080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP441         RP-080731         441         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP441         RP-080731         521         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP441         RP-080731         521         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP441         RP-080731         521         Ts modulation         8.2.0         8.3.0           09-2008         RP441         RP-080732         612         DL FRC definition for UE woroutr			RP-080638		TS36.101: CR for UE minimum power		
09-2008         RP#41         RP-080638         26         UE EVM Windowing         8.2.0         8.3.0           09-2008         RP#41         RP-080638         29         Absolute ACLR limit         8.2.0         8.3.0           09-2008         RP#41         RP-080731         232         TS36.101: CR for section 6: UE to UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         50         Alignment of the UE ACS requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080731         521         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         551         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated desc	09-2008	RP#41	RP-080638	21r1	TS36.101: CR for UE OFF power	8.2.0	8.3.0
09-2008         RP#41         RP-080638         29         Absolute ACLR limit         8 2.0         8.3.0           09-2008         RP441         RP.080731         2342         TS36.101: CR for section 6: UE to UE co-existence         8.2.0         8.3.0           09-2008         RP441         RP.080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP441         RP-080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP441         RP-080731         443         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP441         RP.080731         521         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP441         RP.080731         521         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP441         RP.080731         521         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP441         RP.080732         61         S.5.0         8.3.0         8.2.0         8.3.0           09-2008         RP441         RP.080732         6	09-2008	RP#41	RP-080638	24r1	TS36.101: CR for section 7: Band 13 Rx sensitivity	8.2.0	
09-2008         RP#41         RP-080731         23/2         TS36.101: CR for section 6: UE to UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         30         Removal of [] for UE Ref Sens figures         8.2.0         8.3.0           09-2008         RP#41         RP-080731         37/2         UE Spurious emission band UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         54         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52/1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55/1         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification	09-2008	RP#41	RP-080638		UE EVM Windowing		
09-2006         RP#41         RP-080731         30         Removal of [] for UE Ref Sens figures         8.2.0         8.3.0           09-2008         RP#41         RP-080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         443         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52/1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         54/1         Absolute power tolerance for LTE UE power control         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6/2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update description of definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53	09-2008	RP#41	RP-080638	29	Absolute ACLR limit	8.2.0	8.3.0
Op-2008         RP#41         RP-080731         31         Correction of PA, PB definition to align with RAN1 specification         8.2.0         8.3.0           09-2008         RP#41         RP-080731         37/2         UE Spurious emission band UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         48r3         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         50         Alignment of the UE ACS requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52r1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         54r1         Absolute power tolerance for LTE UE power control         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6f2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         4f2         Definition of UE transmission gap         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clafification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-0807	09-2008	RP#41	RP-080731	23r2	TS36.101: CR for section 6: UE to UE co-existence	8.2.0	
09-2008         RP#41         RP-080731         37r2         UE Spurious emission band UE co-existence         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         44r3         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52r1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55r1         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6f2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definit			RP-080731			8.2.0	
Op-2008         RP#41         RP-080731         44         Definition of specified bandwidths         8.2.0         8.3.0           09-2008         RP#41         RP-080731         48r3         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         50         Alignment of the UE ACS requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52r1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55         TS36.101 section 6r TLF UE power control         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6f2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         49         Definition of UE transmission gap         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           12-2008         RP#41         RP-080743         56         Addition	09-2008			31	Correction of PA, PB definition to align with RAN1 specification	8.2.0	
09-2008         RP#41         RP-080731         48r3         Addition of Band 17         8.2.0         8.3.0           09-2008         RP#41         RP-080731         50         Alignment of the UE ACS requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080731         5211         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6r2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definition         8.2.0         8.3.0           12-2008         RP#42         RP-080909         60         UE Maximum output power	09-2008	RP#41	RP-080731	37r2			
09-2008         RP#41         RP-080731         50         Alignment of the UE ACS requirement         8.2.0         8.3.0           09-2008         RP#41         RP-080731         52r1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6r2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080733         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60 <td>09-2008</td> <td>RP#41</td> <td>RP-080731</td> <td>44</td> <td>Definition of specified bandwidths</td> <td>8.2.0</td> <td>8.3.0</td>	09-2008	RP#41	RP-080731	44	Definition of specified bandwidths	8.2.0	8.3.0
09-2008         RP#41         RP-080731         52r1         Frequency range for Band 12         8.2.0         8.3.0           09-2008         RP#41         RP-080731         54r1         Absolute power tolerance for LTE UE power control         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6r2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60	09-2008	RP#41	RP-080731	48r3	Addition of Band 17		
Op-2008         RP#41         RP-080731         54r1         Absolute power tolerance for LTE UE power control         8.2.0         8.3.0           09-2008         RP#41         RP-080731         55         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6r2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           12-2008         RP#41         RP-080733         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-0809090 <td></td> <td></td> <td>RP-080731</td> <td></td> <td>Alignment of the UE ACS requirement</td> <td></td> <td></td>			RP-080731		Alignment of the UE ACS requirement		
09-2008         RP#41         RP-080731         55         TS36.101 section 6: Tx modulation         8.2.0         8.3.0           09-2008         RP#41         RP-080732         6r2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080733         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           09-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         72			RP-080731		Frequency range for Band 12	8.2.0	
09-2008         RP#41         RP-080732         6r2         DL FRC definition for UE Receiver tests         8.2.0         8.3.0           09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080732         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         62         Clarification for VE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909 <td>09-2008</td> <td>RP#41</td> <td></td> <td>54r1</td> <td></td> <td>8.2.0</td> <td></td>	09-2008	RP#41		54r1		8.2.0	
09-2008         RP#41         RP-080732         46         Additional UE demodulation test cases         8.2.0         8.3.0           09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         49         Definition of UE transmission gap         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080743         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12-2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         72	09-2008	RP#41	RP-080731	55	TS36.101 section 6: Tx modulation		
09-2008         RP#41         RP-080732         47         Updated descriptions of FRC         8.2.0         8.3.0           09-2008         RP#41         RP-080732         49         Definition of UE transmission gap         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080732         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           09-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         62         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from 36.803         8.4.0           12-2008         RP#42         RP-080909         75			RP-080732		DL FRC definition for UE Receiver tests		
09-2008         RP#41         RP-080732         49         Definition of UE transmission gap         8.2.0         8.3.0           09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080733         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080909         94r2         CR TX RX channel frequency separation         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12-2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12-2008         RP#42	09-2008	RP#41	RP-080732		Additional UE demodulation test cases		
09-2008         RP#41         RP-080732         51         Clarification on High Speed train model in 36.101         8.2.0         8.3.0           09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080743         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080908         94r2         CR TX RX channel frequency separation         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12-2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12-2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12-2008							
09-2008         RP#41         RP-080732         53         Update of symbol and definitions         8.2.0         8.3.0           09-2008         RP#41         RP-080743         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080908         94r2         CR TX RX channel frequency separation         8.3.0         8.4.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12-2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12-2008         RP#42			RP-080732				
09-2008         RP#41         RP-080743         56         Addition of MIMO (4x2) and (4x4) Correlation Matrices         8.2.0         8.3.0           12-2008         RP#42         RP-080908         94r2         CR TX RX channel frequency separation         8.3.0         8.4.0           12-2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12-2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12-2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12-2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12-2008         RP#42 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
12:2008         RP#42         RP-080908         94r2         CR TX RX channel frequency separation         8.3.0         8.4.0           12:2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12:2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12:2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803         8.3.0         8.4.0           12:2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12:2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12:2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12:2008         RP#42							
12:2008         RP#42         RP-080909         105r1         UE Maximum output power for Band 13         8.3.0         8.4.0           12:2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12:2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA         8.3.0         8.4.0           12:2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12:2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12:2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12:2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12:2008         RP#42 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
12:2008         RP#42         RP-080909         60         UL EVM equalizer definition         8.3.0         8.4.0           12:2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803         8.3.0         8.4.0           12:2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12:2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12:2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12:2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12:2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12:2008         RP#							
12:2008         RP#42         RP-080909         63         Correction of UE spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12:2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803         8.3.0         8.4.0           12:2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12:2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12:2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12:2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12:2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12:2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12:2008         RP							
12-2008         RP#42         RP-080909         66         Clarification for UE additional spurious emissions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12-2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12-2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12-2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12-2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008							
12-2008         RP#42         RP-080909         72         Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803         8.3.0         8.4.0           12-2008         RP#42         RP-080909         75         Removal of [] from Section 6 transmitter characteristcs         8.3.0         8.4.0           12-2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12-2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12-2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12-2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-08095							
12-2008       RP#42       RP-080909       72       1.6MHZ channel from 36.803       3.3.0       3.4.0         12-2008       RP#42       RP-080909       75       Removal of [] from Section 6 transmitter characteristcs       8.3.0       8.4.0         12-2008       RP#42       RP-080909       81       Clarification for PHS band protection       8.3.0       8.4.0         12-2008       RP#42       RP-080909       101       Alignement for the measurement interval for transmit signal quality       8.3.0       8.4.0         12-2008       RP#42       RP-080909       98r1       Maximum power       8.3.0       8.4.0         12-2008       RP#42       RP-080909       57r1       CR UE spectrum flatness       8.3.0       8.4.0         12-2008       RP#42       RP-080909       71r1       UE in-band emission       8.3.0       8.4.0         12-2008       RP#42       RP-080909       58r1       CR Number of TX exceptions       8.3.0       8.4.0         12-2008       RP#42       RP-080951       99r2       CR UE output power dynamic       8.3.0       8.4.0         12-2008       RP#42       RP-080951       79r1       LTE UE transmitter intermodulation       8.3.0       8.4.0         12-2008       RP#42	12-2008	RP#42	RP-080909	66		8.3.0	8.4.0
12-2008         RP#42         RP-080909         81         Clarification for PHS band protection         8.3.0         8.4.0           12-2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12-2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12-2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12-2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirement					1.6MHZ channel from 36.803		
12-2008         RP#42         RP-080909         101         Alignement for the measurement interval for transmit signal quality         8.3.0         8.4.0           12-2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12-2008         RP#42         RP-080909         98r1         Maximum power         8.3.0         8.4.0           12-2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12-2008         RP#42         RP-080909         71r1         UE in-band emission         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080910         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
12-2008       RP#42       RP-080909       101       quality       5.3.0       5.4.0         12-2008       RP#42       RP-080909       98r1       Maximum power       8.3.0       8.4.0         12-2008       RP#42       RP-080909       57r1       CR UE spectrum flatness       8.3.0       8.4.0         12-2008       RP#42       RP-080909       57r1       CR UE spectrum flatness       8.3.0       8.4.0         12-2008       RP#42       RP-080909       58r1       CR Number of TX exceptions       8.3.0       8.4.0         12-2008       RP#42       RP-080951       99r2       CR UE output power dynamic       8.3.0       8.4.0         12-2008       RP#42       RP-080951       79r1       LTE UE transmitter intermodulation       8.3.0       8.4.0         12-2008       RP#42       RP-080951       79r1       LTE UE transmitter intermodulation       8.3.0       8.4.0         12-2008       RP#42       RP-080910       91       Update of Clause 8       8.3.0       8.4.0         12-2008       RP#42       RP-080950       106r1       Structure of Clause 9 including CSI requirements for PUCCH mode 1-0       8.3.0       8.4.0         12-2008       RP#42       RP-080911       59 <td< td=""><td>12-2008</td><td>RP#42</td><td>RP-080909</td><td>81</td><td></td><td>8.3.0</td><td>8.4.0</td></td<>	12-2008	RP#42	RP-080909	81		8.3.0	8.4.0
12-2008         RP#42         RP-080909         57r1         CR UE spectrum flatness         8.3.0         8.4.0           12-2008         RP#42         RP-080909         71r1         UE in-band emission         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080910         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080911         59	12-2008	RP#42	RP-080909	101	quality		
12-2008         RP#42         RP-080909         71r1         UE in-band emission         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080950         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080911         59         CR UE ACS test frequency offset         8.3.0         8.4.0	12-2008	RP#42	RP-080909	98r1	Maximum power	8.3.0	8.4.0
12-2008         RP#42         RP-080909         58r1         CR Number of TX exceptions         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080910         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080911         59         CR UE ACS test frequency offset         8.3.0         8.4.0	12-2008	RP#42	RP-080909	57r1	CR UE spectrum flatness	8.3.0	8.4.0
12-2008         RP#42         RP-080951         99r2         CR UE output power dynamic         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080910         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080911         59         CR UE ACS test frequency offset         8.3.0         8.4.0		RP#42	RP-080909	71r1			
12-2008         RP#42         RP-080951         79r1         LTE UE transmitter intermodulation         8.3.0         8.4.0           12-2008         RP#42         RP-080910         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080911         59         CR UE ACS test frequency offset         8.3.0         8.4.0							
12-2008         RP#42         RP-080910         91         Update of Clause 8         8.3.0         8.4.0           12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080951         59         CR UE ACS test frequency offset         8.3.0         8.4.0							
12-2008         RP#42         RP-080950         106r1         Structure of Clause 9 including CSI requirements for PUCCH mode 1-0         8.3.0         8.4.0           12-2008         RP#42         RP-080911         59         CR UE ACS test frequency offset         8.3.0         8.4.0							
12-2008         RP#42         RP-080950         10611         mode 1-0         5.5.0         5.4.0           12-2008         RP#42         RP-080911         59         CR UE ACS test frequency offset         8.3.0         8.4.0	12-2008	RP#42	RP-080910	91		8.3.0	8.4.0
	12-2008	RP#42	RP-080950	106r1	mode 1-0		
12-2008 RP#42 RP-080911 65 Correction of spurious response parameters 8.3.0 8.4.0	12-2008	RP#42	RP-080911	59	CR UE ACS test frequency offset	8.3.0	8.4.0
	12-2008	RP#42	RP-080911	65	Correction of spurious response parameters	8.3.0	8.4.0
12-2008         RP#42         RP-080911         80         Removal of LTE UE narrowband intermodulation         8.3.0         8.4.0	12-2008	RP#42	RP-080911	80	Removal of LTE UE narrowband intermodulation	8.3.0	8.4.0

12-2008 12-2008	RP#42 RP#42	RP-080912 RP-080912	62 78	Alignement of TB size n Ref Meas channel for RX characteristics TDD Reference Measurement channel for RX characterisctics	8.3.0 8.3.0	8.4.0 8.4.0
12-2008	RP#42	RP-080912	73r1	Addition of 64QAM DL referenbce measurement channel	8.3.0	8.4.0
12-2008	RP#42	RP-080912	74r1	Addition of UL Reference Measurement Channels	8.3.0	8.4.0
12-2008	RP#42	RP-080912	104	Reference measurement channels for PDSCH performance requirements (TDD)	8.3.0	8.4.0
12-2008	RP#42	RP-080913	68	MIMO Correlation Matrix Corrections	8.3.0	8.4.0
12-2008	RP#42	RP-080915	67	Correction to the figure with the Transmission Bandwidth configuration	8.3.0	8.4.0
12-2008	RP#42	RP-080916	77	Modification to EARFCN	8.3.0	8.4.0
12-2008	RP#42	RP-080917	85r1	New Clause 5 outline Introduction of Bands 12 and 17 in 36.101	8.3.0 8.3.0	8.4.0 8.4.0
12-2008 12-2008	RP#42 RP#42	RP-080919 RP-080927	102 84r1	Clarification of HST propagation conditions	8.3.0	8.4.0 8.4.0
03-2009	RP#42	RP-090170	156r2	A-MPR table for NS 07	8.4.0	8.5.0
03-2009	RP#43	RP-090170	170	Corrections of references (References to tables and figures)	8.4.0	8.5.0
03-2009	RP#43	RP-090170	108	Removal of [] from Transmitter Intermodulation	8.4.0	8.5.0
03-2009	RP#43	RP-090170	155	E-UTRA ACLR for below 5 MHz bandwidths	8.4.0	8.5.0
03-2009	RP#43	RP-090170	116	Clarification of PHS band including the future plan	8.4.0	8.5.0
03-2009	RP#43	RP-090170	119	Spectrum emission mask for 1.4 MHz and 3 MHz bandwidhts	8.4.0	8.5.0
03-2009	RP#43	RP-090170	120	Removal of "Out-of-synchronization handling of output power" heading	8.4.0	8.5.0
03-2009	RP#43	RP-090170	126	UE uplink power control	8.4.0	8.5.0
03-2009	RP#43	RP-090170	128	Transmission BW Configuration	8.4.0	8.5.0
03-2009	RP#43 RP#43	RP-090170 RP-090170	130 132r2	Spectrum flatness PUCCH EVM	8.4.0 8.4.0	8.5.0 8.5.0
03-2009	RP#43 RP#43	RP-090170 RP-090170	13212	UL DM-RS EVM	8.4.0	8.5.0
03-2009	RP#43	RP-090170 RP-090170	134	Removal of ACLR2bis requirements	8.4.0	8.5.0
03-2009	RP#43	RP-090171	113	In-band blocking	8.4.0	8.5.0
03-2009	RP#43	RP-090171	127	In-band blocking and sensitivity requirement for band 17	8.4.0	8.5.0
03-2009	RP#43	RP-090171	137r1	Wide band intermodulation	8.4.0	8.5.0
03-2009	RP#43	RP-090171	141	Correction of reference sensitivity power level of Band 9	8.4.0	8.5.0
03-2009	RP#43	RP-090172	109	AWGN level for UE DL demodulation performance tests	8.4.0	8.5.0
03-2009	RP#43	RP-090172	124	Update of Clause 8: additional test cases	8.4.0	8.5.0
03-2009	RP#43	RP-090172	139r1	Performance requirement structure for TDD PDSCH	8.4.0	8.5.0
03-2009	RP#43	RP-090172	142r1	Performance requirements and reference measurement channels for TDD PDSCH demodulation with UE-specific reference symbols	8.4.0	8.5.0
03-2009	RP#43	RP-090172	145	Number of information bits in DwPTS	8.4.0	8.5.0
03-2009	RP#43	RP-090172	160r1	MBSFN-Unicast demodulation test case	8.4.0	8.5.0
03-2009	RP#43	RP-090172	163r1	MBSFN-Unicast demodulation test case for TDD	8.4.0	8.5.0
03-2009	RP#43	RP-090173	162	Clarification of EARFCN for 36.101	8.4.0	8.5.0
03-2009	RP#43	RP-090369	110	Correction to UL Reference Measurement Channel	8.4.0	8.5.0
03-2009	RP#43	RP-090369	114	Addition of MIMO (4x4, medium) Correlation Matrix	8.4.0	8.5.0
03-2009	RP#43	RP-090369	121	Correction of 36.101 DL RMC table notes	8.4.0	8.5.0
03-2009	RP#43	RP-090369	125	Update of Clause 9	8.4.0	8.5.0
03-2009	RP#43	RP-090369	138r1	Clarification on OCNG	8.4.0	8.5.0
03-2009	RP#43	RP-090369	161	CQI reference measurement channels	8.4.0	8.5.0
03-2009	RP#43	RP-090369	164	PUCCH 1-1 Static Test Case	8.4.0	8.5.0
03-2009	RP#43	RP-090369	111	Reference Measurement Channel for TDD	8.4.0	8.5.0
03-2009	RP#44			Editorial correction in Table 6.2.4-1	8.5.0	8.5.1
05-2009	RP#44	RP-090540	167	Boundary between E-UTRA fOOB and spurious emission domain for 1.4 MHz and 3 MHz bandwiths. (Technically Endorsed CR in R4-50bis - R4-091205)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	168	EARFCN correction for TDD DL bands. (Technically Endorsed CR in R4-50bis - R4-091206)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	169	Editorial correction to in-band blocking table. (Technically	8.5.1	8.6.0

				Endorsed CR in R4-50bis - R4-091238)		
05-2009	RP#44	RP-090540	171	CR PRACH EVM. (Technically Endorsed CR in R4-50bis - R4- 091308)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	172	CR EVM correction. (Technically Endorsed CR in R4-50bis - R4- 091309)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	177	CR power control accuracy. (Technically Endorsed CR in R4- 50bis - R4-091418)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	179	Correction of SRS requirements. (Technically Endorsed CR in R4-50bis - R4-091426)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	186	Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4-091512)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	187	Removal of [] from band 17 Refsens values and ACS offset	8.5.1	8.6.0
05-2009	RP#44	RP-090540	191	frequencies Completion of band17 requirements	8.5.1	8.6.0
05-2009	RP#44	RP-090540	192	Removal of 1.4 MHz and 3 MHz bandwidths from bands 13, 14	8.5.1	8.6.0
05-2009	RP#44	RP-090540	223	and 17. CR: 64 QAM EVM	8.5.1	8.6.0
05-2009	RP#44	RP-090540	201	CR In-band emissions	8.5.1	8.6.0
05-2009	RP#44	RP-090540	203	CR EVM exclusion period	8.5.1	8.6.0
05-2009	RP#44	RP-090540	204	CR In-band emissions timing	8.5.1	8.6.0
05-2009	RP#44	RP-090540	206	CR Minimum Rx exceptions	8.5.1	8.6.0
05-2009	RP#44	RP-090540	207	CR UL DM-RS EVM	8.5.1	8.6.0
05-2009	RP#44	RP-090540	218r1	A-MPR table for NS_07	8.5.1	8.6.0
05-2009	RP#44	RP-090540	205r1	CR In-band emissions in shortened subframes	8.5.1	8.6.0
05-2009	RP#44	RP-090540	200r1	CR PUCCH EVM	8.5.1	8.6.0
05-2009	RP#44	RP-090540	178r2	No additional emission mask indication. (Technically Endorsed CR in R4-50bis - R4-091421)	8.5.1	8.6.0
05-2009	RP#44	RP-090540	220r1	Spectrum emission requirements for band 13	8.5.1	8.6.0
05-2009	RP#44	RP-090540	197r2	CR on aggregate power tolerance	8.5.1	8.6.0
05-2009	RP#44	RP-090540	196r2	CR: Rx IP2 performance	8.5.1	8.6.0
05-2009	RP#44	RP-090541	198r1	Maximum output power relaxation	8.5.1	8.6.0
05-2009	RP#44	RP-090542	166	Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180)	8.5.1	8.6.0
05-2009	RP#44	RP-090542	175	Adding AWGN levels for some TDD DL performance requirements. (Technically Endorsed CR in R4-50bis - R4- 091406)	8.5.1	8.6.0
05-2009	RP#44	RP-090542	182	OCNG Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504)	8.5.1	8.6.0
05-2009	RP#44	RP-090542	170r1	Update of Clause 8: PHICH and PMI delay. (Technically Endorsed CR in R4-50bis - R4-091275)	8.5.1	8.6.0
05-2009	RP#44	RP-090543	183	Requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505)	8.5.1	8.6.0
05-2009	RP#44	RP-090543	199	CQI requirements under AWGN conditions	8.5.1	8.6.0
05-2009	RP#44	RP-090543	188r1	Adaptation of UL-RMC-s for supporting more UE categories	8.5.1	8.6.0
05-2009	RP#44	RP-090543	193r1	Correction of the LTE UE downlink reference measurement channels	8.5.1	8.6.0
05-2009	RP#44	RP-090543	184r1	Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506)	8.5.1	8.6.0
05-2009	RP#44	RP-090543	185r1	Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510)	8.5.1	8.6.0
05-2009	RP#44	RP-090543	221r1	Correction to DL RMC-s for Maximum input level for supporting more UE-Categories	8.5.1	8.6.0
05-2009	RP#44	RP-090543	216	Addition of 15 MHz and 20 MHz bandwidths into band 38	8.5.1	8.6.0
05-2009	RP#44	RP-090559	180	Introduction of Extended LTE800 requirements. (Technically Endorsed CR in R4-50bis - R4-091432)	8.6.0	9.0.0
09-2009	RP#45	RP-090826	239	A-MPR for Band 19	9.0.0	9.1.0
09-2009	RP#45	RP-090822	225	LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW	9.0.0	9.1.0
09-2009	RP#45	RP-090822	227	Harmonization of text for LTE Carrier leakage	9.0.0	9.1.0
09-2009	RP#45	RP-090822	229	Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths	9.0.0	9.1.0
09-2009	RP#45	RP-090822	236	Operating band edge relaxation of maximum output power for Band 18 and 19	9.0.0	9.1.0
09-2009	RP#45	RP-090822	238	Addition of 5MHz channel bandwidth for Band 40	9.0.0	9.1.0
09-2009	RP#45	RP-090822	245	Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17	9.0.0	9.1.0
09-2009	RP#45	RP-090877	261	Correction of LTE UE ACS test parameter	9.0.0	9.1.0
09-2009	RP#45	RP-090877	263R1	Correction of LTE UE ACLR test parameter	9.0.0	9.1.0
09-2009	RP#45	RP-090877	286	Uplink power and RB allocation for receiver tests	9.0.0	9.1.0
09-2009	RP#45	RP-090877	320	CR Sensitivity relaxation for small BW	9.0.0	9.1.0

09-2009	RP#45	RP-090877	324	Correction of Band 3 spurious emission band UE co-existence	9.0.0	9.1.0
09-2009	RP#45	RP-090877	249R1	CR Pcmax definition (working assumption)	9.0.0	9.1.0
09-2009	RP#45	RP-090877	330	Spectrum flatness clarification	9.0.0	9.1.0
09-2009	RP#45	RP-090877	332	Transmit power: removal of TC and modification of REFSENS note	9.0.0	9.1.0
09-2009	RP#45	RP-090877	282R1	Additional SRS relative power requirement and update of measurement definition	9.0.0	9.1.0
09-2009	RP#45	RP-090877	284R1	Power range applicable for relative tolerance	9.0.0	9.1.0
09-2009	RP#45	RP-090878	233	TDD UL/DL configurations for CQI reporting	9.0.0	9.1.0
09-2009	RP#45	RP-090878	235	Further clarification on CQI test configurations	9.0.0	9.1.0
09-2009	RP#45	RP-090878	243	Corrections to UL- and DL-RMC-s	9.0.0	9.1.0
09-2009	RP#45	RP-090878	247	Reference measurement channel for multiple PMI requirements	9.0.0	9.1.0
09-2009	RP#45	RP-090878	290	CQI reporting test for a scenario with frequency-selective interference	9.0.0	9.1.0
09-2009	RP#45	RP-090878	265R2	CQI reference measurement channels	9.0.0	9.1.0
09-2009	RP#45	RP-090878	321R1	CR RI Test Correction of parameters for demodulation performance	9.0.0	9.1.0
09-2009	RP#45	RP-090875	231	requirement	9.0.0	9.1.0
09-2009	RP#45	RP-090875	241R1	UE categories for performance tests and correction to RMC references	9.0.0	9.1.0
09-2009	RP#45	RP-090875	333	Clarification of Es definition in the demodulation requirement	9.0.0	9.1.0
09-2009	RP#45	RP-090875	326	Editorial corrections and updates to PHICH PBCH test cases.	9.0.0	9.1.0
09-2009	RP#45	RP-090875	259R3	Test case numbering in section 8 Performance tests Test case numbering in TDD PDSCH performance test	9.0.0	9.1.0
12-2009	RP-46	RP-091264	335	(Technically endorsed at RAN 4 52bis in R4-093523) Adding beamforming model for user-specific reference signal	9.1.0	9.2.0
12-2009	RP-46	RP-091261	337	(Technically endorsed at RAN 4 52bis in R4-093525)	9.1.0	9.2.0
12-2009	RP-46	RP-091263	339R1	Adding redundancy sequences to PMI test (Technically endorsed at RAN 4 52bis in R4-093581)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	341	Throughput value correction at FRC for Maximum input level (Technically endorsed at RAN 4 52bis in R4-093660)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	343	Correction to the modulated E-UTRA interferer (Technically endorsed at RAN 4 52bis in R4-093662)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	345R1	OCNG: Patterns and present use in tests (Technically endorsed at RAN 4 52bis in R4-093664)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	347	OCNG: Use in receiver and performance tests (Technically endorsed at RAN 4 52bis in R4-093666)	9.1.0	9.2.0
12-2009	RP-46	RP-091263	349	Miscellaneous corrections on CSI requirements (Technically endorsed at RAN 4 52bis in R4-093676)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	351	Removal of RLC modes (Technically endorsed at RAN 4 52bis in R4-093677)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	353	CR Rx diversity requirement (Technically endorsed at RAN 4 52bis in R4-093703)	9.1.0	9.2.0
12-2009	RP-46	RP-091261	355	A-MPR notation in NS_07 (Technically endorsed at RAN 4 52bis in R4-093706)	9.1.0	9.2.0
12-2009	RP-46	RP-091263	359	Single- and multi-PMI requirements (Technically endorsed at RAN 4 52bis in R4-093846)	9.1.0	9.2.0
12-2009	RP-46	RP-091263	363	CQI reference measurement channel (Technically endorsed at RAN 4 52bis in R4-093970)	9.1.0	9.2.0
12-2009	RP-46	RP-091292	364	LTE MBSFN Channel Model (Technically endorsed at RAN 4 52bis in R4-094020)	9.1.0	9.2.0
12-2009	RP-46	RP-091264	367	Numbering of PDSCH (User-Specific Reference Symbols) Demodulation Tests	9.1.0	9.2.0
12-2009	RP-46	RP-091264	369	Numbering of PDCCH/PCFICH, PHICH, PBCH Demod Tests	9.1.0	9.2.0
12-2009 12-2009	RP-46 RP-46	RP-091261 RP-091264	371 373R1	Remove [] from Reference Measurement Channels in Annex A Corrections to RMC-s for Maximum input level test for low UE	9.1.0 9.1.0	9.2.0 9.2.0
12-2009	RP-46	RP-091264 RP-091261	373R1	categories Correction of UE-category for R.30	9.1.0	9.2.0
12-2009	RP-46 RP-46	RP-091261 RP-091286	378	Introduction of Extended LTE1500 requirements for TS36.101	9.1.0	9.2.0
12-2009	RP-46	RP-091262	384	CR: Removal of 1.4 MHz and 3 MHz channel bandwidths from additional spurious emissions requirements for Band 1 PHS protection	9.1.0	9.2.0
12-2009	RP-46	RP-091262	386R3	Clarification of measurement conditions of spurious emission requirements at the edge of spurious domain	9.1.0	9.2.0
12-2009	RP-46	RP-091262	390	Spurious emission table correction for TDD bands 33 and 38.	9.1.0	9.2.0
12-2009	RP-46 RP-46	RP-091262	392R2	36.101 Symbols and abreviations for Pcmax UTRAACLR1 requirement definition for 1.4 and 3 MHz BW	9.1.0	9.2.0
12-2009		RP-091262	394	completed Introduction of the ACK/NACK feedback modes for TDD	9.1.0	9.2.0
12-2009	RP-46	RP-091263	396	requirements	9.1.0	9.2.0
12-2009 12-2009	RP-46 RP-46	RP-091262 RP-091262	404R3 416R1	CR Power control exception R8 Relative power tolerance: special case for receiver tests	9.1.0 9.1.0	9.2.0 9.2.0
12-2009	RP-46 RP-46	RP-091262 RP-091263	416R1 420R1	CSI reporting: test configuration for CQI fading requirements	9.1.0	9.2.0
	ю				0.1.0	· ·

10.000		DD 001284	404.04	Inducion of Dond 20 LIE DE norometers	010	
12-2009	RP-46	RP-091284	421R1	Inclusion of Band 20 UE RF parameters Editorial corrections and updates to Clause 8.2.1 FDD	9.1.0	9.2.0
12-2009	RP-46	RP-091264	425	demodulation test cases	9.1.0	9.2.0
12-2009	RP-46	RP-091262	427	CR: time mask	9.1.0	9.2.0
12-2009	RP-46	RP-091264	430	Correction of the payload size for PDCCH/PCFICH performance requirements	9.1.0	9.2.0
12-2009	RP-46	RP-091263	432	Transport format and test point updates to RI reporting test cases	9.1.0	9.2.0
12-2009	RP-46	RP-091263	434	Transport format and test setup updates to frequency-selective interference CQI tests	9.1.0	9.2.0
12-2009	RP-46	RP-091263	436	CR RI reporting configuration in PUCCH 1-1 test	9.1.0	9.2.0
12-2009	RP-46	RP-091261	438	Addition of R.11-1 TDD references	9.1.0	9.2.0
12-2009	RP-46	RP-091292	439	Performance requirements for LTE MBMS	9.1.0	9.2.0
12-2009	RP-46 RP-46	RP-091262	442R1 444R1	In Band Emissions Requirements Correction CR PCMAX definition	9.1.0 9.1.0	9.2.0
12-2009 03-2010	RP-46 RP-47	RP-091262 RP-100246	444R 1 453r1	Corrections of various errors in the UE RF requirements	9.1.0	9.2.0 9.3.0
03-2010	RP-47	RP-100240	462r1	UTRA ACLR measurement bandwidths for 1.4 and 3 MHz	9.2.0	9.3.0
03-2010	RP-47	RP-100246	493	Band 8 Coexistence Requirement Table Correction	9.2.0	9.3.0
03-2010	RP-47	RP-100246	489r1	Rel 9 CR for Band 14	9.2.0	9.3.0
03-2010	RP-47	RP-100246	485r1	CR Band 1- PHS coexistence	9.2.0	9.3.0
03-2010	RP-47	RP-100247	501	Fading CQI requirements for FDD mode	9.2.0	9.3.0
03-2010	RP-47	RP-100247	499	CR correction to RI test	9.2.0	9.3.0
03-2010	RP-47	RP-100249	451	Reporting mode, Reporting Interval and Editorial corrections for demodulation	9.2.0	9.3.0
03-2010	RP-47	RP-100249	464r1	Corrections to 1PRB PDSCH performance test in presence of MBSFN.	9.2.0	9.3.0
03-2010	RP-47	RP-100249	458r1	OCNG corrections	9.2.0	9.3.0
03-2010	RP-47	RP-100249	467	Addition of ONCG configuration in DRS performance test	9.2.0	9.3.0
03-2010	RP-47	RP-100249	465r1	PDSCH performance tests for low UE categories	9.2.0	9.3.0
03-2010	RP-47	RP-100250	460r1 491r1	Use of OCNG in CSI tests Corrections to CQI test configurations	9.2.0 9.2.0	9.3.0
03-2010	RP-47 RP-47	RP-100250 RP-100250	49111 469r1	Corrections of some CSI test parameters	9.2.0	9.3.0 9.3.0
03-2010	RP-47	RP-100251	456r1	TBS correction for RMC UL TDD 16QAM full allocation BW 1.4 MHz	9.2.0	9.3.0
03-2010	RP-47	RP-100262	449	Editorial corrections on Band 19 REFSENS	9.2.0	9.3.0
03-2010	RP-47	RP-100263	470r1	Band 20 UE RF requirements	9.2.0	9.3.0
03-2010	RP-47	RP-100264	446r1	A-MPR for Band 21	9.2.0	9.3.0
03-2010	RP-47	RP-100264	448	RF requirements for UE in later releases	9.2.0	9.3.0
03-2010	RP-47	RP-100268	445	36.101 CR: Editorial corrections on LTE MBMS reference measurement channels	9.2.0	9.3.0
03-2010	RP-47	RP-100268	454	The definition of the Doppler shift for LTE MBSFN Channel Model	9.2.0	9.3.0
03-2010	RP-47	RP-100239	478r3	Modification of the spectral flatness requirement and some editorial corrections	9.2.0	9.3.0
06-2010	RP-48	RP-100619	559	Corrections of tables for Additional Spectrum Emission Mask	9.3.0	9.4.0
06-2010	RP-48	RP-100619	538	Correction of transient time definition for EVM requirements	9.3.0	9.4.0
06-2010	RP-48	RP-100619	557r2	CR on UE coexistence requirement Correction of antenna configuration and beam-forming model for	9.3.0	9.4.0
	RP-48	RP-100619	547r1	DRS CR: Corrections on MIMO demodulation performance	9.3.0	9.4.0
06-2010	RP-48	RP-100619	536r1	requirements	9.3.0	9.4.0
06-2010	RP-48	RP-100619	528r1	Corrections on the definition of PCMAX	9.3.0	9.4.0
06-2010	RP-48	RP-100619	568	Relaxation of the PDSCH demodulation requirements due to control channel errors	9.3.0	9.4.0
06-2010	RP-48	RP-100619	566	Correction of the UE output power definition for RX tests	9.3.0	9.4.0
06-2010	RP-48	RP-100620	505r1	Fading CQI requirements for TDD mode	9.3.0	9.4.0
06-2010	RP-48	RP-100620	521	Correction to FRC for CQI index 0	9.3.0	9.4.0
06-2010	RP-48	RP-100620	516r1	Correction to CQI test configuration	9.3.0	9.4.0
06-2010	RP-48	RP-100620	532	Correction of CQI and PMI delay configuration description for TDD	9.3.0	9.4.0
06-2010	RP-48	RP-100620	574	Correction to FDD and TDD CSI test configurations	9.3.0	9.4.0
06-2010	RP-48	RP-100620	571	Minimum requirements for Rank indicator reporting	9.3.0	9.4.0
06-2010	RP-48	RP-100628	563	LTE MBMS performance requirements (FDD)	9.3.0	9.4.0
06-2010	RP-48	RP-100628	564	LTE MBMS performance requirements (TDD)	9.3.0	9.4.0
06-2010	RP-48	RP-100629	553r2	Performance requirements for dual-layer beamforming	9.3.0	9.4.0
06-2010 06-2010	RP-48 RP-48	RP-100630 RP-100630	524r2 519	CR: low Category CSI requirement Correction of FRC reference and test case numbering	9.3.0 9.3.0	9.4.0 9.4.0
06-2010	117-40	NF-100030	018	Correction of FRC reference and test case numbering Correction of carrier frequency and EARFCN of Band 21 for		
06-2010	RP-48	RP-100630	526	TS36.101 Addition of PDSCH TDD DRS demodulation tests for Low UE	9.3.0	9.4.0
06-2010	RP-48	RP-100630	508r1	categories Specification of minimum performance requirements for low UE	9.3.0	9.4.0
06-2010	RP-48	RP-100630	539	category	9.3.0	9.4.0
1 116 20110	RP-48	RP-100630	569	Addition of minimum performance requirements for low UE	9.3.0	9.4.0

				category TDD CRS single-antenna port tests		
06-2010				Introduction of sustained downlink data-rate performance	9.3.0	9.4.0
	RP-48	RP-100631	549r3	requirements		
06-2010	RP-48	RP-100683	530r1	Band 20 Rx requirements	9.3.0	9.4.0
09-2010	RP-49	RP-100920	614r2	Add OCNG to MBMS requirements	9.4.0	9.5.0
09-2010	RP-49	RP-100916	599	Correction of PDCCH content for PHICH test	9.4.0	9.5.0
09-2010	RP-49	RP-100920	597r1	Beamforming model for transmission on antenna port 7/8	9.4.0	9.5.0
09-2010	RP-49	RP-100920	600r1	Correction of full correlation in frequency-selective CQI test	9.4.0	9.5.0
09-2010		DD 400000	CO1	Correction on single-antenna transmission fixed reference	0.4.0	0.5.0
	RP-49	RP-100920	601	channel Reference sensitivity requirements for the 1.4 and 3 MHz	9.4.0	9.5.0
09-2010	RP-49	RP-100914	605	bandwidths	9.4.0	9.5.0
09-2010	RP-49	RP-100914 RP-100920	608r1	CR for DL sustained data rate test	9.4.0	9.5.0
09-2010	NF -49	KF-100920	00011	Correction of references in section 10 (MBMS performance	9.4.0	9.3.0
03-2010	RP-49	RP-100919	611	requirements)	9.4.0	9.5.0
09-2010	RP-49	RP-100914	613	Band 13 and Band 14 spurious emission corrections	9.4.0	9.5.0
09-2010	RP-49	RP-100919	617r1	Rx Requirements	9.4.0	9.5.0
09-2010	RP-49	RP-100926	576r1	Clarification on DL-BF simulation assumptions	9.4.0	9.5.0
09-2010	RP-49	RP-100920	582r1	Introduction of additional Rel-9 scenarios	9.4.0	9.5.0
09-2010	RP-49	RP-100925	575r1	Correction to band 20 ue to ue Co-existence table	9.4.0	9.5.0
09-2010	RP-49	RP-100916	581r1	Test configuration corrections to CQI reporting in AWGN	9.4.0	9.5.0
09-2010	RP-49	RP-100916	595	Corrections to RF OCNG Pattern OP.1 and 2	9.4.0	9.5.0
09-2010	RP-49	RP-100919	583	Editorial corrections of 36.101	9.4.0	9.5.0
09-2010				Addition of minimum performance requirements for low UE		T
	RP-49	RP-100920	586	category TDD tests	9.4.0	9.5.0
09-2010	RP-49	RP-100914	590r1	Downlink power for receiver tests	9.4.0	9.5.0
09-2010	RP-49	RP-100920	591	OCNG use and power in beamforming tests	9.4.0	9.5.0
09-2010	RP-49	RP-100916	593	Throughput for multi-datastreams transmissions	9.4.0	9.5.0
09-2010	RP-49	RP-100914	588	Missing note in Additional spurious emission test with NS_07	9.4.0	9.5.0
09-2010	RP-49	RP-100927	596r2	CR LTE_TDD_2600_US spectrum band definition additions to TS 36.101	9.5.0	10.0.0
12-2010	RP-50	RP-101309	680	Demodulation performance requirements for dual-layer	10.0.0	10.1.0
12-2010	RP-50	RP-101325	672	beamforming Correction on the statement of TB size and subband selection in	10.0.0	10.1.0
				CSI tests		
12-2010	RP-50	RP-101327	652	Correction to Band 12 frequency range	10.0.0	10.1.0
12-2010	RP-50	RP-101329	630	Removal of [] from TDD Rank Indicator requirements	10.0.0	10.1.0
12-2010	RP-50	RP-101329	635r1	Test configuration corrections to CQI TDD reporting in AWGN	10.0.0	10.1.0
40.0040	<b>DD</b> 50	<b>DD</b> 404000	0.45	(Rel-10)	10.0.0	10.1.0
12-2010	RP-50	RP-101330	645	EVM window length for PRACH	10.0.0	10.1.0
12-2010	RP-50	RP-101330 RP-101330	649 642r1	Removal of NS signalling from TDD REFSENS tests	10.0.0	10.1.0
12-2010	RP-50	RP-101330	642r1	Correction of Note 4 In Table 7.3.1-1: Reference sensitivity QPSK PREFSENS	10.0.0	10.1.0
12-2010	RP-50	RP-101341	627	Add 20 RB UL Ref Meas channel	10.0.0	10.1.0
12-2010	RP-50	RP-101341	654r1	Additional in-band blocking requirement for Band 12	10.0.0	10.1.0
12-2010	RP-50	RP-101341	678	Further clarifications for the Sustained Downlink Data Rate Test	10.0.0	10.1.0
12-2010	RP-50	RP-101341	673r1	Correction on MBMS performance requirements	10.0.0	10.1.0
12-2010	RP-50	RP-101349	667r3	CR Removing brackets of Band 41 reference sensitivity to TS 36.101	10.0.0	10.1.0
12-2010	RP-50	RP-101356	666r2	Band 42 and 43 parameters for UMTS/LTE 3500 (TDD) for TS	10.0.0	10.1.0
				36.101		
12-2010	RP-50	RP-101359	646r1	CR for CA, UL-MIMO, eDL-MIMO, CPE	10.0.0	10.1.0
12-2010	RP-50	RP-101361	620r1	Introduction of L-band in TS 36.101	10.0.0	10.1.0
12-2010	RP-50	RP-101379	670r1	Correction on the PMI reporting in Multi-Laye Spatial Multiplexing performance test	10.0.0	10.1.0
12-2010	RP-50	RP-101380	679r1	Adding antenna configuration in CQI fading test case	10.0.0	10.1.0
01-2011	14 00	14 101000	01011	Clause numbering correction	10.1.0	10.1.1
03-2011	RP-51	RP-110359	695	Removal of E-UTRA ACLR for CA	10.1.1	10.2.0
03-2011	RP-51	RP-110338	699	PDCCH and PHICH performance: OCNG and power settings	10.1.1	10.2.0
03-2011	RP-51	RP-110336	706r1	Spurious emissions measurement uncertainty	10.1.1	10.2.0
03-2011	RP-51	RP-110352	707r1	REFSENSE in lower SNR	10.1.1	10.2.0
03-2011	RP-51	RP-110338	710	PMI performance: Power settings and precoding granularity	10.1.1	10.2.0
03-2011	RP-51	RP-110359	715r2	Definition of configured transmitted power for Rel-10	10.1.1	10.2.0
03-2011	RP-51	RP-110359	717	Introduction of requirement for adjacent intraband CA image rejection	10.1.1	10.2.0
03-2011	RP-51	RP-110343	719	Minimum requirements for the additional Rel-9 scenarios	10.1.1	10.2.0
03-2011	RP-51	RP-110343	723	Corrections to power settings for Single layer beamforming with	10.1.1	10.2.0
03-2011		RP-110343	726r1	simultaneous transmission Correction to the PUSCH3-0 subband tests for Rel-10	10.1.1	10.2.0
03-2011	RP-51 RP-51	RP-110343 RP-110338	72611	Removing the square bracket for TS36.101	10.1.1	10.2.0
03-2011	RP-51 RP-51	RP-110338 RP-110349	730	Removal of square brackets for dual-layer beamforming	10.1.1	10.2.0
03,2011		1 111 - 110349	159		10.1.1	10.2.0
03-2011				demodulation performance requirements		
03-2011 03-2011 03-2011	RP-51 RP-51	RP-110359 RP-110349	751 754r2	demodulation performance requirements CR: Maximum input level for intra band CA UE category coverage for dual-layer beamforming	10.1.1 10.1.1	10.2.0 10.2.0

03-2011	RP-51	RP-110343	756r1	Further clarifications for the Sustained Downlink Data Rate Test	10.1.1	10.2.0
03-2011	RP-51	RP-110343	759	Removal of square brackets in sustained data rate tests	10.1.1	10.2.0
03-2011	RP-51	RP-110337	762r1	Clarification to LTE relative power tolerance table	10.1.1	10.2.0
03-2011	RP-51	RP-110343	764	Introducing UE-selected subband CQI tests	10.1.1	10.2.0
03-2011	RP-51	RP-110343	765	Verification framework for PUSCH 2-2 and PUCCH 2-1 reporting	10.1.1	10.2.0
04-2011				Editorial: Spec Title correction, removal of "Draft"	10.2.0	10.2.1
06-2011	RP-52	RP-110804	766	Add Expanded 1900MHz Band (Band 25) in 36.101	10.2.1	10.3.0
06-2011	RP-52	RP-110795	768	Fixing Band 24 inclusion in TS 36.101	10.2.1	10.3.0
06-2011	RP-52	RP-110788	772	CR: Corrections for UE to UE co-existence requirements of Band	10.2.1	10.3.0
06-2011	RP-52	RP-110812	774	Add 2GHz S-Band (Band 23) in 36.101	10.2.1	10.3.0
06-2011	RP-52	RP-110789	782	CR: Band 19 A-MPR refinement	10.2.1	10.3.0
06-2011	RP-52	RP-110796	787	REFSENS in lower SNR	10.2.1	10.3.0
06-2011	RP-52	RP-110789	805	Clarification for MBMS reference signal levels	10.2.1	10.3.0
06-2011	RP-52	RP-110792	810	FDD MBMS performance requirements for 64QAM mode	10.2.1	10.3.0
06-2011	RP-52	RP-110787	814	Correction on CQI mapping index of RI test	10.2.1	10.3.0
06-2011	RP-52	RP-110789	824	Corrections to in-band blocking table	10.2.1	10.3.0
06-2011	RP-52	RP-110794	826	Correction of TDD Category 1 DRS and DMRS RMCs	10.2.1	10.3.0
06-2011	RP-52	RP-110794	828	TDD MBMS performance requirements for 64QAM mode	10.2.1	10.3.0
06-2011	RP-52	RP-110796	829	Correction of TDD RMC for Low SNR Demodulation test	10.2.1	10.3.0
06-2011	RP-52	RP-110796	830	Informative reference sensitivity requirements for Low SNR for TDD	10.2.1	10.3.0
06-2011	RP-52	RP-110787	778r1	Minor corrections to DL-RMC-s for Maximum input level	10.2.1	10.3.0
06-2011	RP-52	RP-110789	832	PDCCH and PHICH performance: OCNG and power settings	10.2.1	10.3.0
06-2011	RP-52	RP-110789	818r1	Correction on 2-X PMI test for R10	10.2.1	10.3.0
06-2011	RP-52	RP-110791	816r1	Addition of performance requirements for dual-layer beamforming category 1 UE test	10.2.1	10.3.0
06-2011	RP-52	RP-110789	834	Performance requirements for PUCCH 2-0, PUCCH 2-1 and	10.2.1	10.3.0
00.0011			005-4	PUSCH 2-2 tests	10.0.1	40.0.0
06-2011	RP-52	RP-110807	835r1	CR for UL MIMO and CA	10.2.1	10.3.0
09-2011	RP-53	RP-111248	862r1	Removal of unnecessary channel bandwidths from REFSENS tables	10.3.0	10.4.0
09-2011	RP-53	RP-111248	869r1	Clarification on BS precoding information field for RI FDD and PUCCH 2-1 PMI tests	10.3.0	10.4.0
09-2011	RP-53	RP-111248	872r1	CR for B14Rx requirement Rrel 10	10.3.0	10.4.0
09-2011	RP-53	RP-111248	890r1	CR to TS36.101: Correction on the accuracy test of CQI.	10.3.0	10.4.0
09-2011	RP-53	RP-111248	893	CR to TS36.101: Correction on CQI mapping index of TDD RI test	10.3.0	10.4.0
09-2011	RP-53	RP-111248	904	Correction of code block numbers for some RMCs	10.3.0	10.4.0
09-2011	RP-53	RP-111248	907	Correction to UL RMC for FDD and TDD	10.3.0	10.4.0
09-2011	RP-53	RP-111248	914r1	Adding codebook subset restriction for single layer closed-loop spatial multiplexing test	10.3.0	10.4.0
09-2011	RP-53	RP-111251	883	Sustained data rate: Correction of the ACK/NACK feedback	10.3.0	10.4.0
09-2011	RP-53	RP-111251	929	mode	10.3.0	10.4.0
09-2011	RP-53	RP-111251 RP-111251	929 938	36.101 CR on MBSFN FDD requirements(R10) TDD MBMS performance requirements for 64QAM mode	10.3.0	10.4.0
09-2011	RP-53	RP-111251	895	Further clarification for the dual-layer beamforming demodulation	10.3.0	10.4.0
				requirements		
09-2011	RP-53	RP-111255	908r1	Introduction of Band 22	10.3.0	10.4.0
09-2011	RP-53	RP-111255	939	Modifications of Band 42 and 43	10.3.0	10.4.0
09-2011	RP-53	RP-111260	944	CR for TS 36.101 Annex B: Static channels for CQI tests	10.3.0	10.4.0
09-2011	RP-53	RP-111262	878r1	Correction of CSI reference channel subframe description	10.3.0	10.4.0
09-2011 09-2011	RP-53 RP-53	RP-111262 RP-111262	887 926r1	Correction to UL MIMO Power control accuracy for intra-band carrier aggregation	10.3.0 10.3.0	10.4.0 10.4.0
09-2011	RP-53 RP-53	RP-111262 RP-111262	926F1 927r1	In-band emissions requirements for intra-band carrier	10.3.0	10.4.0
00 2011	DD 50	DD 111060	020+1	aggregation Adding the operating band for UL-MIMO	10.2.0	10.4.0
09-2011 09-2011	RP-53 RP-53	RP-111262 RP-111265	930r1 848	Corrections to intra-band contiguous CA RX requirements	10.3.0 10.3.0	10.4.0
09-2011	RP-53 RP-53	RP-111265 RP-111265	863	Intra-band contiguos CA MPR requirement refinement	10.3.0	10.4.0
09-2011	RP-53	RP-111265	866r1	Intra-band contiguous CA KIP K requirement remement	10.3.0	10.4.0
09-2011	RP-53	RP-111266	935	Introduction of the downlink CA demodulation requirements	10.3.0	10.4.0
09-2011	RP-53	RP-111266	936r1	Introduction of CA UE demodulation requirements for TDD	10.3.0	10.4.0
12-2011	RP-54			Corrections of UE categories of Rel-10 reference channels for	10.4.0	10.5.0
12-2011	RP-54	RP-111684	947	RF requirements Alternative way to define channel bandwidths per operating band	10.4.0	10.5.0
		RP-111684	948	for		
12-2011	RP-54	RP-111686	949	CR for TS36.101: Adding note to the function of MPR	10.4.0	10.5.0
12-2011	RP-54	RP-111680	950	Clarification on applying CSI reports during rank switching in RI FDD test - Rel-10	10.4.0	10.5.0
12-2011	RP-54	RP-111734	953r1	Corrections for Band 42 and 43 introduction	10.4.0	10.5.0
12-2011	RP-54	RP-111680	956	UE spurious emissions	10.4.0	10.5.0
12-2011	RP-54	RP-111682	959	Add scrambling identity n_SCID for MU-MIMO test	10.4.0	10.5.0
40.0044	RP-54	RP-111690	960r1	P-MPR definition	10.4.0	10.5.0
12-2011 12-2011	RP-54	RP-111693	962	Pcmax,c Computation Assumptions	10.4.0	10.5.0

12-2011	RP-54			Correction of frequency range for spurious emission	10.4.0	10.5.0
12 2011		RP-111733	963r1	requirements	10.4.0	10.0.0
12-2011	RP-54	RP-111680	966	General review of the reference measurement channels	10.4.0	10.5.0
12-2011	RP-54	RP-111691	945	Corrections of Rel-10 demodulation performance requirements This CR is only partially implemented due to confliction with CR 966	10.4.0	10.5.0
12-2011	RP-54	RP-111684	946	Corrections of UE categories for Rel-10 CSI requirements This CR is only partially implemented due to confliction with CR 966	10.4.0	10.5.0
12-2011	RP-54	RP-111691	982r2	Introduction of SDR TDD test scenario for CA UE demodulation This CR is only partially implemented due to confliction with CR 966	10.4.0	10.5.0
12-2011	RP-54	RP-111693	971r1	CR on Colliding CRS for non-MBSFN ABS	10.4.0	10.5.0
12-2011	RP-54	RP-111693	972r1	Introduction of eICIC demodulation performance requirements for FDD and TDD	10.4.0	10.5.0
12-2011	RP-54	RP-111686	985	Adding missing UL configuration specification in some UE receiver requirements for case of 1 CC UL capable UE	10.4.0	10.5.0
12-2011	RP-54	RP-111684	998	Correction and maintenance on CQI and PMI requirements (Rel- 10)	10.4.0	10.5.0
12-2011	RP-54	RP-111735	1004	MPR for CA Multi-cluster	10.4.0	10.5.0
12-2011	RP-54	RP-111691	1005	CA demodulation performance requirements for LTE FDD	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1006	CQI reporting accuracy test on frequency non-selective scheduling on eDL MIMO	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1007	CQI reporting accuracy test on frequency-selective scheduling on eDL MIMO	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1008	PMI reporting accuracy test for TDD on eDL MIMO	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1009r1	CR for TS 36.101: RI performance requirements	10.4.0	10.5.0
12-2011	RP-54	RP-111692	1010r1	CR for TS 36.101: Introduction of static CQI tests (Rel-10)	10.4.0	10.5.0
03-2012	RP-55	RP-120291	1014	RF: Updates and corrections to the RMC-s related annexes (Rel- 10)	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1015r1	On elCIC ABS pattern	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1016r1	On elCIC interference models	10.5.0	10.6.0
03-2012	RP-55	RP-120299	1017r1	TS36.101 CR: on eDL-MIMO channel model using cross- polarized antennas	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1020r1	TS36.101 CR: Correction to MBMS Performance Test Parameters	10.5.0	10.6.0
03-2012	RP-55	RP-120303	1021	Harmonic exceptions in LTE UE to UE co-ex tests	10.5.0	10.6.0
03-2012 03-2012	RP-55 RP-55	RP-120304 RP-120300	1023 1033r1	Unified titles for Rel-10 CSI tests Introduction of reference channel for eICIC demodulation	10.5.0 10.5.0	10.6.0 10.6.0
03-2012	RP-55	RP-120304	103311 1040r1	Correction of Actual code rate for CSI RMCs	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1040r1	Definition of synchronized operation	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1048r1	Intra band contiguos CA Ue to Ue Co-ex	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1049r1	REL-10 CA specification editorial consistency	10.5.0	10.6.0
03-2012	RP-55	RP-120299	1053	Beamforming model for TM9	10.5.0	10.6.0
03-2012	RP-55	RP-120296	1054	Requirement for CA demodulation with power imbalance	10.5.0	10.6.0
03-2012	RP-55	RP-120298	1057	Updating Band 23 duplex specifications	10.5.0	10.6.0
03-2012	RP-55	RP-120298	1058r1	Correcting UE Coexistence Requirements for Band 23	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1059r1	CA demodulation performance requirements for LTE TDD	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1061	Requirement for CA SDR FDD test scenario	10.5.0	10.6.0
03-2012	RP-55	RP-120293	1064r1	TS36.101 RF editorial corrections Rel 10	10.5.0	10.6.0
03-2012 03-2012	RP-55 RP-55	RP-120299 RP-120304	1067r1 1071r1	Introduction of TM9 demodulation performance requirements Introduction of a CA demodulation test for UE soft buffer management testing	10.5.0 10.5.0	10.6.0 10.6.0
03-2012	RP-55	RP-120296	1072	MPR formula correction For intra-band contiguous CA Bandwidth Class C	10.5.0	10.6.0
03-2012	RP-55	RP-120303	1077r1	CR for 36.101: B41 REFSENS and MOP changes to accommodate single filter architecture	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1082	TM3 tests for elCIC	10.5.0	10.6.0
03-2012	RP-55	RP-120300	1083r1	Introduction of requirements of CQI reporting definition for ecICIC	10.5.0	10.6.0
03-2012	RP-55	RP-120304	1084	eDL MIMO CSI requirements	10.5.0	10.6.0
03-2012	RP-55	RP-120306	1070r1	Introduction of Band 26/XXVI to TS 36.101	10.6.0	11.0.0
03-2012	RP-55	RP-120310	1074	Band 41 CA CR for TS36.101, section 5	10.6.0	11.0.0
03-2012	RP-55	RP-120310	1075r1	Band 41 CA CR for TS36.101, section 6	10.6.0	11.0.0
03-2012	RP-55	RP-120310	1076	Band 41 CA CR for TS36.101, section 7	10.6.0	11.0.0
06-2012	RP-56	RP-120795	1085r2	Modulator specification tightening	11.0.0	11.1.0
06-2012	RP-56	RP-120777	1087r1	Carrier aggregation Relative power tolerance, removal of TBD.	11.0.0	11.1.0
06-2012	RP-56	RP-120783	1089	UE spurious emissions for Band 7 and Band 38 coexistence	11.0.0	11.1.0
06-2012	RP-56	RP-120780	1092	Deleting square brackets in Reference Measurement Channels CR to TS36.101: Correction on parameters for the eDL-MIMO	11.0.0	11.1.0
06-2012	RP-56	RP-120779	1097	CQI and PMI tests CR to TS36.101: Fixed reference channel for PDSCH	11.0.0	11.1.0
06-2012	RP-56	RP-120780	1098r1	demodulation performance requirements on eDL-MIMO – NOT implemented as it is based on a wrong version of the spec	11.0.0	11.1.0

06-2012	RP-56	RP-120774	1107	RMC correction on eDL-MIMO RI test	11.0.0	11.1.0
06-2012	RP-56	RP-120774 RP-120774	1107 1108r1	FRC correction on frequency selective CQI and PMI test (Rel-	11.0.0	11.1.0
00 2012	111 50	111120114	110011		11.0.0	11.1.0
06-2012	RP-56	RP-120774	1111	Correction on test point for PMI test (Rel-11)	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1114r1	Corrections and clarifications on eICIC demodulation test	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1117r1	Corrections and clarifications on eICIC CSI tests	11.0.0	11.1.0
06-2012	RP-56	RP-120783	1119r1	Corrections on UE performance requirements	11.0.0	11.1.0
06-2012	RP-56	RP-120773	1120	Introduction of CA band combination Band1 + Band19 to TS	11.0.0	11.1.0
06-2012	RP-56	RP-120769	1127	36.101 Addition of ETU30 channel model	11.0.0	11.1.0
06-2012	RP-56	RP-120709	1127	Addition of Maximum Throughput for R.30-1 TDD RMC	11.0.0	11.1.0
06-2012	RP-56	RP-120779	1140	CR for 36.101: The clarification of MPR and A-MPR for CA	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1142	Corrections for eICIC demod test case with MBSN ABS	11.0.0	11.1.0
06-2012	RP-56	RP-120785	1144	Removing brackets of contiguous allocation A-MPR for	11.0.0	11.1.0
				CA_NS_04		
06-2012	RP-56	RP-120784	1149r1	Introduction of PDCCH test with colliding RS on MBSFN-ABS	11.0.0	11.1.0
06-2012	RP-56	RP-120784	1153r1	Some clarifications and OCNG pattern for eICIC demodulation	11.0.0	11.1.0
06-2012		RP-120773	1155	requirements Introduction of TDD CA Soft Buffer Limitation	11.0.0	11 1 0
06-2012	RP-56 RP-56	RP-120773 RP-120795	1155	B26 and other editorial corrections	11.0.0	11.1.0
06-2012	RP-56	RP-120793	1161	Corrections on CQI and PMI test	11.0.0	11.1.0
06-2012	RP-56	RP-120780	1163	FRC for TDD PMI test	11.0.0	11.1.0
06-2012	RP-56	RP-120778	1165r1	Clean-up of UL-MIMO for TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120782	1171	Removal of unnecessary references to single carrier	11.0.0	11.1.0
				requirements from Interband CA subclauses		
06-2012	RP-56	RP-120781	1174	PDCCH wrong detection in receiver spurious emissions test	11.0.0	11.1.0
06-2012	RP-56	RP-120776	1184	Corrections to 3500 MHz	11.0.0	11.1.0
06-2012	RP-56	RP-120793	1189r2	Introduction of Band 44	11.0.0	11.1.0
06-2012 06-2012	RP-56 RP-56	RP-120784	1193r1 1196	Target SNR setting for eICIC demodulation requirement	11.0.0	11.1.0 11.1.0
06-2012	RP-56	RP-120780 RP-120778	1196	Editorial simplification to CA REFSENS UL allocation table Correction of wrong table references in CA receiver tests	11.0.0	11.1.0
06-2012	RP-56	RP-120778	1200r1	Introduction of e850_LB (Band 27) to TS 36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120764	120011	Correction of PHS protection requirements for TS 36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120793	1213r1	Introduction of Band 28 into TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120781	1215r1	Proposed revision of subclause 4.3A for TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120781	1217r1	Proposed revision on subclause 6.3.4A for TS36.101	11.0.0	11.1.0
06-2012	RP-56	RP-120795	1219r1	Aligning requirements between Band 18 and Band 26 in	11.0.0	11.1.0
				TS36.101		
06-2012	RP-56	RP-120782	1221	SNR definition	11.0.0	11.1.0
06-2012	RP-56	RP-120778	1223	Correction of CSI configuration for CA TM4 tests R11	11.0.0	11.1.0
06-2012 06-2012	RP-56 RP-56	RP-120773 RP-120784	1225 1226	CR on CA UE receiver timing window R11 Extension of static eICIC CQI test	11.0.0 11.0.0	11.1.0 11.1.0
09-2012	RP-57	RP-120784 RP-121294	1220	Correct Transport Block size in 9RB 16QAM Uplink Reference	11.1.0	11.2.0
00 2012	101	111 121204	1200	Measurement Channel	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1233r1	RF: Corrections to power allocation parameters for transmission	11.1.0	11.2.0
				mode 8 (Rel-11)		
09-2012	RP-57	RP-121304	1235	RF-CA: non-CA notation and applicability of test points in	11.1.0	11.2.0
				scenarios without and with CA operation (Rel-11)		
09-2012	RP-57	RP-121305	1237	ACK/NACK feedback modes for FDD and TDD TM4 CA	11.1.0	11.2.0
09-2012	RP-57	RP-121305	1239	demodulation requirements (Rel-11) Correction of feedback mode for CA TDD demodulation	11.1.0	11.2.0
09-2012	KE-21	RF-121305	1239	requirements (resubmission of R4-63AH-0194 for Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1241	ABS pattern setup for MBSFN ABS test (resubmission of R4-	11.1.0	11.2.0
				63AH-0204 for Rel-11)		
09-2012	RP-57	RP-121302	1243	CR on eICIC CQI definition test (resubmission of R4-63AH-0205	11.1.0	11.2.0
			10:-	for Rel-11)		
09-2012	RP-57	RP-121302	1245	Transmission of CQI feedback and other corrections (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1247	Target SNR setting for eICIC MBSFN-ABS demodulation	11.1.0	11.2.0
09-2012	RP-57	RP-121335	1248	requirements (Rel-11) Introduction of CA_1_21 RF requirements into TS36.101	11 1 0	11.2.0
09-2012	RP-57 RP-57	RP-121335 RP-121300	1246	Corrections of spurious emission band UE co-existence	11.1.0	11.2.0
00 2012	1.1 07	1.1 121000		applicable in Japan		
09-2012	RP-57	RP-121306	1253	Correction on RMC for frequency non-selective CQI test	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1255	Requirements for the eDL-MIMO CQI test	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1257	Clarification on PDSCH test setup under MBSFN ABS	11.1.0	11.2.0
09-2012	RP-57	RP-121316	1258	Update of Band 28 requirements	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1262	Applicability of statement allowing RBW < Meas BW for spurious	11.1.0	11.2.0
09-2012	RP-57	RP-121298	1265	Clarification of RB allocation for DRS demodulation tests	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1267	Removal of brackets for CA Tx	11.1.0	11.2.0
09-2012 09-2012	RP-57	RP-121337 RP-121327	1268r1 1269	TS 36.101 CR for CA_38 Introduction of CA_B7_B20 in 36.101	11.1.0 11.1.0	11.2.0
09-2012	RP-57 RP-57	RP-121327 RP-121313	1269	Corrections of FRC subframe allocations and other minor	11.1.0	11.2.0 11.2.0
00 2012	11 -07	121010		problems	11.1.0	11.2.0
09-2012	RP-57	RP-121305	1274	Introduction of requirements for TDD CA Soft Buffer Limitation	11.1.0	11.2.0

09-2012	RP-57	RP-121307	1276	Correction of eDL-MIMIO CSI RMC tables and references	11.1.0	11.2.0
09-2012	RP-57	RP-121307	1278	Correction of MIMO channel model for polarized antennas	11.1.0	11.2.0
09-2012	RP-57	RP-121303	1280	Addition of 15 and 20MHz Bandwidths for Band 23 to TS 36.101 (Rel-11)	11.1.0	11.2.0
09-2012	RP-57	RP-121334	1283r1	Add requirements for inter-band CA of B_1-18 and B_11-18 in TS36.101	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1285r1	CR for MPR mask for multi-clustered simultaneous transmission in single CC in Rel-11	11.1.0	11.2.0
09-2012	RP-57	RP-121447	1288r2	Introduction of Japanese Regulatory Requirements to LTE Band 8(R11)	11.1.0	11.2.0
09-2012	RP-57	RP-121315	1289	CR for Band 27 MOP	11.1.0	11.2.0
09-2012	RP-57	RP-121315	1290	CR for Band 27 A-MPR	11.1.0	11.2.0
09-2012	RP-57	RP-121316	1291	CR to replace protected frequency range with new band number 27	11.1.0	11.2.0
09-2012	RP-57	RP-121215	1292r1	Introduction of CA band combination Band3 + Band5 to TS 36.101	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1300r1	Requirements for eDL-MIMO RI test	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1304	Corrections to TM9 demodulation tests	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1306	Correction to PCFICH power parameter setting	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1310r1	Correction on frequency non-selective CQI test	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1313r1	eDL-MIMO CQI/PMI test	11.1.0	11.2.0
09-2012	RP-57	RP-121313	1316	Correction of the definition of unsynchronized operation	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1320r1	Correction to Transmit Modulation Quality Tests for Intra-Band CA	11.1.0	11.2.0
09-2012	RP-57	RP-121338	1324r2	36.101 CR for LTE_CA_B7	11.1.0	11.2.0
09-2012	RP-57	RP-121331	1325	Introduction of CA_3_20 RF requirements into TS36.101	11.1.0	11.2.0
09-2012 09-2012	RP-57 RP-57	RP-121316 RP-121304	1326 1332r1	A-MPR table correction for NS_18 Bandwidth combination sets for intra-band and inter-band carrier	11.1.0 11.1.0	11.2.0
09-2012	RP-57	RP-121304	133211	aggregation Introduction of LTE Advanced Carrier Aggregation of Band 4 and	11.1.0	11.2.0
				Band 13		
09-2012 09-2012	RP-57 RP-57	RP-121326 RP-121324	1340r1 1341	Introduction of CA configurations CA-12A-4A and CA-17A-4A Introduction of CA_B3_B7 in 36.101	11.1.0 11.1.0	11.2.0
09-2012	RP-57 RP-57	RP-121324 RP-121328	1341	Introduction of Band 2 + Band 17 inter-band CA configuration	11.1.0	11.2.0
09-2012	RF-37	KF-121320	1343	into 36.101	11.1.0	11.2.0
09-2012	RP-57	RP-121306	1351	FRC for TM9 FDD	11.1.0	11.2.0
09-2012	RP-57	RP-121295	1352	Random precoding granularity in PMI tests	11.1.0	11.2.0
09-2012	RP-57	RP-121302	1358	Introduction of RI test for eICIC	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1360	Notes for deltaTib and deltaRib tables	11.1.0	11.2.0
09-2012	RP-57	RP-121304	1361	CR for A-MPR masks for NS_CA_1C	11.1.0	11.2.0
12-2012	RP-58	RP-121884	1362	Introduction of CA_3_8 RF requirements to TS 36.101	11.2.0	11.3.0
12-2012 12-2012	RP-58 RP-58	RP-121870 RP-121861	1363 1366	Removal of square brackets for Band 27 in Table 5.6.1-1 Some changes related to CA tests and overview table of DL	11.2.0 11.2.0	11.3.0 11.3.0
				measurement channels		
12-2012	RP-58	RP-121860	1368	Correction of eICIC CQI tests	11.2.0	11.3.0
12-2012			1370	Correction of eICIC demodulation tests	11.2.0	11.3.0
	RP-58	RP-121860	4074			
12-2012	RP-58	RP-121862	1374	Correction on CSI-RS subframe offset parameter	11.2.0	11.3.0
12-2012 12-2012 12-2012			1374 1376 1382	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI		
12-2012 12-2012	RP-58 RP-58 RP-58	RP-121862 RP-121862 RP-121862	1376 1382	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test	11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0
12-2012	RP-58 RP-58 RP-58 RP-58	RP-121862 RP-121862	1376	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI	11.2.0 11.2.0	11.3.0 11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012	RP-58 RP-58 RP-58	RP-121862 RP-121862 RP-121862 RP-121850	1376 1382 1386	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101	11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121862 RP-121862 RP-121862 RP-121850 RP-121867 RP-121894 RP-121850	1376 1382 1386 1388r1	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121862 RP-121862 RP-121862 RP-121850 RP-121867 RP-121894	1376 1382 1386 1388r1 1396	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7	11.2.0 11.2.0 11.2.0 11.2.0 11.2.0 11.2.0	11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121862 RP-121862 RP-121862 RP-121850 RP-121867 RP-121894 RP-121850 RP-121887 RP-121887	1376 1382 1386 1388r1 1396 1401 1406r1 1407	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58 RP-58	RP-121862           RP-121862           RP-121862           RP-121850           RP-121867           RP-121894           RP-121850           RP-121850           RP-121850           RP-121850           RP-121850           RP-121850           RP-121887           RP-121860           RP-121862	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121867           RP-121894           RP-121850           RP-121850           RP-121850           RP-121850           RP-121850           RP-121850           RP-121867           RP-121860           RP-121860           RP-121861	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0           11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121894           RP-121850           RP-121887           RP-121860           RP-121860           RP-121861	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1418	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121894           RP-121850           RP-121887           RP-121860           RP-121860           RP-121861           RP-121861	1376 1382 1386 1388r1 1396 1401 1406r1 1406r1 1409 1416 1418 1422	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121894           RP-121850           RP-121887           RP-121860           RP-121861           RP-121861           RP-121867	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1418           1422           1431	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121894           RP-121850           RP-121887           RP-121862           RP-121862           RP-121861           RP-121861           RP-121867           RP-121867	1376 1382 1386 1388r1 1396 1401 1406r1 1407 1409 1416 1418 1422 1431 1436	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121894           RP-121850           RP-121887           RP-121860           RP-121861           RP-121861           RP-121867	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1418           1422           1431	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58           RP-58 </td <td>RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121867           RP-121887           RP-1218860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121867           RP-121867           RP-121867           RP-121867           RP-121867           RP-121890</td> <td>1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1418           1422           1431           1436           1437r1</td> <td>Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101</td> <td>11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0</td> <td>11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0</td>	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121867           RP-121887           RP-1218860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121867           RP-121867           RP-121867           RP-121867           RP-121867           RP-121890	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1418           1422           1431           1436           1437r1	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101	11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0           11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121867           RP-121887           RP-121887           RP-121860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121867           RP-121867           RP-121867           RP-121890           RP-121867           RP-121896           RP-121862	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1418           1422           1431           1436           1437r1           1438           1442	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101 Correction of eDL-MIMO RI test and RMC table for the CSI test	11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121867           RP-121887           RP-121887           RP-121860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121866           RP-121862           RP-121861	1376           1382           1388           1388           1396           1401           1406           1407           1409           1416           1418           1422           1431           1436           1437           1438           1444	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101 Correction of eDL-MIMO RI test and RMC table for the CSI test Minor correction to ceiling function example - rel11	11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121867           RP-121887           RP-121887           RP-121860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121862           RP-121862	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1422           1431           1436           1437r1           1438           1442           1444           1449	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101 Correction of eDL-MIMO RI test and RMC table for the CSI test Minor correction to ceiling function example - rel11	11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58           RP-58 </td <td>RP-121862           RP-121862           RP-121862           RP-121862           RP-121867           RP-121887           RP-121887           RP-121887           RP-121860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121860</td> <td>1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1422           1431           1436           1437r1           1438           1442           1444           1449           1450</td> <td>Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101 Correction of eDL-MIMO RI test and RMC table for the CSI test Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation</td> <td>11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0</td> <td>11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0</td>	RP-121862           RP-121862           RP-121862           RP-121862           RP-121867           RP-121887           RP-121887           RP-121887           RP-121860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121860	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1422           1431           1436           1437r1           1438           1442           1444           1449           1450	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on elCIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101 Correction of eDL-MIMO RI test and RMC table for the CSI test Minor correction to ceiling function example - rel11 Correction of SNR definition Brackets clean up for elCIC CSI/demodulation	11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0
12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012 12-2012	RP-58	RP-121862           RP-121862           RP-121862           RP-121862           RP-121850           RP-121867           RP-121887           RP-121887           RP-121860           RP-121861           RP-121861           RP-121861           RP-121867           RP-121862           RP-121862	1376           1382           1386           1388r1           1396           1401           1406r1           1407           1409           1416           1422           1431           1436           1437r1           1438           1442           1444           1449	Correction on FRC table in CSI test Correction of reference channel table for TDD eDL-MIMIO RI test OCNG patterns for Sustained Data rate testing Introduction of one periodic CQI test for CA deployments Introduction of CA_B5_B12 in 36.101 Introducing the additional frequency bands of 5 MHz x 2 in 1.7 GHz in Japan to Band 3 Reference sensitivity for the small bandwidth of CA_4-12 CR on eICIC RI test Cleaning of 36.101 Performance sections Rel-11 Out-of-band blocking requirements for inter-band carrier aggregation Adding missed SNR reference values for CA soft buffer tests Introduction of CA_4A-5A into 36.101 Clean up of specification R11 Band 1 to Band 33 and Band 39 UE coexistence requirements Editorial corrections for Band 26 Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101 Correction of eDL-MIMO RI test and RMC table for the CSI test Minor correction to ceiling function example - rel11	11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0         11.2.0	11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0         11.3.0

12-2012	RP-58	RP-121862	1464	Adding references to the appropriate beamforming model (Rel- 11)	11.2.0	11.3.0
12-2012	RP-58	RP-121898	1465r1	Introduction of CA_8_20 RF requirements into TS36.101	11.2.0	11.3.0
12-2012	RP-58	RP-121882	1468r1	Introduction of inter-band CA_11-18 into TS36.101	11.2.0	11.3.0
12-2012	RP-58	RP-121903	1472r1	Introduction of advanced receivers demodulation performance	11.2.0	11.3.0
		RP-121903		(FDD)		
12-2012	RP-58	RP-121903	1473r1	Introduction of performance requirements for verifying the receiver type for advanced receivers (FDD/TDD)	11.2.0	11.3.0
12-2012	RP-58	RP-121886	1474	CR to remove the square bracket of A-MPR in TS36.101	11.2.0	11.3.0
12-2012	RP-58	RP-121861	1476	Correction of some errors in reference sensitivity for CA in TS	11.2.0	11.3.0
12-2012	RP-58	RP-121903	1480r1	36.101 (R11) Introduction of Advanced Receivers Test Cases for TDD	11.2.0	11.3.0
12-2012	RP-58	RP-121903	1490r1	Introduction of Band 29	11.2.0	11.3.0
12-2012	RP-58	RP-121901 RP-121849	1494	Low-channel Band 1 coexistence with PHS	11.2.0	11.3.0
12-2012	RP-58	RP-121861	1494 1498r1	Completion of the tables of bandwidth combinations specified for	11.2.0	11.3.0
12-2012	RP-58	RP-121861	1499r1	CA Exceptions to REFSENS requirements for class A2 CA	11.2.0	11.3.0
10.0010	<b>DD</b> 50	<b>DD</b> 404000	4500	combinations	11.0.0	11.0.0
12-2012	RP-58	RP-121892	1500	Introduction of carrier aggregation configuration CA_4-7	11.2.0	11.3.0
12-2012	RP-58	RP-121870	1504	Editorial corrections to Band 27 specifications	11.2.0	11.3.0
12-2012	RP-58	RP-121878	1505	Band 28 AMPR for DTV protection	11.2.0	11.3.0
12-2012	RP-58	RP-121852	1509r1	UE-UE coexistence between bands with small frequency separation	11.2.0	11.3.0
12-2012	RP-58	RP-121911	1510	Adding UE-UE Coexistence Requirement for Band 3 and Band 26	11.2.0	11.3.0
12-2012	RP-58	RP-121866	1513	Maintenance of Band 23 UE Coexistence	11.2.0	11.3.0
12-2012	RP-58	RP-121851	1515	Corrections to TM4 rank indicator Test 3	11.2.0	11.3.0
12-2012	RP-58	RP-121861	1517	Correction of test configuraitons and FRC for CA demodulation with power imbalance	11.2.0	11.3.0
12-2012	RP-58	RP-121860	1518	Applicable OFDM symbols of Noc_2 for PDCCH/PCFICH ABS- MBSFN test cases	11.2.0	11.3.0
03-2013	RP-59	RP-130279	1519	OCNG patterns for Enhanced Performance Requirements Type A	11.3.0	11.4.0
03-2013	RP-59	RP-130277	1520	Corrections on in-band blocking for Band 29 for carrier aggregation	11.3.0	11.4.0
03-2013	RP-59	RP-130268	1523	Brackets removal in Rel-11 TM4 rank indicator Test 3	11.3.0	11.4.0
03-2013	RP-59	RP-130279	1524r1	Cleanup of Advanced Receivers requirement scenarios for	11.3.0	11.4.0
				demodulation and CSI (FDD/TDD)		
03-2013	RP-59	RP-130258	1528	Corrections to CQI reporting	11.3.0	11.4.0
03-2013	RP-59	RP-130262	1536	Corrections for eICIC performance requirements (rel-11)	11.3.0	11.4.0
03-2013	RP-59	RP-130264	1539	Correction of CA power imbalance performance requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1543	Correction of a symbol for MPR in single carrier for TS 36.101(R11)	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1544r1	Correction of some inter-band CA requiements for TS 36.101 (R11)	11.3.0	11.4.0
03-2013	RP-59	RP-130276	1546	Correction of contigous allocation A-MPR for CA_NS_05	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1547r1	Clarification of spurious emission domain for CA in TS 36.101 (R11)	11.3.0	11.4.0
03-2013	RP-59	RP-130264	1548	CR for CA performance requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130284	1553r1	Introduction of downlink non-contiguous CA into REL -11 TS	11.3.0	11.4.0
				36.101		
03-2013	RP-59	RP-130263	1557	CA_1C: CA_NS_02 and CA_NS_03 A-MPR REL-11	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1560	Editorial corrections to subclause 5	11.3.0	11.4.0
03-2013	RP-59	RP-130267	1562	Addition of UE Regional Requirements to Band 23 Based on New Regulatory Order in the US	11.3.0	11.4.0
03-2013	RP-59	RP-130272	1567	Band 26: modification of A-MPR for 'NS_15'	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1571r1	Band 41 requirements for operation in China and Japan	11.3.0	11.4.0
03-2013	RP-59	RP-130260	1574	Remove [] from CSI test case parameters	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1575	Corrections to UE co-existence	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1579	UE-UE co-existence between Band 1 and Band 33/39	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1580	Correction on reference to note for Band 7 and 38 co-existence	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1584r1	Cleanup for CA UE RF requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1586	Corrections on UL configuration for CA UE receiver requirements	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1588	Correction of Transmit modulation quality requirements for CA	11.3.0	11.4.0
03-2013	RP-59	RP-130268	1590	Revision of Common Test Parameters for User-specific Demodulation Tests	11.3.0	11.4.0
03-2013	RP-59	RP-130278	1595	Correction for a Band 27 A-MPR table	11.3.0	11.4.0
03-2013	RP-59	RP-130264	1597	Correction of CA CQI test setup	11.3.0	11.4.0
03-2013	RP-59	RP-130287	1600r1	Correction of B12 DL Specification in Table 5.5A-2	11.3.0	11.4.0
03-2013	RP-59	RP-130263	1602	Correction of table reference	11.3.0	11.4.0
06-2013	RP-60	RP-130765	1604r1	Complementary description for definition of MIMO Correlation	11.4.0	11.5.0
06-2013	RP-60	RP-130763	1607	Matrices using cross polarized antennas Correction of transport format parameters for CQI index 10 (15	11.4.0	11.5.0
00-2013	NT-00	KE-130/03	1007	Conection of transport format parameters for CQI muex 10 (15	11.4.0	11.3.0

			1	RBs) - Rel 11	1	
06-2013	RP-60	RP-130765	1610	Maintenance of Band 23 A-MPR (NS_11) in TS 36.101 (Rel-11)	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1613	CR for 36.101 : Adding the definition of CA_NS_05 and CA_NS_06 for additional spurious emissions for CA	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1619	CR for introducing UE TM3 demodulation performance requirements under high speed	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1623	Correction of test parameters for elCIC performance requirements	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1625	Correction of test parameters for eICIC CSI requirements	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1627	Correction of resource allocation for the multiple PMI Cat 1 UE test	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1629	Removal of note 2 from band 28	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1641	Correction of the CSI-RS parameter configuration	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1650r1	Addition of Band 41 for intra-band non-contiguous CA for 36.101	11.4.0	11.5.0
06-2013 06-2013	RP-60 RP-60	RP-130770 RP-130765	1654r1 1656	MPR for intra-band non-contiguous CA Modification of configured output power to account for larger	11.4.0 11.4.0	11.5.0 11.5.0
06-2013	RP-60	RP-130769	1658r1	tolerance Missing symbols in the NS_15 table	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1673	Corrections to Rx requirements for inter-band CA configurations with REFSENS exceptions	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1681r1	Correction for TS 36.101	11.4.0	11.5.0
06-2013	RP-60	RP-130763	1684	RF: Corrections to RMC-s for sustained data rate test	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1685	Non-contiguous intraband CA channel spacing	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1689	Carrier aggregation in multi RAT and multiple band combination terminals	11.4.0	11.5.0
06-2013	RP-60	RP-130766	1691	Completion of out-of-band blocking requirements for inter-band CA with one UL	11.4.0	11.5.0
06-2013	RP-60	RP-130767	1695r1	CR on the bandwidth coverage issue of CA demodulation performance (Rel-11)	11.4.0	11.5.0
06-2013	RP-60	RP-130765	1697	Correction on UE maximum output power for intra-band CA (R11)	11.4.0	11.5.0
06-2013	RP-60	RP-130770	1698r1	CR for introduction of FelCIC demodulation performance requirements	11.4.0	11.5.0
06-2013 06-2013	RP-60 RP-60	RP-130770 RP-130767	1701 1703	Removing bracket from CA_11A-18A requirments CR on the bandwidth coverage issue of CA CQI performance	11.4.0	11.5.0
06-2013	RP-60	RP-130767	1703	(Rel-11) Corrections to ACLR for Rel-11 CA	11.4.0	11.5.0 11.5.0
06-2013	RP-60	RP-130765	1705	Corrections to NS_11 A-MPR Table	11.4.0	11.5.0
06-2013	RP-60	RP-130769	1717	Corrections to NS_12 A-MPR Table	11.4.0	11.5.0
09-2013	RP-61	RP-131285	1731r1	CR on performance requirements of CA soft buffer managemen (Rel-11)	11.5.0	11.6.0
09-2013	RP-61	RP-131281	1735	CR on applicability of CA sustained data rate tests (Rel-11)	11.5.0	11.6.0
09-2013	RP-61	RP-131293	1738r1	Performance requirement for UE under EVA200	11.5.0	11.6.0
09-2013	RP-61	RP-131290	1742r1	CR for introduction of FeICIC PBCH performance requirement	11.5.0	11.6.0
09-2013	RP-61	RP-131290	1744r1	CR for introduction of FeICIC RI reporting requirements	11.5.0	11.6.0
09-2013	RP-61	RP-131292	1746	Beamforming model for EPDCCH test	11.5.0	11.6.0
09-2013 09-2013	RP-61 RP-61	RP-131285 RP-131285	1753r1 1754r1	Introduction of performance requirements for verifying the receiver type for CSI-RS based advanced receivers (FDD/TDD) CR for 36.101 : Add the definition of 5+20MHz for spectrum	11.5.0	11.6.0 11.6.0
09-2013	RP-61	RP-131281	1766	emission mask for CA UE REFSENS when supporting intra-band CA and inter-band	11.5.0	11.6.0
09-2013	RP-61	RP-131279	1771	CA Correlation matrix for high speed train demodulation scenarios	11.5.0	11.6.0
09-2013	RP-61	RP-131279 RP-131280	1775	(Rel-11) Corrections to sustained data rate test (Rel-11)	11.5.0	11.6.0
09-2013	RP-61	RP-131280	1785r1	CR for introduction of FelCIC CQI requirements	11.5.0	11.6.0
09-2013	RP-61	RP-131281	1793	Clarification of multi-cluster transmission	11.5.0	11.6.0
09-2013	RP-61	RP-131293	1799r1	CA UE Coexistence Table update (Release 11)	11.5.0	11.6.0
						-
09-2013	RP-61	RP-131302	1801	Coexistence between Band 27 and Band 38 (Release 11)	11.5.0	11.6.0
09-2013	RP-61 RP-61	RP-131302 RP-131281	1806	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C	11.5.0	11.6.0
09-2013 09-2013	RP-61 RP-61 RP-61	RP-131302 RP-131281 RP-131281	1806 1810	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL	11.5.0 11.5.0	11.6.0 11.6.0
09-2013 09-2013 09-2013	RP-61 RP-61 RP-61 RP-61	RP-131302 RP-131281 RP-131281 RP-131293	1806 1810 1812r1	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA	11.5.0 11.5.0 11.5.0	11.6.0 11.6.0 11.6.0
09-2013 09-2013 09-2013 09-2013	RP-61 RP-61 RP-61 RP-61 RP-61	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281	1806 1810 1812r1 1816	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA Correction to Rel-11 A-MPR for CA_NS_04	11.5.0 11.5.0 11.5.0 11.5.0	11.6.0 11.6.0 11.6.0 11.6.0
09-2013 09-2013 09-2013 09-2013 09-2013	RP-61 RP-61 RP-61 RP-61 RP-61 RP-61	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281 RP-131281	1806 1810 1812r1 1816 1820	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA Correction to Rel-11 A-MPR for CA_NS_04 The Pcmax clauses restructured	11.5.0 11.5.0 11.5.0 11.5.0 11.5.0	11.6.0 11.6.0 11.6.0 11.6.0 11.6.0
09-2013 09-2013 09-2013 09-2013	RP-61 RP-61 RP-61 RP-61 RP-61	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281	1806 1810 1812r1 1816	Coexistence between Band 27 and Band 38 (Release 11)         Incorrect REFSENS UL allocation for CA_1C         Contiguous intraband CA REFSENS with one UL         Remianed Transmitter requirements for intra-band non-contiguous CA         Correction to Rel-11 A-MPR for CA_NS_04         The Pcmax clauses restructured         MPR for intra-band non-contiguous CA         Corrections to the notes in the band UE co-existence	11.5.0 11.5.0 11.5.0 11.5.0	11.6.0 11.6.0 11.6.0 11.6.0
09-2013 09-2013 09-2013 09-2013 09-2013 09-2013 12-2013	RP-61 RP-61 RP-61 RP-61 RP-61 RP-61 RP-62	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281 RP-131281 RP-131285 RP-131928	1806 1810 1812r1 1816 1820 1830 1846r1	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA Correction to Rel-11 A-MPR for CA_NS_04 The Pcmax clauses restructured MPR for intra-band non-contiguous CA Corrections to the notes in the band UE co-existence requirements table (Rel-11)	11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0	11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0
09-2013 09-2013 09-2013 09-2013 09-2013 09-2013	RP-61 RP-61 RP-61 RP-61 RP-61 RP-61	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281 RP-131281 RP-131285	1806 1810 1812r1 1816 1820 1830	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA Correction to Rel-11 A-MPR for CA_NS_04 The Pcmax clauses restructured MPR for intra-band non-contiguous CA Corrections to the notes in the band UE co-existence requirements table (Rel-11) Clean-up of uplink reference measurement channels (Rel-11) Introduction of test 1-A for CoMP	11.5.0 11.5.0 11.5.0 11.5.0 11.5.0 11.5.0	11.6.0 11.6.0 11.6.0 11.6.0 11.6.0 11.6.0
09-2013 09-2013 09-2013 09-2013 09-2013 09-2013 12-2013 12-2013 12-2013	RP-61 RP-61 RP-61 RP-61 RP-61 RP-61 RP-62 RP-62 RP-62 RP-62	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281 RP-131281 RP-131285 RP-131928 RP-131924	1806 1810 1812r1 1816 1820 1830 1846r1 1851 1853r2 1866	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA Correction to Rel-11 A-MPR for CA_NS_04 The Pcmax clauses restructured MPR for intra-band non-contiguous CA Corrections to the notes in the band UE co-existence requirements table (Rel-11) Clean-up of uplink reference measurement channels (Rel-11) Introduction of test 1-A for CoMP CA_NS_05 Emissions	11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.6.0           11.6.0           11.6.0	11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.7.0           11.7.0           11.7.0
09-2013 09-2013 09-2013 09-2013 09-2013 09-2013 12-2013 12-2013 12-2013	RP-61 RP-61 RP-61 RP-61 RP-61 RP-61 RP-62 RP-62 RP-62	RP-131302 RP-131281 RP-131281 RP-131293 RP-131281 RP-131281 RP-131285 RP-131928 RP-131924 RP-131937	1806 1810 1812r1 1816 1820 1830 1846r1 1851 1853r2	Coexistence between Band 27 and Band 38 (Release 11) Incorrect REFSENS UL allocation for CA_1C Contiguous intraband CA REFSENS with one UL Remianed Transmitter requirements for intra-band non- contiguous CA Correction to Rel-11 A-MPR for CA_NS_04 The Pcmax clauses restructured MPR for intra-band non-contiguous CA Corrections to the notes in the band UE co-existence requirements table (Rel-11) Clean-up of uplink reference measurement channels (Rel-11) Introduction of test 1-A for CoMP	11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.6.0           11.6.0	11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.7.0           11.7.0

12-2013         RP-62         RP-131939         1886         CR on correction of test configurations of CA soft buffer tests         11.6.0         1           12-2013         RP-62         RP-131939         1888         CR on on test configurations of CA soft buffer tests         11.6.0         1           12-2013         RP-62         RP-131936         18991         CR on R TepOring equirement         11.6.0         1           12-2013         RP-62         RP-131938         189963         CR on R TepOring equirement         11.6.0         1           12-2013         RP-62         RP-131938         19900         Demains guirement         11.6.0         1           12-2013         RP-62         RP-131938         19900         Centrection on the User for EPDCCH test         11.6.0         1           12-2013         RP-62         RP-131936         19902         Linorduce tright State for FeICC PDSCH         11.6.0         1           12-2013         RP-62         RP-131937         19810         UB-tric demasteria for Audition         11.6.0         1           12-2013         RP-62         RP-131937         19841         UB-tric demasteria for Audition of Audition for Audition         11.6.0         1           12-2013         RP-62         RP-131937         <					CSI-RS resources)		1
Throughput for CA         Throughput for CA           12:013         RP-62         RP-131936         1888         Ch on carrection of test configurations of CA soft buffer tests         11.6.0           12:013         RP-62         RP-131936         1894d         Ch on FalCC PECIC demodulation performance requirement         11.6.0           12:013         RP-62         RP-131936         1894d         Ch on R1 reporting requences         11.6.0         1           12:013         RP-62         RP-131936         1990         Correction on the UE category for eICC COI test         11.6.0         1           12:2013         RP-62         RP-131936         1995C         Correction on the UE category for eICC COI test         11.6.0         1           12:2013         RP-62         RP-131936         1955C         Moved pover reductions for multiple transmissions in a         11.6.0         1           12:2013         RP-62         RP-131937         19341         Ch rescuesting COI and rescuesting of the Coi And rescuesting COI and rescue test         11.6.0         1           12:2013         RP-62         RP-131937         19344	12-2013	RP-62	RP-131030	1886		1160	11.7.0
12_2013         RP-62         RP-131939         1888         CR on correction of test configurations of CA soft buffer tests         11.6.0         1           12_2013         RP-62         RP-131936         18941. GK to FeICC Genochalation performance requirement         11.6.0         1           12_2013         RP-62         RP-131936         18961. GK on Reporting requirement         11.6.0         1           12_2013         RP-62         RP-131936         18960. GK on Reporting requirement         11.6.0         1           12_2013         RP-62         RP-131926         1900. Downlink physical actu of CCP/H localized test         11.6.0         1           12_2013         RP-62         RP-131926         1900. Downlink physical actu of CCP/H localized test         11.6.0         1           12_2013         RP-62         RP-131926         1900. Downlink physical actu of CCP/H localized test         11.6.0         1           12_2013         RP-62         RP-131927         19331. CK no correction of RPC op ownlinablance test         11.6.0         1           12_2013         RP-62         RP-131927         19392. CK no correction of RPC op ownlinablance test         11.6.0         1           12_2013         RP-62         RP-131931         1980. CK performance requirements for TDD inta-band NC CA         11.6.0 <td>12-2013</td> <td>111-02</td> <td>11-131333</td> <td>1000</td> <td></td> <td>11.0.0</td> <td>11.7.0</td>	12-2013	111-02	11-131333	1000		11.0.0	11.7.0
122013         RP-62         RP-13936         18943         CR on FeICIC PROLE demodulation performance requirements         11.6.0           122013         RP-62         RP-13936         1896         CR on R1 requirement         11.6.0         1           122013         RP-62         RP-131936         1898         Beamforming model for FPOCCH tealized test         11.6.0         1           122013         RP-62         RP-131938         1900         Downlink physical setup for EPOCCH test         11.6.0         1           122013         RP-62         RP-131928         19052         Cr from recover type verification test of CS-R5 based advanced         11.6.0         1           122013         RP-62         RP-131928         19252         Introduce high SNR TM3 test for FeICIC PDSCH         11.6.0         1           122013         RP-62         RP-131927         1936         U-UE coexistence of Rand 40         116.0         1           122013         RP-62         RP-131937         1936         U-UE coexistence of Rand 40         116.0         1           122013         RP-62         RP-131937         1946         CR Maintropic CS-R5 second         16.0         1           122013         RP-62         RP-131938         19671         Introduce high SMR 10	12-2013	RP-62	RP-131939	1888		11.6.0	11.7.0
12:2013         RP-62         RP-131936         1886/3         C on RI regoring requirement         11.6.0         1           12:2013         RP-62         RP-131938         1898         Deaming myscale setup for EPDCCH localized test         11.6.0         1           12:2013         RP-62         RP-131938         1900         Downink physcale setup for EPDCCH localized test         11.6.0         1           12:2013         RP-62         RP-131926         1915/2         Allowed power reductions for multiple transmissions in a         11.6.0         1           12:2013         RP-62         RP-131926         195/2         Introduce high SNR TM3 test for FaCIC PDSCH         11.6.0         1           12:2013         RP-62         RP-131927         19360         UE-UE coasistence for Band 40         11.6.0         1           12:2013         RP-62         RP-131927         1939/2         C Re Introduce for GMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131937         194/4         C R enoremetion requirement two Different Coll 10 and Colliding 11.6.0         1           12:2013         RP-62         RP-131937         194/2         C RN initrim requirement two Different Coll 10 and Colliding 11.6.0         1           12:2013         RP-62         RP-1							11.7.0
12 2013         RP-62         RP-131936         16.0         1           12 2013         RP-62         RP-131938         1980         Dewnlink physical setup for EPDCCH test         11.6.0         1           12 2013         RP-62         RP-131938         1900         Downlink physical setup for EPDCCH test         11.6.0         1           12 2013         RP-62         RP-131931         1005         CR for receiver type verification test of CSI-RS based advanced         11.6.0         1           12 2013         RP-62         RP-131927         10361         Introduce high SNR TM3 test for FaCIC PDSCH         11.6.0         1           12 2013         RP-62         RP-131927         19362         Introduce high SNR TM3 test for FaCIC PDSCH         11.6.0         1           12 2013         RP-62         RP-131937         19362         CR to introduce fading OL test for CMP FDD         11.6.0         1           12 2013         RP-62         RP-131937         19362         CR to introduce fading oL test for FACIC PDSCH         11.6.0         1           12 2013         RP-62         RP-131937         19362         CR to introduce fading oL test for FACIC PDSCH         11.6.0         1           12 2013         RP-62         RP-1319383         19071         Introdu							11.7.0
12:2013         RP-62         RP-131338         1900         Downink physical subg for EPDCCH localized test         11.6.0           12:2013         RP-62         RP-131928         1900         Correction on the UE category for eICIC COI test         11.6.0           12:2013         RP-62         RP-131928         1905         Correction on the UE category for eICIC COI test         11.6.0           12:2013         RP-62         RP-131926         Test of the test of CSIRS based dynamed         11.6.0           12:2013         RP-62         RP-131927         19366         CE on correction of FR CG force imbalance test         11.6.0           12:2013         RP-62         RP-131927         19366         UE-UE coexistence for Band 40         11.6.0           12:2013         RP-62         RP-131927         19364         CE Natimizement with Direct Col 10 and Colliding         11.6.0           12:2013         RP-62         RP-131937         19942         CR Is introduce anguirement with Direct Col 10 and Colliding         11.6.0           12:2013         RP-62         RP-131937         19942         CR Is introduce anguirement with Direct Col 10 and Colliding         11.6.0         1           12:2013         RP-62         RP-131939         19611         Introduction of UE MA denoulation performance requirement with Direct Land N							11.7.0
12-2013         RP-62         RP-131938         1900         Downlink physical setup for EPDCCH test         11.6.0         1           12-2013         RP-62         RP-131931         1905         CR for receiver type verification test of CSLRS based advanced         11.6.0         1           12-2013         RP-62         RP-131921         1915/c         Allowed power reductions for multiple transmissions in a         11.6.0         1           12-2013         RP-62         RP-131927         1936/c         CR on correction of RE of power muslance test         11.6.0         1           12-2013         RP-62         RP-131927         1936/c         CR on correction of RE of power muslance test         11.6.0         1           12-2013         RP-62         RP-131937         1936/c         CR on correction of RE of power muslance test         11.6.0         1           12-2013         RP-62         RP-131937         194/c         CR momong Addition of ATc to PMPE         11.6.0         1           12-2013         RP-62         RP-131937         194/c         CR momong Addition of ATc to PMPE         11.6.0         1           12-2013         RP-62         RP-131937         194/c         CR momong Addition of ATc to PMPE         11.6.0         1           12-2013         RP-							11.7.0
12:2013         RP-62         RP-131926         1903         Correction on the UE category for EICIC CDI test         116.0           12:2013         RP-62         RP-131931         1905         CR for receiver py evenfication test of CSI-RS based advanced receivers (ReI-11)           12:2013         RP-62         RP-131936         1925/2         116.0         1           12:2013         RP-62         RP-131927         13331         CR or orceiver of advance for Band 40         116.0         1           12:2013         RP-62         RP-131927         13331         CR or correction of FRC dp over imbalance test         116.0         1           12:2013         RP-62         RP-131937         1844         CR for timoduce ladition of ATc to PAMR         116.0         1           12:2013         RP-62         RP-131937         1954/2         CR for timoduce ladition of ATc to PAMR         116.0         1           12:2013         RP-62         RP-131938         1969         CoR just marked VZ CSLR8 issuade)         16.0         1         16.0         1           12:2013         RP-62         RP-131938         1963         COReceiver MW CDI States         16.0         1         16.0         1         16.0         1         16.0         1         1         16.0							11.7.0
12-2013         RP-62         RP-131931         1905         CR for receivers (Rel-11)         116.0         1           12-2013         RP-62         RP-131928         1915/2         Allowed power reductions for multiple transmissions in a subframe         116.0         1           12-2013         RP-62         RP-131936         1252/2         Introduce high SNR TM stept for FGCI CPDSCH         116.0         1           12-2013         RP-62         RP-131927         19331         CG no correction of FR Gd power imbalance test         116.0         1           12-2013         RP-62         RP-131927         19342         CR no introduce fading COI test for CoMP (FDD)         116.0         1           12-2013         RP-62         RP-131937         19460         CRR for introduce fading COI test for CoMP (FDD)         116.0         1           12-2013         RP-62         RP-131931         1960         CAR patriamement with Dip intrabano NC CA         116.0         1           12-2013         RP-62         RP-131938         19611         Introduction of test no for CoMP TDD         116.0         1           12-2013         RP-62         RP-131938         19671         Introduction of test 1-A for CoMP TDD         116.0         1           12-2013         RP-62							11.7.0
receivers (ReI-11)         receivers (ReI-11)         receivers (ReI-11)           12-2013         RP-62         RP-131926         119522         Allowed power reductions for multiple transmissions in a subframe           12-2013         RP-62         RP-131927         193911         CR on correction of FRC of power imbalance test         11.6.0         1           12-2013         RP-62         RP-131927         193912         CR no correction of FRC of power imbalance test         11.6.0         1           12-2013         RP-62         RP-131937         19542         CR Removing Addition of A1 to PAMPR         11.6.0         1           12-2013         RP-62         RP-131937         19542         CR Romoving MeZ/D SIR Sequence         11.6.0         1           12-2013         RP-62         RP-1319381         19601         CA pathermatic requirements for TDD Intra-band NC CA         11.6.0         1           12-2013         RP-62         RP-1319381         196611         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12-2013         RP-62         RP-131939         196711         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12-2013         RP-62         RP-1319393         196711         Introduction					CR for receiver type verification test of CSI-RS based advanced		11.7.0
subframe         subframe         subframe           12-2013         RP-62         RP-131936         1125201         Introduce high SNR TM3 test for FeICIC PDSCH         11.6.0         1           12-2013         RP-62         RP-131937         193912         CR to correction of FRC of power imbalance test         11.6.0         1           12-2013         RP-62         RP-131937         193912         CR to Introduce fading COI test for CoMP (FDD)         11.6.0         1           12-2013         RP-62         RP-131937         195442         CR Removing IPL/PC SIRS For Source)         11.6.0         1           12-2013         RP-62         RP-131936         196611         Introduction of reference SNR- so for FeICIC demodulation         11.6.0         1           12-2013         RP-62         RP-131938         196671         Introduction of TM9 test to verify correct SNR estimation         11.6.0         1           12-2013         RP-62         RP-131939         196711         Introduction of TM9 test to verify correct SNR estimation         11.6.0         1           12-2013         RP-62         RP-131939         19671         Introduction of Social gregulements and use of AR							
12:2013         RP-62         RP-131936         1929/27         193371         CR on correction of FRC of pover imbalance test         11.6.0         1           12:2013         RP-62         RP-131927         19336         UE-UE coexistence for Band 40         11.6.0         1           12:2013         RP-62         RP-131937         19396         UE-UE coexistence for Band 40         11.6.0         1           12:2013         RP-62         RP-131937         19444         CR Removing Addition of ATC to P-MPR         11.6.0         1           12:2013         RP-62         RP-131937         19644         CR Removing Addition of ATC to P-MPR         11.6.0         1           12:2013         RP-62         RP-131938         19667         CA performance requirements for TDD intra-band NC CA         11.6.0         1           12:2013         RP-62         RP-131938         19671         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12:2013         RP-62         RP-131938         19671         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12:2013         RP-62         RP-131937         199671         Correction to blocking requirements and use of Afa_0         11.6.0         1         1	12-2013	RP-62	RP-131928	1915r2	Allowed power reductions for multiple transmissions in a	11.6.0	11.7.0
12:2013         RP-62         RP-131927         1936         UE-UE coexistence for Band 40         11.6.0         1           12:2013         RP-62         RP-131937         1939µ2         CR to Introduce fading COI test for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131937         1934µ2         CR Removing (Addition 47 to EP MAPR         11.6.0         1           12:2013         RP-62         RP-131937         1954µ2         CR Minimum requirement with Different Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131938         19601         CA performance requirements for TDD Intra-band NC CA         11.6.0         1           12:2013         RP-62         RP-131938         19661         Introduction of TM9 test to verify corred SNR estimation         11.6.0         1           12:2013         RP-62         RP-131937         196911         Introduction of TM9 test to verify corred SNR estimation         11.6.0         1           12:2013         RP-62         RP-131937         196911         Correction to blocking requirements and use of AR _{in} 11.6.0         1           12:2013         RP-62         RP-131937         196911         Correction to blocking requirements and use of AR _{in} 11.6.0         1							
12:2013         RP-62         RP-131927         1936         UE-UE coexistence for Band 40         11.6.0         1           12:2013         RP-62         RP-131937         19392         CR to Introduce fading COL test for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131937         1944         CR Removing Addition of ATc to P-MPR         11.6.0         1           12:2013         RP-62         RP-131937         1954/2         CR Minimu requirement with Different Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131938         19671         Introduction of referance SNR-s for FeICIC demodulation         11.6.0         1           12:2013         RP-62         RP-131939         19671         Introduction of test 1-4 for CoMP TDD         11.6.0         1           12:2013         RP-62         RP-131939         19671         Introduction of test 1-4 for CoMP TDD         11.6.0         1           12:2013         RP-62         RP-131937         199671         Correction to blocking requirements and use of ARa         11.6.0         1           12:2013         RP-62         RP-131937         199871         Correction to blocking requirements and use of ARa         11.6.0         1           12:2013         <	12-2013	RP-62	RP-131936	1925r2	Introduce high SNR TM3 test for FeICIC PDSCH	11.6.0	11.7.0
12:2013         RP-62         RP-131937         1939r.2         CR to Introduce fading COI test for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131937         1954r.2         CR Minimum requirement with Different Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131937         1954r.2         CR Minimum requirements for TDD intra-band NC CA         11.6.0         1           12:2013         RP-62         RP-131938         1963         OCNG pattern for EPDCCH test         11.6.0         1           12:2013         RP-62         RP-131938         1963         OCNG pattern for EPDCCH test         11.6.0         1           12:2013         RP-62         RP-131938         1967r.1         Introduction of TMB test overly correct SNR estimation         11.6.0         1           12:2013         RP-62         RP-131939         1971.1         CR oneto to biocking requirements and use of AR _a 11.6.0         1           12:2013         RP-62         RP-131937         1993r1         CR on Introduce channel model for CAMP ftoDID         11.6.0         1           12:2013         RP-62         RP-131937         1993r1         CR to Introduce channel model for CAMP ftoDID         11.6.0         1           12:2013 </td <td></td> <td>RP-62</td> <td>RP-131927</td> <td>1933r1</td> <td>CR on correction of FRC of power imbalance test</td> <td></td> <td>11.7.0</td>		RP-62	RP-131927	1933r1	CR on correction of FRC of power imbalance test		11.7.0
12-2013         RP-62         RP-131927         1944         CR Removing Addition of ΔTc to P-MPR         11.6.0         1           12-2013         RP-62         RP-131937         1964/2         CR Minimur requirement with Different Cell ID and Colliding         11.6.0         1           12-2013         RP-62         RP-131937         1965/1         Introduction of reference SNR-s for FeICIC demodulation         11.6.0         1           12-2013         RP-62         RP-131937         1969/1         Introduction of test 1-A for CoMP TDD         11.6.0         1           12-2013         RP-62         RP-131937         1969/1         Introduction of test 1-A for CoMP TDD         11.6.0         1           12-2013         RP-62         RP-131937         1969/1         Introduction of test 1-A for CoMP TDD         11.6.0         1           12-2013         RP-62         RP-131937         1969/1         Correction to blocking requirements and use of AR_s         116.0         1           12-2013         RP-62         RP-131937         1969/1         CR to introduce drang Col test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131937         1969/1         CR to introduce drang Col test for CoMP (TDD)         11.6.0         1           12-2013		RP-62		1936	UE-UE coexistence for Band 40	11.6.0	11.7.0
12:2013         RP-62         RP-131937         1954/2         CR Minimum requirement with Different Cell ID and Coliding         11.6.0         1           12:2013         RP-62         RP-131931         1960         CA performance requirements for TDD intra-band NC CA         11.6.0         1           12:2013         RP-62         RP-131936         19611         Introduction of reference SNRs for FeICIC demodulation         11.6.0         1           12:2013         RP-62         RP-131938         1963         OCNG pattern for EPDCCH test         11.6.0         1           12:2013         RP-62         RP-131937         1969/1         Introduction of TM9 test perify correct SNR estimation         11.6.0         1           12:2013         RP-62         RP-131939         1937.1         CR orection to blocking requirements and use of AR _a 11.6.0         1           12:2013         RP-62         RP-131937         1993.1         CR orection to blocking requirements and use of AR _a 11.6.0         1           12:2013         RP-62         RP-131937         1993.1         CR orection requirement for CA Mergodualian test         11.6.0         1           12:2013         RP-62         RP-131937         1996.7         CR to Introduce channel model for CAMF Eding COI test is 16.0         1	12-2013	RP-62	RP-131937	1939r2	CR to Introduce fading CQI test for CoMP (FDD)	11.6.0	11.7.0
CR8 (with single NZP CSI-RS resource)         116.0           12:2013         RP-62         RP-131931         1960         CA performance requirements for TDD Intra-band NC CA         11.6.0         1           12:2013         RP-62         RP-131936         19611         Introduction of referance SNRs for FeICIC demodulation         11.6.0         1           12:2013         RP-62         RP-131937         196971         Introduction of UE TM3 demodulation performance requirements           12:2013         RP-62         RP-131937         196971         Introduction of test 1-A for CoMP TDD         11.6.0         1           12:2013         RP-62         RP-131937         196971         Correction to Ibocking requirements and use of Ana         11.6.0         1           12:2013         RP-62         RP-131937         196971         Correction to Ibocking requirements and use of Ana         11.6.0         1           12:2013         RP-62         RP-131937         199871         CR no Intrabude change Cole Method Ibocking requirements         11.6.0         1           12:2013         RP-62         RP-131937         199871         CR no Intrabude change Cole Method Ibocking requirements         11.6.0         1           12:2013         RP-62         RP-131937         199871         CR no Intrabude ColMP (TDD							11.7.0
12-2013         RP-42         RP-131931         1960         CA performance requirements for TDD intra-band NC CA         11.6.0         1           12-2013         RP-62         RP-131938         1961r1         Introduction of reference SNR-s for FeICIC demodulation         11.6.0         1           12-2013         RP-62         RP-131938         1967r1         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12-2013         RP-62         RP-131937         1969r1         Introduction of tMI test to verify correct SNR estimation         11.6.0         1           12-2013         RP-62         RP-131938         1983r1         Correction to blocking requirements and use of AR _a 11.6.0         1           12-2013         RP-62         RP-131937         1983r1         CR on test point clarification for CA demodulation test         11.6.0         1           12-2013         RP-62         RP-131937         1993r1         CR to Introduce faing CO Lest for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131937         1995r1         CR to Introduce faing CO Lest for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131937         1999r1         CR to Introduce RI test CO Lest COMP (TDD)         11.6.0	12-2013	RP-62	RP-131937	1954r2		11.6.0	11.7.0
12-2013         RP-62         RP-131936         1961r1         Introduction of reference SNR-5 for FeICIC demodulation         11.6.0         1           12-2013         RP-62         RP-131939         1963         OCNG pattern for EPDCCH test         11.6.0         1           12-2013         RP-62         RP-131939         1967r1         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12-2013         RP-62         RP-131939         1967r1         Correction to blocking requirements and use of Ag _m 11.6.0         1           12-2013         RP-62         RP-131939         1987r1         CR not introduce fading CQI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131937         1998r1         CR to Introduce channel model for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131937         1997r1         CR to Introduce channel model for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12-2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP TDD static CQI test         11.6.0         1           12-20					CRS (with single NZP CSI-RS resource)		
Image: Constraint of the							11.7.0
12:2013         RP-62         RP-131938         1963         OCNG pattern for EPDCCH test         11.6.0         1           12:2013         RP-62         RP-131939         19671         Introduction of UE TM3 demodulation performance requirements         11.6.0         1           12:2013         RP-62         RP-131939         19871         Correction of test 1.4 for CoMP TDD         11.6.0         1           12:2013         RP-62         RP-131928         19871         C correction to blocking requirements and use of AR ₁₀ 11.6.0         1           12:2013         RP-62         RP-131937         199571         C R to introduce channel modulation for CA demodulation test         11.6.0         1           12:2013         RP-62         RP-131937         19957         C R to introduce channel model for CoMP fading CQL test         11.6.0         1           12:2013         RP-62         RP-131937         19957         C R to introduce channel model for CoMP fading CQL test         11.6.0         1           12:2013         RP-62         RP-131938         200071         Distributed EPDCCH bemodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         200071         Introduction of DL CoMP TDD static CQL test         11.6.0         1	12-2013	RP-62	RP-131936	1961r1		11.6.0	11.7.0
12:2013         RP-62         RP-131939         1967r1         Introduction of UE TM3 demodulation performance requirements under ETU300         11.6.0         1           12:2013         RP-62         RP-131937         1960r1         Introduction of TM9 test to verify correct SNR estimation         11.6.0         1           12:2013         RP-62         RP-131939         1971         Correction to blocking requirements and use of AR _m 11.6.0         1           12:2013         RP-62         RP-131937         1995r1         CR to Introduce channel model for CoMP fdm0 test         11.6.0         1           12:2013         RP-62         RP-131937         1995r1         CR to Introduce Channel model for CoMP fdm2 CoHP for CoMP fdm2 CoHP for PD         11.6.0         1           12:2013         RP-62         RP-131937         1997r1         CR to Introduce Channel model for CoMP fdm2 CoHP for PD         11.6.0         1           12:2013         RP-62         RP-131938         2002r1         Introduce TeDPCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2006r1         Introduction of DL CoMP FDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP FDD static COI test							
under ETU300         under ETU300           12:2013         RP-62         RP-131937         19671         Introduction of test 1-A for CoMP TDD         11.6.0         11           12:2013         RP-62         RP-131938         19831         Correction to blocking requirements and use of ARm         11.6.0         11           12:2013         RP-62         RP-131938         198371         CR to Introduce fading CQI test for CoMP (FDD)         11.6.0         11           12:2013         RP-62         RP-131937         199971         CR to Introduce fading CQI test for CoMP (FDD)         11.6.0         11           12:2013         RP-62         RP-131938         200071         Distributed EPDCCH Demodulation Test         11.6.0         11           12:2013         RP-62         RP-131938         200071         Distributed EPDCCH Demodulation Test         11.6.0         11           12:2013         RP-62         RP-131938         200471         Reference Measurement Channels for EPDCCH         11.6.0         11           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP TDD static CQI test         11.6.0         11           12:2013         RP-62         RP-131937         2004r1         Introduction of DL CoMP TDD static CQI test         11.6.0					OCNG pattern for EPDCCH test		11.7.0
12:2013         RP-62         RP-131937         1969r1         Introduction of TMs test to verify cornect SNR estimation         11.6.0         1           12:2013         RP-62         RP-131939         1987r1         Correction to blocking requirements and use of ΔR _{IB} 11.6.0         1           12:2013         RP-62         RP-131937         1993r1         CR to introduce fading CQI test for COMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131937         1995r1         CR to introduce channel model for COMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131937         1999r1         CR to introduce channel model for COMP fdmg CQI tests         11.6.0         1           12:2013         RP-62         RP-131938         2002r1         CR to introduce R test to rcMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131938         2002r1         Localized EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         introduction of DL CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         introduction of DL CoMP FDD static CQI test         11.6.0         1           12	12-2013	RP-62	RP-131939	1967r1		11.6.0	11.7.0
12:2013         RP-62         RP-131939         1971         Modification of TMB test to verify correct SNR estimation         11.6.0         1           12:2013         RP-62         RP-131939         1987r1         CR on test point clarification for CA demodulation test         11.6.0         1           12:2013         RP-62         RP-131937         1993r1         CR to Introduce fading CQI test for CoMP fading CQI tests         11.6.0         1           12:2013         RP-62         RP-131937         1993r1         CR to Introduce Annel model for CoMP fading CQI tests         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2004r1         Reference Measurement Channels for EPDCCH         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of D. CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2026r2         CR (with single NZP CS/RS resource) TDD         11.6.0         1           <							
12:2013         RP-62         RP-131928         1983r1         Correction to blocking requirements and use of AR _B 11.6.0         1           12:2013         RP-62         RP-131937         1983r1         CR to introduce fading QQI test for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131937         1993r1         CR to introduce fading QQI test for CoMP fading QQI tests         11.6.0         1           12:2013         RP-62         RP-131937         1997r1         CR to introduce thest for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2004r1         Reference Measurement Channels for EPDCCH         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP EDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP EDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         CR Minimum requirement with Same Cell ID (with multiple NZP CSI-RESouce) TDD         11.6.0         1							11.7.0
12:2013         RP-62         RP-131937         1987/1         CR on test point clarification for CA demodulation test         11.6.0         1           12:2013         RP-62         RP-131937         1993         CR to Introduce falses for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131937         1995         CR to Introduce channel model for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131924         1999/1         Simplification of Band 12/17 in-band blocking test cases         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2004r1         Reference Measurement Channels for EPDCCH         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP TDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2002r2         Rimimum requirement with Different Cell D and Colliding         11.6.0         1           12:2013         RP-62         RP-131937         2027r2         CR Minimum requirement with Different Cell D and Colliding         11.6.0         1	12-2013						11.7.0
12:2013         RP-62         RP-131937         1993r1         CR to Introduce fading COI test for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131937         1996         CR to Introduce RI test for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131937         1997r1         CR to Introduce RI test for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Localized EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP TDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP TDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Different Cell ID and Colliding         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.7.0</td></t<>							11.7.0
12:2013         RP-62         RP-131937         19971         CR to Introduce Annel model for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131934         19971         CR to Introduce R Itest for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2004r1         Reference Measurement Channels for EPDCCH         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI-         11.6.0         1           12:2013         RP-62         RP-131937         2026r2         CR Minimum requirement with Same Cell ID (with multiple NZP CSI-         11.6.0         1           12:2013         RP-62         RP-131936         2027         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12:2013<							11.7.0
12:2013         RP-62         RP-131937         1997r1         CR to Introduce RI test for CoMP (FDD)         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2002r1         Localized EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2002r1         Localized EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP FDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP TDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131931         2034r1         Correction on rominal guard bands for bandwidth classes A and         C         1         1         1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.7.0</td></td<>							11.7.0
12:2013         RP-62         RP-131924         1999r1         Simplification of Band 12/17 in-band blocking test cases         11.6.0         1           12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2004r1         Reference Measurement Channels for EPDCCH         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI-         1.6.0         1           12:2013         RP-62         RP-131937         2023r2         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12:2013         RP-62         RP-131937         2024r1         Correction of nominal guard bands for bandwidth classes A and         11.6.0         1           12:2013         RP-62         RP-131931         2044r1         Correction on CA_NS_02 A-MPR table         11.6.0         1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.7.0</td></t<>							11.7.0
12:2013         RP-62         RP-131938         2000r1         Distributed EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2002r1         Localized EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP PDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP PDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP PDD static COI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         CR Minimum requirement with Same Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131937         2027r         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12:2013         RP-62         RP-131937         204r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.7.0</td></td<>							11.7.0
12:2013         RP-62         RP-131938         2002r1         Localized EPDCCH Demodulation Test         11.6.0         1           12:2013         RP-62         RP-131938         2006r1         Introduction of DL CoMP PDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP PDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2003r1         Introduction of DL CoMP PDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI-         1.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12:2013         RP-62         RP-131936         2027         Editoral change on FeICIC PBCH Noce setup         11.6.0         1           12:2013         RP-62         RP-131937         2041r1         Crection of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12:2013         RP-62         RP-131938         2064         Add EVA200 to table of channel model parameters         11.6.0							11.7.0
12:2013         RP-62         RP-131937         2006r1         Introduction of DL COMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL COMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131924         2013         P-max for Band 36 to Band 7 coexistence         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI-         11.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding         11.6.0         1           12:2013         RP-62         RP-131937         2024r1         Correction of nominal guard bands for bandwidth classes A and         11.6.0         1           12:2013         RP-62         RP-131931         2034r1         Correction of TDD PCFICHPDCH test parameter table         11.6.0         1           12:2013         RP-62         RP-131933         2044         Correction of CA_NS_02 A-MPR table         11.6.0         1           12:2013         RP-62         RP-131933         2046         Add EVA200 to table of channel model parameters table         11.6.0         1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.7.0</td>							11.7.0
12:2013         RP-62         RP-131937         2006r1         Introduction of DL CoMP FDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP TDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131924         2013         P-max for Band 38 to Band 7 coexistence         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI- RS resources) TDD         11.6.0         1           12:2013         RP-62         RP-131937         2027r         Editoral change on FeIC PBCH Noc setup         11.6.0         1           12:2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12:2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131937         2044         Correction on CA_NS_02 A-MPR table         11.6.0         1           12:2013         RP-62         RP-131938         2066         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.7.0</td></t<>							11.7.0
12:2013         RP-62         RP-131937         2008r1         Introduction of DL CoMP TDD static CQI test         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI- RS resources) TDD         11.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12:2013         RP-62         RP-131937         204r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12:2013         RP-62         RP-131937         204r11         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131931         204r11         Carrection of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12:2013         RP-62         RP-131938         2065         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12:2013         RP-62         RP-140374 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.7.0</td>							11.7.0
12:2013         RP-62         RP-131924         2013         P-max for Band 38 to Band 7 coexistence         11.6.0         1           12:2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI- RS resources) TDD         11.6.0         1           12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12:2013         RP-62         RP-131936         2027         Editoral change on FeICIC PECH Noc setup         11.6.0         1           12:2013         RP-62         RP-131936         2024r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12:2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131939         2044         Correction of Channel model parameters         11.6.0         1           12:2013         RP-62         RP-131938         2065         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12:2013         RP-62         RP-131938         2065         Introduction of SDR test for PDSCH with EPDCCH							11.7.0
12-2013         RP-62         RP-131937         2023r2         Minimum requirement with Same Cell ID (with multiple NZP CSI- RS resources) TDD         11.6.0         1           12-2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12-2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12-2013         RP-62         RP-131931         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131931         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12-2013         RP-62         RP-131932         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of EDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12-2013         RP-63         RP-140374         2100r1         CR nor ference mea							11.7.0
RS resources) TDD         RS resources) TDD           12-2013         RP-62         RP-131937         202572         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12-2013         RP-62         RP-131936         2027         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12-2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12-2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of EPDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12-2013         RP-62         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           12-2014         RP-63         RP-140374         2096r1							11.7.0
12:2013         RP-62         RP-131937         2025r2         CR Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource) TDD         11.6.0         1           12:2013         RP-62         RP-131936         2027         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12:2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12:2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12:2013         RP-62         RP-131938         2065         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12:2013         RP-62         RP-140374         2096r1         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           10:2014         RP-63         RP-140374         2096r1         CR on Test for both for tests in Rel-11         11.7.0         1           03:2014         RP-63         RP-140374         2096r1         CR on reference measurement channel for ePDCCH test	12-2013	RP-62	RP-131937	2023r2		11.6.0	11.7.0
CRS (with single NZP CSI-RS resource) TDD           12-2013         RP-62         RP-131936         2027         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12-2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12-2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131939         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12-2013         RP-62         RP-131926         2058         CA_1C: Correction on CA_NS_02 AMPR table         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12-2013         RP-63         RP-140368         2091r1         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           103-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           103-2014         RP-63         RP-140371         2105         Cleanup of the specification for FeICIC (Rel-11) </td <td>40.0040</td> <td></td> <td>DD 404007</td> <td>0005-0</td> <td></td> <td>44.0.0</td> <td>44 7 0</td>	40.0040		DD 404007	0005-0		44.0.0	44 7 0
12-2013         RP-62         RP-131936         2027         Editoral change on FeICIC PBCH Noc setup         11.6.0         1           12-2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12-2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131931         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12-2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of SD2 A-MPR table         11.6.0         1           12-2013         RP-62         RP-140378         20967         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           13-2014         RP-63         RP-140374         2096r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FeICIC (ReI-11)         11.7.0         1           <	12-2013	RP-62	RP-131937	202512		11.6.0	11.7.0
12:2013         RP-62         RP-131931         2034r1         Correction of nominal guard bands for bandwidth classes A and C         11.6.0         1           12:2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for COMP (TDD)         11.6.0         1           12:2013         RP-62         RP-131931         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12:2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12:2013         RP-62         RP-131938         2065         Introduction of CA_NS_02 A-MPR table         11.6.0         1           12:2013         RP-62         RP-131938         2065         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12:2013         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03:2014         RP-63         RP-140374         2000r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03:2014         RP-63         RP-140371         2105         Cleanup of the specification for FeICIC (Rel-11)         11.7.0         1	10.0010	DD 60	DD 121026	2027		11 6 0	11.7.0
C         C           12-2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131939         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12-2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of EPDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           103-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105r         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-D configuration and other parameters for FelCIC TDD CQI							11.7.0
12-2013         RP-62         RP-131937         2041r1         CR to Introduce RI test for CoMP (TDD)         11.6.0         1           12-2013         RP-62         RP-131931         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12-2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of EPDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12-2013         RP-63         RP-140368         2091r1         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized PDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1 <t< td=""><td>12-2013</td><td>KP-02</td><td>RP-131931</td><td>203411</td><td>5</td><td>11.6.0</td><td>11.7.0</td></t<>	12-2013	KP-02	RP-131931	203411	5	11.6.0	11.7.0
12-2013         RP-62         RP-131931         2044         Correction of TDD PCFICH/PDCCH test parameter table         11.6.0         1           12-2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131926         2058         CA_1C: Correction on CA_NS_02 A-MPR table         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of EPDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           03-2014         RP-63         RP-140374         209671         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         210071         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         210771         UL-DL configuration and other parameters for FeICIC TDD CQI         11.7.0         1           03-2014         RP-63         RP-140371         210771         UL-DL configuration and other parameters         11.7.0         1 <t< td=""><td>12-2012</td><td>BD-60</td><td>RP-131027</td><td>20/1r1</td><td></td><td>1160</td><td>11.7.0</td></t<>	12-2012	BD-60	RP-131027	20/1r1		1160	11.7.0
12-2013         RP-62         RP-131939         2046         Add EVA200 to table of channel model parameters         11.6.0         1           12-2013         RP-62         RP-131926         2058         CA_1C: Correction on CA_NS_02 A-MPR table         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of SDR test for PDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         2100r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FeICIC TDD CQI         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for introduction of 15MHz based SDR tests in ReI-11         11.7.0         1							11.7.0
12-2013         RP-62         RP-131926         2058         CA_1C: Correction on CA_NS_02 A-MPR table         11.6.0         1           12-2013         RP-62         RP-131938         2065         Introduction of EPDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           12-2014         RP-63         RP-140368         2091r1         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         2100r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         UL-DL configuration and other parameters for FelCIC TDD CQI         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1					Add EVA200 to table of channel model parameters		11.7.0
12-2013         RP-62         RP-131938         2065         Introduction of EPDCCH TM10 localized test R-11         11.6.0         1           12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           03-2014         RP-63         RP-140368         209111         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140374         209671         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         210071         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         21057         Cleanup of the specification for FeICIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         210711         UL-DL configuration and other parameters for FeICIC TDD CQI         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS86.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for Combinations of channel model parameters         11.7.0         1							11.7.0
12-2013         RP-62         RP-131938         2067         Introduction of SDR test for PDSCH with EPDCCH scheduling         11.6.0         1           03-2014         RP-63         RP-140368         2091r1         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         2100r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FeICIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FeICIC TDD CQI         11.7.0         1           03-2014         RP-63         RP-140375         2088         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for Combinations of channel model parameters         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for EPDCCH power allocation (Rel-11)         11.7.0         1							11.7.0
03-2014         RP-63         RP-140368         2091r1         CR for maintanence of CA soft buffer tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         2100r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FelCIC TDD CQI         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1							11.7.0
03-2014         RP-63         RP-140374         2096r1         CR on TM9 localized ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140374         2100r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FelCIC TDD CQI fading test (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140375         2088         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for Combinations of channel model parameters         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1     <							11.8.0
03-2014         RP-63         RP-140374         2100r1         CR on reference measurement channel for ePDCCH test         11.7.0         1           03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FelCIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FelCIC TDD CQI fading test (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140375         2088         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0							11.8.0
03-2014         RP-63         RP-140371         2105         Cleanup of the specification for FeICIC (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FeICIC TDD CQI fading test (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140375         2088         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140374         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>11.8.0</td></td<>							11.8.0
03-2014         RP-63         RP-140371         2107r1         UL-DL configuration and other parameters for FeICIC TDD CQI fading test (ReI-11)         11.7.0         1           03-2014         RP-63         RP-140375         2088         CR for introduction of 15MHz based SDR tests in ReI-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for Combinations of channel model parameters         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (ReI-11)         11.7.0         1           03-2014         RP-63         RP-140374         212         CR for EPDCCH power allocation (ReI-11)         11.7.0         1           03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1							11.8.0
Image: Second							11.8.0
03-2014         RP-63         RP-140375         2088         CR for introduction of 15MHz based SDR tests in Rel-11         11.7.0         1           03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2119r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for Combinations of channel model parameters         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014<	00 2017	11 00		210/11		11.7.0	11.0.0
03-2014         RP-63         RP-140371         2109r1         CR for TS36.101 COMP demodulation requirements         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for Combinations of channel model parameters         11.7.0         1           03-2014         RP-63         RP-140371         2111r1         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63<	03-2014	RP-63	RP-140375	2088		11.7.0	11.8.0
03-2014         RP-63         RP-140371         2111r1         CR for Combinations of channel model parameters         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							11.8.0
03-2014         RP-63         RP-140374         2112         CR for EPDCCH power allocation (Rel-11)         11.7.0         1           03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							11.8.0
03-2014         RP-63         RP-140371         2085         CR on reference measurement channel for TM10 PDSCH         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							11.8.0
og         demodulation test           03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzied test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							11.8.0
03-2014         RP-63         RP-140374         2073r1         CR of EPDCCH localzed test with TM10 QCL Type-B         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							
O3-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1	03-2014	RP-63	RP-140374	2073r1		11.7.0	11.8.0
03-2014         RP-63         RP-140368         2146         Correction of coding rate for 18RBs in UL RMC table         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							
03-2014         RP-63         RP-140371         2130r1         CR to finalize RI test for CoMP         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1	03-2014	RP-63	RP-140368	2146		11.7.0	11.8.0
03-2014         RP-63         RP-140374         2162r1         Distributed EPDCCH Demodulation Test         11.7.0         1           03-2014         RP-63         RP-140371         2128r1         CR to finalize fading CQI test for CoMP         11.7.0         1							11.8.0
03-2014 RP-63 RP-140371 2128r1 CR to finalize fading CQI test for CoMP 11.7.0 1							11.8.0
							11.8.0
							11.8.0
requirements						-	-

00.0014		DD 440200	0400		44 7 0	44.0.0
03-2014 03-2014	RP-63 RP-63	RP-140368 RP-140371	2136 2143r1	Configured transmitted power for CA Channel spacing for non-contiguous intra-band carrier	11.7.0 11.7.0	11.8.0 11.8.0
03-2014	KF-03	KF-140371	214311	aggregation	11.7.0	11.0.0
03-2014	RP-63	RP-140371	2141	Clarification of contiguous and non-contiguous intra-band UE	11.7.0	11.8.0
00 2011				capabilities in the same band		
03-2014	RP-63	RP-140368	2158	Correction of a table note for Pcmax	11.7.0	11.8.0
03-2014	RP-63	RP-140368	2121	CR for 36.101. Editorial correction on OCNG pattern	11.7.0	11.8.0
03-2014	RP-63	RP-140374	2124r1	CR on correction of downlink SDR tests with EPDCCH	11.7.0	11.8.0
				scheduling		
03-2014	RP-63	RP-140375	2118	Introduction of requirements for SNR test for TM9	11.7.0	11.8.0
03-2014	RP-63	RP-140371	2126r2	Correction on DL CoMP static CQI tests (Rel 11)	11.7.0	11.8.0
06-2014	RP-64	RP-140909	2176r2	RF: Corrections to spurious emission requirements with NS	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2197r1	different than NS_01 (Rel-11) CR on correction on TDD IRC CQI test	11.8.0	11.9.0
06-2014	RP-64	RP-140914 RP-140917	219711 2206r1	CR of EPDCCH localzied test with TM10 QCL Type-B	11.8.0	11.9.0
00-2014	111-04	111-140317	220011	configuration (Rel-11): correction of CSI-RS configurations	11.0.0	11.3.0
06-2014	RP-64	RP-140918	2208	Clean up of TM9 SNR tests	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2214r1	Correction of UE TM3 demodulation performance requirements	11.8.0	11.9.0
06-2014	RP-64	RP-140917	2215r1	CR for EPDCCH test (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2217r1	CR of modification on FeICIC rank testing (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2219r1	CR on FeICIC PBCH performance requirement (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140918	2221r1	Correction on out-of-band blocking for CA	11.8.0	11.9.0
06-2014	RP-64	RP-140918	2225	Update demodualtion performance requirements with new UE	11.8.0	11.9.0
00.00			0007	categories	44.5.5	44.5.5
06-2014	RP-64	RP-140911	2227r1	Correction for CA sustained data rate test (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140918	2230r1	CR on OCNG and propagation conditions for dual layer TM9 test	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2232	Clarification of Intra-band contiguous CA class C Narrow band	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2238	blocking requirements Correction for CA soft buffer test (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2236 2246r1	Remove [] from eICIC TDD RI requirement	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2255	Verification of exceptions of REFSENS requirements for carrier	11.8.0	11.9.0
00 2014	111 04	111-140014	2200	aggregation	11.0.0	11.5.0
06-2014	RP-64	RP-140914	2257	Applicability of exceptions to reference sensitivity requirements	11.8.0	11.9.0
	-		_	for CA		
06-2014	RP-64	RP-140918	2261r1	Editorial corrections for UE performance requirments for R11	11.8.0	11.9.0
06-2014	RP-64	RP-140909	2268	In-band blocking case nubering re-establisment	11.8.0	11.9.0
06-2014	RP-64	RP-140918	2272	CR for TS36.101 FRC tables for COMP demodulation	11.8.0	11.9.0
				requirements		
06-2014	RP-64	RP-140911	2281r1	Finalization of CoMP demodulation test cases	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2285	CR for finalizing DL COMP CSI reporting requirements CR for adding DL CoMP CSI RMC tables (Rel-11)	11.8.0	11.9.0
06-2014 06-2014	RP-64 RP-64	RP-140914 RP-140911	2287r1 2313	UE to UE co-existence between B42/B43	11.8.0 11.8.0	11.9.0 11.9.0
06-2014	RP-64	RP-140911 RP-140911	2313	Perf: Corrections to CA (Class C) performance with power	11.8.0	11.9.0
00-2014	111-04	111-140311	2317	imbalance (Rel-11)	11.0.0	11.3.0
06-2014	RP-64	RP-140914	2320r1	CR of modification on FelCIC rank testing (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2322r1	CR of introducing FeICIC TM9 testing (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140917	2324r1	CR for EPDCCH SDR test (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2327	Clean-up CR for demodulation requirements (Rel-11)	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2332	Throughput calculation for eICIC demodulation requirements	11.8.0	11.9.0
06-2014	RP-64	RP-140914	2334r1	Introduction of Band 28 requirements for flexible operation in	11.8.0	11.9.0
				Japan		
06-2014	RP-64	RP-140911	2336r1	Add missing Uplink downlink configuration to eICIC TDD RI	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2340	requirement Cleanup of terminology for Rx requirements	11.8.0	11.9.0
06-2014	RP-64	RP-140911	2340	CR on separating CA UE demodulation tests from single carrier	11.8.0	11.9.0
00-2014	111-04	111-140910	2040	tests in Rel-11	11.0.0	11.3.0
06-2014	RP-64	RP-140911	2350	Test configuration for intra-band contiguous carrier aggregation	11.8.0	11.9.0
				power control		
06-2014	RP-64	RP-140914	2361r1	Correction of test configurations for intra-band non-contiguous	11.8.0	11.9.0
				aggregation		
06-2014	RP-64	RP-140911	2364	Clarification on CA bandwidth classes	11.8.0	11.9.0
06-2014	RP-64	RP-140917	2373	CR on correction of downlink SDR tests with EPDCCH	11.8.0	11.9.0
00.0011			0070	scheduling	44.0.0	44.0.0
06-2014	RP-64	RP-140911	2376	Corrections on CA CQI tests	11.8.0	11.9.0
06-2014 06-2014	RP-64 RP-64	RP-140911 RP-140914	2386r1 2390	CR on PDSCH transmission for eICIC CSI requirements (Rel-11) CA_7C A-MPR Corrections	11.8.0 11.8.0	11.9.0 11.9.0
06-2014	RP-64	RP-140914 RP-140918	2390	CR for TS36.101 CSI RMC table	11.8.0	11.9.0
06-2014	RP-64	RP-140918	2393	CR on correction for TM10 CSI reporting requirements	11.8.0	11.9.0
		RP-141525	2503	Perf: Cleanup and better description of DL-RMC-s with dynamic	11.9.0	11.10.0
	KP-nn					
09-2014	RP-65			coding rate for CSI requirements (Rei-11)		
	RP-65	RP-141525	2564	coding rate for CSI requirements (Rel-11) Corrections to UE coex table	11.9.0	11.10.0
09-2014 09-2014 09-2014	RP-65 RP-65	RP-141527	2433	Corrections to UE coex table Correction on support of a bandwidth combination set	11.9.0	11.10.0
09-2014 09-2014	RP-65			Corrections to UE coex table		

09-2014	RP-65	RP-141527	2483	Corrections on delta Tc for UE MOP for intra-band contiguous	11.9.0	11.10.0
				CA		
09-2014	RP-65	RP-141527	2486	Removal of Class B in UE TX requirement	11.9.0	11.10.0
09-2014	RP-65	RP-141527	2515r1	CR for CA applicability rule in 36.101 in Rel-11	11.9.0	11.10.0
09-2014	RP-65	RP-141527	2518	Editorial CR for CA performance tests in 36.101 in Rel-11	11.9.0	11.10.0
09-2014	RP-65	RP-141527	2547	Correction to NS_20 A-MPR for Band 23	11.9.0	11.10.0
09-2014	RP-65	RP-141530	2446r1	CR of introducing FeICIC TM9 testing (Rel-11)	11.9.0	11.10.0
09-2014	RP-65	RP-141530	2453	Maintenance of CoMP demodulation performance requirements (Rel-11)	11.9.0	11.10.0
09-2014	RP-65	RP-141530	2455	Clean-up CR for EPDCCH and FelCIC PBCH (Rel-11)	11.9.0	11.10.0
09-2014	RP-65	RP-141530	2470	Throughput calculation for feICIC demodulation requirements	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2438	CR on correction on CQI reporting TDD CSI meas in case two CSI subframe sets with CRS test (Rel-11)	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2440	CR on correction on RI reporting CSI meas in case two CSI subframe sets with CRS tests (Rel-11)	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2443	Clarification of high speed train scenario in 36.101 (Rel-11)	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2472r1	Max input for Intra-band non-contiguous CA	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2477	CQI reporting under fading: CQI indices in set	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2489	Correction on A-MPR table	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2498	RF: Corrections to spurious emission band co-existence requirement for Band 44	11.9.0	11.10.0
09-2014	RP-65	RP-141532	2521	CR on CA power imbalance tests in Rel-11	11.9.0	11.10.0
12-2014	RP-66	RP-142144	2573	CR for REFSENSE in lower SNR and change history	11.10.0	11.11.0
12-2014	RP-66	RP-142142	2586	CR for 1 PRB allocation performance in presence of MBSFN (rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2589	Maintenance of CA demodulation performance requirements (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2591	Clean up for FeICIC demodulation performance requirements (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2628	CR to fix error of CA capability for CA performance tests in 36.101 in Rel-11	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2633	Editorial CR for UL configuration table for intra-band contiguous and non-contiguous CA in 36.101, Rel-11	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2636	Definition of the bits in the bitmap for indication of modified MPR behavior	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2660	Maintenance of TM10 demodulation test configurations on PQI set and ZP-CSIRS (Rel-11 test 8.3.1.3.2, 8.3.2.4.2)	11.10.0	11.11.0
12-2014	RP-66	RP-142149	2608r1	Correction on UE TM3 demodulation performance requirements	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2619r1	CQI reporting in AWGN: CQI indices in set	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2670r1	Correction of CoMP TDD CSI tests (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2640r1	Applicability of in-gap and out-of-gap measurements for intra- band NC CA	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2699	Delete the incorrect notes for FDD DMRS demodulation tests (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2719	Band 22 correction in UE to UE co-existance table.	11.10.0	11.11.0
12-2014	RP-66	RP-142148	2707r1	Introduction of minimum requirements for intra-band NC CA with timing offset	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2726r1	CR for CA applicability rule in 36.101 in Rel-11	11.10.0	11.11.0
12-2014	RP-66	RP-142149	2675r1	CR to remove CA capability column in CA performance test tables (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142149	2677r1	CR to specify applicability of CoMP RI test (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2746r1	TS36.101 removal of brackets (RF)	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2754	Correction to Transmit Modulation Quality for CA	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2709r1	Clarification of UL and DL CA configuration	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2716r1	Clarification of notes relating to interferer offsets in intraband CA receiver requirement tables.	11.10.0	11.11.0
12-2014	RP-66	RP-142147	2734r1	Band 28 and NS_24	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2757	Correction to Note 2 of Harmonic Signal Exceptions in Spurious Emissions	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2750r1	Removal of brackets and TBD from CA feature	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2687r1	Removal of brackets and TBD from CA realitie	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2696r1	Maintenance of CA performance requirements (Rel-11)	11.10.0	11.11.0
12-2014	RP-66	RP-142144	2703r2	UE to UE co-existence between B42/B43	11.10.0	11.11.0
12 2017	111 00		210012		11.10.0	11.11.0

# History

	Document history					
V11.2.0	November 2012	Publication				
V11.3.0	February 2013	Publication				
V11.4.0	April 2013	Publication				
V11.5.0	July 2013	Publication				
V11.6.0	October 2013	Publication				
V11.7.0	March 2014	Publication				
V11.8.0	April 2014	Publication				
V11.9.0	August 2014	Publication				
V11.10.0	November 2014	Publication				
V11.11.0	April 2015	Publication				